
Does subcontracting plan apply ?: Y

Title SYSTEM,HARDWARE/SOFTWARE RELIABILITY AND ASSESSMENT-HANDBOOK

PROJECT ADMINISTRATION DATA

OCA contact: Brian J. Lindberg

Sponsor technical contact

UGENEOFIORENTINO

DEPARTMENTOFTHE -AIR FORCE
ROMETSIR%DEVELOPMENT CENTER/RBET
GRIFFISS"AFE- W13441-5700'

894-4820

Sponsor issuing office

GERARD J. BROWN/PKRM
(315)330-2308
ROME AIR DEVELOPMENT CENTER
DIRECTORATE OF CONTRACTING (PKRM)
GRIFFISS AFB, NY 13441-5700

13:07:34
	

OCA PAD INITIATION - PROJECT HEADER INFORMATION
	

03/15/89

Active
Project #::;E721-T14
	

Cost share II: E-21-321
Center # : R6583-T14
	

Center shr j/: F6583-T14

Contract#:j30602-88-D-0025-0014
	

Mod #:
Prime 	#:

Subprojects ? : N
Main project #:

Rev #: 0
OCA file #: 128
Work type : RES
Document : TO
Contract entity: GTRC

Project unit:
Project director(s):

T

EE

EE

Unit code: 02.010.118

(404)894-2902

Sponsor/division names: AIR FORCE
Sponsor/division codes: 104

/ GRIFFISS AFB, NY
/ 023

Award period: 	890217

Sponsor amount
Contract value
Funded

Cost sharing amount

890731

New this change
49,989.00
49,989.00

(performance)
	

890830 (reports)

Total to date
49,989.00
49,989.00
5,555.00

DO-A7
Sponsor

Security class (U,C,S,TS) :
Defense priority rating
Equipment title vests with:

ONR resident rep. is ACO (Y/N): Y
GOVT supplemental sheet

GIT
NONE PROPOSED OR ANTICIPATED. ,

Administrative comments.- .,.
DELIVERY ORDER FULLY FUNDS TASKt-9-5514 (SOHAR INCORPORATED).

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 03/30/90

Project No. E-21-T14 	 Center No. R6583-T14 	

Project Director JOY E B 	School/Lab EE 	

Sponsor AIR FORCE/GRIFFISS AFB, NY

Contract/Grant No. F30602-88-D-0025-0014 	 Contract Entity GTRC

Prime Contract No. 	

Title SYSTEM HARDWARE/SOFTWARE RELIABILITY AND ASSESSMENT HANDBOOK 	

Effective Completion Date 891015 (Performance) 891115 (Reports)

Date
Closeout Actions Required: 	 Y/N Submitted

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

Comments

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Managment
Research Security Services .
Reports ,Coordinator (OCA):i Y
GTRC
Project File
Other 	

N

NOTE: Final Questionnaire sent to PDPti

CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025

QUARTER: MAY-JUN '88

CURRENT QUARTER FUNDING
	

$0.00

CURRENT QUARTER EXPENDITURES

CONTRACT CEILING
FUNDING TO DATE

* PENDING COMMITMENTS

AVAILABLE FUNDING

FUNDING TO DATE
YTD EXPENDITURES

OUTSTANDING EXPENDITURES

$0.00

$4,200,000.00
$0.00

- $766,000.00

$3,434,000.00

$0.00
$0.00

$0.00

* C-8-2120
C-8-2129
E-8-7066
E-8-7124
E-8-7125
E-8-7126
A-8-1631
B-8-3617
B-8-3618
C-8-2492
A-8-1203

WESTINGHOUSE/BEAUDET
RENSSELAER/DAS
UNIV OF PENN/STEINBERG
BOSTON COLLEGE/McFADDEN
BRANDEIS UNIV/HENCHMAN
PENN STATE/CASTLEMAN
UNIV OF PENN/STEINBERG
GA WASHINGTON UNIV/MELTZER
GA WASHINGTON UNIV/BERKOVICH
GA TECH/SMITH
GA TECH/HUGHES

$56,000.00
$100,000.00
$100,000.00
$35,000.00
$23,000.00
$22,000.00

$100,000.00
$100,000.00
$100,000.00
$50,000.00
$80,000.00

TOTAL PENDING 	 $766,000.00

CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025

QUARTER: JUL-SEPT '88

CURRENT QUARTER FUNDING

	

DO # 0001 	$56,000

	

0002 	$95,141

	

0003 	$78,854

	

0004 	$230,000

	

0005 	$45,561

	

0006 	$25,000

	

0007 	$20,000

	

0008 	$98,374

	

0009 	$29,403

	

0010 	$19,701

$698,034.00

$698,034

CURRENT QUARTER EXPENDITURES 	 $0.00

CONTRACT CEILING
	

$4,200,000.00
FUNDING TO DATE 	

- 	

$698,034.00
* PENDING COMMITMENTS 	

- 	

$426,563.00

AVAILABLE FUNDING 	 $3,075,403.00

FUNDING TO DATE
	

$698,034.00
YTD EXPENDITURES
	

$0.00

OUTSTANDING EXPENDITURES 	 $698,034.00

	

* DO # 0001 	INCREMENTAL FUNDING 	 $90,729.00

	

0002 	INCREMENTAL FUNDING 	 $66,680.00

	

0003 	INCREMENTAL FUNDING 	 $54,154.00

	

0004 	INCREMENTAL FUNDING 	 $20,000.00

	

C-8-2400 	STATE UNIV OF NY/FAM 	 $95,000.00

	

C-8-2402 	RENSSELAER/SAULNER 	 $100,000.00

TOTAL PENDING 	 $426,563.00

CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025

QUARTER: OCT-DEC '88

CURRENT QUARTER FUNDING

	

DO # 0004 	$66,680

	

0006 	$54,154

$120,834

CURRENT QUARTER EXPENDITURES

CONTRACT CEILING
FUNDING TO DATE

* PENDING COMMITMENTS

AVAILABLE FUNDING

FUNDING TO DATE
YTD EXPENDITURES

OUTSTANDING EXPENDITURES

$120,834.00

$28,740.82

$4,200,000.00
- $818,868.00
- $784,729.00

$2,596,403.00

$818,868.00
$28,740.82

$790,127.18

* DO # 0001
0007

C-8-2400
C-8-2402
B-9-3592
N-9-5514
C-9-2015
A-9-1120
E-9-7057
E-9-7093
S-9-7552
C-9-2404

INCREMENTAL FUNDING
INCREMENTAL FUNDING
STATE UNIV OF NY/FAM
RENSSELAER/SAULNER
UNIV OF CA/DAVIS/LEVITT
SOHAR INC./HECHT
NCS/OINEAL
HITEC, INC./KAZAKOS
UNIV OF TX/ARLINGTON/FUNG
MONTANA STATE/JOHNSON
ALFRED UNIV/SYNDER
STANFORD UNIV/WIDROW

$90,729.00
$20,000.00
$95,000.00

$100,000.00
$60,000.00
$50,000.00

$100,000.00
$75,000.00
$40,000.00
$34,000.00
$20,000.00

$100,000.00

TOTAL PENDING 	 $784,729.00

CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025

QUARTER: JAN-MAR '89

CURRENT QUARTER FUNDING

	

DO # 0001 	$90,729

	

0011 	$75,000

	

0012 	$75,000

	

0013 	$59,989

	

0014 	$49,989

	

0015 	$70,000

	

0016 	$43,750

	

0017 	$30,000

	

0018 	$22,000

	

0019 	$38,000

	

0020 	$20,000

$574,457

CURRENT QUARTER EXPENDITURES

CONTRACT CEILING
FUNDING TO DATE

* PENDING COMMITMENTS

AVAILABLE FUNDING

$574,457.00

$86,324.15

$4,200,000.00
- $1,393,325.00
- $594,651.00

$2,212,024.00

FUNDING TO DATE
YTD EXPENDITURES

$1,393,325.00
- $115,064.97

OUTSTANDING EXPENDITURES
	

$1,278,260.03

* DO # 0007
0011
0012
0015
0016
0017
0018
0019

C-8-2404
N-9-5732
A-9-1476
E-9-7110
S-9-7559
B-9-3621
N-9-5308
E-9-7119

INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
STANFORD UNIV/WIDROW
GRIFFIN
BOWDOIN COLLEGE/CHONACKY
UNIV OF LOWELL/SALES
UNIV OF MICHIGAN/ROBINSON
SRI/LUNT
KAMAN SCIENCES
DARTMOUTH COLLEGE/CRANE

$20,000.00
$19,568.00
$24,700.00
$29,783.00
$31,250.00
$10,000.00
$12,000.00
$12,000.00

$100,000.00
$25,000.00
$20,350.00
$50,000.00
$20,000.00
$20,000.00

$100,000.00
$100,000.00

TOTAL PENDING 	 $594,651.00

CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025

QUARTER: APR-JUN '89

CURRENT QUARTER FUNDING

	

DO # 0021 	$25,000

	

0022 	$45,000

	

0023 	$20,350

	

0024 	$50,000

	

0025 	$20,000

$160,350.00

$160,350

CURRENT QUARTER EXPENDITURES

$318,963.82

CONTRACT CEILING
FUNDING TO DATE

* PENDING COMMITMENTS

$4,200,000.00
- $1,553,675.00
- $718,994.00

AVAILABLE FUNDING

$1,927,331.00

FUNDING TO DATE
YTD EXPENDITURES

$1,553,675.00
- $434,028.79

OUTSTANDING EXPENDITURES
	

$1,119,646.21

* DO # 0007
0011
0012
0015
0016
0017
0018
0019
0022

B-9-3621
N-9-5308
E-9-7119
N-9-5740
N-9-5317
S-9-7625
N-9-5314
N-9-5315

INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
INCREMENTAL FUNDING
SRI/LUNT
KAMAN SCIENCES
DARTMOUTH COLLEGE/CRANE
CHRISTIANSON
UNIV OF CO/NORGARD
UNIV OF CA/DAVIS/KOWELL
KAMAN SCIENCES
KAMAN SCIENCES

$20,000.00
$19,568.00
$24,700.00
$29,783.00
$31,250.00
$10,000.00
$12,000.00
$12,000.00
$54,693.00
$20,000.00

$100,000.00
$100,000.00
$15,000.00
$50,000.00
$20,000.00

$100,000.00
$100,000.00

TOTAL PENDING 	 $718,994.00

CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025

CURRENT QUARTER
DO # 0017

0026
0027
0028
0029
0030
0031
0032
0033
0034
0035

QUARTER:

FUNDING
$10,000
$15,000
$20,000
$50,000
$40,000
$30,000
$20,000
$66,000
$70,000
$85,000
$70,000

$476,000

JUL-SEP '89

$476,000.00

CURRENT QUARTER EXPENDITURES $415,422.69

CONTRACT CEILING $4,200,000.00
FUNDING TO DATE - 	$2,029,675.00

* PENDING COMMITMENTS - 	$253,994.00

AVAILABLE FUNDING $1,916,331.00

FUNDING TO DATE $2,029,675.00
YTD EXPENDITURES - 	$849,451.48

OUTSTANDING EXPENDITURES $1,180,223.52

* DO # 0007 	INCREMENTAL FUNDING $20,000.00
0011 	INCREMENTAL FUNDING $19,568.00
0012 	INCREMENTAL FUNDING $24,700.00
0015 	INCREMENTAL FUNDING $29,783.00
0016 	INCREMENTAL FUNDING $31,250.00
0018 	INCREMENTAL FUNDING $12,000.00
0019 	INCREMENTAL FUNDING $12,000.00
0022 	INCREMENTAL FUNDING $54,693.00

N-0-5703 	UNIV OF SOUTHERN FLA/WILSON $50,000.00

TOTAL PENDING $253,994.00

ROME AIR DEVELOPMENT CENTER
EXPERT SCIENCE AND ENGINEERING PROGRAM

CONTRACT NO. F30602-88-D-0025

R&D STATUS REPORT

PERIOD COVERED: June 1 - June 24, 1989

TASK NUMBER: N-9-5514

TITLE: System Hardware/Software Reliability and Assessment Handbook

PRINCIPAL INVESTIGATOR: Herbert Hecht, Ph. D.

INSTITUTION: SoHaR Incorporated

OTHER PARTICIPANTS: Jeffrey Miller, Sr. Systems Engineer

A. TECHNICAL PROGRESS ACHIEVED ON EFFORT:

The Handbook chapter on reliability modeling was generated. It describes a basic
model for combined hardware/software systems that accounts for software utilization.
An example applying the model to a simple hardware/software avionics system was
included. In addition, a Notice was drafted that modifies MIL-STD-785B, Task 201 in
accordance with the procedures developed in the Handbook.

B. TRAVEL: 	None

C. PRESENTATIONS AND PUBLICATIONS: 	None

D. LEVEL OF EFFORT IN LABOR-HOURS:

Participant
	

Current Effort 	Cumulative

H. Hecht 	 36 	116
Other Staff 	 93 	185

Total
	

129 	301

ROME AIR DEVELOPMENT CENTER
EXPERT SCIENCE AND ENGINEERING PROGRAM

CONTRACT NO. F30602-88-D-0025

R&D STATUS REPORT

PERIOD COVERED: June 25 - July 29, 1989

TASK NUMBER: N-9-5514

TITLE: System Hardware/Software Reliability and Assessment Handbook

PRINCIPAL INVESTIGATOR: Herbert Hecht, Ph. D.

INSTITUTION: SoHaR Incorporated

OTHER PARTICIPANTS: Jeffrey Miller, Sr. Systems Engineer

A. TECHNICAL PROGRESS ACHIEVED ON EFFORT:

A draft Handbook chapter on failure prediction was generated. In addition, a Notice
was drafted that modifies MIL-STD-785B, Task 203 in accordance with the procedures
developed in the Handbook.

B. TRAVEL: None

C. PRESENTATIONS AND PUBLICATIONS: 	None

D. LEVEL OF EFFORT IN LABOR-HOURS:

Participant 	Current Effort 	Cumulative

H. Hecht 	 64 	180
Other Staff 	 160 	345

Total
	

224 	525

ROME AIR DEVELOPMENT CENTER
EXPERT SCIENCE AND ENGINEERING PROGRAM

CONTRACT NO. F30602-88-D-0025

R&D STATUS REPORT

PERIOD COVERED: July 30 - August 26, 1989

TASK NUMBER: N-9-5514

TITLE: System Hardware/Software Reliability and Assessment Handbook

PRINCIPAL INVESTIGATOR: Herbert Hecht, Ph. D.

INSTITUTION: SoHaR Incorporated

OTHER PARTICIPANTS: Jeffrey Miller, Sr. Systems Engineer

A. TECHNICAL PROGRESS ACHIEVED ON EFFORT:

A draft Handbook chapter on Reliability Development Growth Testing was generated.
In addition, a Notice was drafted that modifies MIL-STD-785B, Task 302 in accordance
with the procedures developed in the Handbook.

B. TRAVEL:

	

	Colorado Springs, Aug. 22-23. Meeting of AIAA SB09 Committee on
Standards.

C. PRESENTATIONS AND PUBLICATIONS: Presentation of Handbook material to
SB09 Committee's Software Reliability Working Group.

D. LEVEL OF EFFORT IN LABOR-HOURS:

Participant
	

Current Effort 	Cumulative

H. Hecht 	 40 	220
Other Staff 	 120 	465

Total
	

160 	685

ROME AIR DEVELOPMENT CENTER
EXPERT SCIENCE AND ENGINEERING PROGRAM

CONTRACT NO. F30602-88-D-0025

R&D STATUS REPORT

PERIOD COVERED: August 26 - September 30, 1989

TASK NUMBER: N-9-5514

TITLE: System Hardware/Software Reliability and Assessment Handbook

PRINCIPAL INVESTIGATOR: Herbert Hecht, Ph. D.

INSTITUTION: SoHaR Incorporated

OTHER PARTICIPANTS: Jeffrey Miller, Sr. Systems Engineer

A. TECHNICAL PROGRESS ACHIEVED ON EFFORT:

A draft copy of the Handbook was submitted to RADC.

B. TRAVEL: 	RADC, Sept. 27.

C. PRESENTATIONS AND PUBLICATIONS: Presentation of draft copy of the
Handbook to E. Fiorentino.

D. LEVEL OF EFFORT IN LABOR-HOURS:

Participant 	Current Effort 	Cumulative

H. Hecht 	 8 	228
Other Staff 	 3 	468

Total 	 11 	696

SoHaR
Incorporated

H. Hecht,
President

13 March 1990 	 L90-35

Georgia Institute of Technology
Office of Contract Administration
Atlanta GA 30332-0420

Attn. Laurie Rose

Subject: Subcontract E-21-T14-S1

Dear Ms. Rose:

In accordance with your phone request we are forwarding herewith a copy of the
Final Report that had been submitted to Mr. Fiorentino at RADC.

Sincerely yours,

HH:ij

Encl. as noted

1040 South La Jolla Avenue • Los Angeles, California 90035 • Telephone (213) 935-7039
Other Locations: 8500 Wilshire BI., #1027, Beverly Hills, CA 90211 • 5225 Pooks Kill Rd., #1513S, Bethesda, MD 20814

SYSTEM HARDWARE/SOFTWARE
RELIABILITY HANDBOOK

FINAL TECHNICAL REPORT

prepared for

RADC/RBET
Contract No. F30602-88-D-0025

Task No. N-9-5514

under contract with

Georgia Institute of Technology
Subcontract No. E-21-T14-S1

by

Herbert Hecht, Jeffrey Miller
SoHaR Incorporated

Los Angeles, CA

September, 1989

MIL-HDBK-XYZ (Draft)

TABLE OF CONTENTS

1 SCOPE 	 1
1.1 Purpose 	1
1.2 Application 	1

2 REFERENCED DOCUMENTS 	 1
3 TERMS, DEFINITIONS AND ACRONYMS 	 1

3.1 Terms 	1
3.2 Definitions 	1
3.3 Acronyms 	 2

4 RELIABILITY REQUIREMENTS 	 2
4.1 General discussion 	2
4.2 Detailed discussion 	3

4.2.1 Operating mode 	3
4.2.2 Failure Criteria 	3
4.2.3 Unrepaired faults 	4
4.2.4 Reliability growth 	4

5 RELIABILITY MODELING 	 4
5.1 General discussion 	4
5.2 Development of the basic model 	 5
5.3 Hardware/software interactions 	8
5.4 Example 1 	 12
5.5 Example 2 	 15

6 RELIABILITY ALLOCATION 	 17
6.1 General discussion 	 17
6.2 Detailed discussion 	 17

6.2.1 Cost considerations 	 17
6.2.2 Software failure probability 	 19
6.2.3 Fault consequences and severity 	 19
6.2.4 Infrequently executed code 	 20
6.2.5 Commercial software 	 20

7 RELIABILITY PREDICTION 	 20
7.1 General discussion 	 20

7.1.1 Quality Control 	 23
7.2 Detailed discussion 	 24

7.2.1 Feasibility studies 	 24
7.2.2 System design 	 25
7.2.3 Preliminary design 	 25
7.2.4 Detailed design 	 26

8 FAILURE MODES AND EFFECTS ANALYSIS (FMEA) 	 27
8.1 General Discussion 	 27

9 RELIABILITY DEVELOPMENT/GROWTH TESTING (RDGT) PROGRAM 	 28
9.1 General Discussion 	 28
9.2 Models 	 28
9.3 Test Strategies 	 29
9.4 Data Collection Procedures 	 30

MIL-HDBK-XYZ (Draft)

9.5 Simultaneous Random Testing 	 30
10 RELIABILITY QUALIFICATION TEST (RQT) PROGRAM 	 31

10.1 General Discussion 	 31
11 PRODUCTION RELIABILITY ACCEPTANCE TEST (PRAT) PROGRAM 	 31

LIST OF FIGURES

Figure 5-1. Basic Structure of the HW/SW Reliability Model 	 5
Figure 5-2. Reliability Block Diagrams 	9
Figure 5-3. Error for Approximating Circumvention Interactions 	 11
Figure 5-4. Error for Approximating Reconfiguration Interactions 	 11
Figure 5-5. Example 1 - Series Reliability 	 13
Figure 5-6. Example 2 - Interactive Components 	 13

LIST OF TABLES

Table 1. EFFECTIVE MODE OPERATING TIME 	 7
Table 2. SOFTWARE MODULE UTILIZATION 	 7
Table 3. CALCULATION OF EFFECTIVE MODE DUTY CYCLE TIME 	 13
Table 4. SOFTWARE MODULE UTILIZATION 	 14
Table 5. HARDWARE COMPONENT UTILIZATION 	 14
Table 6. INTERACTIVE SYSTEM COMPONENTS 	 16
Table 7. COST OF 0.01 RELIABILITY IMPROVEMENT 	 18
Table 8. CONSIDERATIONS FOR SOFTWARE PREDICTION BY ELEMENTS 	 22
Table 9. RELIABILITY PREDICTION NEEDS DURING DEVELOPMENT 	 24

U

MIL-HDBK-XYZ (Draft)

SYSTEM HARDWARE/SOFTWARE RELIABILITY HANDBOOK

1 SCOPE

1.1 Purpose. This handbook provides guidance for conducting a comprehensive and effective
reliability program as defined in MIL-STD-785 on systems that contain both hardware and
software. The guidance is limited to topics of significance to combined hardware/software
systems as opposed to hardware-only systems.

1.2 Application. This handbook is intended as a guide for developing system reliability
requirements and selecting reliability program tasks for DOD procurements specifying MIL-
STD-785.

2 REFERENCED DOCUMENTS

3 TERMS, DEFINITIONS AND ACRONYMS

3.1 Terms. The terms used herein are defined in MIL-STD-721.

3.2 Definitions. Definitions applicable to this document are as follows (Sources for definitions
are cited where applicable):

a. Error: The difference between an expected or specified result and the actual result.

b. Failure, Hardware: The termination of the ability of a [hardware] functional unit to
perform its required function [IS078].

c. Failure. Software: The termination of the ability of a [software] functional unit to
perform its required function [IS078].

d. Failure Intensity: The rate of change in the cumulative number of failure occurrences
at a given point in time.

e. Failure Rate: The rate at which failures occur over a given time interval.

f. Fault: A defect in the software code that, when executed under certain conditions,
causes a failure to occur.

g. Fault Content: The number of faults in the software code.

h. Fault Density: The average number of faults in a specified amount of code (i.e. N
faults per M executable lines of code.

1

MIL-HDBK-XYZ (Draft)

i. Mistake: An action by the software designer or developer that introduces a fault.

Software Reliability: The probability that software will not fail over a specified period
of time under specified conditions.

3.3 Acronyms. Acronyms used in this document are defined as follows:

BITE 	- Built-In Test Equipment
FMEA - Failure Modes and Effects Analysis
FMECA - Failure Modes, Effects and Criticality Analysis
MTBCF - Mean Time Between Critical Failures
MTBM - Mean Time Between Maintenance
MTTF - Mean Time To Failure
QA 	- Quality Assurance

4 RELIABILITY REQUIREMENTS

4.1 General discussion. On development and production programs for systems and equipment,
contractual, quantitative requirements are typically specified for both logistics (basic or inherent)
and mission reliability. Logistics reliability parameters such as Mean-Time-Between-
Maintenance (MTBM) account for all possible occurrences that require logistics support.
Mission reliability parameters such as Mean-Time-Between-Critical-Failure (MTBCF) address a
system's capability of performing a specific mission. However, where the system comprises
both hardware and software, a statement of reliability requirements in terms of minimum
MTBM, maximum failure rate, or minimum mission reliability is inadequate for the following
reasons:

a. Many software faults cause minor deviations from normal system operation such as
incorrect display formats. Specific definitions of one or more failed states are
therefore necessary to formulate an effective reliability program.

b. Many software failures are of a temporary or intermittent nature (because software
does not physically degrade). Separate requirements for permanent and transient
failures may therefore have to be generated.

c. As faults are identified and removed, the reliability of software will tend to increase.
Therefore the reliability objective has to be stated as a function of operational
exposure and maintenance effort.

All of these factors are also present in hardware only systems but to a much lesser extent.
The inclusion of software forces them to be addressed, and this will benefit the overall conduct
of reliability programs. Specific factors to be addressed in the formulation of reliability
requirements include the following:

Operating mode
Failure severity

2

MIL-HDBK-XYZ (Draft)

Maintenance action
Fault duration
Fault tolerance provisions
Unrepaired faults
Reliability growth

4.2 Detailed discussion

4.2.1 Operating mode. A separate reliability requirement must be established for each system-
level operating mode defined in the system specification. A mode is characterized by its
requirement to perform a distinct set of functional operations associated with a specific
hardware configuration, software path, or hardware/software workload. Examples of operating
modes are full-up, reduced capability, and emergency (degraded modes) or ship, aircraft, and
spacecraft communication (sectorized modes). Note that operating modes are distinct from
missions in that the former reflect internal (system-derived) stresses whereas the latter reflect
external stresses (e.g. environmental, or effects caused by other systems). A specific operating
mode can occur in more than one mission, and a specific mission can involve several operating
modes.

4.2.2 	Failure Criteria. 	Most quantitative reliability parameters involve counting failure
occurrences or their associated interarrival times. It thus becomes imperative to clearly define
what events constitute a failure. This is particularly true for hardware/software systems since
the types of potential failure events exceeds that for hardware only systems. Criteria for
defining failures appear in the paragraphs that follow.

4.2.2.1 Failure severity. The severity criterion for failure must be clearly stated. Examples
include (1) any deviation from the specification, (2) only significant deviations from the
specification, or (3) only failures causing service interruptions of more than some threshold
value. If necessary, several criteria with separate reliability requirements may be stated.

4.2.2.2 Maintenance action. The criterion for failure in terms of maintenance action is
particularly significant where MTBM is an important figure of merit. The definition of
maintenance and possibly separate definitions of operational, hardware and software
maintenance need to be stated. Examples of this failure criterion include (1) any deviation
from normal operating procedures, (2) only actions requiring program restart, or (3) only
actions requiring system shut-down.

4.2.2.3 Fault duration. Failures should be defined in terms of the duration of the failure
causing event (the fault), distinguishing between permanent, recurrent (intermittent), and singular
(transient) faults. Note that the duration is not necessarily an indicator of severity. It is
possible for a singular event to cause a very severe failure (a lightning strike) and for a
permanent fault to cause only mild degradation (inability to shift to upper case letters).
Separate reliability requirements should be stated for permanent and non-permanent faults; the
need to distinguish between intermittent and transient failures depends on the application.

4.2.2.4 	Fault tolerance provisions. 	The threshold for involvement of fault tolerance
mechanisms in the definition of a failure must be defined. An example of a very strict

3

MIL-HDBK-XYZ (Draft)

criterion is one that counts a fault masked by error corecting code. Less severe criteria do not
count faults that are corrected by operation of a fault tolerance mechanism.

4.2.3 Unrepaired faults. The criteria for counting failures while they are being fixed must be
specified. By doing so, the ability of software to operate without repair after a failure has
occurred will be recognized in the system requirements. This is a drastic deviation from the
hardware environment, and it brings about problems in

a. accounting for repetitive failures due to an already reported software fault that has not
yet been fixed

b. introducing non-specified, degraded operating modes such as not permitting some
transactions that are suspected to cause a failure in the presence of the existing
software fault (e.g. not permitting station A to send a message to station B while an
outgoing message from B has not yet been acknowledged).

4.2.4 Reliability growth. Reliability growth is usually more pronounced in software than in
hardware. Therefore, requirements for reliability predictions and modelling need to be tied to a
specific time or event in the development cycle. Where only an operational reliability has been
defined but monitoring during development is desired, a growth relation has to be defmecl to
permit meaningful assessment of the progress toward the operational reliability goal.

5 RELIABILITY MODELING

5.1 General discussion

Reliability models represent the contribution of individual components and operational modes to
the reliability (or the failure probability) of a system. Good reliability models are a prerequisite
for all subsequent steps of the reliability program. The key issue that arises from the inclusion
of software is to define the exposure to failure such that hardware and software components
can be represented in a series arrangement in a reliability block diagram. The following
approach is described:

1. Hardware failures are a function of a stress-time product (or summation of stress-time
products over different modes of operation).

2. Software failures are a function of code execution time.

3. For each mission operating mode, the failure probability is the sum of the hardware
module failure probabilities computed on the basis of stress-time products and of the
required software modules computed on the basis of their execution time.

The basic structure of this model is diagrammed in Figure 5-1. As depicted in the figure,
mission-related data identify the configuration (both hardware and software), environmental
stress factors, and utilization time (operating time for hardware, execution time for software) at
the lowest indenture level of combined hardware/software items to be analyzed. The mission

4

HARDWARE
	

WISSOV 	 SEFTWNE

- OBTAIN FAILURE
RATES BY
ESTABLISHED
METHODS

- REQUIRED
MODULES

- ENVIRONMENT
- TIME

- ESTIMATE
FAILURE
RATE

• 	•
- HARDWARE

FALLRE
PROBABILITY

- SOFTWARE
FALLRE
PROBABILITY

0343114:D FAILURE PROBABLITY

MIL-HDBK-XYZ (Draft)

data are combined with corresponding predicted or estimated hardware and software failure
rates to obtain probabilities of hardware and software failure. The total item reliability is
approximately given by one minus the sum of the hardware and software failure probabilities
plus a term accounting for any hardware/software interaction'. In this manner, both hardware
and software reliability are incorporated in the item reliability prediction. The model is
individually applied to each level of degradation the system is expected to experience (e.g. by
failure severity, fault duration, etc.).

Figure 5-1. Basic Structure of the HW/SW Reliability Model

5.2 Development of the basic model

A reliability block diagram of the hardware portion of the system being modeled is first
constructed in accordance with procedures specified in MIL-STD-756B. A block representing

A more exact expression is 1 - (1-FH)(1-Fs)(1-F,), where the terms involving F are
the failure probabilities of hardware, software and hardware/software interactions,
respectively.

5

MIL-HDBK-XYZ (Draft)

software is then added in series with each hardware block involved in the operation or storage
of the software. Where several hardware blocks are associated with the same software block, a
single software block is drawn in series with the hardware blocks. Where several software
blocks are associated with the same hardware block, a single hardware block is drawn in series
with the software blocks.

The mathematical model associated with the combined hardware/software reliability diagram is
constructed by following the same procedure specified in MIL-STD-785B; assuming constant
failure rates, series blocks imply reliability product terms while parallel blocks imply failure
probability product terms. However, the constant failure rate assumption for software must be
carefully considered. During development, the assumption only applies over short time
intervals since significant reliability growth typically occurs during this period. For operational
systems, the constant failure rate assumption is usually acceptable for both hardware and
software [HECH86].

The reliability term for each hardware block is evaluated from the exponential expression

RH(t) = exp[4.41 	 (5-1)

where R(t) is the probability of success, A. H is the failure rate of the hardware, and t is the
operating time interval. Where the failure probability 1-R(t) is less than 0.1, it can be
approximated to within 0.5% by:

FH(t) = A.Ht 	 (5-2)

The hardware failure rate is evaluated in accordance with the 200 series Tasks in MIL-STD-
756B as discussed below in Section 7.

The reliability term for each software block is evaluated by combining the software failure rate
As and the software utilization time t in the following manner. First, major mission phases
and block operating modes are identified. For each mission phase Op the duration t i of the
phase and the fraction of time f,; a given mode operates during the phase (i.e. the mode duty
cycle) are estimated. The resulting data are organized as shown in Table 1. The effective
operating time for the jth operational mode over a mission comprising N phases is calculated
by the following expression:

= 	ti*fu
wo

(5-3)

The next step is to decompose the software block into major software components (modules)
for which failure intensity predictions will be performed. The procedure for performing these
predictions is described in Section 7. For the present discussion, assume the predicted failure
rate for the kth component is given by Ask. The fraction of time u,„ each module is utilized
during each operational mode (i.e. the module duty cycle) is then estimated. The data are
organized as shown in Table 2.

6

MIL-HDBK-XYZ (Draft)

TABLE 1. EFFECTIVE MODE OPERATING TIME

Mission Phase Op. Mode 1 	• • • Op. Mode j 	• • • Op, Mode M
Phase Time % On 	Time % On 	Time % On 	Time

01 t, q11 *100 t,*q„ 91;1' 100 ti*clij q,m*100

0, t1 q,,* 100 t,*qz, q„,* 1 CO t,*q,, (114* 100 t,* (124

tN qN1 *100 41*(1N1 qNj* 100 tN*CINJ ChM* 1 °O tN*C1NM

Tot. Msn. Eff. Op. Eff. Op. Eff. Op.
Time Time ; Time ; Time Tm

TABLE 2. SOFTWARE MODULE UTILIZATION

S/W Module Duty Cycle
Eff. Op. 	Module 1 • • • 	Module k • • • 	Module S

Op. Mode Time 	% On Time 	% On 	Time 	% On Time

Mode 1

Mode j

Mode N
TN

Ti 	U ii* MO 	TI*U II 	llik* I 00 	T1 4'11 11, 	Ills* 1 00 	TI*1.11s

T. J 	 Uji* 100 	 U * 100 	Ti*UA it 	 Uis* MO 	Ti*UA

Um * 100 	TN*UNI 	Un* WO 	TN*UNk 	UNs * 100 	IN*UNS

Util. 	 Util. 	 Util.
Time 1 	 Time k 	 Time S

7

MIL-HDBK-XYZ (Draft)

The effective software module utilization time is calculated by:

zk = 	 (5-4)

Finally, the reliability of each software module is given by the series product expression:

Rs(t) = H exp[Asktd 	 (5-5)
all k

In most cases, the expression can be approximated as in equation (5-2) above, in which case
the software failure probability is given by:

Fs(t) - 	Xilck 	 (5-6)
all k

The combined hardware/software success probability for a hardware/software block set
appearing on the reliability diagram is given by the product of the individual reliability
expressions in equations (1) and (5):

Rsy,,m(T) = RH(t)*Rs(t)• 	 (5-7)

The corresponding reliablity block diagram is shown in part A of Figure 5-2. Alternatively, the
total failure probability can be approximated by the sum of equations (2) and (6):

FsysiaT) = FH(t) + Fs(t)• 	 (5-8)

5.3 Hardware/software interactions

The above procedure assumes independent hardware and software failures when in fact
interactions sometimes occur. The most common of these interactions can be described by two
types which can be accounted for in the reliability model by the additional term R x(t) in the
combined reliability expression:

Rsyslat) = RH(t)*Rs(t)*Rx(t) 	 (5-9)

For cases where 1 - R(t) is small (less than 0.1), the combined failure probability can be
approximated by:

F(t) = FH(t) + FS(t) + Fx(t) 	 (5-10)

8

HARDWARE

C4-1)

SOFTWARE

C4)

(a) HW/SW Series Reliability

PROTECTED
HARDWARE

(Z1)
REMAINING REMAINING

0--
HARDWARE SOFTWARE

(Z3) (74)
SOFTWARE FOR

FAULT TOLERANCE

(72)

(b) Hardware Protected by Software

ALTERNATE
HARDWARE

(Zi)

PRIMARY
HARDWARE

(Z1)
REMAINING
HARDWARE

(Z3)

REMAINING
SOFTWARE

(Z4)
SOFTWARE FOR

FAULT TOLERANCE

C72)

(c) Hardware Selected by Software

MIL-HDBK-XYZ (Draft)

Figure 5-2. Reliability Block Diagrams

9

MIL-HDBK-XYZ (Draft)

In the first type of interaction, software is used to circumvent a transient hardware failure as
depicted by the reliability block diagram shown in part B of Figure 5-2. An example is
computer memory error detection and correction (EDAC) implemented in software. By
methods described in MIL-HDBK-756, the reliability expression corresponding to this case is
given by:

= [exp(-z,t) + (1 — exp(z it))exp(-z,t)] x exp(z,t) x exp(z 4t) 	 (5-9)

where z, is the failure hazard of the protected hardware, z 2 is the hazard of the software
implementing the fault tolerance, and z3 and z4 are the hazards of the remaining hardware and
software, respectively. After expanding the expression and substituting a = zjz, and k =
the bracketed term involving z, and z2 becomes:

Rx(t) = exp(-k) + exp(-ak) — e-(1+a)k 	 (5-10)

In many applications, the software implementing the hardware fault tolerance provision is
designed to have a much higher reliability than the protected, i.e. the term a is much smaller
than one. In this case, it may be convenient to use the approximation

Rx(t) = exp(-.5ak) 	 (5-11)

in regard to this type of interaction. The error is indicated by the curves shown in Figure 5-3.
As can be seen from the figure, the approximation is quite adequate to support reliability
prediction for feasibility studies for values of k less than 1. The approximation should not be
used where the validity of extremely small failure probabilities are to be investigated.

The second type of interaction comprises software for reconfiguring hardware in the event of a
hardware failure and is depicted in part C of Figure 5-2. An example is software that brings
online a backup data storage device in the event the prinmary device fails. The reliability
expression corresponding to this case is given by:

RsysTEm 	[eXp(-Z it) + (1 — exp(z,t))exp(-z,t)exp(-z 2t)] x exp(z3t) x exp(z4t) 	(5-12)

where z 1, z2, z3 and z4 are as previously defined. After expanding the expression and
substituting a = zjz, and k = zlt as before, the bracketed term involving z, and z2 becomes:

Rx(t) = exp(-k) + exp(-(a+1)k) — e-(2+a)k 	 (5-13)

Assuming as before that the parameter a is much smaller than one, equation (5-10) can be
approximated by

Rx(t) = exp(-.5k) 	 (5-14)

for this type of interaction. The error is indicated by the curves shown in Figure 5-4. As can
be seen from the figure, the approximation is adequate to support reliability prediction for
feasibility studies for values of k less than 1.

10

MIL-HDBK-XYZ (Draft)

INTERACTIVE HW/SW
EXP(-8107) RELIABILITY APPROXIMATION

13

0
11- 1- 1111- 111

0.2 	0.4 	0.6 	0.1
litiltilo

1.2 	1.4 	1.6 	1.6 2

k: Zt FOR TRANSIENT HAFICINAFIE FAILURES

Figure 5-3. Error for Approximating Circumvention Interactions

INTERACTIVE HW/SW
EXP(-k/2) RELIABILITY APPROXIMATION

10

-10—

-20—

X
	-30—

-10 —

-GO —

-GO —

-70—

60

0 	0.2 	0.4 	0.6 	0,6 	 1.2 	1.4 	1.6 	1.1 	2

zt FOR PERMANENT HARDWARE FAILURES

Figure 5-4. Error for Approximating Reconfiguration Interactions

11

MIL-HDBK-XYZ (Draft)

5.4 Example 1

An example of applying modeling procedure to the offensive radar of a fighter aircraft is
presented. As a first step, the radar system is decomposed into its hardware and software
components and a reliability diagram constructed. The software is assumed to consist of an
executive, self-test program (Test), scan, track, and calibrate (Cal) routines. The hardware is
decomposed into a power supply (P.S), built-in test equipment (BITE), a pulse generator (Pls
Gen), a scan module, and a track module. For this example, the components are assumed to
be independent and represented as series elements as in the block diagram appearing in Figure
5-5.

Next, the effective mission time for each operational mode is computed, based on a typical
mission profile. As shown in Table 3, the radar is assumed to have four major operational
modes: idle, scan, track, and maintenance. The effective time for each mode (column) is
computed as the summation of the product t i*fo for that column (j = 1 ... 4). Thus, for the idle
mode the effective time is 0.1+0.1+0.1+0.1+0.1 = 0.5.

Then, software and hardware component utilization for each operating mode are computed as
shown in Tables 4 and 5, respectively. For the hardware BITE module and for the software
test and calibration modules the failure rate includes only those failures that can affect the
mission. For the basic reliability model a higher failure rate that accounts for all failure modes
will have to be used.

The effective hardware and software times are carried over from Table 3. The entries under
the hardware module duty cycle are the expected loading or electrical duty cycle of each
hardware module for the operating mode (row). Because several hardware modules are
operational at the same time, the sum of the hardware duty cycles carries no particular
significance. The entries under software module duty cycle represent the fraction of processing
time for a given module in each operational mode. The sum of the software duty cycles is
exactly unity in all modes because this system provides no parallel processing and the self-test
program is scheduled to run whenever no other module is being processed. The utilization is
computed as the sum in each column of the effective hardware or software time multiplied by
module duty cycle. The failure rate is derived from sources discussed in Section 7.

The failure probability represents the product of utilization time and failure rate. This row is
the key to design changes for reliability improvement because it clearly shows which modules
affect mission failure probability the most. Although the track module has the highest failure
rate among the hardware components, it is seen that there are three modules that contribute
considerably more to the mission failure probability and should receive higher priority for
reliability improvement (given that the cost per unit of failure reduction is the same in all
modules). The mission probability is the sum of all the hardware and software component
failure probabilities as given by equation (5-8), or 294.5 x

12

POWER
SUPPLY BITE PULSE

GEN.
SCAN
CKT

TRACK
OCT

	 EXECUTIVE

	f.
 SELF-

TEST 	C

	"N 	
,„,,,--....s

SCAN 	 TRACK 	
ROUTINE NE 	 ROUT I NE 1

	} 	\------,

CALIBRATE -0

I

LEGEND:

- HARDWARE

0 - SOFTWARE

MIL-HDBK-XYZ (Draft)

Figure 5-5. Example 1 - Series Reliability

TABLE 3. CALCULATION OF EFFECTIVE MODE DUTY CYCLE
TIME

Mission Phase 	Time 	 Mode Duty Cycle
Hrs. 	Idle 	can 	Track 	Maint.

	

Frac. Hrs. 	Frac. Hrs. 	Frac. Hrs. 	Frac. Hrs.

	

t *Cla 	q2 	ti*C112 	 ti*C113 	q 	ti*9)4

Start-up 0.1 1.0 0.1
Taxi 0.1 1.0 0.1
Climb 0.2 0.5 0.1 0.5 0.1
Loiter 1.0 0.8 0.8 0.2 0.2
Attack 0.3 0.33 0.1 0.67 0.2
Return 0.2 0.5 0.1 0.5 0.1
Land 0.1 1.0 0.1
Shut-down 0.2 1.0 0.2

Effective Time, Hrs. 0.5 1.1 0.4 0.2

13

MIL-HDBK-XYZ (Draft)

TABLE 4. SOFTWARE MODULE UTILIZATION

(11xL. 	Eff, 5/W Module Duty Cycle
Test 	Scan

Time 	Frac. 	Time 	Frac. 	Time
Track

Frac. Time
Calib.

Frac. 	Time
Mode 	Time 	Exec

Frac.

Idle 	0.5 	0.05 0.025 0.75 0.375 0.05 0.025 0.05 0.025 0.1 0.05
Scan 	1.1 	0.05 0.055 0.05 0.055 0.9 0.99
Track 	0.4 	0.05 0.02 0.05 0.02 0.9 0.36
Maint. 	0.2 	0.2 0.04 0.4 0.08 0.4 0.08

Utilization, Hrs 0.1 0.5 1.0 0.4 0.1

Mod. Fail Rate, 10-6/hr 50.0 10.0 100.0 100.0 10.0

Mod. Fail Prob, 104 5.0 5.0 100.0 40.0 1.0

Software Failure Probability = 151.0 x 10'

TABLE 5. HARDWARE COMPONENT UTILIZATION

O 	t-. 	Eff. H/W Component Duty Cycle
Mode 	Time 	P.S. BITE 	Pls Gen Scan Track

(hrs) 	Frac. Time Frac. 	Time Frac. 	Time Frac. Time Frac. 	Time

Idle 	0.5 	0.8 0.4 0.8 	0.4 1.0 	0.5 0.1 	0.05 0.05 	0.025
Scan 	1.1 	1.0 1.1 0.5 	0.55 1.0 	1.1 1.0 	1.1 0.05 	0.055
Track 	0.4 	1.0 0.4 0.5 	0.2 1.0 	0.4 0.1 	0.04 1.0 	0.4
Maint. 	02 	0.8 0.16 1.0 	Q2 0.1 	0.02 0.05 	0.01 0.05 	0.01

Total 	2.2

Utilization, hrs 2.06 1.35 2.02 1.2 0.49

Mod. Fail Rate, 10-6/hr 15.0 11.0 25.0 25.0 35.0

Mod. Fail Prob, 10' 30.9 14.9 50.5 30.0 17.2

Hardware Failure Probability = 143.5 x 10'

14

REMAINING
MW COMPONENTS

H
TRANSMITTER

c-

)0ATR FT TRACKER FT FT

t"
REMAINING

SW COMPONENTS 0

TRANSMITTER TRACKER
MEMORY

LEGEND:

D = HARDWARE

0 = SOFTWARE

MIL-HDBK-XYZ (Draft)

5.5 Example 2

The preceeding example is extended to address hardware/software interactions. Consider the
case where the radar's pulse generator includes a standby transmitter activated by a transmitter
fault tolerance (Xmtr FT) software module, and where the tracker includes software fault
tolerance (Tracker FT) protecting memory devices against single event upsets. The reliability
diagram for this extended radar example is shown in Figure 5-6. Hazard rates for the
interacting components and applicable utilization times and hazard rates carried over from
Example 1 (Tables 4 and 5) for the remaining components are presented in Table 6. The
utilization of the software implementing the hardware fault tolerance was assumed equal to the
hardware utilization. Since the product of hazard and operating time (i.e. the parameter k) was
less than 0.1, equations (5-10) and (5-13) were used rather than the approximations given by
equations (5-11) and (5-14).

Figure 5-6. Example 2 - Interactive Components

15

MIL-HDBK-XYZ (Draft)

TABLE 6. INTERACTIVE SYSTEM COMPONENTS

Component'

Pulse Gen:

Hazard
(10-4/hr)

Utilization
(firs)

Fail. Prob.
(x 10')

Ref. Eqn.

- Non-interact (H) 15.0 2.02 30.3 Eq. (5-2)

- Interactive: 0.0002 Eq. (5-13)
Xmtr #1 (H) 5.0 2.02
Xmtr #2 (H) 5.0 2.02
Xmtr FT (S) 0.5 2.02

Tracker:
- Permnt Fail (H) 25.0 0.49 12.3 Eq. (5-2)

- Interactive: 0.0002 Eq. (5-10)
Transnt 	Fail 10.0 0.49

(H)
EDAC (S) 1.0 0.49

Remaining HW3 75.8 Eq. (5-2)

Remaining SW4 151.0 Eq. (5-6)

System Total 269.0

Notes:

1. Includes hardware (H) and software (S) in interactive or non-interactive configurations.
2. Excludes redundant transmitters.
3. From Table 5.
4. From Table 4.

16

MIL-HDBK-XYZ (Draft)

6 RELIABILITY ALLOCATION

6.1 General discussion

The objective of reliability allocation is to partition the system reliability requirements into
reliability requirements for each of the major components and to subsequently partition down to
lower levels of assembly or programs. The total reliability allocated at the lower levels must
equal the reliability requirement established for the upper level. This is usually implemented in
an approximate manner by requiring the sum of the failure probabilities to be no more than the
maximum allowable failure probability for the upper level.

This failure probability allocation objective can be stated as

E 	F, for fi 0 and i = 1 	n 	 (6-1)

where F represents the upper limit on system failure probability and f, the allocated failure
probability of the individual components. This inequality can be satisfied by an infinite number
of allocations. The economically optimal allocation is arrived at when the cost of marginal
failure rate reduction is the same for each component. In practice, the allocation is conducted
by considering achievable goals, usually based on experience with similar hardware or software
components in the past. The following areas are of particular concern when software is
included in the allocation:

Accounting for differences in the manner in which hardware and software reliability
improvements affect cost

- Estimation of the software execution time for each module and mode of operation as
identified in the model description

- Adequate consideration of the role of infrequently executed code (e.g. that used for
system initialization) because many failures have been traced to these components

- Realistic representation of the failure rate of commercial software, particularly
operating systems.

6.2 Detailed discussion

6.2.1 Cost considerations. Cost considerations are important in the hardware/software context
because hardware reliability improvements usually involve significant recurring costs while
software reliability improvements involve primarily non-recurring costs. Thus, for procurements
involving large production quantities, it may be much more effective to require a lower failure
rate for software whereas for systems that are procured only in small quantities it may be more
effective to require a lower failure rate for hardware.

An example of how allocation costs depend upon procurement quantity is illustrated by the
hardware/software system defined in Table 7. The overall failure probability of the system
over a specified mission is approximately the sum of hardware and software failure

17

MIL-HDBK-XYZ (Draft)

probabilities, i.e. 0.02 + 0.02 = 0.04. The table shows the cost of implementing a 25%
reduction in the system failure probability by allocating a 50% improvement to either hardware
(option 1) or software (option 2) for procurement quantities of 10 systems and 1000 systems.

Option 1 assumes the system allocation is achieved through hardware redundancy; redundant
elements are to be provided for 50% of the hardware to achieve the requisite 50% reduction in
hardware failure probability. Required expenditures for this option are a recurring cost of
approximately 50% of the original recurring hardware cost and a relatively small non-recurring
cost for development. For option 2, the 50% reliability improvement has been allocated
entirely to the software and achieved through additional testing. The cost of implementing this
option is approximately 100% of the original software development cost. (Note the non-linear
relationship between software reliability improvement and added test time; longer test times are
required for each improvement increment to uncover the fewer and harder to find bugs that
remain.) The figures in the bottom row of the table indicate that for the low quantity
procurement the hardware allocation costs significantly less than that of the software while for
high quantity procurement the hardware allocation costs considerably more than that of the
software.

TABLE 7. COST OF 0.01 RELIABILITY IMPROVEMENT

ITEM
OPTION 1

HARDWARE
(LOW QTY)

OPTION 2
HARDWARE
(HIGH QTY)

SOFTWARE

Procurement Qty 10 1000

Unit Recurring Cost $0.5 M $0.5 M

Total Recurring Cost $5.0 M $500 M

Non-Recurring Cost $1.0 M $1.0 M $10.0 M

Unit Recurring Improvement $0.25 M $0.25 M

Total Recurring Improvement $2.5 M $250 M

Non-Recurring Improvement $0.1 M $0.1 M $10.0 M

Total Cost of Improvement $2.6 M $250 M $10.0 M

18

MIL-HDBK-XYZ (Draft)

6.2.2 Software failure probability. Software failure probability is a function of fault content
and execution time, and both must be considered when comparing software modules with those
of earlier designs to generate an achievable reliability allocation goal. Fault content is affected
by software attributes such as program structure, language, and executable lines of code. A
common measure of fault content is fault density, e.g. errors per 1000 executable lines of
code. However, modules may have an identical fault content but have widely differing failure
probabilities due to the extent to which the code is utilized. It is for this reason that software
utilization is included in the reliability model presented in Section 5.

The most desirable measure of software utilization is execution frequency, i.e. the number of
times during a given interval that the computer central processing unit (CPU) executes the
program. Comparisons involving execution time are meaningful only if applied to computers of
the same type performance and word format. It is misleading to compare the failure rate of a
module running on a 16-bit avionics computer operating at 2 MIPS with that of a 60-bit
mainframe operating at 20 MIPS. Instead, the failure rates must be normalized (divided) by
the product of the word length and instruction speed (i.e. 32 MBits/sec and 1200 MBits/sec for
the computers described). Because the resulting execution frequency is not usually meaningful
in an operational context, it should be used only for the purpose of global comparison.

For programs run on mainframes, execution time can usually be obtained from operating system
reports. For cases where execution time cannot be obtained, the computer run time of the
modules in question may be used if input/output activity is accounted for and if the modules
run on the same computer type (i.e. similar performance and word format). Calendar time is
only applicable for comparison of fialure rates when the workload and execution time for the
modules being compared are constant.

6.2.3 Fault consequences and severity

In addition to failure probability, failure consequences and severity must be considered when
allocating reliability goals. Consequences of a software failure can range from improper
display of a character or character set (e.g. loss of upper case text) to total system stoppage
requiring manual intervention for restart (i.e. a system crash). Severity considers the effect on
the overall mission including the possibility of human injury, cost impact and service
interruption. The severity of software failures on mission performance can range from
negligible to extremely severe, and modules that are likely to cause severe effects should be
allocated a lower failure probability. Fault Tree Analysis or functional FMEA are useful tools
for evaluating the consequences of software failures and their severity.

When system reliability requirements at the top level distinguish between severe and non-severe
failures, the severity apportionment should be carried down to lower level allocations. Where
no apportionment exists at higher levels of indenture, the lower level reliability allocation
should account for criticality by methods such as applying only to severe failures or being
reasonably weighted between severe and non-severe failures. For example, if a failure
probability of 0.01 is to be allotted to a specific software component, the allocation could be
0.0001 for high severity failures and 0.0099 for non-severe failures.

19

MIL-HDBK-XYZ (Draft)

6.2.4 Infrequently executed code

Software-based systems typically consist of two types of code; (1) that which is part of the
normal operation and frequently accessed, and (2) that which is non-operational and
consequently rarely used. Examples of the latter include

exception handlers (communication channels busy, read errors on disk access, memory
parity errors, etc.)
system initialization
hardware calibration routines
special measurements
computation of long term system statistics and report generation

Prior research has found that infrequently executed code has a higher fault density (faults per
source line of code) and fails at a much higher rate (in some cases by two orders of
magnitude) than the operational software [MCCA87]. This has been attributed to less thorough
testing of rarely used code. If it is desireable to achieve a given incremental reliability
improvement at minimum expenditure, the best strategy will be to conduct further testing of the
rarely used code at least until its total fault density (counting faults found during test and
operation) approaches that of the frequently accessed code.

6.2.5 Commercial software

Failures in commercial software can occur due to

- faults in the code

- problems at the computer interface (e.g. the software expects a memory structure or
I/O port configuration that differs from the existing one)

- problems at the user or application interface (e.g. the software expects a data format
or commands that differ from the existing ones).

Data provided by the vendor can only be expected to account for faults in the code. The other
contributions must be estimated by the integrator. A good example of reliability problems in
commercial software is found in [ADAM85].

7 RELIABILITY PREDICTION

7.1 General discussion

Reliability prediction for combined hardware/software systems requires formulation of reliability
(or failure probability) expressions for software consistent with those that have been developed
for hardware and defined in MIL-STD-756B. The standard recognizes two major categories of
prediction; (1) by similarity, and (2) by elements.

20

MIL-HDBK-XYZ (Draft)

The similarity methods for hardware are directed toward similar circuits or equipments. These
methods carry over almost verbatim into software when "program" is substituted for
"equipment" and "subroutine" for "circuit". Examples of subroutines covered by this
substitution are search operations, sort operations, matrix operations, and Runge-Kutta numerical
approximations. The similarity methods for both hardware and software must account for usage
as well as type. For hardware, usage implies stress levels and environmental conditions. For
software, significant usage parameters are data width (bits), instruction speed (e.g. MIPs),
operating time (where reliability is to be predicted), and workload.

The element methods for hardware comprise Parts Count and Parts Stress failure rate
predictions as defined in MIL-HDBK-217. Unlike the similarity category, the hardware element
methods do not carry over directly to software. Software prediction by elements applies to
fault content (or fault density when normalized by program length) and considers application
area, development environment, test environment and maturity.

The significant factor regarding area of application is whether the program executes in real time
or is a batch process. An additional factor is the program's primary function (e.g. control,
message routing, signal processing, intelligence processing). Factors that may be considered
under development environment include program size and structure (complexity), developer/user
relationship', design and coding languages, automated development and coding tools, and
programmer experience. Although the latter factor appears to have a significant impact on fault
content, it is difficult to verify and enforce. Test factors include the fraction of project
resources allocated for test, the test methodology, and the use of automated test tools. Maturity
factors include the fraction of previously used code and the fraction of modified code. These
considerations are summarized in Table 8.

There are three general categories of software reliability prediction models:

a. Fault seeding. These models are relevant only when the seeded faults are equivalent
to the inherent faults. They are used for estimating the number of inherent faults by
equating the uncovery of seeded faults to inherent faults [IEEE88]. This approach was
discussed in the early 1970's but has not received much attention recently.

b. Input domain. These models are useful only to the extent that a convenient partition
of the input domain can be generated. Software reliability is estimated based upon the
number of successful runs compared to the total number of runs where the number of
runs for a specific input domain is determined by the domain probability distribution.
A generally applicable partitioning is normal input data and exceptional input data.
There is little practical expertise with this approach.

c. Reliability growth. These models can be used for estimating either the average
number of failures occurring over an interval of time or the average elapsed time
between failures.

Boehm's classification of organic, semi-detached and embedded as described in
RADC-TR-87-171 has been found to be particularly effective in this regard.

21

MIL-HDBK-XYZ (Draft)

TABLE 8. CONSIDERATIONS FOR SOFTWARE PREDICTION BY ELEMENTS

ATTRIBUTE 	 SIGNIFICANT FACTORS
	

METRIC RANGE*

Application area 	 Real time vs. batch process
	

Not Yet Evaluated
Primary function 	 .0018 - .013

Development environment

Test environment

Program structure:
Complexity
Modularity
Anomaly Management
Traceability
Quality
Standardization

Developer/user relationship
Design and coding languages
Automated tools
Programmer experience

Test resources
Test methodology
Automated tools

.8 - 1.5
.9 - 2

.9 - 1.1
1 - 1.1
1 - 1.1

.75 	1.5

.76 - 1.3
1 - 1.4

Not Yet Evaluated
Not Yet Evaluated

Not Yet Evaluated
Not Yet Evaluated
Not Yet Evaluated

Maturity 	 Extent of re-used code 	 Not Yet Evaluated
Extent of modified code 	 Not Yet Evaluated

* Based on [IITR87]

The third category is considered superior in capability and applicability [MUSA87] and will be
discussed in greater length. These models generally apply to predicting reliability growth since
they relate program usage or test time to the number of faults exposed during a test phase.
Their hardware counterparts are models such as Duane and AMSAA that predict hardware
reliability growth in terms of decreasing failure rate (increasing MTBF) [MH189]. No single
model is applicable for all cases since software reliability growth is heavily dependent on
management decisions and on the extent to which software faults are mutually dependent (i.e.
fault B cannot be exposed until fault A has been detected and repaired).

The failure intensity for a software component at a specific time has the forma :

3 See [MUSA87], pg. 121, where U = fK. The equivalence of the failure intensity
expression derived in this report and in the referenced work implies that Musa's
development of confidence factors is also applicable here (ibid, pp. 270-271).

22

MIL-HDBK-XYZ (Draft)

x . 0) x U 	 (7-1)

where X is the failure intensity, co is the fault content, and U is the rate at which faults are
being exposed (i.e. failure occurrences per fault per unit time). The latter term is a function of
the stress placed on the software by the test cases, while co is a function of the fault density
and of the length of the code. Time dependency is introduced by assuming the failure rate is
proportional to the fault correction rate:

X(r) = co(t) x U 	 (7-2)

Assuming perfect debugging (i.e. each fault exposed is properly corrected without introducing
new failures or correcting additional faults), the rate of failure occurrences must equal the rate
at which the fault content is being reduced:

do)(T)
2t.(t) = dt (7-3)

A time-dependent expression for the software failue rate is obtained from equations 7-2 and 7-3
and is given by:

k(t) = 411e' 	 (7-4)

In using these equations, the fault density (i.e. w divided by program size) and/or the exposure
rate U should be estimated on the basis of experience on similar software. When such
experience is not available, the following default values may be used:

Fault density: .005/SLOG
Exposure rate: .005/CPU hr for a computer processing 10 6 source

lines/sec

7.1.1 Quality Control

Although it may intuitively appear that quality assurance (QA) should have a significant effect
on reducing software fault content, measurable evidence of this has been scanty. This should
not be construed as detracting from QA; its benefit to software maintenance has been clearly
documented. In addition, the team aspects of development programs subjected to total quality
management (TQM) can lead to feedback of modes and causes of failures to developers and
produce an overall improvement in product reliability and performance. However, the effect of
software quality on fault content is yet to be quantitatively assessed.

The reliability of a hardware/software system is adversely affected by external stresses caused
by changes in requirements or test methodologies and by management actions regarding
workload and job composition. Statistical process control charts used on programs subjected to

23

MIL-HDBK-XYZ (Draft)

TQM have been found to be useful for measuring variations in software stress and failure rates.
However, care must be exercised in interpreting these measurements. For example, a high
failure rate during development and test may be due to (1) a high fault content or (2) a high
rate of uncovering faults by effective testing. The difference between these two can only be
judged after several months of observation.

7.2 Detailed discussion

The reliability prediction expressions defined in MIL-STD-756 must be selectively applied at
different stages of the development cycle in order to satisfy the prediction needs stated in Table
9. The detailed discussion that follows regarding these needs concentrates on parts of the
development cycle that do not usually permit reliability testing (either as part of development
or operational testing), because it is during the early phases that a realistic and accurate
reliability prediction is most needed.

TABLE 9. RELIABILITY PREDICTION NEEDS DURING DEVELOPMENT

Development Activity 	Minimum Data 	 Objective
Requirements

Feasibility Studies 	 Hypothetical system 	Reliability goal
composition

System Design 	 Actual system composition 	Feasibility of goal

Prelim. Detailed Design 	Parts count, code estimate 	Compliance with goal

Detailed Design 	 Parts application, lines of 	Refined compliance
code

7.2.1 Feasibility studies

The purpose of reliability prediction during feasibility studies is to establish a realistic reliability
goal. This goal must address the missions, mission phases, and operational environment
identified in the Operational or Technical Needs document. If a reliability goal is stated in the
document, the modeling task should demonstrate how this goal can be met. In the more likely
case that no specific goal is identified, the reliability analyst may model a hypothetical system

4 During test, the adoption of a new test methodology (e.g. changing from structural to
functional testing) or shifting of responsibility to a new test team will frequently produce a
sharp increase in failure rate.

24

MIL-HDBK-XYZ (Draft)

and assess, together with other project participants, whether the predicted reliability will be
satisfactory. As a minimum this assessment must consider:

predicted permanent failure rates for each mission phase with identification of the assumed
environment and parts quality level

partitioning of these failures into hardware/software/other categories, and statement of
assumptions regarding redundancy or protective mechanisms

predicted reliability (with reliability growth) for one or more typical missions; where
redundancy is employed the predicted basic reliability shall also be stated as an aid in
maintenance planning.

Since no design is available during feasibility studies, a methodology based on parts count is
useless. The Similar Item Method (Method 2001 in MIL-STD-756) is applicable when
augmented with more definitive requirements such as the following:

failure experience on the predecessor equipment to be identified by equipment maturity,
assessment for deterministic failure modes, environmental stress level, operating mode,
duty cycle, and hardware/software/other classification of failures

detailed comparison between the proposed and predecessor equipment with regard to the
above characteristics and complexity of hardware, software, and personnel components and
interfaces

- description of the amount of re-use of existing hardware and software components for
each functional component of the proposed system.

7.2.2 System design

Typically, Reliability Allocation (MIL-STD-785 Task 202) rather than reliability prediction is
required during system design. The formal description of reliability allocation concentrates on
the partitioning of reliability goals so that component reliability requirements are consistent with
the system reliability goal. Although this is strictly speaking not a reliability prediction
activity, it is generally realized that it is necessary to show the feasibility of the allocation by
reconciling it with what can reasonably be expected from each component.

7.2.3 Preliminary design

The following presents a methodology for Preliminary Prediction (to support the allocation)
based on the system definition and gross indicators of its composition that should be available
at that stage: estimates of the number of ICs for hardware, number of modules for software,
and number and type of interfaces the "other" category. The Active Element Group Method
(MIL-STD-756, Method 2003) can be used as a starting point for the preliminary prediction.
This must be augmented by consideration of the application factors listed above for the
Feasibility Studies and by:

25

MIL-HDBK-XYZ (Draft)

considering not only numbers but also complexity of the ICs (or hybrids), software
modules, and interfaces

adjusting the prediction for stress levels and duty cycles for hardware and usage factors
for software

requiring allowance for a "design growth factor" to account for the traditional
underestimate of the hardware and software components needed to meet the specification
for the function.

During preliminary design hardware components are expected to be defined at least to the level
where an approximate part count can be furnished, and for software components an estimate of
the lines of code in each of the major execution areas (operating system, real-time application
code, non-r/t application code, support programs, etc.) should be available. Both internal and
external interfaces will also be sufficiently defined at this time to permit a reasonable
assessment of their complexity. With this information it is possible to generate reliability
prediction models which can establish whether the design complies with the reliability goals
and their allocation.

Unless the system does not employ internal redundancy at least two models should be
considered:

- the basic reliability model which is concerned with the prediction of all failures, regardless
of their mission impact; this model supports maintenance and logistics assessments

- the mission reliability model which is concerned only with failures that impact the
mission; this model supports mission planning and system effectiveness evaluation.

Additional models may be required for multi-purpose systems, e.g., to model the effect of
failures that affect some missions but not others, or to account for operation in degraded
modes.

The basic methodology for reliability prediction at the preliminary design stage is based on the
Parts Count Method (MIL-STD-756, Method 2004) modified to account for effective mission
time for each operational mode based upon a typical mission profile. An example of this
approach has been described in Section 5.3.

7.2.4 Detailed design

In detailed design every part is defined, and electrical and thermal stresses are determined.
This permits the more accurate parts stress analysis method of reliability prediction to be
applied (MIL-STD-756, Method 2005). At this time separate predictions can be generated for
transient and permanent failures. Where effective means are provided to circumvent the effects
of transient failures, all or a substantial fraction can be eliminated from the system reliability
summation.

26

MIL-HDBK-XYZ (Draft)

Detailed design is also an appropriate time to consider reliability growth predictions. The
extent of reliability growth is dependent on the scope of test programs and the existence of a
disciplined Failure Reporting, Analysis and Corrective Action System (FRACAS). Guidance for
reliability growth testing and prediction is found in MIL-HDBK-781 and MIL-HDBK-189. In
all other respects the reliability methodology is identical to that used in preliminary design.
Computer programs and interfaces are in their final form at this stage of the development cycle
and previous failure rate estimates should be updated with the current information.

8 FAILURE MODES AND EFFECTS ANALYSIS (FMEA)

8.1 General Discussion

FMEA is a part of Failure Modes, Effects and Criticality Analysis (FMECA) that is defined in
Task 204 of MIL-STD-785 and for which further requirements are established in MIL-STD-
1629. FMEA can aid in the reliability allocation process by

- identifying avoidable weaknesses that can be eliminated in circuit and system design

- focusing the need for fault tolerance on unavoidable reliability weaknesses

identifying failure modes and their effects so that suitable self-test or external test
provisions can be designed and the benefits of these accounted for in allocation.

There is nothing in the requirements or structure of an FMEA that prevents software from
being considered as an element that can contribute to failure. Unfortunately the format and
procedures for FMEA are not well adapted to the complex circuit and logic structures
encountered in current hardware/software systems. The failure modes of even the simplest
microprocessor can produce too many different effects for effective analysis. However, if types
of events leading to serious top level failures can be identified by fault tree analysis, an FMEA
that concentrates on potential causes of such events can be productive.

Fault tree analysis has been in use for many years in the hardware field and is a recognized
technique in MIL-STD-785 as well as in MIL-STD-882 (System Safety Programs). The
purpose of fault tree analysis is to identify low level failure modes that can, singly or in
combination, produce significant failures at a high level. It is a top-down procedure which
starts with a given failure condition at the system level and then identifies events at
successively lower levels that can contribute to the top event.

An additional consideration for software FMEA is the assignment of severity factors to
postulated failure modes as defined in MIL-STD-1629. More specific descriptors than those
defined by the standard are required for the severity of software failures. As discussed under
the heading Reliability Allocation (specifically, paragraph 6.2.3), the manifestation of a failure
is only very vaguely dependent on the nature of the fault that caused it. A fault may be
simple and its removal easily accomplished, yet its consequences in terms of system failure can
be quite severe. On the other hand, a subtle, complex fault that is difficult to remove may
only cause a minor system failure. Thus, it is imperative to properly classify failure (rather

27

MIL-HDBK-XYZ (Draft)

than fault) severity in order to bring to bear appropriate resources for addressing the causes of
failure.

9 RELIABILITY DEVELOPMENT/GROWTH TESTING (RDGT) PROGRAM

9.1 General Discussion

In general, the objective of RDGT is to employ a test, analyze and fix process to remove as
many causes of systematic (design) faults as possible and to obtain a degree of assurance that
the system will meet the stated reliability requirements. Test conditions involve actual,
simulated or accelerated mission environments.

For hardware, a distinction is made between failures caused by defects in workmanship or parts
and failures caused by design deficiencies. The former are removed by screening or attrition
where their removal contributes to the reliability growth of the unit under test. Whenever these
random failures are excessive, QA procedures will be tightened. The latter are removed during
analyze and fix portions of the testing program; the removal involves design changes which
benefit all subsequent copies of the item.

For software, reliability growth during development and test is taken for granted since software
faults are inherently design faults and code changes in response to failures are intended to
eleminate these faults.

9.2 Models

The most popular of the various hardware oriented mathematical models developed for
analyzing reliability growth have been the Duane model [DUAN64] and the AMSAA model
[CROW75]. These along with various others are described in MIL-HDBK-189.

Various mathematical relations have been proposed to model the effect of "debugging" on
software reliability. Earlier studies indicate that even when considerable care was exercised to
eliminate external factors, "good" fits (chi-square test at the 0.05 level) were achieved for only
28% of the tested programs and "no convergence" (meaning lack of consistent reliability growth
for several sampling periods) was reported for 57% of the programs [ANGU83].

The best documented of the software reliability growth models are those developed by John
Musa [MUSA87]. They assume that the failure rate is either proportional to, or a logarithmic
function of, the remaining fault content, and that the detection of faults is a function of
execution time (the are therefore referred to as execution time models). The Musa models are
based on statistical estimations and provide confidence limits on the future failure rate based on
past observations. Computer programs for data collection and analysis based on this model are
also available.

Many factors can obscure the observation of reliability growth in software development, such as
requirements changes, personnel turn-over, and differences in test procedures. These changes, if
allowed to occur during software reliability growth testing without being properly accounted for,

28

MIL-HDBK-XYZ (Draft)

will negate the test results. For example, the addition or modification of a system requirement
can be expected to generate a negative perturbation in the growth curve. A change in usage
(e.g. from two-dimensional input data to three dimensions) or in hardware (e.g. from a lower
performance computer to a higher one) will produce a similar result. The benefits of
introducing such changes must be weighed against the perturbations in growth testing that they
cause. However, after the perturbation has stabilized, one would expect growth rate to continue
as before, i.e. the slope of the growth curve before and after the interruption should be similar,
and the projected growth curve can be corrected by an appropriately shift along the ordinate.

9.3 Test Strategies

RDGT for software is usually conducted separately from hardware because of differences in test
strategies. Hardware is typically stressed by environmental exposure. During hardware tests,
diagnostic software routines are used that are typically not representative of the mission
software. The environmental conditions imposed upon the hardware during test is both
unnecessary for software and presents an impediment to "debugging". Software is stressed by
running under conditions of high workload and frequent exception handling, neither of which
are necessarily appropriate for stressing hardware. Instrumentation for monitoring performance
and uncovering failures are often quite different between hardware and software. Faults
associated with the interface between hardware and software are detected during integration
testing which may or may not be part of RDGT.

Integration of the software RDGT with other developmental testing enables acquisition of more
test time and earlier application of the growth program within the development phase but
requires more carefull analysis of the data and test conditions. As failures are exposed and
solutions identified, several options are available. Fixes can be cut in immediately, their
implementation can be delayed until the end of the test phase or later, or they can they can
worked-around by changes in documentation or procedures. Each of these options will have a
unique impact on growth rate, program cost and schedule. Immediate implementation can
unpredictably affect growth from planned levels since new failure patterns can be triggered as a
result of the fixes. However, this option maximizes the test time available for observing and
correcting these failures. It should also be noted that cost and time constraints frequently
dictate that testing continue in parallel with design of fixes for known failures.

Test strategies for software require the following additional considerations. An optimum test
strategy is one that uncovers the greatest number of faults in the least amount of program
execution time. One approach is to select test input states randomly with a probability
distribution similar to that encountered during a field mission. Here we distinguish between
deterministic or random selection of input states. The former implies the test input sequence is
specified with certainty and can lead to inadvertent test biasing. The latter implies various
alternative sequences are selected arbitrarily and can lead to unrealistic or non-optimum tests.
By combining both selection processes (random selection within a predetermined distribution)
we avoid their individual deficiencies. Other areas of consideration regarding test strategy
include:

non-repetition of selected inputs (selection without replacement vs. regression testing)

29

MIL-HDBK-XYZ (Draft)

grouping similar input and selecting one input per group (partition testing)

applying input sequences that can trigger the occurence of certain fault patterns
(mutation testing)

9.4 Data Collection Procedures

Operationally, data collection is required to objectively track reliability growth against a planned
growth curve and to project future growth. A number of problem areas involving data
collection for supporting reliability growth (particularly software related) have been recognized
in the literature. (See for example [SOIS85], [ANGU83].) These problem areas include:

Erroneously attributing software failures to hardware or vice versa.

Improperly recording the correction of a software fault as a system "enhancement".

Erroneously reporting a test procedure deficiency as a system failure.

Improperly recording the time of the failure occurrence.

Insufficient coverage of all mission modes rather than a few test scenarios.

Insufficient range of test inputs.

Unmotivated data collectors.

Simplification of data collection requirements, consistent error classification definitions, and
automated techniques such as menu-formatted input requests aid in overcoming many of these
problems.

9.5 Simultaneous Random Testing

Reliability growth measurement for systems having very high reliability requirements presents
special problems. Providing sufficient test time for a single copy of the system is typically
impractical. In this case, data can be collected from S multiple copies of the system running
simultaneously for H hours. The failure data can then be evaluated as if a single copy running
SH hours had been tested.

It is possible that more than one failure will be reported during the same reporting interval.
Since reliability growth models do not accommodate concurrent failures, the distribution of the
failure data must be randomized within each reporting interval and statistical calculations
applied for estimating the expected number of failures.

30

MIL-HDBK-XYZ (Draft)

10 RELIABILITY QUALIFICATION TEST (RQT) PROGRAM

10.1 General Discussion

When formualting an RQT plan, consideration should be given to testing hardware and software
separately. In doing so, hardware testing would be guided by MIL-STD-781 and software by
DOD-STD-2167 and -2168. Advantages for separating these tests include:

Software testing can be conducted in a room temperature environment at much lower
cost than over a simulated operational profile environment.

For hardware test, it is frequently desirable to run diagnostic programs continuously or
very frequently, and this conflicts with the requirements for software.

While demonstration of the specified MTBF is an accepted technique for hardware, it
is not necessarily so for software where demonstration of a minimum failure free
period may be preferred.

The allocation of test time can be tailored to the separate hardware and software
reliability goals, and testing can be conducted at different points in the development
cycle.

The major disadvantages of separating the test is that the combined system reliability will have
to be generated analyticaly and that some hardware/software interactions may go unnoticed.
The general methodology for combining hardware and software reliability described under
Allocation in this handbook is suitable for resolving the first issue, and the second is addressed
by other testing that is being conducted during development, notably system integration.

11 PRODUCTION RELIABILITY ACCEPTANCE TEST (PRAT) PROGRAM

The purpose of PRAT is to insure that the manufacturing process does not degrade the product
reliability. PRAT is applicable only to hardware because there is no production variability
associated with software.

31

MIL-HDBK-XYZ (Draft)

REFERENCES

ADAM84 E. N. Adams, "Optimizing Preventive Service of Software Products", IBM Journal of
Research & Development, pp 2-14, Jan. 1984.

ANGU83 J. E. Angus et al., Reliability Model Demonstration Study, RADC TR-83-207,
August 1983.

CROW75 L. H. Crow, "On Tracking Reliability Growth", Proc. RAMS, 1975, pp. 438-443.

DUAN64 J. T. Duane, "Learning Curve Approach to Reliability Monitoring", IEEE Trans.
Aerospace, 1964, pp. 563-566.

HECH86 H. Hecht and M. Hecht, "Software Reliability in the System Context", IEEE Trans.
on Software Engineering, January 1986.

IEEE88 IEEE Draft Standard, A Standard Dictionary of Measures to Produce Reliable
Software, cat. no. P982.1/D3.0, May 1988.

IS078 	International Standards Organization, Data Processing - Vocabulary, ISO 2382IXIV,
1978.

MCCA87 J. McCall, System Reliability Prediction Study, RADC final report under contract
no. F30602-85-C-0311, May 1987.

MH189 Military Handbook, Reliability Growth Management, MIL-HDBK-189, Feb. 1981.

MUSA87 J. D. Musa et al., Software Reliability: Measurement, Prediction, Application,
McGraw-Hill Book Co., 1987.

SOIS85 E. C. Soistman, Impact of Hardware/Software Faults on System Reliability, RADC
final report, Martin-Marietta report no. OR 18,173, April 1985.

32

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48

