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SYSTEM HARDWARE/SOFTWARE RELIABILITY HANDBOOK 

1 SCOPE 

1.1 Purpose.  This handbook provides guidance for conducting a comprehensive and effective 
reliability program as defined in MIL-STD-785 on systems that contain both hardware and 
software. The guidance is limited to topics of significance to combined hardware/software 
systems as opposed to hardware-only systems. 

1.2 Application.  This handbook is intended as a guide for developing system reliability 
requirements and selecting reliability program tasks for DOD procurements specifying MIL-
STD-785. 

2 REFERENCED DOCUMENTS 

3 TERMS, DEFINITIONS AND ACRONYMS 

3.1 Terms.  The terms used herein are defined in MIL-STD-721. 

3.2 Definitions.  Definitions applicable to this document are as follows (Sources for definitions 
are cited where applicable): 

a. Error:  The difference between an expected or specified result and the actual result. 

b. Failure, Hardware:  The termination of the ability of a [hardware] functional unit to 
perform its required function [IS078]. 

c. Failure. Software:  The termination of the ability of a [software] functional unit to 
perform its required function [IS078]. 

d. Failure Intensity:  The rate of change in the cumulative number of failure occurrences 
at a given point in time. 

e. Failure Rate:  The rate at which failures occur over a given time interval. 

f. Fault:  A defect in the software code that, when executed under certain conditions, 
causes a failure to occur. 

g. Fault Content:  The number of faults in the software code. 

h. Fault Density:  The average number of faults in a specified amount of code (i.e. N 
faults per M executable lines of code. 

1 
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i. Mistake:  An action by the software designer or developer that introduces a fault. 

Software Reliability:  The probability that software will not fail over a specified period 
of time under specified conditions. 

3.3 Acronyms.  Acronyms used in this document are defined as follows: 

BITE 	- Built-In Test Equipment 
FMEA - Failure Modes and Effects Analysis 
FMECA - Failure Modes, Effects and Criticality Analysis 
MTBCF - Mean Time Between Critical Failures 
MTBM - Mean Time Between Maintenance 
MTTF - Mean Time To Failure 
QA 	- Quality Assurance 

4 RELIABILITY REQUIREMENTS 

4.1 General discussion.  On development and production programs for systems and equipment, 
contractual, quantitative requirements are typically specified for both logistics (basic or inherent) 
and mission reliability. Logistics reliability parameters such as Mean-Time-Between-
Maintenance (MTBM) account for all possible occurrences that require logistics support. 
Mission reliability parameters such as Mean-Time-Between-Critical-Failure (MTBCF) address a 
system's capability of performing a specific mission. However, where the system comprises 
both hardware and software, a statement of reliability requirements in terms of minimum 
MTBM, maximum failure rate, or minimum mission reliability is inadequate for the following 
reasons: 

a. Many software faults cause minor deviations from normal system operation such as 
incorrect display formats. Specific definitions of one or more failed states are 
therefore necessary to formulate an effective reliability program. 

b. Many software failures are of a temporary or intermittent nature (because software 
does not physically degrade). Separate requirements for permanent and transient 
failures may therefore have to be generated. 

c. As faults are identified and removed, the reliability of software will tend to increase. 
Therefore the reliability objective has to be stated as a function of operational 
exposure and maintenance effort. 

All of these factors are also present in hardware only systems but to a much lesser extent. 
The inclusion of software forces them to be addressed, and this will benefit the overall conduct 
of reliability programs. Specific factors to be addressed in the formulation of reliability 
requirements include the following: 

Operating mode 
Failure severity 

2 
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Maintenance action 
Fault duration 
Fault tolerance provisions 
Unrepaired faults 
Reliability growth 

4.2 Detailed discussion 

4.2.1 Operating mode.  A separate reliability requirement must be established for each system-
level operating mode defined in the system specification. A mode is characterized by its 
requirement to perform a distinct set of functional operations associated with a specific 
hardware configuration, software path, or hardware/software workload. Examples of operating 
modes are full-up, reduced capability, and emergency (degraded modes) or ship, aircraft, and 
spacecraft communication (sectorized modes). Note that operating modes are distinct from 
missions in that the former reflect internal (system-derived) stresses whereas the latter reflect 
external stresses (e.g. environmental, or effects caused by other systems). A specific operating 
mode can occur in more than one mission, and a specific mission can involve several operating 
modes. 

4.2.2 	Failure Criteria. 	Most quantitative reliability parameters involve counting failure 
occurrences or their associated interarrival times. It thus becomes imperative to clearly define 
what events constitute a failure. This is particularly true for hardware/software systems since 
the types of potential failure events exceeds that for hardware only systems. Criteria for 
defining failures appear in the paragraphs that follow. 

4.2.2.1 Failure severity.  The severity criterion for failure must be clearly stated. Examples 
include (1) any deviation from the specification, (2) only significant deviations from the 
specification, or (3) only failures causing service interruptions of more than some threshold 
value. If necessary, several criteria with separate reliability requirements may be stated. 

4.2.2.2 Maintenance action.  The criterion for failure in terms of maintenance action is 
particularly significant where MTBM is an important figure of merit. The definition of 
maintenance and possibly separate definitions of operational, hardware and software 
maintenance need to be stated. Examples of this failure criterion include (1) any deviation 
from normal operating procedures, (2) only actions requiring program restart, or (3) only 
actions requiring system shut-down. 

4.2.2.3 Fault duration.  Failures should be defined in terms of the duration of the failure 
causing event (the fault), distinguishing between permanent, recurrent (intermittent), and singular 
(transient) faults. Note that the duration is not necessarily an indicator of severity. It is 
possible for a singular event to cause a very severe failure (a lightning strike) and for a 
permanent fault to cause only mild degradation (inability to shift to upper case letters). 
Separate reliability requirements should be stated for permanent and non-permanent faults; the 
need to distinguish between intermittent and transient failures depends on the application. 

4.2.2.4 	Fault tolerance provisions. 	The threshold for involvement of fault tolerance 
mechanisms in the definition of a failure must be defined. An example of a very strict 
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criterion is one that counts a fault masked by error corecting code. Less severe criteria do not 
count faults that are corrected by operation of a fault tolerance mechanism. 

4.2.3 Unrepaired faults. The criteria for counting failures while they are being fixed must be 
specified. By doing so, the ability of software to operate without repair after a failure has 
occurred will be recognized in the system requirements. This is a drastic deviation from the 
hardware environment, and it brings about problems in 

a. accounting for repetitive failures due to an already reported software fault that has not 
yet been fixed 

b. introducing non-specified, degraded operating modes such as not permitting some 
transactions that are suspected to cause a failure in the presence of the existing 
software fault (e.g. not permitting station A to send a message to station B while an 
outgoing message from B has not yet been acknowledged). 

4.2.4 Reliability growth. Reliability growth is usually more pronounced in software than in 
hardware. Therefore, requirements for reliability predictions and modelling need to be tied to a 
specific time or event in the development cycle. Where only an operational reliability has been 
defined but monitoring during development is desired, a growth relation has to be defmecl to 
permit meaningful assessment of the progress toward the operational reliability goal. 

5 RELIABILITY MODELING 

5.1 General discussion 

Reliability models represent the contribution of individual components and operational modes to 
the reliability (or the failure probability) of a system. Good reliability models are a prerequisite 
for all subsequent steps of the reliability program. The key issue that arises from the inclusion 
of software is to define the exposure to failure such that hardware and software components 
can be represented in a series arrangement in a reliability block diagram. The following 
approach is described: 

1. Hardware failures are a function of a stress-time product (or summation of stress-time 
products over different modes of operation). 

2. Software failures are a function of code execution time. 

3. For each mission operating mode, the failure probability is the sum of the hardware 
module failure probabilities computed on the basis of stress-time products and of the 
required software modules computed on the basis of their execution time. 

The basic structure of this model is diagrammed in Figure 5-1. As depicted in the figure, 
mission-related data identify the configuration (both hardware and software), environmental 
stress factors, and utilization time (operating time for hardware, execution time for software) at 
the lowest indenture level of combined hardware/software items to be analyzed. The mission 
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data are combined with corresponding predicted or estimated hardware and software failure 
rates to obtain probabilities of hardware and software failure. The total item reliability is 
approximately given by one minus the sum of the hardware and software failure probabilities 
plus a term accounting for any hardware/software interaction'. In this manner, both hardware 
and software reliability are incorporated in the item reliability prediction. The model is 
individually applied to each level of degradation the system is expected to experience (e.g. by 
failure severity, fault duration, etc.). 

Figure 5-1. Basic Structure of the HW/SW Reliability Model 

5.2 Development of the basic model 

A reliability block diagram of the hardware portion of the system being modeled is first 
constructed in accordance with procedures specified in MIL-STD-756B. A block representing 

A more exact expression is 1 - (1-FH)(1-Fs)(1-F,), where the terms involving F are 
the failure probabilities of hardware, software and hardware/software interactions, 
respectively. 
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software is then added in series with each hardware block involved in the operation or storage 
of the software. Where several hardware blocks are associated with the same software block, a 
single software block is drawn in series with the hardware blocks. Where several software 
blocks are associated with the same hardware block, a single hardware block is drawn in series 
with the software blocks. 

The mathematical model associated with the combined hardware/software reliability diagram is 
constructed by following the same procedure specified in MIL-STD-785B; assuming constant 
failure rates, series blocks imply reliability product terms while parallel blocks imply failure 
probability product terms. However, the constant failure rate assumption for software must be 
carefully considered. During development, the assumption only applies over short time 
intervals since significant reliability growth typically occurs during this period. For operational 
systems, the constant failure rate assumption is usually acceptable for both hardware and 
software [HECH86]. 

The reliability term for each hardware block is evaluated from the exponential expression 

RH(t) = exp[4.41 	 (5-1) 

where R(t) is the probability of success, A. H  is the failure rate of the hardware, and t is the 
operating time interval. Where the failure probability 1-R(t) is less than 0.1, it can be 
approximated to within 0.5% by: 

FH(t) = A.Ht 	 (5-2) 

The hardware failure rate is evaluated in accordance with the 200 series Tasks in MIL-STD-
756B as discussed below in Section 7. 

The reliability term for each software block is evaluated by combining the software failure rate 
As  and the software utilization time t in the following manner. First, major mission phases 
and block operating modes are identified. For each mission phase Op the duration t i  of the 
phase and the fraction of time f,;  a given mode operates during the phase (i.e. the mode duty 
cycle) are estimated. The resulting data are organized as shown in Table 1. The effective 
operating time for the jth operational mode over a mission comprising N phases is calculated 
by the following expression: 

= 	ti*fu  
wo 

(5-3) 

The next step is to decompose the software block into major software components (modules) 
for which failure intensity predictions will be performed. The procedure for performing these 
predictions is described in Section 7. For the present discussion, assume the predicted failure 
rate for the kth component is given by Ask. The fraction of time u,„ each module is utilized 
during each operational mode (i.e. the module duty cycle) is then estimated. The data are 
organized as shown in Table 2. 
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TABLE 1. EFFECTIVE MODE OPERATING TIME 

Mission Phase Op. Mode 1 	• • • Op. Mode j 	• • • Op, Mode M 
Phase Time % On 	Time % On 	Time % On 	Time 

01  t, q11 *100 t,*q„ 91;1' 100  ti*clij q,m*100 

0, t1 q,,* 100 t,*qz, q„,* 1 CO t,*q,, (114*  100 t,* (124 

tN qN1 *100  41*(1N1 qNj* 100 tN*CINJ ChM* 1  °O tN*C1NM 

Tot. Msn. Eff. Op. Eff. Op. Eff. Op. 
Time Time ; Time ; Time Tm  

TABLE 2. SOFTWARE MODULE UTILIZATION 

S/W Module Duty Cycle 
Eff. Op. 	Module 1 • • • 	Module k • • • 	Module S 

Op. Mode Time 	% On Time 	% On 	Time 	% On Time 

Mode 1 

Mode j 

Mode N 
TN  

Ti 	U ii*  MO 	TI*U II 	llik*  I 00 	T1 4'11 11, 	Ills*  1 00 	TI*1.11s 

T. J 	 Uji* 100 	 U * 100 	Ti*UA it 	 Uis*  MO 	Ti*UA  

Um  * 100 	TN*UNI 	Un* WO 	TN*UNk 	UNs *  100 	IN*UNS 

Util. 	 Util. 	 Util. 
Time 1 	 Time k 	 Time S 
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The effective software module utilization time is calculated by: 

zk = 	 (5-4) 

Finally, the reliability of each software module is given by the series product expression: 

Rs(t) = H exp[Asktd 	 (5-5) 
all k 

In most cases, the expression can be approximated as in equation (5-2) above, in which case 
the software failure probability is given by: 

Fs(t) - 	Xilck 	 (5-6) 
all k 

The combined hardware/software success probability for a hardware/software block set 
appearing on the reliability diagram is given by the product of the individual reliability 
expressions in equations (1) and (5): 

Rsy,,m(T) = RH(t)*Rs(t)• 	 (5-7) 

The corresponding reliablity block diagram is shown in part A of Figure 5-2. Alternatively, the 
total failure probability can be approximated by the sum of equations (2) and (6): 

FsysiaT) = FH(t) + Fs(t)• 	 (5-8) 

5.3 Hardware/software interactions 

The above procedure assumes independent hardware and software failures when in fact 
interactions sometimes occur. The most common of these interactions can be described by two 
types which can be accounted for in the reliability model by the additional term R x(t) in the 
combined reliability expression: 

Rsyslat) = RH(t)*Rs(t)*Rx(t) 	 (5-9) 

For cases where 1 - R(t) is small (less than 0.1), the combined failure probability can be 
approximated by: 

F(t) = FH(t) + FS(t) + Fx(t) 	 (5-10) 
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Figure 5-2. Reliability Block Diagrams 
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In the first type of interaction, software is used to circumvent a transient hardware failure as 
depicted by the reliability block diagram shown in part B of Figure 5-2. An example is 
computer memory error detection and correction (EDAC) implemented in software. By 
methods described in MIL-HDBK-756, the reliability expression corresponding to this case is 
given by: 

= [exp(-z,t) + (1 — exp(z it))exp(-z,t)] x exp(z,t) x exp(z 4t) 	 (5-9) 

where z, is the failure hazard of the protected hardware, z 2  is the hazard of the software 
implementing the fault tolerance, and z3  and z4  are the hazards of the remaining hardware and 
software, respectively. After expanding the expression and substituting a = zjz, and k = 
the bracketed term involving z, and z2  becomes: 

Rx(t) = exp(-k) + exp(-ak) — e-(1+a)k 	 (5-10) 

In many applications, the software implementing the hardware fault tolerance provision is 
designed to have a much higher reliability than the protected, i.e. the term a is much smaller 
than one. In this case, it may be convenient to use the approximation 

Rx(t) = exp(-.5ak) 	 (5-11) 

in regard to this type of interaction. The error is indicated by the curves shown in Figure 5-3. 
As can be seen from the figure, the approximation is quite adequate to support reliability 
prediction for feasibility studies for values of k less than 1. The approximation should not be 
used where the validity of extremely small failure probabilities are to be investigated. 

The second type of interaction comprises software for reconfiguring hardware in the event of a 
hardware failure and is depicted in part C of Figure 5-2. An example is software that brings 
online a backup data storage device in the event the prinmary device fails. The reliability 
expression corresponding to this case is given by: 

RsysTEm 	[eXp(-Z it) + (1 — exp(z,t))exp(-z,t)exp(-z 2t)] x exp(z3t) x exp(z4t) 	(5-12) 

where z 1, z2, z3  and z4  are as previously defined. After expanding the expression and 
substituting a = zjz, and k = zlt as before, the bracketed term involving z, and z2  becomes: 

Rx(t) = exp(-k) + exp(-(a+1)k) — e-(2+a)k 	 (5-13) 

Assuming as before that the parameter a is much smaller than one, equation (5-10) can be 
approximated by 

Rx(t) = exp(-.5k) 	 (5-14) 

for this type of interaction. The error is indicated by the curves shown in Figure 5-4. As can 
be seen from the figure, the approximation is adequate to support reliability prediction for 
feasibility studies for values of k less than 1. 
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5.4 Example 1 

An example of applying modeling procedure to the offensive radar of a fighter aircraft is 
presented. As a first step, the radar system is decomposed into its hardware and software 
components and a reliability diagram constructed. The software is assumed to consist of an 
executive, self-test program (Test), scan, track, and calibrate (Cal) routines. The hardware is 
decomposed into a power supply (P.S), built-in test equipment (BITE), a pulse generator (Pls 
Gen), a scan module, and a track module. For this example, the components are assumed to 
be independent and represented as series elements as in the block diagram appearing in Figure 
5-5. 

Next, the effective mission time for each operational mode is computed, based on a typical 
mission profile. As shown in Table 3, the radar is assumed to have four major operational 
modes: idle, scan, track, and maintenance. The effective time for each mode (column) is 
computed as the summation of the product t i*fo  for that column (j = 1 ... 4). Thus, for the idle 
mode the effective time is 0.1+0.1+0.1+0.1+0.1 = 0.5. 

Then, software and hardware component utilization for each operating mode are computed as 
shown in Tables 4 and 5, respectively. For the hardware BITE module and for the software 
test and calibration modules the failure rate includes only those failures that can affect the 
mission. For the basic reliability model a higher failure rate that accounts for all failure modes 
will have to be used. 

The effective hardware and software times are carried over from Table 3. The entries under 
the hardware module duty cycle are the expected loading or electrical duty cycle of each 
hardware module for the operating mode (row). Because several hardware modules are 
operational at the same time, the sum of the hardware duty cycles carries no particular 
significance. The entries under software module duty cycle represent the fraction of processing 
time for a given module in each operational mode. The sum of the software duty cycles is 
exactly unity in all modes because this system provides no parallel processing and the self-test 
program is scheduled to run whenever no other module is being processed. The utilization is 
computed as the sum in each column of the effective hardware or software time multiplied by 
module duty cycle. The failure rate is derived from sources discussed in Section 7. 

The failure probability represents the product of utilization time and failure rate. This row is 
the key to design changes for reliability improvement because it clearly shows which modules 
affect mission failure probability the most. Although the track module has the highest failure 
rate among the hardware components, it is seen that there are three modules that contribute 
considerably more to the mission failure probability and should receive higher priority for 
reliability improvement (given that the cost per unit of failure reduction is the same in all 
modules). The mission probability is the sum of all the hardware and software component 
failure probabilities as given by equation (5-8), or 294.5 x 
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Figure 5-5. Example 1 - Series Reliability 

TABLE 3. CALCULATION OF EFFECTIVE MODE DUTY CYCLE 
TIME 

Mission Phase 	Time 	 Mode Duty Cycle  
Hrs. 	Idle 	can 	Track 	Maint.  

	

Frac. Hrs. 	Frac. Hrs. 	Frac. Hrs. 	Frac. Hrs. 

	

t *Cla 	q2 	ti*C112 	 ti*C113 	q 	ti*9)4 

Start-up 0.1 1.0 0.1 
Taxi 0.1 1.0 0.1 
Climb 0.2 0.5 0.1 0.5 0.1 
Loiter 1.0 0.8 0.8 0.2 0.2 
Attack 0.3 0.33 0.1 0.67 0.2 
Return 0.2 0.5 0.1 0.5 0.1 
Land 0.1 1.0 0.1 
Shut-down 0.2 1.0 0.2 

Effective Time, Hrs. 0.5 1.1 0.4 0.2 
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TABLE 4. SOFTWARE MODULE UTILIZATION 

(11xL. 	Eff, 5/W Module Duty Cycle  
Test 	Scan 

Time 	Frac. 	Time 	Frac. 	Time 
Track 

Frac. Time 
Calib. 

Frac. 	Time 
Mode 	Time 	Exec 

Frac. 

Idle 	0.5 	0.05 0.025 0.75 0.375 0.05 0.025 0.05 0.025 0.1 0.05 
Scan 	1.1 	0.05 0.055 0.05 0.055 0.9 0.99 
Track 	0.4 	0.05 0.02 0.05 0.02 0.9 0.36 
Maint. 	0.2 	0.2 0.04 0.4 0.08 0.4 0.08 

Utilization, Hrs 0.1 0.5 1.0 0.4 0.1 

Mod. Fail Rate, 10-6/hr 50.0 10.0 100.0 100.0 10.0 

Mod. Fail Prob, 104  5.0 5.0 100.0 40.0 1.0 

Software Failure Probability = 151.0 x 10' 

TABLE 5. HARDWARE COMPONENT UTILIZATION 

O 	t-. 	Eff. H/W Component Duty Cycle 
Mode 	Time 	P.S. BITE 	Pls Gen Scan Track 

(hrs) 	Frac. Time Frac. 	Time Frac. 	Time Frac. Time Frac. 	Time 

Idle 	0.5 	0.8 0.4 0.8 	0.4 1.0 	0.5 0.1 	0.05 0.05 	0.025 
Scan 	1.1 	1.0 1.1 0.5 	0.55 1.0 	1.1 1.0 	1.1 0.05 	0.055 
Track 	0.4 	1.0 0.4 0.5 	0.2 1.0 	0.4 0.1 	0.04 1.0 	0.4 
Maint. 	02 	0.8 0.16 1.0 	Q2 0.1 	0.02 0.05 	0.01 0.05 	0.01 

Total 	2.2 

Utilization, hrs 2.06 1.35 2.02 1.2 0.49 

Mod. Fail Rate, 10-6/hr 15.0 11.0 25.0 25.0 35.0 

Mod. Fail Prob, 10' 30.9 14.9 50.5 30.0 17.2 

Hardware Failure Probability = 143.5 x 10' 
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5.5 Example 2 

The preceeding example is extended to address hardware/software interactions. Consider the 
case where the radar's pulse generator includes a standby transmitter activated by a transmitter 
fault tolerance (Xmtr FT) software module, and where the tracker includes software fault 
tolerance (Tracker FT) protecting memory devices against single event upsets. The reliability 
diagram for this extended radar example is shown in Figure 5-6. Hazard rates for the 
interacting components and applicable utilization times and hazard rates carried over from 
Example 1 (Tables 4 and 5) for the remaining components are presented in Table 6. The 
utilization of the software implementing the hardware fault tolerance was assumed equal to the 
hardware utilization. Since the product of hazard and operating time (i.e. the parameter k) was 
less than 0.1, equations (5-10) and (5-13) were used rather than the approximations given by 
equations (5-11) and (5-14). 

Figure 5-6. Example 2 - Interactive Components 
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TABLE 6. INTERACTIVE SYSTEM COMPONENTS 

Component' 

Pulse Gen: 

Hazard 
(10-4/hr) 

Utilization 
(firs) 

Fail. Prob. 
(x 10') 

Ref. Eqn. 

- Non-interact (H) 15.0 2.02 30.3 Eq. (5-2) 

- Interactive: 0.0002 Eq. (5-13) 
Xmtr #1 (H) 5.0 2.02 
Xmtr #2 (H) 5.0 2.02 
Xmtr FT (S) 0.5 2.02 

Tracker: 
- Permnt Fail (H) 25.0 0.49 12.3 Eq. (5-2) 

- Interactive: 0.0002 Eq. (5-10) 
Transnt 	Fail 10.0 0.49 

(H) 
EDAC (S) 1.0 0.49 

Remaining HW3  75.8 Eq. (5-2) 

Remaining SW4  151.0 Eq. (5-6) 

System Total 269.0 

Notes: 

1. Includes hardware (H) and software (S) in interactive or non-interactive configurations. 
2. Excludes redundant transmitters. 
3. From Table 5. 
4. From Table 4. 
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6 RELIABILITY ALLOCATION 

6.1 General discussion 

The objective of reliability allocation is to partition the system reliability requirements into 
reliability requirements for each of the major components and to subsequently partition down to 
lower levels of assembly or programs. The total reliability allocated at the lower levels must 
equal the reliability requirement established for the upper level. This is usually implemented in 
an approximate manner by requiring the sum of the failure probabilities to be no more than the 
maximum allowable failure probability for the upper level. 

This failure probability allocation objective can be stated as 

E 	F, for fi  0 and i = 1 	n 	 (6-1) 

where F represents the upper limit on system failure probability and f, the allocated failure 
probability of the individual components. This inequality can be satisfied by an infinite number 
of allocations. The economically optimal allocation is arrived at when the cost of marginal 
failure rate reduction is the same for each component. In practice, the allocation is conducted 
by considering achievable goals, usually based on experience with similar hardware or software 
components in the past. The following areas are of particular concern when software is 
included in the allocation: 

Accounting for differences in the manner in which hardware and software reliability 
improvements affect cost 

- Estimation of the software execution time for each module and mode of operation as 
identified in the model description 

- Adequate consideration of the role of infrequently executed code (e.g. that used for 
system initialization) because many failures have been traced to these components 

- Realistic representation of the failure rate of commercial software, particularly 
operating systems. 

6.2 Detailed discussion  

6.2.1 Cost considerations.  Cost considerations are important in the hardware/software context 
because hardware reliability improvements usually involve significant recurring costs while 
software reliability improvements involve primarily non-recurring costs. Thus, for procurements 
involving large production quantities, it may be much more effective to require a lower failure 
rate for software whereas for systems that are procured only in small quantities it may be more 
effective to require a lower failure rate for hardware. 

An example of how allocation costs depend upon procurement quantity is illustrated by the 
hardware/software system defined in Table 7. The overall failure probability of the system 
over a specified mission is approximately the sum of hardware and software failure 
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probabilities, i.e. 0.02 + 0.02 = 0.04. The table shows the cost of implementing a 25% 
reduction in the system failure probability by allocating a 50% improvement to either hardware 
(option 1) or software (option 2) for procurement quantities of 10 systems and 1000 systems. 

Option 1 assumes the system allocation is achieved through hardware redundancy; redundant 
elements are to be provided for 50% of the hardware to achieve the requisite 50% reduction in 
hardware failure probability. Required expenditures for this option are a recurring cost of 
approximately 50% of the original recurring hardware cost and a relatively small non-recurring 
cost for development. For option 2, the 50% reliability improvement has been allocated 
entirely to the software and achieved through additional testing. The cost of implementing this 
option is approximately 100% of the original software development cost. (Note the non-linear 
relationship between software reliability improvement and added test time; longer test times are 
required for each improvement increment to uncover the fewer and harder to find bugs that 
remain.) The figures in the bottom row of the table indicate that for the low quantity 
procurement the hardware allocation costs significantly less than that of the software while for 
high quantity procurement the hardware allocation costs considerably more than that of the 
software. 

TABLE 7. COST OF 0.01 RELIABILITY IMPROVEMENT 

ITEM 
OPTION 1 

HARDWARE 
(LOW QTY) 

OPTION 2 
HARDWARE 
(HIGH QTY) 

SOFTWARE 

Procurement Qty 10 1000 

Unit Recurring Cost $0.5 M $0.5 M 

Total Recurring Cost $5.0 M $500 M 

Non-Recurring Cost $1.0 M $1.0 M $10.0 M 

Unit Recurring Improvement $0.25 M $0.25 M 

Total Recurring Improvement $2.5 M $250 M 

Non-Recurring Improvement $0.1 M $0.1 M $10.0 M 

Total Cost of Improvement $2.6 M $250 M $10.0 M 
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6.2.2 Software failure probability. Software failure probability is a function of fault content 
and execution time, and both must be considered when comparing software modules with those 
of earlier designs to generate an achievable reliability allocation goal. Fault content is affected 
by software attributes such as program structure, language, and executable lines of code. A 
common measure of fault content is fault density, e.g. errors per 1000 executable lines of 
code. However, modules may have an identical fault content but have widely differing failure 
probabilities due to the extent to which the code is utilized. It is for this reason that software 
utilization is included in the reliability model presented in Section 5. 

The most desirable measure of software utilization is execution frequency, i.e. the number of 
times during a given interval that the computer central processing unit (CPU) executes the 
program. Comparisons involving execution time are meaningful only if applied to computers of 
the same type performance and word format. It is misleading to compare the failure rate of a 
module running on a 16-bit avionics computer operating at 2 MIPS with that of a 60-bit 
mainframe operating at 20 MIPS. Instead, the failure rates must be normalized (divided) by 
the product of the word length and instruction speed (i.e. 32 MBits/sec and 1200 MBits/sec for 
the computers described). Because the resulting execution frequency is not usually meaningful 
in an operational context, it should be used only for the purpose of global comparison. 

For programs run on mainframes, execution time can usually be obtained from operating system 
reports. For cases where execution time cannot be obtained, the computer run time of the 
modules in question may be used if input/output activity is accounted for and if the modules 
run on the same computer type (i.e. similar performance and word format). Calendar time is 
only applicable for comparison of fialure rates when the workload and execution time for the 
modules being compared are constant. 

6.2.3 Fault consequences and severity 

In addition to failure probability, failure consequences and severity must be considered when 
allocating reliability goals. Consequences of a software failure can range from improper 
display of a character or character set (e.g. loss of upper case text) to total system stoppage 
requiring manual intervention for restart (i.e. a system crash). Severity considers the effect on 
the overall mission including the possibility of human injury, cost impact and service 
interruption. The severity of software failures on mission performance can range from 
negligible to extremely severe, and modules that are likely to cause severe effects should be 
allocated a lower failure probability. Fault Tree Analysis or functional FMEA are useful tools 
for evaluating the consequences of software failures and their severity. 

When system reliability requirements at the top level distinguish between severe and non-severe 
failures, the severity apportionment should be carried down to lower level allocations. Where 
no apportionment exists at higher levels of indenture, the lower level reliability allocation 
should account for criticality by methods such as applying only to severe failures or being 
reasonably weighted between severe and non-severe failures. For example, if a failure 
probability of 0.01 is to be allotted to a specific software component, the allocation could be 
0.0001 for high severity failures and 0.0099 for non-severe failures. 
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6.2.4 Infrequently executed code 

Software-based systems typically consist of two types of code; (1) that which is part of the 
normal operation and frequently accessed, and (2) that which is non-operational and 
consequently rarely used. Examples of the latter include 

exception handlers (communication channels busy, read errors on disk access, memory 
parity errors, etc.) 
system initialization 
hardware calibration routines 
special measurements 
computation of long term system statistics and report generation 

Prior research has found that infrequently executed code has a higher fault density (faults per 
source line of code) and fails at a much higher rate (in some cases by two orders of 
magnitude) than the operational software [MCCA87]. This has been attributed to less thorough 
testing of rarely used code. If it is desireable to achieve a given incremental reliability 
improvement at minimum expenditure, the best strategy will be to conduct further testing of the 
rarely used code at least until its total fault density (counting faults found during test and 
operation) approaches that of the frequently accessed code. 

6.2.5 Commercial software  

Failures in commercial software can occur due to 

- faults in the code 

- problems at the computer interface (e.g. the software expects a memory structure or 
I/O port configuration that differs from the existing one) 

- problems at the user or application interface (e.g. the software expects a data format 
or commands that differ from the existing ones). 

Data provided by the vendor can only be expected to account for faults in the code. The other 
contributions must be estimated by the integrator. A good example of reliability problems in 
commercial software is found in [ADAM85]. 

7 RELIABILITY PREDICTION 

7.1 General discussion 

Reliability prediction for combined hardware/software systems requires formulation of reliability 
(or failure probability) expressions for software consistent with those that have been developed 
for hardware and defined in MIL-STD-756B. The standard recognizes two major categories of 
prediction; (1) by similarity, and (2) by elements. 
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The similarity methods for hardware are directed toward similar circuits or equipments. These 
methods carry over almost verbatim into software when "program" is substituted for 
"equipment" and "subroutine" for "circuit". Examples of subroutines covered by this 
substitution are search operations, sort operations, matrix operations, and Runge-Kutta numerical 
approximations. The similarity methods for both hardware and software must account for usage 
as well as type. For hardware, usage implies stress levels and environmental conditions. For 
software, significant usage parameters are data width (bits), instruction speed (e.g. MIPs), 
operating time (where reliability is to be predicted), and workload. 

The element methods for hardware comprise Parts Count and Parts Stress failure rate 
predictions as defined in MIL-HDBK-217. Unlike the similarity category, the hardware element 
methods do not carry over directly to software. Software prediction by elements applies to 
fault content (or fault density when normalized by program length) and considers application 
area, development environment, test environment and maturity. 

The significant factor regarding area of application is whether the program executes in real time 
or is a batch process. An additional factor is the program's primary function (e.g. control, 
message routing, signal processing, intelligence processing). Factors that may be considered 
under development environment include program size and structure (complexity), developer/user 
relationship', design and coding languages, automated development and coding tools, and 
programmer experience. Although the latter factor appears to have a significant impact on fault 
content, it is difficult to verify and enforce. Test factors include the fraction of project 
resources allocated for test, the test methodology, and the use of automated test tools. Maturity 
factors include the fraction of previously used code and the fraction of modified code. These 
considerations are summarized in Table 8. 

There are three general categories of software reliability prediction models: 

a. Fault seeding. These models are relevant only when the seeded faults are equivalent 
to the inherent faults. They are used for estimating the number of inherent faults by 
equating the uncovery of seeded faults to inherent faults [IEEE88]. This approach was 
discussed in the early 1970's but has not received much attention recently. 

b. Input domain. These models are useful only to the extent that a convenient partition 
of the input domain can be generated. Software reliability is estimated based upon the 
number of successful runs compared to the total number of runs where the number of 
runs for a specific input domain is determined by the domain probability distribution. 
A generally applicable partitioning is normal input data and exceptional input data. 
There is little practical expertise with this approach. 

c. Reliability growth. These models can be used for estimating either the average 
number of failures occurring over an interval of time or the average elapsed time 
between failures. 

Boehm's classification of organic, semi-detached and embedded as described in 
RADC-TR-87-171 has been found to be particularly effective in this regard. 
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TABLE 8. CONSIDERATIONS FOR SOFTWARE PREDICTION BY ELEMENTS 

ATTRIBUTE 	 SIGNIFICANT FACTORS 
	

METRIC RANGE* 

Application area 	 Real time vs. batch process 
	

Not Yet Evaluated 
Primary function 	 .0018 - .013 

Development environment 

Test environment 

Program structure: 
Complexity 
Modularity 
Anomaly Management 
Traceability 
Quality 
Standardization 

Developer/user relationship 
Design and coding languages 
Automated tools 
Programmer experience 

Test resources 
Test methodology 
Automated tools 

.8 - 1.5 
.9 - 2 

.9 - 1.1 
1 - 1.1 
1 - 1.1 

.75 	1.5 

.76 - 1.3 
1 - 1.4 

Not Yet Evaluated 
Not Yet Evaluated 

Not Yet Evaluated 
Not Yet Evaluated 
Not Yet Evaluated 

Maturity 	 Extent of re-used code 	 Not Yet Evaluated 
Extent of modified code 	 Not Yet Evaluated 

* Based on [IITR87] 

The third category is considered superior in capability and applicability [MUSA87] and will be 
discussed in greater length. These models generally apply to predicting reliability growth since 
they relate program usage or test time to the number of faults exposed during a test phase. 
Their hardware counterparts are models such as Duane and AMSAA that predict hardware 
reliability growth in terms of decreasing failure rate (increasing MTBF) [MH189]. No single 
model is applicable for all cases since software reliability growth is heavily dependent on 
management decisions and on the extent to which software faults are mutually dependent (i.e. 
fault B cannot be exposed until fault A has been detected and repaired). 

The failure intensity for a software component at a specific time has the forma : 

3  See [MUSA87], pg. 121, where U = fK. The equivalence of the failure intensity 
expression derived in this report and in the referenced work implies that Musa's 
development of confidence factors is also applicable here (ibid, pp. 270-271). 
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x . 0) x U 	 (7-1) 

where X is the failure intensity, co is the fault content, and U is the rate at which faults are 
being exposed (i.e. failure occurrences per fault per unit time). The latter term is a function of 
the stress placed on the software by the test cases, while co is a function of the fault density 
and of the length of the code. Time dependency is introduced by assuming the failure rate is 
proportional to the fault correction rate: 

X(r) = co(t) x U 	 (7-2) 

Assuming perfect debugging (i.e. each fault exposed is properly corrected without introducing 
new failures or correcting additional faults), the rate of failure occurrences must equal the rate 
at which the fault content is being reduced: 

do)(T)  
2t.(t) = dt (7-3) 

A time-dependent expression for the software failue rate is obtained from equations 7-2 and 7-3 
and is given by: 

k(t) = 411e' 	 (7-4) 

In using these equations, the fault density (i.e. w divided by program size) and/or the exposure 
rate U should be estimated on the basis of experience on similar software. When such 
experience is not available, the following default values may be used: 

Fault density: .005/SLOG 
Exposure rate: .005/CPU hr for a computer processing 10 6  source 

lines/sec 

7.1.1 Quality Control 

Although it may intuitively appear that quality assurance (QA) should have a significant effect 
on reducing software fault content, measurable evidence of this has been scanty. This should 
not be construed as detracting from QA; its benefit to software maintenance has been clearly 
documented. In addition, the team aspects of development programs subjected to total quality 
management (TQM) can lead to feedback of modes and causes of failures to developers and 
produce an overall improvement in product reliability and performance. However, the effect of 
software quality on fault content is yet to be quantitatively assessed. 

The reliability of a hardware/software system is adversely affected by external stresses caused 
by changes in requirements or test methodologies and by management actions regarding 
workload and job composition. Statistical process control charts used on programs subjected to 
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TQM have been found to be useful for measuring variations in software stress and failure rates. 
However, care must be exercised in interpreting these measurements. For example, a high 
failure rate during development and test may be due to (1) a high fault content or (2) a high 
rate of uncovering faults by effective testing. The difference between these two can only be 
judged after several months of observation. 

7.2 Detailed discussion 

The reliability prediction expressions defined in MIL-STD-756 must be selectively applied at 
different stages of the development cycle in order to satisfy the prediction needs stated in Table 
9. The detailed discussion that follows regarding these needs concentrates on parts of the 
development cycle that do not usually permit reliability testing (either as part of development 
or operational testing), because it is during the early phases that a realistic and accurate 
reliability prediction is most needed. 

TABLE 9. RELIABILITY PREDICTION NEEDS DURING DEVELOPMENT 

Development Activity 	Minimum Data 	 Objective 
Requirements  

Feasibility Studies 	 Hypothetical system 	Reliability goal 
composition 

System Design 	 Actual system composition 	Feasibility of goal 

Prelim. Detailed Design 	Parts count, code estimate 	Compliance with goal 

Detailed Design 	 Parts application, lines of 	Refined compliance 
code 

7.2.1 Feasibility studies 

The purpose of reliability prediction during feasibility studies is to establish a realistic reliability 
goal. This goal must address the missions, mission phases, and operational environment 
identified in the Operational or Technical Needs document. If a reliability goal is stated in the 
document, the modeling task should demonstrate how this goal can be met. In the more likely 
case that no specific goal is identified, the reliability analyst may model a hypothetical system 

4  During test, the adoption of a new test methodology (e.g. changing from structural to 
functional testing) or shifting of responsibility to a new test team will frequently produce a 
sharp increase in failure rate. 
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and assess, together with other project participants, whether the predicted reliability will be 
satisfactory. As a minimum this assessment must consider: 

predicted permanent failure rates for each mission phase with identification of the assumed 
environment and parts quality level 

partitioning of these failures into hardware/software/other categories, and statement of 
assumptions regarding redundancy or protective mechanisms 

predicted reliability (with reliability growth) for one or more typical missions; where 
redundancy is employed the predicted basic reliability shall also be stated as an aid in 
maintenance planning. 

Since no design is available during feasibility studies, a methodology based on parts count is 
useless. The Similar Item Method (Method 2001 in MIL-STD-756) is applicable when 
augmented with more definitive requirements such as the following: 

failure experience on the predecessor equipment to be identified by equipment maturity, 
assessment for deterministic failure modes, environmental stress level, operating mode, 
duty cycle, and hardware/software/other classification of failures 

detailed comparison between the proposed and predecessor equipment with regard to the 
above characteristics and complexity of hardware, software, and personnel components and 
interfaces 

- description of the amount of re-use of existing hardware and software components for 
each functional component of the proposed system. 

7.2.2 System design 

Typically, Reliability Allocation (MIL-STD-785 Task 202) rather than reliability prediction is 
required during system design. The formal description of reliability allocation concentrates on 
the partitioning of reliability goals so that component reliability requirements are consistent with 
the system reliability goal. Although this is strictly speaking not a reliability prediction 
activity, it is generally realized that it is necessary to show the feasibility of the allocation by 
reconciling it with what can reasonably be expected from each component. 

7.2.3 Preliminary design  

The following presents a methodology for Preliminary Prediction (to support the allocation) 
based on the system definition and gross indicators of its composition that should be available 
at that stage: estimates of the number of ICs for hardware, number of modules for software, 
and number and type of interfaces the "other" category. The Active Element Group Method 
(MIL-STD-756, Method 2003) can be used as a starting point for the preliminary prediction. 
This must be augmented by consideration of the application factors listed above for the 
Feasibility Studies and by: 

25 



MIL-HDBK-XYZ (Draft) 

considering not only numbers but also complexity of the ICs (or hybrids), software 
modules, and interfaces 

adjusting the prediction for stress levels and duty cycles for hardware and usage factors 
for software 

requiring allowance for a "design growth factor" to account for the traditional 
underestimate of the hardware and software components needed to meet the specification 
for the function. 

During preliminary design hardware components are expected to be defined at least to the level 
where an approximate part count can be furnished, and for software components an estimate of 
the lines of code in each of the major execution areas (operating system, real-time application 
code, non-r/t application code, support programs, etc.) should be available. Both internal and 
external interfaces will also be sufficiently defined at this time to permit a reasonable 
assessment of their complexity. With this information it is possible to generate reliability 
prediction models which can establish whether the design complies with the reliability goals 
and their allocation. 

Unless the system does not employ internal redundancy at least two models should be 
considered: 

- the basic reliability model which is concerned with the prediction of all failures, regardless 
of their mission impact; this model supports maintenance and logistics assessments 

- the mission reliability model which is concerned only with failures that impact the 
mission; this model supports mission planning and system effectiveness evaluation. 

Additional models may be required for multi-purpose systems, e.g., to model the effect of 
failures that affect some missions but not others, or to account for operation in degraded 
modes. 

The basic methodology for reliability prediction at the preliminary design stage is based on the 
Parts Count Method  (MIL-STD-756, Method 2004) modified to account for effective mission 
time for each operational mode based upon a typical mission profile. An example of this 
approach has been described in Section 5.3. 

7.2.4 Detailed design 

In detailed design every part is defined, and electrical and thermal stresses are determined. 
This permits the more accurate parts stress analysis method of reliability prediction to be 
applied (MIL-STD-756, Method 2005). At this time separate predictions can be generated for 
transient and permanent failures. Where effective means are provided to circumvent the effects 
of transient failures, all or a substantial fraction can be eliminated from the system reliability 
summation. 
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Detailed design is also an appropriate time to consider reliability growth predictions. The 
extent of reliability growth is dependent on the scope of test programs and the existence of a 
disciplined Failure Reporting, Analysis and Corrective Action System (FRACAS). Guidance for 
reliability growth testing and prediction is found in MIL-HDBK-781 and MIL-HDBK-189. In 
all other respects the reliability methodology is identical to that used in preliminary design. 
Computer programs and interfaces are in their final form at this stage of the development cycle 
and previous failure rate estimates should be updated with the current information. 

8 FAILURE MODES AND EFFECTS ANALYSIS (FMEA) 

8.1 General Discussion 

FMEA is a part of Failure Modes, Effects and Criticality Analysis (FMECA) that is defined in 
Task 204 of MIL-STD-785 and for which further requirements are established in MIL-STD-
1629. FMEA can aid in the reliability allocation process by 

- identifying avoidable weaknesses that can be eliminated in circuit and system design 

- focusing the need for fault tolerance on unavoidable reliability weaknesses 

identifying failure modes and their effects so that suitable self-test or external test 
provisions can be designed and the benefits of these accounted for in allocation. 

There is nothing in the requirements or structure of an FMEA that prevents software from 
being considered as an element that can contribute to failure. Unfortunately the format and 
procedures for FMEA are not well adapted to the complex circuit and logic structures 
encountered in current hardware/software systems. The failure modes of even the simplest 
microprocessor can produce too many different effects for effective analysis. However, if types 
of events leading to serious top level failures can be identified by fault tree analysis, an FMEA 
that concentrates on potential causes of such events can be productive. 

Fault tree analysis has been in use for many years in the hardware field and is a recognized 
technique in MIL-STD-785 as well as in MIL-STD-882 (System Safety Programs). The 
purpose of fault tree analysis is to identify low level failure modes that can, singly or in 
combination, produce significant failures at a high level. It is a top-down procedure which 
starts with a given failure condition at the system level and then identifies events at 
successively lower levels that can contribute to the top event. 

An additional consideration for software FMEA is the assignment of severity factors to 
postulated failure modes as defined in MIL-STD-1629. More specific descriptors than those 
defined by the standard are required for the severity of software failures. As discussed under 
the heading Reliability Allocation (specifically, paragraph 6.2.3), the manifestation of a failure 
is only very vaguely dependent on the nature of the fault that caused it. A fault may be 
simple and its removal easily accomplished, yet its consequences in terms of system failure can 
be quite severe. On the other hand, a subtle, complex fault that is difficult to remove may 
only cause a minor system failure. Thus, it is imperative to properly classify failure (rather 
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than fault) severity in order to bring to bear appropriate resources for addressing the causes of 
failure. 

9 RELIABILITY DEVELOPMENT/GROWTH TESTING (RDGT) PROGRAM 

9.1 General Discussion 

In general, the objective of RDGT is to employ a test, analyze and fix process to remove as 
many causes of systematic (design) faults as possible and to obtain a degree of assurance that 
the system will meet the stated reliability requirements. Test conditions involve actual, 
simulated or accelerated mission environments. 

For hardware, a distinction is made between failures caused by defects in workmanship or parts 
and failures caused by design deficiencies. The former are removed by screening or attrition 
where their removal contributes to the reliability growth of the unit under test. Whenever these 
random failures are excessive, QA procedures will be tightened. The latter are removed during 
analyze and fix portions of the testing program; the removal involves design changes which 
benefit all subsequent copies of the item. 

For software, reliability growth during development and test is taken for granted since software 
faults are inherently design faults and code changes in response to failures are intended to 
eleminate these faults. 

9.2  Models 

The most popular of the various hardware oriented mathematical models developed for 
analyzing reliability growth have been the Duane model [DUAN64] and the AMSAA model 
[CROW75]. These along with various others are described in MIL-HDBK-189. 

Various mathematical relations have been proposed to model the effect of "debugging" on 
software reliability. Earlier studies indicate that even when considerable care was exercised to 
eliminate external factors, "good" fits (chi-square test at the 0.05 level) were achieved for only 
28% of the tested programs and "no convergence" (meaning lack of consistent reliability growth 
for several sampling periods) was reported for 57% of the programs [ANGU83]. 

The best documented of the software reliability growth models are those developed by John 
Musa [MUSA87]. They assume that the failure rate is either proportional to, or a logarithmic 
function of, the remaining fault content, and that the detection of faults is a function of 
execution time (the are therefore referred to as execution time models). The Musa models are 
based on statistical estimations and provide confidence limits on the future failure rate based on 
past observations. Computer programs for data collection and analysis based on this model are 
also available. 

Many factors can obscure the observation of reliability growth in software development, such as 
requirements changes, personnel turn-over, and differences in test procedures. These changes, if 
allowed to occur during software reliability growth testing without being properly accounted for, 
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will negate the test results. For example, the addition or modification of a system requirement 
can be expected to generate a negative perturbation in the growth curve. A change in usage 
(e.g. from two-dimensional input data to three dimensions) or in hardware (e.g. from a lower 
performance computer to a higher one) will produce a similar result. The benefits of 
introducing such changes must be weighed against the perturbations in growth testing that they 
cause. However, after the perturbation has stabilized, one would expect growth rate to continue 
as before, i.e. the slope of the growth curve before and after the interruption should be similar, 
and the projected growth curve can be corrected by an appropriately shift along the ordinate. 

9.3 Test Strategies 

RDGT for software is usually conducted separately from hardware because of differences in test 
strategies. Hardware is typically stressed by environmental exposure. During hardware tests, 
diagnostic software routines are used that are typically not representative of the mission 
software. The environmental conditions imposed upon the hardware during test is both 
unnecessary for software and presents an impediment to "debugging". Software is stressed by 
running under conditions of high workload and frequent exception handling, neither of which 
are necessarily appropriate for stressing hardware. Instrumentation for monitoring performance 
and uncovering failures are often quite different between hardware and software. Faults 
associated with the interface between hardware and software are detected during integration 
testing which may or may not be part of RDGT. 

Integration of the software RDGT with other developmental testing enables acquisition of more 
test time and earlier application of the growth program within the development phase but 
requires more carefull analysis of the data and test conditions. As failures are exposed and 
solutions identified, several options are available. Fixes can be cut in immediately, their 
implementation can be delayed until the end of the test phase or later, or they can they can 
worked-around by changes in documentation or procedures. Each of these options will have a 
unique impact on growth rate, program cost and schedule. Immediate implementation can 
unpredictably affect growth from planned levels since new failure patterns can be triggered as a 
result of the fixes. However, this option maximizes the test time available for observing and 
correcting these failures. It should also be noted that cost and time constraints frequently 
dictate that testing continue in parallel with design of fixes for known failures. 

Test strategies for software require the following additional considerations. An optimum test 
strategy is one that uncovers the greatest number of faults in the least amount of program 
execution time. One approach is to select test input states randomly with a probability 
distribution similar to that encountered during a field mission. Here we distinguish between 
deterministic or random selection of input states. The former implies the test input sequence is 
specified with certainty and can lead to inadvertent test biasing. The latter implies various 
alternative sequences are selected arbitrarily and can lead to unrealistic or non-optimum tests. 
By combining both selection processes (random selection within a predetermined distribution) 
we avoid their individual deficiencies. Other areas of consideration regarding test strategy 
include: 

non-repetition of selected inputs (selection without replacement vs. regression testing) 
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grouping similar input and selecting one input per group (partition testing) 

applying input sequences that can trigger the occurence of certain fault patterns 
(mutation testing) 

9.4 Data Collection Procedures 

Operationally, data collection is required to objectively track reliability growth against a planned 
growth curve and to project future growth. A number of problem areas involving data 
collection for supporting reliability growth (particularly software related) have been recognized 
in the literature. (See for example [SOIS85], [ANGU83].) These problem areas include: 

Erroneously attributing software failures to hardware or vice versa. 

Improperly recording the correction of a software fault as a system "enhancement". 

Erroneously reporting a test procedure deficiency as a system failure. 

Improperly recording the time of the failure occurrence. 

Insufficient coverage of all mission modes rather than a few test scenarios. 

Insufficient range of test inputs. 

Unmotivated data collectors. 

Simplification of data collection requirements, consistent error classification definitions, and 
automated techniques such as menu-formatted input requests aid in overcoming many of these 
problems. 

9.5 Simultaneous Random Testing 

Reliability growth measurement for systems having very high reliability requirements presents 
special problems. Providing sufficient test time for a single copy of the system is typically 
impractical. In this case, data can be collected from S multiple copies of the system running 
simultaneously for H hours. The failure data can then be evaluated as if a single copy running 
SH hours had been tested. 

It is possible that more than one failure will be reported during the same reporting interval. 
Since reliability growth models do not accommodate concurrent failures, the distribution of the 
failure data must be randomized within each reporting interval and statistical calculations 
applied for estimating the expected number of failures. 
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10 RELIABILITY QUALIFICATION TEST (RQT) PROGRAM 

10.1 General Discussion 

When formualting an RQT plan, consideration should be given to testing hardware and software 
separately. In doing so, hardware testing would be guided by MIL-STD-781 and software by 
DOD-STD-2167 and -2168. Advantages for separating these tests include: 

Software testing can be conducted in a room temperature environment at much lower 
cost than over a simulated operational profile environment. 

For hardware test, it is frequently desirable to run diagnostic programs continuously or 
very frequently, and this conflicts with the requirements for software. 

While demonstration of the specified MTBF is an accepted technique for hardware, it 
is not necessarily so for software where demonstration of a minimum failure free 
period may be preferred. 

The allocation of test time can be tailored to the separate hardware and software 
reliability goals, and testing can be conducted at different points in the development 
cycle. 

The major disadvantages of separating the test is that the combined system reliability will have 
to be generated analyticaly and that some hardware/software interactions may go unnoticed. 
The general methodology for combining hardware and software reliability described under 
Allocation in this handbook is suitable for resolving the first issue, and the second is addressed 
by other testing that is being conducted during development, notably system integration. 

11 PRODUCTION RELIABILITY ACCEPTANCE TEST (PRAT) PROGRAM 

The purpose of PRAT is to insure that the manufacturing process does not degrade the product 
reliability. PRAT is applicable only to hardware because there is no production variability 
associated with software. 
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