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SUMMARY 

Hydraulic systems provide a unique opportunity to convert acoustic energy into 

electric energy due to the high intensity pressure ripple in the system. Hydraulic pressure 

energy harvesters (HPEHs) aim to provide a power source for powering or recharging 

wireless sensor networks on hydraulic systems through using an inherent byproduct of the 

pumps and actuators – the pressure ripple. HPEHs are able to connect to hydraulic systems 

via ports typically used for other sensors, such as for static pressure or temperature 

monitoring. HPEHs convert the pressure ripple into electricity by coupling the fluid 

fluctuations to a piezoelectric element, such as a stack or single crystal. The pressure ripple 

dominant frequencies are typically contained within the first or second harmonic of the 

pump operating frequency, which is usually in the 100s of Hz range, meaning the 

piezoelectric element is excited well below its resonance frequency. The combination of 

low-frequency excitation and high piezoelectric stack capacitance allow implementing an 

inductive load and resistive load in parallel with the piezoelectric stack to provide a passive 

resonant circuit.  Using a soft PZT stack within a HPEH device and a parallel resistive load, 

a HPEH is able to provide 12.8 mW of AC power for a 202 kPa dynamic pressure 

amplitude, which corresponded to 0.31 µW/(kPa)2 of power per squared dynamic pressure 

amplitude, which is sufficient to power sensors. Power needed for a wireless sensor 

transmitting data once every second is estimated to be 3.7 mW. This work introduces the 

HPEH devices, provides an electromechanical model, and investigates multiple methods 

to increase the power conversion efficiency and regulate the power output. 

There are three main parts of HPEH devices: (1) the mechanical coupling between 

the hydraulic fluid & piezoelectric element; (2) the piezoelectric material; and (3) an 
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electrical circuit connected to the piezoelectric element. In regards to the mechanical 

coupling element, a Helmholtz resonator design is introduced and modeled for the coupling 

between a HPEH and the hydraulic system to provide pressure – and thus force – 

amplification to the piezoelectric element, resulting in a doubling of the normalized power 

response.  For the piezoelectric material selection, a [011] cut lead indium niobate – lead 

magnesium niobate – lead titanate (PIN-PMN-PT) single crystal that goes through a phase 

transformation between ferroelectric rhombohedral and ferroelectric orthorhombic is 

presented as a higher power efficiency per cycle solution for HPEH devices, resulting in 

power output levels 100 times greater than soft PZT stacks tested. And finally for the 

electrical circuitry, this work provides a solution and model for power conditioning of low-

voltage, low-frequency piezoelectric stack energy harvesting through the use of an 

inductive load in parallel with a voltage multiplier (VM), or cascade circuit. The inductive-

VM circuit raised the AC voltage level from 0.59 Vrms to 2.4 VDC. A harmonic balance 

method model of the inductive-VM circuit is presented and provides an average error of 

25%, with minimum error of less than 1%, and performed over 600 times faster than 

SPICE-based time domain transient analysis. 
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CHAPTER 1 

INTRODUCTION 

Energy scavenging or energy harvesting is a research area that aims to turn unused 

ambient energy, such as heat, vibrations, light, and noise, into usable electricity to power 

wireless sensor networks. Key conditions to make energy harvesting feasible are (1) there 

must be adequate ambient energy available to harvest and (2) the energy harvester must be 

able to convert a sufficient amount of the ambient energy for the dependent system. First, 

the fluid-borne noise within pumped fluid systems, such as hydraulic equipment and 

pipelines, has milliwatt per square centimeter to 10s of Watts per square centimeter 

intensity levels that is typically unwanted and wasted; it therefore exceeds the first 

condition as a feasible energy harvesting source. Second, converting sufficient amounts of 

the fluid-borne noise into electricity would enable self-powered wireless sensor networks, 

allow sensors in remote or wire-inaccessible locations, and reduce maintenance contact for 

replacing batteries or wire connections to sensors. Piezoelectric materials are commonly 

used for vibration and noise transduction into electricity for both sensing devices, such as 

pressure measurements [1], and for energy harvesting [2-4]. Sensor technology within 

hydraulics is well established, and wireless sensors powered by batteries are beginning to 

emerge in the market [5-7]. Energy conversion within pipes using vibrations or induced 

turbulence within the fluid flow has been researched [8-10], however converting the 

pressure ripple, or fluid borne acoustic noise, into usable electrical power in MPa-level 

pressure fluidic systems is a new research topic [11, 12]. This work aims to expand research 

in energy harvesting from an acoustic energy source and within a high stress environment. 

This includes using piezoelectric elements excited off-resonance to transduce acoustic 
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energy into electrical energy; increasing power through resonance amplification of narrow-

port fluid based Helmholtz resonators; inducing piezoelectric single crystals through a 

crystal phase transition at a hundreds of Hertz frequency level; and introducing power 

conditioning of low voltage level, high capacitive energy harvesters. 

Portions of this chapter have been reviewed and published in Smart Materials and 

Structures [11] and at the International Congress on Acoustics, 2013 [13]. 

1.1 Overview of hydraulic systems 

The process of using confined, pressurized fluid to transmit forces and motions is 

known as fluid power, and includes both pneumatics, which uses air, and hydraulics, which 

typically uses oil [14].  From construction and mining equipment to water pipelines and 

the Jaws of Life, hydraulic systems provide a high force density and power density method 

to transmit forces and motion. 

Hydraulic systems use sensors for monitoring the health, pressure level, 

temperature, etc., and can be difficult to wire to for power and data transmission, especially 

if on a moving (including rotating) component, remote area or inaccessible location. Some 

companies are introducing battery powered wireless sensors, thus eliminating the wire 

dilemma, however still requiring maintenance contact for periodic battery replacements. 

For instance, Eaton LifeSense and Parker’s SensoNODE Blue provide condition 

monitoring for predictive maintenance [5, 7]. The SensoNODE Blue uses a CR123A 

battery that has a 1.5 A-hr capacity; for a data transmission rate once every second and an 

assumed voltage level of 3 Vdc, the battery is expected to last for 50 days, which 

corresponds to 3.7 mW needed power [7]. Another example is the MEAS M5600 Wireless 

Pressure Transducer by TE Connectivity Sensors; this sensor uses a replaceable battery 
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that has a 350 mA-hr capacity with a supply voltage typically at 3 Vdc. For a 5 second 

transmission interval, it is reported to last for 2 years, which corresponds to a 60 µW power 

consumption level. This body of work aims to convert acoustic energy present on the 

hydraulic system into electricity that can be used to power wireless sensor nodes or 

recharge batteries, thus reducing maintenance contact frequency. This work aims to reach 

or exceed the power levels required for current wireless sensors on the market. 

Hydraulic systems use hydraulic pumps to convert mechanical energy into 

hydraulic energy by producing liquid flow necessary for system pressure development. 

According to the editors of Hydraulics & Pneumatics website, the most common type is 

positive displacement pumps, which displaces the same volume of liquid for each rotation 

cycle of the pumping mechanism [15]. This creates a pulsating flow that may cause leaks 

and other problems in a high pressure system, and is typically reduced through noise 

control devices such as suppressors and accumulators. Periodic pressure disturbances, 

called dynamic pressure or pressure ripple, are a wasted byproduct of pumps that is a high 

energy density acoustic source, even with noise control devices. However, since pressure 

ripple is viewed as a negative aspect and research in noise attenuation solutions continues 

to be researched, efficient energy conversion methods and effective modeling of these 

methods will be necessary for an energy harvester to be a long-term viable solution. The 

relationship between the fluidic power intensity and dynamic pressure quantifies the 

ambient energy available for harvesting. 

The periodic pressure disturbances have a high power intensity, meaning there is 

sufficient mechanical power per unit area available to convert for powering the targeted 

electrical subsystems described earlier (sensor nodes and rechargeable batteries). For many 
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hydraulic systems, most of the energy within the system is contained in a narrow frequency 

band, such as a harmonic of the pump operating frequency. Additionally, the dynamic 

pressure typically increases with the static, or mean, pressure of the system, which can 

reach up to 35 MPa in industrial hydraulic systems. For example, Figure 1.1a shows the 

frequency spectrum measured from a hydraulic system that uses a 9 piston positive 

displacement pump operating at 1500 rpm, which corresponds to an operating frequency 

of 225 Hz. Most of the energy in this system is within the first or second harmonic of the  

 

Figure 1.1: Frequency spectrum of pressure ripple in a hydraulic system due to a 9-piston pump 

(measured results): a) operating at 1500 rpm and various static pressure levels; b) operating at various 

speeds.  
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pump operating frequency, and the dynamic pressure increases with the static pressure. 

This is shown in Figure 1.1, where Figure 1.1a are measured results at various static 

pressure levels and Figure 1.1b are measured results at various operating speeds. In each 

case, most of the energy is within the first or second harmonic of the operating frequency.   

To provide a sense of the acoustic pressure levels within the fluid of the hydraulic 

system, it is useful to provide a comparison to familiar airborne acoustic pressure levels. 

Typical airborne acoustic pressure root-mean-square amplitudes for a conversational level 

(60 dB re 20 µPa), a motorcycle (100 dB), a loud rock concert (114 dB), and the threshold 

of pain (140 dB) are about 0.02 Pa, 2 Pa, 10 Pa, and 200 Pa, respectively. The peak dynamic 

pressure amplitudes within hydraulic systems, as seen in Figure 1.1, can regularly be well 

above 10 kPa, with levels typically reaching up to 10 percent of the static pressure level; 

furthermore, digital hydraulics have started developing even higher pressure ripples.     

In a hydraulic system with plane wave pressure fluctuations, such as in pipes with 

relatively rigid walls, the acoustic intensity Iac is described by  

 
2

0

2ac

P
I

c
  , (1.1) 

where the speed of sound c in the hydraulic fluid (ISO VG 46) is approximately 1400 m/s, 

the density ρ of hydraulic fluid is 881 kg/m3, and P0 is the amplitude of the dynamic 

pressure in Pa. Measurement of the pressure ripple then allows for the intensity to be 

calculated, which is shown in Figure 1.2 for possible dynamic pressure amplitudes 

exhibited in a hydraulic system. Pressure ripple in the hydraulics community represents the 

peak-to-peak amplitude of the dynamic pressure. Figure 1.2 displays the intensity in units 

of mW/cm2 because the power harvested is expected to be on the order of milliwatts, as 
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referenced earlier, and the cross sectional area of a pipe is on the order of square 

centimeters.  

 

Figure 1.2: Dynamic pressure intensity in oil based hydraulic systems 

  

In comparison with typical intensity levels of acoustic noise in air, the intensity 

level within hydraulic systems is high. For example, a plane wave with a sound pressure 

level of 114 dB re 20 μPa has an intensity of 0.024 mW/cm2, whereas the intensity of a 10 

kPa pressure amplitude within a hydraulic system is about 8 mW/cm2, which is sufficient 

to power small sensor nodes if converted into electricity.  

While pumped fluids have significant intensities within high pressure hydraulic 

systems, such as mobile excavators, the intensities are reduced within cross-country 

pipelines or water distribution networks.  The available power for various pipe sizes is 

shown in Figure 1.3 for water-based pipes to demonstrate this; while there is still sufficient 

power for wireless sensor nodes, it does require high transduction efficiency because 

wireless sensors have similar power requirements to the available power levels. 
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Figure 1.3: Available power from acoustic pressure within pipes containing water at 20oC; previously 

published by author in [16]. 

 

The pressure ripple can be converted to electricity via the direct piezoelectric effect. 

The direct piezoelectric effect, first discovered by Jacques and Pierre Currie in 1880 [17], 

is where stress applied to non-centrosymmetric materials results in a net polarization, 

where polarization is charge per unit area. If the pressure disturbances in hydraulic systems 

produce stress changes in a piezoelectric element, then the mechanical energy is converted 

to electrical energy and can be “harvested” for powering an electrical subsystem. In other 

words, a piezoelectric element mechanically coupled to the pressure ripple in a hydraulic 

system and electrically coupled to an electrical subsystem can be termed an energy 

harvester. The energy harvester presented by this work and detailed in Chapter 2 usually 

employs piezoelectric stacks, formed by multiple piezoelectric layers.  

Through the comparison presented and the increase of the power intensity when 

increasing the mean pressure, it is evident that pressure ripple represents a significantly 

high-energy-intensity source as compared to other sources. With a large power intensity 

available in a hydraulic system, it is possible to convert hydraulic pressure fluctuation 

energy into electrical power without negatively affecting the hydraulic system. 
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Additionally, the high energy density allows for a piezoelectric stack coupled to the system 

to perform off-resonance of the piezoelectric element, which is uncommon for energy 

harvesting systems, while still transforming milliwatt level power. Accordingly, a review 

of energy harvesting methods in fluidic and acoustic systems is appropriate.  

1.2 Energy harvesting literature review 

The main goal in energy harvesting is to enable self-powered wireless electronic 

systems, and thus reduce the maintenance requirements for battery replacement as well as 

the chemical waste of conventional batteries. Most of the existing research on energy 

harvesting has focused on the direct conversion of vibrations into electricity [18]. Flow-

excited power generators covered in the existing literature are mainly focused on (1) 

converting flow-induced aeroelastic or hydroelastic vibrations into electricity or (2) 

implementing Helmholtz resonators and sonic crystals for indirect use of flow pressure 

(mostly air flow), by creating vibrations of the energy harvesting (EH) system. The EH 

system is typically a piezoelectric beam or membrane, an electroactive polymer, or an 

inductive coil and magnet arrangement. 

1.2.1 Energy harvesting from fluidic systems 

Other than the efforts toward miniaturizing the classical wind turbine design [19-

22] in conjunction with fan rotors and DC motors, researchers have become interested in 

exploiting aeroelastic/hydroelastic and acoustic phenomena for flow energy harvesting by 

means of electromechanical transducers. The first use of a piezoelectric interface in flow 

energy harvesting appears to be the bluff body – a PVDF (polyvinylidene fluoride) 

membrane configuration known as the “energy harvesting eel” – tested under water by 

Allen and Smits [9]. The von Kármán vortex street formed behind the bluff body excites 
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the piezoelectric PVDF to extract electricity from flow-induced vibrations through the 

piezoelectric effect. Unlike piezoelectric ceramics, PVDF films are very weakly coupled 

(in terms of their piezoelectric constants) to generate usable electricity, but they are very 

compliant, such that they may undergo large deformations at low frequencies. Vortex-

induced oscillations of piezoelectric cantilevers (PZT-based ceramic and/or PVDF) located 

behind bluff bodies (variants and extensions of the configuration introduced by Allen and 

Smits [9]) were also investigated by Pobering and Schwesinger [23] and Akaydin et al. [8] 

through experiments and numerical simulations. 

For the piezoaeroelastic problem of energy harvesting from airflow excitation of a 

cantilevered plate with embedded piezoceramics, De Marqui et al. [24, 25] presented finite-

element models based on the vortex-lattice method [24] and the doublet-lattice method [25] 

of aeroelasticity. Time-domain simulations [24] were given for a cantilevered plate with 

embedded piezoceramics for various airflow speeds below the linear flutter speed and at 

the flutter boundary. Frequency-domain simulations [25] considering resistive and 

resistive-inductive circuits were also presented focusing on the linear response at the flutter 

boundary. Bryant et al. [26, 27] studied the aeroelastic energy harvesting problem for a 

typical section by using a finite state theory. Erturk et al. [28] presented an experimentally 

validated lumped-parameter model for an airfoil with piezoceramics attached to plunge 

stiffness members using Theodorsen’s unsteady aerodynamic model. Piezoelectric power 

generation at the flutter boundary and the minor shift in the linear flutter speed were also 

discussed. More recently, the nonlinear version of the same setup with a free play in the 

pitch degree of freedom has been investigated for reducing the cut-in speed of limit-cycle 

oscillations (LCO) [29]. An extensive analysis of the energy harvesting potential for a foil-
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damper system was presented by Peng and Zhu [30] using a Navier-Stokes model without 

focusing on a specific transduction mechanism. 

As an alternative to airfoil-based and cantilevered wing-based configurations, St. 

Clair et al. [31] presented a “harmonica-inspired” design that uses a piezoelectric beam 

embedded within a cavity under airflow from a pressurized chamber. Elvin and Elvin [32] 

theoretically investigated the flutter response of a cantilevered pipe with piezoceramic 

patches for power generation from liquid flow and its effect on the flutter instability. Tang 

et al. [33] presented a rigorous analysis of the energy transfer from the fluid to the structure 

for self-excited vibrations due to axial flow over a cantilever. Piezoelectric energy 

harvesting from LCO under axial flow over a cantilever beam has also been discussed by 

Dunnmon et al. [34] recently. Kwon [35] considered a T-shaped cantilever beam that 

causes vortex street formation over the cantilever in response to axial flow (with the cut-in 

speed of 4 m/s). Giacomello and Porfiri [36] investigated underwater flapping of an ionic 

polymer-metal composite (IPMC) flag. Recent efforts have also employed electromagnetic 

induction for converting aeroelastic vibrations into electricity through flutter [37], wake 

galloping [38], and bluff body-based oscillations [39].  

As mentioned previously, the energy harvester studied in this work employs a 

piezoelectric stack or a piezoelectric single crystal for transducing the acoustic energy 

within hydraulic systems into electricity. The high static pressure within hydraulic system 

argues against using unbacked piezoelectric diaphragms, wafers, or films that are employed 

in other energy harvesting applications because the high pressure may puncture the 

material and impede oscillating motions require for transduction [12, 40]. This work 

describes methods to increase the power converted by a pressure energy harvester while 
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also accommodating for the high stress environment caused by the static pressure within 

hydraulic systems. The resonance frequency of piezoelectric stacks is typically much 

higher than the dominant pressure frequency within hydraulic systems, and is therefore 

unlike resonant energy harvesting systems described above. Excitation of a piezoelectric 

stack well below its resonance frequency indicates that the stress field is not affected by 

changing electrical load; this has been studied in a controlled shaker environment by Zhao, 

et al. [41]. Furthermore, this work is targeting the acoustic pressure inherent in hydraulic 

systems; energy harvesting from acoustic pressure is reviewed in the next sub-section.   

1.2.2 Energy harvesting from acoustic systems 

A fundamental challenge of harvesting energy from acoustic noise is the very low 

energy density that is typically available. In air, a 60 dB plane wave has an intensity of 

approximately 1 µW/m2, a 100 dB plane wave intensity is 10 mW/m2, and the intensity of 

a 140 dB plane wave is approximately 100 W/m2. These sound fields correspond to a 

conversational level, an uncomfortable loud level which would cause hearing damage from 

continuous exposure (and a temporary shift in hearing threshold for shorter exposures) and 

a level beyond the threshold of pain. If one seeks to harvest energy from a typical low level 

acoustic signal in the environment, either one must have a large device (or efficient 

focusing), or have a need for only very low power levels.  

Taylor et al. [42] developed an electromechanical acoustic energy harvester based 

on a Helmholtz Resonator as a means for increasing the pressure amplitude from an 

acoustic field. This development, as well as those of Liu et al. [43] and Phipps et al. [44] 

considered an electromechanical Helmholtz Resonator energy harvester for use as an 

element within a self-powered active control method for noise within the nacelle of a jet 
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aircraft engine. One wall of the Helmholtz Resonator was a circular piezoceramic plate, 

such that the pressure response of the resonator would drive the piezoceramic and thereby 

permit electrical energy extraction, as shown in Figure 1.4. Phipps asserted that the sound 

field within engine nacelles could approach 160 dB, an intense airborne field. In a related 

development of the concept, Horowitz et al. [37] considered a MEMS acoustic energy 

harvester that produced 0.34 µW cm-2 over the 6.45 cm2 cross sectional area of the plane 

wave tube used for excitation at an acoustic pressure of 149 dB ref. 20 µPa. A more recent 

Helmholtz-resonator-based energy harvester targeting aircraft noise developed by Matsuda 

et al. [45] uses a similar approach (with PZT), however implements a cone-shaped design 

to increase the power converted and bandwidth of the energy harvester.  Also, a multilayer 

PVDF cantilever within a Helmholtz resonator with the purpose to target in-air sound 

pressure levels of 118 dB or higher was investigated by Lee and Choi [46]. A key point to 

make about this approach, though, is that the power output of a Helmholtz Resonator-based 

energy harvester is still limited by the incident intensity of the acoustic wave field; a 

Helmholtz Resonator acts as a concentrator and effectively increases the “size” of the 

device, but it cannot extract more energy than is present.  
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Figure 1.4: Helmholtz resonator energy harvester used for self powered noise control system within jet 

engine nacelle; from Taylor et al. [42]. 

 

Addressing the low intensity of typical airborne acoustic wavefields, Wu et al. [47-

49] used a periodic array of rods to create a “sonic crystal” to focus incident sound into a 

cavity within the sonic crystal. They placed a PVDF membrane inside the cavity and were 

able to generate a peak output of approximately 35 nano-watts from a 7 Pa pressure 

difference across the membrane. 

Lallart et al. [50] considered a means to increase the energy harvesting efficiency 

from an acoustic source through a nonlinear harvesting circuit. The device used a circular 

PZT disk on a baffled flexible metallic membrane exposed to an incident wave field. The 

device generated up to 55 µW for excitation at resonance with an imposed 100 dB sound 

pressure level. The surface area of the membrane was 78.54 cm2, such that the surface 

power density of the device was 0.7 µW/cm2.  

A related class of work uses an acoustic response as an intermediate energy 

conversion process. For example, Kim et al. [51] developed on energy harvester using a 

Helmholtz resonator excited by a mean flow with electromagnetic transduction. Stevens 

[52] implanted a thermoacoustic engine driven by the temperature difference between 
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ambient air and ground; electrical conversion was handled using the thermoelectric effect. 

Another group, Nouh et al. [53] and Smoker et al. [54], developed a (in-air) thermo-

acoustic-piezoelectric resonator, which creates acoustic pressure fluctuations within the 

resonator when at a particular temperature gradient threshold; a piezoelectric diaphragm is 

placed at the back end of the resonator and converts the acoustic pressure into electricity.   

Hernandez et al. [55] used flow instability to excite a tonal response of a pipe; a 

piezoelectric element was used for electrical energy production. A development by 

Monthéard et al. [56] uses air passing over a cavity with a piezoelectric membrane within 

the cavity to produce an aeroacoustic energy harvester. Power produced by this device is 

dependent on the Mach number and can reach up to 2 mW of RMS power.  Khan and 

Khattak [57] recently provided a review of airborne acoustic energy harvesting devices, 

and reported the highest power output is the electromechanical Helmholtz Resonator 

device presented by Liu et al. [43], at 30 mW from 161 dB re 20 µPa sound pressure level. 

Within liquids, flow-induced vibration energy harvesting (as discussed earlier) are 

far more common than direct or intermediate acoustic energy harvesting. A shear-mode 

piezoelectric energy harvester operated under pressurized water flow was presented by 

Wang and Liu [40] by combining a pressure chamber with a flexible diaphragm and 

piezoelectric film configuration. The reported 0.45 nW instantaneous output power from a 

45 Hz and 20.8 kPa pressure amplitude excitation from pumped water flowing from a tube 

to pressure chamber to an open-air tank. Deterre et al. [12] provided a model and 

preliminary tests for fluidic pressure energy harvesting through the deflection of a 

piezoelectric diaphragm for use in low mean pressure environments (appears to be 1 kPa 

in paper), meant for implantable medical devices exposed to pressure from blood; the test 
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setup used for that experiment was pressurized air. Both Wang et al. and Deterre et al. 

utilize a flexible piezoelectric diaphragm (with a thickness of less than 300μm) in 

combination with a pressure chamber to induce bending vibrations in the piezoelectric to 

generate power. Given the system mean pressure present within hydraulic systems, a 

flexible piezoelectric diaphragm would either burst or require backing by a stiffer material, 

such as a hose or pipe, if used in systems targeted by this research. 

 

1.3 Dissertation outline 

This dissertation contains four main topics. Chapter 2 describes the energy 

harvester that is used to convert acoustic energy within hydraulic systems into electrical 

energy via piezoelectric elements, along with an electromechanical model, simulations, 

and experimental validations for resistive and resistive-inductive electrical loading. The 

next three chapters describe methods to improve this conversion and include the main 

topics of research contribution. In the order of the energy flow, these are: Chapter 3, which 

investigates a method of amplifying the acoustic energy via a traditional acoustic 

impedance matching means – a Helmholtz resonator; Chapter 4, which investigates using 

a single crystal that undergoes a crystal phase transformation when under high stress 

oscillations (around -30 to -15 MPa); and Chapter 5, which introduces a modified power 

conditioning method to both rectify the current and raise the voltage output from the energy 

harvester. The final chapter summarizes the research contributions and discusses future 

research opportunities. 
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CHAPTER 2 

HYDRAULIC PRESSURE ENERGY HARVESTING 

 Piezoelectric elements, such as stacks and single crystals, are employed for 

converting the acoustic pressure, or pressure ripple, within hydraulic systems into low-

power level electricity. A number of prototypes, termed hydraulic pressure energy 

harvesters (HPEHs), were built for studying this concept. This chapter will introduce 

HPEHs, provide an electromechanical model for HPEHs employing piezoelectric stacks 

excited below the stack’s resonance frequency, discuss testing methods and results, and 

present mechanical design advancements to accommodate various hydraulic systems. 

 Portions of this chapter have been reviewed and published in Smart Materials and 

Structures [11, 58]. 

2.1 Hydraulic pressure energy harvester (HPEH) design 

A HPEH is defined by a piezoelectric stack(s) (or single crystal, which is presented 

in Chapter 4) being mechanically coupled to the dynamic pressure of a hydraulic system. 

As depicted in Figure 2.1a, the piezoelectric stack is contained within a sealed housing and 

protected from the hydraulic fluid by a thin metal diaphragm interface. The static pressure 

of the system provides a pre-compressive stress on the piezoelectric stack, while the 

dynamic pressure excites the stack, providing the acoustic power to be converted into 

electric power. The force applied to the piezoelectric stack can be amplified through an 

increase of the effective area between the stack and fluid. The piezoelectric stack is 

connected to a generic shunt impedance that can be modified to amplify the power response 

for a given pressure input. During testing, as shown in Figure 2.1b, a HPEH device is 
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connected to a mounting block that is in-line with the fluid flow and upstream of a needle 

valve used for controlling the static pressure. A pressure transducer measures the pressure 

for the same cross-sectional area as the input pressure to a HPEH. The piezoelectric stack 

is connected to an impedance load (such as a resistive load), and then connected to a data 

acquisition (DAQ) setup for measuring the voltage produced. The testing details and HPEH 

design aspects are discussed in detail in Section 2.3. Key design considerations of a HPEH 

include the hydraulic fluid impedance, the fluid-stack interface, the piezoelectric stack, and 

the harvesting circuit; the importance of these considerations is further clarified by an 

electromechanical model of a HPEH device presented in the next section.  

 

 

Figure 2.1: Hydraulic pressure energy harvester (HPEH) (a) schematic and (b) test set up 

 

2.2  Electromechanical model of HPEH employing piezoelectric stacks 

HPEH devices utilize piezoelectric stacks excited by the pressure ripple in 

hydraulic systems and, as discussed in Section 1.1, the dominant excitation frequencies are 

typically either the first or second harmonic of the pump operating frequency (ranging in 

the 100s of Hertz). Thus, the excitation frequency is much lower than a typical stack 

resonance frequency (typically much greater than 1000 Hertz). Due to this, the 
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piezoelectric stress field is assumed to be insensitive to the electrical load, and therefore 

HPEH devices can be modeled as a first-order mechanical system. Electromechanical 

modeling details of deterministic and stochastic energy harvesting from piezoelectric stack 

under direct force excitation and resistive shunt loading have also been investigated by 

Zhao et al. [41].   

An electromechanical model has been developed to model the alternating current 

(AC) power output of HPEH devices. For a piezoelectric stack with N thickness-poled 

layers connected in parallel to an external shunt impedance Zs, the governing circuit 

equations is obtained from the time derivative of Gauss’s law, 
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( )

i
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i

i sA

d v t
dA

dt Z

 
  

 
 

 D n  (2.1) 

where ( )v t  is the voltage response across the shunt (i.e. across the terminals of the stack), 

D is the vector of electric displacements, n is the vector of surface normal of the electrodes, 

and the integration of their inner product is performed over the electrode area iA  of the i-

th layer. The nonzero contribution from the electric displacement is from 

 3 33 3 33 3

iD d E    (2.2) 

where 3  and 3E  are the stress and electric field components, respectively, 33d  is the 

piezoelectric strain constant for each layer, and 33

  is the permittivity constant for each 

layer at constant stress [59]. The stress component 3 can be related to a harmonic response 

of the hydraulic pressure ripple by 3 0( ) j tt P e   , with 0P being the pressure amplitude, j
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is the imaginary number, and  is the excitation frequency, such as the dominant hydraulic 

pressure ripple frequency. The electric field 3E is related to the stack voltage through 

3( ) ( )E t v t h  , where h is the thickness of a single piezoelectric layer and the steady state 

voltage output can be represented by 
0( ) j tv t V e  .  

Substitution of Eq. (2.2) into Eq. (2.1), in addition to the defined electric field and 

stress terms, results in  

  33
33

1
( ) ( ) ( ) istack

s

NA
v t v t P t A Nd

h Z


  , (2.3) 

which is the governing equation for hydraulic pressure energy harvesting devices. This can 

be further simplified by defining effective terms for the entire piezoelectric stack in use 

rather than a single layer of piezoelectric material. The piezoelectric layers are connected 

electrically in parallel, which results in the effective capacitance represented as 

 33i

p p

NA
C NC

h


    (2.4) 

and the effective piezoelectric strain represented as 

 33 33

eff id Nd . (2.5) 

The voltage output for the steady state condition can therefore be represented as 

 0 33 0( ) j t eff j t

ev t V e j Z d AP e   , (2.6) 

where the total electrical impedance ( eZ ) is  
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which contains both the stack capacitance and a generic shunt impedance. This also leads 

to a voltage output-to-force input frequency response function (FRF) for an arbitrary shunt 

impedance, defined as  
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A circuit diagram of this electromechanical model is visually depicted in Figure 2.2. 

 

Figure 2.2: HPEH circuit diagram for generic shunt impedance 

  

The average power dissipated in a shunt is  
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where   indicates the real function and the average power dissipated in a resistive 

electrical load ( lR ) is given by 
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where rmsv is the root-mean-square voltage. If any area amplification is included within a 

HPEH, such as the interface being larger than the cross-sectional area of the stack shown 

in Figure 2.1a, then stackA A  , where the area amplification ratio is .interface stackA A    

The average power dissipated in a resistive electrical load is used for analysis. The total 

average power response is found from Eq. (2.10) by summing the corresponding power 

components in the frequency domain 
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The total average power presented in Eq. (2.11) is used for comparing tests to the 

electromechanical model.  

It is useful to note that the combination of low frequency excitation and high 

piezoelectric capacitance (relative to the capacitance of one or two piezoelectric layers as 

in typical benders) allow for the use of a shunted piezoelectric containing a load resistance 

in parallel with a load inductance. A decade before the research explosion in energy 

harvesting field, Hagood and von Flotow [60] proposed using this shunt to take advantage 

of the electrical resonant effects with the end application providing for passive structural 

damping. While synthetic impedances have been introduced [61], the system parameters 

of HPEH devices do not require synthetic inductance or impedance. With regard to power 

generation with a mechanically and electrically resonant (second-order) system, Renno et 

al. [62] analyzed the parallel resonant circuit and piezoelectric parameters and found that 

it is possible to maximize the power output for all excitation frequencies when using an 

optimal resistive and optimal inductive load. The capacitance of typical mechanically 

second-order piezoelectric energy harvesters, such as linear or nonlinear cantilevers [63-
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66], is typically low (on the order of nF), making the inductance requirement very high at 

ambient vibration frequencies. This is part of the reason linear (and passive) resistive-

inductive circuits have not been effectively used to date in the energy harvesting literature 

since the theoretical work by Renno et al. [62]. However, piezoelectric stacks used in 

HPEH devices have larger capacitance values (order of µF) than typical bimorphs or 

unimorphs (order of nF), making linear and passive resistive-inductive loading a viable 

solution. 

For this reason, two shunt impedances are presented: (1) a resistive electrical load 

( lR ) where s lZ R and (2) a resistive-inductive loading in parallel (R-L circuit). The 

second case can ideally be represented as  
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however for the model to accurately reflect the test results, the internal resistance ( inR ) of 

the inductive load ( L ) must be included, which changes the shunt impedance to 
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Once again, the combination of low frequency excitation and high piezoelectric 

capacitance of a stack (relative to one or two piezoelectric layers) allow for the use of a 

resistive-inductive loading in parallel without needing synthetic impedances. 

 The shunt impedance loads can be used in Eq. (2.10) to solve for the predicted 

power response of the HPEH device. Finding the optimal shunt impedance to maximize 
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the power response for a given pressure input is important for understanding the capability 

of a HPEH device. When solving for the optimal power for the first case, where the shunt 

impedance is simply the load resistance, the optimal loading case is found as

 1opt

l pR C and the maximum power response is 
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where stackV is the volume of the piezoelectric stack. Therefore for the resistive load shunt, 

when the resistive load is at its optimal loading, the power is proportional to the volume of 

the piezoelectric stack. In addition, when choosing a piezoelectric material, a higher ratio 

of the squared piezoelectric constant over the permittivity, 33 33

id  , indicates higher power 

potential for a resistive load shunt. 

 A similar analysis can be performed to find the optimal loading for the resistive 

and inductive loads to maximize the power response of an R-L circuit for a single excitation 

frequency. The electrical circuit equivalent of this shunt loading is shown in Figure 2.3. 

Similar to the resistive load case, the optimal inductor and resistive loads can be determined 

by setting the gradient of the power equal to zero, yielding 
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and  
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In practical testing, the internal resistance of an optimal inductance-resistance combination 

may be difficult to determine prior to solving, or may cause the assumed solution to change. 

Depending on the design of the inductor (winding, wire material, magnetic core, wire gage, 

etc.), the internal resistance varies. Thus, the internal resistance of an inductive load is 

determined by measuring the inductor(s) intended for testing, rather than by calculation. 

However, as seen in Eq. (2.15), the optimal inductive load is dependent on the internal 

resistance, so an iterative process for a number of inductors and corresponding internal 

resistive loads may be required. Therefore, determining an initial inductive load for the 

iterative solution can be useful for determining optimal loads for a test setting. 

If the inductive load was ideal (with no internal resistance), then the power-

optimized inductive load is much simpler, however causes a physically unrealizable power 

prediction: 
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This simplified optimal inductive load unrealistically indicates that as the resistive load 

approaches infinity, so does the power. While this can be used to estimate starting values 

for optimal inductance, a more useful simplification of Eq. (2.15) is the limit when the 

resistive load is infinitely large, 
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  (2.18) 

as it provides a more realistic representation of how the inductive parasitic resistance 

affects the power response and optimal loading case. 
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Figure 2.3: HPEH circuit diagram for R-L shunt impedance with reference to generic loading case. 

 

For energy harvesting devices, it is of interest to determine the best broadband shunt 

impedance loading, which in turn requires the shunt efficiency, s , to be analyzed. As 

discussed earlier, Renno et al. [62] found that it is possible to maximize the power output 

for all excitation frequencies when using an optimal resistive and optimal inductive load. 

An analysis of the shunt efficiency can help determine the best broadband scenario for a 

HPEH device when using an R-L circuit. The shunt efficiency is defined using the average 

power dissipated in the total electrical shunt, Eq. (2.9), and the average power dissipated 

across a resistive load, Eq. (2.10). The shunt efficiency relation for an R-L circuit is 
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A higher shunt efficiency indicates more broadband behavior for frequencies above the 

frequency of interest, indicated by the radial frequency 0  in Eq. (2.19). However, higher 

shunt efficiency does not always indicate higher overall power output. To demonstrate this 

concept, simulated normalized power responses for a piezoelectric stack used in tests is 

shown in Figure 2.4. A target frequency was chosen along with a theoretical parasitic 

resistive load; using these values, the optimal inductive and resistive loads for a single 
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frequency were determined (using Eqs. (2.15) and (2.16)). The average power response 

(Eq. (2.10)) normalized by the piezoelectric stack volume and squared input force is 

calculated for a wide range of frequencies, normalized to the first harmonic of the pump 

operating frequency used in testing, 225 Hz.  

As can be seen in Figure 2.4, the circuit parameters with higher shunt efficiency 

have a consistent peak normalized power for frequencies above the target frequency, 

however a very poor response for frequencies below the target frequency. This is an 

important point in hydraulic systems because most of the energy is contained within a 

narrow band, typically the first or second harmonic of the pump operating frequency.  

Choosing a circuit with high shunt efficiency for a low target frequency provides a lower 

power response than for a higher target frequency; however, if the circuit is chosen for a 

frequency above the frequencies containing the most energy, then the overall performance 

is worse. In addition, circuits containing low parasitic resistance with respect to the 

resistive load have lower shunt efficiency, but higher normalized power response at the 

target frequency. If there is little energy contained outside of the target frequency band, 

then it may be beneficial to have lower shunt efficiency in favor of higher normalized 

power response at the target frequency. 
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Figure 2.4: Power normalized by squared force and stack volume to demonstrate broadband response for 

higher shunt efficiencies in combination with calculated Rl,opt and Lopt values using predefined frequency (f) 

and internal resistance (Rin); d33
eff = 182.9 nC/N, Cp = 3.08 µF, x-axis frequency normalized by 225 Hz 

excitation. Simulation originally presented by author in [58]. 

 

2.3 Testing procedures  

Multiple HPEH prototypes were developed to provide proof-of-concept, 

demonstrate feasibility, and compare the electromechanical model of converting hydraulic 

pressure ripple into electricity through the use of piezoelectric stacks and single crystals. 

The different prototypes are introduced in Section 2.4. A hydraulic pump system was used 

to test the HPEH prototypes. Testing involved: (1) a dynamic test using a shaker and (2) a 

dynamic test on a hydraulic rig. First, the piezoelectric stack is tested using a shaker with 

a known excitation force in order to determine the effective piezoelectric strain constant, 
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33

effd . Second, the HPEH prototype is attached to a hydraulic system to assess the 

performance of the device and compare the results to the electromechanical model 

presented in Section 2.2. 

2.3.1 Phase 1: Determine effective piezoelectric strain constant of piezoelectric stack 

In order to determine an effective piezoelectric strain constant of a stack, a 

manipulation of the resistive load only power equation is used, which can be determined 

using Eq. (2.10) as 
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The force, rmsF , is measured using an impedance head, the average power can be calculated 

from the measured voltage across the resistive load, and the stack capacitance can be 

measured using a capacitance meter. A frequency sweep and resistive sweep is performed 

and the effective piezoelectric strain constant can be determined from the average of the 

test results. A picture of the experimental test setup is shown in Figure 2.5.  
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Figure 2.5: Shaker test setup for determining stack piezoelectric strain constant, d33

eff. 

 

Multiple piezoelectric stacks were tested within HPEH prototypes to compare 

model applicability and design iterations, with most being composed of a soft PZT material 

for its relatively high piezoelectric strain properties. Descriptions of the piezoelectric stacks 

used in HPEH prototypes (except for the single crystal presented in Chapter 4) and 

calculated effective piezoelectric strain constants are in Table 1. The resultant effective 

piezoelectric strain constant ( 33

effd ) is calculated from the average 33

effd  value for each 

sweep; the average value and standard deviation for piezoelectric stacks tested is shown in 

Table 1. The number of layers is either calculated using a provided piezoelectric constant 

value for one layer and Eq. (2.5), provided by the manufacturer, or directly counted. 
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Table 1: Piezoelectric stacks and single crystals used in HPEH prototypes (*indicates number of layers 

provided; † indicates single layer material data provided; ‡ indicates layers counted). 

 

To compare the test results from the shaker test to the accuracy of the model using 

a calculated piezoelectric strain constant, the frequency response function (FRF) between 

the piezoelectric stack and force input can be compared. Derived from Eq. (2.8), the FRF 

for a resistive load circuit is modeled as  

  
1

33

1eff

p

l

j d j C
R

   



 
  

 
 . (2.21) 

Stack Manufacturer 

(Part No.) <HPEH>  

Electrode 

area, mm2 

Height 

mm 

Capacitance 

μF 
33

effd  

nC/N 

33

id  

pC/N 

N layers  

EPCOS (LN 03 / 8516; 

Nd-doped PZT) <1> 

46.24 30 2.7 182.93 +/- 

0.56 

750 

† 

243 

EPCOS (LN 03 / 8516;  

Nd-doped PZT)  

46.24 30 2.9 150.59 +/- 

0.87 

750 

† 

200 

Piezo Systems (TS18-

H5-104, [67]) <3>  

25 18 1.9 105.090 

+/- 0.002 

1480 71 

‡ 

PI (PAH-009 .13.255; 

PIC 255, [68]) <2>  

126.9 6.75 .23 10.98 +/- 

0.09 

400 

†  

27 

PI (PAH-009 .13.255; 

PIC 255, [68])  

126.9 6.75 .23 9.66 +/- 

0.05 

400 

† 

24 

Piezomechanik (PCh 

50/5x5/2, [69]) <4> 

25 2 1.3 9.386 +/- 

0.005 

unknown  unknown 

Single Crystal stack 

(TRS X2B, PMN-PT) 

<6> 

25 11.75 .038 37.208 +/- 

0.133 

1860 20 

* 

Parker (C03618-001; 

NEC TOKIN N10, 

[70]) <5> A5 

25 20 1.89 141.92 +/- 

0.04 

635 

† 

223 

Parker (C03618-001; 

NEC TOKIN N10, 

[70]) <5> A6 

25 20 1.88 143.68 +/- 

0.03 

635 

† 

226 

Parker A5A6 series 50 20 0.994 70.67 +/- 

0.03 

- - 

Parker A5A6 parallel 50 20 3.74 147.92 +/- 

0.04 

- - 

Parker (C03618-001; 

NEC TOKIN N10, 

[70]) <5> A7 

25 20 1.85 148.45 +/- 

0.03 

635 

† 

233 

Parker (C03618-001; 

NEC TOKIN N10, 

[70]) <5> A8 

25 20 1.98 144.09 +/- 

0.06 

635 

† 

226 

Parker (C03618-001; 

NEC TOKIN N10, 

[70]) <5> A9 

25 20 1.89 141.87 +/- 

0.07 

635 

† 

223 
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As an example, the test results compared to the absolute value of the modeled FRF for one 

piezoelectric stack (Parker [C03618-001] A7) is provided in Figure 2.6. The model and test 

results match well; in addition, they correspond to results found by Zhao et al. [41].  

 
Figure 2.6: Absolute value of frequency response function comparing piezoelectric shaker test results (for 

Parker A7) and model using the calculated effective piezoelectric strain constant (value averaged from 14 

tests); lines indicate model; points indicate test measurements. 

2.3.2 Phase 2: Testing HPEH device on hydraulic rig 

Once the material properties of the piezoelectric stack used within a HPEH device 

have been determined, the next steps are to test the design integrity of the device, determine 

the capacitance of the device under load, and test the piezoelectric device on a hydraulic 

rig. The HPEH prototype is placed under a static load using a deadweight tester to assess 

the pressure integrity of the device and measure the effective piezoelectric stack 

capacitance under load. The HPEH device is installed on a mounting block, which is 

incorporated in-line with a deadweight tester. This step allowed the pressure integrity of 

the device to be tested and allowed any change in the capacitance due to the static load to 

be measured. This includes ensuring that no leaking of hydraulic fluid occurs around the 

threads into the block or past the fluid-mechanical interface into the internals of the device. 

After installing the HPEH device and mounting block to the deadweight tester, weights 
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were added in increments that yielded static pressure changes of approximately 0.25-2.5 

MPa, until the desired pressure limit was reached.  

The system pressure in hydraulic systems can reach 35 MPa, or 5000 psi, and in 

HPEH devices, the interface between the stack and fluid amplifies this system pressure 

further, with the highest amplification area ratio being 14 times greater for one HPEH 

prototype. At high compressive stress levels, such as -35 MPa, the permittivity of 

piezoelectric material can change compared to the permittivity at no stress [71]. In addition, 

if the compressive stress level of the piezoelectric material is great enough, such as 

35 MPa 14 490    MPa, the remnant polarization is decreased by mechanical 

depolarization with a corresponding drop in the piezoelectric strain constant  [72, 73]. 

While soft PZT exhibits higher piezoelectric strain constants than hard PZT, one drawback 

is it has a smaller linear range for stress loading. According to Schäufele and Härdtl, the 

transition to nonlinear depolarization behavior in soft PZT can occur from compressive 

stress levels as low as -20 MPa, whereas hard PZT does not experience this transition until 

-60 MPa [72]; however, this has a strong temperature dependence and will be affected by 

the cyclic negative field. This issue will be further discussed in Section 2.4.3 and in Chapter 

4, however for most devices, the piezoelectric stress was kept below -20 MPa unless 

specifically interested in this transition phase.   

The capacitance of the piezoelectric stack was measured using a multimeter during 

the deadweight testing to provide data to permit the estimation of the optimal resistance 

value and for better agreement with the model for the system pressure values tested during 

dynamic testing. This helped further account for any potential change in material 
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permittivity due to the stress loading, allowing for the identification of the statically-loaded 

capacitance and a simpler troubleshooting process, as fewer parameters were involved.  

The HPEH and block are then installed in a hydraulic pump system, as can be seen 

in Figure 2.7. Key components of the hydraulic pump system are a nine-piston pump 

operating at 1500 rpm, yielding a fundamental pressure ripple frequency of 225 Hz, and a 

needle valve for controlling the static pressure. To ensure the measurement of the dynamic 

pressure is co-located to the HPEH, the mounting block includes a connection for a 

dynamic pressure sensor (PCB model 101A06) directly opposite of the HPEH installation 

location. The static pressure in the system was measured using Hydac pressure sensor 

908404 and 908428 (Model code: EDS 3478-5-6000-400 and EDS 3478-5-3000-400). 

 

Figure 2.7. A schematic of the hydraulic pump system used for testing the HPEH in the inline mounting 

block. 

 

The final phase of testing was to perform a sweep of resistance or inductance values 

to determine the peak power output of the system, with a schematic of the test set-up shown 

in Figure 2.8. A shunt impedance (either R only or R-L load) is connected in parallel to the 

HPEH leads. The impedance sweep values depend on the predicted optimal resistance or 

inductance for the stack being tested within the HPEH device. The voltage across the load 

resistance and the output signal from the dynamic pressure sensor are acquired via a data 

Mounting 

Block

HPEH

Sensor

Pump Valve

Tank
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acquisition system (either SigLab or an NI system). The impedance sweep was then 

performed for static pressure levels of interest. Time- and frequency-domain data were 

recorded for each test. The model can then be compared to the measured test values, as is 

presented in the next section. 

 

Figure 2.8. Testing configuration for dynamic testing on hydraulic system, including the pressure sensor, 

shunt impedance, and data acquisition system. 

 

2.4 Model and test results for various HPEH designs 

Many HPEH devices were developed to explore different design concepts and 

various piezoelectric materials. The performance comparison of the HPEH devices is 

shown in Figure 2.9, where the points represent the measured data and the lines represent 

modeled data using the electromechanical model presented in Section 2.2. A summary of 

the HPEH prototypes developed is shown in Table 2, and a picture of all the prototypes 

and piezoelectric stacks tested is shown in Figure 2.10. The labeling of HPEH devices is 

HPEHX-Y, where X represents which type of piezoelectric stack is used (see Table 1) and 

Y indicates design iteration.  
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The important design implementations are discussed in the following subsections 

of this chapter, and further research developments of acoustic energy transduction in 

hydraulic systems is discussed in Chapter 4 and Chapter 3. The following subsections 

discuss various methods to improve HPEH performance: RL shunt loading; area 

amplification; and force shunting. 

 
Figure 2.9: Power normalized by squared pressure and stack volume for multiple HPEH devices for 

resistive load sweeps, including both R circuit and R-L circuit. 
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Figure 2.10: HPEH devices and corresponding piezoelectric stacks and single crystals, where X in 

HPEHX-Y corresponds to the piezoelectric element. Piezoelectric stacks & single crystals manufacturers 

corresponding to (X) (see Table 1, left to right): (1) EPCOS, (2) PI Ceramics, (7) single crystal by TRS 

(PIN-PMN-PT), (4) Piezomechanik, (5) Parker/ Nec Tokin, (6) TRS single crystal stack (custom made), (3) 

Piezo Systems. 

 

Table 2: Summary of HPEH device performance 

Device Power* 

µW 

P0 

kPa, rms 

Vrms Stack Vol. 

mm3 

Norm Power 

µW/(Pa2 m3) 

HPEH1-1 522 101 0.24 1387 0.037 

HPEH1-2RL 2187 85.6 0.93 1387 0.215 

HPEH1-3RL 3324 205 1.29 1387 0.057 

HPEH2-1RL 130 77.5 0.57 856 0.025 

HPEH3-2 RL 259 99.9 0.55 450 0.058 

HPEH4-1RL 158 397 0.33 50 0.020 

HPEH5-1RL 1639 115 0.57 500 0.248 

HPEH5-3RL 1743 350 0.48 500 0.028 

HPEH5-4‡ 6828 201 1.01 500 0.179 

HPEH6-1**RL 1349 98.9 4.14 294 0.469 

HPEH6-2** 124 25.9 2.4 294 0.629 

HPEH7-1†‡ 13070 141.3 80.6 192 3.409 

HPEH-HR‡ 12820 202.3 1.13 500 0.626 

* Maximum power measured from tests of a given device 

** PMN-PT layered single crystal stack (20 layers) 

‡ Force Shunt design 
† PIN(0.24)-PMN-PT, [011] cut single crystal, results compared in Figure 4.23 and discussed in Chapter 4 
 RL Indicates resistive-inductive parallel circuit; otherwise, resistive load only 

HR Helmholtz resonator – results shown and discussed in Chapter 3 
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2.4.1 Resistive load vs. Resistive-inductive load 

To compare the power response when normalized by the squared pressure 

amplitude for a given shunt impedance, a HPEH prototype was tested with the different 

loading conditions, with results shown in Figure 2.11. While the optimal inductive and 

resistive loads for the resonant shunt are not the same as for the ideal resonant circuit, the 

ideal resonant circuit optimal inductive load can be used as an estimate for testing. When 

solving for the maximum power using the shunt impedance from Eq. (2.12), the resulting 

inductive loading is found to be  21opt

ideal pL C . The HPEH tested has a capacitance of 

about 3 μF, which varied with static pressure by less than 5 percent; the model uses the 

capacitance value measured during a static pressure deadweight test at corresponding static 

pressures, taken prior to the dynamic test. The harmonic with the highest energy content of 

the 9 piston pump operating at 1500 RPM for the static pressures shown was the second 

harmonic, 450 Hz. This corresponds to an estimated optimal resistive load of 117 Ω for the 

resistive load (R circuit) shunt model and an estimated ideal optimal inductive load of 41 

mH for the resistive-inductive load (R-L circuit) shunt.  

Figure 2.11a shows the power normalized by the squared dynamic pressure for 

HPEH1-2, which is a device that uses a piezoelectric stack made by EPCOS with an 

effective piezoelectric strain constant of 182.9 nC/N. The piezoelectric strain constant was 

measured in a separate test, as explained previously. Two static pressures and three circuit 

configurations are shown: (1) R-L circuit using the optimal inductive load for 450 Hz of 

41 mH, with a corresponding internal resistance of 13 Ω, at static pressures of 2.1 MPa and 

3.4 MPa; (2) R-L circuit using an inductive load that matches to 675 Hz of 18 mH, with a 

corresponding internal resistance of 8.9 Ω, at a static pressure of 3.4 MPa; and (3) R circuit 
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at a static pressure of 3.4 MPa. The error bars on the R-L circuit tests correspond to the 

standard deviation between two tests, where the entire device was reassembled between 

tests; the error bars on the R circuit test also correspond to standard deviation, but between 

three tests.  

 

Figure 2.11: a) Comparison of power normalized by pressure for two types of shunt impedances (using 

HPEH1-2 device, with model using an area ratio of 1.79 and effective  = 183 nC/N), and b) 

corresponding shunt efficiency for R-L circuits tested. Error bars indicate standard deviation of two 

separate test runs for R-L circuit, standard deviation for three separate test runs for R circuit. Error bars are 

generally too small to see, so callout figure is included. 

 

As can be seen Figure 2.11a, the resistive-inductive shunt has a higher power 

response when operating with an impedance matched to the dominant frequency compared 

33d
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to the resistive shunt. However, if the shunt is matched to a frequency higher than the 

dominant frequency, the power response is worse.  This is further demonstrated by Figure 

2.11b, which shows the shunt efficiency for the R-L circuits tested for the pump operating 

frequency, 225 Hz, and the 2nd and 3rd harmonic. Note that dominant frequency for the tests 

shown was 450 Hz, or the 2nd harmonic of the pump operating frequency, which 

corresponds to the R-L circuit (1) of 41 mH, with a corresponding internal resistance of 13 

Ω.  

Recall from Figure 2.4 that the higher normalized power response is expected to 

come from the circuit that is matched to the higher frequency component, which in this 

case corresponds to R-L circuit (2) 18 mH. Also recall that the higher shunt efficiency 

corresponds to more broadband response after this matched frequency component, which 

in this case corresponds to R-L circuit (1) 41 mH. The highest power response recorded 

occurred at 400 Ω for R-L circuit (1), which has a shunt efficiency s   of only 72.3% for 

450 Hz. This is a lower shunt efficiency than the shunt efficiency at 110 Ω for both R-L 

circuit (1) of 90.5% at 450 Hz and R-L circuit (2) of 85.8% for 675 Hz, and 73.2% for 450 

Hz. However, because most of the energy is at 450 Hz, the circuit efficiency for R-L circuit 

(2) is matched improperly to benefit from higher power response, since the broadband 

effects occur after the dominant frequency, as discussed previously and shown in Figure 

2.4. Also, while R-L circuit (1) at 110 Ω does have a higher shunt efficiency and more 

broadband response, the resonant peak that occurs at the dominant frequency when using 

the higher resistive load of 400 Ω is more beneficial to the overall power response.  The 

balancing of an R-L circuit for both broadband response and overall power response for a 

given hydraulic system is an important aspect of HPEH circuit choice. 
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Accompanying the R-L circuit results in Figure 2.11, the estimated optimal resistive 

load for the resistance only circuit is near the maximum power produced. The model 

matches well for all test conditions, however small deviation between the model and test 

results occur at high resistive loads in the matched R-L circuit model; this may be due to 

the piezoelectric stack capacitance measured during the deadweight test being different 

from the capacitance during the dynamic tests. In addition, the normalized power results 

for both static pressure conditions for the R-L circuit using matched inductance have nearly 

identical responses, indicating that the power results for this loading condition is not 

affected by the static pressure. 

To further demonstrate the concept of shunt efficiency, an inductive sweep for the 

R-L circuit was tested where the resistive load was 115 Ω, which is near the estimated 

optimal resistive load of 117 Ω for the resistive load (R circuit) shunt model. This test was 

performed twice, with the average power normalized by dynamic pressure amplitude is 

shown in Figure 2.12a, including the standard deviation between the tests shown by the 

error bars. The shunt efficiency calculated for 450 Hz is shown in Figure 2.12b using the 

measured internal resistive loads, which is why small spikes occur. Once again, for the 

system tested, the dominant frequency was at 450 Hz.  

The optimal inductive load for an ideal R-L circuit for 450 Hz and a piezoelectric 

capacitance of 3 µF is 41.7 mH. Inductive loads above this level correspond to tuning the 

circuit to lower frequency levels, whereas inductive loads below correspond to higher 

frequency levels. The ideal optimal inductive load is inversely proportional to the 

capacitance of the piezoelectric stack, so small changes to this value would not drastically 

change the ideal optimal load. As seen in Figure 2.12a, near the optimal inductive load, the 
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maximum normalized power occurs, however the decrease in power is not as significant at 

the higher optimal inductive loads compared to the lower loads. This is because the higher 

inductive load tests have higher shunt efficiency than the lower values (recall Eq. (2.19) 

and Figure 2.4). Figure 2.12b demonstrates that the shunt efficiency corresponding to 450 

Hz increases, meaning the system response becomes more broadband (especially with 

respect to frequencies above 450 Hz), as the inductive load increases. Yet the combined 

effects of Figure 2.12a and b show that higher shunt efficiency does not correspond to 

higher power response when normalized by the pressure amplitude. The important feature 

for HPEH circuits is which frequency band contains the most energy. 
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Figure 2.12: a) Power normalized by pressure for R-L shunt impedance, with inductive values being swept 

(using HPEH1-2 device, with model using an area ratio of 1.79 and effective  = 183 nC/N), and b) 

corresponding shunt efficiency calculated using 450 Hz. Error bars indicate standard deviation of two 

separate test runs for the R-L circuit. Error bars are generally too small to see, so callout figure is included. 

2.4.2 Area Amplification 

An important aspect in the HPEH design is the fluid-mechanical coupling of the 

piezoelectric surface area and the pressure fluctuation. The interface needs to be flexible 

to allow for maximum surface deflection (while still protecting the piezoelectric), but stiff 

enough to prevent failure of the part. Within the HPEH devices is a diaphragm interface to 

prevent oil (or other liquid) from leaking out of the hydraulic system. Leaks can be 

hazardous to a hydraulic system and to users. The HPEH interface that isolated the stack 

from the fluid was composed of either a 0.0762 mm (.003”) thick aluminum diaphragm or 

33d
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a 0.025 mm (.001”) thick steel diaphragm, which allowed the diaphragm stiffness to be 

much less than the stack stiffness while still preventing leaks. 

In addition to providing protection from leaks, the interface can increase the 

effective area of a HPEH device for increased power output. The diaphragm area is larger 

than the area of the stack, and hence it is expected that the effective area is slightly larger 

than the area of the stack, as schematically shown in Figure 2.13a. Note that the effective 

area and the dynamic pressure will combine to form force components in the 1- and 3-

direction of the piezoelectric stack, where only the 3-direction forces are considered as 

contributing to the overall power output. The overall effective force can be increased by 

using a spacer, or small metal disc, between the diaphragm and piezoelectric stack, as 

shown in Figure 2.13b. Additionally, the spacer reduces the amount of force transferred 

into the HPEH outer housing via the diaphragm and diaphragm seal, thus primarily loading 

the spacer and piezoelectric material. 

 

 

Figure 2.13: Schematic of effective area ratio for (a) diaphragm interface only and (b) diaphragm with 

spacer interface.  
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To analyze the area ratio effect, two versions of a prototype were tested with 

different internal configurations, denoted as HPEH1-1 and HPEH1-2. A spacer was applied 

to HPEH1-2 with a designed area ratio of 2.4, allowing more force to be transmitted from 

the dynamic pressure to the stack. Otherwise, the two devices were identical.  

In order to estimate the effective area ratio,  , the modelled average power with 

1    is compared to the test results, such that 

 
1measured      , (2.22) 

then the resultant value is used as a constant within the power model. Note that if any 

changes of the piezoelectric material properties occur due to the static pressure, such as 

change in the effective piezoelectric strain constant [71, 74-76], this would also be lumped 

into the area ratio calculation. However, the same area ratio is used for all static pressure 

levels tested, therefore this change is assumed to be constant with respect to frequency and 

impedance loading. This assumption and calculation is made for every HPEH device 

modelled unless noted otherwise. 

 The comparison of HPEH1-1, where only a diaphragm is used, to HPEH1-2, where 

both a spacer and diaphragm is used, can be seen in Figure 2.14. It compares the power 

normalized by the squared pressure amplitude of the measured dynamic pressure. The 

effective area of HPEH1-1 used in the model is 1.25, and the effective area of HPEH1-2 

used in the model is 1.79; note that small deviation between 2.1 MPa and 3.4 MPa modelled 

results is due to the capacitance values for the two static pressure levels changing from 

3.08 µF to 3.11 µF. Only one test was performed using HPEH1-1. The errorbars shown on 

the HPEH1-2 data points represent the standard deviation of three separate measurements 

performed, where the mean result of the normalized power is indicated by the points. As 



45 

 

can be clearly seen, increasing the effective area of the interface in a HPEH increases the 

power performance of the device.  

 

Figure 2.14: Comparison of HPEH devices with only a diaphragm (HPEH1-1, area ratio of 1.25) and with a 

diaphragm and spacer to amplify force input (HPEH1-2, area ratio of 1.79). Error bars on HPEH1-2 results 

represent standard deviation between three separate tests. Both devices use the same piezoelectric stack 

made by EPCOS, with  = 183 nC/N. 

2.4.3 Force Shunt 

As indicated previously, one challenge of converting the acoustic energy from 

hydraulic systems is balancing high conversion efficiency with a high stress environment. 

The area amplification method presented in Section 2.4.2 provides much higher conversion 

efficiency by amplifying the dynamic force, however it also amplifies the static force 

applied to the piezoelectric element. As presented in Eq. (2.10), the power is proportional 

to the squared dynamic pressure, not the static pressure, and therefore the objective of area 

amplification is to increase the dynamic force. Recalling from the discussion of deadweight 

testing in Section 2.3.2, at high stress levels, the piezoelectric stack can enter a nonlinear 

loading behavior, and potentially partially (or fully) depolarize the piezoelectric stack 

(depending if the domain switching process is reversible), thus reducing the transduction 

efficiency [72]. In order to ensure HPEH devices can be used on hydraulic systems that 

33
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reach system pressures higher than 20 MPa, a method to relieve the static force, called 

force shunting, was developed. 

Multiple parameters within hydraulics systems may affect the performance of 

piezoelectric devices: stress level, stress loading order, and oil temperature. It is therefore 

important to ensure that HPEH devices are robust to static pressure changes that occur 

during a hydraulic system work load, and robust to temperature changes in oil. The 

reduction in normalized power has been observed in HPEH experiments, as shown in 

Figure 2.15. It is assumed that the cause for this reduction is primarily due to increased 

compressive stress derived from the high system static pressure, however piezoelectric 

performance changes due to increased dynamic pressure, changes in oil temperature, or 

order of system loading may also be contributing factors. Therefore, prior to introducing 

the force shunt concept, test results are discussed that isolate the static pressure as the 

primary source of decreased normalized power. 

Figure 2.15 shows power normalized squared pressure test results for HPEH4-1 

device, which has an area amplification of 3.47. The compressive stress within the 

piezoelectric element is expected to have reached around -60 MPa, or -8.7 kpsi, which may 

have resulted in residual strain and depolarization, however not complete depolarization. 

If no material change had occurred, it would be expected that the normalized power results 

would all be equivalent, as seen with the 3.4 and 5.0 MPa test results. 
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Figure 2.15: Power normalized by pressure for various dynamic and static pressure amplitudes for HPEH4-

1; increasing capacitance causes normalized power to decrease. 

 

To ensure that the power reduction is due to increasing static pressure rather than 

other system parameters (e.g. loading order, dynamic pressure, or oil temperature), 

multiple resistive sweep tests at different loading conditions were performed on HPEH1-

3. In order to change the dynamic pressure levels, the charge pressure, and thus impedance, 

of a downstream bladder-style suppressor (typically used for noise control) was changed 

while keeping the static pressure the same.  The HPEH1-3 device was tested two different 

times, with a summary of these tests shown in Figure 2.16. The first set of tests cycled from 

6.9 MPa to 3.45 MPa and back to 6.9 MPa twice, with the dynamic pressure amplitudes 

ranging from 97.4 kPa to 105.7 kPa at the low static pressure level and from 137 kPa to 

158 kPa at the high static pressure level. The second set of tests also performed a static 

pressure and dynamic pressure cycling, however also recorded oil temperature. This set 

started at a static pressure level of 3.2 MPa and raised to 6.2 MPa, and then returned to 3.2 

MPa. The dynamic pressure at 3.2 MPa ranged from 72 kPa to 106 kPa; for the 6.2 MPa 

test, it ranged from 147 kPa to 171 kPa. The temperature of the oil raised from 22.2oC to 
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45.4oC. While the normalized power did decrease at the higher static pressure levels, the 

standard deviation of the 18 tests performed was less than 10 percent of the average 

normalized power for all resistive loads except the lowest value, which had a standard 

deviation of 10.3 percent.  

The results of the tests described are shown in Figure 2.16, however some have 

been omitted for clarity. Figure 2.16a shows the average results of the tests performed 

around 3.4 MPa, 6.2 MPa, 6.9 MPa, and all tests, including error bars to indicate the 

standard deviation of the results. Figure 2.16b shows multiple tests performed around 3.4 

MPa to indicate the range of static pressure levels; this is also shown for the 6 to 6.9 MPa 

tests in Figure 2.16c. The modeled lines are for either the corresponding test or the averaged 

model results. 
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Figure 2.16: Comparing power normalized by squared dynamic pressure for multiple static pressure levels, 

various loading cycles, and hydraulic oil temperatures, where a) shows a summary of all tests, b) is tests 

performed at about 3.4 MPa, and c) are tests performed at about 6.2 MPa and 6.9 MPa. Tests were 

performed using HPEH1-3. Error bars are generally too small to see in a), so callout figure is included. 
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 Now that it is established that HPEH devices have consistent power responses 

below a certain piezoelectric stress level, the force shunt topic can be resumed. The key to 

the force shunt design is relative stiffness: a spring mechanically in parallel with the 

piezoelectric stack can relieve the static pressure by being preloaded, thus preventing 

spacer motion, but must be soft relative to the piezoelectric stack to allow for minimal 

reduction of the dynamic force once the static pressure applied to the spacer area overcomes 

the preload force. Figure 2.17 shows this concept schematically, including the bottom edge 

of a HPEH outer housing (where the diaphragm sealing surface is located), a HPEH spacer, 

a soft spring with stiffness bvk  , the piezoelectric stack represented as a spring with stiffness 

pzk  , and the preload force on the soft spring bvpreF . In addition, it shows the level of the 

hydraulic system static pressure staticP  , the dynamic pressure dynP   oscillating about the 

static pressure, and an operating pressure level opP   that is used in the analysis of this 

concept. 

 

Figure 2.17: Internal design of HPEH5-4, which includes a force shunt, and schematic view of force shunt 

concept. 

 

 The equation of motion for this system can be represented using a modified 

Heaviside function, where the function is defined as  
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  (2.23) 

for this analysis. It is never expected that the displacement of the spacer will be less than 

zero. The equation of motion is  

      0( ) 1 ( )eff

spacer bv pz s bvpre xm x k k x H x P P A F R H x       
 

  (2.24) 

where xR  is the reaction force for when the spacer is stationary. In order to maximize the 

work applied to the piezoelectric stack, it is important to maximize the force shunt ratio, or 

ratio of potential energies, defined as  

 
piezoelectric pz

total bv pz

U k

U k k
  


 . (2.25) 

 The HPEH power response would thus change to 
2

,avg l   . The equivalent stiffness of a 

piezoelectric stack can be determined by using the stack dimensions (where 

s

pz p stackk E A Nh ) and the equivalent Young’s modulus for a shunted piezoelectric, as 

defined by Park and Palumbo [77],  
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  (2.26) 

where 
E

pE  is the Young’s modulus of a short-circuited piezoelectric stack, 33k  is the 

electromechanical coupling coefficient, and sY  is the inverse of the shunted impedance 

defined in Section 2.2.  

The preload force should be equal to the desired static pressure level minus the 

approximate dynamic pressure amplitude, or  

  0.5bvpre s dyn spacer op spacerF P P A P A     (2.27) 
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where opP  is the pressure when the spacer begins to move. This is because the HPEH device 

will not be excited by the entire dynamic pressure until 

  0.5s dyn spacer bvpre dyn spacerP P A F P A    . (2.28) 

In addition, the operating range of a force shunt HPEH is from the operating pressure up 

to the safe stress limit of a piezoelectric stack divided by the area ratio and force shunt 

ratio, in other words  

    0max s opP P P     .  (2.29) 

HPEH5-4 was developed for testing this concept and utilizes a Parker piezoelectric 

stack made by Nec Tokin. The reported parameters for this device for calculating the 

Young’s modulus of the piezoelectric stack are shown in Table 3. The soft springs used in 

the design were Belleville springs with the reported stiffness of 4115 kN/m when assuming 

linear stiffness, with a flat load value of 1846 N.  Near the flat load limit, the linear stiffness 

assumption is no longer valid. For HPEH5-4, which has a spacer area of 182 mm2, this 

corresponds to a maximum loading pressure of 10 MPa. Granted, the maximum loading 

can be increased by placing multiple springs in parallel, and the approximate stiffness can 

be lowered by placing springs in series. 

Table 3: HPEH5-4 piezoelectric stack properties, from Nec Tokin data [70] 

 

Shorted Young’s modulus, 
E

pE   55 GPa 

Electromechanical coupling, 33k   0.68 

Relative permittivity, 33 0

    5440 

Stack Capacitance, pC   2 µF 

Stack cross sectional area, stackA   25 mm2 

Stack total height, Nh   20 mm 

Piezoelectric strain constant, 33

id  635 pm/V 
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Comparing the real part of the piezoelectric stiffness to four Belleville springs in 

series, the approximate force shunt ratio was 98% for HPEH5-4 tests, however this neglects 

any friction between the spring edges and the spacer, preloading sleeve, and other springs. 

As the spacer moves and the springs compress, the contact surface area changes and the 

angle of contact changes, which may inhibit motion. The designed area ratio was 7.3, and 

a device tested with no springs confirmed this area ratio to be accurate. However, the 

product of the area ratio and force shunt ratio for unloaded springs was 4.1, and for loaded 

springs was 5.0, therefore the actual force shunt ratio is expected to have been between 56-

69%. Assuming a piezoelectric stack stress limit of -20 MPa, the designed area ratio 

provides a 2.8 MPa operating range above the operating pressure. The modeled and 

measured test results for the power normalized by dynamic pressure and the overall power 

are shown in Figure 2.18, Figure 2.19, and Figure 2.20. 

The tests shown in Figure 2.18 are for when the springs have no preload, thus the 

operating range is at 0 MPa. The normalized power for each test are equivalent except for 

the lowest pressure value, which may be caused by viscous losses or Helmholtz resonator 

trapped air effects (see Chapter 3, specifically Section 3.4.2, for more details). As can be 

seen, the highest safe pressure level is less than 1 MPa. 
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Figure 2.18: HPEH5-4, force shunt with four springs in series, no preload on springs 

 In Figure 2.19, the results shown for tests when a preload is applied to the Belleville 

springs. The modelled results do not match well to the test results because the model does 

not take into account HPEH performance that is excited by less than the full pressure ripple. 

As the static pressure increases, the test and model results begin to match because less of 

the dynamic pressure is clipped by the preloaded spacer. The highest static pressure value 

shown corresponds well with the model, and this pressure represents the target static 

pressure testing value, or op dynP P  . 
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Figure 2.19: HPEH5-4, force shunt with four springs in series, Pop near 3.4 MPa (created with a 10 lb-in 

torque applied to preload sleeve). 

The final test results shown in Figure 2.20 have the preload force nearing the flat 

load of the Belleville springs. These results have the highest power response because they 

benefit from the higher dynamic pressure levels, however the normalized power has 

decreased compared to the results shown in Figure 2.19.  
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Figure 2.20: HPEH5-4, force shunt with four springs in series with 20 lb-in torque for preload 

   

The force shunt concept allows HPEH devices to perform at high static pressure 

levels without reaching piezoelectric stack depolarization levels, however it causes the 

HPEH device to not function below the set operating pressure level. In addition to allowing 

piezoelectric devices to benefit from higher dynamic pressure levels, it also allows the 

devices to benefit from higher area ratios if the static pressure level is not expected to vary 

too far above the target static pressure. As mentioned, the force shunt does not protect the 

piezoelectric stack if the defined safe maximum pressure level is exceeded; it only relieves 

the target static pressure level. Future design work could investigate HPEH devices that 

are protected when this level is exceeded. Furthermore, if that concept was developed, then 



57 

 

multiple stages of force shunts could allow for a full range of static pressures in hydraulic 

systems. Short term future work can include doing a operating load study to determine the 

best preload level to provide for a given task while maximizing HPEH power performance. 

2.5 Conclusions 

This chapter introduced a hydraulic pressure energy harvester that utilizes 

piezoelectric stacks. It presented a general overview of the main components of a HPEH 

device, which were then further investigated for increasing the power performance. These 

parts include the shunt impedance, the interface coupling the piezoelectric stack to the 

hydraulic pressure ripple, and the piezoelectric material itself. In addition, an 

electromechanical model was presented, with various shunt configurations, optimal power 

loads, and shunt efficiencies investigated. Next, the testing procedures were presented, and 

the test results of multiple HPEH prototypes were compared to the electromechanical 

model. This included showing that R-L shunt circuits have higher power performance due 

to canceling the reactance of the piezoelectric material; increasing the power response by 

increasing the effective area; establishing that the power response increases with dynamic 

pressure; and presenting a method to target higher dynamic forces by using a force shunt 

design. The main components of a HPEH device are investigated further in the following 

chapters in order to increase the overall power response of HPEH devices. This includes 

the HPEH circuitry, the piezoelectric material selection, and increasing the dynamic 

pressure that is applied to a HPEH device. 
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CHAPTER 3 

ACOUSTIC IMPEDANCE MATCHING 

Hydraulic pressure energy harvester (HPEH) devices only convert a fraction of the 

energy within the acoustic pressure ripple, indicating that employing traditional acoustic 

focusing methods, such as a Helmholtz resonator, may improve the conversion efficiency 

without introducing energy into the system. This chapter explores the conversion 

improvement and practicality of employing a Helmholtz resonator in combination with a 

HPEH device. 

3.1 Background of Helmholtz resonator models 

As introduced Chapter 1, acoustic ambient energy typically has low intensity levels 

which require most acoustic harvester implementations to need either a large device (or 

system of devices), efficient focusing methods, or low power requirements. The high 

intensity levels found within hydraulic systems (recall Figure 1.2) allowed HPEH devices 

to convert microWatt level power without any focusing methods, and via area amplification 

and resonant circuit designs increased this to milli-Watt power levels when excited by 85 

kPa rms-pressure amplitude.  Conversely, if HPEH devices are used on low-level pressure 

ripple systems (less than 1 MPa static pressure), such as cross-country pipelines or water 

distribution networks, then the amount of power available decreases, indicating additional 

pressure amplification methods will be required. The power level available in such systems 

was previously demonstrated in Figure 1.3.  

HPEH power output is proportional to the squared pressure amplitude and squared 

frequency at the interface to the material. Most of the energy from the acoustic pressure in 
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hydraulic systems is from a deterministic source, e.g. a pump operating frequency, and 

produced within a narrow band, such as centered around the pump operating frequency or 

harmonics, as is shown in Figure 1.1. The acoustic pressure is an unwanted byproduct of 

hydraulic systems that is typically reduced as much as possible. In addition, HPEH devices 

only convert a small fraction of the acoustic energy available within the system. It is 

therefore of interest to exploit the acoustic pressure available for exciting the piezoelectric 

stack within a HPEH device. If the pressure exciting the piezoelectric material can be 

amplified for the frequencies of interest, such as the pump harmonics, then the energy 

conversion efficiency of a HPEH can increase.  

One well-established method in acoustic literature for absorbing or amplifying 

pressures within a particular frequency band [78-82], and previously incorporated into air-

based acoustic energy harvesting devices (as discussed in Section 1.2.2 [42, 43, 45, 46, 51, 

56]), is a Helmholtz resonator (HR). As an analogy, it is the acoustic equivalent of a spring-

mass-damper mechanical system or a resistor-inductor-capacitor electrical circuit. It 

consists of a narrow port entrance (or neck), which contains fluid acting as the 

mass/inductor, opening into a larger volume or cavity, which has compressible fluid acting 

as a spring/capacitor element; acoustic radiation when the fluid exits the neck and fluid 

viscous effects within the neck account for the damper/resistor element. HRs are typically 

used to remove or reduce the acoustic energy from the frequency band at which the device 

resonates. This also means the pressure within the cavity for that resonant frequency is 

amplified; thus, when part of the cavity couples with a piezoelectric material, then the 

energy converted for that frequency increases. Given that only a fraction of the acoustic 
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energy within hydraulic systems is converted by HPEH devices, incorporating a Helmholtz 

resonator within a HPEH can increase the power produced by the device. 

Helmholtz resonators have been used in liquid-based medium, however compact 

resonators are more difficult to produce due to liquids having sound speed on the order of 

1000s of meters per second, whereas ideal gases at most temperatures are on the order of 

100s of meters per second (e.g. fresh water – 1481 m/s at 20oC; air – 343 m/s at 20oC  [79]). 

For a HR containing a single liquid medium, a target resonance of below 1500 Hz requires 

either a large apparent cavity volume (e.g. liters), a long neck length (e.g. half-meter), or a 

narrow neck diameter (e.g. millimeters or less).  The use of HRs within hydraulics has been 

investigated for noise control purposes. Kojima and Edge [83] presented metallic bellows 

HRs and “rubber bag” HR (designed like an in-line hydraulic noise suppressor) as 

hydraulic silencers, where the cavity of the HR contained gas, thus reducing the overall 

size; the HR resonances were between 300 to 500 Hz. Kela [84] presented an adjustable 

HR system with resonances near 25 Hz, which contained a device of nearly 1 m in length 

and outer diameter of 0.11 m; the smallest neck diameter was 6 mm. Earnhart and Cunefare 

[85] used a HR device for noise control with a syntactic foam within the cavity to increase 

the apparent volume of the cavity, thus reducing the actual device volume to 310 mL with 

a neck diameter of about 6 mm; the HR resonances were between 37 to 92 Hz, depending 

on the composition of the foam liner.   

Outside of noise control, HRs have been used in liquids as mechanical anti-aliasing 

filters in hydrophones. Wang et al. [86] introduced a fiber-optic hydrophone that uses a HR 

with a resonance near 1200 Hz. The overall device size was only about 63.6 mL, and thus 
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has a narrow neck diameter of 1.6 mm. Size-wise, this device is most analogous to the HR 

developed for HPEH herein. 

Two main challenges presented by incorporating an HR on a HPEH are targeting a 

low enough frequency such that the dominant frequencies are amplified and keeping the 

device size on par with other HPEH. The dominant frequencies within the system tested 

are the first and second harmonic of the pump operating frequency (225 Hz), depending on 

the static pressure level. HPEH devices are designed to be installed on a hydraulic system 

via a diagnostic-sized ports, which have outer diameters of approximately 10 to 25 mm and 

wall thicknesses of 3 mm or more. In addition, the overall volume of HPEH are aimed to 

be less than 100 mL; for instance, HPEH5-4 is nominally 55 mL.  The next section 

introduces a model for calculating the power gain and a design of HPEH-HR devices. 

3.2 Methodology 

A HPEH device with a Helmholtz resonator incorporated is shown in the schematic 

in Figure 3.1. The HR consists of a narrow port – which connects to the hydraulic pipe – 

and an oil-filled cavity – which contains one edge as the interface between the piezoelectric 

stack and oil. The peak frequencies within the acoustic pressure of the fluid are on the order 

of hundreds of Hertz; therefore, the piezoelectric stack (which has a fundamental resonance 

on the order of tens of kHz) is excited off-resonance.  The acoustic pressure amplitude, P0, 

can be amplified by including a Helmholtz resonator within the HPEH housing if the 

resonant frequency is on the order of the dominant frequencies.  While previous HPEH 

devices exposed the interface directly to the hydraulic system flow, the HPEH Helmholtz 

resonator would amplify the noise at the resonance of the device. A model of the pressure 

gain caused by the HR is introduced, and followed by the design of a HPEH-HR. 
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Figure 3.1: HPEH device with Helmholtz resonator 

 

3.2.1 Model of HPEH with Helmholtz resonator 

Helmholtz resonators can be modeled using lumped-element parameters because 

the wavelength of the acoustic disturbance is much larger than the characteristic 

dimensions of the resonator. The wavelength can be calculated by the speed of sound of 

the hydraulic fluid, fc , which is around 1400 m/s, divided by the frequency of interest, 

which for hydraulic systems peak frequencies is on the order of 100s of Hz.  Given that 

this produces wavelengths on the order of meters, whereas the dimensions of HPEH 

devices are on the order of centimeters, applying a lumped element model of a Helmholtz 

resonator is justified. 

Helmholtz resonators consist of a cavity that provides compliance and a neck that 

connects the fluid flow pressure fluctuations ( pipeP  ) with the cavity and provides inertance 

and resistance. The Helmholtz resonator portion of a HPEH device modeled as a circuit is 

shown in Figure 3.2, with descriptions for each impedance term described below.  
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Figure 3.2: Helmholtz resonator component of HPEH modeled as a circuit with pipe pressure as the voltage 

source 

 

This system is analogously modeled as a series RLC circuit or a parallel spring-

mass-damper system. It includes the pressure fluctuations from the pipe containing system 

flow, pipeP , the resulting pressure fluctuations within the cavity that are exposed to the 

HPEH, HPEHP , the impedance from the neck inlet and radiation resistance, pZ , and the 

compliance within the cavity volume, cZ . The neck impedance consists of the acoustic 

resistance, aR , and acoustic mass, aM . The cavity compliance consists of the fluid (oil) 

compliance, flC , and entrained air compliance, airC . The compliance can also include other 

factors, such as the outer housing compliance or added compliance from a different 

material, such as syntactic foam developed by Earnhart, Gruber and Marek as well as others 

[85, 87-90]. While the outer housing compliance may be an important factor in some 

designs, for the design presented here it is neglected; further details justifying this are 

discussed in Appendix A.1. The definitions and calculations of each term presented are 

discussed in detail after relating these terms to the potential power gain within HPEH. 

The pressure gain within the resonator HPEHP  compared to within the pipe pipeP  can 

be modeled similar to a voltage divider, where 
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 HPEH c

pipe c p

P Z
g

P Z Z
 


 . (3.1) 

The magnitude of the power gain G  due to the inclusion of a Helmholtz resonator within 

a HPEH device is defined as  

 1020log HPEH

pipe

P
G

P

 
  

 
 

  (3.2) 

since the HPEH power is proportional to the squared acoustic pressure amplitude 0P , and 

0P is now equivalent to HPEHP , whereas previously it was equivalent to pipeP . The phase 

difference between the pipe pressure and HPEH cavity pressure is calculated via  

 
 

 
1tan

g

g
 

 
    

 . (3.3) 

Thus, the total power produced by HPEH-HR can be determined via 
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where ng  is the pressure gain ratio from an HR for a given frequency band n ,   is due to 

the area amplification ratio (Section 2.4.2),   is due to the force shunt ratio (Section 2.4.3), 

  is radial frequency, eZ  is the electrical impedance, lR  is the resistive load across the 

piezoelectric electrodes, and 33

effd  is the effective piezoelectric strain constant of the stack. 

Therefore, an accurate representation of HR impedances will allow HPEH-HRs to be 

designed and modeled.  



65 

 

 The geometries of the HR consist of three main parameters: the cavity volume, Vcav, 

the cross sectional area of the neck, neckA  , and the effective neck length, 
,n effl . The cavity 

volume is simply defined as  

  
2 2

2 2

cav cav
cav cav spacer cav

d d
V l x l 

   
     

   
  (3.5) 

where cavd  is the cavity diameter, cavl  is the cavity height, and spacerx  is the change in cavity 

length due to the spacer displacement. The change in cavity length due to the spacer and 

piezoelectric stack deflection is neglected; this is because the deflection has a very minor 

effect on resonance and power gain, as explained in Appendix A.1. The cross sectional 

area of the neck is the standard definition of  
2 22neck neckA d a   , where a  is the neck 

radius. The neck length requires an end correction as it is used to determine the effective 

fluid mass involved in the pressure oscillations, as presented by Bolt et al. (extracted from 

Hansen [78]). The end corrections are defined from  

  
8

1 1.25
2

N N

a
l 


    (3.6) 

with   depending on the orifice termination, where the subscript indicates which 

termination edge. For the neck terminating into the system flow in the pipe, p neck piped d 

; for the neck terminating into the HR cavity,  c neck cavd d  . Hence, the effective neck 

length is defined as  

 ,n eff neck p cl l l l   .  (3.7) 

 The next step is to determine the fluid properties of the oil within the system. The 

oil manufacturer provided the specific gravity of the oil for 15.6oC ( refT ) at atmospheric 
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pressure (0.1 MPa, atmP ) and the kinematic viscosity,  , of the oil at both 40oC and 100oC 

[91]. The density of the oil at atmospheric pressure with changing temperature is 

determined via  

 
 

,

,

. .

1

water ref

f T

C ref

S G

T T








  
 

  (3.8) 

where the density of water at the referenced temperature is 999.07 kg/m3, and CT  is the 

measured oil temperature in degrees Celsius, and   is the volumetric expansion 

coefficient. The volumetric expansion coefficient,  , of new oil can be found from online 

resources, such as Engineering Toolbox [92]. The kinematic viscosity of the oil at 

atmospheric pressure for a given temperature is  

 
  10 CT

T


    (3.9) 

with 
 40C

40C 10


   and    10 100C 40Clog 40 100       . The bulk modulus of the 

fluid is derived from the kinematic viscosity, mean system pressure, and oil temperature. 

As presented by Song, et al. [93], the  isothermal secant bulk modulus at atmospheric 

pressure for a given temperature is calculated via 

     
0.3307

10 0, 10 ,cStlog 0.3766 log 0.2766T TK     (3.10) 

where 0,TK  is in GPa and the kinematic viscosity is in centistokes. The isothermal secant 

bulk modulus for a given pressure is then found by  

 , 0, ,GPaP T T T sK K B P    (3.11) 

where 0.01382 5.851T CB T   , and the mean system pressure is in GPa. From this, as 

summarized by Gholizadeh et al. [94], the isothermal tangent bulk modulus can be 

determined using 
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which can then be used to estimate the density and sound speed as related by static pressure 

(system mean pressure). Note, when the ratio of specific heats is close to 1, then the error 

caused by using the isothermal bulk modulus rather than the adiabatic bulk modulus to 

determine the speed of sound is relatively minor, as explained in Pierce [80]. 

Using Taylor’s series [79], as with the temperature adjustment, the density of the 

oil is updated with respect to pressure to be  
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where the bulk modulus and pressure terms must be of the same unit. The speed of sound 

of the fluid is calculated as 
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
  . (3.14) 

The wavenumber for the fluid is defined as f fk c . Despite absolute (dynamic) 

viscosity, f , being relatively independent of pressure or density changes, kinematic 

viscosity is a function of density. Therefore, the kinematic viscosity is also updated to be 
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 
   . (3.15) 

 The literature on hydraulic oil bulk moduli [94] indicates that air can be present 

within the system in three ways: 1. a free air pocket; 2. entrained air, which are bubbles 

dispersed in the oil; or 3. dissolved air, which does not significantly affect the bulk 

modulus. As system pressure increases, the amount of dissolved air increases; however 
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increasing temperature impedes air from dissolving. In addition, the amount of air that can 

be dissolved for a given static pressure depends on the solubility. It is therefore necessary 

to define properties of air. 

 For this work, the volume of air present is defined as a fraction of the fluid volume, 

with the initial air fraction represented by 0b . The air fraction for a given static pressure 

and temperature can be derived from the ideal gas law as  

 0
atm C

s ref

P T
b b

P T
  . (3.16) 

The density of air is defined as 

 s
air

air K

P

R T
    (3.17) 

where KT  is temperature in Kelvin and airR  is the specific gas constant for dry air, 287.058 

J/(kg. K). The speed of sound for air is calculated from  

 air air s airc P    (3.18) 

where air  is the ratio of specific heats for air, 1.402 [79]. Given the defined HR geometries 

and fluid properties, the next step is to define the acoustic compliance, mass, and resistance 

of the system.  

The volume of the fluid is defined as  1fl cavV V b   and the volume of air is 

air cavV bV . Note, if a compliant foam was included in the HR cavity, then these would 

change to     ,0 ,0 ,1fl foam foam foam PV V V b V V      and  air foamV V V b  . The 

compliance of substance N  is defined as  
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where in this system, the substances include oil and air[79]. The effective compliance of 

the cavity is the sum of the substance compliances, 
eff N

N

C C .  Similarly, the effective 

density of the cavity is  

 N
eff N

N cav

V

V
  .  (3.20) 

The cavity’s effective speed of sound is defined as  

 cav
eff

eff eff

V
c

C
   (3.21) 

and the overall impedance of the cavity is 

 
1

c

eff

Z
j C

  . (3.22) 

In essence, trapped air acts like a spring that stiffens as it is compressed, and is combined 

electrically in parallel. Since air is much less dense than hydraulic fluid, the inclusion of 

trapped air in the cavity decreases the resonant frequency which is desirable for this usage. 

The resonant frequency increases as the volume of trapped air shrinks and stiffens in 

proportion to system static pressure. The term used in this study to describe this 

phenomenon is resonance drift. Resonance drift due to unintentional trapped air is 

undesirable because it makes a resonator more difficult to precisely design for a useful 

resonance frequency. For instance, it can occur when an HR cavity is not purged of air 

prior to a hydraulic system being turned on.  

The other portion of an HR is the acoustic mass and resistance due to the neck. The 

acoustic mass is the effective mass of the fluid within the neck over the neck cross sectional 

area [79]; in other words,  
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 This leads to the corresponding acoustic mass impedance of 
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  The acoustic resistance can be modeled in several different ways, depending on the 

characteristics of the fluid excitation, orifice geometry, and apparent viscous boundary 

layer. The viscous boundary layer is defined as 2v fd   , and when the boundary 

layer  approaches the dimensions of the neck radius, narrow tube resistance calculations 

are required[82]. For the HR later presented, at low static pressure levels this can occur at 

frequencies below 60 Hz, however the approximation presented by Kojima and Edge [83] 

for hydraulic fluid viscous effects works well for most cases (with exceptions discussed in 

Section 3.4.1).  Kojima and Edge [83] reported the hydraulic oil complex coefficient 

representing viscous effects is 
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From this, the loss factor of the complex wavenumber can be calculated (as shown by 

Earnhart et al. [85]) via 
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from which the resistance due to viscous effects is determined (as shown by Kinsler [79]) 

as 

 ,2w f neck n eff wR A l  .  (3.27) 
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If the neck radius is less than the viscous boundary layer, then the loss factor can be 

calculated using  

 
2 2

41 f
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f fk c a
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  ,  (3.28) 

which was adapted from the narrow tube attenuation coefficient presented by Pierce [80]. 

If the neck radius and viscous boundary layer are nearly equal, then higher order terms to 

Eq. (3.25) can be added to correct for the additional viscous resistance. Thus,   can be 

represented by a geometric series related to the term * , which relates the viscous 

boundary layer to the neck radius. Therefore, the relation for the viscous loss factor can be 

approximated using 
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This representation provides a computationally simple method for estimating viscous 

losses within narrow hydraulic pipes. A more rigorous derivation can be applied to 

determine the viscous resistance, such as a method presented by Hansen [78] compared in 

Appendix A.3, however this representation accurately matched all tests performed and is 

deemed sufficient for this analysis and design. (Other methods are described in Ch. 6.4 in 

Morse and Ingard [82] and Ch. 10 in Pierce [80].) 

The resistance due to the sound radiating into the fluid medium is defined as [79] 
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 which uses the effective density of the cavity and effective speed of sound in the cavity. 

The overall acoustic resistance impedance is calculated via  
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and the overall neck impedance is defined as  

 p a mZ R Z  .  (3.32) 

Now that a model has been established, a parameter study can be performed to 

explore which parameters have the most impact on the power gain and resonant frequency. 

The natural resonant angular frequency of the undamped HR can be determined as  
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 The peak pressure gain occurs at the damped natural frequency. If  , 2res a avg aR M , 

then the damped natural frequency is estimated using 
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where ,a avgR is the average acoustic resistance calculated across all frequencies (excluding 

zero Hz). However, this is not accurate when the resonant frequency is low (i.e. close to or 

less than  , 2a avg aR M ), such as if a large amount of air is trapped. For this reason, the 

natural resonant frequency, resf , is used for dimensional analysis and HR design purposes, 

with the acknowledgement that the peak power gain occurs at a slightly lower frequency, 

depending on the acoustic resistance.   
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3.2.2 Design of HPEH with Helmholtz resonator (HPEH-HR) 

The hydraulic system that the HPEH devices are tested have dominant pressure 

ripple at 225 Hz and 450 Hz, depending on the static pressure level and temperature of the 

system, as was seen in Figure 1.1. Due to the high sound speed in oil, designing a 

Helmholtz resonator similarly sized to HPEH devices requires either a narrow neck 

diameter or added compliance to the cavity. Assuming no trapped air is within the oil, the 

resonance frequency from Eq. (3.33) can be simplified to  
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which demonstrates that the neck diameter and cavity diameter have the strongest impact. 

Unfortunately, all dimensions other than the neck diameter require the device size (or 

apparent size) to increase in order to lower the resonant frequency. Therefore, the first 

dimension analyzed is the neck diameter, with simulations shown in Figure 3.3. The 

measured points correspond to the design chosen and values measured from tests presented 

in the next section. As expected, the neck diameter has a strong impact on the resonant 

frequency; unfortunately, at resonant frequencies near and below 450 Hz, the power gain 

at the natural resonant frequency is near or below zero. Figure 3.3 is not showing the peak 

power gain, but rather the power gain when the phase passes through 90 . The peak 

pressure gain can be no lower than 1, i.e. 0 dB power gain, but this may occur at or near 0 

Hz. As explained in the model, when the neck diameter becomes too small, the port begins 

to act like a narrow tube, which is impeded by the viscous boundary layer encompassing 

the entire cross-sectional area of the neck.  
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Figure 3.3: Model of resonant frequency and power gain with respect to HR neck diameter, where b0 = 

0.0003, lneck = 23.75 mm, dcav = 16.58 mm, and lcav = 17.91 mm.   

 

 The other parameters that can be adjusted to lower the resonant frequency include 

the cavity diameter, cavity length, and neck length. As seen in Figure 3.4, the resonant 

frequency requires relatively large increases in neck length, cavity length, or cavity 

diameter to have any impact. For the data shown, this already includes a neck diameter of 

1.59 mm (1/16”), which is considered narrow for HRs in hydraulic systems to date. While 

increasing these dimensions does not adversely affect the power gain (as seen with 

decreasing the neck diameter), it was deemed impractical when considering it needs to fit 

on hydraulic mobile equipment, and may have limited space.  
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Figure 3.4: Model of resonant frequency and power gain with respect to HR neck length, cavity length, and 

cavity height; dneck = 1.59 mm and b0 = 0.0003 (lneck = 23.75 mm, dcav = 16.58 mm, and lcav = 17.91 mm 

unless stated otherwise in graph).  

 

 Two device design dimensions are presented in Table 4 and modeled in Figure 3.5, 

where a) shows an HR designed to be resonant near 600 Hz and b) shows an HR designed 

to be resonant near 900 Hz. In the figure, the static pressure level and temperature increases 

from 1 MPa at 25oC to 10 MPa at a) 60oC and b) 42oC .  The reason for these temperature 

values is because they are used in later sections for model to test comparisons. The trapped 

air is assumed to be negligible in this model, so only temperature and static pressure affects 

the model.  

 

  

Table 4: Design comparison for Helmholtz resonators; HPEH-HR uses “HR 900 Hz.” 

Dimension HR 600 Hz HR 900 Hz 

lneck 11.0 mm 23.7 mm 

dneck 0.67 mm 1.59 mm 

lcav 19.0 mm 17.9 mm 

dcav 15.0 mm 16.6 mm 
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Figure 3.5: Power gain and phase for two different HR designs at static pressure levels increasing from 1 to 

10 MPa (as indicated by legend), where a) is tuned near 600 Hz (temperature increasing from 25 to 60℃) 

and b) is tuned near 900 Hz (temperature increasing from 25 to 42℃); assumes no trapped air.  

 

The HR designed to be resonant near 900 Hz is deemed more advantageous than 

the 600 Hz design, and is used with the HPEH devices; any references using HPEH-HR 

herein refer to the HR 900 Hz design. The HR 600 Hz design shown in Figure 3.5a contains 

a neck diameter of 0.67 mm and causes any power gain benefit to be quite small unless at 

high oil temperature and static pressure. In addition, if any air became trapped within the 

device, the resonance frequency would further reduce and potentially reduce the pressure 

within the cavity for the dominant frequencies.  
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Conversely, the HR 900 Hz design provides a wider bandwidth of power gain and 

is robust to trapped air potentially lowering the resonant frequency. The HR 900 Hz design 

especially amplifies the fourth pump harmonic, which for this system can sometimes reach 

one third the level of the second pump harmonic, which typically dominates the system at 

low static pressure levels. This only requires about 10 dB power gain to amplify the 

pressure to levels equivalent to the dominant frequency pressure levels. Additionally, as is 

shown in Eq. (3.4), both the squared pressure amplitude and the squared frequency are 

proportional to the power. Thus, an equivalent pressure level at higher pump harmonics 

will result in higher overall power compared to those same pressure levels at lower pump 

harmonics. To quantify this, a weighted pressure-frequency gain defined as  
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where nP  is the pressure within the cavity for a given frequency nf , and 450HzP  is the 

pressure measured within the pipe at 450 Hz. If the circuit is resistive only, then the 

weighted pressure-frequency gain can be modified to determine the frequency for an 

optimal single-resistance value to  
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which accounts for the electrical impedance as seen in Eq. (2.14). The weighting values 

can be changed, however for this work, 450 Hz has consistently presented the highest 

power potential without HR included. Also, weighted pressure uses the value measured 

within the system flow as the HR 900 Hz design also increases the pressure at 450 Hz, and 

so this provides a comparison of the power potential with and without an HR.  
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 The HR 900 Hz design is used in combination with HPEH5-4, and provides a total 

device volume of 81.9 mL. The HR portion consists of about 27 mL of the HPEH-HR 

device. The following section discusses test results and model validation of the HPEH-HR. 

3.3 Results 

A Helmholtz resonator HPEH device (HPEH-HR) was designed with the damped 

natural frequency to be near 900 Hz. For the hydraulic system and operating parameters 

used, this corresponded most closely to the fourth harmonic of the pump operating 

pressure. This frequency contained pressure levels an order of magnitude below the 

dominant frequency pressure level or less, i.e. a test with 140 kParms pressure at 450 Hz 

may have about 14 kParms or less pressure at 900 Hz; however the pressure decrease at 

higher harmonics varies across operating parameters and systems. The Helmholtz 

resonator base housing attached to the upper housing of a previously discussed device, 

HPEH5-4, which is used for comparing the device performance. In addition to designing 

the HR base for the HPEH device, an additional cap (as seen in Figure 3.6a) was designed 

with a dynamic pressure sensor port in order to measure the amplified pressure within the 

Helmholtz resonator cavity. This is used for the initial model validation, followed by 

HPEH-HR tests at both low and high (with force shunt) static pressure tests.  

3.3.1 Model validation of cavity pressure amplification 

In order to validate the pressure model, a test article was manufactured with a 

pressure transducer port in place of a piezoelectric stack, shown in Figure 3.6, in order to 

measure the pressure within the cavity compared to the pressure in the pipe. The testing 

was performed using a 9-piston pump operating at 1500 rpm using ISO VG 46 hydraulic 

oil [91]. The temperature of the oil was measured within the system flow. A needle valve 



79 

 

downstream of the test article was used to change the system static pressure. A schematic 

of the test setup can be seen in Figure 3.6. 

  

Figure 3.6: a) Test article with cap, o-ring, and housing (top to bottom) and b) testing setup schematic 

 

The test article was filled with oil prior to assembling to minimize the air trapped 

within the cavity of the device. This reflects the steady-state operating condition of the 

device as any air trapped with the cavity would be dissolved into the oil over time. It was 

then tested at multiple static pressure levels, where the pressure from within the pipe and 

within the resonator was measured. The provided oil kinematic viscosity,  , at atmospheric 

pressure is 45 cSt at 40oC, with a viscosity index of 35 (meaning the kinematic viscosity at 

100oC corresponds to 5.7 cSt)[91] produced consistently over 10% error in power gain at 

resonance frequency. The new oil volumetric expansion coefficient,  ,  is 0.0007oC-1 [92], 

however this also proved to be inaccurate when compared to the model. Modeled results 

poorly predicted the resonance frequency and power gain using these values.  

Figure 3.7 shows the percent error between the experimental results and the model 

for the resonance frequency (averaged from 10 static pressure levels), and the power gain 

at the resonance frequency; thus, the accuracy of the model increases as the data points 

a

) 

b

) 
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approach zero for both axes. For this comparison, the resonance frequency is when the 

phase passes through -90o and the corresponding power gain is compared, despite this not 

being the peak power gain. In Figure 3.7, the model was varied with respect to oil viscosity 

(for four combinations, including the manufacturer-provided level; indicated by shape in 

legend), volumetric expansion coefficient (.0007 to .0014oC-1; indicated by top graph 

colorbar), and air fraction volume (.0001 to .001; indicated by bottom graph colorbar).  

 
Figure 3.7: Error of modeled resonance frequency and power gain for various air fraction, kinematic 

viscosities and volumetric expansion coefficients. 

 

 The oil condition during experiments may be different from the provided oil 

properties due to the hydraulic rig oil having been used for near or over the TOST (Turbine 

Oil Oxidation Stability Test, ASTM D943) oxidation lifetime. Kinematic viscosity of an 

oil may change with temperature, pressure, or oxidation[95-97], and the oil used during 

testing was near or beyond its oxidation life specification[91]. The model accounts for 

changes due to pressure, however does not account for changes of aged oil due to 
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contamination or oxidation. The volumetric expansion coefficient for new oil may not be 

the same for the well-used oil in the test rig. In addition, the narrow neck diameter of the 

HR may contribute additional thermal and viscous losses beyond what is captured by the 

model presented. A correction was performed by using one set of static pressure 

experiments to compare model accuracy with respect to the kinematic viscosity and 

volumetric expansion coefficient. Based on experiment and model error comparisons, all 

simulations presented use a kinematic viscosity level of 64 cSt at 40oC and 5.7 cSt at 100oC, 

and use a volumetric expansion coefficient of 0.001oC -1, unless otherwise stated. Further 

justification and details regarding why these values were chosen is discussed in Appendix 

A.2. 

The model compared to the test results matches well using the parameters discussed 

above. The test used to determine these parameters, which was for a filled test body, is 

shown in Figure 3.8. The power gain is shown in Figure 3.8a, and the phase difference is 

in Figure 3.8b. In addition, the Helmholtz resonator (HR) has a resonance frequency near 

900 Hz, which is the intended design. The HR also increases the pressure at 450 Hz, which 

for the system used is typically the dominant frequency. The small shift in resonance 

frequency between the test at 1 MPa versus the higher static pressure levels is due to the 

non-negligible trapped air volume fraction of 0.0003.  
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Figure 3.8: Filled test body where measured cavity is compared to pressure within pipe for multiple static 

pressure levels: a) power gain and b) phase difference. 

 

The test shown above is for an HR cavity filled with oil prior to testing, however if 

the HR is not pre-filled with oil, the trapped air can add significant compliance to the cavity. 

A test where the device was not prefilled was performed and modeled to show the effect 

of trapped air, with results seen in Figure 3.9. The test order is with increasing pressure 

level. The amount of trapped air used by the model decreases with each successive test, 

which follows logically given that trapped air can disperse as bubbles or become dissolved 

within the oil [94]. In addition, the power gain predicted by the model for the lowest 

pressure test is higher than measured.  
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Figure 3.9: Unfilled test body where measured cavity is compared to pressure within pipe for multiple static 

pressure levels: a) power gain and b) phase difference. Model uses the labelled initial air fraction values, b0, 

as shown, where the trapped air decreases with each successive test. 

 

An important aspect of unfilled or only partially oil-filled resonators is the 

resonance drift, meaning the resonant frequency of the device shifts with changing static 

pressure. The modeled and measured resonance frequency for a given static pressure with 

respect to air fraction within the cavity volume and the corresponding power gain for that 

frequency is shown in Figure 3.10. For the measured points, the resonance frequency and 

power gain measurements at -90o sometimes corresponded to data that was below the 

magnitude-squared coherence between the pipe pressure and HR cavity pressure threshold 
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of 0.95 (such as below 3 MPa static pressures), however the measured values are shown 

(rather than interpolated).  As the static pressure increases, the effect of the trapped air 

decreases due to air compression and dissolving, and the resonant frequency rises to near 

the value seen for the pre-filled case (with minimal trapped air). In addition, as seen when 

comparing the model to the measured results, the amount of trapped air decreases as testing 

continues. Therefore, when dealing with unfilled HPEH-HR devices, both testing order 

and static pressure level affects the resonance frequency and amount of trapped air within 

the HR cavity, where the effect decreases with elevated static pressure levels.  

 
Figure 3.10: Unfilled HR resonance drift modeled for multiple cavity volume air fraction values at multiple 

static pressure levels with respect to resonant frequency and power gain at resonance frequency.  

 

The mismatch between the model and experiments at low static pressure levels for 

unfilled-HR tests may be due to the resonance frequency being below the pump operating 

frequency, causing the coherence between the pipe and HR cavity to decrease (see Figure 

3.11a) and the signal to noise ratio within the HR cavity to decrease (see Figure 3.11b). 

Due to the trapped air, the resonance frequency is lower than the pump operating frequency 

for static pressures below 3 MPa. The signal to noise ratio for the pressures below 3 MPa 
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within the cavity are significantly worse the other static pressure levels, as shown in Figure 

3.11b. While the signal to noise ratio is above 20 dB, the signal is not as distinct as for 

static pressures above 3 MPa, and for frequencies above the pump operating frequency 

(225 Hz) and below the fourth harmonic (900 Hz).  

 

 
Figure 3.11: a) Coherence between the pipe and HR cavity pressures and b) signal to noise ratio within the 

HR cavity for tests where the resonator was not prefilled with oil. Legend at top of figures. 

 

Prefilling the HR cavity with oil has a major impact on test results, especially at 

low static pressures. However, for the prototype tested, the process of pre-filling the cavity 

was difficult and inaccurate, meaning the amount of air trapped could not be determined 
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prior to measuring the HR response. Even tests where the cavity had just under 1% of the 

HR cavity composed of air still exhibited resonance drift, as shown in Figure 3.12. Filling 

the HR cavity with oil when using the cap with a pressure transducer was an easier process 

than when using the HPEH upper housing. It is therefore expected that trapped air will be 

a contributing unknown when performing and modeling HPEH-HR device experiments.  

 

 
Figure 3.12: Semi-filled test body where measured cavity is compared to pressure within pipe for multiple 

static pressure levels: a) power gain and b) phase difference. Model uses the labelled initial air fraction 

values, b0, as shown, where the trapped air decreases with each successive test. 
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3.3.2 HPEH-HR results at low static pressure 

The HPEH-HR body consists of the HPEH5-4 upper housing and a Helmholtz 

resonator (HR 900 Hz) bottom housing. A HPEH5-4 test (presented later in Section 3.4.2) 

at the same low static pressure levels was performed to determine a reasonable force shunt 

ratio-area ratio   value, which was found to be 3.61. The measured peak normalized 

power for HPEH5-4 tests without force shunt preload was found to be 0.155 µW/kPa2 at 

150 and 180 Ω, as previously shown in Figure 2.18. As is seen in Figure 3.13, the measured 

peak normalized power for the HPEH-HR device at low static pressure is 0.24 µW/kPa2 at 

150 Ω, which is an increase of 55% as compared to HPEH5-4 results. The corresponding 

power measurements and model are shown in Figure 3.14, with peak power of 1.94 mW at 

120 and 150 Ω from 94 kPa rms-pressure amplitude (averaged across all resistive load tests 

at given static pressure level). 

                                                 
1 The  for these tests is lower than previous HPEH5-4 low pressure tests because unloaded 

Belleville springs were within the upper housing. The HPEH5-4 upper housing has the capability of 

employing a force shunt, and during the low static pressure tests, the Belleville springs were still within the 

device. The springs were not pre-loaded, and thus a minimum static pressure level was not required, however 

the area ratio and force shunt product ( ) is expected to be lower than both the area ratio alone (  ) and 

when the device is operating at higher static pressure levels. The Belleville springs are considered to have 

linear stiffness; however, when testing the piezoelectric stack on an Instron load frame machine, it was found 

that the stiffness of the stack increased with load, thus also increasing the force shunt ratio ( ). Therefore, 

the value of   is higher at elevated static pressure levels because the stack stiffness compared to the 

Belleville springs is greater. 
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Figure 3.13: Normalized power of HPEH-HR tests at low static pressure levels. 

 

 
Figure 3.14: Power of HPEH-HR tests at low static pressure levels. 

 

The optimal resistive load for a resistive-only circuit (recall  , 1l opt pR C  where 

  is the radial frequency of the dominant pressure component) for a capacitance of 2.53 

µF and frequency of 450 Hz is 140Ω, which is between the two peak measured power 

responses. This is accurate to predictions from analyzing the weighted pressure-frequency 

gain for resistive-only circuit, 
optRW , as shown in Figure 3.15. The top set of graphs show 

the weighted response with respect to the pressure measured within the system flow (pipe 
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reference), and the bottom set show the response with respect to the modeled pressure 

within the HR cavity. The weighted response with respect to the cavity pressure (bottom 

graphs) indicate that the peak power can be obtained from 450 Hz frequency band for a 

resistive only circuit; if any peak in the bottom set of graphs had been above one, then that 

would indicate a higher power potential. The weighted response with respect to the 

measured pressure within the system flow (top graphs) indicate that the HR amplified 

power gain beyond what would be seen without an HR; if the values are below or equal to 

one, then it indicates that the power response at that frequency is less than or equal to the 

power response at 450 Hz without an HR. As is seen at 2.0 MPa and 2.8 MPa static 

pressure, the power potential of HPEH-HR at 900 Hz optimal resistance is greater than the 

response of HPEH5-4 at 450 Hz optimal resistance would be. Plus, the power potential at 

450 Hz for each static pressure level was increased by the HR addition to the HPEH, as is 

seen by the greater than one values in the top graphs of Figure 3.15. 
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Figure 3.15: Weighted pressure-frequency gain modified for Ropt for HPEH-HR low static pressure tests (b0 

= 2e-3) comparing the weighted gain compared to the pressure at 450 Hz measured within the pipe (top) 

and within the cavity (bottom). 

 

The HPEH-HR device at low static pressure does have resonance drift effects, as is 

indicated by the shift in the weighted pressure-frequency gain for resistive-only circuit in 

Figure 3.15. The modeled power gain for the estimated initial air fraction for each static 

pressure level and measured temperature level is shown in Figure 3.16. As is seen, the 

resonant frequency for 2.0 and 2.8 MPa tests is near 900 Hz, however the trapped air caused 

the 1.0 MPa test to shift toward 775 Hz; this shift also caused the power gain at 450 Hz to 

increase more.  
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Figure 3.16: HPEH-HR low static pressure test modeled power gain and phase difference. 

 

3.3.3 HPEH-HR results at high static pressure (with force shunt) 

The HPEH-HR was tested using a force shunt at three static pressure levels above 

5 MPa. First HPEH5-4 with force shunt was tested at the same static pressure levels to 

determine a reasonable force shunt ratio-area ratio   value of 4.35; the normalized power 

results are shown in Figure 3.17 with a peak measured value of 0.1456 µW/kPa2. The 

measured and modeled normalized power for HPEH-HR with force shunt test with the 

same force shunt ratio-area ratio   value is in Figure 3.18. The HPEH-HR device was 

tested on a different day than the HPEH5-4 tests; in addition, the test at 7.2 MPa was 

measured on a different day than the tests at 5.9 and 6.6 MPa, which accounts for the air 

fraction change in the model. The HPEH-HR device doubled the normalized power result 

to 0.3133 µW/kPa2 at 100 Ω. 
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Figure 3.17: Normalized power for HPEH5-4 with force shunt for three static pressure levels. 

 
Figure 3.18: Normalized power for HPEH-HR with force shunt for three static pressure levels (from two 

test dates, where static pressure tests of 5.9 and 6.6 MPa were taken on a separate day than 7.2 MPa tests). 

 

The model shown in Figure 3.18 overpredicts the measured data, however the force 

shunt used within HPEH5-4 and HPEH-HR was disassembled between the different test 

days. All HPEH5-4 tests were performed in a row; on a separate occasion, HPEH-HR tests 

at 5.9 and 6.6 MPa tests were performed; on a third occasion, HPEH-HR tests at 7.2 MPa 

was performed2. When assembling the force shunt, a torque wrench is used to estimate the 

initial force applied, however it is not precise and cause the amount of static pressure 

                                                 
2 Tests were performed on separate occasions due to experimental error. 
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applied to the piezoelectric stack to vary. This would cause the    value to change. The 

model shown in Figure 3.19 shows a more accurate model of the normalized power results, 

where the   values have been changed to 3.90 for the 5.9 and 6.6 MPa tests, and to 4.45 

for the 7.2 MPa tests. 

 
Figure 3.19: Normalized power for HPEH-HR with force shunt for three static pressure levels with force 

shunt-area ratio modified (from two test dates, where static pressure tests of 5.9 and 6.6 MPa were taken on 

a separate day than 7.2 MPa tests; all taken on a different day than HPEH5-4-FS tests). 

 

Using the model parameters used in Figure 3.19, the weighted pressure-frequency 

gain for resistive-only circuit, 
optRW , is modeled in Figure 3.20. For the first two static 

pressure levels, the dominant frequency band is 450 Hz, which provides an estimated 

optimal resistive load of 156 Ω and 150 Ω for the measured capacitance values. This 

matches with where the peak normalized power was measured, which was a resistive load 

of 150 Ω for both. The third static pressure level of 7.2 MPa has a dominant frequency 

band of both 450 Hz and 900 Hz; this corresponds to either an optimal resistive load of 135 

Ω or 68 Ω, respectively. The average of the two optimal resistive loads is 102 Ω, which 

matches with the measured peak normalized power corresponding to 100 Ω. In addition, 

the normalized power raised by 30% over the other HPEH-HR measurements, showing 
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that pressure at 900 Hz (measured to be 15.27 kParms) amplified by the HR combined with 

the pressure at 450 Hz (measured to be 140.2 kParms) enhance the power potential of HPEH 

devices.  

 
Figure 3.20: Weighted pressure-frequency gain modified for Ropt for HPEH-HR with force shunt (5.9 MPa, 

κγ = 3.9, b0 = 1e-8; 6.6 MPa, κγ = 3.9, b0 = 1e-8; 7.2 MPa, κγ = 4.45, b0 = 1e-2) comparing the weighted 

gain compared to the pressure at 450 Hz measured within the pipe (top) and within the cavity (bottom). 

 

 One reason the HPEH-HR device amplifies the 900 Hz band more for the 7.2 MPa 

tests rather than the 5.9 and 6.6 MPa cases is because of increased oil temperature. The 

measured pressure amplitudes for 5.9, 6.6, and 7.2 MPa tests at 900 Hz are 13.6, 12.3, and 

15.3 kParms, respectively, which does not fully account for the weighted pressure-frequency 

gain. The HR model for the HPEH-HR with force shunt tests is shown in Figure 3.21, 

where the temperature of the oil is indicated by color. As the temperature of the oil 

increases, the power gain increases and the resonant frequency decreases. The power gains 

for 5.9 and 6.6 MPa at 900 Hz are 13.3 and 14.9 dB, respectively; the power gain for 7.2 

MPa tests at 900 Hz is 18.1 dB.  
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Figure 3.21: HPEH-HR high static pressure test modeled power gain and phase difference. 

 

 The measured power and modeled results for the HPEH-HR at high static pressure 

are shown in Figure 3.22. The peak power measured is 12.8 mW at 100 Ω from 202.6 kPa 

rms-pressure amplitude (averaged across all resistive load tests at given static pressure 

level). This is 88% higher than a HPEH5-4 test with similar dynamic pressure levels (see 

Figure 2.20, which has 6.8 mW at 150 Ω from 201.5 kPa rms-pressure amplitude).  
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Figure 3.22: Power for HPEH-HR with force shunt for three static pressure levels (from two test dates, 

where static pressure tests of 5.9 and 6.6 MPa were taken on a separate day than 7.2 MPa tests). 

 

3.4 Discussion 

The HPEH-HR tests correspond well with the model presented and is able to 

increase HPEH efficiency, however choosing an appropriate HR design and knowing when 

HR characteristics may be affecting HPEH results is important. The HR resonance may be 

lowered by decreasing the neck size or increasing the apparent volume by adding a 

compliant material such as presented in hydraulic noise control research [85, 89]. Also, 

HPEH5-4 contains an HR design, however the resonance is tuned to well above 5000 Hz 

when no trapped air is present. These issues are discussed in the following subsections.  

3.4.1 Design considerations  

The HPEH-HR design used had a resonance frequency at over twice the dominant 

system frequencies, however another design with a lower resonant frequency was 

investigated. The HR 600 Hz design (as specified in Table 4) includes a narrower neck in 

order to lower the resonance frequency to near 600 Hz. The tests consisted of the same 

procedure described in the model validation Section 3.3.1. The measured pressure gain, 
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phase difference, and corresponding model are shown in Figure 3.23. While the narrow 

neck viscous losses rarely impeded the HPEH-HR design using HR 900 Hz, the HR 600 

Hz design meets this condition as high as 168 Hz. For this body, the power gain measured 

at 450 Hz is 4.7 dB for the 9 MPa static pressure for trapped air fraction of 5e-4, which is 

greater than the 2.1 dB gain at 450 Hz from the HPEH-HR design. However, as the static 

pressure level decreases, the power gain decreases to the point that at 1 MPa, the measured 

power gain is 0 dB. In addition, an HR on a HPEH acts as a low pass filter, meaning any 

energy at higher frequencies within the system would be lost.  
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Figure 3.23: Alternative HR design with narrower neck diameter and target frequency of near 600 Hz, 

where viscous boundary layer causes additional damping; air fraction level of 5e-4 for all pressures in 

model. 

 

 Another design considered is to increase the apparent cavity volume by employing 

a syntactic foam, as described by Earnhart and Gruber [87, 88]. By incorporating a 

syntactic foam, the compliance within the cavity increases, and thus the resonant frequency 

will reduce. This was performed with the HR 600 Hz design using the syntactic foam GR9-

625 described in [87]. The measured power gain, phase difference, and calculated model 

are shown in Figure 3.24. The foam dimensions are: 14.9 mm outer diameter, 10.5 mm 

inner diameter, and 20.3 mm height. The corresponding air fraction volume is shown 

within the legend for a given static pressure modeled. The foam volume was chosen as it 
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was expected to correspond to a resonant frequency of 450 Hz. The peak power gain 

measured at 450 Hz occurred at the highest static pressure measured (10 MPa, not pictured) 

with a value of 3.29 dB. As can be seen by the measured data, the added compliance caused 

the dynamic pressure within the cavity to decrease for static pressures below 8 MPa. 

 
Figure 3.24: HR 600 Hz design with syntactic foam within cavity (using GR9-625 from Earnhart [87]) with 

initial air fraction listed in the legend for a) power gain and b) phase; foam dimensions: outer diameter – 

14.9 mm, inner diameter – 10.5 mm, length – 20.3 mm.   

 

A challenge of designing a HPEH-HR with a syntactic foam is that the foam used 

has different compliance at different static pressures, creating resonance drift as seen with 

trapped air. The benefit of syntactic foam is that change with respect to static pressure can 

be modeled and pre-determined for a given design. This may prove useful for future HPEH-

HR designs if the device is expected to be in an environment with relatively constant static 

pressure levels.   

3.4.2 Resonance drift due to trapped air compliance 

The HPEH5-4 bottom housing is also a Helmholtz resonator, but the cavity was not 

prefilled during testing because the resonance (when filled with oil) is over 5000 Hz. For 

elevated static pressures, neglecting the HR effects despite not prefilling the cavity is 
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acceptable, as demonstrated in Figure 3.25. The HPEH5-4 bottom housing is modeled with 

an initial air fraction level of 0.99, but the resonance is still well over 1000 Hz. At lower 

static pressure levels, the trapped air can provide enough compliance to lower the resonant 

frequency to below 450 Hz. This was an unintended testing error, as at low static pressures 

with significant air fraction levels, the resonance can drop below the second pump 

harmonic. 

 
Figure 3.25: HPEH5-4 Helmholtz resonator model at elevated static pressure levels with 99% cavity 

volume composed of air. 

 

 To demonstrate this point, the normalized power results measured using HPEH5-4 

at low static pressures are shown in Figure 3.26. In Figure 3.26a, the model uses high 

assumed air fraction levels and a lower force shunt-area ratio. In Figure 3.26b, the model 

assumes no air fraction level and a higher force shunt-area ratio. The model corresponds 

very well when incorporating the air fraction; however, when excluding the air fraction, 

the model only matches for the static pressure levels at 2.0 and 2.8 MPa.  
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Figure 3.26: HPEH5-4 normalized power test versus modeled results at low static pressure level for a) 

including air fraction and b) no air fraction. Arrow indicates location of test date change in a). 

 

 At the static pressure level of 1 MPa, the air fraction level is expected to be higher 

as it was the first test set performed. This caused the power gain at 450 Hz to increase 

drastically, as shown in Figure 3.27. Also, the normalized power for 1 MPa was measured 

to be 0.3658 µW/kPa2 at 150 Ω, which initially gives the impression that HPEH5-4 

performs better than a HPEH device with a Helmholtz resonator. In fact, the reason 

HPEH5-4 reported a higher normalized pressure is due to unrecognized Helmholtz 

resonator effects within HPEH5-4 itself.  
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Figure 3.27: HPEH5-4 model with air fraction of 0.82 and static pressure of 1 MPa comparing the modeled 

cavity frequency spectrum, power gain, and weighted gain compared to the pressure at 450 Hz measured 

within the pipe.  

 

 The modeled HPEH5-4 bottom housing Helmholtz resonator effects are shown in 

Figure 3.28, where a) contains the model with initial air fraction levels, and b) contains the 

model without any air fraction. Note the x-axis contains different scales for these graphs. 

The HPEH5-4 bottom housing does not add to the power gain of the dominant frequencies 

when air is not trapped within the cavity, even at low static pressures. However, even for 

an HR designed to resonate well above dominant frequency levels, if air is trapped within 

the cavity, it will affect the pressure amplitudes seen by the HPEH device at low static 

pressure levels. Resonance drift due to unintended compliance can greatly impact the 

performance of HPEH devices with Helmholtz resonators.   
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Figure 3.28: HPEH5-4 Helmholtz resonator model at low static pressure levels for a) including air fraction 

and b) no air fraction. 

 

3.5 Conclusions 

This chapter presents a detailed analysis of how incorporating a Helmholtz 

resonator (HR) in an acoustic energy harvester on hydraulic rig can be both beneficial and 

detrimental, depending on design and compliance contained within the cavity. Multiple 
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acoustic resistance models due to viscous losses within the narrow neck are explored. The 

HPEH-HR device provided measured an 88% power increase over similar pressure ripple 

measurements, and doubled the normalized power. Future work may include measuring 

HPEH-HR performance with a resonant electrical circuit. Syntactic foam was incorporated 

in a HR test body, with measured and modeled results presented, however no specific 

inserts were made for HPEH-HR. In addition, the foam used changed drastically with static 

pressure and appeared to inhibit area amplification and fluid flow into the cavity of devices 

tested, thus decreasing overall power performance. A more purposeful design employing 

syntactic foam may be pursued as future work. Also, alternative HR designs to incorporate 

increased apparent mass within the neck may be possible within hydraulic systems.  
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CHAPTER 4 

MATERIAL SELECTION 

While PZT piezoelectric stacks are mass produced and can immediately be 

implemented into hydraulic pressure energy harvester (HPEH) devices with little concern 

for damaging the piezoelectric material below certain stress levels, these stacks may have 

a lower power potential compared to piezoelectric material composition and design 

developments in more recent research. Research in piezoelectric materials has provided 

more suitable solutions for the high pressure environment found in hydraulic systems, 

which can reach up to 35 MPa. This chapter explores initial results of using a relaxor-PT 

based material that goes through a crystalline structure phase change when subjected to 

high stress cycles. 

4.1 Piezoelectric material under high stress and energy harvesting suitability 

The choice of piezoelectric material is essential to the power response, 

electromechanical model, and the integrity of the electromechanical conversion efficiency. 

The linear piezoelectric constitutive equations are typically valid for low excitation levels, 

excitation far from resonance, and low pre-compressive stress and electric field levels [59]. 

While HPEH devices operate far from material resonance, the pre-compressive stresses 

caused by the static pressure can be high, especially if area amplification of the interface is 

included in the HPEH. The high stresses may invalidate the modeling assumptions made 

in Chapter 2. As discussed earlier, Schäufele and Härdtl reported the transition to nonlinear 

depolarization behavior in soft PZT can occur from compressive stress levels as low as -

20 MPa, whereas hard PZT does not experience this transition until -60 MPa [72]. A partial 
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or full depolarization of that material reduces the conversion efficiency of the device, as 

demonstrated earlier by HPEH4-1 in Figure 2.15.  

It has been shown that nonlinearities can occur when these transitional stress levels 

are exceeded [98]. Cao and Evans [73] observed that when a piezoelectric element 

undergoes high compressive stress levels, the linear constitutive equations are no longer 

valid. Krueger [71] and Zhang et al. [76] present the change of piezoelectric parameters 

(such as piezoelectric strain constant and permittivity) when undergoing high stresses. If 

the piezoelectric element is exposed to an exceedingly high stress for a period of time, then 

depolarization of the piezoelectric material may occur.  In addition to the potential response 

change, the selection of the piezoelectric material changes the HPEH conversion 

efficiency. While the conversion efficiency of soft PZT material is higher than that of hard 

PZT, the allowable stresses on the material are typically lower. It is therefore prudent to 

consider the piezoelectric material selected for the high stress environment of HPEH 

devices. 

Research has shown that domain engineered relaxor ferroelectrics undergoing 

crystalline phase transformation have high efficiency energy conversion [99-105]. First, 

relaxor-PT based material research as related to phase transition points near stress and 

temperature conditions found within hydraulic systems is reviewed. Next, the use of these 

materials within HPEH devices is compared to PZT piezoelectric stack results used within 

HPEH devices. 

4.1.1  Phase transition point with respect to temperature and stress 

As presented by Gallagher, et al. [103] and later expanded upon by Dong [106], 

[011] cut PIN-PMN-PT materials go through a ferroelectric rhombohedral (FER) to 
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ferroelectric orthorhombic (FEO) phase transition. As shown in Figure 4.1 (extracted from 

[106]), the [011] cut PIN-PMN-PT crystal with force applied in x2 direction has a phase 

transformation transition point that changes with temperature, stress (σ22), and electric field 

(E3). The transition exhibits steep strain and polarization jumps during the transition, and 

thus harvesting the energy during an FER-FEO-FER transition is much larger than obtained 

via a linear piezoelectric effect [102, 107]. However, in order to benefit from the high 

power per cycle phase transition point within an HPEH, it is necessary to know what 

temperature range a hydraulic system operates. 

 

Figure 4.1: Phase transformation locations between ferroelectric orthorhombic and ferroelectric 

rhombohedral crystal structures, published by Dong 2015, Figure 3-7b [106]. 

 

For the initial HPEH design, it is assumed that an electric field will not be applied, 

however the system static pressure and fluid temperature will cause changes in the crystal 

stress and temperature. Safe operating temperatures of hydraulic systems depends on the 

oil type and viscosity, however sealing components tend to become damaged at or above 

82oC [108]. Therefore, the range of temperatures of a hydraulic system are not expected to 
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range outside of -40oC to 82oC. Using published results from Gallagher et al. [103] for a 

[011] cut PIN(0.24)-PMN-PT, the FER-FEO transition points and FEO-FER transition 

points with respect to stress and temperature have been calculated, as shown in Figure 4.2. 

The approximate temperature range for tests shown in this chapter is shown in the callout 

figures.  The specimens tested did not indicate PT% levels, however based on results, it is 

expected that the specimens are either 0.24PIN-0.44PMN-0.32PT or between that and 

0.24PIN-0.46PMN-0.30PT. As the temperature increases, the required absolute value of 

the compressional stress for a transitional phase change decreases. This corresponds to a 

decrease in required system pressure, where the material stress is related to the system 

pressure via the area ratio and force shunt conditions of the HPEH device. In addition, as 

the temperature increases, the peak to peak dynamic stress needed for full phase transition 

between FER to FEO to FER decreases. 
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Figure 4.2: Phase transition points for [011] cut PIN24-PMN-PT based on results presented by Gallagher, 

et al. [103] for the expected temperature range of hydraulic systems; the temperature range of the hydraulic 

system used for tests presented in this chapter are shown in the callouts; based on data obtained, it is 

assumed that the specimens tested are either 0.24PIN-0.44PMN-0.32PT or between that and 0.24PIN-

0.46PMN-0.30PT.  

 This phase transition also occurs in PMN-PT materials, as discussed by 

McLaughlin, et al. [99, 100], which is the material utilized in HPEH6-2. As before, the 

phase transition point is dependent on temperature, and as the temperature increases, the 

required system pressure for favorable stress transition decreases. Based on work by 

McLaughlin et al. for PMN-PT in 33-mode [100], at 40oC the compressive stress levels of 

about -7 to -18 MPa will be between the phase transition points; at 20oC, the phase 

transition starts at about -14 MPa and completing around -22 MPa. Note, this work uses 

the sign convention of compressive stress being negative and tensile stress being positive.  

HPEH6-2 was designed specifically for low system pressures, with a designed area 

ratio of 14 and no force shunt. The device was tested near 1 MPa system pressure (not 

exceeding 1.25 MPa), which corresponds to compressive stress levels within the 

piezoelectric near -14 MPa. Therefore, for tests occurring at about 40oC, it is expected that 
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the material is near or between phase transformation points, meaning the expected power 

produced per cycle is higher than for tests performed at lower temperatures. This is 

confirmed by the test results shown in Figure 4.3. The figure shows results for resistive 

only circuits and resistive-inductive load circuits, with the legend indicating the order of 

the tests. Based on similar tests measuring oil temperature while performing the same 

circuit conditions, it is expected the temperature increased from room temperature (22 oC) 

by 0.2oC or less during each sweep. After the low temperature tests, the hydraulic rig was 

allowed to run until it reach near 40oC for the final two tests; the final temperature measured 

was 41oC.  Note, the piezoelectric material is assumed to be approximately the same 

temperature as the oil, as it is encased in a metal housing which was measured using an 

infrared thermometer to be within a few degrees of the measured oil temperature. The root-

mean-square dynamic pressure for the first five tests (low temperature) measured average 

was 31.2 +/- 0.2 kPa, and for the last two tests (high temperature) was 25.1 +/- 0.2 kPa.  

 

Figure 4.3: HPEH6-2 test results for Ps=1 – 1.25 MPa with resistive load only (R) and parallel resistive and 

inductive loads (R-L) circuits; hydraulic system was allowed to run in order to increase oil temperature for 

last two test; legend indicates order of tests; volume of PMN-PT 20-layer stack is 0.294 cm3, providing 

peak measured volume and pressure normalized power of 17 µW/(kPa2 cm3). 
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 The normalized power results for HPEH6-2 tests at 40oC performed an order of 

magnitude higher than the tests performed at lower temperatures, indicating the material 

was achieving partial phase transitions during the dynamic pressure oscillations.  The peak 

power normalized by piezoelectric material volume and square pressure was 17 µW/(kPa2 

cm3). In addition, the voltage levels of the HPEH device reach levels suitable for bridge 

rectification or other more advanced circuits, such as synchronized switch harvesting 

inductor circuits (SSHI) presented by Shu, et al. [109]. The design of HPEH6-2 limits the 

use to only hydraulic systems that are expected to have very low (~2 MPa) system pressure 

levels, such as fluid transport pipelines (e.g. water). These results indicate utilizing a 

relaxor-PT based material within an HPEH is conducive to high power per cycle. In 

addition, they show that the temperature of the fluid does affect the material response 

despite not being in direct contact with the fluid. 

4.1.2 Comparing HPEH containing relaxor-PT piezoelectric materials versus PZT 

materials 

As discussed in Section 2.2, one method to compare the material power 

performance of a HPEH device is by comparing the power performance at the optimal 

resistance load. For a resistive load only circuit, the power can be normalized by the volume 

of material if the optimal load resistance is used via 
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where stackV  is the volume of piezoelectric material,   is the force shunt ratio, and   is the 

area ratio. This comparison between previous HPEH devices discussed in Chapter 2 and 

tests performed within this chapter is summarized in Figure 4.4, including tests using [011] 
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cut PIN-PMN-PT single crystal elements (shaker tests and HPEH7 results presented later) 

and the PMN-PT layered single crystal stack in HPEH6. To clearly distinguish the different 

materials in the results shown, note that the resistive loads used for the single crystal 

material tests are above 103 Ω, whereas the resistive loads for the soft PZT stack tests are 

below 103 Ω. In addition, Figure 4.5 compares the power performance of a given volume 

of piezoelectric material per applied force.  
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Figure 4.4: HPEH device performance normalized by volume and squared force, for resistive load circuit 

only. HPEH7-1 force input calculated using measured dynamic pressure amplitude, Astack = 16 mm2, γ = 

11.4, and κ = 88.5%; order of HPEH7-1 tests. Tests labelled “PIN-PMN-PT” were performed using a 

shaker, where the dynamic and static force was measured directly and the pressure was calculated using the 

area of the single crystal. 
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Figure 4.5: HPEH device performance normalized by volume and squared force, for resistive load circuit 

only. HPEH7-1 force input calculated using measured dynamic pressure amplitude, Astack = 16 mm2,  = 

11.4, and  = 88.5%; order of HPEH7-1 tests. Tests labelled “PIN-PMN-PT” were performed using a 

shaker, where the dynamic and static force was measured directly. 

 

The conditions of the PIN-PMN-PT test results are detailed in later sections, 

however there are a few material comparisons that can be made immediately. One is that 

HPEH6 and HPEH7 devices both contain relaxor-PT based materials: HPEH6 contains a 

PMN-PT layered single crystal stack; HPEH7 contains a PIN-PMN-PT single crystal 

element that contained a crack along one edge extending from the edge to about an eighth 



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of the length. The piezoelectric, dielectric, and compliant properties for these materials has 

been shown to be dependent on stress and temperature [100, 104]. Therefore, the results 

from piezoelectric materials with relatively constant permittivity and piezoelectric 

coupling properties, such as HPEH1 devices, normalize to a single curve, whereas devices 

and tests with the PMN-PT or PIN-PMN-PT materials, such as HPEH6, HPEH7, and the 

shaker tests, vary significantly.  

Despite this variance, the test results normalized using Eq. (4.1) for undamaged 

single crystal elements had an order of magnitude higher performance in a majority of the 

test results; some of these tests are shown in Figure 4.4, indicated by the final three legend 

entries. The few test results equal to or below the other devices for the PIN-PMN-PT results 

were either damaged specimens (small crack) or at high stress levels (beyond -25 MPa). 

The high stress levels (beyond -25 MPa) are expected to remain only in the ferroelectric 

orthorhombic (FEO) phase, which have been shown to have much lower piezoelectric 

constant properties than when going through the phase transformation or if within the 

ferroelectric rhombohedral (FER) phase [102, 104].  

The normalized power density performance of the material, shown in Figure 4.5, 

shows that most of the relaxor-PT based ferroelectric materials (HPEH6, HPEH7, and PIN-

PMN-PT shaker results) have a higher or comparable response than the PZT based 

materials, including the HPEH7 results where the specimen had been damaged. These 

results are consistent with other research efforts which have shown higher performance of 

relaxor-PT based ferroelectric materials as compared to PZT materials [110, 111]. The 

PIN-PMN-PT shaker test and HPEH7 test methodology and results are further detailed in 

the remainder of this chapter. 
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4.2 Methodology 

 As first shown by Dong et al. [102, 107], a [011] cut PIN-PMN-PT single crystal 

produces high power levels per cycle when the oscillations force the specimen through an 

FER-FEO-FER phase transformation loop, as the mechanical work converted into 

electrical energy is much higher than the wasted mechanical work. As demonstrated earlier 

in Figure 4.1 and Figure 4.2, a mean stress near the transition area (e.g. -19 MPa at 20oC) 

must be achieved, and the oscillation force must allow the specimen to oscillate between 

the two transition points (e.g. ±3.5 MPa). The circuit used by Dong, et al., remained as 

open circuit while applying the stress and then switched to connect to a bridge rectifier 

with an electrical resistive load for the phase transformation in order to increase the 

mechanical work converted to electrical work. The specimen was placed within an X-

spring (to allow for motion amplification in the transverse direction of the loading), with 

the force and strain measured using a load cell and strain gauge. The specimen was tested 

at frequencies from 1 Hz to 100 Hz, with resistive loads kept below the optimal resistive 

load  1opt

l pR C . 

 Both the work by Dong et al. and the preliminary results shown by HPEH6-2 

indicate that designing a HPEH device for relaxor-PT based materials with the pressure 

ripple inducing a phase transformation will extract power levels an order of magnitude 

higher than other devices. A [011] cut PIN(0.24)-PMN-PT single crystal with the 

dimensions of 12 mm x 4 mm x 4 mm was chosen for demonstrating this concept. Two 

testing phases were performed: 1) specimen testing using a shaker to simulate the HPEH 

device for controlled frequency levels, however neglecting temperature effects on material; 
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and 2) testing on the hydraulic system using a HPEH device specifically designed to induce 

phase transformation energy harvesting. The following section is organized by discussing 

the shaker test setup design and then the HPEH designed for phase transformation energy 

harvesting. 

4.2.1 Testing using shaker setup 

A test frame shown in Figure 4.6 and test set-up shown in Figure 4.7 were designed 

to simulate both 1) a hydraulic system and 2) the HPEH design, however be actuated using 

a shaker (LDS V408 shaker with PA 500L power amplifier). The design consists of the 

single crystal test specimen, four Belleville springs (two parallel in series with two other 

springs in series), a 10-32 bolt and lock nut for applying and maintaining a preload, an 

outer frame to contain components and a post secured to a table in the center. The steel 

post was designed to be relatively rigid compared to the single crystal. The outer frame 

was considered rigid, however it is free to move with the shaker as it is not connected to 

the post or table other than static loads between the single crystal and bolt. A stinger 

connected to the frame near the single crystal is used to apply the dynamic forces. The 

static force was measured using a Flexiforce HT201 sensor placed between the single 

crystal and post. The dynamic force was measured using a PCB impedance sensor (Model 

288D01) placed between the frame and the single crystal. The strain of the single crystal 

was measured using an Omega strain gauge (KPH-3-120-C1-11L1M2R) using an NI 9237 

data acquisition system, which has a 50 kSamples/second capability. The electrical 

impedance load applied to the test specimen was a resistive-only circuit using two decade-

resistance boxes to create a voltage divider.  
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Figure 4.6: Test frame schematic used for controlled shaker testing (top view). 

 

 

Figure 4.7: Side view of shaker test assembly, including test frame, shaker, and two decade resistance 

boxes used for voltage multiplier and loading of single crystal. 

 

The top view of the test frame (schematically shown previously) can be seen in 

Figure 4.8. In order to properly setup the test frame, the following procedure was used. 

First, all of the left hand side components internal to the test frame (test specimen, static 

force sensor, dynamic force sensor, post) were placed within the test frame. Next the 

Belleville springs were placed within the internal frame and the static load was applied by 

tightening the 10-32 bolt and lock nut. Since the center post is fixed, as the bolt is tightened 

and the springs are compressed, the frame must move towards the right (away from the 
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shaker) and compresses the single crystal. This creates a static force (preload) applied to 

both the single crystal and Belleville springs. Second, the stinger is attached to both the 

shaker and outer test frame. This process is monitored with the static force sensor to note 

any changes to the static force applied to the single crystal. This means the shaker can apply 

the force oscillations to the test frame, thus simulating the pressure ripple found within 

hydraulic systems. 

 

Figure 4.8: Top view of test frame used in shaker test; see Figure 4.6 for schematic view. 

 

4.2.2 HPEH7-1 design for PIN-PMN-PT single crystal 

The HPEH designed for testing phase transformations of a [011] cut PIN-PMN-PT 

single crystal on a hydraulic rig is termed HPEH7-1. The design is an adaptation of the 

force shunt concept introduced in Section 2.4.3. A schematic of this concept is shown in 

Figure 4.9. The main difference between the force shunt concept and the design for phase 

transformations is that a static preload is applied to both the single crystal and Belleville 

springs, rather than only the latter. 
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Figure 4.9: Schematic of HPEH7-1 loading; similar to force shunt concept in Section 2.4.3, however 

includes loading of single crystal. 

 HPEH7-1 design is based on the force shunt concept, area amplification, and pre-

loading the piezoelectric element, with the designed body parts shown in Figure 4.10. Since 

it is necessary to have a high oscillating force to induce phase transformations, the dynamic 

pressure within the hydraulic system most likely requires amplification. This can be 

achieved by using a large area ratio. However, this large area ratio also increases the stress 

in the piezoelectric, which may place the mean stress beyond the phase transition area. 

Thus a force shunt using Belleville washers is used to apply a preload and counteract the 

hydraulic rig system pressure. The final adjustment is to ensure the single crystal is near 

the phase transition area for the given hydraulic system pressure and force shunt preload, 

which is set by applying a preload to the keyed spacer, shown in Figure 4.10, and thus the 

single crystal. 
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Figure 4.10: HPEH7-1 design components. 

 

The equation of motion for HPEH7-1 design is conceptually the same as the force 

shunt design, however it now includes the additional single crystal preload 
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where SCpreF  represents the force applied to the single crystal. Also, the calculation for the 

operating pressure changes to 

  0.5bvpre SCpre s dyn spacer op spacerF F P P A P A      (4.3) 

where the force applied to the single crystal is determined via the desired static stress level 

required to be near the phase transformation transition point for the given hydraulic system 
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temperature. As before, the area ratio is still spacer piezoA A  , however because the PIN-

PMN-PT single crystal is a [011] cut specimen, the cross-sectional area of the piezo refers 

to area where the pressure is applied (in this case 4 mm x 4 mm), which differs from the 

electrode area (in this case 4 mm x 12 mm). The force shunt ratio initially is for the linear 

regime of the single crystal, and thus remains as  pz bv pzk k k   ; this value is used for 

the initial preload calculations. When the single crystal goes through the phase 

transformation, the force shunt ratio changes to  
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where the piezoelectric stiffness is a function of the compressive displacement of the single 

crystal, as one of the observed effects of phase transformation is a large change in strain 

[99, 101, 105]. 

 For a given operating pressure, the dynamic pressure must be either estimated or 

measured prior to determining the appropriate area ratio to use, as the dynamic pressure 

must be amplified from the 100s of kPa range to around 5 MPa, depending on the force 

shunt ratio and single crystal composition. The area ratio and initial force shunt ratio 

(neglecting stiffness changes during phase transformation) designed for HPEH7-1 are 

summarized in Table 5. 

 

Table 5: HPEH7-1 area amplification ratio and force shunt ratio. 

 Stepped Spacer Single Crystal Area Amplification 

Area (m2) 182.4e-06 16e-06 11.4 

 Belleville Springs Single Crystal Force Shunt 

Stiffness (N/m) 1.44e+06 1.11e+07 88% 
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4.3  Results and discussion 

Two [011] cut PIN-PMN-PT specimen were tested using a shaker and one was 

tested on the hydraulic rig. The shaker tests were performed at 450 Hz and are assumed to 

be at relatively constant room temperature. Each specimen had a different mean stress 

loading order during the shaker test. The specimen tested on the hydraulic rig was assumed 

to have the same temperature as the oil; this specimen was observed to have a small crack, 

and thus one-to-one comparisons between the test results cannot be made. The results of 

these two test set-ups are discussed herein.  

4.3.1 Shaker tests  

Using the test structure set-up discussed in Section 4.2.1, two specimens were tested 

at varying static pressures and resistive loads, as shown in Figure 4.11. Within Figure 4.11, 

the shape indicates which specimen (of two), and the color indicates the power normalized 

by the squared force and volume (which is the same comparison made between all devices 

previously in Figure 4.5). As the material properties may be dependent on the loading cycle 

order, the testing order has been included. Three nominal mean compressive stress levels 

were tested, -15 MPa, -20 MPa, and -25 MPa, as it was expected beyond -25 MPa would 

be past the phase transition point based on initial specimen testing and literature review. 

The stress levels were calculated using the force measured and the 4 mm x 4 mm cross 

sectional area of the test specimen. For 450 Hz, the optimal resistance load is expected to 

be between 1.1 and 2.45 MΩ for capacitance levels between 144 pF and 310 pF, which 

covers the range of measured capacitance levels while at mean pressure. Therefore, the 

resistive loads tested ranged from 50 kΩ to 5 MΩ.  In addition to measuring results at 

resistive loads higher than the predicted optimal resistive load, the dynamic force level was 
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varied at each mean stress level. This was controlled via current input to the shaker, but the 

corresponding peak-to-peak stress levels (calculated using 4 mm x 4 mm cross sectional 

area) ranged from -0.95 MPa to -6.4 MPa.  

 
Figure 4.11: Shaker test order for two specimens (indicated by shape) compared to power normalized by 

squared dynamic force and volume of single crystal (indicated by color) with respect to a) mean stress, b) 

resistive load, and c) root-mean-square dynamic force. 
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The lowest and highest normalized power occurred at the nominal mean stress level 

of -25 MPa; however, the highest average power response occurred at the nominal mean 

stress level of -20 MPa. These results are due to the mean stress levels and dynamic loads 

applied, and can be seen in Figure 4.12 and Figure 4.13.  

The peak power response for both specimens corresponded with nominal mean 

stress levels of -20 MPa, resistive loads of 1 MΩ (which is near the optimal resistance), 

and dynamic force levels of about 29 Nrms (which corresponds to about 5.1 MPa peak-to-

peak stress oscillations). These results can be seen in Figure 4.12, where the peak values 

are 141 mW and 116 mW for the specimen indicated by the circle and square, respectively. 

These results correspond to test order 29 in Figure 4.11 for both specimens, which is the 

highest dynamic force applied at that mean stress level and resistive load. As discussed in 

Chapter 2, typically higher dynamic force will lead to higher power response assuming 

resistive loads are the same; however since this material goes through partial phase 

transformation, this normalization method is not constant when mean stress levels change. 

For instance, a test with a higher dynamic force for the resistive load of 1 MΩ was test 14 

at nominally -25 MPa mean stress level (as indicated by circles in Figure 4.11), however 

this was only the third highest power level for that resistive load in Figure 4.12. In order to 

explain why this point is of interest, the effects of the phase transformation points and the 

piezoelectric material properties of FER versus FEO regions on the normalized power 

results must first be discussed. 
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Figure 4.12: Power with respect to resistive load; color indicates measured a) mean stress level or b) root-

mean-square dynamic force level; shape of point indicates different single crystal specimen. 

In Figure 4.13, the power normalized by squared dynamic force and volume of 

piezoelectric material is shown with respect to resistive load, specimen as indicated by 

shape, and mean stress (Figure 4.13a) or root-mean-square dynamic force (Figure 4.13b) 

as indicated by color. Both the highest and lowest normalized power resistive load sweeps 

occurred at nominally -25 MPa mean stress level, and the next highest occurred at 

nominally -20 MPa. For a clearer demonstration of the normalized power versus resistive 

sweeps for a given stress range, see Figure 4.15. This indicates that that phase 

transformation occurs between -20 MPa and -25 MPa for the specimens tested at room 

temperature and corresponds well with predictions from the literature (recall Figure 4.1 

and Figure 4.2). The piezoelectric constant for the FER region (expected between the phase 
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transformation transition point and 0 MPa) is higher in absolute value than for the FEO 

region (expected at compressive stresses beyond the phase transformation transition point). 

It is therefore expected that the lowest normalized power responses occur when the material 

is in the FEO region, the next highest is in the FER region, and the highest is when the 

material partially or fully transitions between the two regions. If the stress oscillations 

extend from the phase transformation transition point into either the FER or FEO region, 

it is expected that tending toward the FER region would have higher response than toward 

the FEO region.  

The normalized power results do follow this pattern, as seen in Figure 4.13: the 

lowest normalized power response occurs when the specimen is at -26 MPa mean stress 

level, which is above the expected phase transition point for the specimen, and therefore in 

the FEO region. This is also seen via the increased strain level; additional results showing 

stress, strain, and electric field for a given test are shown in Appendix B. The next group 

are at nominally -15 MPa, which is expected to remain in the FER region, followed by -20 

to -25 MPa mean stress levels, which are expected to have undergone partial phase 

transformations.  
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Figure 4.13: Power normalized by squared dynamic force and volume of single crystal with respect to 

resistive load; color indicates measured a) mean stress level or b) root-mean-square dynamic force level; 

shape indicates different single crystal specimen. 

The two sweeps with the highest normalized power (tests 36 to 44, with mean stress 

levels of -25 MPa and dynamic force levels of 15 Nrms or less) occurred after the specimen 

stress level had reduced to -16 MPa prior to the tests being recorded, and therefore were 

near the FER to FEO transition point. It is also expected that the specimen did not fully 

transform to FEO, which would have caused the transition point to change to a lower 

absolute mean stress level for the FEO-FER transition point (recall Figure 4.2). Since these 

two sweeps had relatively low dynamic stress levels (thus not deviating into the purely 

FER or FEO state), and the mean stress began in a region near the transition point, the 

normalized power results are deceptively high. If the dynamic stress levels had been higher 
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while at this mean stress level, then the normalized power results would have decreased 

due to transitioning into the lower power FEO region. As mentioned earlier, the tests with 

the highest dynamic force occurred at the mean stress level of -25 MPa, and show this 

phenomenon via tests 11 thru 15 for the specimen indicated by circles. In Figure 4.13, these 

tests correspond to the second lowest normalized power sweep, and in Figure 4.12 to the 

third highest power sweep. This demonstrates the importance of tuning the specimen to a 

proper stress region for phase transformation in order to benefit from the high power 

performance potential. 

If a full phase transformation was achieved, in other words stress oscillations from 

about -17 MPa to -26 MPa (requiring about 51 Nrms dynamic force for a mean stress of 

21.5 MPa), then it is expected that the results would be optimal for the normalized power 

response. In a hydraulic system, this may be difficult to achieve due to the varying mean 

stress levels, dynamic pressure oscillations and temperatures; but as seen, partial phase 

transformation does produce higher power responses than purely FER (or FEO) phase 

region results. Contrary to the two highest normalized power results, after ensuring the 

specimen is close to the phase transformation transition point, it is best for the stress 

oscillations to be near the FER region rather than the FEO region, i.e. lower pressure or 

pre-load on the piezoelectric element. This allows the energy harvester to benefit from the 

more favorable FER electromechanical properties rather than be disadvantaged by the FEO 

properties. 

The highest normalized power occurs at 500 kΩ or 1 MΩ, depending on the stress 

range (as in, combined effect of mean stress level and dynamic force). This is shown in 

both Figure 4.14, which provides the respective dynamic force and mean stress level for 
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each test, and Figure 4.15, which allows easy comparison of each resistive load sweep for 

a given mean stress range. The trend of the normalized power with respect to resistive load 

at low stress levels shown in Figure 4.15a is relatively constant. As the mean stress level 

increases (Figure 4.15b), the power per squared dynamic force begins to deviate from a 

single curve, and the optimal resistive load begins to shift from 1 MΩ to 500 kΩ. At the 

highest stress levels tested (Figure 4.15c), the power per square dynamic force is no longer 

a single curve, and the only sweeps where 1 MΩ corresponds to the peak performance is 

for the two tests that are expected to mainly lie in the FEO region. This variance in power 

per square force is also an indication of partial phase transformation, as otherwise the 

response would fall to a single normalized curve as seen in Figure 4.15a. 

While it may appear that the phase transformation is causing the optimal resistive 

load to shift, this conclusion cannot be confirmed from a single resistive sweep shown due 

to the increasing dynamic force with each resistive load (see Figure 4.11b and c); however 

it is confirmed when comparing alternative sweeps. The shaker used for testing was 

controlled via the current provided to the shaker, and not by the dynamic force applied. 

The change of resistive load alters the effective stiffness of the specimen, and thus the 

interaction between the shaker dynamic force and the specimen changed. Because it has 

been established that normalized power results may decrease with increasing dynamic 

force, the shift in optimal resistive load may be affected by the test setup. 
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Figure 4.14: Power normalized by squared dynamic force and volume of single crystal with respect to mean 

stress at a) 500 kΩ and b) 1 MΩ; color indicated dynamic force; shape indicates different single crystal 

specimen. 

Each sweep with partial phase transformation appears to have an optimal resistive 

load closer to 500 kΩ rather than 1 MΩ, as clearly seen in Figure 4.15. In addition, each 

respective sweep had a higher dynamic force applied during the 1 MΩ case than the 500 

kΩ case. In order to determine whether this is simply due to the increased dynamic force 

causing a deceptively high normalized power value, or due to the phase transformation 

causing the peak response to change, situations where the dynamic force applied to the 500 

kΩ load was larger than or similar in value to the 1 MΩ load for a similar mean stress level 

were found.  Four cases were compared, and in each case, the normalized power response 

was higher for the 500 kΩ load; these case studies are summarized in Table 6. 



132 

 

Table 6: Comparing normalized power responses when the dynamic force is higher for the 500 kΩ resistive 

load than the 1 MΩ resistive load. 

 

500 kΩ 1 MΩ Norm. Power 

Specimen Test Dyn. F. 

(Nrms) 

Mean σ 

(MPa) 

Test Dyn. F. 

(Nrms) 

Mean σ 

(MPa) 

(µW/N2)  

500 kΩ 

(µW/N2)  

1 MΩ 

1 (□) 28 23.6 -19.6 24 19.6 -20.1 158.8 153.2 

1 (□) 43 11.9 -24.3 39 12.1 -24.7 275.4 239.3 

3 (o)  28 24.5 -19.7 24 18.6 -19.2 185.5 140.4 

3 (o) 8 19.1 -24.1 4 13.7 -24.4 153.9 152.6 

  

As seen in the test results shown in Figure 4.14, Figure 4.15 and Table 6, when the 

ferroelectric material undergoes phase transformation, the optimal resistive load decreases. 

This also matches well theoretically. The dielectric coefficient is related to the electric 

displacement and electric field. As published by Gallagher, et al. [103],  when a [011] cut 

PIN-PMN-PT single crystal undergoes phase transformation with constant preload and 

applied electric field, the slope of the electric field versus electric displacement increases, 

indicating that the dielectric coefficient increases. This indicates that the capacitance also 

increases, as these terms are proportionally related (Eq. (2.4)), and thus the optimal 

resistive load,  1l pR C , decreases.  
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Figure 4.15: Power normalized by squared force versus resistance, for a) 15 MPa, b) 20 MPa, and c) 25 

MPa stress levels. 

As mentioned in the literature review, one aspect of phase transformation in 

relaxor-PT based ferroelectrics is a large change in strain [99-101, 105]. Piezoelectric strain 

is easier to measure within a HPEH device than the exact forces applied to the housed 

piezoelectric material. Therefore, knowing where the peak power responses may occur 
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with respect to the measured strain can be helpful for tuning the initial pre-strain due to the 

pre-force applied to the single crystal within an HPEH device, as discussed in Section 4.2.2. 

The power normalized by squared dynamic force and piezoelectric volume compared to 

mean strain and resistive load is shown in Figure 4.16. The power normalized by squared 

dynamic force with respect to the mean strain is shown in Figure 4.17; the bars on each 

point indicate the range of the strain during the 450 Hz excitation, the color indicates the 

resistive load, and the shape corresponds to the dynamic force level for a given resistive 

sweep. The peak normalized power response occurred near 500 kΩ and -2500 µε, and the 

trends of both specimens tested tended toward this maximum. It should be recalled that the 

material properties change with temperature [103, 104, 106], and therefore HPEH tests 

beyond room temperature may differ from the trends shown by the shaker tests.  

 
Figure 4.16: Power normalized by squared dynamic force and volume of single crystal with respect to 

resistive load and mean strain. 
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Figure 4.17: Power normalized by dynamic force versus strain; strain indicated by x-axis; bars on points 

indicates strain range and shape of point indicate dynamic force level; color indicates resistive load; 

excitation at 450 Hz.  

 

The dynamic shaker tests provided a more controllable environment to simulate a 

HPEH device using a [011] cut PIN-PMN-PT material, although these tests neglect 

temperature effects. Four key points are determined to be important when considering this 

material for hydraulic energy harvesting. First, the highest normalized power regions are 

within the phase transformation (PT) region, the next highest is the FER region (less 

compressive stress than PT region), and the lowest normalized power occurs in the FEO 

region (more compressive stress than PT region). Second, the normalized power for a low 

dynamic force test may be deceptively high: the normalized power may decrease with 

higher dynamic forces if those forces are not within the phase transformation region. Third, 

while within a phase transformation region, the optimal resistive load may decrease in 

comparison to the value calculated for the FER or FEO region. And fourth, the measured 

strain level can be used to predict phase transformation transition points, which can be 

useful for when the forces are difficult to measure. For the specimens to be used in HPEH7-

1, the phase transformation appears to occur between -3000 and -2000 µε at room 

temperature with the optimal resistive load to be near 500 kΩ for 450 Hz harmonic 
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excitation. In addition, the root-mean-square stress oscillations for full phase 

transformation are about 3200 kPa, which corresponds to about 51 Nrms dynamic force 

about a mean stress of -21.5 MPa. Other tests at 5 Hz and 100 Hz were performed on these 

specimen, however are not included in this discussion for brevity and because during the 

100 Hz tests, small cracks formed in the specimens. The undamaged tests performed at 5 

Hz are compared to work by Dong, et al. [102] next. 

4.3.2 Shaker test results compared to other published works 

The purpose of this chapter is to analyze ferroelectrics that undergo phase 

transformation and consider their feasibility for energy harvesting, specifically for 

hydraulic pressure energy harvesting. Dong, et al. [102, 106, 107], previously analyzed 

[011] cut PIN-PMN-PT single crystals for energy harvesting under ideal phase 

transformation, meaning it underwent full phase transformation rather than partial. The 

comparison between work presented herein and work by Dong, et al., is summarized in 

Table 7 for a 5 Hz excitation level. The specimens used in this work and by Dong, et al., 

have the volume of 4 mm x 4 mm x 12 mm, poled in the [011] direction, force applied on 

the 4 mm x 4 mm surface ([011] direction), and electric field in the [011] direction. Because 

the energy efficiency decreased when approaching resistive loads for optimal power 

response, Dong did not perform resistive load sweeps beyond the linear range. Since the 

goal of energy harvesting for hydraulic systems is to optimize the power, these values are 

included in the table and figures from work herein. It is clear from Table 7 that the idealized 

phase transformation cycle performance measured by Dong, et al., was higher than the 

performance per cycle measured herein.  
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Table 7: Comparison of shaker test results and work published by Dong [106]. †Assumes 3.5 MPa peak to 

peak stress oscillation (19.8 Nrms) and mean stress range from discussion in section, however not explicitly 

stated. 

 

The idealized test results of power per volume and work per volume per cycle 

presented by Dong, et al., (Figure 5-11 in reference [106] or Figure 12 in reference [102]) 

is reproduced in Figure 4.18. The corresponding results for the shaker tests presented in 

Section 4.3.1 are provided in Figure 4.19. Note that from the work presented by Dong, et 

al., the results end at 1010 Ω Hz2 with the power per volume being slightly above 105 Wm-

3 for the idealized cycled conditions; this corresponds to the beginning of the results in 

Figure 4.19a, with the peak response being on par with those presented by Dong, et al. For 

the energy per volume per cycle results, the final results shown are at 
77 10  Ω Hz with 

the values being 
31.35 10  and 

31.83 10  Jm-3 cycle-1, which is a higher performance level 

than measurements shown in Figure 4.19. As a direct comparison, the peak performance at 

75 10  Ω Hz in Figure 4.19 is 440 Jm-3 cycle-1, which is below the corresponding 

performance levels of 998.70 and 1389.22 Jm-3 cycle-1 published by Dong, et al. 

 
This work This work Dong (table 5-2, section 5.3) 

[106] 

Resistance (MΩ) 49.8 10 10 

Frequency (Hz) 5 5 5 

Welec (J m-3 cycle-1) 1667 578 1389.22 

Power (mW) 1.6 0.55 1.33 

Norm. Power (µW/N2) 1.3 0.44 3.39† 

Volt (Vrms) 286 72 114 

Mean Stress (MPa) -13.9 -14.1 -22.25† 
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Figure 4.18: Power per volume and work per volume per cycle for full phase transition “idealized” test 

results, frequency ranging from 1 Hz to 100 Hz; x-axis represents the product of the load resistance and 

excitation frequency; from Dong [106] Figure 5-11 or Dong et al. [102] Figure 12. 

 

 The decrease in performance as compared to the idealized phase transformation 

cycles is not unexpected as the experiments performed by Dong, et al. were strain 

controlled to ensure the full phase transformation occurred, whereas the experiments 

presented here used a variety of static and dynamic force levels, as is seen in hydraulic 

systems. The peak power per volume and energy per volume per cycle performance for 
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450 Hz is shown when the resistive load reached 1 MΩ, however as discussed previously, 

this is also due to the high dynamic force levels during those tests.  

 

Figure 4.19: Power per volume and work per volume per cycle from shaker test results including power 

optimized resistive load; tested at 450 Hz; shape indicates specimen tested; color indicates level of dynamic 

force; three mean stress levels tested - nominally -15 MPa, -20 MPa, and -25 MPa. 

  

While the peak performance for constant temperature is easy to predict for a given 

dominant frequency, the power response has an order of magnitude performance range 

depending on the stress range and excitation levels. The performance levels in general are 

still considered to be high, however ensuring that a HPEH device is tuned properly to 

undergo partial phase transformation may be challenging to implement outside of an 

experimental setting. 



140 

 

4.3.3 HPEH7-1 test  

HPEH7-1 was assembled and tested based on results from the shaker tests, however 

the specimen used had a small crack that had formed during shaker tests at 100 Hz (not 

presented). The assembly of HPEH7-1 (seen in Figure 4.10) contained four Belleville 

springs (two parallel springs in series with two springs in series) with a 2.82 N-m (25 lbf-

in) torque applied to the preload sleeve to apply bvpreF . Next, the single crystal was 

preloaded via the top cap, where the measured strain level reached 1.5 mε. This 

corresponds to about 12.5 MPa initial stress based on stiffness measurements prior to 

shaker tests, however the specimen used within HPEH7-1 had formed a small crack after 

shaker tests and prior to HPEH tests. The measured capacitance prior to the preload was 

300 pF, and after the preload was 152 pF.  

HPEH7-1 was tested at three resistive load levels for each system static pressure 

level: 100 kΩ, 500 kΩ, and 1 MΩ. Each sweep was performed at six different static 

pressure levels, in order: 5.5 MPa (800 psi), 4.8 MPa (700 psi), 4.1 MPa (600 psi), 6.9 MPa 

(1000 psi), 6.0 MPa (870 psi), and 5.3 MPa (770 psi). The first static pressure level was 

determined by measuring the strain level on the single crystal and then recording a range 

of static pressure levels around this point; the first strain level for the first static pressure 

level was measured as -2570 µε. In addition, the lowest static pressure level tested 

corresponded to the initial strain due to the pre-load; this corresponded to -1530 µε. The 

oil temperature was recorded for each test, with the temperature increasing from 33.5oC 

for test one to 41.6oC for test 18. 

The root-mean-square dynamic pressure ranged from 115 kParms to 152 kParms, 

which corresponds to 18.6 Nrms to 24.6 Nrms assuming the full spacer area and determined 
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force shunt ratio from Table 5 apply. As seen from test and model comparisons in Chapter 

2, it is likely that these values overestimate the actual force applied to the single crystal. 

The approximate mean stress (neglecting initial stresses from the preload) and dynamic 

forces applied to the [011] cut PIN-PMN-PT specimen in HPEH7-1 are shown in Table 8, 

with the caveat that these values likely overestimate the stress and forces applied to the 

single crystal. 

Table 8: Approximate mean stress from static pressure (does not include initial stress from single crystal 

preload) and dynamic force values applied to [011] cut PIN-PMN-PT single crystal within HPEH7-1 

during tests. Calculated via designed area ratio, spacer area, and force shunt ratio provide in Table 5. Pre-

strain during assembly (prior to turning on hydraulic rig) was about 1.5 mε, which corresponds to about 

12.5 MPa initial stress for the specimen prior to shaker tests. 

Test Order: 1 to 3 4 to 6 7 to 9 10 to 12 13 to 15 16 to 18 

Approx. Mean 

Stress from Ps 

(MPa): 

-13.9 -7.0 0.0 -27.8 -19.5 -11.8 

Resistive Load 

(kΩ) 
Approx. Dynamic Force (Nrms) 

100 20.6 19.7 18.6 24.1 22.8 22.0 

500 20.6 19.7 18.6 24.2 22.8 21.9 

1000 20.6 19.8 18.6 24.6 22.8 21.9 

 

 While comparisons between the shaker test and HPEH7-1 forces are difficult to 

make, comparisons between the resistive loads and strains are more readily available. In 

addition, HPEH7-1 power per squared dynamic pressure is a good indication of HPEH 

performance, even though it does not accurately depict material performance. Due to the 

specimen being damaged, it is expected that these results are minimum performance 

indicators, i.e. without damage, better performance is expected.  

 Normalized power results versus strain, resistive load, static pressure, and 

temperature are shown in Figure 4.20. Since, the range of dynamic forces is relatively small 

(see Table 8), it is expected that higher normalized power results are not due to an 

abnormally low forcing level, as discussed in Section 4.3.1. The normalized power peak 
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response occurred at 500 kΩ for each resistive load sweep, which is consistent from the 

shaker test results. As can be seen, partial phase transformation occurred between the strain 

values of above -4000 µε and below -1500 µε, as the normalized power for a given resistive 

load changes with system pressure, and thus mean stress.  

 

Figure 4.20: Results from HPEH7-1 tests comparing power normalized by (measured hydraulic) squared 

dynamic pressure, strain, resistive load, and hydraulic system pressure. Color indicates measured oil 

temperature, where the temperature of the oil gradually increased during testing. 

 

The power and normalized power (with respect to force and volume of piezoelectric 

material) are shown in Figure 4.21 and Figure 4.22. The horizontal axis represents the 

measured mean micro-strain, where the bars indicate the strain range during excitation. 

The order of the legend is according to test order, and color indicates temperature. The 
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lines connecting points indicate a resistive load sweep for a given static pressure level. The 

peak performance of 13.1 mW (130.9 mW kN-2mm-3; 0.65 µW/kPa2) occurred at -3460 µε 

and 500 kΩ, which occurred at 6 MPa static pressure, 39.8oC, and had 141 kPa root-mean-

square pressure. As seen by the strain range bars, the peak performance also corresponded 

to large jumps in strain, despite the dynamic pressure magnitude being similar to the other 

tests shown. This is at a higher strain level than expected, however it has been shown in 

the literature that the strain response of ferroelectric materials changes with temperature 

[99-101, 103, 106]. It can also be seen that the normalized response near -2500 µε changes, 

most likely due to the oil temperature change affecting the material response. 

 
Figure 4.21: Power with respect to strain for HPEH7-1 test results, where the errorbars indicate the 

standard deviation of the strain cycle. Order of legend is order of tests; color is indicative of temperature; 

level of resistive loads is indicated for one sweep, where unlisted sweeps followed the same pattern. 

 



144 

 

 
Figure 4.22: Power normalized by squared dynamic force and piezoelectric volume with respect to strain 

for HPEH7-1, where the errorbars indicate the standard deviation of the strain cycle. Order of legend is 

order of tests; color is indicative of temperature; level of resistive loads is indicated for one sweep, where 

unlisted sweeps followed the same pattern. 

 

As shown in Chapter 2, the key indication of an HPEH performance is the power 

response normalized by the squared dynamic pressure and volume of piezoelectric 

material. This comparison for HPEH7-1 to all other HPEH devices when tested with 

resistive load only is made in Figure 4.23. HPEH7-1 contained a [011] cut PIN-PMN-PT 

single crystal that had minor damages, and was designed to include a force shunt and area 

amplification in order to induce conditions for phase transformation. When undergoing 

phase transformation, HPEH7-1 was the highest performing device, and nearly an order of 

magnitude above devices that do not contain a relaxor-PT based ferroelectric. When not 

under phase transformation, the device still performed on par or above other HPEH 

devices. 
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Figure 4.23: HPEH7-1 power normalized by squared dynamic pressure and single crystal volume compared 

to all other HPEH prototypes (normalized by volume of piezoelectric material and squared dynamic 

pressure). 

4.4 Conclusions 

Research in materials has shown that ferroelectrics undergoing phase 

transformation have great potential for energy harvesting applications. In addition, 

methods for comparing a materials’ performance within an HPEH device were elucidated, 

including phase transformation transition point changes due to increasing oil temperature. 

Two types of tests were performed in order to test [011] cut PIN(0.24)-PMN-PT single 

crystal specimens within HPEH devices: 1) shaker tests, which allowed applied forces to 

be measured, and 2) a HPEH device specifically designed to induce phase transformation 

within the single crystal while coupled to the hydraulic pressure ripple.  
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In addition to presenting results from tests on this material at higher frequency and 

resistive loads than previously published, this work provides an initial design and results 

of phase transformation energy harvesting induced from a naturally occurring ambient 

energy source found within hydraulic systems. The two ferroelectric materials presented 

(labelled HPEH6 and HPEH7) both have the highest normalized power performance 

(accounting for area ratio, dynamic pressure, and piezoelectric material volume) when 

undergoing partial phase transformation. In addition, HPEH7-1 had the highest power per 

volume and squared dynamic pressure despite having a small crack form prior to testing. 

While the phase transformation allows for orders of magnitude higher power 

performance, there are a number of drawbacks. First, the material response changes 

drastically when within a phase transformation zone versus linear region. This may cause 

issues for power conditioning or predictions of power performance. This is a challenge that 

will need to be addressed prior to implementing outside of a laboratory environment, as 

hydraulic systems do not typically operate at a constant static pressure and or constant 

temperature. Second, this material is brittle and easy to damage. While a damaged 

specimen still performed well, this aspect may be an issue with respect to the longevity of 

an energy harvesting device implementing a single crystal. If the specimen cannot last 

longer than current batteries on the market, implementing energy harvesters with phase 

transformation may be a waste of resources. Fatigue life and crack formations must be 

considered prior to implementing outside of a laboratory environment. Assuming these 

issues can be addressed, the domain engineered ferroelectric materials are highly 

recommended for energy harvesting due to their high power performance, and were the 

highest performing materials tested for this work. 
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CHAPTER 5 

POWER CONDITIONING 

Hydraulic pressure energy harvester (HPEH) devices convert acoustic power to 

electric power by exciting piezoelectric stacks off-resonance, which produces a low-

voltage, low-frequency alternating current power response. It is necessary to determine an 

efficient power conditioning method to make this energy harvesting solution viable for 

powering sensors or recharging batteries. Power conditioning can refer to changing the 

voltage level (i.e. raising or lowering voltage, depending on device) or rectifying the 

alternating current (AC) to direct current (DC), or often a combination of both. To 

illustrate, if a component requires approximately 2.4V DC input voltage level (analogous 

to two series AA batteries), then AC must be converted to DC and the level of the voltage 

needs to be adjusted to match the component requirement. This chapter introduces a 

modified voltage multiplier circuit and model to solve this problem inherent in energy 

harvesters using piezoelectric stacks excited off-resonance. 

Portions of this chapter have been published and presented at SPIE Active and 

Passive Smart Structures and Integrated Systems 2016 [112]. 

5.1 Power conditioning of low-voltage, low-frequency energy harvesters 

Piezoelectric energy harvesting and power conditioning has been widely studied 

for typical high voltage scenarios (10s of volts), however limited research has been done 

for low-voltage (less than 1V) piezoelectric stack energy harvesters [3, 113, 114]. Off-

resonance piezoelectric stack energy harvesting produces AC voltages typically less than 

1 V, which is exhibited in hydraulic pressure energy harvesters [11, 58]. In order to charge 
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a storage component, initial power conditioning of such devices requires both boosting the 

voltage level in addition to rectification, both of which have been studied for 

electromagnetic energy harvesting and piezoelectric cantilevers aimed for MEMS devices.  

Two methods that have been used for power conditioning of low-frequency low-

voltage level energy harvesters include (1) using a transformer plus an AC-DC rectification 

component, such as a diode bridge, or (2) using a voltage multiplier [115].  A voltage 

multiplier simultaneously raises the voltage level and rectifies the current, which can 

reduce the overall energy circuitry complexity [115], and is beneficial when high voltage 

transformer winding is inconvenient [116].  

Concerning method (1), Garbuio, et al. performed low threshold rectification of a 

piezoelectric energy harvester beam by using a Synchronized Switch Harvesting on 

Inductor with Magnetic Rectifier (SSHI-MR), which is similar to a series SSHI technique 

except that the inductive element is replaced with a transformer [117]. Conversely, Ching, 

et al., demonstrated the use of a voltage multiplier employing Schottky diodes with an 

electromagnetic generator [118]. James, et al. employed a low-frequency (50-300 Hz) 

magnetic coil generator to compare the power efficiencies and size of power conditioning 

circuits using a transformer and diode bridge versus a voltage multiplier. James, et al. 

reported that the voltage multiplier circuit provided the more space and weight efficient 

solution, while the power performance was comparable [115].  

Torah, et al. [119] and Saha, et al. [120] developed an electromagnetic generator 

intended for office air conditioning units, which have resonant peaks between 40 and 50 

Hz. One paper focused on a complete “autonomous wireless condition monitoring sensor 

system,” which used a voltage multiplier circuit and a microcontroller subsystem to enable 
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cold-start power conditioning [119]. The other effort used a circuit analogous to a voltage 

multiplier, however employed active switches and comparators instead of diodes [120].  

Cheng, et al. used an active voltage doubling AC-DC converter for use with low-

voltage, low frequency energy harvesting components; they used active components 

(comparator and MOSFET) which require a very low supply voltage, meaning the 

quiescent power consumption of the active components of 560 nW is comparable to the 

dissipated power within a Schottky diode, estimated around 600 nW [121, 122]. It is noted 

that the external power supply for the active elements can be eliminated via a later stage; 

in the same research group, this concept was shown with an energy harvester power 

conditioning method with active elements that eliminated standby power by shutting down 

when the input voltage amplitude was too low [123]. 

The present work is intended for energy harvesting devices that employ 

piezoelectric stacks producing low-voltage levels, such as seen in hydraulic pressure 

energy harvesters. As discussed in the previous chapters, HPEH devices are excited by the 

acoustic pressure within hydraulic systems, which is typically concentrated in the 100s of 

Hz range depending on operating conditions. During the course of this project, HPEH 

prototypes demonstrated the ability to power a thermocouple and wirelessly transmit the 

readings using a commercially available power conditioning circuit (Cymbet CBC-EVAL-

09) intended for electromagnetic generators and MEMS devices, details of which were 

presented in [124], which uses a bridge rectifier and low-voltage charge pump; however 

the input force was an order of magnitude higher than will be demonstrated here. As 

previously demonstrated by Figure 1.3, water and sewage pipes have lower acoustic 

pressure levels than high-pressure fluid power systems, such as excavators, which 
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necessitates the analysis and refinement of power conditioning methods specifically for 

HPEH devices.  

The following focuses on implementing a voltage multiplier to rectify the low-

voltage AC output from a piezoelectric stack excited at low frequencies relative to its 

fundamental resonance frequency, schematically shown in Figure 5.1. Voltage multipliers 

were chosen for their passive nature, ability to simultaneously rectify the current and raise 

the voltage level, and because they typically have lower forward voltage requirements than 

diode bridges. Since piezoelectric stacks excited at low frequencies are conducive to RL  

shunting, as shown earlier [58], an inductor can be placed in parallel with the piezoelectric 

stack to counteract the reactance of the piezoelectric stack capacitance, shown in Figure 

5.1b. In the remaining portion of the chapter, first this system is simulated numerically in 

SPICE environment, and then modeled and analyzed using the method of harmonic 

balance. In an experimental setting, an electrodynamic shaker is used to excite the 

piezoelectric stack and power conditioning circuit, with the results compared to the model. 

 

Figure 5.1: Piezoelectric stack AC-power rectified using a voltage rectifier with: (a) no inductive 

component and, (b) matched impedance inductive load. 
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5.2 Methodology 

A piezoelectric stack excited off-resonance can be represented using a current 

source in parallel with its internal capacitance, as seen in Figure 5.2. The current source is 

the product of the piezoelectric strain constant for the stack, 𝑑33
𝑒𝑓𝑓

, and the time derivative 

of the force excitation, F ; the capacitive term is the total capacitance of the stack, Cp. The 

voltage multiplier implemented in this study is a voltage quadrupler with four Schottky 

diodes. Schottky barrier diodes may be modeled using the Shockley diode expression, 

 exp 1D
D s

T

v
i I

nV

  
   

  
, (5.1) 

where Is is the reverse current, vD is the voltage at the p-n junction, VT = kbTK/q is the 

thermal voltage, estimated as 26 mV at room temperature, and n is the quality or ideality 

factor, which ranges between 1 and 2 depending on the diode. Although the experimentally 

measured characteristics have been found to be more complex, especially with low voltage 

levels, [125], this model will be used for its simplicity with the acknowledgment that as 

the circuit load changes, the corresponding ideality parameters may change. The model 

also assumes the ideality factor and saturation current is the same for each diode, noting 

that the value used may not correspond directly to a single diode, but rather the group.  
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Figure 5.2: Power conditioning circuit schematic for piezoelectric stack with parallel inductive load, 

voltage multiplier, and a resistive load. 

 

The circuit represented in Figure 5.2 can be represented by 
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with the vector B terms defined as 
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 (5.3) 

where iL is the current across the inductive load. This expression can be expanded or 

reduced depending on the number of voltage doublers in use. Also note that the voltage 

and B terms with subscripts p, 3, and 1 are related to AC-voltage responses, while the terms 

with subscripts 2 and 0 are related to DC-voltage responses. 
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Equation (5.2) may be rearranged to a format conducive to state-space 

representation,  
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where A and D are related to the AC-voltage and DC-voltage responses, respectively. To 

facilitate numerical simulations, the nondimensional state space is defined as 

 ( , ) u f u , (5.5) 

where u is the nondimensional state vector and ()’ is the derivative with respect to 

nondimensional time, τ. This leads to the system state representation using characteristic 

time Tc and voltage Vc scales, with the variables defined as follows: 
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and the Jacobian matrix of the system is 
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Further details regarding the implementation of the method of harmonic balance, including 

the code modified for simulation, can be found in [126]. 

For harmonic excitation, the impedance of an inductive load and a parallel RC 

circuit can be represented as 
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where ω is the angular frequency, L is the inductive load, and Rint is the series parasitic 

resistance of the inductor. In order to counteract the reactance caused by the piezoelectric 

capacitance, the power-optimized shunt inductance is predicted to be  
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which is the optimal inductance for an RL shunt with high resistive load. 

5.3 Results 

To verify the model simulations, a soft-PZT piezoelectric stack was excited with a 

shaker at an excitation frequency of 450 Hz with measured root-mean-square (RMS) force 

input of 2.0 Nrms. Schottky diodes (1N5817) were used, which have a maximum 

instantaneous forward voltage between 0.32 to 0.75 volts, depending on the current [127]. 

A smoothing capacitor of 2200 µF was used to reduce the ripple of the DC response, in 

combination with three the other capacitors. The circuit board and test setup can be seen in 
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Figure 5.3, and the measured value for each respective component is listed in Table 9. Two 

circuits were tested: (1) circuit A used the same size capacitors as the smoothing capacitor, 

and (2) circuit B, which was formulated to minimize capacitor size while maintaining low 

ripple level (less than 0.1%) as suggested by Brugler [116].  

 

  
Figure 5.3: (left) Voltage multiplier (circuit B) bread-board and (right) piezoelectric stack excited via 

shaker, connected to harvesting circuit. 

 

Table 9: Measured parameters of tested system. 

 

In addition to the voltage multiplier (VM) model described previously, multiple 

circuits were simulated using National Instrument’s Multisim transient analysis, which is 

Parameter Circuit A Circuit B 

Piezoelectric strain constant, 𝒅𝟑𝟑
𝒆𝒇𝒇

 141.9 nC/N 141.9 nC/N 

Piezoelectric capacitance, Cp 1.93 µF 1.93 µF 

VM capacitor, C0 2330 µF 2330 µF 

VM capacitor, C1 2300 µF 9.5 µF 

VM capacitor, C2 2320 µF 9.7 µF 

VM capacitor, C3 2320 µF 24 µF 

RMS force, F 2.0 Nrms 2.0 Nrms 

Excitation frequency, f 450 Hz 450 Hz 

  

A

. 

B

. 
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a SPICE-based simulator, including bridge rectifier circuits. It was determined that this 

circuit schematic would be a reliable test for demonstrating the concept, verifying the 

harmonic balance VM model, and showing better performance than a bridge rectifier for 

this system, since the AC input is very low. Figure 5.4 shows the comparison between 

tested results and simulation. The simulation under-predicts the observed response by 

approximately 22%. 

 

 
Figure 5.4: NI MultiSim circuit A model compared to circuit A test results using equivalent parameters. 

 

Both inductive load sweeps and resistive load sweeps were performed. The VM 

inductive load sweep held the resistive load at 50 kΩ, and the VM resistive load sweep 

held the inductive load at 66 mH. For the tested system, the inductance load for minimizing 

circuit reactance was predicted to be near 66 mH. It should be noted that determining the 

optimal inductive load may require an iterative process because it is dependent on the 

inductive series parasitic resistance, which may be difficult to determine prior to knowing 

the general range of the optimal inductance.  

The time response results for the inductive load of 66 mH and the highest resistance 

load tested (100 kΩ) is shown in Figure 5.5, indicating steady state was reached. Note, 

each capacitor was discharged prior to testing, however the system did not begin recording 

until a force excitation trigger value of 2 Nrms was obtained; this is why the results shown 
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for t(0) = 0 s start at voltage levels above zero. Circuit B reached steady-state faster than 

circuit A and will be used for the VM harmonic balance method (HBM) model analysis. 

Otherwise, the circuits tested had similar performance results for a given inductive and 

resistive load pairing, with deviation of the results being less than 5% of the average. 

 
Figure 5.5: Time response of test results reaching steady state for R = 100 kΩ, L = 66 mH and excitation 

frequency at 450 Hz for the two circuits tested. Time normalized by total time displayed, 200 seconds.   

 

The HBM for the given system was used with the diode ideality factor set to n = 

1.7, the saturation current set to 10-13 A, the measured inductive loads with corresponding 

measured internal resistive loads, and all previously defined parameters. The validity of 

this assumption is discussed in Section 5.4. The voltage and power results for the VM HBM 

with inductance are shown in Figure 5.6 as the solid lines, and the test results are shown as 

colored points. The percent error between the VM HBM and tested power results is shown 

in Figure 5.7. The minimum error between the power model and test results was 0.6%, 

however the average error was 528% (with a standard deviation of over 1000 points, and 

maximum error of 5298%). A summary of the peak power results is summarized in Table 

10. The average error level is greatly decreased in the next section, which assumes the 

saturation current and ideality factor change as a function of the inductive load. 
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Figure 5.6: Voltage level and power level for 2 Nrms excitation force at 450 Hz (points) compared to 

modeled results (lines), which uses saturation current Is = 10-13 and ideality factor n = 1.7. 

 

Figure 5.7: Power error in percentage (lefthand graph; colorbar capped to 100%) and the percent error on a 

base-10 logarithmic scale (righthand graph; log10(error %)) for the modeled case where saturation current Is 

= 10-13 and ideality factor n = 1.7.  

 

The peak average power that can be expected from this energy harvester is deemed 

limited to the peak RLC average power for the given excitation level, which was modeled 

to be 238 µW. The maximum measured power from the VM circuit was 141.6 µW, with a 

corresponding voltage level of 2.4 VDC; this corresponds to an efficiency of 59%, where 

 

Table 10: Comparing measured and modeled results (for Circuit B, f = 450 Hz, F = 2 Nrms, n = 1.7, Is = 

10-13). 

Description Power (µW) Voltage (V) L (mH) R (kΩ) 

RLC Max. Modeled 238 0.59 (rms) 64 1.478 

VM Max. Measured 141.6 2.4 66 40 

VM Corr. Simulated 136 2.3 66 40 
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efficiency is defined as the percent ratio of the DC-power over the maximum AC-power. 

The model error increases as the tested inductance value deviated from the inductive shunt 

that minimize the reactance, as predicted by Eq. (5.9). While the voltage and power levels 

of the model predictions are not accurately depicted when assuming a constant ideality 

factor and saturation current for each diode, the resistive and inductive loads for the peak 

power points corresponded to the measured peak power points, which is useful for 

estimating optimal loads.  

5.4 Discussion 

The modified VM HBM with inductance modeled results in the previous section 

assumes a single ideality factor and saturation current for all four diodes in the circuit. 

However, the voltages across each diode vary, and for loading cases where the resistive 

load is low or the inductive load is not matched, the voltage levels are predicted to reach 

as low as 0.3 V. The modeled voltage level for each voltage node defined by Figure 5.2 is 

shown in Figure 5.8. As explained in section 5.2, the low voltage levels may cause the 

ideality factor and saturation current needed to model a diode to vary. The following 

section will investigate how the model can be improved by accounting for effects on the 

combined diode parameters due to some diode voltage levels being lower than others, 

depending on the shunt loading and location in the cascade.  
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Figure 5.8: Modeled voltage level for each node for Circuit B and corresponding power level.  

 

To further investigate the change in the group ideality factor n and group saturation 

current Is from Eq. (5.3), the model is compared to the test results with either the ideality 

factor varying between 1 and 2, shown in Figure 5.9, or the saturation exponent z varying 

between -9 and -13 with the saturation current equaling 10z, shown in Figure 5.10, while 

the other variable stays constant (either Is = 10-13 or n = 1.7, respectively). The results 

indicate that the group diode parameters change with the voltage levels and the 

piezoelectric reactive components. 
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Figure 5.9: Saturation current Is = 10-13 A, with varying ideality factor compared to percent error between 

test result power levels and modeled power levels. 

 

 
Figure 5.10: Ideality factor n = 1.7, with varying saturation current compared to percent error between test 

result power levels and modeled power levels; the saturation current colorbar scale shows the power z of 

the saturation current 10z. 

 

To provide a more accurate VM with inductance HBM model that accounts for the 

change in group diode parameters, both the ideality factor and saturation current were 

simultaneously varied and the group diode values that corresponded to the least power error 

were plotted with respect to changing inductance. A quadratic fit with respect to the 

inductive load sweep was used to estimate the ideality factor and the saturation current. 

Figure 5.11 shows the HBM model power results and error that uses the ideality factor as 

a function of inductance and saturation current as a function of inductance.  
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Figure 5.11: Test results compared to VM HBM model where saturation current and ideality factor values 

change as a function of inductance:  

  

 

The HBM model predicts the VM with inductance response with less overall error, 

with average error of 25% (standard deviation of 16 points, minimum error of 0.06%, 

maximum error of 80%). Higher error occurs in three general cases. The first case occurs 

when the modeled inductive load is far from the inductive load predicted to minimize 

circuit reactance, which causes a lower initial voltage level. The second case occurs when 

the resistive load is relatively small, thus also causing a lower expected initial voltage level. 

The third case is an inductive load near the predicted peak, however if the capacitance of 

the piezoelectric stack varies from the value used in the model, the predicted matching 

inductive load also varies. This would change the overall voltage level for a given inductive 

value. For each case, the model under predicts the voltage level. The squared voltage level 

is proportional to the power, and thus the underpredicted voltage causes higher error in the 

average power predicted. For the first two cases, underpredicting voltage response is 

expected to be inconsequential as one goal is to determine the resistive and inductive loads 

which produce the maximum power, and these locations are not near local maxima. These 
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errors may be due in part to the Shockley diode model used; implementing a more rigorous 

model that focuses on diode characteristics near the forward voltage lower limits may 

improve the HBM model accuracy. The third case is likely due to the piezoelectric 

capacitance varying, which would require a more rigorous model of the piezoelectric 

material or incorporating the capacitance measurements for each test; currently the model 

assumes the capacitance of the piezoelectric material is constant. The model does show 

trends for a piezoelectric stack with constant capacitance, and from this the resistive and 

inductive loads can be obtained for the maximum predicted power.  

With the added ideality factor and saturation current fitted functions to predict the 

group diode parameters, the HBM model is able to predict power performance with similar 

accuracy as the SPICE-based time domain transient analysis, but with less overall 

computational time. By way of example, for the computer used for these analyses, the 

SPICE model for one loading case took 44 seconds; the HBM model described here with 

ideality factor and saturation current quadratic functions for all inductive and resistance 

loads shown, which totals 231 loading cases, only took 16 seconds. 

5.5 Conclusions 

This chapter investigated a power conditioning circuit for low voltage piezoelectric 

stack energy harvesters. A piezoelectric stack in parallel with a matched inductive load is 

used in combination with a voltage multiplier circuit to both increase the voltage level and 

rectify the current. The peak measured power for a 450 Hz, 2 Nrms excitation level was 142 

µW with 2.4 VDC, which corresponded to 59% efficiency. A voltage multiplier with parallel 

inductance harmonic balance method was analyzed and compared to the test results. Non-

ideal diode behavior is accounted for using Shockley model. Model simulations compared 
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with experimental results with acceptable accuracy, and computational speed of VM HBM 

model was over 600 times faster than using a SPICE-based simulation.  Future work to 

improve power conversion efficiency could include implementing active circuit 

components, such as a comparator and a MOSFET.  
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CHAPTER 6 

CONCLUSIONS 

Hydraulic systems contain low power sensors (e.g. pressure, temperature, health 

monitoring, etc.) are currently powered via wires or chemical-based batteries. This work 

presents and develops an energy harvester which converts pump-byproduct acoustic 

pressure into electricity to actualize self-sustaining hydraulic sensors. The hydraulic 

pressure energy harvester (HPEH) demonstrates piezoelectric stacks excited off-resonance 

can convert milliwatt level power from acoustic pressure within hydraulic systems.  

HPEH development and research combines, implements, and builds from research 

in multiple subjects. Starting with hydraulics and noise control research, it identifies an 

unused energy source, and from recent wireless sensor developments within hydraulics, it 

motivates an energy harvesting solution. Building from research in energy harvesting and 

piezoelectric materials, the base for the electromechanical energy harvester and circuitry 

was developed. Research in tribology, hydraulic oil characterization, and noise control 

solutions contributed to the acoustic pressure amplification design, and thus increased 

power, applied to HPEH devices. Research in domain engineered ferroelectric materials 

contributed to the increased pressure ripple to electricity power transduction of HPEH 

devices. And research in electromagnetic energy harvesting power conditioning 

contributed to the low-voltage, high capacitance power conditioning solution developed 

for HPEH devices. A summary of the contributions of this work are as follows: 

 Presents a hydraulic pressure energy harvester design and an electromechanical 

model, where optimal resistive-only and optimal parallel resistive-inductive load 
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circuits are derived (Section 2.2). Includes discussion of resistive-inductive load 

shunt efficiency and broadband nature. Model validation performed with HPEH 

prototypes tested on hydraulic rig (Section 2.3-2.4), including design developments 

to increase HPEH efficiency via area amplification (Section 2.4.2) and to increase 

hydraulic system static pressure range of use via force shunt ratio (Section 2.4.3). 

(Chapter 2)  

 Designs, models, and implements narrow-port small-volume Helmholtz resonator 

(HR) on HPEH device. Derives and validates a narrow-port HR pressure gain 

model within hydraulic systems, including added compliance situations, both from 

incidental trapped air and intentionally incorporated syntactic foam (Sections 3.2.1, 

3.3.1, 3.4.1, and 3.4.2). Discusses hydraulic oil HR design limitations caused by 

viscous layer effects and resonance drift (Section 3.4.1). Designs a HPEH device 

with small-volume HR and validates that its inclusion can increase power 

transduced by HPEH (Sections 3.2.2, 3.3.2, and 3.3.3). (Chapter 3 and Appendix 

A)  

 Designs and implements a crystalline phase-transitioning acoustic pressure energy 

harvester, including presenting experimental results using hydraulic pump 

byproduct as energy source. Presents experimental results of PIN-PMN-PT 

material undergoing partial phase transition at an excitation frequency of 450 Hz 

(Section 4.3.1). Designs a HPEH for phase-transition energy harvesting on 

hydraulic system (Section 4.2.2). Validates that phase-transition can be induced via 

hydraulic pressure ripple and increases power transduced by HPEH (Section 4.3.3). 

(Chapter 4 and Appendix B) 
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 Develops, models, and implements an electromechanical power conditioning 

circuit intended for high-capacitive, low-voltage applications. The circuit both 

increases voltage level and rectifies current of piezoelectric stacks excited off-

resonance. Circuit consists of a voltage multiplier with inductor, and is modeled 

with the electromechanical system via a computationally efficient harmonic 

balance modeling solution (Section 5.2). Model validated using a piezoelectric 

stack connected to a voltage multiplier with inductor circuit and excited via 

electrodynamic shaker (Section 5.3-5.4). (Chapter 5) 

This work presents the development of an initial hydraulic pressure ripple energy 

harvesting design which implements a piezoelectric stack or single crystal within a housing 

that connects to a hydraulic port, such as for diagnostic sensors. Future work to consider is 

as follows: 

 Implementing piezoelectric material within the layers of a hydraulic hose. 

 Developing a combination of piezoelectret foam (see Anton et al. [128] as an 

example) with syntactic foam used in hydraulic suppressors (e.g. [87-90]) to 

provide an energy harvesting and noise control solution.  

 Improving power conditioning through implementing active circuit components 

within the voltage multiplier with inductive load circuit.  

 Improving the durability of phase transitioning material (or layers of material) or 

implementing a more conservative design of HPEHs using this material. 

 Performing a hydraulic system work load study to determine best operating 

pressures if implementing a force shunt design; alternatively, designing a multi-
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step spacer to account for changing system pressures while still converting pressure 

ripple and protecting the piezoelectric material.  
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APPENDIX A: HELMHOLTZ RESONATOR 

A.1 Compliance of Helmholtz resonator housing 

The outer housing of the Helmholtz resonator is made from 17-4 PH stainless steel, 

with the inner diameter of nominally 16.6 mm and outer diameter of 38.1 mm. The effective 

bulk modulus of the fluid within the cavity changed from 1.60 GPa to 1.56 GPa, which 

causes calculated resonant frequency to decrease by less than 15 Hz. The bulk modulus of 

the outer housing can be calculated via  

 

1
2 2

2 2

2 o i
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h o i

r r
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E r r




  
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  (7.1) 

where hE  is the Young’s modulus of the housing, h  is Poisson’s ratio, and the subscripts 

on r  stand for outer and inner radii [87]. The effective fluid compliance is thus  
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 This change is not considered significant, because changing the neck diameter by 

0.03 mm causes the resonant frequency to increase by slightly more than 15 Hz. This is 

demonstrated in Figure A.1. Since the tolerance for measuring the neck diameter had a 

greater effect than the outer housing on the resonant frequency, this parameter was 

neglected in the model presented. If the bulk modulus of shell approached the bulk modulus 

of the fluid, such as by decreasing the housing thickness, then this calculation may need to 

be included. 
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Figure A.1: Resonant frequency change due to neck diameter and housing compliance with respect to a) 

power gain and b) phase. 

 

The stiffness of the piezoelectric stack used within the HPEH-HR device was 

measured to have a nominal stiffness of 11,860 kN/m; the spacer area was 182.4 mm2. This 

indicates that length of cavity changes by less than 0.54 mm from 35 MPa system pressure, 

and only by 0.0031 mm from 200 kPa pressure amplitude. The resonance change caused 

by this is deemed minor, as demonstrated in Figure A.2, which compares the resonance 

and power gain change due to cavity length versus neck diameter. The power gain response 

is negligible for cavity length changes, and while there is a slight change in resonance 
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frequency, other factors (such as air compliance, neck diameter, viscosity of fluid) have a 

greater impact than this parameter. 

 
Figure A.2: Modeled resonant frequency and power gain at multiple system pressures with an air fraction 

of 0.0003 for a) neck diameter and b) cavity length.  

 

A.2 Viscosity and volumetric expansion coefficient 

Initial model results using the provided kinematic viscosity and typical volumetric 

coefficient of expansion of new oil had consistently over 10% error levels in power gain at 

resonance frequency; however, due to the hydraulic rig oil having been used for near or 

over the TOST oxidation lifetime (Turbine Oil Oxidation Stability Test, ASTM D943), the 

oil condition during experiments are expected to be different from the provided oil 
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properties. The viscosity and volumetric expansion coefficient of the hydraulic oil used in 

experiments were not measured using separate tests, but instead deduced from comparing 

Helmholtz resonator model and experimental results. The oil had been used frequently for 

four years prior to testing, so is likely different from manufacturer provided and referenced 

values (manufacturer provided: 40 C  = 45 cSt, 100 C   = 5.7 cSt at atmospheric pressure; 

typical oil volumetric expansion coefficient:   = 0.0007 1/℃ at atmospheric pressure)[91, 

92]. A test at ten static pressure levels using the Helmholtz resonator and cap with a 

pressure transducer port was used to analyze the average error of the model with different 

kinematic viscosity, volumetric expansion coefficient, and cavity volume air fraction 

values. It was found that 40 C  = 64 cSt, 100 C   = 5.7 cSt,   = 0.001 1/℃ at atmospheric 

pressure worked well for the pre-filled test body experiments. A kinematic viscosity level 

of 64 cSt is an ISO 68 viscosity grade (rather than specified ISO 46 viscosity grade), 

however all viscosity values corresponding to ISO 46 cause high power gain error and 

frequency gain error. These values were then applied to all other modeling of the HR test 

body and HPEH experiments, with error values significantly reduced. If future 

measurements of the kinematic viscosity and volumetric expansion coefficient prove to 

match the manufacturer provided values, then the following numerical correction is either 

due additional thermoviscous losses not captured by the model, likely due to the narrow 

neck diameter, or due to the error caused by using the isothermal tangent bulk modulus 

rather than the adiabatic bulk modulus. 

It should be noted that ISO Viscosity Grade 46 has a minimum kinematic viscosity 

value of 41.4 cSt and maximum of 50.6 cSt at 40℃[96]. Also, while not required, at 100℃, 

it typically has a minimum value of 6.22 cSt and maximum of 7.05 cSt[96]. The 
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manufacturer provided level was 45 cSt at 40℃ and 5.7 cSt at 100℃, with an average 

oxidation life of 1500 hours [91]. Oxidation can cause multiple lubrication issues, 

including increasing the oil viscosity[95]; the oil used in these tests likely was near or 

beyond its TOST oxidation life specification.  

The volumetric expansion coefficient of unused oil is reported at 0.0007℃-1, 

however this also provided higher error levels. Levels up to 0.0014℃-1 were compared 

between the experiment and model.  

The exact testing and filtering history of the oil within the rig is unknown by the 

author, however it was used frequently for 4 years prior to these tests, and was used for 

testing new syntactic foam materials (for noise suppression). The oil was never tested to 

ensure the kinematic viscosity levels corresponded to manufacturer values during the 

testing process, nor was the volumetric expansion coefficient tested to see if it matched the 

unused oil parameter.  

As seen in Figure A.3, the manufacturer provided viscosity levels produced a power 

gain error of over 10% at the resonant frequency for all air volume fraction and volumetric 

expansion coefficient values. While the kinematic viscosity at 100℃ (which also 

corresponds to the viscosity index) had little effect on model accuracy, increasing 

kinematic viscosity at 40℃ from 45 cSt to 65 cSt caused the power gain error to decrease 

from over 10% to less than 1%. The air fraction can decrease the resonant frequency error, 

however has little effect on the power gain at resonance error. The volumetric expansion 

coefficient also affects both the resonant frequency error and power gain at resonant 

frequency error. At the unused value of 0.0007℃-1, the frequency error was greater than 
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the 0.001℃-1 and 0.0012℃-1 levels, as seen in the Figure A.3 callout. Greater than 

0.0012℃-1 caused the frequency error to increase. 

 
Figure A.3: Resonant frequency and power gain error with respect to volumetric expansion coefficient and 

air fraction volume for four kinematic viscosity combinations. Same data as Figure 3.7, except including 

callout. 

 

The error change due to varying kinematic viscosity levels and multiple air fraction 

levels is shown in Figure A.4 for the two most accurate volumetric expansion coefficient 

levels tested of a) 0.001℃-1 and b) 0.0012℃-1. Both graphs follow a similar trend, with the 

resonant frequency error and power gain error decreasing until around 65 cSt, at which 

point the error levels begin to increase with increasing kinematic viscosity. In addition, at 

a certain air fraction level, the error line follows the same slope for both increasing and 

decreasing error levels (as kinematic viscosity increases). This is shown by the circle data 

points. When the air fraction goes below or above this level (shown by downward triangle 

and upward triangle, respectively), when the error begins to increase with increasing 
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kinematic viscosity, the paths for each value switch. This is more clearly seen in the close-

up version of this data, shown in Figure A.5 and Figure A.6. 

 
Figure A.4: Resonant frequency and power gain error with respect to kinematic viscosity for multiple air 

fraction volumes and a) volumetric expansion coefficient of 0.001℃-1 and b) 0.0012℃-1. 

 

 



176 

 

 
Figure A.5: Close view of resonant frequency and power gain error with respect to kinematic viscosity for 

multiple air fraction volumes and a) volumetric expansion coefficient of 0.001℃-1 and b) 0.0012℃-1. (Note 

colorbar scale is different for figure b).  
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Figure A.6: Close view of resonant frequency and power gain error with respect to kinematic viscosity for 

a) volumetric expansion coefficient of 0.001℃-1 and air fraction of 0.0003 and b) 0.0012℃-1 and air 

fraction of 0.0005. (Note colorbar scale is different for figure b). 

 

 The data compared to the model provides a few values with very low error, with 

slight trade-offs between the resonant frequency error and the power gain at the resonant 

frequency error. This is observed with both the volumetric expansion coefficient and the 
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kinematic viscosity. As mentioned, at a certain kinematic viscosity level at 40℃, the error 

began to increase with increasing viscosity. The kinematic viscosity level at 100℃ was a 

minor trade-off between power gain level error and resonant frequency error. The 

kinematic viscosity level of 64 cSt at 40℃ and 5.7 cSt at 100℃ were chosen because it 

provided the lowest power gain error and less than 0.3% resonant frequency error between 

the experiment and modeled results. The volumetric expansion coefficient had less 

resonant frequency error for the 0.001℃-1 case than the 0.0012℃-1 case for all air fraction 

and kinematic viscosity levels tested, and was therefore chosen as the model parameter.  

 Additionally, the changes to the bulk modulus and speed of sound properties due 

to the viscosity and volumetric expansion coefficient adjustments are relatively minor. The 

isothermal bulk modulus and fluid density are used to calculate the speed of sound, and is 

calculated from the fluid viscosity. The changes caused a less than 1.89% change in sound 

speed, less than 3.52% change in bulk modulus, and less than 0.83% change in density. As 

stated by Pierce [80], the discrepancy between the speed of sound calculated using the 

adiabatic bulk modulus versus the isothermal bulk modulus can be determined via  

 
1S T s

S s

K K

K





 
   (7.3) 

where s  is the specific heat ratio for the fluid, SK  is the adiabatic bulk modulus, and TK  

is the isothermal bulk modulus. The adiabatic bulk modulus for the oil used was not 

determined, but Gholizadeh et al. [94] provide tangent bulk modulus values for a typical 

hydraulic oil (20℃, 50 MPa) for both adiabatic, 2.41 GPa, and isothermal, 2.15 GPa, cases. 

From their stated values, the discrepancy is calculated to be 10.8%, which is a greater 

potential error than seen by the changes to viscosity and volumetric expansion coefficient 

herein.  
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Futhermore, the changes to the speed of sound due to 0.0003 air volume fraction 

cause a 2.8% sound speed change at 1 MPa, which is on par with the changes caused by 

the kinematic viscosity and volumetric expansion coefficient changes. The significance of 

tuning the volumetric expansion coefficient of new oil to the used oil within the tests 

primarily causes the resonant frequency to be more accurately predicted. The significance 

of tuning the kinematic viscosity manufacturer provided values to tests primarily manifests 

itself in the modeled viscous boundary layer, which affects both the amplitude of the 

pressure gain and the damped natural frequency. 

A.3 Acoustic resistance predicted by using specific heat ratio, as discussed by 

Hansen [78] 

Determining an accurate representation of the viscous boundary layer and acoustic 

resistance, aR , value within the neck is an important feature for predicting Helmholtz 

resonator (HR) designs within hydraulic systems. Due to the high sound speed within 

fluids, the design of a reasonably sized HR device typically requires either creative 

methods to add compliance within the cavity or a narrow neck diameter (less than 2 mm). 

When a narrow neck diameter is pursued, the viscous boundary layer may hamper the 

pressure gain within the HR cavity.  

A derivation of the acoustic resistance found within pipes is derived by Hansen [78] 

to be (adjusted for the HR presented here) 
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 (7.4) 
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where s  is the ratio of specific heats, 2v fd    is the viscous boundary layer ,    is 

related to half the system pipe thickness or viscous boundary layer, and M  is the mean 

flow Mach number. All other variables are defined in Section 3.2.1. 

The first set of terms relates to the loss along the length of the neck due to viscous 

boundary layer effects, and is relevant to this system due to the narrow neck diameter. The 

second set of terms relate to viscous losses at the neck entry. The term h is either the neck 

edge radius or the viscous boundary layer, whichever is larger. The third set of terms is 

simply the radiation loss, as seen by rR  from Eq. (3.30). The final term is the mean flow 

Mach number, and is only valid in this equation if it is less than 0.2, and otherwise set to 

zero. It is calculated from Morse and Ingard [82] Eq. 11.3.37 first term. For the hydraulic 

system and HR tested, this term was typically set to zero, as it did not meet the condition 

to be included. 

The difficulty with implementing this set of equations is due to the specific heat 

ratio, s , for hydraulic oil can be difficult to determine, and neglecting this term by setting 

it equal to one insufficiently predicts the acoustic resistance. Hodges (pg. 59, Table 7.2 

[129]) provides typical specific heat ratios for mineral oils at three temperatures – 10, 60, 

and 120℃ – and two pressures – atmospheric and 70 MPa. The values range from 1.13 

(for 120℃ at 70 MPa) to 1.75 (for 10℃ at atmospheric pressure). In addition, the specific 

heat ratio calculated from bulk moduli presented in [94] is 1.1079, which is from oil at 

20℃ and 50 MPa. This indicates that the specific heat ratio varies with both pressure and 

temperature, however the documentation of these trends is not clearly defined in the 

literature.  
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To compare the acoustic resistance model presented by Hansen [78] to the model 

presented in Chapter 3 (see Eqs. (3.27), (3.29)-(3.31)), three cases are compared. The first 

case in Figure A.7 is the HR body used with the HPEH device, where the cavity was pre-

filled with oil (as seen in Figure 3.8); this is presented in Figure A.7. Three specific heat 

values are compared a) 1.00, b) 1.1079, and c) 1.15, with d) containing the Chapter 3 

model. Setting the specific heat ratio to one causes error in both phase an power gain; the 

higher static pressure levels matched to the specific heat level provided in [94]; the low 

pressure levels match better with the 1.15 specific heat value; overall, the model presented 

in Chapter 3 provides the best match to the data for all static pressures.  

The second case in Figure A.8 is also the HR body used with the HPEH device, 

however it was unfilled and thus contains a larger air fraction (as seen in Figure 3.9). All 

specific heat values work reasonably well, however the power gain and phase match at low 

static pressure levels for Figure A.8d (Chapter 3 model) matches best.  

The third case in Figure A.9 is a different HR body which contains a narrower neck 

diameter of 0.67 mm (as seen in Figure 3.23). The specific heat ratios compared are a) 

1.00, b) 1.15, and c) 1.175, which was the highest found value referenced for hydraulic oil; 

all values overpredict the power gain. When narrow neck diameters are used within 

hydraulic systems, the model presented in Chapter 3 has the lowest overall error between 

test and modelled results. Given that the model presented in Chapter 3 provides the lowest 

overall error and is simple to implement, it is used for HPEH-HR analyses.  
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Figure A.7: Hansen acoustic resistance model for specific heat ratio of a) 1.00, b) 1.1079, c) 1.15, and d) 

contains the model presented in Chapter 3. 
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Figure A.8: Hansen acoustic resistance model for specific heat ratio of a) 1.00, b) 1.1079, c) 1.15, and d) 

contains the model presented in Chapter 3. 
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Figure A.9: Hansen acoustic resistance model for specific heat ratio of a) 1.00, b) 1.15, c) 1.175, and d) 

contains the model presented in Chapter 3. 
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APPENDIX B: PIN-PMN-PT TEST RESULTS 

B.1 Shaker test results 
The following are measured test results from PIN-PMN-PT single crystal excited at 450 Hz for multiple 

resistive loads. The measured forces, strain, voltage, and test conditions are provided in legends and 

captions. 

 
Figure B.10: Power normalized by dynamic force versus strain; strain indicated by x-axis; bars on points 

indicates strain range and shape of point indicate dynamic force level; color indicates resistive load; 

excitation at 450 Hz.  Two specimen tests results, where a) is specimen SC1 at nominally 25 MPa, b) SC3 

at 25 MPa, and c) SC1 at 20 MPa. 
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Figure B.11: Strain, stress, and electric field for 1 MΩ shaker tests, Specimen 3, indicated by a circle in 

Section 4.3.1. 

 
Figure B.12: Strain, stress, and electric field for shaker test 14 and 29, Specimen 3, indicated by a circle in 

Section 4.3.1. Tests both included high dynamic force levels and produced high power levels, however 

altered on being more toward FER (mean -20 MPa) or FEO (mean -25 MPa) regions. 

 

 
Figure B.13: Strain, stress, and electric field for 1 MΩ shaker tests, Specimen 1, indicated by a square in 

Section 4.3.1. 
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Figure B.14: Strain, stress, and electric field for shaker test 29 and 44, Specimen 1, indicated by a square in 

Section 4.3.1. Tests both produced high normalized power levels, however altered on being more toward 

FER (mean -20 MPa) or FEO (mean -25 MPa) regions. 
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Figure B.15: Stress, strain, and electric field versus average power response for all 1 MΩ tests performed 

on specimen 1 at 450 Hz.  



189 

 

 
Figure B.16: Stress, strain, and electric field versus average power response for all 1 MΩ tests performed 

on specimen 3 at 450 Hz. 

 

The following figures are provided to show how resistive loads change the stress 

vs. strain vs. electric field at each mean stress level tested. 
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B.2 HPEH7-1 Tests 

The following are pictures of HPEH7-1 during testing, provided such that the 

design of the device is clearer. 

 
Figure B.17: Internal view of HPEH7-1 during assembly after torque is applied to preload sleeve. One 

female spherical bearing is in place within device. Note that preload sleeve is below ports intended for 

strain gauge and electrode wires. 
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Figure B.18: Internal view of HPEH7-1 during assembly, with single crystal in place, dowel pins in place, 

male spherical bearing on single crystal, and wires from electrodes and strain gauge wired through ports. 

 

 
Figure B.19: HPEH7-1 fully assembled and attached to hydraulic rig. Dynamic pressure sensor is also 

shown. 
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