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SUMMARY

This thesis consists of two parts. The first part is on fractional factorial design,

and the second part is on computer experiment. The first part has two chapters. In

the first chapter, we use the concept of conditional main effect, and propose the CME

analysis to solve the problem of effect aliasing in two-level fractional factorial design.

In the second chapter, we study the conversion rates of a system of webpages with the

proposed funnel testing method. The second part also has two chapters. In the third

chapter, we use statistical models to calibrate the Perez model. In the last chapter,

we propose a new Gaussian process that can jointly model both point and integral

responses.

Ever since the founding work by Finney, it has been widely known and accepted

that aliased effects in two-level regular designs cannot be de-aliased without adding

more runs. A surprising result by Wu in his 2011 Fisher Lecture showed that aliased

effects can sometimes be de-aliased using a new framework based on the concept of

conditional main effects (CMEs). In the first chapter, this idea is further developed

into a methodology that can be readily used. Some key properties are derived that

govern the relationships among CMEs or between them and related effects. As a

consequence, some rules for data analysis are developed. Based on these rules, a new

CME-based methodology is proposed. Three real examples are used to illustrate the

methodology. The CME analysis can offer substantial increase in the R-squared value

with fewer effects in the chosen models. Moreover, the selected CME effects are often

more interpretable.

Nowadays, internet has become an important source of revenue for various com-

panies. How to design the webpages to maximize the conversions is now a hot topic

xi



in e-commerce. In the second chapter, we propose a new method called the funnel

testing to simultaneously study a system of webpages and optimize its overall con-

versions. Directed graph is used to represent the system of webpages and identify its

structure. Fractional factorial design is used to conduct the experiment systemati-

cally. A new method of analysis is proposed to maximize the total conversion rate

of the system. A toy example is used to demonstrate the idea along the description

of the method. Another more complicated simulated example is given to further

illustrate the methodology.

Traditional uncertainty quantification (UQ) in the prediction of building energy

consumption has been limited to the propagation of uncertainties in model input

parameters. Models by definition ignore, at least to some degree, and, in almost

all cases, simplify the physical processes that govern the reality of interest, thereby

introducing additional uncertainty in model predictions that cannot be captured as

input parameter uncertainty. Quantification of this type of uncertainty (which we

will refer to as model form uncertainty) is a necessary step toward the complete

UQ of model predictions. In the third chapter, we introduce a general framework

for model form UQ and shows its application to the widely used sky irradiation

model developed by Perez (1990), which computes solar diffuse irradiation on inclined

surfaces. We collect a dataset of one-year measurements of solar irradiation at one

location in the United States. The measurements were done at surfaces with different

tilt angles and orientations, for a wide spectrum of sky conditions. A statistical

analysis using both this dataset and published studies worldwide suggests that the

Perez model performs non-uniformly across different locations and produces a certain

bias in its predictions. Based on the same data, we then use a two-phase regression

model, to express model form uncertainty in the use of the Perez model at this

particular location. Using a holdout validation test, we demonstrate that the two-

phase regression model considerably reduces the model bias errors and root mean

xii



square errors for every tilted surface. Lastly, we discuss the significance of including

model form uncertainty in the energy consumption predictions obtained with whole

building simulation.

In some computer experiments, the quantity of interest may be the average value

of the responses over a specific region. One example from building energy simulation

is the diffuse solar irradiance on a building façade representing the integral of the irra-

diance over the sky dome that the façade is exposed to. Treating this information as

point responses will lead to estimation efficiency loss. In the last chapter, we extend

the standard point Gaussian process framework so that it can handle both point and

integral responses. This new methodology is called the point-integral Gaussian pro-

cess model, which is abbreviated as the PIG process model. A generic expression of

the PIG process model is given with its complicated covariance functions. Parameter

estimation and prediction following the frequentist approach is shown. Closed-form

expressions of the covariance functions are derived for axis-parallel rectangular re-

gions, whose computational time are compared with the numerical integration using

quadrature. Two examples are given to demonstrate the use and the performance

of the new methodology. Two point GP models, one ignores the integral responses

and the other transforms the integral into point responses, are compared with the

PIG process. In all cases, the proposed PIG process model obtains higher prediction

accuracy.
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CHAPTER I

CME ANALYSIS: A NEW METHOD FOR UNRAVELING

ALIASED EFFECTS IN TWO-LEVEL FRACTIONAL

FACTORIAL EXPERIMENTS

1.1 Introduction

It is a traditional wisdom that aliased effects cannot be disentangled without adding

more runs, where two effects are said to be aliased if they represent the same contrast

(Finney, 1943). After nearly 70 years, this belief and practice was broken in the Fisher

lecture paper by Wu (2014). He employed a concept called conditional main effect

to reparametrize the space of aliased effects, and used variable selection to identify

significant effects among the candidate set consisting of main effects, interactions,

and selective conditional main effects. An example from GM of Canada (Brajac and

Morey, 1987) was used to illustrate the new idea with promising results. The goal of

this work is to further explore the concept in Wu (2014) and develop a systematic

analysis strategy to de-alias aliased effects in two-level fractional factorial designs.

In this work, we consider only the 2k−p designs where k factors, each at two levels

denoted by + and are being studied. It is a p−1 faction of the 2k full factorial design.

The effects such as main effects, two-factor and higher order interactions considered

in traditional analysis are referred to collectively as the traditional effects in contrast

to the conditional main effects discussed in this work. Two effects that are neither

orthogonal nor aliased are said to be partially aliased. To distinguish the concept of

partially aliasing, we will call the aliasing relationship in traditional 2k−p designs as

fully aliased, which is in line with the terminology in Wu and Hamada (2009, p.363).

For definitions and detailed discussions for the traditional effects, and full and partial
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aliasing, the readers should consult the book by Wu and Hamada (2009).

In section 1.2, important definitions and properties related to the conditional

main effects will be given. Rules of analysis will be derived from these definitions

and properties, which form the basis for the method of analysis proposed in section

1.2. Three examples will be used to illustrate the analysis strategy in section 1.4.

Concluding remarks on the examples will be given in the last section.

1.2 Properties of CME

Let us start by reviewing the definition of conditional main effects. Consider the first

four columns of Table 1. It is a 24−1
V I design with 8 runs and four factors A, B, C and

D. The defining relation of this design is I=ABCD.

Table 1: 24−1
V I design with I=ABCD and some cmes from the design.

A B C D AB CD A|B+ A|B− B|A+ B|A− A|C+ C|D− D|C− A|D−
+ + + + + + + 0 + 0 + 0 0 +
+ + − − + + + 0 + 0 0 − − 0
+ − + − − − 0 + − 0 + + 0 0
+ − − + − − 0 + − 0 0 0 + +
− + + − − − − 0 0 + − + 0 0
− + − + − − − 0 0 + 0 0 + −
− − + + + + 0 − 0 − − 0 0 −
− − − − + + 0 − 0 − 0 − − 0

Suppose we consider only the first two factors A and B. The standard definition

of main effects and two factor interactions (abbreviated as 2fi’s thereafter) in texts

on design of experiments (Box, Hunter and Hunter, 2005. Wu and Hamada, 2009) is

given by:

ME(A) = ȳ(A+)− ȳ(A−), (1)

ME(B) = ȳ(B+)− ȳ(B−), (2)

INT (A,B) =
1

2
(ȳ(A+ |B+)− ȳ(A− |B−))− 1

2
(ȳ(A+ |B−)− ȳ(A− |B+)), (3)

2



INT (A,B) =
1

2
(ȳ(B + |A+)− ȳ(B − |A−))− 1

2
(ȳ(B + |A−)− ȳ(B − |A+)). (4)

where ȳ(A+), ȳ(A−), ȳ(B+), ȳ(B−) are the averages of the responses y at the level

settings A+, A-, B+ and B- respectively, and ȳ(A + B+), ȳ(A − B−), ȳ(A + |B−)

and ȳ(A − |B+) are the averages of y at the level settings A+B+, A-B-, A+B- and

A-B+ respectively.

Notice that ȳ(A+) can also be expressed as ȳ(A+) = 1
2
(ȳ(A+B+)+ ȳ(A+B−)),

and similarly for ȳ(A−), ȳ(B+) and ȳ(B−). Then (1) and (2) can be written as:

ME(A) =
1

2
(ȳ(A+ |B+) + ȳ(A+ |B−))− 1

2
(ȳ(A− |B+) + ȳ(A− |B−)), (5)

ME(B) =
1

2
(ȳ(B + |A+) + ȳ(B + |A−))− 1

2
(ȳ(B + |A+) + ȳ(B − |A−)). (6)

In Wu and Hamada (2009), the conditional main effect, which is henceforth abbrevi-

ated as cme, of A given B at level + is defined as:

cme(A|B+) = ȳ(A+ |B+)− ȳ(A− |B+). (7)

Similarly, the cme of A given B at level is defined as:

cme(A|B−) = ȳ(A+ |B−)− ȳ(A− |B−). (8)

By rearranging terms in (5), it is easy to showME(A) = 1
2
(cme(A|B+)+cme(A|B−)).

Based on this observation, David Woods calls each cme as a half main effect (in a

personal communication).

By interchanging the roles of A and B, we also have:

cme(B|A+) = ȳ(B + |A+)− ȳ(B − |A+), (9)

and

cme(B|A−) = ȳ(B + |A−)− ȳ(B − |A−). (10)

Thus far, we have defined the main effects, 2fi’s and cme’s all in terms of the

average y values at specific level settings of A and B in (3)-(10). Now we will link

3



these three types of effects through some algebraic relationships. By adding (3) and

(5), we get

ME(A) + INT (A,B) = ȳ(A+ |B+)− ȳ(A− |B+) = cme(A|B+). (11)

By subtracting (3) from (5), we get

ME(A)− INT (A,B) = ȳ(A+ |B−)− ȳ(A− |B−) = cme(A|B−). (12)

By adding (4) and (6), we get

ME(B) + INT (A,B) = ȳ(B + |A+)− ȳ(B − |A+) = cme(B|A+). (13)

And finally, by subtracting (4) from (6), we get

ME(B)− INT (A,B) = ȳ(B + |A−)− ȳ(B − |A−) = cme(B|A−). (14)

From (11)-(14), we can see that each cme is related to a main effect and a 2fi.

We call this main effect its parent effect and the 2fi its interaction effect. The main

effect being conditioned on is called the conditioning effect, and its corresponding

level setting is called the conditioning level. The relationships in (11)-(14) can be

summarized as the first property:

Property 1 A conditional main effect is equal to the sum (and respectively, the dif-

ference) of its parent effect and its interaction effect, if its conditioning level is +

(and respectively -).

Now let us go back to the design and see if we can derive similar relationships

between the columns representing these three types of effects. From now on, we will

use the shorthand notation (A|B+), (A|B-), AB and A to represent cme(A|B+),

cme(A|B−), INT (AB) and ME(A) respectively.

Again, take the first two factors A and B for illustration. We will show how

to write down the column of (A|B+) in a standard way. By the definition of cme,

4



(A|B+) is the effect of A given B at level +. For the rows with B at level +, the

entries of (A|B+) are the same as the entries of A. On the other hand, at B -, the

entries of (A|B+) are zero. This cme is represented in column 7 of Table 1. Similarly,

we have (A|B-) in column 8. By interchanging the roles of A and B, we have (B|A+)

and (B|A-) in columns 9 and 10 respectively.

However, the above procedure is very tedious. To construct a cme, one has to go

through the columns of its parent effect and conditioning effect entry by entry. As

inspired by Property 1, we will try to find a simple relationship between these three

columns.

Take (A|B+) for example. Its parent effect is the main effect A, and its interac-

tion effect is the 2fi AB. By the definition of 2fi, the column of AB (column 5), is

constructed by multiplying columns 1 and 2 element by element. Thus, for rows with

B at level +, the entries of AB are the same as the entries of A. On the other hand,

for B -, the entries of AB have the opposite sign of the entries of A. So if we add A

and AB in columns 1 and 5, and divide by 2, we get (A|B+) in column 7. Similarly,

if we subtract AB from A and divide by 2, we get (A|B-) in column 8. Therefore we

have the following algebraic relationships:

(A|B+) =
1

2
(A+ AB), (15)

(A|B−) =
1

2
(A− AB). (16)

We call them the construction definition of cme.

To model a 2k−p design with k factors, the set of candidate effects consists of 4×
(
k
2

)
cme’s, k main effects and

(
k
2

)
2fi’s. The set of candidate models is even larger, which

consists of certain subsets of the previous set. Without any restriction, it would be

hard to find a good model from such a large candidate set. In analyzing experiments

with complex aliasing, Hamada and Wu (1992) have encountered similar situations,

where they used the effect sparsity principle and the effect heredity principle to reduce
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the size of the candidate set and exclude incompatible models. In this work, we restrict

the search to orthogonal models, where all effects in a candidate model have to be

orthogonal to each other. Here we only consider the following notion of orthogonality.

Two columns are orthogonal if their inner product is zero. Let u = (ui) and v = (vi)

be two column vectors of size n. Their inner product is defined as:

u× v =
n∑

i=1

uivi. (17)

From this definition, it follows immediately that any two traditional effects are

orthogonal if they are not fully aliased with each other. Additionally, the inner

product of a traditional effect with itself or a fully aliased effect is the squared norm

of that effect, i.e., the number of runs of the design. These two properties will be used

in (19)-(25) without specific referencing.

First, we explore the orthogonality relationships between cmes and traditional

effects. Let (A|B+) be a cme and TE be a traditional effect. By (15), we can write

their inner product as:

(A|B+)× TE =
1

2
(A+ AB)× TE =

1

2
(A× TE + AB × TE). (18)

If TE=A, i.e., (A|B+)’s parent effect, (18) becomes:

(A|B+)× A =
1

2
(A× A+ AB × A) =

1

2
|A|2 + 0 ̸= 0. (19)

Similarly, if TE=AB, i.e., (A|B+)’s interaction effect, (18) becomes:

(A|B+)× AB =
1

2
(A× AB + AB × AB) = 0 +

1

2
|AB|2 ̸= 0. (20)

Otherwise, we have:

(A|B+)× TE =
1

2
(A× TE + AB × TE) = 0 + 0 = 0. (21)

Combining (19)-(21), we have the second property:
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Property 2 cme’s are orthogonal to all the traditional effects except for their parent

effects and interaction effects.

Now we turn to a review of effect aliasing. Consider the same 24−1
V I design. The

2fi’s AB and CD are shown in columns 5 and 6 of Table 1. By comparing these two

columns, it is seen that they are exactly the same. This suggests that AB and CD

represent the same vector (called contrast in design of experiment). Thus, we are

not able to distinguish them in the traditional sense. However, by the construction

definition in (15) and (16), we can write AB (=CD) in several ways in terms of the

cme’s:

AB = (A|B+)− (A|B−) = (B|A+)− (B|A−)

CD = (C|D+)− (C|D−) = (D|C+)− (D|C−)

Though AB and CD cannot be disentangled, as inspired by Wu (2014), we can

use the above equations to reparametrize the space that represents AB and CD with

cme’s, and choose a subset of the cme’s to represent or approximate the fully aliased

2fi’s. Recall that we require the selected cmes in the same model to be orthogonal to

each other.

Now let us construct some cmes, and check their orthogonality relationships by

computing the pairwise inner products. Columns 11 to 14 of Table 1 are (A|C+),

(C|D-), (D|C-) and (A|D-) respectively. Together with the other four cme’s con-

structed before in columns 7 to 10, we take pairwise inner products among these

eight columns. The computational results are summarized as:

(i). (A|B+) is orthogonal to (A|B−);

(ii). For (A|B+), (B|A+), (C|D−) and (D|C−), none of them are orthogonal to

each other;

(iii). For (A|B+), (A|C+) and (A|D−), none of them are orthogonal to each other.
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These grouping relationships serve as the motivation for the definition of twins,

siblings and family to be given below.

The first group of cme’s differ only in their conditioning levels, such as (A—B+)

and (A—B-). We call these two cme’s the twins. As proved in (22), the twin cme’s

are orthogonal to each other:

(A|B+)× (A|B−) =
1

2
(A+ AB)× 1

2
(A− AB) =

1

4
(A× A− AB × AB)

=
1

4
(|A|2 − |AB|2) = 0. (22)

Note that the 2d space of the twin cme’s is exactly the same as the 2d space of

their parent effect and interaction effect according to (15) and (16). If we include

both the twin cme’s in the same model, it is the same as having their parent effect

and interaction effect and thus no effect de-aliasing can be achieved. Therefore, only

one of the twin cmes can be included in the model. From Properties 1 and 2, we

can substitute a pair of main effect, say A, and a 2fi involving A, say AK by one

of the twin cme’s (A|K+) and (A|K-). If A and AK have the same sign, we should

choose (A|K+) according to Property 1; otherwise, we choose (A|K-). This strategy

is especially effective if the effects A and AK have similar magnitudes, because from

(13) and (14), the selected cme is much larger than both A and AK, and the ignored

cme is much smaller. For simplicity of terminology, we will refer to AK as a 2fi and

A as its parental main effect. Note that each 2fi has two parental main effects. This

strategy can be summarized as the first rule of analysis.

Rule 1 Substitute a pair of 2fi and its parental main effect that have similar magni-

tudes with one of the corresponding twin cme’s.

Secondly, we consider the group of cme’s that have the same parent effect but not

the interaction effects. Consider (A|B+) and (A|C+), which have the same parent

effect A, but different interaction effects AB and AC respectively. We call these two

8



siblings. By (15), their inner product can be written as:

(A|B+)× (A|C+) =
1

2
(A+ AB)× 1

2
(A+ AC)

=
1

4
(A× A+ A× AC + AB × AC + AB × A)

=
1

4
(|A|2 + 0 + 0 + 0) ̸= 0. (23)

This is stated as the third property:

Property 3 Sibling cme’s are not orthogonal to each other.

Next, we consider the group of cme’s that have the same or fully aliased interaction

effects. These cme’s are said to belong to the same family. In Table 1, (A|B+), (A|B-),

(B|A+) and (B|A-) have the same interaction effect AB and thus belong to the same

family. Similarly (C|D+), (C|D-), (D|C+) and (D|C-) have the same interaction effect

CD, which is fully aliased with AB. Therefore, they belong to the same family as the

first four cme’s. Note that in a family, the twin cme’s are orthogonal. Without loss

of generality, assume (A1|B1+) and (A2|B2+) are two non-twin cme’s from the same

family. This means A1 ̸= A2 and B1 ̸= B2, but A1B1 = A2B2. By (15), their inner

product can be written as:

(A1|B1+)× (A2|B2+) =
1

2
(A1 + A1B1)×

1

2
(A2 + A2B2)

=
1

4
(A1 × A2 + A1 × A2B2 + A1B1 × A2B2 + A1B1 × A2)

=
1

4
(0 + 0 + 0 + |A1B1|2) ̸= 0. (24)

This is summarized as the fourth property:

Property 4 Non-twin cme’s in a family are not orthogonal.

Recall that we require the effects in a candidate model to be orthogonal to each

other. From Properties 3 and 4, we have the second rule of analysis, which excludes

non-orthogonal terms in the same model.
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Rule 2 Only one cme among its siblings can be included in the model. Only one cme

from a family can be included in the model.

Finally, we study cme’s that have different parent effects as well as different in-

teraction effects. Without loss of generality, let them be (A|B+) and (C|D+), where

AB ̸=CD. By (15), their inner product can be written as:

(A|B)× (C|D) =
1

2
(A+ AB)× 1

2
(C + CD)

=
1

4
(A× C + A× CD + AB × CD + AB × C)

=
1

4
(0 + 0 + 0 + 0) = 0. (25)

This gives us the last property:

Property 5 cme’s with different parent effects and different interaction effects are

orthogonal.

Because of the orthogonal modeling requirement, Property 5 leads to the third

rule of analysis:

Rule 3 cme’s with different parent effects and different interaction effects can be

included in the same model.

These three rules serve as the basis for the method of analysis proposed in the

next section.

1.3 Method of Analysis

Our analysis strategy is based on the following two ideas. First, we consider only

orthogonal models. Rules 2 and 3 are used to select orthogonal effects in the model.

Second, according to Rule 1, a pair of 2fi and its parental main effect with similar

magnitudes can be replaced by one of the corresponding twin cme’s. In orthogonal

models, this cme is orthogonal to the rest of the effects. Therefore, if this 2fi is aliased

with other 2fi’s, by substituting it with this cme, the effect aliasing will be unraveled.
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Based on the above two ideas, we propose a new method of analysis, called the

CME analysis.

CME Analysis:

(i). Use the traditional analysis methods such as analysis of variance or half-normal

plot, to select significant effects, including aliased pairs of effects. Go to (ii).

(ii). Among all the significant effects, use Rule 1 to find a pair of fully aliased 2fi

and its parental main effect, and substitute them with an appropriate cme. Use

Rules 2 and 3 to guide the search and substitution of other such pairs until they

are exhausted.

In step (i), if the use of half-normal plot is considered too subjective or judgmental,

a formal method like the Lenth method can be considered (Wu and Hamada, 2009,

Ch.4). In the next section, three examples will be given to illustrate the analysis

strategy.

1.4 Examples

In this section, we give three examples to illustrate the analysis strategies proposed

in Section 3. All the examples are from real physical experiments using 2k−p designs

with Resolution IV. The CME analysis as applied to the data appears to work very

well.

1.4.1 Example 1: Injection molding experiment

Shrinkage is a common problem in parts manufactured by injection molding and

can reduce the efficiency in the upcoming assembly operations. A team of engineers

conducted an experiment on the shrinkage from injection molding using a 25−2
IV design

with 16 runs. The defining relations of the design are I=ABCE=BCDF=ADEF and

the six factors are: mold temperature (A), screw speed (B), holding time (C), cycle

time (D), gate size (E), and holding pressure (F). The design matrix and data are
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given in Table 2, where the response is ten times the percent shrinkage (Montgomery,

1991, p.352). The goal of this experiment was to minimize the shrinkage. We apply

the CME analysis to this data set.

Table 2: Design Matrix and Response Data, Injection Molding Experiment.

A B C D E F y
-1 -1 -1 -1 -1 -1 6
1 -1 -1 -1 1 -1 10
-1 1 -1 -1 1 1 32
1 1 -1 -1 -1 1 60
-1 -1 1 -1 1 1 4
1 -1 1 -1 -1 1 15
-1 1 1 -1 -1 -1 26
1 1 1 -1 1 -1 60
-1 -1 -1 1 -1 1 8
1 -1 -1 1 1 1 12
-1 1 -1 1 1 -1 34
1 1 -1 1 -1 -1 60
-1 -1 1 1 1 -1 16
1 -1 1 1 -1 -1 5
-1 1 1 1 -1 1 37

In step (i), we use half-normal plot to identify significant effects. From Figure 1,

it is clearly seen that the main effect B (screw speed) is the most significant. It is

followed by the main effect A and their 2fi AB, and the R2 value for the three terms

is 96.24%. Because the remaining effects are not significant, we include only these

three terms in the first model, denoted as Model 1.1. The p values for B, A and AB

are 2.39e-09, 5.38e-05 and 0.022% respectively.

In step (ii), among the significant effects in Model 1.1, we use Rule 1 to identify

a pair of 2fi and its parental main effect with similar magnitudes. From Figure 1,

the only such pair is A and AB. Therefore, we consider the twin cmes (A—B+) and

(A—B-). Since A (=6.938) and AB (=5.938) have the same sign, by Rule 1, we

should substitute them with (A|B+). This leads to the model with only two terms B
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Figure 1: Half-normal Plot, Injection Molding Experiment.

and (A|B+), denoted as Model 1.2. Its R2 value is 96.14% and the p values for these

two terms are 6.06e-10 and 1.72e-06 respectively, each of which is more significant

than the corresponding term in Model 1.1. Clearly, Model 1.2 is better than Model

1.1. Moreover, unlike AB in Model 1.1, the cme (A|B+) has a good interpretation,

i.e., at high screw speed, pressure has a significant effect on shrinkage but not at low

speed.
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1.4.2 Example 2: Filtration experiment

A team of engineers conducted an experiment on the filtration rate of a chemical

product using a 24−1
IV design with 8 runs. The defining relation of this design is

I=ABCD, and the four factors are: temperature (A), pressure (B), concentration of

formaldehyde (C) and stirring rate (D). The design matrix and data are given in Table

3, where the response is measured in gal/h (Montgomery, 1991, p.342). The goal of

this experiment was to maximize the filtration rate. We apply the CME analysis to

this data set.

Table 3: Design Matrix and Response Data, Filtration Experiment.

A B C D y
-1 -1 -1 -1 45
1 -1 -1 1 100
-1 1 -1 1 45
1 1 -1 -1 65
-1 -1 1 1 75
1 -1 1 -1 60
-1 1 1 -1 80
1 1 1 1 96

In step (i), we use half-normal plot to identify significant effects. From Figure 2,

it is clearly seen that main effects A, D and C, and 2fi’s AD (=BC) and AC (=BD)

are significant. There is a huge gap between C and B. Therefore, we include these five

terms in the first model, denoted as Model 2.1. Its R2 value is 99.79% and the p values

for A, AD, AC D and C are 0.45%, 0.45%, 0.47%, 0.59% and 0.82% respectively.

In step (ii), among the significant effects in Model 2.1, we use Rule 1 to identify

a pair of 2fi and its parental main effect with similar magnitudes. From Figure 2,

the first such pair are A and AD. Therefore, we consider the twin cmes (A|D+) and

(A|D-). Since A (=9.5) and AD (=9.5) have the same sign, by Rule 1, we should

substitute them with (A|D+). This leads to a model with four terms (A|D+), AC, D
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Figure 2: Half-normal Plot, Filtration Experiment.

and C, denoted as Model 2.2. Its R2 value is 99.79%, and the p values for the four

terms are 0.013%, 0.039%, 0.055% and 0.089% respectively, each of which is more

significant than the corresponding term in Model 2.1. Clearly, Model 2.2 is better

than Model 2.1. Moreover, unlike AD in Model 2.1, the cme (A|D+) has a good

engineering interpretation, i.e., at high stirring rate, temperature has a significant

effect on filtration rate, but not at low stirring rate.

Next, we search for other such pairs among the rest of the significant effects. In
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Figure 2, the next such pair is BD (=AC) and D, and thus we consider the twin cme’s

(D|B+) and (D|B-). Since D (=8.25) and BD (=-9.25) have opposite signs, by Rule

1, we should substitute them with (D|B-). The two selected cme’s (A|D+) and (D|B-)

are neither siblings nor belonging to the same family. Therefore, by Rule 3, they are

orthogonal to each other and can both be included in the same model. This further

reduces the model to three terms: (A|D+), (D|B-) and C, denoted as Model 2.3. Its

R2 value is 99.66%, and the p values for the three terms are 1.96e-05, 2.72e-5 and

0.026%, each of which is more significant than the corresponding term in Model 2.1,

and Model 2.2. Therefore, Model 2.3 is the best. Moreover, the cme (D|B-) has a good

engineering interpretation, i.e., at low concentration of formaldehyde, the stirring rate

has a significant effect on filtration rate, but not at high concentration. Since there

are no further such pairs among the remaining significant effects, we conclude the

CME analysis with Model 2.3.

1.4.3 Example 3: Aluminum experiment

The Iowa Aluminum Corporation manufactures aluminum sheets from recycled alu-

minum beverage containers. The molten aluminum was placed onto a continuous

strip, and then went through three mills before the final packing. Coolant consisting of

oil and water was applied to the metal as it entered the mill each time. The produced

aluminum sheets had a rejection rate of 25 percent, so an experiment was undertaken

to improve the quality. Due to the limited time and resource, a 26−2
IV design with 16

runs was used. The defining relations of the design are I=ABCE=ADEF=BCDF,

and the six factors are: coolant temperature (A), oil percentage (B), coolant volume

1 (C), coolant volume 2 (D), coolant volume 3 (E) and strip speed (F). The design

matrix and data are shown in Table 4, where the response is the surface impurity

score with a scale of 0-10 with 0 being no impurity and 10 high impurity (Neter et

al., 1996, p.1259). The goal of this experiment was to minimize the impurity score.
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We apply the CME analysis to this data set.

Table 4: Design Matrix and Response Data, Aluminum Experiment.

A B C D E F y
-1 -1 -1 -1 -1 -1 4
1 -1 -1 -1 1 -1 6
-1 1 -1 -1 1 1 7
1 1 -1 -1 -1 1 2
-1 -1 1 -1 1 1 3
1 -1 1 -1 -1 1 1
-1 1 1 -1 -1 -1 5
1 1 1 -1 1 -1 9
-1 -1 -1 1 -1 1 3
1 -1 -1 1 1 1 2
-1 1 -1 1 1 -1 8
1 1 -1 1 -1 -1 5
-1 -1 1 1 1 -1 4
1 -1 1 1 -1 -1 4
-1 1 1 1 -1 1 4
1 1 1 1 1 1 6

In step (i), we use half-normal plot to identify significant effects. From Figure 3,

it is clearly seen that main effects B, F and E are much more significant than the

rest. They are followed by two 2fi’s AC (=BE) and AF (=DE), and the R2 value for

the five terms is 96.45%. Because the remaining effects are not significant, we include

these five terms in the first model, denoted as Model 3.1. The p values for B, F, E,

AC and AF are 3.17e-06, 8.56e-6, 8.56e-06, 0.032% and 0.135% respectively.

In step (ii), among the significant effects in Model 3.1, we use Rule 1 to identify a

pair of 2fi and its parental main effect with similar magnitudes. From Figure 3, the

first such pair are E and BE (=AC). Therefore, we consider the twin cme’1s (E|B+)

and (E|B-). Since E (=1.0625) and BE (=0.6875) have the same sign, by Rule 1, we

should substitute them with (E|B+). This leads to a model with four terms (E|B+),

B, F and AF, denoted as Model 3.2. Its R2 value is 94.93% and the p values for

the four terms are 3.75e-06, 5.57e-06, 1.58e-05 and 2.68% respectively. By comparing
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Figure 3: Half-normal Plot, Aluminum Experiment.

the R2 values and the p values for the significant effects, we cannot say that Model

3.2 is better than Model 3.1. However, unlike BE in Model 3.1, the cme (E|B+) in

Model 3.2 has a good engineering interpretation, i.e., at high oil percentage, coolant

volume of the third mill has a significant effect on the impurity score, but not at low

percentage.

Next, we search for other such pairs among the rest of the significant effects. From

Figure 3, there are two pairs associated with AF (=DE): AF with F and DE with E.
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If DE and E are chosen, the corresponding twin cme’s (E|D+) and (E|D-) are siblings

of the selected cme (E|B+) in Model 3.2. By Rule 2, they cannot both be included in

the same model. For AF and F, we consider the twin cme’s (F|A+) and (F|A-). Since

F (=-1.0625) and AF (=-0.5625) have the same sign, by Rule 1, we replace them with

(F|A+). The two selected cme’s (E|D+) and (F|A+) are neither siblings nor belong

to the same family. Therefore, by Rule 3, they are orthogonal to each other and can

both be included in the same model. This further reduces the model to three terms:

(E|B+), B and (F|A+), denoted as Model 3.3. Its R2 value is 92.22% and the p values

for the three terms are 1.16e-05, 1.75e-05 and 2.40e-05 respectively. By comparing

the R2 values and the p values for significant effects, Model 3.3 is not the best among

thel three models. However, unlike AF in Model 3.1 and Model 3.2, the cme (F|A+)

in Model 3.3 has a good engineering interpretation, i.e., at high coolant temperature,

strip speed has a significant effect on impurity score, but not at low temperature. In

summary, Model 3.2 or Model 3.3 can be presented to the engineers as alternatives

to Model 3.1.

1.5 Conclusions

Inspired by Wu (2014), we develop a systematic method of analysis to de-alias fully

aliased 2fi’s. Properties of cme’s are studied. Rules of analysis are developed from

the properties. The method of CME analysis is proposed based on the three rules.

Three examples are given to illustrate the analysis strategy. The first two examples

show dramatic improvement in model fitting and understanding of effects with the

CME analysis. For the last example, though the CME analysis does not give better

models based on traditional model selection criteria, the two alternative models are

more parsimonious. Furthermore, the cmes identified in the two models have good

engineering interpretations. Thus they can serve as alternatives to traditional models

for investigators to better understand the experiment.
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Effect heredity as defined in Wu and Hamada (2009, Ch.4) does not apply to the

CME analysis. In Example 2, by following effect heredity, AC instead of BD should

be considered because both A and C are included in the model. However, the CME

analysis chooses (D|B-), which represents part of BD. In fact, by the construction

definition, each cme is related to its parent effect and interaction effect, while a 2fi is

related to its two parental main effects. Therefore, in the spirit of the effect heredity

principle, we have a similar notion for the CME analysis: a cme is considered if both

its parent effect and interaction effect are significant in the model.
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CHAPTER II

FUNNEL TESTING: REPRESENTATION, DESIGN AND

ANALYSIS

2.1 Introduction

In the information technology age, more business transactions are conducted on the

internet. Webpage has become an importance source of revenue for many companies

such as Amazon, Facebook, Walmart, eBay, etc. How to design the webpages to best

serve the interest of the business owners has now become a hot research topic in e-

commerce (Ash, 2009). The jobs of interest completed by the visitors to the webpages

are called conversions. Typical examples of conversions are purchases, newsletter or

membership subscriptions, viewing of a page, etc. The percent of visitors completed

the jobs of interest is called the conversion rate. A main goal of studying the webpages

design is to maximize the conversion rate. This is called conversion rate optimization

(abbreviated as CRO). CRO has been extremely important in large IT companies

in the last decade. Through this practice, companies have seen a huge increase in

their profits. Moreover, companies doing CRO for others, such as Webtrends and

SiteTuners, have grown rapidly in the last ten years and are now very popular in the

IT industry. Through CRO, they helped the clients achieve greater business success.

Two methods are commonly used in CRO (Ash, 2009). The first one is called A/B

test. As the name indicates, this method compares two versions of a webpage: the

original version and the proposed new version. A variation of this method is called

A/Bn test, where multiple proposed versions of a webpage are compared with the

original design in one experiment. Hypothesis testing is used to assess the difference

and the best version is chosen as the design of the webpage in the future. The second
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method is called multivariate test (abbreviated as MVT ), where multiple factors, each

with two or more levels, are studied in one experiment. MVT is usually implemented

with fractional factorial designs, and models are fitted for the conversion rates with

respect to the factors. The optimization is done by the standard method of choosing

optimal level settings in design of experiment and the best combination of factors is

used for future webpage design (Wu and Hamada, 2009. Montgomery, 2012).

A/Bn test is more commonly used in CRO because it is easy to understand,

implement and analyze. When companies started a web campaign, they usually have

different designs for their campaign page. In order to maximize the revenues from

the campaign, they use the beginning part of the campaign to do an A/Bn test and

use the best version as the campaign page for the rest of the campaign. On the other

hand, when it comes to optimizing a product page, which consists of multiple sections

such as header, banner, text and pictures, MVT can be more efficient.

The most commonly studied page with CRO is the landing page, which is the

first page visitors see when directed from other sources such as search engines or

directly entered web addresses (Ash, 2009). Most landing pages only have the general

information of the companys products and services, and conversions usually do not

take place here. For example, suppose the visitors want to buy products from the

website. Before they make payments, they usually have to go through the product

description, view the product pictures, check the product reviews, and enter the

payment information. With so many other pages involved, studying just the landing

page in order to maximize the conversion rate may be an oversimplification. The series

of pages the visitors went through until a possible conversion is called the conversion

funnel (Ozolins, 2012), or abbreviated as the funnel if there is no ambiguity in the

context. In the last example, the conversion funnel consists of the landing page, the

product description page, the product picture page, the product review page and

the payment information page. Moreover, conversions may take place on different
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pages. For example, the visitors can subscribe the newsletters on the landing page,

the product page and even on the payment confirmation page. The pages where

conversions can possibly happen are called conversion points. If the landing page is

studied with respect to only one conversion point, the results can hardly be conclusive.

The set of pages associated with the conversion of interest is defined as the conversion

system, or abbreviated as the system if there is no ambiguity in the context. A

conversion system consists of the landing page, all the conversion points, and all

other pages that link between them. For example, suppose we have three pages: the

landing page, page 1 and page 2, and both page 1 and page 2 are conversion points.

Suppose visitors can go from the landing page to either page 1 or page 2, and also

from page 1 to page 2. Then the conversion system consists of these three pages,

and we referred this example as the toy example. This example will be used as the

primary illustrative tool of the framework proposed in this work. In this example,

the landing page and page 1 make a conversion funnel.

In the next section, we will use directed graph to represent a conversion system

and use this graph representation to identify all the conversion funnels in a system.

A fractional factorial design on all the pages in a system will be used to conduct

the experiment. In section 3, we will propose an analysis strategy to optimize the

conversions in a system. A simulated example will be given in section 4, and we

conclude this work with remarks on the example and future research.

2.2 Representation and Design

The idea of using directed graph to study the internet originates from a concept

called webgraph (Donato et al., 2004), where webpages are viewed as vertices and the

linkage relationships between pages are expressed with directed edges in the graph.

In computer science, the size of the webgraph being studied is usually very large

(over millions) , and researchers are interested in the large-scale properties such as
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in/out distributions, connectivity, cyclic patterns and so on. The results are used

to identify communities and hubs, filter spams, rank pages and predict the growth

of the internet (Donato et al., 2004). In this work, we use this idea, and represent

a conversion system with directed graph. Here we are most interested in how to

identify all the conversion funnels from the graphical structure. The representation

is straightforward. All the webpages in a conversion system are viewed as vertices

of the graph. If there is a hyperlink on page X referring to page Y, draw a directed

edge from X to Y. For the toy example, the conversion system consists of three pages:

the landing page, page 1 and page 2, and we denote these three vertices as vL, v1

and v2 respectively. On the landing page, there are links referring to both page 1

and page 2. Therefore, there are two edges starting at vL and directing to v1 and v2

respectively. We denote them as e1 and e2 correspondingly. Furthermore, there is a

link on page 1 referring to page 2. Draw another edge from v1 to v2 denoted by e3.

There are no more links in this conversion system, so the toy example is represented

by the following graph in Figure 4. The conversion points are marked in solid dots in

contrast to others.

Figure 4: Directed Graph Representation, Simulated Example.

After representing the conversion system as a directed graph, the next step is to

identify all the conversion funnels. By definition, a conversion funnel is a series of

pages that a visitor have gone through before making a possible conversion. Since

visitors always start with the landing page, and make conversions on the conversion
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points, in the graph, a conversion funnel is a path from the landing page to a conver-

sion point. To identify all the conversion funnels in the system amounts to finding

all the paths connecting the landing page and all the conversion points. In the toy

example, page 1 and page 2 are both conversion points. For page 2, there are two

paths connecting it to the landing page: vL via e1 to v1 then via e3 to v2, and vL

via e2 to v2. These two conversion funnels are referred as CF1 and CF2. For page

1, there is only one path connecting it to the landing page: vL via e1 to v1. This

conversion funnel is referred to as CF3. Since there are no more conversion points in

this system, the toy example has three different conversion funnels.

Before this work, some researchers have realized the concept of conversion funnels

and have done experiments using this concept (Qualaroo, 2014). However, they used

one-page-at-a-time method, and studied the pages in a funnel sequentially. Note

that, even for a small conversion system like the toy example, there are already three

different conversion funnels. The old method is extremely time consuming and ignores

any interactions between different pages. In this work, we study the conversion system

as a whole and design one experiment for all the pages involved.

Since there are multiple pages involved in the experiment, A/Bn test will be

inefficient. How about the MVT? In MVT, the first step is to identify the factors

being studied. Since this experiment considers all the pages in the conversion system

at one time, the set of factors consists of the factors from all the pages. For example,

in the toy example, suppose each page has two factors to be studied: A and B from

the landing page, C and D from page 1 and E and F from page 2. The factors being

studied in this experiment are A, B, C, D, E and F. After identifying the correct

set of factor, the next step is to construct a fractional factorial design for them. For

details on the choice of designs, the reader may refer the book by Wu and Hamada

(2009).

For ease of implementation, we assume each factor has two levels. In this case,
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a 2k−p design is used, where k factors are being studied, each at two levels denoted

by + and -. It is the p−1 faction of the 2k full factorial design. In some other cases,

mixed level designs are also used.

The conversion data are collected as binary responses: 1 means conversion made

and 0 means no conversion. The conversions for each funnel are recorded separately

for ease of analysis. Take the toy example, if a conversion is made on page 2, and the

visitor comes directly from the landing page, this conversion is recorded with respect

to the data with CF2.

2.3 Analysis

The final objective of this work is to maximize the conversions in the system. Define

the total conversion rate as the weighted sum of the conversion rates of all the con-

version funnels in the system, where the weights reflect the importance of the funnels

to the business owners. For example, in studying the sales of shoes, the weights can

be the price of the shoes on different funnels. When considering the subscription rate

of the newsletters, the weights can be set to be equal. The goal now is to maximize

the total conversion rate.

The first step is to build a function for the total conversion rate. Since the total

conversion rate is a linear function of the conversion rates of all the funnels in the

system, we can build functions for the conversion rates of the funnels separately,

and put them together for optimization. To build a function for the conversion rate

of a funnel, one has to correctly calculate the response, i.e., the conversion rate of

the funnel, and identify the right predictors. Since we have recorded the conversion

data for each funnel separately, the conversion rate is the number of conversions of

the funnel divided by the total visitors to the conversion system. If the conversion

data are recorded only at each conversion point but not for each conversion funnel,

the analysis will run into problems. Take the toy example, page 2 is a conversion
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point, but it is associated with two conversion funnels CF1 and CF2. If we only

have the conversions on page 2, there is no way to tell whether it is from CF1 or

CF2. A conversion funnel consists of several pages, and the factors considered in the

model for this funnel should be the unions of factors related to these pages. After

identifying the right predictors and responses, the next step is to build a linear model.

For information on the analysis of fractional factorial design, the readers may review

the book by Wu and Hamada (2009).

The last step is to put all the models together and maximize the objective function.

Since the total conversion rate is a linear function of all the factors related to the

system, the optimization follows the standard method of optimal level settings in

design of experiment except for one thing. In the last step, the models are built

with respect to different funnels, and a page may appear in different funnels. Under

certain circumstances, multiple versions are allowed for the same page. For example,

if you want to design a three page conversion system to maximize the membership

subscriptions. For simplicity, suppose this system is the same as in the toy example.

Then, let us check which page(s) can have multiple versions and why. The landing

page appears in all three conversion funnels, but the visitors have to start with the

landing page, so all three funnels share the same version of the landing page. Page

1 appears in CF1 and CF3, but visitors are always directed from the landing page

to page 1. Therefore, page 1’s in the two funnels are the same. Page 2 appears

in CF1 and CF2, but before page 2, visitors have viewed different pages for these

two funnels: for CF1, visitors have viewed the landing page as well as page 1 before

page 2, whereas for CF2, visitors have only viewed the landing page before page 2.

Since page 1 is not in CF2, visitors in the two funnels have been exposed to different

information before page 2. Therefore, page 2’s in CF1 and CF2 can have different

versions. This can be explained with the following example. Suppose page 1 shows the

benefits of the membership and page 2 shows the price in the original design. Normal
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visitors check the benefits and compare them with the price on page 2 and determine

whether to subscribe the membership. If the visitor does not care about the price,

s/he may subscribe after viewing the benefits, and if the visitor is eager to know the

price, s/he may jump to page 2 directly from the landing page. For the last visitor,

s/he does not have the information about the benefits, the decisions made might be

biased. Suppose the membership price is high, but also offers great benefits whose

monetary value may exceed the cost. For normal visitors, after comparing the cost

with benefits, they are likely to pay for the membership price. But for visitors that

have skipped the benefits page, just by looking at the price, they might think it is too

high and decide not to go for it. These two decisions are made with different amount

of information, and the second one is biased. With the concept of the conversion

funnel, it is immediately noticed that these two decisions are made on two different

funnels. In order to correct the second situation, we simply show the visitors another

version of page 2, which has the benefits as well as the price of the membership, if

they come directly from the landing page. In the analysis, we set the factors of page

2 in the model of CF2 to be E′ and F′ in distinction to E and F in CF1. Therefore,

instead of six factors, we now optimize with respect the eight factors: A, B, C, D, E,

F, E′ and F′.

2.4 Toy Example

In this section, we use the toy example and simulate a set of data to illustrate the

analysis strategy. Recall that the conversion system in the toy example consists of

three pages: the landing page, page 1 and page 2, and there are three conversion

funnels in the system: CF1, CF2 and CF3. Note that we suppose each page has two

factors to be studied, so a 26−2 design is used for the simulation, where each row of

the design matrix represent a version of the conversion system. The design matrix is

given in Table 5, whose defining relations are I=ABCE=BCDF=ADEF.
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Table 5: Design Matrix, Toy Example.

Run A B C D E F
1 1 1 1 1 1 1
2 1 1 1 -1 1 -1
3 1 1 -1 1 -1 -1
4 1 1 -1 -1 -1 1
5 1 -1 1 1 -1 -1
6 1 -1 1 -1 -1 1
7 1 -1 -1 1 1 1
8 1 -1 -1 -1 1 -1
9 -1 1 1 1 -1 1
10 -1 1 1 -1 -1 -1
11 -1 1 -1 1 1 -1
12 -1 1 -1 -1 1 1
13 -1 -1 1 1 1 -1
14 -1 -1 1 -1 1 1
15 -1 -1 -1 1 -1 1
16 -1 -1 -1 -1 -1 -1

For each simulation, we first choose a version of the conversion system from the 16

candidates in the design table with equal probability, and then simulate the visitors’

behavior in the chosen system. The visitor always starts with the landing page, and

s/he then have three choices: go to page 1, go to page 2 or leave the system. The

first step is to simulate the decision on the landing page. Suppose the visitor goes to

page 1 or page 2 with probabilities t1 or t2 respectively, where t1 and t2 are functions

of the factors related to the landing page, i.e., A and B. All the functions of decision

probabilities used in this simulation are listed in Table 6. The decisions are made

sequentially. First, we determine if the visitor goes to page 1. If s/he does not go

to page 1, then we check if s/he goes to page 2. If the choice of the second one is

still negative, s/he leaves the system. So to be specific, t2 is the probability of the

visitor going to page 2 given that s/he does not go to page 1. If the visitor chooses to

go to page 1, then on page 1, there are still three choices: make a conversion, go to

page 2 or leave. We then simulate his/her decision on page 1. Suppose s/he makes a
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conversion with probability c1, and if s/he does not make a conversion, then goes to

page 2 with probability t3. If the decisions are both negative, s/he leaves the system.

Note that, although the choices are made on page 1, the two probabilities c1 and t3 are

functions of factors related to both the landing page and page 1, i.e., A, B, C and D,

because it is believed that the information on the landing page will affect the visitors’

behavior thereafter. Finally, for visitors that land on page 2, there are two types:

they come directly from the landing page, or have visited page 1. This represents the

two conversion funnels CF2 and CF1 respectively. Since page 2 has no link referring

to others, the choices are whether to make conversions. The decisions are made as

follows. If the visitor comes via CF2, s/he converts with probability c2; otherwise,

convert with probability c3. Note that CF2 consists of two pages. Therefore, c2 is a

function of the factors related to those two pages, i.e., A, B, E and F. Similarly, c3

is a function of factors A, B, C, D, E and F. Each simulation terminates when the

visitor either makes a conversion or leaves the system. We ran 10,000 simulations,

and record the conversions of each funnel separately. The conversion rates are given

below in Table 7.

Table 6: Functions for Decision Probabilities, Toy Example.

t1 = 0.25− 0.1A
t2 = 0.42 + 0.21B
t3 = 0.1 + 0.08A− 0.3D + 0.1AD
c1 = 0.38− 0.05B + 0.12C + 0.08BD
c2 = 0.07 + 0.2E + 0.07AE
c3 = 0.15 + 0.06D − 0.1F + 0.02AD + 0.01CF

For simplicity, assume all the conversion funnels have equal weights in the toy

example. Denote the total conversion rate as CRT , and the conversion rates for

CF1, CF2 and CF3 as CR1, CR2 and CR3 respectively. The objective function for

optimization can be written as:
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Table 7: Conversion Rates for Different Funnels, Toy Example.

CF1 CF2 CF3

0.00000000 0.16349206 0.08730159
0.00960000 0.16960000 0.05440000
0.00000000 0.00000000 0.05546218
0.00000000 0.00000000 0.02073365
0.00000000 0.00000000 0.06833333
0.00000000 0.00000000 0.10194175
0.00000000 0.06718750 0.03593750
0.01093750 0.06406250 0.07812500
0.00000000 0.00000000 0.14803150
0.02044025 0.00000000 0.12421384
0.00000000 0.07833333 0.09166667
0.00000000 0.08258258 0.05255255
0.00000000 0.02508361 0.16722408
0.00000000 0.03475513 0.21169036
0.00000000 0.00000000 0.07954545
0.01716069 0.00000000 0.14820593

CRT = CR1 + CR2 + CR3.

Then we build models for CR1, CR2 and CR3 separately. Recall that the first

step in modeling the conversion rate of a funnel is to identify the related factors. For

CR1, since CF1 consists of three pages: the landing page, page 1 and page 2, the

factors considered in this model are A, B, C, D, E, and F. Similarly, for CR2 and

CR3, the factors considered are A, B , E and F and A, B , C and D respectively.

The model building is then straightforward. For CR1, it is a function of all the

six factors. The corresponding design matrix and responses considered in this model

are shown in Table 8. The first step of modeling is to make a half-normal plot to

identify significant effects. In Figure 5, it is clearly seen that main effects F and D

and two-factor interaction (abbreviated as 2fi thereafter) AE are the most significant.

Because these three terms have the same magnitude, we denote them as group 1.

They are followed by main effects E and A and 2fis AF and D, whose magnitudes are
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the same, and denoted as group 2. The other effects are not significant. Therefore

the model for CR1 has seven terms. The R2 value for this model is 99.12% and the

p values for the significant effects in group 1 and group 2 are 1.91e-7, and 0.133%

respectively. The explicit expression of the model is:

CR1 =0.00336337− 0.00336337F − 0.00336337D − 0.0010665E − 0.0010665A

+ 0.00336337AE + 0.0010665AF + 0.0010665AD. (26)

Figure 5: Half-normal Plot, Conversion Rate for CF1.
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Table 8: Design Matrix and Response Data, Conversion Rates for CF1.

A B C D E F CR1

1 1 1 1 1 1 0.0‘0000000
1 1 1 -1 1 -1 0.00960000
1 1 -1 1 -1 -1 0.00000000
1 1 -1 -1 -1 1 0.00000000
1 -1 1 1 -1 -1 0.00000000
1 -1 1 -1 -1 1 0.00000000
1 -1 -1 1 1 1 0.00000000
1 -1 -1 -1 1 -1 0.01093750
-1 1 1 1 -1 1 0.00000000
-1 1 1 -1 -1 -1 0.02044025
-1 1 -1 1 1 -1 0.00000000
-1 1 -1 -1 1 1 0.00000000
-1 -1 1 1 1 -1 0.00000000
-1 -1 1 -1 1 1 0.00000000
-1 -1 -1 1 -1 1 0.00000000
-1 -1 -1 -1 -1 -1 0.01716069

For CR2, the corresponding funnel consists of two pages: the landing page and

page 2. Therefore, only factors A, B, E and F are considered. The corresponding

design matrix and responses used in this model are shown in Table 9. We start the

analysis by drawing a half-normal plot to identify significant effects. In Figure 6, it

is clearly seen that the main effect E is the most significant. It is followed by B and

BE, and then A and AE. The other effects are not significant. Therefore the model

for CR2 has five terms. The R2 value for this model is 97.28% and the p values for

the significant effects are 4.11e-8, 6.71e-5, 6.71e-5, 0.0377% and 0.0377% respectively.

The explicit model is written below:

CR2 =0.042819 + 0.042819E + 0.018932B + 0.015224A

+ 0.018932BE + 0.015224AE. (27)

Finally, for CR3, the corresponding conversion funnel CF3 consists of two pages:

the landing page and page 1. Therefore, factors A, B, C and D should be considered.
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Figure 6: Half-normal Plot, Conversion Rate for CF2.

The corresponding design matrix and responses used in this model are shown in Table

10. We again start the analysis by drawing a half-normal plot to identify significant

effects. In Figure 7, it is seen that the main effect A is the most significant. It is

followed by C, BD, B, AC and AB. The other effects are not significant. Therefore

the model for CR3 has six terms. The R2 value for this model is 98.3% and the p

values for significant effects are 1.23e-7, 1.16e-6, 7.72e-6, 4.47e-5, 1.51% and 6.42%
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Table 9: Design Matrix and Response Data, Conversion Rates for CF2.

A B E F CR2

1 1 1 1 0.16349206
1 1 1 -1 0.16960000
1 1 -1 -1 0.00000000
1 1 -1 1 0.00000000
1 -1 -1 -1 0.00000000
1 -1 -1 1 0.00000000
1 -1 1 1 0.06718750
1 -1 1 -1 0.06406250
-1 1 -1 1 0.00000000
-1 1 -1 -1 0.00000000
-1 1 1 -1 0.07833333
-1 1 1 1 0.08258258
-1 -1 1 -1 0.02508361
-1 -1 1 1 0.03475513
-1 -1 -1 1 0.00000000
-1 -1 -1 -1 0.00000000

respectively. The explict model expression is given below:

CR3 =0.095335− 0.032556A+ 0.025057C − 0.01604B + 0.19968BD

− 0.009842AC + 0.007735AB. (28)

Recall that page 2 appears in both CF1 and CF2 and can have two different

versions. Replace the factors E and F in (27) with E′ and F′ respectively. Now, put

all three models together, we have the total conversion rate expressed as a function

of all the eight factors:

CRT =0.1415174− 0.0183985A+ 0.002892B + 0.025057C − 0.0036337D

− 0.0010665E − 0.0036337F + 0.042819E ′ + 0.007735AB

− 0.009842AC + 0.0010665AD + 0.0036337AE + 0.0010665AF

+ 0.015224AE ′ + 0.019968BD + 0.018932BE ′.
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Figure 7: Half-normal Plot, Conversion Rate for CF3.

To maximize CRT , we find the optimal level settings of the eight factors. By

checking all the possible combinations of the eight factors, it is seen that by setting

A, E and F to -, and B, C, D and E′ to +, we have the maximal expected conversion

rate of this system, which is 26.12%. Because F′ does not appear in any significant

terms, we can choose either setting according to other considerations.
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Table 10: Design Matrix and Response Data, Conversion Rates for CF3.

A B C D CR3

1 1 1 1 0.08730159
1 1 1 -1 0.05440000
1 1 -1 1 0.05546218
1 1 -1 -1 0.02073365
1 -1 1 1 0.06833333
1 -1 1 -1 0.10194175
1 -1 -1 1 0.03593750
1 -1 -1 -1 0.07812500
-1 1 1 1 0.14803150
-1 1 1 -1 0.12421384
-1 1 -1 1 0.09166667
-1 1 -1 -1 0.05255255
-1 -1 1 1 0.16722408
-1 -1 1 -1 0.21169036
-1 -1 -1 1 0.07954545
-1 -1 -1 -1 0.14820593

2.5 Simulated Example

In this section, we will demonstrate the idea of funnel testing with a more complicated

example. Consider the conversion system shown in Figure 8. It consists of six pages:

the first page is the landing page. All customers start visiting the conversion system

with this page. The second page is called individual page. It is the page showing

information for individual customers. The third page is called business page. It is

the page showing information for business customers. There are three more pages,

called Product 1 page, Product 2 page and Product 3 page respectively, for customers

to make conversions for three different kinds of products. The linkage relationship

between pages, as depicted in Figure 8, can be describes as follows. The customers

always start with the landing page, where they have three choices: go to individual

page, go to business page, or leave the system. If the customer goes to individual

page, s/he then has three choices: go to Product 1 page, go to Product 2 page, or leave

37



the system. Similarly, if the customer goes to business page, s/he then also has three

choices: go to Product 3 page, go to Product 2 page, or leave the system. Customers

can convert on any of the Product pages, or leave the system. For customers on

Product 1 page or Product 3 page, they have one more choice to go to Product 2

page.

Figure 8: Simulated Example.

We start our analysis by representing this conversion system with the directed

graph in Figure 9. The six pages are viewed as six vertices vL, vI , vB, v1, v2 and v3

respectively,and the linkage relationships are viewed as eight directed edges denoted

by e1, · · · , e8. v1, v2 and v3 are marked in solid dots in contrast to others, meaning

that they are conversion points.

The next step is to identify all the conversion funnels from the directed graph

representation. By definition, a conversion funnel is a path from the landing page
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Figure 9: Directed Graph Representation, Simulated Example.

to a conversion point. For the conversion point v1, only the path vL → vI → v1

connects vL to it. We denote this conversion funnel by CF1. Similarly, only one path

vL → vB → v3 connects vL to v3, which is denoted by CF3. For the last conversion

point v2, there are four paths connect vL to it: vL → vI → v2, vL → vB → v2,

vL → vI → v1 → v2, and vL → vB → v3 → v2, which are represented by CF2I , CF2B,

CF21 and CF23 respectively.

Suppose each page has two factors to be investigated (A and B for the landing

page, C and D for individual page, E and F for business page, G and H for Product

1 page, I and J for Product 2 page, and K and L for Product 3 page), and each

factor has two levels. A 212−6
IV design is used for the experiment. The design matrix

is shown in Table 11. The defining relations of this design is I=ABCG=ABDH=

ACDEI=ACDFJ=ABEFK=BCEDFL. Each row of the matrix represents a version

of the conversion system to be studied.

Table 11: Design Matrix, Simulated Example.

Run A B C D E F G H I J K L

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 -1 1 1 1 -1 -1 -1

Continued on next page
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Table 11 – continued from previous page

Run A B C D E F G H I J K L

3 1 1 1 1 -1 1 1 1 -1 1 -1 -1

4 1 1 1 1 -1 -1 1 1 -1 -1 1 1

5 1 1 1 -1 1 1 1 -1 -1 -1 1 -1

6 1 1 1 -1 1 -1 1 -1 -1 1 -1 1

7 1 1 1 -1 -1 1 1 -1 1 -1 -1 1

8 1 1 1 -1 -1 -1 1 -1 1 1 1 -1

9 1 1 -1 1 1 1 -1 1 -1 -1 1 -1

10 1 1 -1 1 1 -1 -1 1 -1 1 -1 1

11 1 1 -1 1 -1 1 -1 1 1 -1 -1 1

12 1 1 -1 1 -1 -1 -1 1 1 1 1 -1

13 1 1 -1 -1 1 1 -1 -1 1 1 1 1

14 1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

15 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1

16 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1

17 1 -1 1 1 1 1 -1 -1 1 1 -1 -1

18 1 -1 1 1 1 -1 -1 -1 1 -1 1 1

19 1 -1 1 1 -1 1 -1 -1 -1 1 1 1

20 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

21 1 -1 1 -1 1 1 -1 1 -1 -1 -1 1

22 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1

23 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1

24 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1

25 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1

26 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1

Continued on next page
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Table 11 – continued from previous page

Run A B C D E F G H I J K L

27 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1

28 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1

29 1 -1 -1 -1 1 1 1 1 1 1 -1 -1

30 1 -1 -1 -1 1 -1 1 1 1 -1 1 1

31 1 -1 -1 -1 -1 1 1 1 -1 1 1 1

32 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1

33 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1

34 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1

35 -1 1 1 1 -1 1 -1 -1 1 -1 1 -1

36 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1

37 -1 1 1 -1 1 1 -1 1 1 1 -1 -1

38 -1 1 1 -1 1 -1 -1 1 1 -1 1 1

39 -1 1 1 -1 -1 1 -1 1 -1 1 1 1

40 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1

41 -1 1 -1 1 1 1 1 -1 1 1 -1 -1

42 -1 1 -1 1 1 -1 1 -1 1 -1 1 1

43 -1 1 -1 1 -1 1 1 -1 -1 1 1 1

44 -1 1 -1 1 -1 -1 1 -1 -1 -1 -1 -1

45 -1 1 -1 -1 1 1 1 1 -1 -1 -1 1

46 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1

47 -1 1 -1 -1 -1 1 1 1 1 -1 1 -1

48 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1

49 -1 -1 1 1 1 1 1 1 -1 -1 1 -1

50 -1 -1 1 1 1 -1 1 1 -1 1 -1 1

Continued on next page
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Table 11 – continued from previous page

Run A B C D E F G H I J K L

51 -1 -1 1 1 -1 1 1 1 1 -1 -1 1

52 -1 -1 1 1 -1 -1 1 1 1 1 1 -1

53 -1 -1 1 -1 1 1 1 -1 1 1 1 1

54 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1

55 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1

56 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1

57 -1 -1 -1 1 1 1 -1 1 1 1 1 1

58 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1

59 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1

60 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1

61 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1

62 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1

63 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1

64 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1

Take the landing page and its corresponding factors A and B for example. Factor

A may represent the choice of the header, which has two candidates with version 1

denoted by level + and version 2 denoted by -. Similarly, B can be the choice of the

main picture on the landing page, with + being version 1 and being version 2. Other

factors of other pages can be interpreted similarly. Generally, each factor represents

one element of its corresponding page that we want to investigate. In this example,

each element has two candidate versions and we want to decide which one is better.

As discussed in section 1, elements can be headers, banners, texts, pictures, etc.

The experiment is done by simulations. For each simulation, we first choose a
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version of the conversion system from the 64 candidates in the design table with

equal probability, and then simulate customers’ behavior in the chosen system. The

customers always start with the landing page. Recall that, on the landing page,

they have three choices: go to individual page, go to business page, or leave the

system. We simulate their decisions in the following way: they go to individual

page with probability tLI , where tLI represents the transition probability from the

landing page to individual page; they go to business page with probability tLB. If

the simulated decisions of the above two statements are both negative, customers

leave the system. If the simulated decisions are both positive for the two statements,

the customers go to either page with equal probability. For customers on individual

page, we simulate their decisions among the three choices in a similar way: they go

to Product 1 page with probability tI1, and go to Product 2 page with probability

tI2. Similarly, for customers on business page, we suppose they go to Product 3 page

with probability tB3, and go to Product 2 page with probability tB2. For customers

on either Product 1 page or Product 3 page, they make conversions with probability

c1 or c3 respectively. If they do not make conversions, they can further go to Product

2 page with probability t12 or t32 respectively. Otherwise, they leave the system.

Finally, for customers on Product 2 page, they can either make conversions or leave

the system. The probabilities for them to make conversions are c2I , c2B, c21 and c23

respectively, depending on the conversion funnels they are from. The simulation is

terminated when the customers leave the system or a conversion is made.

All the decision probabilities used in the simulations are listed in Table 12. If the

calculated probabilities are less than zero, we suppose they are zero in the simulation.

The choice of the decision probabilities is somewhat arbitrary but with the following

rationalization. Take tLI for example. We have tLI = 0.5 + 0.1A, which is a function

of the main effect A of the landing page. According to the assumption, A has two

levels denoted by + and -. Therefore, the transition probability from the landing page
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Table 12: Functions for Decision Probabilities, Simulated Example.

tLI = 0.5 + 0.1A
tLB = 0.2− 0.1B
tI1 = 0.1 + 0.1A− 0.1C + 0.1BC
tI2 = 0.05D − 0.05AD
tB3 = 0.1 + 0.1E − 0.1F + 0.1C − 0.1EF
tB2 = 0.1A− 0.1AE
t12 = 0.05− 0.05DH + 0.05C − 0.05AG
t32 = 0.05K − 0.05EL
c1 = 0.1 + 0.1G− 0.1CG
c3 = 0.1 + 0.1K − 0.1FL+ 0.05BK − 0.05AF
c2I = 0.1 + 0.1I − 0.1J − 0.1CJ + 0.1BI
c2B = 0.1 + 0.1J − 0.1IJ + 0.05E − 0.05AJ
c21 = 0.05I − 0.05DJ + 0.05H + 0.05CI
c23 = 0.05J − 0.05E − 0.05FK + 0.1IJ

to individual page is 0.6 (=0.5+0.1) if factor A is set to level +, and 0.4 (=0.5-0.1)

if A is set to -. Similarly, for t12, we have t12 = 0.05 − 0.05DH + 0.05C − 0.05AG.

It is a function of the main effect C and 2fi’s DH and AG, which involves five factors

A, C, D, G and H. Among the five factors, A is from the landing page, C and D are

from individual page, and G and H are from Product 1 page. To justify the choice of

these five factors, note that t12 is the transition probability from Product 1 page to

Product 2 page, which is part of CF21, the path vL → vI → v1 → v2. Before making

this decision, customers have gone through the landing page, individual page and

Product 1 page along the path. Therefore, it is assumed that only factors on these

three pages can affect this decision. The 2fi DH in t12 can be interpreted as follows:

factor D on individual page and factor H on Product 1 page will jointly affect the

customers decision as whether to go to Product 2 page from Product 1 page. Other

2fi’s in Table 12 can be interpreted similarly. By changing the level settings of the

five factors, t12 can be as high as 0.2 or as low as 0.

We repeat the simulation for 10,000,000 times and record the conversions for each
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funnel separately. The calculated conversion rates are given in Table 13. Note that

CF21 and CF23 both have no conversions in the simulated results.

Table 13: Conversion Rates for Different Funnels, Simulated Example.

Run CR1 CR3 CR2I CR2B CR21 CR23

1 0.011559 0.00073 0 0 0 0

2 0.011608 0 0 0 0 0

3 0.010784 0 0 0.002698 0 0

4 0.011201 0.00253 0 0 0 0

5 0.011635 0.002146 0 0 0 0

6 0.011559 0.003635 0 0 0 0

7 0.011191 0 0 0.001426 0 0

8 0.012039 0.001333 0 0 0 0

9 0 0 0 0 0 0

10 0 0.002268 0 0 0 0

11 0 0 0 0.001311 0 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0

14 0 0 0 0 0 0

15 0 0 0 0.002778 0 0

16 0 0 0 0 0 0

17 0 0.001971 0 0 0 0

18 0 0.030319 0 0 0 0

19 0 0 0 0.008195 0 0

20 0 0 0 0 0 0

21 0 0 0 0 0 0

Continued on next page
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Table 13 – continued from previous page

Run CR1 CR3 CR2I CR2B CR21 CR23

22 0 0.010542 0 0 0 0

23 0 0.003757 0 0.003858 0 0

24 0 0.00412 0 0 0 0

25 0.059645 0 0 0 0 0

26 0.062159 0.006101 0 0 0 0

27 0.0621 0 0 0.003884 0 0

28 0.060896 0 0 0 0 0

29 0.061177 0 0 0 0 0

30 0.061716 0.018862 0 0 0 0

31 0.06134 0 0 0.008334 0 0

32 0.061483 0 0 0 0 0

33 0 0 0.004004 0 0 0

34 0 0.003807 0 0 0 0

35 0 0.003262 0.018645 0 0 0

36 0 0 0.003678 0 0 0

37 0 0.000699 0 0 0 0

38 0 0.012743 0 0 0 0

39 0 0.001638 0 0 0 0

40 0 0 0 0 0 0

41 0 0 0.010877 0 0 0

42 0 0.00712 0.011838 0 0 0

43 0 0 0 0 0 0

44 0 0 0 0 0 0

45 0 0 0 0 0 0

Continued on next page
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Table 13 – continued from previous page

Run CR1 CR3 CR2I CR2B CR21 CR23

46 0 0.002403 0 0 0 0

47 0 0 0 0 0 0

48 0 0 0 0 0 0

49 0 0.007058 0.010615 0 0 0

50 0 0.012452 0 0 0 0

51 0 0 0.010327 0 0 0

52 0 0 0 0 0 0

53 0 0.002347 0 0 0 0

54 0 0 0 0 0 0

55 0 0.005054 0 0 0 0

56 0 0.005172 0 0 0 0

57 0 0 0.002712 0 0 0

58 0 0 0.002895 0 0 0

59 0 0 0.00266 0 0 0

60 0 0 0.002505 0 0 0

61 0 0 0 0 0 0

62 0 0.007343 0 0 0 0

63 0 0 0 0 0 0

64 0 0 0 0 0 0

The total conversion rate is assumed to be:

CRT = 2CR1 + 2CR3 + CR2I + CR2B + CR21 + CR23.

We model the conversion rate for each conversion funnel separately. Recall that the
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first step in modeling the conversion rate is to identify its related factors. For CR1,

it is the conversion rate for CF1, which consists of three pages: the landing page,

individual page and Product 1 page. Therefore, the six factors (A, B, C, D, G and

H) related to these three pages are considered in modeling CR1. Similarly, we can

find the related factors for other conversion rates, all of which are listed in Table 14.

Table 14: Conversion Rates and Related Factors, Simulated Example.

CR1 A B C D G H
CR3 A B E F K L
CR2I A B C D I J
CR2B A B E F I J
CR21 A B C D G H I J
CR23 A B E F I J K L

The model for each conversion rate is then built with respect to its related factors

listed in Table 14. We consider the linear regression model with only the main effects

and 2fi’s and use the same method as in the toy example. The fitted model for each

conversion rate is shown in Table 15. CR21 and CR23 are both zero because CF21 and

CF23 have no conversions for all 64 versions of the conversion system in the simulated

results.

Table 15: Fitted Models for Each Conversion Rate, Simulated Example.

CR1 = 0.0091 + 0.0091A − 0.0062B − 0.0062C − 0.0091G −
0.0062AB − 0.0062AC + 0.0091AG

CR2 = 0.0025 + 0.0017E − 0.0016F + 0.0013K − 0.0016EF −
0.0016FL

CR2I = 0.0013− 0.0013A+ 0.0013D − 0.0013AD
CR2B = 0.0005 + 0.0005A − 0.0005E + 0.0005F − 0.0005AE +

0.0005AF − 0.0005EF
CR21 = 0
CR23 = 0

In theory, Product 2 page can have four different versions, which would give us six
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more factors I′, J′, I′′, J′′, I′′′ and J′′′ in the optimization procedure. This is because v2

appears in four different funnels, and the pages before v2 are different for each funnel.

However, the factors related to v2 do not appear in any of the models in Table 15.

Therefore, such consideration become unnecessary. Finally, by putting the functions

in Table 15 together, we have the model for the total conversion rate to be:

CRT =0.025 + 0.0174A− 0.0124B − 0.0124C + 0.0013D + 0.0029E − 0.0027F

− 0.0182G+ 0.0026K − 0.0124AB − 0.0124AC − 0.0013AD

− 0.0005AE + 0.0005AF + 0.0182AG− 0.0037EF − 0.0032FL.

To maximize CRT , we try all possible combinations of the nine factors involved

in the above model. The maximal CRT value is achieved by setting A, E, K and L

to +, and B, C and F to -. The level settings of D and G does not affect the value of

CRT if the remaining 7 factors are chosen as above. The other 3 factors that do not

appear in the above model can be set based on other considerations.

2.6 Conclusions

In this work, we propose a framework and approach to analyze a system of pages

that relate to the conversion of interest based on the concept of conversion funnels.

Directed graph is used to represent the system and identify all the conversion funnels.

Fractional factorial design is used to conduct the experiment. An analysis strategy

consists of modeling the conversion rate of each funnel separately and putting them

together in the total conversion rate to do optimization.

Compared with traditional analysis strategies, funnel testing will help understand

the structure of the conversion system better through the directed graph represen-

tation. For conversion funnels with many pages, traditional method can only study

one page at a time. Multiple experiments have to be conducted in order to optimize

such conversion. With funnel testing, users can analyze all the pages in a conver-

sion funnel in one experiment. With a good choice of fractional factorial design, this
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will save a significant amount of effort in experiment. Like the simulated example,

conversion systems can become extremely complicated with multiple conversions. In

traditional method, each conversion is studied separately. The overall optimality of

the system can hardly be achieved. In funnel testing, we consider the total conversion

of the system in the optimization procedure. The maximal total conversion rate is

guaranteed with the proposed method.

So far the analysis strategy is developed in the context of specific examples. But

the underlying ideas are general. It is our plan to further develop this framework

into a general methodology, and address the issues of graph theory and design of

experiment.
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CHAPTER III

UNCERTAINTY QUANTIFICATION OF SOLAR

DIFFUSE IRRADIATION ON INCLINED SURFACES

FOR BUILDING ENERGY SIMULATION

3.1 Introduction

Over the last four decades, scientists and engineers have made significant progress

in building energy simulation. Complex buildings now can be described with com-

putational models that simulate realistic performance such as energy consumption.

The role of simulation has been firmly established in the architecture, engineering

and construction industry. It is used to inform decisions at scales as large as national

energy policy measures and as small as the selection of shading devices of a residen-

tial house. Questions about the accuracy of computational models to support such

decisions have given rise to attempts to quantify the uncertainty in their outcomes.

Based on an appropriately quantified uncertainty, one will be able to decide what

level of confidence in the simulation results is warranted.

The concept of uncertainty is not unfamiliar to building performance modelling

and simulation. It has been introduced since the early 1980s when most efforts were

dedicated to model development and validation. One of the best known projects

was the Building Energy Simulation Test (BESTEST) (Judkoff et al. 1983) in which

uncertainties of model input parameters were regarded as the major sources that com-

plicated model validation. Although uncertainty was acknowledged in this project,

BESTEST did not confront the inherent complexity of uncertainties. In stead, it

emphasized the control of uncertainty up front so that uncertainty could be neglected

in subsequent analysis. Uncertainties with respect to model input parameters were
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addressed directly in the PASSYS project (PASsive Solar Components and SYStems

Testing). PASSYS adopted sensitivity analysis (SA) techniques in the model vali-

dation process (Strachan 1993) because SA can tell the relationships between model

inputs and outputs that otherwise are not apparent for a complicated engineering

model. However, uncertainty quantification (UQ) of simulation results did not ap-

pear in model application contexts, such as for energy-efficient building design, before

the 2000s. Some of the pioneers include Macdonald and Strachan (2001) who incor-

porated the UQ into ESP-r, which is the leading building simulation tool in Europe,

and analysed the effect of uncertainty over building design process. In 2002, De Wit

and Augenbroe (2002) initiated the integration of UQ with risk analysis in a decision-

making context. This study showed how a different decision would have been made

for choosing between design alternatives if the decision maker were informed about

uncertainties in the predictions. More recent work by Heo et al. (2013) extended the

application of UQ to the support of risk-conscious decision making in building design

and retrofit when decisions are driven by return on investment expectations, or when

energy savings guarantees are part of a performance contract.

A widely accepted definition of uncertainty was given by Walker et al. (2003),

who defined uncertainty as “being any deviation from the unachievable ideal of com-

pletely deterministic knowledge of the relevant system.” When models are used to

predict building energy consumption at its design stage, the predictions differ from

true values for a variety of reasons. First of all, key model inputs such as weather con-

ditions, building material properties, and operation schedules are usually not known

with certainty or are subject to changes in real operation conditions. Another source

of discrepancy is in the process of solving the mathematical models with numerical

methods, which is strictly the concern of verification. Besides, inevitable errors in

the measurements and (in most cases) the uncontrollability of the experiment pro-

hibit us from observing the true values. Furthermore, models by definition ignore to
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some degree, and in almost all cases simplify the physical processes of the real word.

Model discrepancy associated with ignorance and simplification is called model form

uncertainty (Oberkampf and Roy 2010). Other factors that account for discrepan-

cies between model predictions and physical measurements include human errors in

preparing the inputs and processing the outputs. We typically refer to them as mod-

eller’s bias or error.

The UQ of model input parameters is relatively straightforward because inputs

by definition are observable quantities, such as thermal conductivity of a certain type

of brick. Once sufficient data are collected, the uncertainty in these input parameters

can be characterized by probabilistic distributions (e.g., normal distribution) with

standard statistical methods (Bedford and Cooke 2001). UQ could become difficult

if the parameters are time series or if correlations are apparent among parameters.

One example is the uncertainty in weather conditions. A recent paper by Lee et

al. (2012) proposes to characterize uncertainty in the weather variables with a vec-

tor auto-regressive process and introduces algorithms to generate stochastic weather

from historical meteorological years. Methods are also well established to propagate

uncertainties from model input parameters to the outcomes. For example, sample-

based methods are extensively used for parameter uncertainty propagation through

complex engineering models (Helton and Davis 2003). This approach first draws

samples of uncertain model inputs from their distributions; each sample is then used

as input into the model to obtain one realization of a model prediction; consequent

uncertainties of model predictions are quantified by aggregating these realizations.

Moreover, the model itself is inherently inaccurate, i.e., a simulation result de-

livers a biased view of reality even if the values of the model input parameters are

assigned the true values. Because the bias in the predicted quantities cannot be ex-

actly known, its existence leads to uncertainty in the predictions. We identify this

type of uncertainty as model form uncertainty, which is also referred to as “model
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structural uncertainty” or “model uncertainty” in short. Model form UQ that esti-

mates model bias (also referred to as “model discrepancy”) is a thorny problem for

the modelling and simulation community (Cooke 2013, NRC 2012) despite a large

methodology investment from the nuclear research sector (Oberkampf et al. 2003,

Helton et al. 2012, Roy and Oberkampf 2011). According to the definition of un-

certainty by Walker et al. (2003), a comprehensive UQ must assess all origins of

uncertainty to give a full reflection of model prediction uncertainty. As for building

energy simulation, model form UQ, has not yet received enough attention. Therefore,

the authors are motivated by the assumption that model bias might be an important

contributor to the overall discrepancy between the predicted and the actual use of

energy by a building.

The distinction between model from uncertainty and parameter uncertainty is

meaningful only if a modelling system has been specified. A computational model

can be represented as a function f(•) that maps an input vector X = (x1, . . . , xq) into

an output y = f(X). Uncertainty in X is defined as parameter uncertainty, whereas

uncertainty in the function f(•) is defined as model form uncertainty. The difference

between these two types of uncertainty is clear yet can be blurred or miscommunicated

if the function and the input parameter space have not been specified. In particular,

model form uncertainty in one modelling system could be the parameter uncertainty

in another modelling system or vice versa. For example, air infiltration is one of

many physical processes involved in modelling a full energy system of buildings. If

the full building energy system accounts for the effect of air infiltration through a

prescribed manner as one element of the input vector X, e.g., hourly infiltration rate,

the uncertainty of the infiltration rate is purely parameter uncertainty. In contrast, air

infiltration itself may form a subsystem, which is explicitly modelled as a function g(•)

with a subset of input parameters such as leakage area of exterior walls. Regarding

the second building energy system, the uncertainty of infiltration rate thus results
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from not only the parameter uncertainty of the leakage area but also the model form

uncertainty of the function g(•).

For complex systems such as buildings, model form UQ at the full system scale is

intractable. This is primarily caused by the difficulties in gathering high-quality data

in terms of both model input parameters and model outputs. An effective way of

conducting UQ for complex systems is to develop a hierarchical structure that breaks

down a complex system into subsystems and then into units. In current dynamic

building simulation software, such hierarchy is indeed the structure of the models on

which the tools are based. For example, EnergyPlus (EnergyPlus 2012) is a collection

of modules that work together to calculate the final outcomes. Each module performs

a specific function that touches only relatively few physical processes. For instance,

the calculation of solar irradiation on building surfaces deploys sky models formulated

by a set of algebraic equations whose outcomes affect the boundary conditions of other

modules. Fortunately, at the module scale we can in many cases collect high quality

physical observations. Hence, UQ of the building energy model should exploit this

hierarchical composition, focusing first on the lowest-level components and moving

successively to more complex levels.

The research methods for model form UQ fall in the domain of statistical infer-

ence. Recent approaches for model form UQ are categorized into two groups, i.e., a

classical frequentist approach (Oberkampf and Roy 2010, Hills and Dowding 2008)

and Bayesian approach (Kennedy and O’Hagan 2001, Qian and Wu 2008, Chen et al.

2008). The former draws probability distributions of model bias based on statistical

data analysis, whilst the latter assumes that a modeller has prior knowledge about

the model bias. The experimental data are then used to update the prior distribu-

tions and obtain posterior distributions. An extensive discussion and comparison of

the two approaches can be found in Hills et al. (2008). In general, when there is

sufficient data available the two approaches will converge to the same result (Bedford
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and Cooke 2001). This paper uses the frequentist approach for model form UQ in

subsystems or units not only because sufficient data are typically attainable at these

levels, but also because the frequentist approach is firmly established in the building

domain and relatively easier to use than the Bayesian approach.

In this paper, we introduce a generic framework for the quantification of model

form uncertainty based on physical observations in section 3.2. In section 3.3, we

demonstrate this framework in the UQ of the well-known sky model developed by

Perez et al. (1990), which predicts solar diffuse irradiation on inclined surfaces. We

choose the Perez model as the case study for two reasons. First, a number of studies

have shown that this model performs adequately in some circumstances (Loutzen-

hiser et al. 2007), yet exhibits noticeable discrepancies in other circumstances (Diez-

Mediavilla et al. 2005). Second, although solar irradiation is one of the most im-

portant boundary conditions for many components in the building model, we have

not seen an effective approach that quantifies the model uncertainty, with the goal

to improve the predictions given by the Perez 1990 model. In section 3.4, we explore

the effect of model form uncertainty on the energy predictions obtained with whole

building simulations. Section 3.5 presents some final observations.

3.2 Approach

Statistical inference for model form uncertainty quantification is based on the ob-

servations of model inadequacy under the conditions specified by the model input

parameters. Because the estimate of model inadequacy falls in the category of model

validation, model form UQ and validation are inherently interrelated. A discussion

about their relationship can be found in a recent report (NRC 2012). In contrast to

model validation that evaluates model validity for the experimental test conditions

(referred to as samples), model form UQ is concerned with model predicative capa-

bility for samples that are not, or have yet to become, observable. This leads to the
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important foundation for the development used in this study, that model validation

results are used as the observations based on which model discrepancy and the associ-

ated uncertainty for new application samples is statistically inferred. This is explored

in detail below.

Let η(u) be the output of a computational model when the variable inputs take

values u = (u1, . . . , uk). Model discrepancy refers to the difference between η(u) and

the true value (but unknown) T under the conditions specified by u (ASME 2009).

Let us consider physical observations yobs that approximate the true value T . In this

paper, we regard η as a deterministic model, i.e., η(u) has a fixed value for a given

u. We can now relate model form uncertainty diff(u, v) to the simulation model

outcome η(u), and the physical observations yobs in the following equation:

diff(u, v) = yobs − η(u). (29)

Note that we have added a new as yet undefined variable v to the expression of

the model form uncertainty. This is motivated by the fact that the new variable v is

necessary if model discrepancy displays significant correlations with some other (un-

detected) variables. Typically, adding new variables needs a better understanding of

the shortcoming of the model at hand but relies on an effective method for physical

experimental designs. As a result, adding new variables will lead to better represen-

tation of the model inadequacy and eventually enhance model predicative capability.

We take this formulation of model form uncertainty not only for computational con-

venience but also because the results of diff(u, v) are easy to interpret since they

relate to the same physical units as the model outputs. In fact, the assessment of is

only an intermediate step. As suggested by (29) the model output will be modified

by diff(u, v) , so that the modified results η(u) + diff(u, v) will approach yobs.

It is also worthy of mentioning the authors’ earlier work in which yobs is replaced by

model outcomes obtained with a high fidelity model. An application of this approach

is shown in (Sun et al. 2014) for the UQ of building microclimate variables. This
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method presumes the existence of a high fidelity model whose model inadequacy is

of secondary order in comparison with that of the low fidelity model under study.

Given the features of building simulation, we found it was useful to explore the high

fidelity model as an option to quantify the model form UQ of the low fidelity model.

As aforementioned, a complete building energy model consists of many submodels.

A submodel that has a reduced order implementation in the building energy model

could also exist in a higher order implementation, e.g. to deliver the primary quantity

of interest in another domain. For example, Sun et al. (2014) used a high-order

meteorological model as the high fidelity model to quantify the uncertainty in a

reduced order model of building microclimate. The key difference in two models was

the fact that the reduced order model ignored the urban heat island (UHI) effect.

If a high fidelity model does not exist or yobs is readily accessible, we turn to

the approach that is the focus of this paper. Model form UQ based on physical

observations can be summarised by the six steps as follows:

Step 1. Specify the computational model of interest,

Step 2. Obtain physical observations and assess measurement errors,

Step 3. Provide statistical evidence for model inadequacy,

Step 4. Develop a statistical model from the training data,

Step 5. Assess the predictive capability of this statistical model using validation data,

Step 6. Update the original computational model and quantify the uncertainties in

its predictions.

We demonstrate the six steps in the uncertainty quantification of Perez model in

the next section.
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3.3 Uncertainty Quantification of the Perez Model

In building energy models, solar irradiation appears in the boundary condition of

external building surfaces. In case of transparent external surfaces it also appears in

the boundary conditions of internal surfaces. In rare cases, solar irradiation is directly

measured for the orientation and tilt of every surface that appears in a model. In

most current building energy studies this is not the case, hence it is derived from other

directly measured quantities and sky condition parameters. The global irradiation on

tilted surfaces is calculated by the summation of three components as follows:

Isg = Ibn cosα + Isd + Isr ,

where Isg is the global solar irradiation on a tilted surface with tilt angle S, Ibn is

the direct normal irradiation, α is the solar incident angle on the surface, and Isd

is the diffuse solar irradiation on the tilted surface, and Isr is the ground reflected

irradiation.

Different models were developed to derive solar irradiation on surfaces with any tilt

angle and orientation from data for horizontal surfaces. Among the three components,

calculating the direct irradiation is purely geometric and thus straightforward and

identical among the models. With respect to the ground reflected irradiation, most

studies adopt the isotropic assumption with which the ground reflected irradiation is

estimated from the following equation:

Isr = ρ
1− cos s

s
, (30)

where ρ is the ground albedo. The main difference between the models lies in the

way of modelling the sky diffuse irradiation component. The model of sky diffuse

irradiation started from the simple isotropic sky model assumptions (Liu and Jordan

1961), and gradually transformed into anisotropic models advanced by Gueymard

(1987), Perez et al. (1990), and Muneer (2004). An extensive literature review of
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such models and their comparison can be found in (Noorian et al. 2008, Gueymard

1987). Among the different models, the most notable one was developed by Perez

et al. (1990), as evidenced by its wide application in solar engineering (Yang et al.

2007) and building energy simulation software such as EnergyPlus (2012). We refer

to this particular model as the Perez model in this paper. Although the core of

the Perez model pertains to the modelling of the sky diffuse component, the model

performance is commonly evaluated for the global irradiation on tilted surfaces (Perez

et al. 1990, Gueymard 2009). Thus, the ground reflected component calculated from

(30) is regarded as an integral part of the broad Perez model. To be consistent with

previous studies including Perez’s own work, we quantify the uncertainty of the Perez

model in predicting the global solar irradiation on tilted surfaces.

3.3.1 Perez Model Description

This section offers a brief overview of the Perez model (Perez et al. 1990) in terms

of modelling the sky diffuse irradiation. It postulates a simplified sky representation,

in which the sky hemisphere is composed of a circumsolar disc and horizon band

on an isotropic background. Each element has a parametric representation of solar

irradiation with multiple coefficients, whose values were obtained through statistical

regression analysis. Figure 10 shows its input-to-output relationship. The Perez

model takes horizontal solar irradiation Ih, direct normal solar irradiation I, solar

azimuth angle θ, solar altitude angle ϕ, surface tilt angle S, and surface azimuth

angle ψ as input variables. It calculates diffuse solar irradiation from the sky horizon

band Ihorizon, the sky dome Idome, the circumsolar region Icircumsolar, and total diffuse

irradiation from the sky Isky, the latter being the summation of the three components.
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Figure 10: Input-to-output Relationship, Perez (1990) Sky Irradiation Model.

3.3.2 Experimental Data

We obtained detailed measurement data from a station of Solar Radiation Monitor-

ing Laboratory (SRML) in Eugene, Oregon. The data include simultaneous measure-

ments of (1) global solar irradiation on horizontal surfaces, (2) diffuse solar irradiation

on horizontal surfaces, (3) direct normal solar irradiation, (4) ground reflected solar

irradiation, (5) global solar irradiation on south tilted surfaces at 30◦, 45◦, and 90◦,

and (6) global solar irradiation on a north vertical surface. Global solar irradiation

(i.e., the sum of direct and diffuse) is measured with the Eppley Precision Spectral

Pyranometer (PSP). Diffuse solar irradiation is measured with the shaded Eppley

PSE with automatic trackers. Direct normal is measured with Eppley Normal Inci-

dent Pyrheliometer (NIP). The ground reflected solar irradiation is measured with the

Eppley PSP facing the ground. All devices are yearly calibrated. Table 16 provides

an overview of the specifications of the instruments.

The data were collected in 2011 at 5 minute intervals. Before we conduct the

analysis, we first derive hourly measurements from the raw data. The hourly aggre-

gation reduces the short-term variation of the measurements attributable to small

cloud variations and random errors form instrument measurements. Hourly data also
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Table 16: Specifications of Instruments.

Instrument Specifications

Eppley PSP
Cosine Response: ±1% from normalization 0-70◦ zenith
angle; ±3% 70-80◦ zenith angle.
Accuracy : The absolute accuracy of calibration is about
±3-4%. The relative accuracy of calibration is about
±2%.

Eppley NIP Accuracy : The absolute accuracy of calibration is about
±2%. The relative accuracy of calibration is about±1%.

matches with the temporal resolution of weather variables used for building simula-

tion such as EnergyPlus (EnergyPlus 2012). We ignored measurements that are less

than 50W globally on a horizontal surface because measurements of low solar irradia-

tion are often subject to high measurement error (Reda 2011). Model inputs for solar

angles θ and ϕ are computed according to the ASHRAE Handbook of Fundamentals

(ASHRAE 2009). Uncertainties in the angles are very minimal and are hence ignored.

There is a need to detect systematic measurement errors before performing the

UQ. Undoubtedly, undetected systematic measurement errors will contaminate the

entire UQ results. In our case, we compare three independent measurements on

horizontal surfaces to estimate the quality of the measurements. In principle, the

following equation holds:

Ihg = Ibn cosα + Ihd , (31)

where Ihg is the global solar irradiation on horizontal surface, and Ihd diffuse solar

irradiation on horizontal surface. For horizontal surfaces, every element in (31) ex-

cept α, which is computed with minimum uncertainty, is directly measured. Figure

11 compares the two sides of (31) and depicts the comparisons and linear regression

analysis. It shows that direct measurements of global horizontal irradiance match

well with the calculations from the beam and diffuse horizontal irradiance compo-

nents. As suggested by the regression equation, the average difference between the

62



directly measured horizontal global irradiation and that calculated by diffuse and

direct components is 5.13 W/m2, which equals to 1.5% of the average global irra-

diation. Therefore, systematic errors in the measurements are not significant. The

major measurement errors are attributed to random errors.

Figure 11: Direct Measured and Derived Global Horizontal Irradiation from Two
Components.

3.3.3 Statistical Evidence for Model Inadequacy

We measure the discrepancies between the model predictions and measurements by

the two following statistical indicators: Mean Bias Error (MBE) and Root Mean
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Square Error (RMSE):

MBE =

N∑
i=1

(yi − ŷi)

N
,

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2,

where yi is the ith measurement, ŷi is the ith model prediction, and N is the total

number of observations.

Perez (1990, p. 12) claimed that his model is location independent. However,

multiple sources in the literature show that the model performance is not uniform

across various locations. Many researchers have studied the Perez model, and used

their own measurements to compare with the predictions from the Perez model. We

collected the results from nine different researchers (Noorian et al. 2008, Utrillas et

al. 1991, Diez-Mediavilla et al. 2005, Evseev and Kudish 2009, Igawa et al. 2004,

Gueymard 2009, David et al. 2013, Loutzenhiser et al. 2007, Kambezidis et al. 1994),

each with one or multiple studies (with different surface orientations and/or different

surface tilt angels) conducted in distinct locations. We also used the Eugene data

mentioned above and Perez’s own results. In total we have data from eleven different

sources. Among these studies, the effect of ground reflected irradiation has been

considered in two ways. Noorian et al. (2008), Utrillas et al. (1991), and Igawa et al.

(2004) used artificial horizons to protect the pyranometers against ground reflection,

which is called Group I in our analysis. The rest of the researchers calculated the

ground reflected irradiation from the isotropic model given by (30), which is called

Group II. To examine the effect of ground reflected irradiation, we shall compare

Perez results with Group I and II separately.

The box-plot of the percent MBE and RMSE of global solar irradiation on tilted

surfaces for each location is given in Figure 12. The left three plots are from Group

I; the 4th one in the middle is from Perez (1990); and the right seven plots are from
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the Group II. As we compare the results from Perez (1990) with those from Group

I and Group II, we notice a significant fluctuation of the mean value (the black bar

in the middle of the box) across locations for both MBE and RMSE. Since the box’

in the box-plot represents the middle half of the data range, the length of the box’ is

a measure of variation within a location. We found that, for locations with multiple

data points, their within-location variations are quite large, and the magnitudes of

the variations fluctuate. After omitting the plot where there is only one data point

per location, the smallest variation with respect to MBE is found in the Perez data.

As for the RMSE, the variation of the Perez results is comparable with location 6

(Tokyo, Japan) and 10 (Athens, Greece), yet significantly smaller than the rest. With

this collection of evidence, the location independence claim of Perez (1990) is cast in

doubt.

Among these data, the discrepancy values reported in Perez (1990) are, by and

large, smaller than those reported by other researchers. To systematically quantify

the difference, a Wilcoxon rank-sum test (Wilcoxon 1945) was used. It is the nonpara-

metric version of the t-test. Both methods are commonly used to compare whether

samples from two populations differ significantly from each other. The details about

the basic statistics is referred to Chapter 5 of Wilcox (2012). The first two samples,

i.e., Perez’ data and Group I data, are found to be significantly different using the

Wilcoxon rank-sum test with a p value of 0.001 for MBE and 0.025 for RMSE. The

second two samples, i.e., Perez’ data and Group II data, are also found to be signif-

icantly different in terms of MBE with a p value of 0.046. Additionally, the use of

the t-test gives the same conclusion. Thus, we claim that the data used by Perez to

develop the model is not representative and may contain bias.

Having observed the location dependency of the model and the possible bias in

Perez’ results, we now focus on the Eugene data. First, we present in Table 17 the

MBE and RMSE of the global solar irradiation on four different surfaces indicated by
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Figure 12: The Absolute MBE and RMSE of Global Solar Irradiation Predicted by
the Perez Model at Different Sites.

orientation and tilt angle, in their original units as well as the percentage to the av-

eraged measurements. It clearly shows that the Perez model over-predicts in all four

cases, especially for vertical surfaces. Figure 13 compares measured global solar irra-

diation with Perez predictions on south vertical and north vertical surfaces. It shows

that a number of model predictions are higher than measurements. MBE observed

on south and north vertical surfaces are -32 W/m2 and -15 W/m2, respectively. The

results also show considerable RMSE on the two vertical surfaces, i.e., 22% and 37%

for south and north surfaces. Such discrepancies need to be quantified statistically to

improve the prediction of the Perez model.
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Figure 13: Measured and Predicted Global Irradiation on Two Vertical Surfaces.

Table 17: Average Annual Errors of the Perez Model in the Calculation of the Global
Solar Irradiation on Four Tilted Surfaces.

30◦ South 45◦ South 90◦ South 90◦ North
Average (W/m2) 396 391 210 67
MBE (W/m2) -12 -5 -32 -15
MBE (%) -3% -1% -15% -22%
RMSE (W/m2) 47 41 47 25
RMSE (%) 12% 10% 22% 37%

3.3.4 Model Form Uncertainty Quantification

In order to quantify the model uncertainty, we need to build a statistical adjustment

to the prediction discrepancies from the Perez model using the Eugene data. The

candidate parameters to be used in the adjustment model are the 10 intermediate

parameters of the Perez model. They are solar zenith angle, solar azimuth angle, sky

brightness factor, sky clearness factor, direct normal irradiation, diffuse horizontal

irradiation, global horizontal irradiation, surface tilt angle, surface azimuth angle,

and solar incident angle. They are screened by using scatter plots. We plot the

prediction discrepancies against the candidate parameters, and check whether the

plots display significant patterns. Among the 10 such plots, only four (solar azimuth
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θ, sky brightness factor ∆, direct normal solar irradiation I, and surface tilt angle S)

show some systematic patterns. The corresponding scatter plots are given in Figure

14. The plot for the solar azimuth shows a decreasing trend. For sky brightness

factor and direct normal solar irradiation, we observe a funnel shape in the plots.

This indicates that the variance of diff decreases with ∆ and increases with I.

The surface tilt angle S is known to be an important parameter in previous works,

including Perez (1990). The trend line in this plot shows a negative slope.

Figure 14: Model Prediction Discrepancies against Solar Azimuth, Sky brightness,
Direct Normal Solar Irradiation, and Surface Tilt Angle.

The whole year’s data are divided into two disjoint parts: the training part and

the validation part. The latter consists of four half-months’ observations in January,

March, June, and September. Both datasets cover a reasonably complete range of

solar angles and sky conditions, so that any potential bias or extrapolation errors can
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be mitigated.

We use a two-phase regression to construct the adjustment model. Because it

has to meet the zero discrepancy constraint on horizontal surfaces (when S = 0), we

consider a polynomial regression model (Wu and Hamada 2009) in S without constant

term. Only the linear and quadratic effects are found to be significant. Therefore, we

obtain the following model for the first phase:

diff(•) = f1S + f2S
2 + ϵ,

where diff(•) is a function mapping inputs into an output.

In the second phase, we fit the coefficients f1 and f2 as linear functions of the other

three parameters ∆, θ and I. By using a stepwise regression to select parameters, we

obtain the following model:

diff(•) = (c1I + c2θ + c3∆)S + (c4θ + c5∆)S2 + ϵ. (32)

All the coefficients in (32) are significant with p values < 10−13. Although the R2

value is only 0.504, it is acceptable because there are various sources of measurement

errors present in the data. Ordinary residual diagnostics were performed to verify

the goodness of fit of the model. The residual plot shows a random pattern and the

QQ plot almost forms a 45-degree line. So the fitted linear model appears to be quite

good. We have now found a reasonably good adjustment for the Perez model for the

Eugene data. We call the sum of the Perez prediction and the fitted regression model

in (32), the modified Perez model.

3.3.5 Model Validation

In this section we validate the diff(•) model developed above on the validation

dataset, which consists of four half-months’ observations in December, March, June,

and September. Table 18 compares the modified Perez model to the original Perez in

terms of MBE and RMSE. The results show a substantial improvement in predicting
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global solar irradiation on tilted surfaces. The new model reduces the MBE by more

than 50% for every test surface. For example, for south vertical surface, it decreases

from -33W/m2 to -11W/m2, and on north vertical surface, it reduces from -15W/m2

to 8 W/m2. In terms of RMSE, the modified Perez model also shows a significant

improvement. Particularly for the south vertical surface, the RMSE is reduced by over

40% from 46W/m2 to 28W/m2. Moreoever, the modified model does not consistantly

overpredict. From the energy balance perspective, the modified model promises a

more reliable prediction as it avoids significant amounts of overpredictions of solar

irradiation on building envelops stemming from Perez model inadequacy. Although

the variable selection results indicate that surface azimuth is an insignificant factor

of the Perez model discrepancy, we will investigate this result by collecting data on

east- and west-facing surfaces in a future study.

3.3.6 Prediction of the Modified Perez Model and Uncertainty Quantifi-
cation

In Table 18, the two-phase regression model diff(•) shows its capability of correcting

the bias in predicting the mean of solar irradiation on tilted surfaces. New predictions

are then simply obtained by the addition of original computational model outcomes

from Perez, i.e., η(u) and that from the adjustment regression model, i.e., diff(u, v).

We can also construct the confidence intervals to estimate the uncertainties in new

predictions from the linear regression model (Seber and Lee 2012).

We take two days (June 1 and 2, 2011) from the validation dataset to illustrate the

prediction capability of diff(•) and the UQ for the 90◦ south-facing surface at each

hour. Each day contains ten hours of values when the surface is exposed to the sun.

We first compare the physical observations yobs, with Perez model predictions yPerez,

and illustrate the results in Figure 15a. This figure shows that Perez model yields

higher predictions at 18 out of the 20 points than the measurements whereas the

maximum model discrepancy appears at around 12:00. The differences, i.e., yobs −
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yPerez, will then become the physical observations on which diff(•) will predict.

Figure 15b illustrates yobs − yPerez, predictions of diff(•), and a 95% confidence

interval. It shows that the 95% confidence interval well covers the hourly variation of

yobs − yPerez. Therefore, we will use diff(•) to quantify the prediction uncertainties

given by the original Perez model.

Figure 15: Results on a South-Facing Vertical Surface at Hourly Intervals over Two
Days (June 1 and 2, 2011): (a) Perez Predictions, yPerez, and Physical Observations,
yobs, and (b) Prediction of diff(•) and 95% Confidence Interval.

Uncertainties that are indicated by the confidence interval come from two major

sources: the random errors in the measurements and the remaining model bias not

captured by diff(•). The model form uncertainties in the predictions are thus re-

ducible if measurement errors decrease or if more experimental data are added. The
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remaining model bias can also reduce if additional variables (as explained earlier,

these variables will be part of v) are detected to be significant and are then added to

the diff(•) model in a sufficient manner.

3.4 The Effect of Model Form Uncertainty on Building En-
ergy Simulations

In this section, we study the effect of the Perez model uncertainty on the overall

uncertainty of whole-building energy predictions.

3.4.1 Case Study Description

We implement the Perez model uncertainty (PMU) on the basis of EnergyPlus V7.0.0

(EnergyPlus for short) through the modification of its source code. The modified

EnergyPlus tool, which is denoted with “EnergyPlusPMU”, has the option of choosing

between the original Perez and the modified Perez as the algorithm for the calculation

of solar irradiation on tilted surfaces. Therefore, we can study the effect of the model

uncertainty of Perez by running simulations in EnergyPlus and EnergyPlusPMU with

the same model inputs. The differences in their simulation results are thus attributed

to the model form uncertainty, i.e., the addition of diff(•) in the solar irradiance

calculation model of EnergyPlusPMU.

As for the selection of buildings, we chose the small and large office reference build-

ings that are developed by the Department of Energy in the US (Deru et al. 2011).

EnergyPlus models for these reference buildings are well scrutinized and widely used

for building energy efficiency analysis. The EnergyPlus input files can be downloaded

from (DoE, 2013). Details about the buildings are also found in (DoE, 2013). The

reasons we chose reference buildings are twofold: (1) using reference buildings allows

others to reproduce the results reported in this paper and (2) using these models not

only reduce our modelling effort, but the quality of the models is guaranteed with

minimum modeller’s bias. We use two buildings to test how the effect of model form
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uncertainty may differ for two office buildings of different size.

To show the effect of model form uncertainty in the presence of input parameter

uncertainties, we shall conduct the traditional uncertainty quantification of model

input parameters. By doing so, we investigate the effect of model form uncertainty

not at one fixed combination of all other input parameters but explore its effect on

all possible combinations of parameter values with the uncertainty range established

for them in a UQ repository (Sun et al. 2013, Lee et al. 2013) and other sources

used in this study. For example, we quantify the uncertainties in microclimate vari-

ables (Sun et al. 2014), convective heat transfer coefficients (Palyvos 2008), material

properties (Macdonald 2002, Domnguez-Muoz et al. 2010), infiltration rate (Wang

et al. 2014) etc. Parameter uncertainties are explored using 500 samples with Latin

Hypercube Sampling (LHS) technique (Wyss and Jorgensen 1998), and are propa-

gated in the Georgia Tech Uncertainty and Risk Analysis Workbench (GURA-W) to

obtain building energy predictions. This GURA-W is a software environment that

automates the processes of parameter sampling, uncertainty quantification and un-

certainty analysis (Lee et al. 2013). Its UQ repository characterizes the different

sources of uncertainties and is thus a convenient starting point for a building energy

uncertainty quantification study. Given the 500 samples, we run two sets of simu-

lations in parallel with the Perez and the Modified Perez model in EnergyPlus and

EnergyPlusPMU, respectively. All simulations are conducted using the TMY data for

the Oregon location.

3.4.2 Results and Discussions

This section describes the effect of Perez model form uncertainty on the prediction of

annual total cooling electricity use and heating natural gas use separately. We first

use the results from 500 LHS samples to construct the empirical cumulative density
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functions (CDF) that describe the uncertainty in building energy prediction. We pre-

fer CDF to probabilistic density functions (PDF) because CDFs can directly answer

a question such as “how likely is it that the building energy consumption is small or

smaller?” The empirical CDF obtained from using the original Perez model is com-

pared with that obtained from using the modified Perez model. We plot the annual

cooling CDFs in Figure 16. The modified Perez shifts cooling distributions from the

original Perez. The results suggest that two CDFs for cooling energy consumption

significantly differ from each other for both small and large office. Taking the small

office as an example, using the original Perez model suggests that there is a 26%

chance for this building to use 3000 kWh or less electricity for cooling. For identi-

cal uncertainties in input parameters in both models, this probability will increase

to 33% if Perez model uncertainty is considered. We found that the modified Perez

model does however not significantly modify the distribution of heating natural gas

consumption because heating loads usually occurs at hours when there are less solar

gains.

Figure 16: Annul Total Cooling Electricity Consumption Predicted from the Use of
the Original and the Modified Perez Model.

If we compare the overall results we conclude that, compared with the effect of

parameter uncertainties, the effect of combining them with the model form uncer-

tainty of the Perez model is not evident from the previous analysis. We therefore
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compute the sample-paired differences of 500 samples in both the cooling and heat-

ing energy consumption. Two samples are treated as a pair if the only difference

between them is from the calculation of solar diffuses irradiation on tilted surfaces,

i.e., one uses original Perez model and the other uses the modified Perez model. In

a paired comparison design, we can calculate the effect of model form uncertainty,

i.e., diff(•), while eliminating the source of variation due to the variability in model

input parameters. The details of this type of experiment design can be found in Wu

and Hamada’s book (2009). We compute the effect of diff(•) as a percentage by the

following equation:

Ediff (%) =
yModifiedPerez − yPerez

yPerez

× 100%,

where Ediff is the effect of diff(•) on building energy predictions, yModifiedPerez is

the energy predictions using the modified Perez model in EnergyPlusPMU, and yPerez

is the energy predictions using the original Perez model in EnergyPlus.

Because we have 500 pairs, we can plot the empirical CDFs, showing the global

effect of the modified Perez model. Figure 17 illustrates Ediff of cooling and heating

energy prediction for both the small and the large office. The mean and the corre-

sponding cumulative probability are also shown in the figure. The effect of model

uncertainty on both cooling and heating energy use is apparent when analysed with

the paired comparison design. As for cooling electricity consumption, the uncertainty

in the Perez model causes an average of overestimate by 2.76% for the small office

and by 1.36% for the large office. Depending on the values of the other uncertain

input parameters, this effect can vary by an additional ±1%. By comparing the two

building cases, we see that the degree of the effects changes from one building to an-

other. Whereas the small office building’s cooling need is dominated by solar gains,

the large office building has only a moderate level of solar gains compared to the

total cooling load. This explains the difference in the influence of the improved solar

diffuse radiation calculation for the two buildings.
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Figure 17: Sample-Paired Analysis for Cooling Electricity Use and Heating Natural
Gas Use.

As for the heating natural gas consumption, the Perez model form uncertainty

leads to a slight overestimate of the average by 0.15% for the small office and by 1.08%

for the large office. Although the mean of the effect is less evident than that on the

cooling, its variation is still obvious. For example, at certain combination of the other

uncertain input parameters, the effect on heating can be as large as -3%. Additionally,

the fact that the model form uncertainty leads to overestimate of heating energy use

seems counterintuitive if we only stay at the level of annual total solar irradiation as

shown in Table 18. Scrutinizing the bias in the Perez model prediction reveals that

the Perez model tends to overestimate solar irradiation on building surfaces in the

afternoon (i.e., solar azimuth θ is positive), but underestimates in the morning (i.e.,

solar azimuth θ is negative). This also can be seen from the plot of solar azimuth
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against the Perez model bias in Figure 14. Because of internal load in the building,

especially for the large office, heating demand appears more often in the morning than

in the afternoon. In other words, the prediction of solar irradiation in the morning

period becomes an important factor of building heating energy use. Therefore, when

the modified Perez corrects this kind of dynamic bias, both heating and cooling energy

predictions become lower than those obtained with the original Perez model. In fact,

this phenomenon shows the significance of quantifying model form uncertainty as a

function instead of through some surrogate input parameters that would attempt to

capture the uncertainty through parameters that remain static through a simulation

run. Model form uncertainty on the other hand varies within each simulation run,

which intrinsically differs from input parameter uncertainty.

Table 18: Model Validation Statistical Results.

30◦ South 45◦ South 90◦ South 90◦ North
Perez Modified Perez Modified Perez Modified Perez Modified
1990 Perez 1990 Perez 1990 Perez 1990 Perez

Average (W/m2) 385 382 210 68
MBE (W/m2) -14 -7 -7 3 -33 -11 -15 8
MBE (%) -4% -2% -2% 1% -16% -5% -21% 11%
RMSE (W/m2) 45 31 39 30 46 28 22 19
RMSE (%) 12% 8% 10% 8% 22% 14% 33% 28%

Lastly, both case studies show statistically significant effects of model form uncer-

tainty in solar irradiation calculations on building energy predictions. Because the

Perez model is just one out of potentially many submodels in a complete building en-

ergy model, it is reasonable to claim that model form uncertainty matters for building

simulation. If the model form uncertainty is addressed at the submodel level where

higher fidelity models and/or sufficient calibration data are typically available, the

overall quantification of prediction uncertainty in building energy consumption can

significantly improve.
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3.5 Conclusions

Model form uncertainty quantification (UQ) is related to model validation but at-

tempts to extend it to the estimation of model inadequacy in new predictions. This

can be accomplished with regression analysis. We developed a general framework for

model form UQ based on physical measurements. This approach has been shown to

be effective at subsystem or unit level where high-quality physical measurements were

attainable. The resulting expression of model form uncertainty can be included in

current building energy software tools, through an “intrusive” (coding and recompi-

lation) method.

The approach was exemplified on the Perez 1990 model, which computes solar irra-

diation on tilted surfaces. Model discrepancies were quantified with a linear regression

model, which not only improves predictions but also estimates the uncertainties in

solar diffuse irradiation on tilted surfaces. As one out of potentially many submodels,

the Perez model form uncertainty showed significance in the context of uncertainty

analysis of building energy simulations in two case studies.

The major conclusion of the work presented in this paper is that model form

uncertainty is integral to the complete UQ of building energy simulation. Only if this

type of uncertainty is effectively characterized, can one get the appropriate level of

confidence in the final simulation results.
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CHAPTER IV

PIG PROCESS: JOINT MODELING OF POINT AND

INTEGRAL RESPONSES IN COMPUTER

EXPERIMENTS

4.1 Introduction

In building energy simulations, estimation of the diffuse component of the solar ir-

radiance on a building façade ID, which appears as the boundary conditions of the

simulations, remains a challenge for building technology researchers. The diffuse irra-

diance iD is scattered in the atmosphere, which is viewed as a sky dome. The diffuse

irradiance on a building façade ID comes from the proportion of the diffuse irradiance

over the sky dome iD this façade is exposed to. For example, a north facing vertical

façade receives the diffuse irradiance of the northern half hemisphere of the sky dome,

and a horizontal surface receives all the diffuse irradiance over the sky dome. Statisti-

cally, we can view the sky dome as a two-dimensional input space D. Then ID can be

regarded as an integral of the diffuse irradiance over the sky dome iD, over the region

R ⊂ D the façade is exposed to, i.e., ID =
∫
R
iD dD. If we can model iD as a function

of the position over the sky dome (x, y) ∈ D, i.e., iD = f(x, y), the diffuse irradiance

on an arbitrary façade ID can be predicted by integrating the function f(x, y) over

the region R of the sky dome the façade is exposed to, i.e., ID =
∫
R
f(x, y) d(x, y).

The question is, whether we can model iD with the integral information ID.

In computer experiments, the computer codes or computer models, are simula-

tions of the real systems. They usually have high-dimensional inputs and require a

substantial amount of computational effort. Statistically, they are viewed as a black
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box function defined on a d-dimensional input space D, which is also called the de-

sign space, with one-dimensional response y, i.e., η : D → R1 and y = η(x) for

x ∈ D. Theoretically, the true function can be obtained by exhaustively evaluating

the computer codes in the design space D, but this is not affordable. Instead, only

a few samples can be obtained and an emulator or surrogate model f(x) is built for

the computer codes η. In traditional computer experiments, only point responses are

used to build the surrogate model. That is, we have the point site input x ∈ D with

the corresponding point response y = η(x), and we want to model η by f(x). Morris

et al. (1993) was the first to propose a model where derivative information about η

can be used to improve the emulator. That is, we have point site input xD with the

corresponding point response y = η(x) as well as the derivatives ∂y
∂xi

= ∂η(x)
∂xi

. They

showed that these two types of information can be combined to build a better model

f(x) for η. Motivated by the example from building energy simulations and the work

by Morris et al. (1993), we consider the case where the computer codes can produce

two types of responses, i.e., for a given point site x ∈ D, we will have y = η(x), and

for a given region R ⊂ D, we will have Y =
∫
R
η(x) dx. Then the question is: whether

we can combine these two types of information to build a better model for η.

In the next section, a joint model for point and integral responses is proposed.

In section 4.3, two examples are given to demonstrate the proposed model and its

potential advantages. In section 4.4, some remarks are given and future research

directions will be discussed.

4.2 PIG Process Model

4.2.1 Point GP, Integral GP and PIG Process Models

In computer experiment, the deterministic point response yP (x) is usually treated as

a realization of a random process YP (x). In this work, we adopt the commonly used

Gaussian process model, which can be represented by its mean function and covariance
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function. To avoid notational ambiguity, we call it the point Gaussian process model

in contrast to the integral Gaussian process model and the point-integral Gaussian

process model introduced later. A generic Gaussian process model can be written as:

YP (x) = µP (x) + ZP (x),

where the mean function µP (x) is usually fitted as a linear regression model µP (x) =∑
j fj(x)βj = fβ, where fj(x)’ s are known regression functions and βj’ s are unknown

regression coefficients. ZP (x) is assumed to be a zero-mean stationary Gaussian

process with covariance function defined as:

KPP (x,w) = Cov(ZP (x), ZP (x)) = σ2kPP (x,w), (33)

where σ2 is the process variance and kPP (x,w) is the correlation. The form of the

covariance function is usually pre-specified and characterized by a vector of unknown

parameters τ . One popular choice is the power exponential correlation function

defined as (Santner et al., 2003):

kPP (x,w) =
∏
i

exp

{
−(xi − wi)

p

2τ 2i

}
for 0 < p ≤ 2, (34)

where xi and wi are the ith entries of x and w respectively, and τi is the unknown

parameter for the ith dimension. For p=2, this is also called the Gaussian correlation

function. Another popular choice is the Matrn correlation function, whose details can

be found in the book by Santer et al. (2003).

For computer experiments with deterministic integral response yI(R), we can treat

it as a realization of another random process YI(R). Recall that the integral response

is produced by aggregating the true function values yP (x) over the specified region R,

i.e., yI(R) =
∫
R
yP (x) dx. If we view yP (x) as a point GP model YP (x), the random

process YI(R), called the integral Gaussian process model, can be written as:

YI(R) =

∫
R

YP (x) dx =

∫
R

µP (x) dx+

∫
R

ZP (x) dx = µI(R) + ZI(R).
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As in the point GP model, the integral GP model is also determined by its mean

function and covariance function. Note that if we assume µP (x) is linear, µI(R) =∫
R
µP (x) dx =

∫
R

∑
j fj(x)βj dx =

∑
j

(∫
R
fj(x) dx

)
)βj is also linear with the same set

of unknown regression coefficients β. ZI(R) is still a zero-mean stationary Gaussian

process with covariance function defined as:

KII(R1, R2) = Cov(ZI(R1), ZI(R2)) = Cov

(∫
R1

ZP (x) dx,

∫
R2

ZP (w) dx

)
=

∫
R1

∫
R2

Cov(ZP (x), ZP (w)) dw dx =

∫
R1

∫
R2

KPP (x,w) dw dx

= σ2

∫
R1

∫
R2

kPP (x,w) dw dx = σ2kII(R1, R2), (35)

where σ2 is the variance of the underlying point GP model Yp(x), and kII(R1, R2) is

called the pseudo-correlation with an abuse of terminology. The variance of ZI(R)

can be calculated as:

V ar(ZI(R)) = Cov(ZI(R), ZI(R)) = σ2kII(R,R).

This implies that the true correlation between ZI(R1) and ZI(R2) is:

Corr(ZI(R1), ZI(R2)) =
Cov(ZI(R1), ZI(R2))√
V ar(ZI(R1))V ar(ZI(R2))

=
kII(R1, R2)√

kII(R1, R1)kII(R2, R2)
.

The covariance functionKII(R1, R2) of the integral GP model is determined by the

covariance function KPP (x,w) of the underlying point GP model. Both covariance

functions share the same set of unknown parameters τ . In fact, both models share the

same unknown parameters: the regression coefficients β, the variance σ2 of the point

GP model and the parameters in the covariance function. By fitting the integral

responses with the integral GP model, the underlying point GP model can also be

inferred. This answers the question proposed in the introduction, namely, whether

we can fit the point response of the true function with the integral information.
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Now suppose the computer experiment can produce both types of deterministic

responses:

f(u)

 yP (u) if u is a point site,

yI(u) if u is a region.

They can be viewed together as a realization of another random process Y (u), denoted

as the point-integral Gaussian process model, or abbreviated as the PIG process

model. The generic expression of the PIG process model can be written as:

Y (u) = µ(u) + Z(u),

where µ(u) =
∑

j Fj(u)βj = Fβ is linear, if we assume the mean function of the

underlying point GP model is linear. The known regression function Fj(u) can be

written as:

Fj(u)

 fj(u) if u is a point site,∫
u
fj(x) dx if u is a region.

Z(u) is a zero-mean stationary Gaussian process with the covariance function defined

as:

K(u1, u2)



KPP (u1, u2) if u1 and u2 are both point sites,

KPI(u1, u2) if u1 is a point site and u2 is a region,

KIP (u1, u2) if u1 is a region and u2 is a point site,

KII(u1, u2) if u1 and u2 are both regions.

The covariance between two point sites and the covariance between two regions are

defined in (33) and (35) respectively. For a point site x and a region R, the covariance

between them is:

KPI(x,R) = Cov(ZP (x), ZI(R)) = Cov

(
ZP (x),

∫
R

ZP (w) dw

)
=

∫
R

Cov(ZP (x), ZP (w)) dw =

∫
R

KPP (x,w) dw

= σ2

∫
R

kPP (x,w) dw = σ2kPI(x,R), (36)
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where σ2 is the variance of the underlying point GP process model, and kP I(x,R) is

called the pseudo-correlation as before. By symmetry, KIP (R, x) = KPI(x,R). The

true correlation between ZP (x) and ZI(R) is:

Corr(ZP (x), ZI(R)) =
Cov(ZP (x), ZI(R))√
V ar(ZP (x))V ar(ZI(R))

=
kPI(x,R)√
kII(R,R)

.

Note that KPI(x,R) is also determined by KPP (x,w). Moreover, as in the integral

GP model, the unknown parameters for the PIG process model are also β, σ2 and

τ . Therefore, by jointly fitting the point and integral responses with the PIG process

model, the underlying point GP model can be inferred.

In section 4.2.2, we shall discuss parameter estimation and prediction by following

the frequentist approach.

4.2.2 Estimation and Prediction

Let the design space of the computer experiment be D. Suppose n1 point sites

{x1, · · · , xn1} and n2 regions {R1, · · · , Rn2} have been evaluated with responses y =(
y(x1), · · · , y(xn1),

∫
R1
y(w) dw, · · · ,

∫
Rn2

y(w) dw
)′

respectively. Note that xi ∈ D

for i ∈ {1, · · · , n1} and Rj ⊂ D for j ∈ {1, · · · , n2}. Let n = n1 + n2. The n × n

covariance matrix K is organized in 2× 2 blocks:

K =

K11 K12

K21 K22

 = σ2

k11 k12

k21 k22

 = σ2k.

Among the four blocks, k11 is the correlation matrix of the n1 point sites:

k11 =



1 kPP (x1, x2) · · · kPP (x1, xn1)

kPP (x2, x1) 1 · · · kPP (x2, xn1)

...
...

. . .
...

kPP (xn1 , x1) kPP (xn1 , x2) · · · 1


,

where kPP (., .) is the correlation function of the underlying point GP model; k12 = k′21

is an n1 × n2 matrix representing the pseudo-correlations between any point site and
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any region:

k12 =



kPI(x1, R1) kPI(x1, R2) · · · kPI(x1, Rn2)

kPI(x2, R1) kPI(x2, R2) · · · kPI(x2, Rn2)

...
...

. . .
...

kPI(xn1 , R1) kPI(xn1 , R2) · · · kPI(xn1 , Rn2)


,

where kPI(., .) is defined in (36). Finally, k22 is the pseudo-correlation matrix of the

n2 regions:

k11 =



kII(R1, R1) kII(R1, R2) · · · kII(R1, Rn2)

kII(R2, R1) kII(R2, R2) · · · kII(R2, Rn2)

...
...

. . .
...

kII(Rn2 , R1) kII(Rn2 , R2) · · · kII(Rn2 , Rn2)


,

where kII(., .) is defined in (35).

By fitting y with the PIG process model, we have y ∼ Nn(Fβ, σ2k). If we assume

the linear regression model consists of m terms, we have its design matrix as:

F =



f1(x1) f2(x1) · · · fm(x1)

...
...

. . .
...

f1(xn1) f2(xn1) · · · fm(xn1)∫
R1
f1(x) dx

∫
R1
f2(x) dx · · ·

∫
R1
fm(x) dx

...
...

. . .
...∫

Rn2
f1(x) dx

∫
Rn2

f2(x) dx · · ·
∫
Rn2

fm(x) dx


.

Suppose the correlation function kPP (x,w) of the underlying point GP model has

the unknown parameters τ . The log-likelihood function, apart from additive and

multiplicative constants, can be written as:

l(β, σ2, τ ) = −n log− log |k(τ )| − 1

σ2
(y − Fβ)′k(τ )−1(y − Fβ).

Given τ , the maximum likelihood estimates of β and σ2 can be derived by solving

the first order conditions of the log-likelihood function and checking its second order
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conditions. After some calculations (Santer et al., 2003), we have

β̂ = (F ′k−1F )−1F k−1y, (37)

which is the generalized least-square estimate of β, and

σ̂2 =
1

n
(y − F β̂)′k−1(y − F β̂). (38)

With β̂ and σ̂2 defined in (37) and (38), the MLEs of τ can be determined by

maximizing the following objective function:

Q(τ ) = l(β̂, σ̂2, τ ) = −n log σ̂2 − log |k(τ )|,

which is usually done by using standard optimization algorithms implemented in

mathematical software such as Matlab. The last step described above usually requires

a considerable amount of computational effort, which depends on the sample sizes n1

and n2, the choice of design regions, dimension of τ and the choice of correlation

function kPP (x,w). With a large number of integrations involved in the calculation

of k, the computational cost of the PIG process model is significantly higher than the

traditional point GP model. In section 4.2.3, we shall introduce a simple specification

of the correlation function kPP (x,w), and derive closed form expressions for kPI(x,R)

and kII(R1, R2), both of which involve integration calculations.

The fitted PIG process model can be used to predict the point response y0 at any

untried site x0 within the design space. The joint distribution of y0 = yP (x0) and

y =
(
y(x1), · · · , y(xn1),

∫
R1
y(w) dw, · · · ,

∫
Rn2

y(w) dw
)′

is a multivariate normal:

(
y0
y

)
∼ N1+n

(
µ̂(x0)

µ̂

)
, σ̂2

 1 k0(x0)

k′0(x0) k


 ,

where µ̂(x0) = f ′(x0)β̂ is the estimated mean function of y0, µ̂ = F β̂ is the esti-

mated mean function of y, k0(x0)=(kPP (x0, x1), · · · , kPP (x0, xn1), kPI(x0, R1), · · · ,

kPI(x0, Rn2))’ is an n × 1 vector for the pseudo-correlations between x0 and the n
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design inputs (n1 point sites and n2 regions), k is the pseudo-correlation matrix of

the n design inputs, and β̂ and σ̂2 are given in (37) and (38). As derived in Santner

et al. (2003), the empirical Best Linear Unbiased Predictor (BLUP) of y0 is equal to

the conditional expectation of y0 given y:

ŷ0 = E(y0|y) = µ̂(x0) + k′0(x0)k
−1(y − µ̂). (39)

Similarly, we can predict the integral response Y0 for any given region R0 within

the design space. The joint distribution of Y0 = yI(R0) =
∫
R0
yP (x) dx and y is given

by: (
Y0

y

)
∼ N1+n

(
µ̂(R0)

µ̂

)
, σ̂2

 1 k0(R0)

k′0(R0) k


 ,

where µ̂(R0) =
∑

j

(∫
R0
fj(x) dx

)
β̂j is the estimated mean function of Y0, and

k0(R0)=(kPI(x1, R0), · · · , kPI(xn1 , R0), kII(R0, R1), · · · , kII(R0, Rn2))’ is an n × 1

vector for the pseudo-correlations between R0 and the n design inputs. Then, the

emprical BLUP of Y0 is the conditional expectation of Y0 given y (Santner et al.,

2003):

Ŷ0 = E(Y0|y) = µ̂(R0) + k′0(R0)k
−1(y − µ̂). (40)

Now go back to the traditional point GP model, where only the point responses

y0 = (y(x1), · · · , y(xn1)) are used to build the model. As shown in Santner et al.

(2003), the empirical BLUP of the point response y• at an untried site x• is given by:

ŷ• = f ′(x•)β̂ + k′0(x•)k
−1
11 (y0 − F0β̂), (41)

where F0 = (f(x1), · · · , f(xn1))
′ is the matrix of the known regression functions

of the n1 point sites, k11 is the correlation matrix, and k0(x•)=(kPP (x•, x1), · · · ,

kPP (x•, xn1))’ is an n1 × 1 vector for the correlations between x0 and the n1 point

sites. The empirical BLUPs in (39)-(41) all have interpolating properties.
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4.2.3 Covariance Functions for Axis-Parallel Rectangular Regions

Let the design space D be d-dimensional. For simplicity, we consider the power

exponential correlation function in (34) with p=2 for the underlying point GP model,

i.e.,

kPP (x,w) =
d∏

i=1

exp

{
−(xi − wi)

2

2τ 2i

}
=

d∏
i=1

kiPP (xi, wi), (42)

where xi and wi are the ith entries of x and w respectively, and τi’s are the unknown

parameters.

For ease of calculation, we consider only the axis-parallel rectangular regions, i.e.,

R = [a1, b1] × · · · × [ad, bd] = R1 × · · ·Rd. Then for any point site x and any region

R, their pseudo-correlation kPI(x,R) can be written as:

kPI(x,R) =
d∏

i=1

bi∫
ai

exp

{
−(xi − wi)

2

2τ 2i

}
dwi =

d∏
i=1

kiP I(xi, Ri). (43)

Similarly, for any two regions R1 = [a11, b11]×· · ·× [a1d, b1d] = R11×· · ·×R1d and

R2 = [a21, b21]× · · ·× [a2d, b2d] = R21× · · ·×R2d, their pseudo-correlation kII(R1, R2)

can be written as:

kII(R1, R2) =
d∏

i=1

b1i∫
a1i

b2i∫
a2i

exp

{
−(xi − wi)

2

2τ 2i

}
dwi dxi =

d∏
i=1

kiII(R1i, R2i). (44)

As seen above, the three pseudo-correlations can be written as products of one-

dimensional pseudo-correlations. The calculation in (42)-(44) can be reduced to their

corresponding one-dimensional cases:

k1PP (x,w) = exp

{
−(x− w)2

2τ 2

}
, (45)

k1PI(x, [a, b]) =

b∫
a

exp

{
−(x− w)2

2τ 2

}
dw, (46)

k1II([a1, b1], [a2, b2]) =

b1∫
a1

b2∫
a2

exp

{
−(x− w)2

2τ 2

}
dw dx. (47)
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The expression in (46) can be simplified as:

k1PI(x, [a, b]) =

b∫
a

exp

{
−(x− w)2

2τ 2

}
dw = τ

√
2π

(
Φ

(
b− x

τ

)
− Φ

(
a− x

τ

))
,

(48)

where Φ(x) = 1√
2π

∫ x

−∞ exp
{
− t2

2

}
dt is the cumulative normal distribution function.

To calculate (47), let

f(a, b) =

a∫
−∞

+∞∫
b

exp

{
−(x− w)2

2τ 2

}
dw dx.

Because f(a, b) = f(a− b, 0), we write g(c) = f(c, 0), and (47) can be written as:

k1II([a1, b1], [a2, b2]) = g(a1 − b2)− g(a1 − b1)− g(a2 − b2) + g(a2 − b1). (49)

To calculate g(c), define the affine transformations s = (x+w−c)√
2

, t = (w−x+c)√
2

. Then

g(c) =

+∞∫
0

t∫
−t

exp

{
−
√
2t− c

2τ 2

}
ds dt =

+∞∫
0

t exp

{
−(t− c)2

2τ 2

}
dt

=
1

2

+∞∫
0

(t− c) exp

{
−(t− c)2

2τ 2

}
dt+ c

+∞∫
0

exp

{
−(t− c)2

2τ 2

}
dt

= τ 2 exp

{
− c2

2τ 2

}
+ cτ

√
2πΦ

( c
τ

)
. (50)

Combining (49) and (50), we have the following closed form expression for (47):

k1II([a1, b1], [a2, b2]) = τ 2 exp

{
−(a1 − b2)

2

2τ 2

}
+ (a1 − b2)τ

√
2πΦ

(
a1 − b2
τ

)
− τ 2 exp

{
−(a1 − b1)

2

2τ 2

}
+ (a1 − b1)τ

√
2πΦ

(
a1 − b1
τ

)
− τ 2 exp

{
−(a2 − b2)

2

2τ 2

}
+ (a2 − b2)τ

√
2πΦ

(
a2 − b2
τ

)
+ τ 2 exp

{
−(a2 − b1)

2

2τ 2

}
+ (a2 − b1)τ

√
2πΦ

(
a2 − b1
τ

)
. (51)

Without the closed form expressions in (48) and (51), k1PI(x, [a, b]) and k
1
II([a1, b1], [a2, b2])

can only be calculated using numerical integration algorithms such as quadrature. As
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sample size and dimension of D increase, the computational time can increase sig-

nificantly. For illustration, consider the Gaussian correlation function in (42) with

D = [0, 1]d, τ1 = · · · = τd = 1 and σ2 = 1. We compare the computational time of cal-

culating the covariance matrix K using the two methods: the closed form expressions

in (48) and (51) and numerical integrations with quadrature, for different sample

sizes (n=n1=n2) and values of d. For each comparison, the inputs are generated as

follows. For point sites, we use Latin hypercube samples. For regions, we first fix

their lowest corners with Latin hypercube samples, and then extend the intervals for

each dimension with lengths independently drawn from U[0,0.4]. If the upper limit of

the interval exceeds 1, we force it to be 1 so that the corresponding rectangular region

is within the design space. For example, for an arbitrary region, suppose the lowest

corner of the ith dimension is 0.7. If the sampled length is 0.2, the interval for the ith

dimension is [0.7,0.9]. On the other hand, if the sampled length is 0.4, the interval for

the ith dimension is [0.7,1]. The computational time is summarized in Table 19. As is

easily seen, the use of the closed form expressions only takes a fraction (from 1/30 to

1/4) of the time than the use of the quadrature method. By examining the numbers

further, we notice that both methods are significantly affected by the sample sizes:

for fixed d, as sample sizes increase n, the computational time is nearly a quadratic

function of n for both methods. However, the dimension d has little effect on the

closed form calculation: for given n, as d increases, the computational time for the

closed form expressions remains almost the same, which for the quadrature method,

the computational time is approximately a linear function of n.

4.3 Examples

In this section, we shall demonstrate the use and performance of the proposed PIG

process model with two simulated examples. We adopt the Gaussian correlation func-

tion in (42) for the underlying point GP model and apply the closed form expressions
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Table 19: CPU Time Comparison.

n=10 n=50 n=100 n=200 n=1000

d=1
Closed form 0.0468 0.6396 2.2464 9.8281 233.6427
Quadrature 0.1560 2.6208 9.8437 41.5119 1000.3

d=2
Closed form 0.0468 0.7644 2.9952 11.6845 288.5394
Quadrature 0.2184 5.0388 20.0461 76.6121 1944.1

d=3
Closed form 0.0312 0.6864 3.1044 12.0433 290.8483
Quadrature 0.4368 7.3320 29.5466 117.5780 2899.3

d=5
Closed form 0.0312 0.7800 3.0108 11.7625 291.8623
Quadrature 0.5460 11.9497 48.7815 198.8328 4814.4

d=10
Closed form 0.0312 0.7800 2.9640 12.3241 296.3239
Quadrature 0.9672 24.1646 98.0154 389.4637 9602.8

in (48) and (51) in the computations.

4.3.1 Example 1

Let the true function be y(x) = exp (−1.4x) cos (3.5πx) with the design space D =

[0, 1]. The curve of the true function is plotted in Figure 18.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Figure 18: True Function Curve, Example 1.

Table 20 shows the training data used to build the model, which consist of five

point sites and two intervals. The corresponding point and integral responses are

listed in the last column of the table. We put both types of responses in one column

vector denoted by y = (y1, · · · , y7)′.
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Table 20: Training Data, Example 1.

x1 0 y1 1
x2 0.1 y2 0.3947
x3 0.5 y3 0.3511
x4 0.85 y4 -0.3033
x5 0.99 y5 -0.0274
R1 [0.2,0.35] y6 -0.0901
R2 [0.6,0.7] y7 0.0252

The mean function of the underlying point GP model is assumed to be constant,

i.e., µP (x) = µ0. Then for any interval [a, b] ⊂ [0, 1], its mean function can be written

as µI([a, b]) = (b − a)µ0. Let the corresponding mean function be µ = µ0e, we have

e = (1, 1, 1, 1, 1, 0.15, 0.1)′.

The covariance matrix is organized in the 2× 2 blocks:

K =

K11 K12

K21 K22

 = σ2k = σ2

k11 k12

k21 k22

 ,

where, for example,

k12 =



kPI(0, [0.2, 0.35]) kPI(0, [0.6, 0.7])

kPI(0.1, [0.2, 0.35]) kPI(0.1, [0.6, 0.7])

kPI(0.5, [0.2, 0.35]) kPI(0.5, [0.6, 0.7])

kPI(0.85, [0.2, 0.35]) kPI(0.85, [0.6, 0.7])

kPI(0.99, [0.2, 0.35]) kPI(0.99, [0.6, 0.7])


.

Its entry kPI(x, [a, b]) = Cov(ZP (x), ZI([a, b])), as defined in (36), can be calculated

by kPI(x, [a, b]) =
∫ b

a
kPP (x,w) dw. Similarly, we have

k22 =

kII([0.2, 0.35], [0.2, 0.35]) kII([0.2, 0.35], [0.6, 0.7])

kII([0.6, 0.7], [0.2, 0.35]) kII([0.6, 0.7], [0.6, 0.7])

 .

Its entry kII([a, b], [c, d]), as defined in (35), can be calculated by kII([a, b], [c, d]) =∫ b

a

∫ d

c
kPP (x,w) dw dx.
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The log-likelihood function, apart from additive and multiplicative constants, can

be written as:

l(µ0, σ
2, τ) = −7 log σ2 − log |k(τ)| − 1

σ2
(y − µ0e)

′k−1(τ)(y − µ0e),

where the unknown parameters consist of the regression coefficient µ0, the variance

σ2 of the underlying point GP model, and the parameter τ in the covariance function.

The maximum likelihood estimates of the unknown parameters can be obtained

through derivative-free unconstraint optimization algorithm in conjunction with µ̂0 =

e′k−1y
e′k−1e

and σ̂2 = 1
7
(y − µ̂0e)

′k−1(y − µ̂0e). The maximum likelihood is achieved at

τ̂ = ±0.1138. The corresponding MLE values of µ0 and σ2 are µ̂0 = 0.1263 and

σ̂2 = 0.2617.

The predicative curve is drawn by applying the empirical BLUP for untried sites

in (39). As can be seen Figure 19, the predicative curve passes through the point

responses of the training data, and is very close to the true function. For the first

trough around x = 0.27, though we do not have any point response in that area, the

integral information helps recover the trend successfully.
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Figure 19: True and PIG Prediction Curves, Example 1.

We compare the proposed PIG process model with point GP models. Because

point GP models cannot handle integral information, one can either fit the model
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without the integral data, or transfer the integral responses into point responses.

Three possibilities are considered below.

The first point GP model is built with only the five point responses in the training

data, denoted by GP(5). By assuming the constant mean function, the MLEs for the

three unknown parameters are τ̂ = ±0.0783, µ̂0 = 0.2575 and σ̂2 = 0.1902. The

predicative curve, drawn by applying (41), is shown in Figure 20. The predicative

curve still passes through the five training point data, but the first trough of the true

curve is not captured due to the lack of information in that area.
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Figure 20: True and GP(5) Prediction Curves, Example 1.

The second point GP model utilizes the integral information by considering them

as the average values of the true function within the specified intervals. That is,

transfer the input interval into its center point, and transfer the integral response into

the average value of the true function within the interval, which is the integral response

divide by the length of the interval. The two integral responses in the training data are

now considered as two point responses (0.275,-0.6007) and (0.65,0.252). We denote

this model by GP(5+2). By assuming the constant mean function, with the seven

point responses, the MLEs for the three unknown parameters are τ̂ = ±0.1170,

µ̂0 = 0.1464 and σ̂2 = 0.2465. The predicative curve, drawn by applying (41), is

shown in Figure 21. The original point responses are marked in solid circles and the

point responses transferred from integral responses are marked in solid triangles. The
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predicative curve passes through all seven points responses, but the first trough of

the true function is not fully captured because the true value -0.6757 at x = 0.275

differs from the transferred point response value -0.6007.
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Figure 21: True and GP(5+2) Prediction Curves, Example 1.

In the last point GP model, we are assumed to have the true point responses at

the middle of the two intervals, i.e., we have two more point responses (0.275,-0.6757)

and (0.65,). We denoted this model by GP(7). By assuming the constant mean

function, with these seven point responses, the MLEs are τ̂ = ±0.1144, µ̂0 = 0.1306

and σ̂2 = 0.2612. The predicative curve, drawn by applying (41), is shown in Figure

22. With the help of the true point response at x = 0.275, this model captures the

first trough of the true function successfully. Overall, the predictive curve of GP(7) is

very close to the true function. By comparing it with Figure 19, it is noticed that the

PIG process has also achieved the same level of predication accuracy by using only

the integral information. In this example, it is assumed that only integral responses

are available for the two intervals. The additional two point responses used in GP(7)

are purely hypothetical. From the comparison, we can see that, by using integral

responses in the PIG process model, we can achieve the same level of prediction

accuracy as GP(7), which requires additional point responses from the two designed

regions.
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Figure 22: True and GP(7) Prediction Curves, Example 1.

4.3.2 Example 2

We now consider a two-dimensional case with the true function

y(x1, x2) =

[
4− 2(2x1 − 1)2 +

1

3
(2x2 − 1)3

]
x1 +

[
−4 + 4(2x2 − 1)2

]
(2x2 − 1)2.

Let the design space be D = [0, 1] × [0, 1]. The 3D plot and the contour plot of the

true function are shown in Figure 23.
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Figure 23: 3D Plot and Contour Plot of the True Function. Example 2.

Table 21 shows the training data used to build the model, which consists of 10

Latin hypercube samples (point sites) and four rectangular regions. The design sites

and design regions are plotted in Figure 24. The corresponding point and integral

response values are listed in the last column of the table and denoted by one column

vector y = (y1, · · · , y14)′.
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Figure 24: Plot of Training Data. Example 2.

The mean function of the underlying point GP model is assumed to be constant,

i.e., µP (x) = µ0. Then for any rectangular region R = [a, b] × [c, d] ⊂ D, its mean

function can be written as µI([a, b]× [c, d]) = (b− a)(d− c)µ0. Let the corresponding

mean function be µ = µ0e, we have e = (1, , 1, 0.05, 0.06, 0.04, 0.06)′.

The covariance matrix is organized in the 2× 2 blocks:

K =

K11 K12

K21 K22

 = σ2k = σ2

k11 k12

k21 k22

 ,

where k12 is a 10× 4 matrix representing the pseudo-correlations between any design

site and any design region. For example, the first entry of k12 is the pseudo-correlation

between x1 = (0.2249, 0.3159) and R1 = [0.2, 0.7] × [0.1, 0.2]. By (36). It can be
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Table 21: Training Data, Example 2.

x1 (0.2249,0.3159) y1 0.5541
x2 (0.1745,0.8746) y2 0.4104
x3 (0.8494,0.7186) y3 0.8717
x4 (0.9301,0.1756) y4 0.8225
x5 (0.0109,0.0071) y5 1.5815
x6 (0.4041,0.5650) y6 0.0781
x7 (0.3453,0.9803) y7 0.1084
x8 (0.5861,0.4749) y8 0.1069
x9 (0.6851,0.6384) y9 0.2285
x10 (0.7742,0.2527) y10 0.2710
R1 [0.2,0.7]×[0.1,0.2] y11 -0.0323
R2 [0.4,0.6]×[0.7,1] y12 -0.0423
R3 [0.9,1]×[0.3,0.7] y13 0.0686
R4 [0,0.3]×[0.4,0.6] y14 0.0821

calculated as:

kPI((0.2249, 0.3159), [0.2, 0.7]× [0.1, 0.2])

=

0.7∫
0.2

0.2∫
0.1

kPP ((0.2249, 0.3159), (x1, x2)) dx2 dx1. (52)

By separability of kPP (x,w), (52) can be written as:(∫ 0.7

0.2

k1PP (0.2249, x1) dx1

)(∫ 0.2

0.1

k2PP (0.3159, x2) dx2

)
.

Additionally, k22 is the 4 × 4 pseudo-correlation matrix of the five design regions.

For example, its entry at row 1 and column 2 is the pseudo-correlation between

R1 = [0.2, 0.7]× [0.1, 0.2] and R2 = [0.4, 0.6]× [0.7, 1]. By (35). It can be calculated

as:

kII([0.2, 0.7]×[0.1, 0.2], [0.4, 0.6]× [0.7, 1])

=

0.7∫
0.2

0.2∫
0.1

0.6∫
0.4

1∫
0.7

kPP ((x1, x2), (w1, w2)) dw2 dw1 dx2 dx1. (53)
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By separability of kPP (x,w), (53) can be written as:(∫ 0.7

0.2

∫ 0.6

0.4

k1PP (x1, w1) dw1 dx1

)(∫ 0.2

0.1

∫ 1

0.7

k2PP (x2, w2) dw2 dx2

)
.

Other entries of k12 and k22 can be similarly calculated.

The log-likelihood function, apart from additive and multiplicative constants, can

be written as:

l(µ0, σ
2, τ ) = −14 log σ2 − log |k(τ )| − 1

σ2
(y − µ0e)

′k−1(τ)(y − µ0e),

where the unknown parameters are µ0, σ
2 and τ = (τ1, τ2)

′. The MLEs of the un-

known parameters can be obtained through derivative-free unconstraint optimization

algorithm in conjunction with µ̂0 =
e′k−1y
e′k−1e

and σ̂2 = 1
14
(y − µ̂0e)

′k−1(y − µ̂0e). The

maximal likelihood is achieved at τ̂1 = ±0.2321 and τ̂2 = ±0.2185. The corresponding

MLE values of µ0 and σ2 are µ̂0 = 0.6998 and σ̂2=0.7887.

The predicative contour of the PIG process model, shown in Figure 25b, is drawn

by applying (39). As we compare it with the contour of the true function in Figure

25a, it is immediately clear that, this predicative contour captures the major trends

of the true function. The overall predictive accuracy is quite satisfactory, considering

that we only have 10 point and 4 integral responses.

As in Example 1, we compare the PIG process model with two point GP models.

The first point GP model is fitted only with the 10 point responses in the training

data. We denote this model by GP(10). The 10 Latin Hypercube samples are plotted

with the contour of the true function in Figure 26.

It is noticed that, there are no point sites around the two local minima of the true

function. Therefore, the contour changes in these regions may not be captured by

the corresponding point GP model. By assuming the constant mean function, with

the 10 point responses, the MLEs are τ̂1 = ±0.2006, τ̂2 = ±0.8177, m̂u0 = 0.8242

and σ̂2 = 0.2591. The predicative contour of GP(10), shown in Figure 25c, is drawn

by applying (41). From the contour, we can see that the predictive function is nearly
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(a) True Function.
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(b) PIG Prediction.
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(c) GP(10) Prediction.
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(d) GP(10+4) Prediction

Figure 25: True and Predicative Contour Plots, Example 2.

constant over x2. Thus, it cannot capture the changes over x2. By comparing it with

Figure 25a, it is clear that the overall predicative accuracy is very low.

In the second point GP model, we transfer the integral data into four point re-

sponses in the following way: for the input, transfer the rectangular region into its

center point; for the response, transfer the integral value into the average value of the

true function within the region, i.e., use the integral value divide by the area of the

rectangular region. Now we have four more point responses listed in Table 22. We

denote this model by GP(10+4).

The scatter plot of these 14 point sites is shown in Figure 27 with the contour of

the true function. The original 10 point sites are marked in solid circles and the four

transferred point sites are marked in stars. It is clear that these 14 point sites have

100



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 26: Scatter Plot of Ten Point Sites and Contour Plot of the True Function,
Example 2.

a good coverage of the design space. In particular, the regions around the two local

minima are now covered by two transferred point responses.

By assuming the constant mean function, with these 14 point responses, the MLEs

are τ̂1 = ±0.241, τ̂2 = ±0.224, m̂u0 = 0.758 and σ̂2 = 0.587. The predicative contour

of GP(10+4), drawn by applying (41), is shown in Figure 25d. By comparing it

with Figure 25a, we can see that, this contour also captures the major trends of the

true function. By comparing the predictive contours in Figure 25b and Figure 25d,

it is hard to decide whether the PIG process model is better than GP(10+4). We

can use the predicative errors for the point sites x11, · · · , x14 for further comparison,

which is given in Table 23. It is clear that all predictive errors are much larger for

GP(10+4) than the PIG process model, This is because the true point response values
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Table 22: Additional Four Point Data, Example 2.

x11 (0.45,0.15) y′11 -0.6464 y′′11 -0.9609
x12 (0.5,0.85) y′12 -0.7058 y′′12 -0.9996
x13 (0.95,0.5) y′13 1.7158 y′′13 1.9278
x14 (0.15,0.5) y′14 1.3681 y′′14 1.4798
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Figure 27: Scatter Plot of Fourteen Point Sites and Contour Plot of the True Function,
Example 2.

at these four point sites (column 6 of Table 22), are different from their corresponding

transferred point response values (column 4 of Table 22). The interpolating property

of (9) forces the predicative contour of GP(10+4) to pass through the four wrong point

responses, which makes the corresponding predicative errors large. In this example,

the two regions R1 and R2, as well as their corresponding center points x11 and x12

are around the two minima of the true function. If the objective of the study is to
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Table 23: Comparison of Prediction Errors for the Four Point Data, Example 2.

Point Input Error for PIG Error for GP(10+5) True Response
x11 -0.0356 0.3145 -0.9609
x12 0.0914 0.2938 -0.9996
x13 0.0022 -0.2120 1.9278
x14 0.0475 -0.1117 1.4798

find the minima of the true function, the PIG process model is clearly a better choice.

4.4 Conclusions

In this paper, we have proposed a new Gaussian process model, called the PIG pro-

cess, to jointly model the point and integral responses. Parameter estimation and

prediction based on maximum likelihood estimation are developed. In the important

case of axis-parallel rectangular regions, closed form expressions for the covariance

functions are derived, which can substantially reduce the computational time. Two

simulated examples are used to demonstrate the use and performance of the PIG

process model. Two point GP models, one ignoring the integral information and the

other replacing it with point responses, are compared with the proposed model. It

is shown that the integral information can be very helpful in fitting the point re-

sponse model for the true function. Furthermore, it performs better than treating

it as point responses, and almost as good as having extra point responses in the

design regions. The computation of the PIG process model requires inverse calcula-

tions of the pseudo-correlation matrix k, which can be time consuming and unstable.

Computational tricks are needed to solve this problem. Moreover, the MLEs of τ

require optimizations of a complicated objective function. A more efficient algorithm

is needed to handle high dimensional inputs and large sample size.

For simplicity, in this work, we have only considered the Gaussian correlation

function and axis-parallel rectangular regions, and followed the frequentist approach.

103



Similar ideas can be generalized to other choices of correlation functions and regions,

and the computational issues with the covariance matrix K can be discussed in future

research. A Bayesian version of the PIG process model can be extended as well. In the

point GP model, space filling designs such as Latin hypercube samples (Santner et al.,

2003) are chosen for computer experiments. In the PIG model, how to simultaneously

choose the point sites and regions are more challenging. A generalized notion of

space filling can be defined and criteria be proposed by employing new definitions of

distance.
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