
School/1XX Project Director:  Dr. Ramond P. Vito 

,GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION 

PROJECT ADMINISTRATION DATA SHEET 

51 ORIGINAL 

Project No. 	 0646152„.0A1) 	  GTRCMCPt 

Sponsor: American Heart Association 

REVISION NO. 	 

DATE 7 / 11 / 86 

Bi—Axial Mechanical Properties of Canine Pericardium 

Brian J. Lindberg ext. 4820 OCA Contact 

Georgia Affil to 

2581 Pied ont R d, N.E. 

Supplemental Information Sheet for Additional Requirements. 

t ESTRICTIONS 

See Attached 	N/A  

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor 

approval where total will exceed greater of $500 or 125% of approved proposal budget category. 

:quipment: Title vests with  None proposed or anticiapted.  

:OMMENTS: 

A DMINISTRATIVE DATA  

) Sponsor Technical Contact: 

Mr. Robert B. C 

American Heart association 

Broadview P az Level C 

Atlanta, Georgia 30324 

Defense Priority Rating: 	N/A 	Military Security Classification: 

(or) Company/Industrial Proprietary: 

ci 1011/R42  

N/A 

N/A 

Sponsor Amount: 

::ost Sharing Amount: $  NONE 

Type Agreement: 

Award Period: From 	7/1/86 

Funded: $ 	17,380 

Estimated: $ 	17,380 

Grant-In-Aid Agreement dated 7/1/86 

-15-fafttfr77aM 
This Change  

To 

	

ormance) 	6/30/87 	 (Reports) 

Total to Date  

$ 	17,3so  

$ 	17,380  

	

Cost Sharing No: 	N/A  

2) Sponsor Admin/Contractual Matters: 

land, President 

SPONSOR'S I. D. NO.  02.500.011.86.002  

Procurement/GTRI Supply Services 	 GTRC 

Isi■J 

Research Security Services 	 Library 

Reports-Coordinator (OCA) 	 Project File 

Research Communications (2) 	 Other  Jones 

COPIES TO: 

Project Director 

Research Administrative Network 

Research Property Management 

Accounting 



::ZORGIA INSTITUTE OF TECHNOLOGY 
	

OFFICE OF CONTRACT ADMINISTRATION 

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET 

Date 	2/24/88 

P roject No.  E-25-M06 School/1;4RK 	ME  

::1cludes Subproject No.(s) n/a 

 

1 zoject Director(s) 
	

R. Vito 	 GTRC/GiTx 

onsor 
	American Heart Association 

itle 
	

Bi-axial Mechanical Properties of Canine Pericardium 

17fective Completion Date: 
	

12/31/87 
	

(Performance) 
	

1/15/88  (Reports) 

Grant/Contract Closeout Actions Remaining: 

  

      

None 

Final Invoice or Copy of Last Invoice Serving as Final 

Release and Assignment 

Final Report of Inventions and/or Subcontract: 
Patent and Subcontract Questionnaire 
sent to Project Director Ei 

E] Govt. Property Inventory b Related Certificate 

r--1  Classified Material Certificate 

E] Other 	  

Continued by Project No. Continues Project No. 

COPIES TO: 

Project Director 
Research Administrative Network 
Research Property Management 
Accounting 
Procurement/GTRI Supply Services 
lesearr.4,Security Services 
ept5rts Coordinator (OCA)  
'l'ogram Administration Division 
ontract Support Division 

Facilities Management - ERB 
Library 
GTRC 
Project File 
Other 



BI-AXIAL MECHANICAL PROPERTIES OF  
CANINE PERICARDIUM  

by 

Raymond P. Vito 
Associate Professor 

School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

SUBMITTED TO: 

American Heart Association 
Georgia Affiliate 

1685 Terrell Mill Road 
Marietta, Ga. 30067 

Final Report Grant #E25-M06 
January 18, 1988 

1 



I 	Investigator  
Raymond P. Vito, Ph.D. 

Project Title  
"Bi-axial Mechanical Properties of Canine Pericardium" 

Period of Support  
July 1, 1986 - present 

II 	Project Report  
Scientific Summary 

Abstract  

Our key findings may be briefly summarized: 

1. We developed a new method for measuring the thickness of 
pericardial tissue. 

2. We were able to measure, for the first time, shear 
strains 	in pericardium subjected to in-plane bi-axial 
deformation. 

3. We developed a new experimental technique for 
determining the material symmetry axis of the pericardium prior 
to mechanical testing. 

4. We were able to reduce the data in sets thereby avoiding 
the problem of protocol dependent material properties usually 
associated with bi-axial mechanical testing. 

In the following, we elaborate on each of these points. More 
complete details may be found in Choi (1987) (copy attached). 

Methods  

Knowledge of mechanical properties is fundamental to the 
mechanical modeling of the heart in health and disease and also 
to the design of pericardial heart valves and patches. 
Accordingly, the bi-axial mechanical properties of canine 
pericardium were studied in-vitro. 

Fresh specimens were obtained from animals used for 
experimental work not expected to affect the pericardium and 
stored in cold saline until use; usually within four hours of 
removal. Specimen dimensions were measured and the specimens 
mounted in a computer controlled bi-axial testing device. All 
experiments were conducted in saline at room temperature. 

Thickness Measurement  

The specimen thickness is difficult to measure accurately and 
its measurement represents a significant experimental challenge. 
Accurate measurement of the thickness is important as stresses 
are calculated using the thickness and measured forces. 
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Previously reported methods exhibit a large variance in the 
thickness measurements. 	A novel technique, utilizing the 
electrical resistance micrometer shown 	in Figure (1), was 
developed during this grant period and seems to eliminate the 
large effect that fluid surface tension has on such measurements. 
The basic idea behind this technique is illustrated in Figure 
(2). The micrometer is advanced until contact with the saline 
film on the tissue is made. 	The voltmeter shown indicates when 
the circuit is complete. 	When the micrometer is withdrawn from 
the tissue, a second reading is taken when contact with the 
saline film is broken. The difference between these two readings 
is a measure of the surface tension effect. As the saline film 
evaporates, this effect diminishes. However, some saline must 
always be present on the tissue to prevent drying and the 
associated change in mechanical properties. Thus measurements 
taken over the first ten to twenty minutes may be extrapolated 
using linear regression to accurately determine the thickness of 
the tissue. Representative results are shown in Figure (3). The 
technique has been used on seven specimens and has a measurement 
to measurement variance of 0.01mm when using the same point of 
the same tissue. Table (1) shows the point to point thickness 
variation in a representative specimen (%3). 

Strain Measurement  

Five particles, placed on the tissue (diam = 250 micron) as 
shown in Figure (4), are tracked with an image digitizer 
interfaced to a minicomputer (PDP-11-34). Using this technique, 
strain measurement is redundant and shear strains can be measured 
for the first time in any laboratory. Shear strains are always 
present when the stretching axis and the material axis (assuming 
orthotropy) do not coincide. Representative results are shown in 
Figure (5). 

Material Symmetry Axis  

Shear strains are present almost always since the material 
axis are not known a-priori and are therefore not likely to 
coincide with the stretching axis. This is a fundamental problem 
in bi-axial testing of soft tissues. However, in previous works, 
this problem is ignored leading to material constants which are 
incorrect. We attempted to remedy this using two basic 
approaches: 

1. In the first method, the shear strain measurements and the 
theory are used to determine the unknown angle between the 
orthotropic axis of the material and the stretching axis. The 
method relies on the fact that shear strains result from the non-
coincidence of the material axis and the stretching axis. 
Details of this somewhat complex scheme may may be found in Choi 
(1987) (attached). 
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2. In the second method, 	we attempted to develop an 
experimental technique to determine the orthotropic axis of the 
pericardium and then perform a bi-axial test using coincident 
material and stretching axis. 

We have been unsuccessful to date in implementing option one; 
probably due to the non-uniqueness inherent in many non-linear 
problems. 

For option two, several different protocols were attempted. 
We were successful in one of these which we now describe. The 
perciardium was laid undeformed on a lexan plate and a 7.0 cm 
circle stamped on the tissue. Careful dissection resulted in a 
circular specimen to which 000 silk sutures were attached, using 
magnetic recording tape and super glue, at 15 increments as 
shown in Figurs (6). Note that the sutures form diameters of the 
specimen at 15 intervals. 

Next the specimen was mounted in the bi-axial testing device 
and 10 gm applied to one diameter and 100 gm applied to the 
diameter orthogonal to it. After applying these forces, two 
marks 5 cm apart were placed on the tissue along the diameter 
subjected to 100 gm. The tissue was then rotated 15°  and the 
procedure repeated until all possible diameters were loaded with 
100 gm and marked. When the tissue was allowed to return to the 
stress free state, the marks placed on the tissue form an ellipse 
with major and minor axis identical to the unknown material 
symmetry axis. A 4 cm X 4 cm specimen was then cut from the 
tissue for use in the bi-axial testing in which the material and 
the stretching axis coincide. The specimen, mounted in the 
apparatus, is shown in Figure (7). 

Analysis of Results  

Our results indicate that the pericardium is orthotropic, 
nonlinear viscoelastic and relatively strain rate insensitive. 
Figure (8) and (9) are plots of representative data illustrating 
these points. 

The data analysis was done using several possible strain 
energy density functions taken from the literature. The details 
behind the individual models may by found in Choi (1987) 
(attached). 

A major problem in reducing bi-axial experimental data is 
that the material constants so determined are protocol dependent. 
This is because of the situation indicated in Figure (10) and 
referred to in statistics as multi-colinearity. Accordingly, we 
attempted to reduce the data in sets. These sets are taken by 
applying differing ratios of the strains in the two preferred 
material directions determined as outlined above. Thus all 
strain states expected in-vivo are in a data set. Figure (11) 
shows representative plots of the strains Ell  versus E ll . Table 
(2) indicates the corresponding material constants obtained for 
the model shown in the Table. (Note that the stress strain law 
follows directly from the function W shown.) Experimental and 
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theoretical predictions of the stress S 11  are shown in Figures 
(12) and (13) respectively. The agreetent between theory and 
experiment is good. 

Lay Summary  
The mechanical nature of the pericardium is unknown. It is 

important to understand how the pericardium responds to forces 
like the ones it experiences in the body. This information may 
be important in modelling the heart. 	Such models can serve as a 
guide to diagnosis and treatment. 	The pericardium also serves a 
mechanical role when it is made into a prosthetic heart valve or 
a "patch". 

III Collaborators  
Dr. Hilmi Demiray, a visiting professor, helped in the 

development of the mechanical model. Dr. Demiray is an 
internationally recognized expert on the theoretical aspects of 
tissue mechanics. 

Mr. Hwa Soon Choi is conducting this research as his thesis 
dissertation. 	He has completed his thesis proposal and 
successfully defended it before the Faculty. 	He will complete 
his Thesis this spring. 	A copy will be forwarded to the 
Association. 

Dr. Andre Churchwell served as a medical consultant. 

IV Publications  

Choi, H.W. and Vito, R.P., The bi-axial mechanical properties of 
canine pericardium. Proceedings, 40th Annual Conference on 
Engineering in Medicine and Biology (1987) 

Also presented at the Symposium on Cardiovascular Research 
sponsored by the GHA and held in Athens, Ga. on August 7, 1987. 

Dr. Vito has been invited to present this work at the Society of 
Engineering Science meeting, Berkeley, Ca. in June 1988. 

Expected: One and perhaps two journal papers resulting from Mr. 
Choi's Thesis. 

V This work is continuing using Institute support. 
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Table ((). Thickness measurement data for the specimen //'. 

Point No. # 1 # 2 

Lost- 

 

Stage Contact Contact contact Contact contact 

E
l 	

..-1 	
a) 

(min.) (mm) (mm) (mm) (mm) 
0.0 0.3734 0.5715 0.3175 0.6045 
2.0 0.3708 0.5258 
2.5 0.3073 0.5410 

3.5 0.3454 0.5105 

4.5 0.3022 0.5080 

5.5 0.3302 0.4623 

6.5 0.2819 0.4927 

8.0 0.3124 0.4166 

8.25 0.2743 0.4217 

Linear 
regression ..:. 	0.008265 a=-- 0.019208 d=. 0.005413 (A-.: 0.020149 

h::- ckt +(3 
p . 	0.3778 p= 0.5703 p: 0.3202 (5: 0.6012 

Thickness 0.232 	mm 0.217 	mm 



Table (l). Comparison of the material constants of [ MODEL 4 ] 
determined from the individual data set and determined from 
the complete data set ( Specimen #05 , canine pericardium ). 

Protocol al BO bl b2 
∎  - 

b3 
4. 

PI 1.82222 0.00017 -221.9719 55.8146 48.0009 

P2 1.86187 0.00034 -104.7934 50.8625 39.8545 

P3 1.52789 0.01288 -74.6157 9.7404 20.5505 

P4 1.71814 0.00029 54.7648 112.8587 50.2555 

P5 1.46838 0.00030 53.2002 -1726.8939 71.0944 

Pl+P2+P3 
+P4+P5 1.92430 0.00100 44.9223 43.5682 30.4653 

Model 4 refers to a particular choice for the strain energy 
density function W; namely: 

W = 1/2 	 + Esse r..  

+ Bc.: ( exp(1/2b 1 E ll ') + exp(1/21D&Eeze5= ) + exp(b79 E,,,E) ) 

The stresses, which follow from W (Choi 1987), are: 

9 11  = 	 + 1/2E,,f? ) + 13,( b i E li exp(1/2131El1') 
+b :.3 E,-. 1,.exp(toz)E1127.) ) 

= a i (1/2Eil + Eaa ) + 	b7.13 E ll exp(b,33EllEme) 
+ bo.EF.,,exp(1/2EF?e'--1 ) ) 

These equations are used to give the theoretical plots in Figures 

(12) and (13). 
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The electrical resistance micrometer can be read to 
0.0001". 	Contact with the tissue closes the 

circuit as indicated by the meter. 
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Figure (2) 	Schematic diagram 	of 	two 	reading stage for 
thickness measurement: (a) contact stage (h) lost-
contact stage. 
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FIGURE (4) The specimen is 	mounted 	using surgical silk 
attached to small pieces of magnetic tape. The 
tape is attached to the tissue using super glue. 
Note the small tracking particles at the center of 
the specimen. 
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specimen can be used to determine the material 
symmetry axis as described in text. 
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FIGURE (7) The specimen es mounted in the bi-axial mechanical 

testing device. 
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Changing the strain rate by a factor of 20 has 

little effect on the experimental data. This is a 

result typical of soft tissues. 



Figure (10 Instability of the fitting surface due to 

the multicollinearity. 
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The theoretical and experimental values of the 
stress S ll  and 	strain 	 for the various 
protocols. The theoretical values are computed 
using the protocol independent material constants 
given in Table (2). 
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NOMENCLATURE 

A (Aijkl, Amn , Ai) 

a (aij, ai) 
Pseudo-elastic material 
constants. 

Displacement gradients 
referred to xi axis. 

C I (Cii i ) 	 Displacement gradients 
referred to xi axis. 

E (Eij) 

E (c ij ) 

Green's strain tensor. 

Eulerian infinitesimal 
strain tensor. 

f(...) 	 Function of variables ... 

h (ho,hi,h2,h3) 	 Thickness. 

H (Hn ) 	 Interpolation functions. 

I (I1, 12, 13) 	 Green's strain invariants. 

L 	 Length. 

1 (lij) 	 Direction cosines. 

P 	 Hydro-static pressure. 

S (Sii) 	 Second Piola-Kirchhoff 
stress tensor. 

T (Tij) 	 Lagrangian stress tensor. 

t 	 Time. 

u (ul, u2) 	 Displacements referred to 
xi axis. 

Vv 	 Volume fraction. 

Strain energy density 
W 	 function per unit volume 

of undeformed state. 

B (B0 , Bum) 

b (bijkl, b mn , bi) 

C (Cij) 

xi(xi, x2, xi) 	 Undeformed coordinates 
along axis of orthotropy. 



xi(xl, x2, x3) 	 Undeformed coordinates 
along the stretching axis. 

Yi(Y1, 	Y3) 
	

Deformed coordinates along 
the axis of orthotropy. 

Yi(Y1, Y2, Y3) 
	

Deformed coordinates along 
the stretching axis. 

Angle between xi' axis 
and xi axis 

0 	 Angle between yi axis 
and yi axis 

( 6'ij) 	 Cauchy stress tensor. 

Stretch ratio. 

Po 	 Density of material in 
undeformed state. 

Density of material in 
deformed state. 

( 1 1, 4/2.) 	 Natural coordinates 



1. Introduction 

1.1 Description of the Pericardium 

The pericardium is normally found in vertebrates, including 
man. The pericardium consists of a tough, fibro-collagenous 
outer coat (the parietal pericardium) with discrete attachments 
to the sternum, great vessels, and diaphragm, and a thin inner 
membrane (the visceral pericardium) as shown in Figure (1). The 
pericardial cavity, that space between the visceral and parietal 
pericardium, contains a small volume of fluid which serves to 
lubricate the outer surface of the heart. The pericardium holds 
the heart in a fixed geometric position and isolates the heart 
from other thoracic structures [ Holt,1970 ]. 

Histologically, the human parietal pericardium is composed of 
three layers: the serosa, the fibrosa, and an outer layer of 
epipericardial tissue. The serosa consists of a surface layer of 
mesothelial cells and of a narrow sub-mesothelial space. The 
fibrosa is composed of connective tissue cells, small vessels, 
variously oriented layers of collagen fibrils and small elastic 
fibers. The epipericardial connective tissue layer contains 
mainly large coarse bundles of collagen, blood vessels, nerves, 
lymphatics and connective tissue cells. A part of the 
pericardiosternal ligaments consists of some of these collagen 
bundles [ Ishihara et al.,1980 ]. 	The major constituent of the 
parietal pericardium is the fibrosa, the chief ingredient of 
which is compactly arranged collagen fibers disposed in three 
layers oriented approximately 120 0  with respect to each other. 
The elastic fibers are small and often oriented at right angles 
to the collagen bundles [ Shabetai,1985 ]. 

The canine parietal pericardium has a multilayered network of 
collagen fibers [ Wiegner and Bing,1981 ]. 	However, the 
histological study on the orientation of fibers in each layer has 
not been reported. 

1.2 Function of the Pericardium 

The functions of the pericardium have long been mysterious as 
stated by Shabetai [1985] : 

The pericardium is known not to be essential to life; its 
congenital absence or surgical removal is usually not 
followed by adverse consequences. 	On the other hand, 
laboratory investigations have furnished convincing 
evidence that the pericardium influences cardiac function. 
This paradox arises because the modulation of cardiac 
function by the pericardium is subtle, and because cardiac 
function adapts to the absence of the pericardium. 
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Figure (1) 	The pericardium and heart wal]. 



F 

1 

1  

However, in the absence of the pericardium there may be 
significant long term effects such as cardiac hypertrophy and 
myocardial scarring. After removal of the pericardium, the heart 
may attach to the sternum and diaphragm. Thus at least the local 
contractility of the heart may be adversely affected [ Fowler, 
1970 ]. 

The pericardium serves to hold the heart, and isolates the 
heart from other structures in the thorax, thus preventing 
adhesions and spread of infection. 

The pericardium also serves the following functions: 

1) Moderates diastolic filling of the ventricles. 
2) Prevents hypertrophy of the heart under conditions of 

strenuous exercise [ Holt,1970 ]. 
3) Restrains the volume of the heart in the face of 

acute volume overloads and more chronic volume 
overloads [ Bhargava et al.,1983 ]. 

4) Plays an important role in the diastolic interaction 
between the two chambers 	Maruyama et al.,1982 ; 
Hess at al.,1983 I. 

Also, the pericardial fluid reduces friction on the epicardium 
and equalizes the gravitational, inertial and hydrostatic forces 
over the surface of the heart [ Avasthey and Wood,1974 ]. 

Because the pericardium surrounds the heart, its constrictive 
function can have fatal consequences in pathological situations 
such as cardiac tamponade and constrictive pericarditis. Cardiac 
tamponade is the impairment of diastolic filling of the heart 
caused by an unchecked rise in intrapericardial pressure. 
Constrictive pericarditis is the inflammation of the pericardium 
resulting in constriction of the heart [ Fowler,1985 ]. 

1.3 Significance of Pericardial Mechanics 

Within the last decade, pericardial diseases have become 
increasingly common. Therefore, the understanding of pericardial 
physiology is becoming recognized as one of the basic concepts in 
the physiology of the circulation. 	As aforementioned, The 
pericardium has significant influences on cardiac function and 
diastolic interaction between the two chambers of heart. For the 
better interpretation of clinical measures (e.g., pressure-volume 
relations, electrocardiogram ) of cardiac function, the 
development of a mechanical model of the intact heart with 
pericardium in health and disease has to be done. Although there 
have been numerous efforts to develop a mechanical model of the 
intact heart [ e.g., Demiray,1976 a,b; Ghista and Sandler,1969; 
Gould et al.,1972; Mchale and Greenfield,1973; Mirsky,1969,1973; 
Moskowitz,1982; Wang and Sonnenblick,1979; Wong and Rautaharju, 
1968; Voukydis,1972 a,b,c ], the effects of the pericardium have 
been almost disregarded in those studies except the work of Vito 
[1979] and Vito and Demiray [1980]. Prior to developing a 
mechanical model of the heart, it is essential to know the 
mechanical properties of pericardium. That is, we have to know 
the constitutive relationships of the pericardium. 
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Another important aspect of the pericardium is the heart 
valve replacement. Bioprosthetic valves are made of porcine or 
bovine pericardium. When using the bio-prosthetic valves in the 
heart valve replacement, problems associated with material 
degradation [ Ferrans et al.,1978 ] have been important factors 
limiting the long-term success of cardiac valve replacement [ 
Schoen et al.,1982 ]. 

The pericardium is useful in other cardiac surgery as well. 
For example, porcine pericardium was used as a patch to repair 
intra-cardiac defects [ Radegran and Bjork,1979 ]. The 
pericardium used in cardiac surgery is usually treated with 
glutaraldehyde or formaldehyde to improve the durability by 
producing cross-linking between collagen fibers [ Woodroof,1979 
], and to make the tissue biologically inert. 

From the above discussion, it appears that the understanding 
of microstructural changes due to mechanical and chemical factors 
is important to the development of cardiology. 

In summary, the long-term aims of the pericardial mechanics 
are: 

1) To understand the constitutive relationships of the 
pericardium. 

2) To construct a mechanical model of the intact heart 
and prosthetic heart valves. 

3) To understand quantitatively the relationship between 
material properties and microstructure of the 
pericardium. 

4) To apply all these knowledge to the real clinical 
problems. 

1.4 Review of the Literature  

a) Soft Tissue Mechanics  

Soft tissue may be considered in several basic categories: 
soft connective tissues (lung tissue, skin, blood vessels, 
ligaments, tendons, mesentery, pericardium, and other membranes), 
muscles, organs, and the brain. Thus mechanics of soft tissues 
covers a vast area. 

The tissue's capacity to withstand and transmit the loads 
through deforming appropriately can be characterized in health 
and disease. Knowledge of such 'load-deformation' relations of 
the tissues can serve as a basis for diagnosis [ Kenedi et al., 
1975 ]. Therefore, identification of the constitutive equations 
of living tissues has been a major activity in recent years [Fung 
,1983 ]. 

Generally, soft biological tissues are regarded as 
nonhomogeneous, anisotropic, nearly incompressible materials, and 
they are usually subjected to large deformations. Thus the 
stress-strain relationships are usually nonlinear and history 
dependent. But attempts to include all of these factors in a 
single theory would likely lead to intractable mathematical and 
experimental complexity. Therefore, most studies up to now are 
based on the certain assumptions such as homogeneity, isotropy 
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and incompressibility, even though little or no evidence exists 
for these assumptions. 

The studies for identification of the constitutive equations 
can be divided into two basic groups, that is, macroscopic 
analysis [ e.g., Blatz,1969; Fung,1972,1973,1979,1981; 
Hildebrandt et al.,1969 a,b.; Veronda and Westmann,1970; Vito, 
1973,1979,1980 a,b ] and microscopic analysis [ e.g., Broom,1978; 
Comninou and Yannas,1976; Decreamer et al., 1980 a,b; Lanir, 1979 
a,b, 1983 a,b ] 

Macroscopic analyses are based on the various mathematical 
methods of continuum mechanics such as finite elasticity and 
viscoelasticity. We can separate this approach into two groups; 
pseudo-elastic approach and viscoelastic approach. 

First, pseudo-elastic approach assumes implicitly the 
existence of the pseudo-strain energy density functions. We know 
that living tissues are not perfectly elastic. Therefore, they 
cannot have a strain energy density function in the thermodynamic 
sense. But the biological tissues usually show the strain rate 
insensitivity, then the loading curve and the unloading curve can 
be separately treated as a uniquely defined stress-strain 
relationship, which is associated with a strain energy density 
function [ Fung,1981 ]. Therefore, the characterization of soft 
tissues reduces to discovering the pseudo-strain energy density 
functions which can yield desired agreement between theory and 
experiments. But in this approach, the viscoelastic behaviors 
such as creep and relaxation are ignored. 

Although many different mathematical expressions have been 
used to describe the experimental results of uniaxial and biaxial 
tests, only two forms of strain energy density function are used 
widely, the exponential form [ e.g. Fung,1967; Blatz et al.,1968; 
Gou,1970; Vito,1973; Demiray,1972,1975; Tong and Fung,1976; Yin 
et al.,1986 ] and the power series form [ e.g. Patel and Vaishnav 
,1972; Haut and Little,1969; Vito,1980 ]. These function forms 
are briefly shown in Table (1). 
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Second, viscoelastic approach is based on the linear or 
nonlinear viscoelasticity of continuum mechanics. Usually, 
biological tissues show the features of hysteresis, relaxation, 
creep and strain rate insensitivity [ Fung,1972 ]. To explain 
these characteristics of soft tissues, a number of viscoelastic 
models have been suggested. For oscillations of small amplitude 
about an equilibrium state, the discrete type linear models such 
as Voigt, Maxwell, and Kelvin models have been applied [ e.g., 
Galford and McElhaney,1970; Sanjeevi,1982 ]. 

For finite deformation, the nonlinear stress-strain 
characteristics of the tissues must be considered. Therefore, 
the quasilinear viscoelastic model [ Fung,1967 ], finite linear 
model [ Lianis,1963; Dehoff,1978 ], and many forms of nonlinear 
models [ Lockett,1972; Vaishnav,1980; Wu and Lee,1984 ] have been 
suggested. Among them, the quasilinear viscoelastic model was 
most frequently applied to several tissues including tendons [ 
Haut and Little,1972 ], mesentery [ Chen and Fung,1973 ], heart 
muscle [ Pinto and Fung,1973 ], ligaments [ Woo et al.,1981; 
Jenkins and Little,1974 ], articular cartilage [ Woo et al.,1980 
], papillary muscle [ Pinto and Patitucci,1980 ], smooth muscle [ 
Price et al.,1979 ], and heart valves [ Rousseau et al.,1983 ]. 
The quasilinear viscoelastic model requires that the reduced 
relaxation function must be independent of strain level, and 
relaxation function is assumed to be factorable into a function 
of the time times the stress. 

In macroscopic analysis, it is very difficult to verify the 
physical meaning of the parameters in the constitutive equations. 
This fact results in difficulties in its application to the real 
physiological situations. To understand the interactive nature 
of macroscopic behavior with the constituents at the microscopic 
level, the microscopic analyses [ e.g. Lanir and Fung,1974 a,b; 
Lanir,1979,1980,1983 a,b; Comninou and Yannas,1976; Decreamer et 
al.,1980 a,b; Wu and Yao,1976 ] and morphological observations [ 
e.g. Broom,1978; Viidik and Ekholm,1968 ] have been performed. 
In microscopic analysis, all parameters in the constitutive 
equations are closely related to the measurable physical 
quantities such as volume fraction of each component, stiffness 
of fiber, orientation and waviness of fibers. But the 
microscopic analysis has been limited in its application, mainly 
due to the lack of data about the collagen and elastin fibers in 
the tissue [ Fung,1982 ]. 

Microscopic analyses are based on the theory of the fiber 
reinforced composite material. Soft biological tissues consist 
of collagen fibers, elastin fibers, and ground substance. The 
mechanical properties of soft tissue depend on the response of 
its constituents and their structure. Thus, soft tissues may be 
treated as fiber reinforced composites. Adkins [1956], Green and 
Adkins [1970], Adkins and Rivlin [1955], and Spencer [1972] 
developed the theory of large deformations of elastic materials 
reinforced by inextensible cords. Wu and Yao [1976] investigated 
the mechanical properties of human lumbar fibrosus, and the 
fibers were considered to be extensible and nonlinearly elastic. 
Lanir [1979,1980,1983 a,b] proposed two conceptual models of the 
tissue's structure; 'High density cross links version' and 'Low 
density cross links version'. Based on these two structural 
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models, he presented several constitutive equations which have 
material constants and fiber distribution functions as variable 
parameters. 

To understand the tissue's microstructure, the morphological 
observations such as the light microscopy [ Weibe1,1963 ], phase 
contrast microscopy [ Broom,1977,1978 ], the scanning and 
transmission electron microscopy [ Ishihara et al.,1980; Ferrans 
et al.,1978 ] have to be made on tissues. For the better 
understanding of the relationship of microstructure to function, 
simultaneous morphological and stress-strain studies have been 
carried out. For example, Broom [1978] carried out uniaxial 
tension test on porcine tricuspid leaflets, and simultaneously 
observed the geometric changes of elastin and collagen fibers 
using the optical technique known as 'Nomarski differential 
interference contrast'. He observed that the wave form of 
collagen bundles showed the uncrimping response to the increased 
load. Broom did not quantify the microstructure. To quantify 
the microstructure, stereologic techniques [ Underwood,1970 ] can 
be used. Stereology is the science of deducing 3-dimensional 
structure from 2-dimensional observations. Quantification of the 
volume fractions, fiber orientation, fiber length and fiber 
waviness is important to mechanical modelling of soft tissue 
which attempt to account for structural variables [ e.g.;Comminou 
and Yannas,1976; Lanir,1978,1979 a,b,1980; Decraemer,1980 a,b ]. 
The quantifications of microstructure from the stereologic point 
of view have been applied to the myocardium [ Anversa et al., 
1979 ], the skeletal muscle [ Eisenberg,1974 ] and the lung 
tissues [ Weibe1,1979 ]. But the stereological technique was not 
applied to the pericardium. Therefore, the combined studies of 
microstructural analysis and macroscopic analysis are recommended 
for the better understanding of mechanical properties of soft 
tissues. 

b) Mechanics of the Pericardium 

To understand the effects of the pericardium on cardiac 
function, we have to know the mechanical properties of the 
pericardium. But very little is known about the mechanical 
properties of the pericardium. 

Barnard [1898] first examined the mechanical properties of 
the pericardium. 	Unfortunately, his comment, "Pericardium is 
practically inextensible" is incorrect in the range of small 
physiological loading. 

Nelemans [1940] studied the elastic and plastic properties of 
pericardium. However, the plasticity of pericardium has been a 
controversial point up to now [ Lee and Boughner,1981; Trowbridge 
and Crofts,1986 ]. 

Hildebrandt, et al. [1969 a,b] reported a constitutive 
equation form for several animal tissues including the canine 
pericardium. They adopted the assumption of incompressibility 
and isotropy without justification, and applied the nonlinear 
elastic theory to obtain the constitutive relations under the 
uniaxial and uniform biaxial deformations. They conducted 
inflation tests and used membrane theory to compute the stresses 
from the measured inflating pressure, radius of curvature and 
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tension. In inflation test, the principal strains cannot be 
varied independently. This fact restricts the use of the 
inflation test to determine the constitutive law. They used 
single-sided manometer to measure the inflation pressure, and 
marker granules to measure the strains. They proposed the 
following constitutive equation for mesentery and pericardium : 

(5- 	f - 	(k7„„ — A) b l 	(Al — A•m;TI) bz. 11 	(1.1) 

where, Cis Eulerian stress and his the extension ratio. The 
Xmax and Am i n  are the uniaxial strain asymptotes. The material 
constants B, bl, b2, Vmax  and Xm i n  have to be determined from 
the experimental data. 

Rabkin, et al. [1974] conducted several uniaxial loading 
tests on canine pericardium at room temperature, and reported the 
results about the incremental modulus, relaxation stress and 
hysteresis. They observed that the pericardium had the similar 
nonlinear stress-strain relationships, strain rate insensitivity 
and viscoelastic behaviors as other soft tissues. 

Using these experimental data, Rabkin and Hsu [1975] 
constructed the one-dimensional stress-strain law of the 
pericardium as an exponential form: 

T= B(e" -1) 	 (1.2) 

where, T is Lagrangian stress, strain eis defined as the length 
changes per unit initial length, and B and b are material 
constants. Also, they proposed the mechanical model for the 
pericardium which is composed of two parallel springs and one 
dashpot, representing the collagen and elastic fibers. But 
usefulness of their mechanical model is questionable. In their 
model, the springs and dashpots are arranged in the normal 
direction to the plane of pericardium, this may be far from the 
real structure of the pericardium. 

Vito [1979] carried out twenty constant strain rate uniaxial 
test on canine pericardium at 37°C. He assumed the pericardium 
as a homogeneous, isotropic, incompressible and elastic material. 
From the concepts of hyperelasticity, he postulated a stress-
strain law using the strain energy function of the following 
form: 

	

W = A(Il - 3)b 	 (1-3) 

. 	2 
where, II is the strain invariant (1, 	+ A ), and A and b are 
material constants. These material constants were determined for 
a least squared fit to the data. Also, he proposed a mechanical 
model of cardiac function including the effects of pericardium. 
Using this model, he showed that the effects of pericardial 
thickness changes were significant to the pericardial fluid 
pressure of the deformed heart. One year later, Vito [1980] 
reported one biaxial testing result on the canine pericardium. A 
software based, biaxial testing system was used in this constant 
stretching rate test. The result indicated that the anisotropic 
and viscoelastic effects might be significant in the pericardium. 
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Wiegner and Bing [1981] investigated the elastic and 
viscoelastic properties of the canine pericardium at 37°C, and 
particularly at low stresses. Constant stretching rate, creep 
and relaxation tests were performed on the pericardial strips. 
They used the following form of stress-strain equation to fit the 
experimental data: 

) 
s z  ( 
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where, (1 is the Eulerian stress and Ai, Bi are material 
constants. They tried to combine the analysis of mechanical 
properties with microstructure observation. Only the general 
comments were given, without sophisticated analysis. 

Lee and Boughner [1981] performed the uniaxial tests on the 
canine pericardia in different test environments. They explained 
the changes of mechanical properties caused by different 
environments, and emphasized the importance of preconditioning, 
the effects of temperature and the degree of wetness. They used 
the same form of stress-strain equation as the equation (1.2), to 
fit the stress-strain data. Several years later [1985], they 
performed a series of tests on human pericardium, and compared 
these results with their previous test results of canine 
pericardium. They showed that the mechanical behaviors of both 
pericardia were quantitatively similar, whereas human pericardium 
displayed significantly greater viscous effects. Their results 
suggest that the experimental results of canine pericardium may 
not be directly applicable to human pericardium. 

Shoemaker [1984] developed a two-dimensional constitutive 
model for membraneous soft tissues, based on the microstructural 
consideration. This model was applied to experimental stress-
strain data from canine pericardium. Its applicability to 
pericardium was not so good. 

Lee et al. [1985] investigated the two-dimensional elastic 
and viscoelastic properties of the pericardium in normal and 
volume overload dogs. They reported only qualitative aspects of 
the pericardial mechanics, and didn't suggest any constitutive 
equation. They observed the anisotropic characteristics, strain 
rate insensitivity, creep and stress relaxation of pericardium. 
But no analysis was given. They observed the rightward shift of 
tension-stretch curve in dogs with chronic volume enlargement, 
and concluded that chronic cardiac dilatation resulted in a more 
compliant pericardium without thickness change. They measured 
the two orthogonal dimensions of a central grid placed on the 
specimen electrooptically using a pair of television cameras and 
video dimension analyzers. They measured thickness with an 
instrument consisting of a micrometer and a force transducer, 
when the pressure was 4.0 g/cm2 . However, they did not explain 
the reason why this value was taken. They pointed out that the 
anisotropy of pericardium resulted in difficulties when comparing 
the biaxial test data from one specimen with another. 

Trowbridge and Crofts [1985] performed the cyclic uniaxial 
load tests on natural pericardium and chemically modified bovine 
pericardium which is used in the construction of heart valve 
substitutes. They observed significant increases in length in 
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both the preconditioned natural and chemically fixed pericardium. 
They stated that the deformations caused by preconditioning were 
not permanent, but the deformations caused by chemical fixation 
were permanent. From these reasons, they suggested that the 
original tissue length in its undeformed state should be used as 
a reference gauge length for the mechanical testings. 

Yin et al. [1986] performed biaxial tests on canine 
pericardium. They showed how to quantify the biaxial stress-
strain data, using the regression analysis [Belsley et al. 1980] 
and bootstrapping method [Efron 1979]. Main emphasis was given 
to the data analysis method. They proposed a two-dimensional 
strain energy density function with five-parameter: 

W = B1 ( E11 2  + E22 2  ) + B2E11E22 
+ 0.5 A [ exp ( 131E11 2  +b2E22 ) - 1 ] 

where, E11 and E22 are Green strains, and B1, B2, A, b1 and b2 
are material constants. They also found that the pericardial 
mechanics might be strain-history dependent and anisotropic. 
However, they didn't perform any viscoelastic analysis. 

In summary, the previous studies on pericardium show that the 
pericardium has the similar load-deformation characteristic, 
strain rate insensitivity and viscoelastic behaviors as other 
soft tissues. Although many tests such as uniaxial stretching 
tests, uniform biaxial stretching tests, relaxation tests and 
creep tests were performed on the pericardium, the constitutive 
equation was not identified. 

Most studies show that the pericardium is anisotropic. 
However, all studies were based on the assumption of isotropy or 
transverse-isotropy. And the biaxial strains were measured by 
applying a grid system to the surface of a two dimensional 
structure and observing deformations of the grid. However, the 
grid methods allow for quantification of only average tensile 
strains within the grid, and it is sufficient for an isotropic 
material. For an anisotropic material, we need to know the shear 
strains, and the strain energy density function has to contain 
shear effects. Therefore, new studies on the pericardium which 
account for anisotropic effects are in order. 

1.5 Brief Outline of Objectives  

The proposed study is a systematic study of the mechanical 
properties of canine pericardium. There are two main objectives 
in this study. 

The first is to identify the stress-strain law of the 
pericardium via the concepts of pseudo-elasticity and 
hyperelasticity. The pericardium is assumed as an 
incompressible, orthotropic material with unknown material 
symmetry axes. Several forms for strain energy density function 
are proposed, and used to quantify the biaxial test data. The 
stress-strain law is formulated with respect to stretching axis 
and material symmetry axis. By performing the biaxial testing 
completely under the software control, the orientation of 
material symmetry axis and the material constants will be 

(1.5) 
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quantified. The tensile strains and shear strains are measured 
by tracking particles placed on the specimen using a video 
digitizer. For the first time, shear strains measured from video 
digitizer are included in the stress-strain law, and the material 
symmetry axis may be determined approximately. 

The second is the microstructure observation to give some 
insight on understanding the relationship between material 
properties and microstructure of the pericardium. Tissues are 
fixed in formalin at various stress level, and after the process 
of dehydrating, clearing, embedding in paraffin, sectioning and 
staining, the series of specimen slides are obtained. The 
number, orientation and shape of the collagen and elastin fibers 
are observed from these slides using the light microscope. The 
stereologic techniques will be used to quantify the 
microstructure of the pericardium. It may be possible to infer 
the orientation of the material symmetry axis from the 
histological observations. Some explanations may thus be given 
to the correlations of microstructural and mechanical 
measurements in biaxial tests. 



2. Experimental Methods  

2.1 Introductory Comments  

In biomechanical studies on soft tissues, the various tests 
are used as the following: 

(1) uniaxial test 
(2) uniform and non-uniform biaxial test 
(3) triaxial test 
(4) shear test 
(5) torsional test 
(6) inflation test 
(7) indentation test 

In general, the three-dimensional constitutive law cannot be 
deduced from the biaxial data alone. It requires the complete 
sets of triaxial test data. But it is very difficult to perform 
the triaxial tests. Therefore, the biaxial tests combined with 
another tests such as shear and torsion tests are commonly 
recommended. Before performing tests, we have to keep in mind 
some common experimental difficulties and concerns. 

a) In Vivo and in Vitro 

The experimental results obtained in vivo and in vitro, may 
be significantly different from with each other. The differences 
result from the changes in dimensions, mechanical or chemical 
properties, boundary conditions, moisture, temperature etc. 
Therefore, we have to be cautious to apply the test results 
obtained in vitro to the in vivo condition. 

b) The Reference State 

In the pseudo-elastic analysis, a "natural" or "stress-free" 
state is assumed to exist. However, finding and quantifying the 
"stress-free" state of a soft tissue is one of the most difficult 
task in biomechanics [ Fung,1981 ]. This is because the response 
is history dependent and load history prior to experiment is 
unknown , and the tissue is very compliant at a low stress level. 

c) Preconditioning  

Preconditioning is a repetition of the same procedure a 
number of times until a state of homeostasis is obtained. 
Preconditioning is necessary for each experiment in order to 
obtain repeatable results. Since the pericardium in vivo is 
subjected to cyclic loading, the specimen is preconditioned by 
sequentially loading and unloading it until the response become 
reproducible. However, the effects of preconditioning on the 
mechanical properties are uncertain. 

d) Edge Effect 



It is very difficult to provide the uniform stress fields on 
the edge. Disturbances due to the application of fixtures result 
in complex stress-strain states at the point of application. 
Usually guided by the Saint-Venant's principle, the data of the 
region sufficiently far from edges are used to quantify the 
mechanical properties. 

2.2 Experimental System 

A computer-controlled biaxial test system as shown in Figure 
(2) is used for the study of the mechanical properties of 
pericardium. The main components of the system are described 
below. 

a) Tissue Bath  

Tissues are immersed in a jacketed plexiglass chamber 
containing a physiologic solution. As a physiologic solution, we 
use the 0.9% saline solution. 	This solution can be expected to 
minimize the osmotic swelling of the tissues. The solution is 
maintained at 37°C ( or at room temperature ) using both a 
refrigeration unit and pump-thermo-control unit to circulate 
continuously ethylene glycol of fixed temperature through the 
jacket. 

b) Stretching Mechanism 

The stretching mechanism consists of two identical, 
orthogonally positioned axes, each driven by a digital DC servo 
motor as shown in Figure (3). Each axis consists of two coupled, 
double-nut, preloaded ball screws, one with a left and one with a 
right hand thread. The servo system accepts the velocity and 
position information through a customized controller units and 
sixteen bit parallel interfaces which are connected to the 
computer. The servos can be run in either of two modes: the 
step mode or the phase-locked mode. The phase-locked mode will 
be used in constant stretch rate tests, and the step mode will be 
used in the relaxation test. The velocity range of the servos 
are 0.000127 to 4.16 cm/s, and the position accuracy is 5.08 
microns. 
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c) Force Measurement System  

The Statham gold cell with a tension-to-compression converter 
is used as a force transducer. The load measurement is linear in 
the range of 0 to 200 grams. The load cell signal is conditioned 
with a Honeywell Accudata 218 strain gage amplifier and filtered 
by a 10 Hz low pass filter. Force data is digitized with a 
twelve bit A/D converter interfaced to the PDP-11/34. The load 
cell is connected to the force plate which rides in an air slide 
to eliminate the frictional forces. 

d) Dimension Measurement System 

The in-plane dimensions of the specimen are measured and 
monitored by a video digitizer interfaced to the PDP-11/34. The 
system consists of a video camera, a controller unit, a picture 
displayer, low and high resolution digitizer as shown in Figure 
(4). This system is completely controlled by the software. A 
picture frame is digitized into a 640 column by 480 row pixel 
grid. Each pixel is identified by an x-y position and a light 
intensity value. Five tracking particles (1 at center, 4 at 
corners of 1.5x1.5cm square) of the central region of the 
specimen may be identified by concentrations of small or zero 
light intensity values. These points are tracked by computer 
software using the algorithm described in section 2.5. The 
locations of the particles at the reference state are determined 
by using a joystick cursor. 

During testing, the initial search region is defined by 
locating the particles with the joystick cursor. Subsequent 
search regions and particle locations are determined using the 
algorithm described in section 2.5. 

e) Thickness Measurement System 

The thickness can be measured by the electrical resistance 
method. The thickness measurement device consists of an aluminum 
frame, a micrometer, a 9 volt battery, a voltmeter and a 
removable lexan plate as shown in Figure (5). The specimen from 
the tissue bath will be placed on the lexan plate in a near 
initial reference state after removing much of the physiologic 
solution. A gold probe with a wire to the battery will be used 
as the micrometer tip. A second wire will be placed on the 
specimen surface. The electrical circuit remains open and the 
voltmeter shows no voltage until the probe comes into contact 
with the specimen surface. Taking the difference between the 
micrometer readings corresponding to the lexan surface and 
specimen yields the tissue thickness. 

The techniques used to measure the thickness are described in 
detail in section 2.4. 
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2.3. Specimen Acquisition  

Specimens were acquired at the dog lab of Crawford Long 
Hospital of Emory University. Most animals were sacrificed by 
exsanguination. However, some were sacrificed using an overdose 
of anesthetic. In many cases, the animals were used for other 
experiments. However, the pericardium was unlikely to have been 
affected in any way either by the method of sacrifice or the 
experimental protocols used prior to our acquiring the specimen. 

The pericardium was marked with a dye or suture to indicate 
anatomical orientation. The specimen was then either removed in 
the dog lab or the whole heart, including the pericardium, was 
brought back to Georgia Tech for dissection. The pericardium was 
maintained at 4 0  C in saline until used less than 48 hrs. later. 

2.4 Specimen Preparation  

a. Measurement of Initial Dimensions  

a.1 In Plane Dimensions  

After isolating the specimen from canine parietal pericardium 
, it was placed on the lexan plate with sufficient saline around 
it to prevent sticking. The initial dimensions of the outer edge 
region were measured using a ruler. The in-plane measurements of 
the central tracking region were made by floating the specimen in 
saline and using the image digitizer to measure the distance 
between the particles on the tissue. The particles were located 
as accurately as possible using the joystick cursor, and the 
pixel values of the cursor position were recorded. By repeating 
this procedure four times, the average pixel values of each 
particle were taken as the exact location of the particles at the 
initial reference state. 

a.2 Thickness Measurement  

The thickness of pericardium has to be measured accurately, 
because the constants of the constitutive equation may be 
sensitive to the small changes in thickness value. However,it is 
not easy, since the pericardium is very thin and soft. The 
thickness of canine pericardium was reported as the range of 0.14 
to 0.28 mm [ Wiegner et al.,1981; Freeman and LeWinter,1984; M.C. 
Lee et al.,1985 ]. We employed the electrical resistant method 
to measure the thickness. The measurement device is described in 
detail in section 2.2. After the initial dimensions were measured 
but prior to specimen mounting, the specimen was placed on the 
lexan plate and restored to its undeformed dimensions. The lexan 
plate and specimen were then placed on the frame under the 
micrometer tip. The micrometer tip was then connected to the 
battery with a wire. A second wire was then placed on the 
specimen surface. The electrical circuit remains open, and the 
voltmeter showed no voltage until the micrometer tip came into 
contact with the specimen surface. When the micrometer tip 
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touched the specimen surface, the electrical circuit closed, and 
voltmeter showed some voltage. At that instance, we took the 
thickness readings. 

However, these readings were the combination of specimen 
thickness and saline film thickness. To minimize the saline film 
effects, the following protocol was employed. The specimen was 
removed from the saline bath with forceps and placed on a towels, 
first on one side and then the other, to remove much of the 
excess saline. 	The specimen was then placed on the lexan plate 
within the electrical-resistance device. 	Measurements were 
taken at one point on the surface at even time increments. 	We 
recorded two readings: one at initial contact stage, the other at 
lost-contact stage. 	As shown in Figure (6), the micrometer tip 
first contact the surface saline film, then the electrical 
circuit closed ,and we recorded one reading value at this initial 
contact stage. 	When releasing the micrometer tip slowly,the 
electrical circuit remained closed because of the surface tension 
effect. 	After a while, it suddenly lost the contact, and we 
recorded another reading value at this lost-contact stage. 	The 
difference between these two readings is mostly due to the 
surface saline film effects. 	We expect that the differences 
between the two readings will decrease with time as the saline 
film evaporates. 	The reason for this is that the reading at 
initial contact stage might be a combination of the tissue 
thickness (hi) and saline film thickness (h2). 	And the reading 
at lost-contact stage might be a combination of the tissue 
thickness (hi), saline film thickness (h2) and saline capillary 
height (h3) due to surface tension as shown in Figure (6). 
Since we want to determine the tissue thickness (hi) alone, we 
may take the reading value at h2=0 and h3=0 as a tissue 
thickness. 	We may assume that hi is constant (no tissue 
thickness change) as long as some saline remains on the tissue 
surface. 	If no saline remains on the surface, the tissue begins 
to dry out and the thickness decreases rapidly. 	Therefore, the 
slope of the curve (h +h2) changes greatly at the point of h2=0 
as shown in Figure (7). Figure (7) is the real thickness 
measurement data of the specimen #03. Practically, this point 
could be determined as a cross-point of two curves hi+h2 and 
hi+h2+h3 by extrapolating initial readings in 8 minutes. 
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Figure (6) 	Schematic diagram 	of 	two 	reading stage for 
thickness measurement: (a) contact stage (b) lost-
contact stage. 
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b. Specimen Mounting 

Approximately 5cmx5cm squared specimen isolated from the 
canine pericardium using a scalpel and scissors. To get a good 
specimen, the relatively uniform portion (with not too much 
excess fat attached) of pericardium was chosen. 

To measure the initial dimensions and the strains, 0.025cm-
diameter black particles were glued on the 1.5cmx1.5cm squared 
center region of the specimen surface using cyanoacrylate ester 
adhesive. The position histories of these particles were used to 
calculate the shear and tensile strains at each data collecting 
time increment. To apply relatively uniform stress field on the 
boundary, 2cm half-folded magnetic tapes were glued to the upper 
and lower surfaces of specimen by using the cyanoacrylate ester. 
And the magnetic tapes were connected to the force-distribution 
bridges by means of silk sutures as shown in Figure (8). We made 
the sutures 3cm long so as not to impose the shear stress on the 
specimen boundaries. 

2.5 Specimen Testing 

a. Strain Measurement  

Reduction of the particle position histories into strain 
measures is fundamental for examining the deformation field. The 
displacements of the marker centroids are directly measured using 
a video digitizer as described below. Given the locations of the 
four particles, the extensional and shear strains can be 
calculated using the interpolation function method of Hoffman 
[1984]. 

During testing, the initial search region is defined by 
locating the particles with the joy-stick. Subsequent search 
regions are determined by the computer by predicting the expected 
location of a marker based on the known speed of the servos, the 
direction of travel, the specimen dimensions, and the time of 
travel since the last search. In this search region, the 
computer search for a pixel value which is below a user-defined 
threshold. Once a lower-than-threshold value is found, then the 
computer adds the contents of rows and columns in a localized 
region to determine the center of particle. This process is 
repeated for each of the four corner particles at each time t. A 
similar technique was used by Humphrey [1985]. 

We introduce interpolation functions to approximate the 
displacement field in the central region of the specimen. Hence, 
we can compute shear and extensional strains at any point within 
the central region [ Hoffman,1984 ]. 

Consider a mapping of four particles from global (xi, x2) 
coordinates into natural (71,12) coordinates as shown in Figure 
(9). 
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Figure (8) 	Specimen mounting. 
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Figure (9) 	Mapping of tracking particle position from global 
coordinates to natural coordinates. 



We can measure the positions of four particles at undeformed 
state (xl, x2) and deformed state (yi, Y2). Thus, the 
displacement (u1, u2) of each of four tacking particles are 
measured: 

( U, )„ = ( 	— (x1) 

("""=1,2-3' V)  (2.1) ( (Az )71 	 ( Y2. )71 	 )( 2. 

The displacement components u1 and u2 of any point within the 
central region can be represented as the functions of the 
normalized coordinates/1, 472 by using the interpolation 
functions H n Ol, /22) and the measured constants (ul) n , (u2) n : 

	

,17.) 	 (U I )„ -  1-1,(/71,, 14) 
(2. 2) 
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where, the interpolation functions Hn( 111, /2) are given as 
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region can be expressed as a function of /1, /2: 
Also,the (xl, x2) coordinates of any point within the central 

	

x t  (n 1 ,1,) = 	L (x1)-n* Hn (11,12) 	

(2 .4) 

( 11 , 12. 	= 	(X2) ,n • 1-171(//„%) 

Hence, the displacement ul, u2 and the undeformed state 
coordinates (xi, x2) of any point within the central region are 
expressed as the functions of 711 and'?2- 

Using the chain rule, we can write the partial derivatives of 
the displacement components with respect to "qi and "12: 

a a X, a x2  9 Li, 

(2.5) 

u, 

a '2, 

9 XI 

a /I, 

9 X1 

0 X, 

9 U, 
9 X2. 

and similarly for u2. 
Inverting these relationships, we can get the partial 

derivatives of ul and u2 with respect to xl and x2 which are used 
to calculate the Lagrangian finite strains (Green's strains).That 
is, 
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and similarly for u2. 
If we know the I/1, 12) coordinates of any point in the 

central region, we can compute 3%,, a a
X2 , 9jirxj , 	and '9%2. 

The Lagrangian finite strains (Green's strains) with respect 
to x1, x2 axes are given by: 
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and the defornmilor gradients are: 
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b. Stress Measurement 

CI! 	— 
- 

au, 
+ 

(2.8) 

The resultant forces applied to the specimen can be measured 
by the force transducer. Assuming that the central region of the 
specimen is subject to the uniformly distributed force field, we 
can measure the stresses. It is shown that Cauchy's stress 
tensor and the second Piola-Kirchhoff stress tensor (Kirchhoff 
stress tensor) are symmetric, whereas the first Piola-Kirchhoff 
stress tensor ;Lagrangian stress tensor) is not. For laboratory 
work on large deformations, it is simple to use the Lagrangian 
stress tensor (Tij) and Green strain tensor (Eij). But since Tij 
is not symmetric, it is inconvenient in the stress-strain 
relationship. Cauchy stresses (7ij) are the true stresses felt 
by the body, and are convenient to use in equations of 
equilibrium. Kirchhoff stresses (Sij) are directly related to 
the strain energy function. Thus we use Kirchhoff stresses (Sij) 
and Green Strains (Eij) in the stress-strain law. Clearly these 
three stresses are convertible to each other by following 
relationships [ Fung,1981 ]: 
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(0 0  and pare the densities of the material in the undeformed and 
deformed states, respectively. 

Referring to Figure (10), we see that the Lagrangian stresses 
are: 

where L1 0  and L20  are the initial lengths in xl, x2 direction, 
respectively. h0  is the initial thickness of the specimen. F1 
and F2 are resultant forces in xl, x2 direction, respectively. 
All these quantities can be measured, we obtain the Lagrangian 
stresses from equations (2.11), (2.12), and (2.13). From 
equations (2.9) and (2.13), we obtain 



L. 

Figure (10) 	Schematic diagram 	of 	a 	bi-axially stretched 
specimen for stress measurement. 
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where Cii are displacement gradients, which can be measured by 
equation (2.8). Hence, we obtain the Kirchhoff stresses from 
equation (2.14). 
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Note that the symmetry of kirchhoff tensor gives the following 
relationship: 

C21T11 	C12T22 
	

(2.18) 

Therefore, equation (2.18) may be used in cross-checking the 
assumption of homogeneous deformation and uniform stress field. 
In summary, we can measure the Lagrangian stresses using 
equations (2.11), (2.12), and (2.13), and convert these values to 
Kirchhoff stresses using equations (2.15), (2.16), and (2.17). 

c) Biaxial Testing Protocols 

The specimen was immersed in 0.9 % saline solution at room 
temperature. After mounting the specimen in experimental device, 
some set-up procedures were inevitable, to ensure the correct 
light levels, to position the specimen to the center region of 
video camera, to impose the relatively uniform stress fields on 
the specimen. The initial reference state was defined when no 
force was imposed on the specimen. By stretching the specimen 
slowly from the fully relaxed state, we observed the change of 
output voltages from force transducers. On beginning to change 
the output voltages (from the already known 0-force output 
voltages), we stopped the stretching. This state was defined as 
the initial reference state, and initial locations of tracking 
particles were determined using joystick cursor. 

To get the relatively general stress-strain law, the 
following four classes of biaxial testing were conducted on each 
specimen: 

1. Uniform stretching mode in which both axes were cyclically 
stretched at equal stretching rates. 

2. Non-uniform biaxial stretching mode in which both axes 
were cyclically stretched at different stretching rates. 
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3. Lateral displacement mode in which one direction was 
cyclically stretched at a constant rate while the 
displacement in the second direction was held constant. 

4. Lateral force mode in which one direction was cyclically 
stretched at a constant rate while the force in the second 
direction was maintained at a prescribed level. 

2 -f 

where 0` isthe stress in the pericardium, P is the 
transpericardial pressure, r is the sac radius, and t is the wall 
thickness. The transpericardial pressure is the difference 
between the pericardial pressure and the pleural pressure. 
According to Tyson, et al. [1984], transpericardial pressure 
remains low (2.3mm Hg - 4.9mm Hg) over the entire physiological 
range in the normal conscious dogs. However, the 
transpericardial pressure increased to 10.3±0.6mmHg in the volume 
overload dogs. Taking the values, P=12mmHg (0.16x10 5  dyne/cm2 ). , 
r=4.0cm, and t=0.2mm, we obtained maximum stress 	=16x1OD 
(dyne/cm2 ). This stress value corresponds to an equal biaxial 
load of 130g on a 5.0x5.0cm square specimen (4.0x4.0cm square 
effective loading region). 

First, a series of uniform biaxial stretching tests were 
conducted. Twenty initial preconditioning cycles were performed 
in uniform biaxial stretching mode with gradually increasing 
maximum loads and stretching rates. After the initial 
preconditioning was completed, both axes were cyclically 
stretched five times at equal rates of 0.00127 cm/sec. The 
force-extension results of each cycle were graphed on the video 
display immediately following the completion of each cycle. Once 
the curves became coincident, three more cycles were performed at 
the stretching rate of 0.00127 cm/sec, and the data of the third 
cycle were stored. This procedure was repeated three times more, 
after changing the stretching rate to 0.00254, 0.00508 and 0.0127 
cm/sec respectively in each test. 

The second series of tests consisted of non-uniform biaxial 
stretching tests. Both axes were cyclically stretched at 
different rates. These tests were performed to approximate equal 
maximum force on both directions ( as a simulation of uniform 
biaxial force tests ). From the uniform biaxial stretching test 
data, we may discern between the stiff direction and the 
compliant direction. The maximum loads of both directions may 
thus be equalized by increasing the stretching rate of compliant 
direction. The stiff direction was stretched at the rate of 
0.00254 cm/sec, and the compliant direction was stretched at the 
rate of 0.00381 cm/sec. After watching the response, the 
stretching rate of compliant direction was adjusted appropriately 

Test were performed at various stretching rates between 
0.000635 and 0.0635 cm/sec. These stretching rates yielded Green 
strain rates approximately from 0.00016 to 0.016 cm/cm/sec. 

To cover the physiological range of loading on pericardium, 
the maximum load 70-130 g was chosen. The stresses to be 
expected in the canine pericardium were estimated from the law of 
Laplace for a thin-walled spherical sac model: 

P r  = 	 (2.19) 
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to equalize the maximum loads of both directions. If we got the 
appropriate combination of stretching rates, then two cycles of 
loading and unloading were performed. After then, the data of 
the third cycle were stored. 

The third series of tests consisted of constant lateral 
displacement tests. Ten preconditioning cycles were performed, 
in which the constant-lateral-displacements were increased 
stepwise. Again three cycles at lateral stretch ratios of 1.0, 
1.1, 1.2 and 1.3 were executed, and the data of the third cycle 
in each test were stored. 

The fourth series of tests were performed in constant lateral 
force mode. The specimen was again preconditioned five cycles 
with gradually increasing constant-lateral-loads. As before, 
three cycles of the constant-lateral-loads of 0, 10, 20 and 30 g 
were performed, and the data of the third cycle in each test were 
stored. 

Finally, ten cycles of preconditioning in the uniform 
stretching mode were performed, and data collected for each cycle 
at stretching rates of 0.00127, 0.00254, 0.00508 and 0.0127 
cm/sec. The last test in each set of experiments was a uniform 
stretching test for comparison with data taken earlier in the 
day. One additional uniform biaxial stretching test was 
performed after rotating the specimen 90° in the tissue bath, and 
the result was compared with the same kind of test in order to 
check the errors caused by different tissue orientations. 



3. Pseudo-elastic Analysis 

3.1 Stress-strain Law 

Before any mechanical analysis of the pericardium or any of 
its components can be performed, the constitutive relationships 
which characterized individual material behaviors under applied 
loads must be known. Based on the previous studies [ Vito,1980; 
Lee et al.,1985; Yin et al.,1986 ], it appears that the 
pericardium behaves like most biological soft tissues, and is 
nonlinearly viscoelastic, anisotropic and undergoes large 
deformation. Thus the stress-strain relationship is nonlinear 
and history dependent. However, the pericardium shows that the 
stress and strain are uniquely related in each branch (loading 
and unloading) of a specific process after preconditioning, and 
they are strain-rate insensitive. Therefore, we can treat the 
pericardium as one elastic material in loading, and another 
elastic material in unloading (we call it pseudoelastic). 
Further simplification can be gained by assuming the existence of 
a strain energy function (we call it hyperelastic). 

The elastic medium is described in its undeformed or material 
state Bo  by the coordinates { xi } and in its deformed or spatial 
state B by the coordinates yi }. Here, both { xi } and { yi } 
are referred to the same set of fixed rectangular Cartesian 
coordinates. Let the elastic body undergo the homogeneous 
deformation in which a typical particle initially at the point { 
xi } moves to the point { yi }, then 

yi = Cif xj 	 (3.1) 

and 

ayi /axi = Cif 	 (3.2) 

The deformation gradients Cii are constants, and completely 
define the deformation. The Green strains are defined as the 
following [ Green and Zerna,1968 ]: 

Eij = 1/2 ( C riC ri - Sid) 

Sid is Kronecker delta function, and Eii is the Green strain 
tensor. The strain energy function W 'per unit volume of 
undeformed state) depends only on the state of deformation and is 
independent of the strain history. That is, for a homogeneous 
elastic material, we can write W as a function of the deformation 
gradients alone: 

W = W ( Cif ) 	 (3.3) 

Cif is the deformation gradient tensor. 	Upon imposing the 
requirement that W be frame indifferent, equation (3.3) can be 
restated in a more desirable form in terms of symmetric Green 
strain tensor: 



W = W ( Eij ) 	 (3.4) 

The constitutive equation 	for a compressible, homogeneous, 
elastic solid is given as the following [Green and Adkins,1970]: 

Sij = 1/2 ( 8W/3Eij + 	) 	 (3.5) 

s ii  is the symmetric second Piola-Kirchhoff stress tensor. In 
the finite elasticity, there are many kinds of measures for 
stresses and strains. In this study, we use the Green strain 
(Eii) and the Kirchhoff stress (Sij), both are referred to the 
initial state. 

3.2 Strain Energy Function  

As aforementioned, two types of strain energy function 
(exponential and polynomial) have been used widely in the soft 
tissue mechanics area. Fung [1967] showed that the nonlinear 
material behavior of soft tissues could be conveniently described 
in terms of exponential. Later, Fung [1973] proposed the 
following three-dimensional pseudo-strain energy function form 
for soft tissues: 

W = 1/2 AijklEijEki + ( Bo + BmnklEmnEkl  ) eQ 
	

(3.6) 

Q = aijEij 	bmnklEmnEkl 	
(3.7) 

Auk', Bo , Bmnkl,  au and bmnkl  are material constants. Over 
a period of years, Fung and colleagues have shown that the 
behavior of skin, arteries, lung parenchyma and mesentery are 
well described by equations (3.6) and (3.7). Later, they have 
shown that a better fit with experimental data can be obtained by 
dropping the first-order terms (8 0 , aijEii) in the equation (3.6) 
and (3.7). Moreover, the first term (Auld) of the equation 
(3.6) has been dropped in the work on arteries [ Chuong and Fung, 
1983 ] or on lung parenchyma [ Vawter et al.,1979 ]. However, 
the coefficient Aiiki was retained in describing the skin [ Tong 
and Fung,1976 ] and the pericardium [ Yin et al.,I986 ], and the 
Ailki was found to be useful in accounting for the mechanical 
behavior at a low stress level. Based on these results, the 
equation (3.6) can be refined as the following: 

W = 1/2 AijklEijEki + B ( eQ - 1 ) 	 (3.8) 

where, 	Q = 1/2 bijklEijEki 
	

(3.9) 

Recently, above form of W has been used the work on visceral 
pleura [ Humphrey,1985 ] and on pericardium [ Yin et al.,1986 ]. 

Note that the strain energy function W includes the quadratic 
terms ( 1/2 AijklEiiEki and 1/2 bijklEijEki ) which is the 
exactly same form used in linear elasticity. Therefore, some of 



the attractive analytical features of linear elasticity can be 
transferred to this nonlinear case. That is, we may use the 
arguments of the linear elasticity to reduce the number of 
material constants Auk' and bijkl. Using the strain energy 
function W given in the equation (3.8), we obtain the stress-
strain relation as the following: 

Sij = DW/oEij = AijklEkl + B (bijklEki) eQ 
	

(3.10) 

Q = 1/2 bijklEijEkl 	 (3.11) 

Sij is the second Piola-Kirchhoff stress tensor, measured per 
unit area of the undeformed body. Since Sij and Eki are 
symmetric tensors, the coefficients Aijkl  and bijkl satisfy the 
following symmetry restrictions: 

Aijkl = Ajikl = Aijlk = Aklij 
	

(3.12) 

bijkl = bjikl = bijlk = bklij 
	

(3.13) 

Therefore, each of Auk' and bijkl  contains only 21 independent 
material constants respectively. Details of the above symmetry 
arguments are presented in Appendix 1. 

If the material has certain elastic symmetry, then the number 
of constants can be reduced more. For an orthotropic material, 
the number of constants is reduced to 9 from 21. Also details of 
the elastic symmetry arguments can be found in Appendix 1. 
Therefore, the strain energy function W for an orthotropic 
material can be presented as the following: 

W = 1/2 ( A1E112  + A2E222  + A3E33 2  + 4A4E12 2  + 4A5E232  
+ 46E312  + 2A7E11E22 + 2A8E22E33 + 2A9E33E11 ) 

+ B ( eQ - 1 ) 	 (3.14) 

Q = 1/2 ( b1E11 2 	b2E222  + b3E33 2  + 4b4E12 2  + 4b5E23 2  
+ 44E31 2  + 2b7E11E22 + 2b8E22E33  + 2bgE33E11 ) 

(3.15) 

Thus, we need a total of 19 material constants. From the equation 
(3.14) and (3.15), the two-dimensional strain energy function W 
for an orthotropic material is: 

W = 1/2 ( A1E11 2  + A2E22 2  + 4A3E12 2  + 2A4E11E22 ) 
+ 	B ( eQ - 1 ) 	 (3.16) 

Q = 1/2 ( b1E11 2  + b2E222  + 4b3E122  + 2b4E11E22 ) 	(3.17) 

Because the second term in the equation (3.16) dominates at large 
strain, we may drop the first term as an approximation, then 

W = B ( eQ - 1 ) 	 (3.18) 

Q = 1/2 ( b1E11 2  + b2E22 2  + 4b3E12 2  + 2b4E11E22 ) 	(3.19) 



This 5-parameter strain energy function W may be the simplest 
form which can be tried to fit the biaxial test data. Also, the 
two-dimensional strain energy function W for an anisotropic 
material can be presented as the following: 

W = 1/2 ( A1E11 2  + A2E222  + 4A3E12 2  + 2A4E11E22 + 44E 11E12 
+ 4A6E22E12  ) + B ( e'  - 1 ) 	 (3.20) 

Q = 1/2 ( blE11 2  + b2E22 2  + 4b3E12 2  + 2b4E11E22 + 44 1E1E12 
+ 44E22E12 ) 	 (3.21) 

As before, if we drop the first term in the equation (3.20), it 
becomes: 

	

W = B ( 	- 1 ) 	 (3.22) 

Q = 1/2 ( blE11 2  + b2E222  + 4b3E12 2  + 2b4E11E22 + 44E 11E12 
+ 44E22E12 ) 	 (3.23) 

3.3. Biaxial Test Formulation  

The three-dimensional 	constitutive relationship uniquely 
defines its mechanical properties. For an isotropic 
incompressible material, the three-dimensional stress-strain law 
can be deduced from a complete two-dimensional test data, since 
any changes in the third dimension can be determined from the 
changes in the other two dimensions. In general, biaxial 
stretching tests have to be combined with another type of test 
such as an indentation test, torsion or shear test to identify 
the three-dimensional constitutive equation. In nature, 
pericardium exists as a sheet 	of tissue, hence the two- 
dimensional constitutive equation may have its own applicability. 

Although the pericardium has been regarded as an anisotropic 
material, most studies up to now have adopted the assumption of 
isotropy or orthotropy without justification. Even when the 
pericardium was assumed to be orthotropic, the material symmetry 
axes were not determined a priori. For example, Lee et al.[1985] 
and Yin et al.[1986] performed biaxial stretching tests based on 
the assumption of orthotropy. However, their methodology did not 
allow them to measure shear strains and to determine the material 
symmetry directions of the specimen prior to mounting in the 
testing device. Therefore, they arbitrarily presumed that they 
stretched specimens along the material symmetry axes, even if 
they observed the deformation of the square target into a 
parallelogram. This means that their biaxial data were referred 
to arbitrary material directions, and the data from one specimen 
could not be compared with those from another specimen. To 
overcome these difficulties, shear strains have to be measured 
and the biaxial data can be referred to specific material 
directions. 

Our immediate objective is to identify the two-dimensional 
stress-strain law of the pericardium, assuming the pericardium as 
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a homogeneous, and orthotropic 	thin membrane with unknown 
material symmetry axes. 	To accomplish our objective, shear 
strains are measured, and a methodology for the approximate 
determination of material orthotropic axes a posteriori is 
suggested. 

However, some approximations are still inevitable due to the 
nonhomogeneity of tissue and experimental difficulties such as 
imposing uniform forces on the specimen boundaries. For our 
biaxial test formulation, following approximations are adopted. 

At the specimen boundary, the largest shear force occures at 
the largest extensional strain. The shear force exerted by the 
thread nearest from corner can be 10 % of the tensile force in 
the thread at the largest extensional strains. However, the 
shear force by the center thread is negligible. Therefore, shear 
stress in central target region is assumed to be negligible, at 
least on average. 

Normal forces at the boundary are not uniform, if the 
stretching axes do not coincide with material orthotropic axes. 
However, the tensile force in the center thread is expected to be 
almost equal to the average value of tensile forces at the 
boundary. Although the exact verification of St. Venant's effect 
is not performed, we assume that the central target region of the 
specimen is far from the edge, and the stress is uniform in the 
central region. 

Even if 	the 	whole 	specimen 	undergoes nonhomogeneous 
deformation, the variation of strains in the central region is 
not so large that the homogeneous deformation in the central 
region may be assumed. 

Usually all biaxial test data are measured with respect to 
the fixed stretching axes. 	Using these data, we can formulate 
the constitutive equation in two ways. 	One is to formulate the 
stress-strain law with respect to stretching axis. In this case, 
we don't need any transformation equation, but need more complex 
form for W which accounts for general anisotropic behavior. 
Another is the formulation with respect to the material symmetry 
axis. In this case, we need the transformation equation, but can 
use more simple form for W by using material symmetry arguments. 

a) Formulation With Respect to the Fixed Stretching Axis.  

As aforementioned, the coordinates ( xi 	and ( yi ) are 
referred to the same set of rectangular Cartesian coordinates, 
which coincide with the stretching axes fixed in the testing 
device. 

The two dimensional strain energy function is generally given 
as: 

W = W ( Ell, E22, E12 ) 
	

(3.24) 

Choosing W for an anisotropic material as the equation (3.22), 

W = B [ exp ( 1/2 131E11 2  + 1/2 b2E22 2  + 2 b3E122  + 
b4E11E22 + 2b5E11E12 + 2b6E22E12  ) - 1 ] 

(3.22) 



From the equation 	(3.5), 	we obtain: 

Sll bl 	b4 	b5 E11 
S22 = 

 30E41 
?Vaal = b4 	b2 	b6 

[ 
E22 B 0 	(3.25) 

S12 .1,7/1,go. b5 	b6 	b3 2E12 

where, 	Q = 	1/2 1)1E11 2  + 1/2 b2E22 2  + 2 b3E12 2  
+ b4E11E22 + 2 b5E11E12 + 2 b6E22E12 

If we choose another form for W as the equation (3.20), we 
get the following form of constitutive equation. 
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■ 	Figure (12). 	The orientation of the coordinates systems. 
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(3.29) 

  

i S111 	CIA1 A4 A5 	
1121)14 	113356 	22 S22 = 	A4 A2 A6 + B e4 	 (3.26) 

S12 	A5 A6 A3 	 b5 b6 b3 	2E12 

where, Q = 1/2 biEll 2  + 1/2 b2E222  + 2 b3E122  
+ b4E11E22 + 2 b5E11E12 + 2 b6E22E12 

Therefore, we can use the above two equations (3.25) and (3.26) 
to fit the biaxial test data. 

b) Formulation with respect to the Material Symmetry Axis.  

Here, the elastic medium is described in its undeformed state 
by the coordinats ( xi 	} and in its deformed state by the 
coordinates { yi p  }. 	Both coordinates are referred to the same 
set of rectangular Cartesian coordinates, which coincide with the 
material symmetry axes at its undeformed state. The strain 
energy function form of the equation (3.18) is chosen to fit the 
biaxial data of pericardium. The similar forms were used in the 
works on arteries [ Fung et al.,1979; Chuong and Fung, 1983 ] and 
lung tissues [ Fung,1975; Vawter et al.,1979 ]. Therefore, we 
try this form as a first choice for an orthotropic material: 

W = B' ( eW - 1 ) 

Q I  = 1/2 bi :Ell: 2  + 1/? 132,E22, 2 
 + 2 b3 E12 2  + b4 Ell E22 

From the equation (3.5), we obtain: 

(3.27) 

(3.28) 

Since we don't know the orientation of material symmetry 
axis, and all strains and stresses are measured with respect to 
the stretching axis, we have to transform the equation (3.29). 
If the material symmetry axes xi' make an angle 0 with the 
stretching axes xi as shown in Figure (12), the stresses can be 
transformed as the following: 

S11l 

S22 	= 
S12 

cos 2O 
sin 2O 

sinOcos0 

sin 2 O 
cos 2 O 

-sinOcos0 

-2sinOcos0 
2sinOcos0 

cos 20-sin0 

Sil: 
S22. 

S12 

(3.30) 

And similarly, the 	strains 	can 	be 	transformed. 	After 
transformation, the equation (3.29) becomes: 



sll 	 P1 	P4 	P5 } 	Ell 1 
3 22 = 	B ' e Q 	P2 	P6 	E22 
S12 	 P3 	2E12 

(3.31) 

Q 	= 	1/2 p 1 E 11 2  + 1/2 fl2E222  + 2 /33E12 2 11 F F + r4-11-22 
+ 2 p5E11E12 + 2 p6E22E12 	 (3.32) 

Pi = b i 1cos40 + 2()41+2b3:)sin 20cos 20 + b2:sin40 	(3.33) 
132  . bi . sin40 + 2(b4 +2b3 isin 20cos 2 0 T b 2  cos4o 
53 = (bl i +b2,-24,-2b3 )sinocos40,+ b3 (sin 40+cos40) 
P4 = (01,+1212,-4b3 i )sin 20cos 20 + b4.(sin40+cos40) 
p5 = (b1.-b4.-2b3.)sinOcos 30 + (b4.-b2:+2b3.)sin 30cos0 
P6 = (bi -b4 -2b3 )sinsOcos0 + (b4 -b2 +2b3 )sinOcos 3 0 

The strain energy functions similar to the equation (3.16) 
were also used to fit the biaxial test data of the skin [Tong and 
Fung,1976 ] and the pericardium [ Yin et al.,1986 ]. Therefore, 
we try the equation (3.16) as a second choice for an orthotropic 
material: 

W = 	( 1/2,A11E111 	+ 1/2 , A2 1 E2?' 2  + 2 A3 1E1212 
+ A4 Ell £22 ) + B ( eq - 1 ) (3.34) 

Q I  = 	1/2 bi ,E11,2  +,1/2 b2 I F -2212 + 2 b3 1E1212 
+ b4 Eli E22 	 (3.35) 

From the equation (3.5), we obtain: 

	

IA1' A4: 	0 	btu b4'  0 1 

	

A2 	0.+ B' eQ 	b2 	0. 
A3 	 b3 

Ell: 
£22, 	(3 . 36 ) 

2E12 

After performing transformation, the equation (3.36) becomes: 

where, 

is11 
S22  = 
5 12 

I al a4 a5 
a2 a6 

a3 
+ B 

tP1 	P4 
eQ 	P2 P6 

p3 

P5 
£22 

2E12 

Ell 
(3.37) 

where, a has the same form as the equation (3.33). 
Therefore, we can use the two equations (3.31) and (3.37) to 

fit the biaxial test data. Note that the equations (3.31) and 
(3.37) are same form with the equations (3.25) and (3.26), 
respectively. That is, if we don't know the angle 0 prior to 
test, it brings same difficulty as treating the general 
anisotropic material. However, we can get some information about 
the angle 0 by assuming that the angle 0 is constant throughout 



the deformation process. 	Generally, the angle 0 cannot be 
regarded as constant under large deformation of soft tissues. 
Even the preferred fiber orientation in pericardium can vary with 
deformation. Furthermore, the material symmetry properties are 
depend not only on the preferred fiber directions, but also on 
the crimped geometry of fibers in each direction. However, we 
can regard 0 as constant under suitably chosen conditions such as 
small loading region or narrow incremental region. 

From the equation (3.33), we can get following relationships: 

P1 - P2 = bl' 	(cos 40 , - sin40) 	+ b2' 	(sin40 - cos40) 
= ( bl 	- b2 	) 	cos20 (3.38) 

p5  + p6  = 1/2 	( 	b l ' 	- b2 ' 	) 	sin20 (3.39) 

P3 - P4 = b3' 	- 	134' (3.40) 

P1 	P2 2P4 	= 	b1 ' 	b2 ' 	2b4 '  (3.41) 

If the material is orthotropic, (p l +p2+2p4 ) and (p3 -p4 ) are 
invariant under rotation about the x3-axis as shown in equations 
(3.40) and (3.41). Also, from the above two equations (3.38) and 
(3.39), we obtain: 

ian 2 	= 2 ( is 4' P6 )  
(3.42) /3 1  — /2 2, 

= 	.6tot 	( As.  t (s) 	
(3.43) 

g/ igz 
Similarly, 

7.= 	
2 ( _tan 	°W  (3.44) d i  - dZ  

Once the parameters of the function that best fit the data 
are obtained, we can approximately determine the angle 0. For 
example, if the equation (3.25) fits the biaxial data reasonably 
well, then we can approximately determine the material symmetry 
axis from the material parameters bl, b2, b5, b6 as below: 

= 	
-I 	2( b,r 	b6 )  

0  bl 	b2 	(3.43) 

Also, the strain energy function form of the equation (3.22) can 
be converted to the form of equation (3.27) by using the 
relationship (3.33). 

3.4 Data Analysis Method.  

The central-region dimensions, the outer-edge dimensions and 
thickness of specimen at its undeformed state were measured using 
the methods described in section 2.4. As explained in section 



2.5, we obtained the stress-strain data in the central-region of 
specimen. These biaxial stress-strain data were fitted to the 
constitutive models ( equation (3.25); equation (3.26) ). The 
material constants were determined by minimizing the sum-of-the-
squares of the errors between the observed stresses and those 
predicted by the fitted model, using the Marquardt-Levenberg non-
linear optimization technique [ Patitucci,1983 ]. 



4. Microstructure Observation  

4.1. Objective of Microstructure Observation  

The mechanical behavior of the soft tissue depends primarily 
on the response of its constituents. Hence, if the constituents' 
structure, their mechanics and interactions are known, then the 
overall structural response can be evaluated. 

Once the mechanical properties are known, they can be used in 
diagnosis or treatment, because disease is nothing but deviation 
from the normal. Using measurements of the mechanical properties 
of the tissues to decide whether the tissues are normal or not 
can be very helpful for diagnosis. If the relationship of 
microstructure to function is known, the cause of deviation from 
normal can be figured out. This may provide more helpful 
information to the medicine and surgery. 

For these reasons, attempts to correlate mechanical 
properties with microstructure have been made [ e.g.; Apter,1966; 
Lanir,1979a,b,1980]. One basic approach is to selectively digest 
either the collagen or elastin prior to mechanical testing [ 
Apter ,1966 ]. Although this procedure is good to understand the 
mechanical properties of each constituent, it destroys the 
structure. Another approach is the simultaneous measurement of 
both mechanical and structural variables [ Broom,1978]. However, 
this approach has to be combined with the stereology to quantify 
the microstructure. 

Up to now, the correct material symmetry for the pericardium 
is unknown. It may be that the microscopic observation can be 
used to obtain the correct material symmetry and the constitutive 
equation. The immediate objective of the microscopic observation 
is to get the information of the preferred orientation of fibers 
in the pericardium. Hence, the number, orientation, waviness, 
and volume fraction of each fibers will be measured at various 
stress levels. And these measurements will be presented as the 
functions of stresses. The material symmetry axes inferred from 
this observation will be compared with those determined from the 
pseudoelastic approach. Also, some explanation will be given to 
the relationship between the material constants and the 
microscopic measurements. The long term goal is to correlate 
observations of microstructure of the pericardium to the state of 
disease such as pericarditis, especially as reflected by changes 
in the mechanical properties of pericardium. 

4.2 Specimen Preparation for the Light Microscopy  

The same pericardial tissues used in the biaxial test, will 
be used in the microscopic observation. After performing the 
biaxial tests, the pericardium will be fixed,dehydrated, embedded 
in paraffin, sectioned and stained. The pericardial tissues will 
be fixed at various stress levels. Buffered neutral formalin 
(formaldehyde: 100.0m1, distilled water: 900.0m1, sodium acid 
phosphate, NaH2PO4 H2O: 4.0g, anhydrous disodium phosphate, 
Na2HPO4: 6.5g) will be used as a fixative. After performing the 
fixation in the laboratory at Georgia Tech., the fixed tissues 

-49- 



will be transferred to Emory Univ. The dehydrating, embedding, 
sectioning and staining will be done by the experienced staff at 
Emory Univ. They have the fully automatic equipment for these 
procedures. The slides prepared for the light microscopy will be 
used for the microscopic observations. To quantify the micro-
structure, a series of the randomly-sectioned slides are needed 
with the orientations of the sections clearly marked. If the 
material is orthogonally anisotropic, cross-sections which are 
parallel to the xix2-, x2x3-, and x3x1-planes as shown in Figure 
(13) can be used for the slides [ Kanatani,1985 ]. 

4.3 Stereological Analysis  

a) The Volume Fraction  

The human pericardium is composed of several layers; the 
mesothelial cell layer, several layers of collagen fibers, small 
thin-walled vessels, and a few scattered connective tissue cells 
[ Ishihara et al.,1980 ]. Also, the multilayered network of 
collagen fibers exists in canine pericardium [ Wiegner and Bing, 
1981 ]. The volume fraction of fiber may be closely related to 
the elastic stiffness. Thus, it is important to know the volume 
fraction of each layer. Stereologically, the volume fraction can 
be measured by the point-counting method or by the lineal 
integration method. The lineal integration method may be a good 
choice for estimating the volume fractions of layered structure. 
That is, the ratio between the sum of line segments for any 
particular layer and total line length form a valid estimate of 
the volume fraction of that layer [ Guyton,1984 ]. For example, 
Figure (14) shows a section through entire thickness of parietal 
pericardium ( schematic drawing of the picture taken by Ishihara 
et al.,1980 ). 	The volume fraction of the layer iv can be 
obtained as the following: 

( VV )i v  = ( LL )1v = 
Lr  
L r  (4.1) 

LT is the test line length. LL is the lineal fraction. LI is 
the length of lineal intercepts. VV is the volume fraction. If 
the thickness of specimen is 0.20mm and the length of lineal 
intercepts with test line 1,2,..,5 are 0.033mm, 0.030mm, 0.035mm 
, 0.037mm, 0.018mm, respectively as shown in Figure (14), then 
the volume fraction of layer iv is 

0.033 + 0.030 -10.035 -1.  0. o3r1 	oi  vy  ) iv  = 	 =. o.153 = /*.3 % 
0.20 x 3 
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Figure (13) 	Specimen.sectoning for the microscopic slides. 
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Figure (14) 	Cross-section of layered structure ; example. for 
the stereological analysis. 



b) Waviness of Fiber Bundles  

Collagen fibers are seen under the microscope to progress in 
various directions through the pericardium as wavy bands. 
Collagen may impart elasticity to the tissue by virtue of its 
crimped geometry. The waviness of collagen, its distribution 
density, and its orientation were chosen as the variables in the 
microstructural models [ e.g., Lanir,1983 ]. Thus quantification 
of waviness is important. We can express the waviness in several 
ways, e.g. the number of wave per unit length, the amplitude and 
pitch of wave. 	If the collagen fiber is regarded as a long 
sinusoidal beam as shown in Figure (15), it can be described by 
the following equation : 

x2' = a sin bx1' 	 (4.2) 

By observing the slides fixed at different stress level, we may 
express a,b as functions of stresses. 

a = f1( S11,S22 ), 
b = f2( S11,S22 ) 

The anisotropic characteristics may be explained by the 
orientation of the collagen bundles. In stereology, these 
collagen fibers can be regarded as the curves distributed in a 
three dimensional material. The distributions of such internal 
structures are characterized by appropriately defined 
'distribution densities'. By measuring the length of 
intersections of the structure with randomly placed cutting 
planes, it may be possible to determine the 'distribution 
densities'. The anisotropic characteristics may be inferred from 
these measured 'distribution densities' [ kanatani,1985 ]. Also, 
the average preferred fiber orientation can be observed. 

(4.3) 
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Figure (15) 	Geometry of collagen fiber bundles. 



5. Preliminary Results  

5.1 Thickness Measurement 

Thickness measurement for the pericardium is one of the 
difficult task, since the pericardium is soft material and 
consist of 75% by weight of water. To measure the thickness at 
its reference state, we have to avoid squeezing and drying of 
tissue. The micrometer cannot be used alone, because the jaws of 
micrometer will squeeze the specimen. The small squeezing force, 
even if it cannot be felt during the measurement, will result in 
lower value than the true value. To avoid this difficulty, the 
electrical resistance method was employed. However, this method 
gives the value combined of tissue thickness and surface saline 
film thickness, and results in higher thickness value. 

To get a true thickness value at its reference state, the new 
technique 'Two Stage Reading Value Extrapolation Technique' was 
developed. This technique gave highly reliable and repeatable 
results in our preliminary experiments. As aforementioned, when 
the two stage reading values become close enough, the contact 
stage reading value may be taken as the thickness value (Figure 
7). However, it is inconvenient to spend 20-30 min. to measure 
the thickness at one point. Actually, we recorded two-stage 
reading values at one point in 0 to 6-8 min., and extrapolated 
these data using a linear-regression method to get a true 
thickness value ( the value at the cross-point of two straight 
lines ). After remoistening, the same procedures was applied at 
another point of the specimen. By repeating this procedure 
several times, the average value was taken as a tissue thickness. 
During our preliminary tests, the deviations of thickness value 
at different positions in the same specimen did not exceed 0.02mm 
( 10% of thickness ). The results obtained by this technique are 
given in Table (2) and Table (3). 

5.2 Uniform Bi-axial Test  

A typical mechanical response of normal pericardium ( 
specimen #03 ) under the uniform biaxial stretching test is 
shown in Figure (16). The ordinate is the P-K stress and the 
abscissa is the Green strain. Two curves in Figure (16) are S xx 

 versus Exx ,and S vy  versus Evy . This figure demonstrates several 
characteristic features. First, the strain-stress curve is 
highly nonlinear, showing a considerable tissue compliance at low 
loads but a rapid stiffening at higher loads. Second, there is 
considerable amount of hysteresis, i.e. the curves in loading and 
unloading are different. Third, the strain-stress relationship 
in one direction is different from that in other direction ( 
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Table (2). Thickness measurement data for the specimen #01. 

Point No. # 1 # 2 

Stage Contact Lost- 
contact Contact Lost- 

contact 

E
l 	

a) 

(min.) (mm) (mm) (mm) (mm) 
0.0 0.3048 0.4623 0.2565 0.3835 

1.5 0.2946 0.4166 0.2413 0.3429 

3.0 0.2870 0.4039 0.2388 0.3149 

4.5 0.2769 0.3658 0.2210 0.2718 

6.0 0.2642 0.3429 0.2159 0.2515 

Linear 
regression 

dr. 0.006593d= 0.019307 d= 0.006767 CAr- 0.022340 

hr.-.0(t + 0 
p 0.3053 0,.. 0.4560 0:  0.2550 p: 0.3799 

Thickness 0.227 	mm 0.201 	mm 



Table (2), Thickness measurement data for the specimen #01. 

Point No. # 1 # 2 

Stage Contact Lost- 
contact Contact Lost- 

contact 1 	
Ei
 •r-I
 E

 au 

(min.) (mm) (mm) (mm) (mm) 

0.0 0.3048 0.4623 0.2565 0.3835 

1.5 0.2946 0.4166 0.2413 0.3429 

3.o 0.2870 0.4039 0.2388 0.3149 

4.5 0.2769 0.3658 0.2210 0.2718 

6.0 0.2642 0.3429 0.2159 0.2515 

Linear 
regression 

a= 0.006593d= 0.019307 c 	0.0067676 ,-* 0.022340 

11=-..c(t + p j 	0.3053 0= 0.4560 0= 0.2550 p: 0.3799 

Thickness 0.227 	mm 0.201 	mm 



Table (3). Thickness measurement data for the specimen #03. 

Point No. # 1 # 2 

Stage Contact Lost- 
contact Contact Lost- 

contact 

•/-1 	
a) 

(min.) (mm) (mm) (mm) (mm) 

0.0 0.3734 0.5715 0.3175 0.6045 

2.0 0.3708 0.5258 

2.5 0.3073 0.5410 

3.5 0.3454 0.5105 

4.5 0.3022 0.5080 

5.5 0.3302 0.4623 

6.5 0.2819 0.4927 

8.0 0.3124 0.4166 

8.25 0.2743 0.4217 

Linear 
regression d= 	0.00826501= 0.019208 d-. 0.005413 d= 0.020149 

h:-.- ck t +0 
p . 	0.3778 p= 0.5703 fi: 0.3202 fi: 0.6012 

Thickness 0.232 	mm 0.217 	mm 
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Figure (16) 	Strain-stress curve of uniform stretching test 
on specimen 103. 
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i.e., anisotropic behavior ). Note that the maximum obtained 
Green strains are [11=0.30 and [22=0.32, and the corresponding P-
K stresses are S11=9.68x10 5  dynes/cm2  and S22=4.37x10 5  dynes/cm2 , 
due to the material anisotropy. In addition to these behavior, 
the strain rate has no significant effect on the strain-stress 
relationship, as shown in Figure (17). Except the anisotropic 
behavior, these general characteristics are common to other soft 
tissues. 

Figure (18) shows the Green strains imposed on the target 
region under uniform biaxial stretching test. The extensional 
strains are almost equal with each other, and the shear strains 
are relatively small (max. 0.028). Also, the actual deformation 
histories during uniform biaxial stretching test are shown in 
Figure (19). Although the equal amounts of stretchings are 
imposed on the specimen boundary in both directions, the tensile 
strains (E11,E22) at the central tracking region are slightly 
different from with each other as shown in Figure (18) and Figure 
(19). It may be due to several factors such as nonhomogeneous 
deformation, material anisotropy, off-centered central tracking 
region and the errors included in the reference state dimension. 
However, the strongest factor among them is not verified yet. 

To verify the possibility of data quantification using the 
strain energy function as equation (3.25), the same data with 
Figure (16) is plotted as Log e  S/E versus E 2 , shown in Figure 
(20). We may expect the better result for quantification, as 
straight as the line is. The data of compliant direction (x2-
dir.) shows no significant transition characteristics. But the 
data of stiff direction (xl-dir.) shows significant transition 
from one straight line to another straight line. An 
microstructural explanation may be that more fibers run in one 
direction (xl-dir.) than the other (x2-dir.), and the 
straightening of fibers occurs in a more gradual fashion in the 
compliant direction than in the stiff direction. Although the 
strain energy density function as equation (3.25) can fit the 
data at low strains and at high strains separately, it may not be 
adequate to fit the whole data simultaneously. Therefore, the 
strain energy density function as equation (3.26) or other 
function form have to be tried to fit the data. 

5.3 Non-uniform Bi-axial Test.  

The response shown in Figure (21). is for the same specimen 
#03 which was cyclically stretched along two axes at different 
stretching rates ( non-uniform biaxial stretching ). This figure 
shows the anisotropic behavior more apparently. Note that the 
maximum obtained Green strains are Ell=0.25 and [22=0.40, and the 
corresponding P-K stresses are S11=11.23x10 5  dynes/cm2  and 
S22=7.29x10 5  dynes/cm2 . Still Sil is much bigger than S22, but 
Ell is much smaller than E22 because of material anisotropy. 
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Figure (19) 	Actual particle histories during uniform bi-axial 
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Comparing Figure (21). with Figure (16), the strain-stress 
curves show some amounts of shift. Two curves shift reversely 
with each other. It means the strain-stress relationships cannot 
be treated separately in each direction. 	Figure (22) shows the 
strains imposed on the central target region under non-uniform 
biaxial stretching test. 	Also, the actual deformation histories 
of target region are shown in Figure (23). The shear strain 
(max. 0.072) is greater than that (max. 0.028) of uniform 
stretching test. It implies that the material axis may have some 
angle with the stretching axis. 

5.4 Constant Lateral Displacement Test.  

A series of the constant lateral displacement tests were 
conducted on the specimen #02. In these tests, one axis(x2-axis) 
was cyclically stretched at a constant rate (approximately 0.0038 
cm/sec) while the dimension in the second direction (xl-axis) was 
held constant. Figure (24) shows the response when the lateral 
dimension was held constant at E11=0.185. We can see the non-
linear characteristics and hysteresis. 

The three (E22 -S22) curves in Figure (25) show the responses 
during constant lateral displacement tests in which the lateral 
dimension in xl direction was held approximately constant at E11= 
0, 0.185 and 0.198 respectively, as shown in Figure (26). For 
clarity, only the responses of loading portion are shown. Notice 
that increasing the constant-lateral-displacement tended to 
stiffen the tissue along the stretching axis. 

Figure (27) and Figure (28) show the actual particle 
histories of the central tracking region when the lateral 
displacement was held constant at Ell= 0, and E11=0.185 
respectively 
The dashed line represents the initial dimension, and the solid 
lines represent the dimension at each time increment after 
holding the lateral dimension constant. In Figure (28), notice 
the difference between the initial dimension and the subsequent 
dimension immediately after imposing the constant-lateral-
displacement of E11=0.185. By imposing the constant-lateral-
displacement in xl-direction, the dimension in x2-direction was 
contacted. 

We also notice the translation of central tracking region in 
Figure (27) and Figure (28). It may be due to the fact that the 
central tracking region was slightly off-centered from the 
stretching axis. However, the translation does not affect to the 
strain measurements. 
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APPENDIX 1  
Symmetry Arguments for Material Constants  

The number of material constants Aij ki and bijkl  in equation 
(3.10) and (3.11) can be reduced by using the symmetry arguments. 

Sij =9 	= AijklEkl + B (bijklEkl) eQ 
Q 	= 1/2 bijklEijEki 

The symmetry arguments are following : 

(i)  The Kirchhoff stresses (Sij) are symmetric, that is 

Sij = Sji (A.1) 
w Sli = aAE,:j = AjjklEkl + B (bjiklEki) eQ * 	 (A.2) 

Q = 1/2 bji ki Eji Eki (A.3) 

Since Eij is also symmetric, by comparing equation (3.10) with 
equation '(A.2), we obtain 

Aijkl = A jikl 	, and 	bijkl = bjikl (A.4) 

(ii) The Aijkl  (and bijkl) can be decomposed into a symmetric 
and a skew-symmetric part [ Sokolnikoff,1956 ], 

Aijkl = A
ijkl (s) 	Aijkl (ss) 

in which (s) and (ss) denote symmetric and skew-symmetric part 
with respect to k and 1. Then equation (3.10) can be represented 
as following : 

Sij = 	f Aijkl(s4k1 + B ( bijki (s4 kl ) eQ 
t Aijkl (s ' 	B ( uijkl (ss ) 4 1 ) eQ 	(A.6) 

Since Auk](ss) = - Aijlk(ss) 	
bijkl(ss) 	- bulk(ss) , and 

Ekl = Elk , the double sum in the second term of equation (A.6) 
vanishes. That is, 

j 	ij Si — = Akl(s)Ekl + B ( bijki (s) Ekl ) eQ 	 (A.7) 

where Auk] (s) and bijkl(s)  are symmetric with respect to k and 
1 . Hence we obtain, 

Aijkl = Aijlk 	, and 	bijkl = bijlk 	 (A.8) 

(iii) We may write AijklEijEki as A mn Em E n  , where m , n  = 1,2,..,6 

, and El = E11 , E2 = E22 , 	 , E6 = E31 . Then equation 
(3.10) becomes, 

Sm  = 91-1KEt- = Amq Eq  + B ( bmq Eq  ) eQ 	 (A.9) 
S n  = 9WE,,, = Aqn Eq  + B ( bqn Eq  ) eQ 	 (A.10) 

where m  and n  are free indices, and q is dummy index. 	Hence, 
by changing n  in equation (A.10) to m  , we obtain Amq  = Anq  . 
That is, 

(3.10) 
(3.11) 

(A.5) 
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Aijkl = Aklij 	, and 	bijkl = bklij 	 (A.11) 

From equations (A.4), (A.8) and (A.11), we know that Aijkl and 
bijkl satisfy the following symmetry restrictions : 

Aijkl = Ajikl = Aijlk = Aklij 
bijkl = bjikl = bijlk = bklij 

(A.12) 
(A.13) 

Therefor, each of Aim and bum contains only 21 independent 
material constants . For example, we can write Q in expanded 
form in terms of these 21 constants: 

Q = 1/2 bijklEijEki = 1/2 b mn Em En 	( where m , n  =1,2,•••,6 ) 
That is : 	 (A.14) 

Q.  -.:: 	bi , E121 + b12e11E,22, + 1313E11E33 + 1)14E11E12, I-  IDIE-11E23 	b i 6El1E31 

+ y b22 E22. + b23 E22.E33 + 1)244 F.3.2.E12 + bx$ Ea2E23 + b2.6 E22.E31 

+ 	633 E33.  + b34 E33 	+ 1)35133E23 + b36 E33E31 

b4441. Eli +. 45E12E23 + big Ei2 E3I 

+ s b55 Ei3 t 656 E23 E31 

+ 2 b66 E31 

If the medium is elastically symmetric in certain directions, 
then the number of independent constants Auk' and biiki in 
equations (3.10) and (3.11) can be further reduced. It is 
obvious from equation (3.10) that coefficients Aijki and bijkl 
depend on the chosen reference frame. For certain media the 
coefficients Aijkl  and  bijkl may remain invariant under a given 
transformation of coordinates, which determines the elastic 
symmetry of the medium under consideration. 

(iv)  Consider the monoclinic material which is symmetric with 
respect to xix2-plane. This symmetry is expressed by the 
statement that Aijkl  and but( ' are invariant under the 
transformation : 

xl = x1 , x2 = x2 , x3 = - x3 

Under this transformation, stresses and strains become, 

(A.15) 

* S11 *  = Sll 1 S22 **   '
* 	c  33 

* 

S33 *  = , 

S12 , S23 ' - S22 , S12 *  = 	 S23 , S31 *  = -S31 	 (A.16) 

Ell *  = E11 , E22 *  = E22 , E33 *  = E33 
E12 = E12 , E23 = -E23 , E31 = -E31 	 (A.17) 

From equation (3.10), we obtain 

S u  = (A n + Bb,, e &) Ell -I-  ( Alz+ B 6,2 e g) E2z + ( A13 + 13 b i3  e4) E,33 

+(A14 + B bizic et ) Em + ( At5 + 8 biS 0) E23 (A.18) 

i (A,, + (3 6 16  EG' ) E 31 



( An -I- 81)H e a ) 	+ (Au+ BLE.)Ezz*  + ( A13+Ebo e 6:c) Es; 

	

+( Ai5 4 8b15e 6r1)E23 qA16-i-Ebibe)E3 	
(A.19) 

where 	Q*  = 1/2 bijklEij *Ekl* 	 (A.20) 

Comparison between equation (A.18) and (A.19), with the condition 
(A.16) and (A.17), gives the following conditions : 

A15 = A16 = 0 
	

(A.21) 
= b16 = 0 
	

(A.22) 
Q = Q 
	

(A.23) 

Referring to equations (A.14), (A.16), (A.17) and (A.20), the 
condition (A.23) renders the following conditions : 

b15 = b25 = b35 = b16 = b26 = b36 = b46 = b45 = 0 	(A.24) 

The condition (A.24) already ii2cludel the condition (A.221. 
Similarly, by considering S22 , S33 , S12 , S23 and S31 , we 
find that 

A15 ' A25 ' A35 ' A16 ' A26 ' A36 ' A46 ' A45 ' 0 	(A.25) 
b15 = b25 = b35 = b16 = b26 = b36 = b46 = b45 = 0 	(A.24) 

For the monoclinic material, the number of material constants 

A .- 0 ij 	( and Maki ) are reduced to 13 from 21. The coefficients 

bijkl ( = bmn ) 

b11 b12 b13 b14 0 0 

b22 b23 b24 0 0 
b33 b34 0 0 (A.26) 

b44 0 0 
b55 b56 

b66 

(v)  Consider the orthotropic material which has three mutually 
orthogonal planes of elastic symmetry. Besides the symmetry with 
respect to x1x2-plane as expressed by equation (A.15), the 
material constants Auld and bijkl  are invariant under the 
transformation ( x2x3-plane of symmetry ) : 

xl = - xl , x2 = x2 , x3 = x3 

By using similar argument as (iv), we obtain: 

A14 ' A24 ' A34 = A56 = 0 
b14 = b24 = b34 = b56 = 0 

(A.27) 

(A.28) 
(A.29) 

For orthotropic material, the number of constants Aijki ( and 

	

bijkl ) can be reduced to 9 from 13. 	The matrix form is: 

[ b11 	b12 	b13 	0 	0 	0 

b22 	b23 	0 	0 	0 
b33 	0 	0 	0 

are expressed in matrix form as below : 

(A.30) 
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b44 	0 	0 
b55 	0 

b66 

Note that these symmetry arguments are intrinsic 
characteristics of the exponential type strain energy function as 
equations (3.8) and (3.9). 

	

W = 1/2 AijklEijEkl  + B ( eQ - 1 ) 	 (3.8) 
Q = 1/2 bijklEijEki 	 (3.9) 

If we use the polynomial type strain energy function as the 
following equation (A.31), above symmetry arguments cannot be 
satisfied. 

W = 1/2 DijklEijEki + 1/6 dij 	F klmn-ij 	 (A.31) EklEmn + —. 
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Captions for Figures 

Figure (1) 

Figure (2) 

Figure (3) 

Figure (4) 

Figure (5) 

Figure (6) 

The pericardium and heart wall. 

Flow chart of the bi-axial test system. 

Sideview of the bi-axial test equipment. 

Flowchart of the video digitizing system. 

Electrical resistance thickness measuring device. 

Schematic diagram of two reading stage for 
thickness measurement: (a) contact stage (b) lost-
contact stage. 

Thickness measurement - the change of two stage 
reading values with time for specimen #02. 

Specimen mounting. 

Mapping of tracking particle position from global 
coordinates to natural coordinates. 

Schematic diagram of a bi-axially stretched 
specimen for stress measurement. 

Bi-axial stretching of the specimen. 

The orientation of the coordinate systems. 

Specimen sectioning for the microscopic slides. 

Cross-section of layered structure ; example for 
the stereological analysis. 

Geometry of collagen fiber bundles. 

Strain-stress curve of uniform stretching test 
on specimen #03. 

Strain rate insensitivity. 

Strains imposed on target region under uniform 
bi-axial stretching test. 

Actual particle histories during uniform bi-axial 
stretching test. 

The log function plot of Figure (16). 

Strain-stress curve of nonuniform stretching test 
on specimen #03. 

Figure (7) 

Figure (8) 

Figure (9) 

Figure (10) 

Figure (11) 

Figure (12) 

Figure (13) 

Figure (14) 

Figure (15) 

Figure (16) 

Figure (17) 

Figure (18) 

Figure (19) 

Figure (20) 

Figure (21) 



Figure (22) 

Figure (23) 

Figure (24) 

Figure (25) 

Figure (28) 

Strain imposed on target region under non-uniform 
bi-axial stretching test. 

Actual particle histories during non-uniform bi-
axial stretching test. 

Strain-stress curve of the constant lateral 
displacement test on specimen #02. 

Constant lateral displacement test results when the 
lateral dimension was held approximately constant 
at Ell. 0, 0.185 and 0.198, respectively. 

E22 versus E11 in the constant lateral displacement 
tests. 

Actual particle histories of the central tracking 
region during the constant lateral displacement 
test. ( The constrained E11 is approximately 0. ) 

Actual particle histories of the central tracking 
region during the constant lateral displacement 
test. ( The constrained E11 is approximately 0.185 

Figure (26) 

Figure (27) 



Headings for Tables  

Table (1) 	The previously suggested strain energy function 

forms. 

Table (2) 	Thickness measurement data for the specimen #01. 

Table (3) 	Thickness measurement data for the specimen #03. 
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