
Algorithmic Game Theory

A Thesis
Presented to

The Academic Faculty

by

Aranyak Mehta

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Algorithms, Combinatorics and Optimization
Georgia Institute of Technology

August 2005

Algorithmic Game Theory

Approved by:

Richard J. Lipton, Advisor
College of Computing
Georgia Institute of Technology

Vijay V. Vazirani, Advisor
College of Computing
Georgia Institute of Technology

Milena Mihail
College of Computing
Georgia Institute of Technology

Craig Tovey
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Eric Vigoda
College of Computing
Georgia Institute of Technology

Date Approved: June 3, 2005

I dedicate this thesis to my parents, Anjani and Sitanshu Mehta.

iii

ACKNOWLEDGEMENTS

I would like to thank Dick Lipton and Vijay Vazirani, for their continuous support and

guidance throughout these five years. Thanks also to the rest of the theory and ACO group

at Georgia Tech, faculty and students, who have created such a motivating and enriching

research environment. Thanks, of course, to my collaborators and co-authors - the results

presented here are products of our joint work. Finally, thanks to Swati, the fixed point of

the map of my life, without whose support and patience I would never have finished this

thesis.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

1.1 The contribution of this Thesis . 2

1.2 Structure of the Thesis . 4

II ADWORDS AUCTIONS AND GENERALIZED ONLINE MATCHING 6

2.1 Introduction . 6

2.1.1 Previous work . 8

2.1.2 Our results . 8

2.1.3 A New Technique . 9

2.2 Problem Definition . 11

2.3 A Deterministic Algorithm . 11

2.4 Analyzing BALANCE using a Factor-Revealing LP 12

2.5 A Tradeoff-Revealing Family of LPs for the Adwords Problem 16

2.6 Direct Analysis of Algorithm 1 . 19

2.7 Towards more realistic models . 20

2.8 A Randomized Algorithm . 22

2.8.1 Analysis of Algorithm 2 . 22

2.9 A Lower Bound for Randomized Algorithms 25

2.10 Discussion . 27

2.11 Chapter Appendix: Counterexample 1 . 28

2.12 Chapter Appendix: Counterexample 2 . 30

III COMBINATORIAL AUCTIONS UNDER GENERAL SUBMODULAR
UTILITIES . 32

3.1 Introduction: Optimization in Combinatorial Auctions 32

v

3.1.1 Previous Work . 34

3.1.2 Our Result . 35

3.2 Model, Definitions and Notation . 36

3.3 A Hardness of 3/4 . 36

3.4 A Hardness of 1-1/e . 43

3.5 Conclusion and Open Problems . 48

IV THE USE OF RANDOMIZATION IN AUCTION DESIGN 49

4.1 Introduction: Truth-revealing Auctions . 49

4.2 Previous work and a statement of the main result 50

4.3 Preliminaries . 52

4.4 The Equivalence Theorem . 54

4.4.1 The Main Theorem . 57

4.4.2 Discrete Bid Values . 59

4.4.3 Efficient Simulations . 60

4.5 Conclusion and Open Questions . 61

V PLAYING LARGE GAMES USING SIMPLE STRATEGIES - COM-
PUTING NASH EQUILIBRIA IN GAMES 63

5.1 Introduction: Nash equilibrium in finite games 63

5.2 Two criticisms of Nash equilibrium as a solution concept 65

5.3 Statement of the results and previous work 66

5.4 The Main Results . 68

5.4.1 Logarithmic support ε-Nash equilibria 68

5.4.2 Approximating Payoffs of Nash equilibria with Constant Support . 72

5.4.3 Low Rank Implies Small Support Exact Equilibria 73

5.5 Discussion . 75

REFERENCES . 76

VITA . 81

vi

LIST OF TABLES

1 Approximability results for submodular utilities 48

vii

LIST OF FIGURES

1 Definition of slabs and types: The bidders are ordered from right to left in
order of increasing type. We have labeled here the bidders of type 2 and the
money in slab 3. 13

2 Counterexample 1: The bidders are ordered from right to left. The area
inside the dark outline is the amount of money generated by the algorithm.
The optimum allocation gets an amount equal to the whole rectangle. . . . 29

3 Counterexample 2: The rows N/2 to 3N/4 have a budget of 1. All other rows
have a budget of 2. 30

4 An example of the simulation proving the equivalence between two notions
of truthfulness in randomized auctions . 56

viii

SUMMARY

The interaction of theoretical computer science with game theory and economics

has resulted in the emergence of two very interesting research directions. First, it has

provided a new model for algorithm design, which is to optimize in the presence of strategic

behavior. Second, it has prompted us to consider the computational aspects of various

solution concepts from game theory, economics and auction design which have traditionally

been considered mainly in a non-constructive manner. In this thesis we present progress

along both these directions.

We first consider optimization problems that arise in the design of combinatorial auc-

tions. We provide an online algorithm in the important case of budget-bounded utilities.

This model is motivated by the recent development of the business of online auctions of

search engine advertisements. Our algorithm achieves a factor of 1 − 1/e, via a new linear

programming based technique to determine optimal tradeoffs between bids and budgets.

We also provide lower bounds in terms of hardness of approximation in more general sub-

modular settings, via a PCP-based reduction. Second, we consider truth-revelation in

auctions, and provide an equivalence theorem between two notions of strategy-proofness

in randomized auctions of digital goods. Last, we consider the problem of computing an

approximate Nash equilibrium in multi-player general-sum games, for which we provide the

first subexponential time algorithm.

ix

CHAPTER I

INTRODUCTION

The interaction between game theory, economics and theoretical computer science has led

to two main lines of research.

The first is the introduction of a new model of algorithms to theoretical computer science.

The traditional model of algorithms is that of a black box, which takes in certain inputs

and performs some computations to give an output. In this traditional model the algorithm

is not supposed to question the origin of the inputs but is supposed to simply perform the

optimization on the given input. In the new mechanism design model of computation, we

take a wider view of what constitutes optimization. To do this, we further model the source

of the inputs themselves. We assume that the different parts of the input originate from

different independent agents, each of which has his own optimizations to perform, and is

interested in only optimizing his own profit. This is modeled as certain utility functions

which give an agent a certain amount of profit based on what the output of the algorithm is.

Thus the agents may misreport the true value of the input so as to make the algorithm give

a desirable input. In this new model, a goal of the algorithm designer would be to design

an algorithm which would provide incentives to the agents to report their true utilities, so

that the algorithm gives a globally optimized output.

While mechanism design is an old area of study, many known methods fail to be compu-

tationally tractable. This is where the contribution of theoretical computer science comes

in. The goal of the research is to provide computationally tractable (e.g., polynomial time)

algorithms or mechanisms, or to provide proofs of computational intractability of these prob-

lems. For example, the celebrated Vickrey-Clarke-Groves (VCG) mechanism [73, 12, 23] is

well known to be the only truth-revealing mechanism which maximizes the social welfare

in auction settings. However, a recent result (see [57]) shows that there is no polynomial

time algorithm which can implement this mechanism for complex auction settings, under

1

standard complexity assumptions. In such a scenario, what can computer science methods

offer to alleviate the situation? The field of approximation algorithms provides the frame-

work to develop approximate mechanisms, which approximate the maximum social welfare

(e.g., [43]), or are approximately truth-revealing (e.g., [4]).

The second line of research that this interaction has brought about is the introduction

of a large number of problems of economic interest to computational analysis. Solution

concepts such as equilibrium prices in markets, Nash equilibria in games, fair division of

goods, sharing of costs of a public good, etc. are very old ideas. But in most settings it

is not known if these concepts are easy to compute. This is a second goal of this research.

The computational complexity of many of these problems is yet unknown. In some cases

the problems are known to be computationally intractable. This is a critique of such a

concept – if one provably cannot compute the solution concept (under reasonable complexity

assumptions) then the model is not a predictive model.

1.1 The contribution of this Thesis

In this thesis we present progress in both directions of research mentioned above.

The first contribution is progress towards the design of efficient auctions in complex

settings. The simplest auction is the auction of a single item. In this case it is trivial

to determine the bidder who maximizes social welfare (he who bids highest for the item).

Furthermore it is well known how to design a truthful auction (the famous second-price

auction). Here we consider a much more complicated setting in which there are a large

number of goods which are desired by the bidders in specific bundles. This setting is known

as a combinatorial auction. The final goal of research in such a setting is the design of

computationally tractable truth-revealing auctions which also maximize certain objectives

such as social welfare or auctioneer profit. This is a very difficult open problem. We

take the first step towards this goal and begin with considering the simpler question of

optimization when the bidders do not strategize but simply reveal their true utility. In

particular we consider the optimization of social welfare (total utility of the bidders in an

outcome) in certain combinatorial auctions. Upon disregarding strategic behavior of the

2

bidders, social welfare also translates to revenue maximization. Another motivation to look

at the (simpler) optimization version is that in settings in which we can actually compute

the exact optimum, we can also design truthful auctions through the Vickrey-Clarke-Groves

mechanism [73, 12, 23].

The particular auctions we consider are combinatorial auctions when the bidders have

utilities which are submodular functions. We show how it is NP-hard to optimize social

welfare up to a factor better than 1 − 1/e in the case of general submodular utilities. We

also consider a very important special case of submodular utilities and provide an online

algorithm which achieves a factor of 1 − 1/e for welfare/revenue maximization. This is the

set of functions which are additive with an upper bound. These functions are motivated by

one of the most important business models today - that of online auctions of search engine

advertisements. In this setting advertisers (bidders) submit bids for various ads and also

submit a daily budget, and the search engine (auctioneer) has to allocate ads in an online

manner to the different advertisers in order to maximize revenue at the end of the day.

The design of strategy-proof or truthful auctions is a much more difficult goal. Indeed,

it is known that in several models of combinatorial auctions it is difficult to even optimize,

let alone design truthful auctions [43]. Strategy-proof auctions have been designed in very

special cases only, e.g. single item auctions, k-item auctions, and unlimited item auctions

(digital goods). In all these settings it is known that the only truthful auctions are those

which are bid-independent. Recently, there has been much interest from the computer sci-

ence community to see if randomization can help in designing truthful auctions with better

properties [22]. With the power of randomization, the result that the only truthful auctions

are the bid independent auctions no longer holds. One very important setting of auctions is

that of digital goods, or goods in unlimited supply. We provide here an equivalence theorem

for this setting: we show that any (randomized) auction which is truthful for risk-neutral

bidders is in fact a randomization over (deterministic) bid-independent auctions. Hence in

this setting, while randomization does help, we may restrict ourselves to top-level random-

ization (i.e., flip coins to choose between several deterministic bid-independent auctions).

In a second direction we consider the computation of an important game theoretic

3

solution concept: a Nash equilibrium in a general-sum game. While it is possible to compute

min-max strategies in zero-sum games (this being equivalent to linear programming), it has

remained an open question if one can compute a Nash-equilibrium in non-zero sum games.

The only known algorithms take a worst-case exponential time [46, 47, 75], and the exact

computational complexity of this problem is not known. Here, we provide a partial answer.

We show how to compute an ε-Nash equilibrium (strategies with at most ε incentive to

deviate) in time nO(log n). The approximate equilibria that we find also have other nice

properties, e.g. they are uniform over a small support of pure strategies. We believe that

this is an important step towards solving the big question of the complexity of finding Nash

equilibria.

1.2 Structure of the Thesis

Having motivated the results of this thesis above, we sketch below the structure of the

chapters, and the technical statements of each result.

• Chapter 2: We present a positive result for an important special case of optimization

in combinatorial auctions under submodular utilities. This is the model of online

auction of search engine advertisements. We achieve this by providing a 1−1/e factor

online algorithm for maximizing revenue. We also provide a new linear programming

based technique for finding optimal trade-offs between different relevant parameters,

e.g., the bid and the budget of a bidder, in an online manner. We call this new

technique a tradeoff revealing family of linear programs. This generalizes two different

algorithms for special cases of the problem via this single technique.

• Chapter 3: Here we consider the general problem of maximizing total utility/social

welfare in a combinatorial auction under general submodular utility functions. We

prove that it is NP-hard to find the optimal social welfare in such a setting up to

a factor better than 1 − 1/e. Our result holds even when the number of bidders is

a constant, and all the bidders have the same submodular utilities. The results of

Chapters 2 and 3 do not consider strategic behavior of the bidders.

4

• Chapter 4: In this chapter we consider the notion of truth-revealing auctions in

the presence of randomization. We consider two well-known definitions of truth-

revelation in randomized auctions, and show how these are, in fact, equivalent in

the special case of digital goods. We show that every randomized auction which is

truthful in expectation (truth-revealing against risk-neutral bidders) is equivalent to

one which is a randomization over deterministic bid-independent auctions. We also

show how, given an auction which is truthful in expectation, to find in polynomial

time, an approximately equivalent auction which is a randomization over deterministic

bid-independent auctions.

• Chapter 5: Given a general sum game with a constant number of players, and in

which each player has n pure strategies to randomize over, we prove the existence

of ε-Nash equilibria in which each player randomizes only over logn/ε2 pure strate-

gies. This also yields the first sub-exponential algorithm to find an approximate Nash

equilibrium (in time nO(log n)). We also prove a structural result which says that

in a two-player game, if the payoff matrices have rank k, then there exists a Nash

equilibrium in which both players randomize only over k pure strategies.

5

CHAPTER II

ADWORDS AUCTIONS AND GENERALIZED ONLINE

MATCHING

How does a search engine company decide what ads to display with each query so as to

maximize its revenue? This turns out to be a generalization of the online bipartite matching

problem. In this chapter we introduce the notion of a tradeoff revealing linear program and

use it to derive two optimal algorithms achieving competitive ratios of 1 − 1/e for this

problem.

This setting is a special case of a combinatorial auction under submodular utilities. This

is one of the most elegant and realistic auction models for which there is no truth-revealing

auction known which can maximize the revenue for the search engine or which can maximize

the total utility of the advertisers. In this chapter we model this search engine auction in

an online setting, and provide the first online algorithms to achieve competitive factor of

1 − 1/e. However, this is not a truth-revealing auction, since it assumes that the bidders

bid their true utilities. The design of a truth-revealing auction in this setting remains open.

2.1 Introduction

Internet search engine companies, such as Google, Yahoo and MSN, have revolutionized

not only the use of the Internet by individuals but also the way businesses advertise to

consumers. Instead of flooding consumers with unwanted ads, search engines open up

the possibility of a dialogue between consumers and businesses, with consumers typing in

keywords, called Adwords by Google, that reveal what they are looking for and search

engines displaying highly targeted ads relevant to the specific query.

The AdWords market1 is essentially a large auction where businesses place bids for

individual keywords, together with limits specifying their maximum daily budget. The

1This market dwarfs the AdSense market where the ad is based on the actual contents of the website.

6

search engine company earns revenue from businesses when it displays their ads in response

to a relevant search query (if the user actually clicks on the ad). Indeed, most of the

revenues of search engine companies are derived in this manner2.

In this context, the following computational problem, which we call the Adwords prob-

lem, was recently posed by Henzinger [25]: assign user queries to advertisers to maximize

the total revenue. Observe that the task is necessarily online – when returning results of

a specific query, the search engine company needs to immediately determine what ads to

display on the side.

It is easy to see that the competitive ratio of the algorithm that awards each query to the

highest bidder is 1/2; moreover, this is tight. In this chapter, we present two algorithms, one

deterministic and one randomized, achieving competitive ratios of 1− 1/e for this problem.

In Section 2.9 we show that no randomized algorithm can achieve a better competitive ratio.

The offline version of the Adwords problem is NP-hard, and the best known approxi-

mation algorithm achieves a guarantee of 1 − 1/e [2], by solving a linear program followed

by randomized rounding. Our online algorithms achieve the same approximation guarantee

and are more efficient: the total running time is O(NM) where N is the number of bidders

and M the length of the query sequence.

In Section 2.7 we show how our algorithm and analysis can be generalized to the follow-

ing, more realistic, situations, while still maintaining the same competitive ratio:

• A bidder pays only if the user clicks on his ad.

• Advertisers have different daily budgets.

• Instead of charging a bidder his actual bid, the search engine company charges him

the next highest bid.

• Multiple ads can appear with the results of a query.

• Advertisers enter at different times.

2According to a recent New York Times article (Feb 4, 2005), the revenue accrued by Google from this
market in the last three months of 2004 alone was over a billion dollars.

7

2.1.1 Previous work

The adwords problem is clearly a generalization of the online bipartite matching problem:

the special case where each advertiser makes unit bids and has a unit daily budget is precisely

the online matching problem. Even in this special case, the greedy algorithm achieves a

competitive ratio of 1/2. The algorithm that allocates each query to a random interested

advertiser does not do much better – it achieves a competitive ratio of 1/2 +O(log n/n).

In [33], Karp, Vazirani and Vazirani gave a randomized algorithm for the online matching

problem achieving a competitive ratio of 1− 1/e. Their algorithm, called RANKING, fixes

a random permutation of the bidders in advance and breaks ties according to their ranking

in this permutation. They further showed that no randomized online algorithm can achieve

a better competitive ratio.

In another direction, Kalyanasundaram and Pruhs [32] considered the online b-matching

problem which can be described as a special case of the adwords problem as follows: each

advertiser has a daily budget of b dollars, but makes only 0/1 dollar bids on each query. Their

online algorithm, called BALANCE, awards the query to that interested advertiser who has

the highest unspent budget. They show that the competitive ratio of this algorithm tends

to 1− 1/e as b tends to infinity. They also prove a lower bound of 1− 1/e for deterministic

algorithms.

2.1.2 Our results

To generalize the algorithms of [32] and [33] to arbitrary bids, it is instructive to examine

the special case with bids restricted to {0, 1, 2}. The natural algorithm to try assigns each

query to a highest bidder, using the previous heuristics to break ties (largest remaining

budget/ highest ranking in the random permutation). We give examples (in the Appendix)

showing that both these algorithms achieve competitive ratios strictly smaller and bounded

away from 1 − 1/e.

This indicates the need to consider a much more delicate tradeoff between the bid

versus the remaining budget in the first case, and the bid versus the position in the random

permutation in the second. The correct tradeoff function is derived by a novel LP-based

8

approach, which we outline below. The resulting algorithms are very simple, and are based

on the following tradeoff function:

ψ(f) = 1 − e−(1−f)

We provide two algorithms which achieve a factor of 1 − 1/e :

Algorithm 1:

Allocate the next query to the bidder i maximizing the product of his bid and ψ(T (i)),

where T (i) is the fraction of the bidder’s budget which has been spent so far, i.e. T (i) = mi
bi

,

where bi is the total budget of bidder i, mi is the amount of money spent by bidder i.

Algorithm 2:

Start by permuting the advertisers at random. Allocate the next query to the bidder

maximizing the product of his bid and ψ(r/n), where r is the rank of this bidder in the

random order and n is the number of bidders.

Both algorithms assume that the daily budget of advertisers is large compared to their

bids.

2.1.3 A New Technique

We now outline how we derive the correct tradeoff function. For this we introduce the notion

of a tradeoff-revealing family of LP’s. This concept builds on the notion of a factor-revealing

LP [28]. We start by writing a factor-revealing LP to analyze the performance in the special

case when all bids are equal. This provides a simpler proof of the Kalyanasundaram and

Pruhs [32] result.

We give an LP, L, whose constraints are satisfied at the end of a run of BALANCE on

any instance π of the equal bids case. The objective function of L gives the performance

of BALANCE on π. Hence the optimal objective function value of L is a lower bound on

9

the competitive ratio of BALANCE. How good is this lower bound? Clearly, this depends

on the constraints we have captured in L. It turns out that the bound computed by our

LP is 1 − 1/e which is tight. Indeed, for some fairly sophisticated algorithms, e.g., [28, 7],

a factor-revealing LP is the only way known of deriving a tight analysis.

Next, we handle the case of arbitrary bids. We write a family of LP’s L(π, ψ), one for

each input instance π and decreasing tradeoff function ψ. The objective function of L(π, ψ)

gives the performance of Algorithm 1 when run on π with tradeoff function ψ. The problem

now is to choose ψ that yields a performance of at least 1− 1/e on every instance π. Once

the input instance and tradeoff functions are fixed, of course, the exact results achieved by

the algorithm are completely determined. The right hand side of the inequalities in the LP

L(π, ψ) are based on these (unknown) parameters.

Now the constraints in each LP are obtained by relaxing a tautology, and therefore

any single LP in this family does not contain any useful information. However, the entire

family does express some of the structure of the problem which is revealed by considering

the family of dual linear programs D(π, ψ).

It turns out that L(π, ψ) differs from L only in that a vector ∆(π, ψ) is added to the

right hand side of the constraints. Therefore, the dual programs D(π, ψ) differ from D only

in the objective function, which is changed by ∆(π, ψ) · y, where y is the vector of dual

variables. Hence the dual polytope for all LP’s in the family is the same as that for D.

Moreover, we show that D and the each LP in the family D(π, ψ) attains its optimal value

at the same vertex, y∗, of the dual polytope. Finally, we show how to use y∗ to define ψ in

a specific manner so that ∆(π, ψ) · y∗ ≤ 0 for each instance π (observe that this function ψ

does not depend on π and hence it works for all instances). This function is precisely the

function used in Algorithm 1. This ensures that the performance of Algorithm 1 on each

instance matches that of BALANCE on unit bid instances and is at least 1 − 1/e.

We call this ensemble L(π, ψ) a tradeoff revealing family of LP’s. Once the competitive

ratio of the algorithm for the unit bid case is determined via a factor-revealing LP, this

family helps us find a tradeoff function that ensures the same competitive ratio for the

arbitrary bids case.

10

The same proof outline also applies to Algorithm 2 once we suitably simplify the analysis

of Karp, Vazirani and Vazirani [33] and cast it in terms of linear constraints.

2.2 Problem Definition

The Adwords problem is the following: There are N bidders, each with a specified daily

budget bi. Q is a set of query words. Each bidder i specifies a bid ciq for query word q ∈ Q.

A sequence q1q2 . . . qM of query words qj ∈ Q arrive online, and each query qj must be

assigned to some bidder i (for a bid of cij = ciqj). The objective is to maximize the total

revenue while respecting the daily budgets of the bidders.

Throughout this chapter we will make the assumption that the bids are small compared

to the budgets, i.e., maxi,j cij is small compared to mini bi. For the applications of this

problem mentioned in the Introduction, this is a reasonable assumption.

An online algorithm is said to be α-competitive if for every instance, the ratio of the

revenue of the online algorithm to the revenue of the best off-line algorithm is at least α.

While presenting the algorithms and proofs, we will make the simplifying assumptions

that the budgets of all bidders are equal (assumed unit) and that the best offline algorithm

exhausts the budget of each bidder. These assumptions will be relaxed in Section 2.7.

2.3 A Deterministic Algorithm

Let us first consider a greedy algorithm that maximizes revenue accrued at each step. It is

easy to see that this algorithm achieves a competitive ratio of 1
2 (see, e.g., [42]); moreover,

this is tight as shown by the following example with only two bidders and two query words:

Suppose both bidders have unit budget. The two bidders bid c and c + ε respectively on

query word q, and they bid 0 and c on query word q′. The query sequence consists of a

number of occurrences of q followed by a number of occurrences of q ′. The query words

q are awarded to bidder 2, and are just enough in number to exhaust his budget. When

query words q′ arrive, bidder 2’s budget is exhausted and bidder 1 is not interested in this

query word, and they accrue no further revenue.

Algorithm 1 rectifies this situation by taking into consideration not only the bids but

11

also the unspent budget of each bidder. For the analysis it is convenient to discretize the

budgets as follows: we pick a large integer k, and discretize the budget of each bidder into

k equal parts (called slabs) numbered 1 through k. Each bidder spends money in slab j

before moving to slab j + 1.

Definition: At any time during the run of the algorithm, we will denote by slab(i) the

currently active slab for bidder i.

Let ψ : [1 . . . k] → R+ be the following (monotonically decreasing) function:

ψ(i) = 1 − e−(1−i/k)

Algorithm 1

1. When a new query arrives, let the bid of bidder i be c(i).

2. Allocate the query to the bidder i who maximizes c(i) × ψ(slab(i)).

Note that in the special case when all the bids are equal, our algorithm works in the

same way as the BALANCE algorithm of [32], for any monotonically decreasing tradeoff

function.

2.4 Analyzing BALANCE using a Factor-Revealing LP

In this section we analyze the performance of Algorithm 1 in the special case when all bids

are equal. This is exactly the algorithm BALANCE of [32]. We give a simpler analysis

of this algorithm using the notion of a factor-revealing LP. This technique was implicit in

[52, 20, 50] and was formalized and made explicit in [29, 28].

We will assume for simplicity that in the optimum solution, each of the N players spends

his entire budget, and thus the total revenue is N . Recall that BALANCE awards each

query to the interested bidder who has the maximum unspent budget. We wish to lower

bound the total revenue achieved by BALANCE. Let us define the type of a bidder according

to the fraction of budget spent by that bidder at the end of the algorithm BALANCE: say

that the bidder is of type j if the fraction of his budget spent at the end of the algorithm

lies in the range ((j − 1)/k, j/k]. By convention a bidder who spends none of his budget is

12

assigned type 1.

Clearly bidders of type j for small values of j contribute little to the total revenue.

The factor revealing LP for the performance of the algorithm BALANCE will proceed by

bounding the number of such bidders of type j.

Lemma 1 If OPT assigns query q to a bidder of type j, then BALANCE pays for q from

slab k such that k ≤ j.

The lemma follows immediately from the criterion used by BALANCE for assigning

queries to bidders.

For simplicity we will assume that bidders of type i spend exactly i/k fraction of their

budget. The total error resulting from this simplification is at most N/k and is negligible.

Now, for i = 1, 2, . . . , k − 1, let xi be the number of bidders of type(i). Let βi denote the

total money spent by the bidders from slab i in the run of ALG. It is easy to see (Figure 1)

that β1 = N/k, and for 2 ≤ i ≤ k, βi = N/k − (x1 + . . .+ xi−1)/k.

2/k

1/k

3/k

3x 2x 1xkx
0

1

TYPE 2

SLAB 3

Figure 1: Definition of slabs and types: The bidders are ordered from right to left in order
of increasing type. We have labeled here the bidders of type 2 and the money in slab 3.

Lemma 2

∀ i, 1 ≤ i ≤ k − 1 :
i
∑

j=1

(1 +
i− j

k
)xj ≤

i

k
N

Proof : By Lemma 1,

i
∑

j=1

xj ≤
i
∑

j=1

βj =
i

k
N −

i
∑

j=1

(
i− j

k
)xj

13

The lemma follows by rearranging terms. �

The revenue of the algorithm is

ALG ≥
k−1
∑

i=1

i
kxi +

(

N −
k−1
∑

i=1

xi

)

− N
k

= N −
k−1
∑

i=1

k−i
k xi − N

k

To find a lower bound on the performance of BALANCE we want to find the minimum

value that N −∑k−1
i=1

k−i
k xi − N

k can take over the feasible {xi}s. This gives the following

LP, which we call L:

maximize Φ =
k−1
∑

i=1

k−i
k xi (1)

subject to ∀ i, 1 ≤ i ≤ k − 1 :
i
∑

j=1

(1 +
i− j

k
)xj ≤

i

k
N

∀ i, 1 ≤ i ≤ k − 1 : xi ≥ 0

Let us also write down the dual LP, D, which we will use in the case of arbitrary bids.

minimize
k−1
∑

i=1

i
kNyi

subject to ∀ i, 1 ≤ i ≤ k − 1 :
k−1
∑

j=i

(1 +
j − i

k
)yj ≥

k − i

k

∀ i, 1 ≤ i ≤ k − 1 : yi ≥ 0

Define A, b, c so the primal LP, L, can be written as

max c · x s.t. Ax ≤ b x ≥ 0.

14

and the dual LP, D, can be written as

min b · y s.t. AT y ≥ c y ≥ 0.

Lemma 3 As k → ∞, the value Φ of the above linear program goes to N
e

Proof : On setting all the primal constraints to equality and solving the resulting system,

we get a feasible solution x∗i ≥ 0. Similarly, we can set all the dual constraints to equality

and solve the resulting system to get a feasible dual solution.

These two feasible solutions are:

x∗i = N
k (1 − 1

k)i−1 for i = 1, .., k − 1

y∗i = 1
k (1 − 1

k)k−i−1 for i = 1, .., k − 1

But these clearly satisfy the complementary slackness conditions, hence they are also

optimal solutions of the primal and dual programs.

This gives an optimal objective function value of

Φ = c · x∗ = b · y∗

=

k−1
∑

i=1

(k−i
k)N

k (1 − 1
k)i−1

= N(1 − 1
k)k

As we make the discretization finer (i.e. as k → ∞) Φ tends to N
e .

�

Recall that the size of the matching is at least N − Φ − N
k , hence it tends to N(1 − 1

e).

Since OPT is N , the competitive ratio is at least 1 − 1
e .

On the other hand one can find an instance of the problem (e.g., the one provided

in [32]) such at the end of the algorithm all the inequalities of the primal are tight, hence

the competitive ratio of ALG is exactly 1 − 1
e .

15

2.5 A Tradeoff-Revealing Family of LPs for the Adwords
Problem

Observe that even if we knew the correct tradeoff function, extending the methods of the

previous section is difficult. The problem with mimicking the factor-revealing LP for con-

stant bids is that now the tradeoff between bid and unspent budget is subtle and the basic

Lemma 1 which allowed us to write the inequalities in the LP no longer holds.

Here is how we proceed instead: We fix both a monotonically decreasing tradeoff function

ψ as well as the instance π of the adwords problem and write a new LP L(π, ψ) for Algorithm

1 using tradeoff function ψ run on the instance π. Of course, once we specify the algorithm

as well as the input instance, the actual allocations of queries to bidders is completely

determined. In particular, the number αi of bidders of type i is fixed. L(π, ψ) is the

seemingly trivial LP obtained by taking the left hand side of each inequality in the factor

revealing LP and substituting xi = αi to obtain the right hand side. Formally:

Let a be a k−1 dimensional vector whose ith component is αi. Let Aa = l. We denote

the following LP by L(π, ψ):

max c · x s.t. Ax ≤ l x ≥ 0

The dual LP is denoted by D(π, ψ) and is:

min l · y s.t. AT y ≥ c y ≥ 0

Clearly, any one LP L(π, ψ) offers no insight into the performance of Algorithm 1; after

all the right hand sides of the inequalities are expressed in terms of the unknown number

of bidders of type i. Nevertheless, the entire family L(π, ψ) does contain useful information

which is revealed by considering the duals of these LP’s.

Since L(π, ψ) differs from L only in the right hand side, the dual D(π, ψ) differs from

D only in the dual objective function; the constraints remain unchanged. Hence solution

y∗ of D is feasible for D(π, ψ) as well. Recall that this solution was obtained by setting all

nontrivial inequalities of D to equality.

16

Now by construction, if we set all the nontrivial inequalities of LP L(π, ψ) to equality

we get a feasible solution, namely a. Clearly, a and y∗ satisfy all complementary slackness

conditions. Therefore they are both optimal. Hence we get:

Lemma 4 For any instance π and monotonically decreasing tradeoff function ψ, y∗ is an

optimal solution to D(π, ψ).

The structure of Algorithm 1 does constraint ow the LP L differs from L(π, ψ). This is

what we will explore now.

As in the analysis of BALANCE, we divide the budget of each bidder into k equal slabs,

numbered 1 to k. Money in slab i is spent before moving to slab i + 1. We say that a

bidder is of type j if the fraction of his budget spent at the end of Algorithm 1 lies in the

range ((j − 1)/k, j/k]. By convention a bidder who spends none of his budget is assigned

type 1. As before, we make the simplifying assumption (at the cost of a negligible error

term) that bidders of type j spend exactly j/k fraction of their budget. Let αj denote

the number of bidders of type j. Let βi denote the total money spent by the bidders from

slab i in the run of Algorithm 1. It is easy to see that β1 = N/k, and for 2 ≤ i ≤ k,

βi = N/k − (α1 + . . .+ αi−1)/k.

We are interested in comparing the performance of Algorithm 1 (abbreviated as ALG)

with the optimal algorithm OPT. The following definitions focus on some relevant param-

eters comparing how ALG and OPT treat a query q:

Definition: Let ALG(q) (OPT(q)) denote the revenue earned by Algorithm 1 (OPT)

for query q. Say that a query q is of type i if OPT assigns it to a bidder of type i, and say

that q lies in slab i if Algorithm 1 pays for it from slab i.

Lemma 5 For each query q such that 1 ≤ type(q) ≤ k − 1,

OPT(q)ψ(type(q)) ≤ ALG(q)ψ(slab(q)).

Proof : Consider the arrival of q during the run of Algorithm 1. Since type(q) ≤ k − 1,

the bidder b to whom OPT assigned this query is still actively bidding from some slab

17

j ≤ type(q) at this time. The inequality in the lemma follows from the criterion used by

Algorithm 1 to assign queries, together with the monotonicity of ψ.

�

Lemma 6
k−1
∑

i=1

ψ(i)(αi − βi) ≤ 0.

Proof : We start by observing that for 1 ≤ i ≤ k − 1:

∑

q:type(q)=i

OPT(q) = αi

∑

q:slab(q)=i

ALG(q) = βi

By Lemma 5

∑

q:type(q)≤k−1

[OPT(q)ψ(type(q)) − ALG(q)ψ(slab(q))] ≤ 0.

Next observe that

∑

q:type(q)≤k−1

OPT(q)ψ(type(q)) =

k−1
∑

i=1

∑

q:type(q)=i

OPT(q)ψ(i)

=
k−1
∑

i=1

ψ(i)αi.

And
∑

q:type(q)≤k−1

ALG(q)ψ(slab(q)) ≤
∑

q:slab(q)≤k−1

ALG(q)ψ(slab(q))

=

k−1
∑

i=1

∑

q:slab(q)=i

ALG(q)ψ(i)

=

k−1
∑

i=1

ψ(i)βi.

The lemma follows from these three inequalities. �

Let ∆(π, ψ) be a k−1 dimensional vector whose ith component is (α1−β1)+. . .+(αi−βi).

The following lemma relates the right hand side of the LPs L and L(π, ψ).

Lemma 7

l = b + ∆(π, ψ).

18

Proof : Consider the ith components of the three vectors. We need to prove:

α1(1 + i−1
k

) + α2(1 + i−2
k

) + . . .+ αi = iN
k

+ (α1 − β1) + . . .+ (αi − βi).

This equation follows using the fact that βi = N/k − (α1 + . . .+ αi−1)/k. �

Theorem 8 For function ψ defined as

ψ(i) :=
k−1
∑

j=i

y∗j = 1 − (1 − 1

k
)k−i+1

the competitive ratio of Algorithm 1 is (1 − 1
e).

Proof : By Lemma 4, the optimal solution to L(π, ψ) and D(π, ψ) has value l · y∗. By

Lemma 7 this equals (b + ∆) · y∗ ≤ N/e+ ∆ · y∗ (since b · y∗ ≤ N/e, from Section 2.4).

Now,

∆ · y∗ =

k−1
∑

i=1

y∗
i ((α1 − β1) + . . .+ (αi − βi)

=
k−1
∑

i=1

(αi − βi)(y
∗
i + . . .+ y∗k−1)

=
k−1
∑

i=1

(αi − βi)ψ(i)

≤ 0,

where the last equality follows from our choice of the function ψ, and the inequality follows

from Lemma 6. Hence the competitive ratio of Algorithm 1 is (1 − 1
e).

�

2.6 Direct Analysis of Algorithm 1

In the last section we derived the correct tradeoff function ψ to use in Algorithm 1, and in

the process also gave a proof that the competitive ratio of the resulting algorithm is 1−1/e.

In this section abstract out the essential features of the argument and sketch a direct proof

of the competitive ratio starting with this tradeoff function ψ.

Theorem 9 The competitive ratio of Algorithm 1 is 1 − 1/e.

19

Proof : Recall that αi is the number of bidders of type i, and βi is the total amount of

money spent by bidders from slab i. We have the following relations from Section 2.5:

∀i : βi =
N −∑i−1

j=1 αj

k

∑

i

ψ(i)αi ≤
∑

i

ψ(i)βi

Using the above equations and the choice of ψ:

ψ(i) = 1 − (1 − 1

k
)k−i+1

we get:
k
∑

i=1

αi
k − i+ 1

k
≤ N

e
(2)

But the left side of (2) is precisely the amount of money left unspent at the end of the

algorithm. Hence the factor of the ψ-based algorithm is at least 1 − 1/e. �

2.7 Towards more realistic models

In this section we show how our algorithm and analysis can be generalized to the following

situations:

1. Advertisers have different daily budgets.

2. The optimal allocation does not exhaust all the money of advertisers

3. Advertisers enter at different times.

4. More than one ad can appear with the results of a query. The most general situation

is that with each query we are provided a number specifying the maximum number

of ads.

5. A bidder pays only if the user clicks on his ad.

6. A winning bidder pays only an amount equal to the next highest bid.

1, 2, 3: We say that the current type of a bidder at some time during the run of the

algorithm is j if he has spent between (j−1)/k and j/k fraction of his budget at that time.

20

The algorithm allocates the next query to the bidder who maximizes the product of his bid

and ψ(current type).

The proof of the competitive ratio changes minimally: Let the budget of bidder j be

Bj . For i = 1, .., k, define βj
i to be the amount of money spent by the bidder j from the

interval [i−1
k Bj ,

i
kBj) of his budget. Let βi =

∑

j β
j
i . Let αi be the amount of money that

the optimal allocation gets from the bins of final type i. Let α =
∑

i αi, be the total amount

of money obtained in the optimal allocation.

Now the relations used in Section 2.6 become

∀i : βi ≥
α−∑i

j=1 αj

k

∑

i

ψ(i)αi ≤
∑

i

ψ(i)βi

These two sets of equations suffice to prove that the competitive ratio is at least 1−1/e.

We also note that the algorithm and the proof of the competitive ratio remain unchanged

even if we allow advertisers to enter the bidding process at any time during the query

sequence.

4: If the arriving query q requires nq number of advertisements to be placed, then

allocate it to the bidders with the top nq values of the product of bid and ψ(current type).

The proof of the competitive ratio remains unchanged.

5: In order to model this situation, we simply set the effective bid of a bidder to be the

product of his actual bid and his click-through rate (CTR), which is the probability that a

user will click on his ad. We assume that the click-through rate is known to the algorithm

in advance - indeed several search engines keep a measure of the click-through rates of the

bidders.

6: So far we have assumed that a bidder is charged the value of his bid if he is awarded

a query. Search engine companies charge a lower amount: the next highest bid. There are

two ways of defining “next highest bid”: next highest bid for this query among all bids

received at the start of the algorithm or only among alive bidders, i.e. bidders who still

have money.

21

It is easy to see that a small modification of our algorithm achieves a competitive

ratio of 1 − 1/e for the first possibility: award the query to the bidder that maximizes

next highest bid×ψ(fraction of money spent). Next, let us consider the second possibility.

In this case, the offline algorithm will attempt to keep alive bidders simply to charge other

bidders higher amounts. If the online algorithm is also allowed this capability, it can also

keep all bidders alive all the way to the end and this possibility reduces to the first one.

2.8 A Randomized Algorithm

In this section we define a generalization of the RANKING algorithm of [33], which has a

competitive ratio of 1 − 1/e for arbitrary bids, when the bid to budget ratio is small.

In this algorithm we pick a random permutation σ of the n bidders right at the beginning.

For a bidder i, we call σ(i) the position or rank bidder i in σ. Again, we choose the same

tradeoff function to trade off the importance of the bid of a bidder and his rank in the

permutation:

ψ(i) = 1 −
(

1 − 1

n

)n−i+1

Algorithm 2:

1. Pick a random permutation σ of the bidders.

2. For each new query, let the bid of bidder i be b(i).

3. Allocate this query to a bidder with the highest value of the product

b(i) × ψ(σ(i)).

2.8.1 Analysis of Algorithm 2

In this section we prove that the competitive ratio of Algorithm 2 is also 1−1/e. We follow

the direct proof of Section 2.6.

We first define the notion of a Refusal algorithm based on Algorithm 2, which will disal-

locate certain money from the bidders as follows. Refusal will run identically to Algorithm

2, with the following difference: Consider a query q which arrives in the online order. Let

rq be the bidder to whom OPT allocated q, and let optq be the amount of money that OPT

22

gets for q. Suppose that rq has at least optq remaining budget when q arrives. Suppose

further, that Refusal matches q to some bidder other than rq (since this bidder has a higher

product of bid and ψ-value). Then Refusal will disallocate optq money from rq, i.e. it will

artificially reduce the remaining budget of rq by an amount optq.

Let bmax be the maximum bid value for any query from any bidder.

Lemma 10 For any bidder, the amount of money which is not disallocated and not spent

is at most bmax.

Proof : Consider any bidder i and consider the queries that the optimum allocation

allocates to i. The sum of the money spent by i in the optimal allocation is exactly the

budget of i by assumption. For each such query q, let optq be the revenue of OPT on query

q. When q enters during the algorithm, either it is allocated to i at the price of optq, or it is

allocated to some other bidder. In the latter case, if i had optq amount of money remaining

at that time, then optq amount is disallocated from i. Otherwise, the money remaining with

i is less than optq ≤ bmax. �

Lemma 11 The competitive ratio of Refusal is at most the competitive ratio of Algorithm

2.

Proof : By induction on the arrival of queries it is easy to see that the amount of

money left with each bidder in Refusal is at most the amount of money with that bidder in

Algorithm 2. �

We will now prove that the competitive ratio of Refusal is at least 1 − 1/e.

Fix a query q and a permutation σ of the rows. Let rq be the bidder to which OPT

allocates q and let optq be the amount of money that OPT gets for q.

If Refusal matches q to rq, then define α(q, σ) = n+ 1. Otherwise, we define α(q, σ) as

follows: Let A(q, σ) be the position in σ of the bidder to which Refusal matches q. Modify σ

by shifting rq upwards in the order, keeping the order of the rest of the bidders unchanged.

Define α(q, σ) as the highest such position of rq so that rq has at least optq remaining budget

when q arrives, and Refusal still matches q to the bidder in position A(q, σ).

23

Define xq
i = optq Pr[α(q, σ) = i], where the probability is taken over random σ. Let

xi =
∑

q x
q
i .

Define wq
i to be the expected amount of money spent by the row in position i on query

q. Let wi =
∑

q w
q
i , the expected amount of money spent by the row in position i at the

end of Refusal.

Lemma 12
∑

i

ψ(i)xi ≤
∑

i

ψ(i)wi (3)

Proof : Fix a query q and a permutation σ. Let rq be the bidder to which OPT allocates

q and let optq be the amount of money OPT gets for q. Let A(q, σ) be the position in σ of

the bidder to which Refusal matches q and let algq be the amount of money Refusal gets

for q.

In the case that α(q, σ) 6= n+ 1, the following holds by the rule used by the algorithm:

ψ(α(q, σ))optq ≤ ψ(A(q, σ))algq

In the case that α(q, σ) = n+ 1, we simply write:

0 ≤ ψ(A(q, σ))algq

Taking expectation over random σ we get

∑

i

ψ(i)xq
i ≤

∑

i

ψ(i)wq
i

Taking a summation over all queries q, we get

∑

i

ψ(i)xi ≤
∑

i

ψ(i)wi

�

Lemma 13

∀i : wi ≥ 1 −
∑i

j=1 xj

n
− bmax (4)

24

Proof : By Lemma 10, it is equivalent to prove that the expected amount of money

disallocated in position i by Refusal is at most
∑i

j=1
xj

n .

For a fixed query q and permutation σ, let rq be the row to which OPT allocates q, and

let B(q, σ) be the position of rq in σ. Then an optq amount of money is disallocated from

rq if and only if α(q, σ) ≤ B(q, σ). In such a case, consider the following process. Start

with a permutation derived from σ by shifting rq to position α(q, σ). Replace rq uniformly

at random in each of the n positions. Then with probability 1/n we get back σ and optq

amount of money is disallocated from rq in position B(q, σ). In this manner, we may only

be overcounting the amount of disallocated money, since some of the positions for rq below

α(q, σ) may correspond to permutations σ′ with a different (larger) value of α(q, σ′).

Taking expectation over random σ and summing over all queries q, we get the statement

of the lemma. �

Comparing to Section 2.6, we see that the constraints (3) and (4) are similar to the

constraints obtained in that proof. The amount of money left unspent also has the same

form, namely
n
∑

i=1

(1 − wi) ≤
n
∑

i=1

xi
n− i+ 1

n

Hence we get

Proposition 14 The competitive ratio of Refusal is at least 1 − 1/e.

From Lemma 11, we get:

Theorem 15 The competitive ratio of the Algorithm 2 is at least 1 − 1/e.

Remark: Lemma 10 points to the reason why we assume that the largest bid is small

compared to the budgets. Our analysis loses an amount of bmax due to fence-post errors,

and it would be interesting to tighten the analysis and remove the assumption that the

budget is large compared to the bids.

2.9 A Lower Bound for Randomized Algorithms

In [33], the authors proved a lower bound of 1 − 1/e on the competitive ratio of any ran-

domized online algorithm for the online bipartite matching problem. Also, [32] proved a

25

lower bound of 1 − 1/e on the competitive ratio of any online deterministic algorithm for

the online b-matching problem, even for large b. We show a lower bound of 1 − 1/e for

for online randomized algorithms for the b-matching problem, even for large b. This also

resolves an open question from [31].

Theorem 16 No randomized online algorithm can have a competitive ratio better than

1 − 1/e for the b-matching problem, for large b.

Proof : We use Yao’s Lemma [76], which says that the worst case expected factor (over

all inputs) of the best randomized algorithm is equal to the expected factor of the best

deterministic algorithm for the worst distribution over inputs. Thus it suffices for our

purpose to present a distribution over inputs such that any deterministic algorithm obtains

at most 1− 1/e of the optimal allocation on the average. By Yao’s Lemma, this would put

a bound of 1 − 1/e on the worst case performance of any randomized algorithm.

Consider first the worst case input for the algorithm BALANCE with N bidders, each

with a budget of 1. In this instance, the queries enter in N rounds. There are 1/ε number

of queries in each round. We denote by Qi the queries of round i, which are identical to

each other. For every i = 1, .., N , bidders i through N bid ε for each of the queries of round

i, while bidders 1 through i − 1 bid 0 for these queries. The optimal assignment is clearly

the one in which all the queries of round i are allocated to bidder i, achieving a revenue of

N . One can also show that BALANCE will achieve only N(1− 1/e) revenue on this input.

Now consider all the inputs which can be derived from the above input by permutation

of the numbers of the bidders and take the uniform distribution D over all these inputs.

Formally, D can be described as follows: Pick a random permutation π of the bidders. The

queries enter in rounds in the order Q1, Q2, ..., QN . Bidders π(i), π(i+ 1), ..., π(N) bid ε for

the queries Qi and the other bidders bid 0 for these queries. The optimal allocation for any

permutation π remains N , by allocating the queries Qi to bidder π(i). We wish to bound

the expected revenue of any deterministic algorithm over inputs from the distribution D.

26

Fix any deterministic algorithm. Let qij be the fraction of queries from Qi that bidder

j is allocated. We have:

Eπ[qij] ≤

1
N−i+1 if j ≥ i,

0 if j < i.

To see this, note that there are N − i+ 1 bidders who are bidding for queries Qi. The

deterministic algorithm allocates some fraction of these queries to some bidders who bid for

them, and leaves the rest of the queries unallocated. If j ≥ i then bidder j is a random bidder

among the bidders bidding for these queries and hence is allocated an average amount of

1
N−i+1 of the queries which were allocated from Qi (where the average is taken over random

permutations of the bidders). On the other hand, if j < i, then bidder j bids 0 for queries

in Qi and is not allocated any of these queries in any permutation.

Thus we get that the expected amount of money spent by a bidder j at the end of the

algorithm is at most min{1,∑j
i=1

1
N−i+1}. By summing this over j = 1, .., N , we get that

the expected revenue of the deterministic algorithm over the distributional input D is at

most N(1 − 1/e). This finishes the proof of the theorem. �

2.10 Discussion

Search engine companies accumulate vast amounts of statistical information which they do

use in solving the Adwords problem. The main new idea coming from our study of this

problem from the viewpoint of worst case analysis is the use of a tradeoff function. Blending

this idea into the the currently used algorithms seems a promising possibility. One concrete

way of accomplishing this is by applying the algorithm for learning from expert advice [18]

to fine tuning the tradeoff function. For example, the tradeoff function should ideally be

relaxed towards the end of the day. This can be accomplished by consider a set of “experts”

each of whom changes the tradeoff function according to a fixed schedule over the course

of the day. The learning algorithm is used over successive days to track the best such daily

variation in tradeoff function.

Our first algorithm needs to keep track of the money spent by each advertiser, but

the second one does not and is therefore useful if the search engine company is using a

27

distributed set of servers which periodically coordinate the money spent by each advertiser.

Several new issues arise: Our notion of tradeoff revealing family of LP’s deserves to

be studied further in the setting of approximation and online algorithms. Is it possible to

achieve competitive ratio of 1 − 1/e when the budgets of advertisers are not necessarily

large? As stated in the Introduction, both our algorithms assume that daily budgets are

large compared to bids. It is worth noting that an online algorithm for this problem with

a competitive ratio of 1 − 1/e will not only match the lower bound given in [33] for online

algorithms but also the best known off-line approximation algorithm [2].

Finally, this new auctions setting seems ripe with new game theoretic issues. For ex-

ample, some of the search engines (e.g., Google) use a mechanism similar to a second-price

auction for charging the advertisers in order to achieve some degree of incentive compati-

bility. However, it seems that there are still various ways for the advertisers to game these

mechanisms. Designing a truthful mechanism in this setting is an important open problem.

Recently, [11] provided a partial answer for this problem by showing that under some as-

sumptions, it is impossible to design a truthful mechanism that allocates all the keywords

to budget constrained advertisers.

Counterexamples for the simpler algorithms

2.11 Chapter Appendix: Counterexample 1

We present an example to show a factor strictly less than 1 − 1/e for the algorithm which

gives a query to a highest bidder, breaking ties by giving it to the bidder with most left-over

money. This example has only three values for the bids - 0, a or 2a, for some small a > 0.

Thus, in the case of arbitrary bids, the strategy of bucketing close enough bids (say within

a factor of 2) together, and running such an algorithm does not work.

There are N bidders numbered 1, . . . , N , each with budget 1. We get the following

query sequence and bidding pattern. Each bid is either 0, a or 2a. Let m = 1/a. We will

take a→ 0.

The queries arrive in N rounds. In each round m queries are made. The N rounds are

28

PHASE 1

PHASE 2

Bin N Bin 0.5N Bin 0.1N Bin 1

Figure 2: Counterexample 1: The bidders are ordered from right to left. The area inside the
dark outline is the amount of money generated by the algorithm. The optimum allocation
gets an amount equal to the whole rectangle.

divided into 3 phases.

Phase 1 (1 ≤ i ≤ 0.4N): In the first round m queries are made, for which the bidders

0.1N + 1 to N bid with a bid of a, and bidders 1 to 0.1N do not bid. Similarly, for

1 ≤ i ≤ 0.4N , in the ith round m queries are made, for which bidders 0.1N + i to N bid

with a bid of a, and for which bidders 1 to 0.1N + i− 1 do not bid.

For 1 ≤ i ≤ 0.4N , the algorithm will distribute the queries of the ith round equally

between bidders 0.1N + i to N . This will give the partial allocation as shown in Figure 2.

Phase 2 (0.4N + 1 ≤ i ≤ 0.5N): In the (0.4N + 1)th round m queries are made,

for which bidder 1 bids a, and bidders 0.5N to N bid 2a (the rest of the bidders bid 0).

Similarly, for 0.4N + 1 ≤ i ≤ 0.5N , in the ith round m queries are made, for which bidder

i− 0.4N bids a, and bidders 0.5N to N bid 2a.

For 0.4N + 1 ≤ i ≤ 0.5N , the algorithm will distribute the queries of round i equally

between bidders 0.5N to N .

At this point during the algorithm, bidders 0.5N + 1 to N have spent all their money.

Phase 3 (0.5N + 1 ≤ i ≤ N): m queries enter in round i, for which only bidder i bids

at a, and the other bidders do not bid.

29

The algorithm has to throw away these queries, since bidders 0.5N+1 to N have already

spent their money.

The optimum allocation, on the other hand, is to allocate the queries in round i as

follows:

• For 1 ≤ i ≤ 0.4N , allocate all queries in round i to bidder 0.1N + i.

• For 0.4N + 1 ≤ i ≤ 0.5N , allocate all queries in round i to bidder i− 0.4N .

• For 0.5N + 1 ≤ i ≤ N , allocate all queries in round i to bidder i.

Clearly, OPT makes N amount of money. A calculation shows that the algorithm makes

0.62N amount of money. Thus the factor is strictly less than 1 − 1/e.

We can modify the above example to allow bids of 0, a and κa, for any κ > 1, such that

the algorithm performs strictly worse that 1 − 1/e.

As κ→ ∞, the factor tends to 1−1/e, and as κ→ 1, the factor tends to 1/2. Of course,

if κ = 1, then this reduces to the original model of [32], and the factor is 1 − 1/e.

2.12 Chapter Appendix: Counterexample 2

3N/4
2

N/2

N

1

1

2

N 1

0

Figure 3: Counterexample 2: The rows N/2 to 3N/4 have a budget of 1. All other rows
have a budget of 2.

The example consists of an N ×N upper-triangular matrix, as shown in Figure 3. The

columns represent the queries and are ordered from right to left. The rows represent the

bidders. The entry in the ith row and jth column is the bid of bidder i for query j. The

30

entries in the upper triangle in rows 1 to N/2, and rows 3N/4 to N are all 2. These bidders

have a budget of 2. The entries in the upper triangle in rows N/2 + 1 to 3N/4 are all 1.

These bidders have a budget of 1.

The optimum allocation is along the diagonal, with column i allocated to row i. This

generates 2N −N/4 amount of money.

It can be proved that the algorithm gets 1.1N amount of money, which is strictly less

than 1 − 1/e of the optimum.

31

CHAPTER III

COMBINATORIAL AUCTIONS UNDER GENERAL

SUBMODULAR UTILITIES

In this chapter we study a generalization of the problem considered in Chapter 2, although

in the offline setting. Considering the advertisers of Chapter 2, we note that their utility

functions (as a function of the set of queries they get allocated) are additive with an up-

per bound of their budget. Such a utility function is immediately seen to be monotone

and submodular. Here we consider the generalization of the allocation problem to general

submodular utilities.

We consider the following allocation problem arising in the setting of combinatorial

auctions: a set of goods is to be allocated to a set of players so as to maximize the sum of

the utilities of the players (i.e., the social welfare). The utility of each player is a monotone

submodular function. We prove that there is no polynomial time approximation algorithm

which approximates the maximum social welfare by a factor better than 1 − 1/e ' 0.632,

unless P= NP.

One motivation for studying this problem comes from the attempt to design a truth-

revealing auction under this setting. If we could obtain the optimal allocation then the

Vickrey-Clarke-Groves mechanism would immediately give a truth-revealing auction. How-

ever, by the results of this chapter, we cannot find the optimum or even 1 − 1/e of the

optimum in polynomial time (unless P=NP). This leads to an even more interesting ques-

tion which we leave open - how to design polynomial time truth-revealing auctions which

well-approximate the social optimum.

3.1 Introduction: Optimization in Combinatorial Auctions

Auctions are becoming a very popular method of transaction, from auction services on

the Internet (e.g. eBay), to large scale transactions (e.g. the FCC auctions of spectrum

32

licenses). Recently, there has been a lot of interest in auctions with complex bidding and

allocation possibilities that can capture various dependencies between a large number of

items being sold. A very general model which can express such complex scenarios is that

of combinatorial auctions.

In a combinatorial auction, a set of goods is to be sold to a set of players. A utility

function is associated with each player specifying the happiness of the player for each subset

of the goods. One natural objective for the auctioneer is to maximize the economic efficiency

of the auction, which is the sum of the utilities of all the players. Formally, we have a set M

of m indivisible goods and n players. Player i has a monotone utility function vi : 2M → R.

The allocation problem is to find a partition (S1, . . . , Sn) of the set of goods among the n

players that maximizes the total utility or social welfare,
∑

i vi(Si). Such an allocation is

called an optimal allocation.

We are interested in the computational complexity of the allocation problem. We would

like an algorithm which runs in time polynomial in n and m. However, one can see that

the input representation is itself exponential in m for general utility functions. Even if the

utility functions have a succinct representation (polynomial in n and m), the allocation

problem may be NP-hard [43, 3]. In the absence of a succinct representation, it is typically

assumed that the auctioneer has oracle access to the players’ utilities and that he can ask

queries to the players. There are 2 types of queries that have been considered. In a value

query the auctioneer specifies a subset S ⊆ M and asks player i for the value vi(S). In a

demand query, the auctioneer presents a set of prices for the goods and asks a player for

the set S of goods that maximizes his profit (which is his utility for S minus the sum of

the prices of the goods in S). Note that if we have a succinct representation of the utility

functions then we can always simulate value queries. Even with queries the problem remains

hard. Hence we are interested in approximation algorithms and inapproximability results.

A natural class of utility functions that has been studied extensively in the literature is

the class of submodular functions. A function v is submodular if for any 2 sets of goods

S ⊆ T , the marginal contribution of a good x 6∈ T , is bigger when added to S than when

added to T , i.e., v(S ∪ x) − v(S) ≥ v(T ∪ x) − v(T). Submodularity can be seen as the

33

discrete analog of concavity and arises naturally in economic settings since it captures the

property that marginal utilities are decreasing as we allocate more goods to a player. It is

known that the class of submodular utility functions contains the functions with the Gross

Substitutes property [24], and also that submodular functions are complement-free.

3.1.1 Previous Work

For general utility functions, the allocation problem is NP-hard. Approximation algorithms

have been obtained that achieve factors of O(1√
m

) ([44, 10], using demand queries) and

O(
√

log m
m) ([10], using value queries). It has also been shown that we cannot have polynomial

time algorithms with a factor better than O(log m
m) ([10], using value queries) or better than

O(1
m1/2−ε) ([44, 70], even for single minded bidders). Even if we allow demand queries,

exponential communication is required to achieve any approximation guarantee better than

O(1
m1/2−ε) [58]. For single-minded bidders, as well as for other classes of utility functions,

approximation algorithms have been obtained, among others, in [4, 9, 44]. For more results

on the allocation problem see [13].

For the class of submodular utility functions, the allocation problem is still NP-hard.

The following positive results are known: In [43] it was shown that a simple greedy algorithm

using value queries achieves an approximation ratio of 1/2. An improved ratio of 1 − 1/e

was obtained in [3] for a natural special case of submodular functions, the class of additive

valuations with budget constraints. Very recently, an approximation algorithm with ratio

1 − 1/e was obtained in [15] using demand queries in the case when all players have the

same submodular utility function. As for negative results, it was shown in [58] that an

exponential amount of communication is needed to achieve an approximation ratio better

than 1−O(1
m). In [15] it was shown that there cannot be any polynomial time algorithm in

the succinct representation or the value query model with a ratio better than 50/51, unless

P= NP. In [15] a hardness result of 1 − 1/e is proved for the class of XOS utilities. This

class strictly contains the class of submodular utilities (for a definition of the class XOS

see [43]).

34

3.1.2 Our Result

We show that there is no polynomial time approximation algorithm for the allocation prob-

lem with monotone submodular utility functions achieving a ratio better than 1−1/e, unless

P= NP. Our result is true in the succinct representation model, and hence also in the value

query model. The result does not hold if the algorithm is allowed to use demand queries.

A hardness result of 1 − 1/e for the larger class XOS is obtained in [15] by a gadget

reduction from the maximum k-coverage problem. Similar reductions do not seem to work

for submodular functions. Instead we provide a reduction from multi-prover proof systems

for MAX-3-COLORING. Our result is based on the reduction of Feige [16] for the hardness

of set-cover and maximum k-coverage. The results of [16] use a reduction from a multi-

prover proof system for MAX-3-SAT. This is not sufficient to give a hardness result for the

allocation problem, as explained in Section 3.3. Instead, we use a proof system for MAX-3-

COLORING. We then define an instance of the allocation problem and show that the new

proof system enables all players to achieve maximum possible utility in the yes case, and

ensure that in the no case, players achieve only (1 − 1/e) of the maximum utility on the

average. The crucial property of the new proof system is that when a graph is 3-colorable,

there are in fact many different proofs (i.e. colorings) that make the verifier accept. By

introducing a correspondence between colorings and players of the allocation instance, we

obtain the desired result.

We note that we do not address the question of obtaining truthful mechanisms for

the allocation problem. For some classes of functions, incentive compatible mechanisms

have been obtained that also achieve reasonable approximations to the allocation problem

(e.g. [44, 4, 9]). For submodular utilities, the only truthful mechanism known is obtained

in [15]. This achieves an O(1√
m

)-approximation. Obtaining a truthful mechanism with a

better approximation guarantee seems to be a challenging open problem.

The rest of the chapter is organized as follows: In the next section we define the model

formally and introduce some notation. In Section 3.3 we first present a weaker hardness

result of 3/4 using a 2-prover proof system to illustrate the ideas in our proof. In Section 3.4

we present the hardness of 1 − 1/e based on the k-prover proof system of [16].

35

3.2 Model, Definitions and Notation

We assume we have a set of players N = {1, ..., n} and a set of goods M = {1, ...,m} to

be allocated to the players. Each player has a utility function vi, where for a set S ⊆ M ,

vi(S) is the utility that player i derives if he obtains the set S. We make the standard

assumptions that vi is monotone and that vi(∅) = 0.

Definition 1 A function v : 2M → R is submodular if for any sets S ⊂ T and any

x ∈M\T :

v(S ∪ {x}) − v(S) ≥ v(T ∪ {x}) − v(T)

An equivalent definition of submodular functions is that for any sets S, T : v(S ∪ T) +

v(S ∩ T) ≤ v(S) + v(T).

An allocation of M is a partition of the goods (S1, ..., Sn) such that
⋃

i Si = M and Si ∩

Sj = ∅. The allocation problem we will consider is: Given a monotone, submodular utility

function vi for every player i, find an allocation of the goods (S1, ..., Sn) that maximizes

∑

i vi(Si). To clarify how the input is accessed, we assume that either the utility functions

have a succinct representation1, or that the auctioneer can ask value queries to the players.

In a value query, the auctioneer specifies a subset S to a player i and the player responds

with vi(S). In this case the auctioneer is allowed to ask at most a polynomial number of

value queries.

Since the allocation problem is NP-hard, we are interested in polynomial time approx-

imation algorithms: an algorithm achieves an approximation ratio of α ≤ 1 if for every

instance of the problem, the algorithm returns an allocation with social welfare at least α

times the optimal social welfare.

3.3 A Hardness of 3/4

We first present a hardness result of 3/4. The reduction of this section is based on a 2-prover

proof system for MAX-3-COLORING, which is analogous to the proof system of [49] for

1By this we mean a representation of size polynomial in n and m, such that given S and i, the auctioneer
can compute vi(S) in time polynomial in the size of the representation. For example, additive valuations
with budget limits [43] have a succinct representation.

36

MAX-3-SAT. We remark that this proof is provided here only to illustrate the main ideas

of our result and to give some intuition. In the next Section we will see that by moving to

a k-prover proof system we can obtain hardness of 1 − 1/e.

In the MAX-3-COLORING problem, we are given a graph G and we are asked to color

the vertices of G with 3 different colors so as to maximize the number of properly colored

edges, where an edge is properly colored if its vertices receive different colors. Given a graph

G, let OPT (G) denote the maximum fraction of edges that can be properly colored by any

3-coloring of the vertices. We will start with a gap version of MAX-3-COLORING: Given

a constant c, we denote by GAP-MAX-3-COLORING(c) the promise problem in which

the yes instances are the graphs with OPT (G) = 1 and the no instances are graphs with

OPT (G) ≤ c. By the PCP theorem [6], and by [59], we know:

Proposition 17 There is a constant c < 1 such that GAP-MAX-3-COLORING(c) is NP-

hard, i.e., it is NP-hard to distinguish whether

YES Case: OPT (G) = 1, and

NO Case: OPT (G) ≤ c.

Let G be an instance of GAP-MAX-3-COLORING(c). The first step in our proof is a

reduction to the Label Cover problem. A label cover instance L consists of a graph G′, a set

of labels Λ and a binary relation πe ⊆ Λ × Λ for every edge e. The relation πe can be seen

as a constraint on the labels of the vertices of e. An assignment of one label to each vertex

is called a labeling. Given a labeling, we will say that the constraint of an edge e = (u, v) is

satisfied if (l(u), l(v)) ∈ πe, where l(u), l(v) are the labels of u, v respectively. The goal is to

find a labeling of the vertices that satisfies the maximum fraction of edges of G′, denoted

by OPT (L).

The instance L produced from G is the following: G′ has one vertex for every edge (u, v)

of G. The vertices (u1, v1) and (u2, v2) of G′ are adjacent if and only if the edges (u1, v1) and

(u2, v2) have one common vertex in G. Each vertex (u, v) of G′ has 6 labels corresponding

to the 6 different proper colorings of (u, v) using 3 colors. For an edge between (u1, v1) and

(u2, v2) in G′, the corresponding constraint is satisfied if the labels of (u1, v1) and (u2, v2)

37

assign the same color to their common vertex. From Proposition 17 it follows easily that:

Proposition 18 It is NP-hard to distinguish between:

YES Case: OPT (L) = 1, and

NO Case: OPT (L) ≤ c′, for some constant c′ < 1

We will say that 2 labelings L1, L2 are disjoint if every vertex of G′ receives a different

label in L1 and L2. Note that in the YES case, there are in fact 6 disjoint labelings that

satisfy all the constraints.

The Label Cover instance L is essentially a description of a 2-prover 1-round proof

system for MAX-3-COLORING with completeness parameter equal to 1 and soundness

parameter equal to c′ (see [16, 49] for more on these proof systems).

Given L, we will now define a new label cover instance L′, the hardness of which will

imply hardness of the allocation problem. Going from instance L to L′ is equivalent to

applying the parallel repetition theorem of Raz [63] to the 2-prover proof system for MAX-

3-COLORING.

We will denote by H the graph in the new label cover instance L′. A vertex of H is now

an ordered tuple of s vertices of G′, i.e., it is an ordered tuple of s edges of G, where s is a

constant to be determined later . We will refer to the vertices of H as nodes to distinguish

them from the vertices of G. For 2 nodes of H, u = (e1, ..., es) and v = (e′1, ..., e
′
s), there is

an edge between u and v if and only if for every i ∈ [s], the edges ei and e′i have exactly

one common vertex (where [s] = {1, ..., s}). We will refer to these s common vertices as

the shared vertices of u and v. The set of labels of a node v = (e1, ..., es) is the set of 6s

proper colorings of its edges (Λ = [6s]). The constraints can be defined analogously to the

constraints in L. In particular, for an edge e = (u, v) of H, a labeling satisfies the constraint

of edge e if the labels of u and v induce the same coloring of their shared vertices.

By Proposition 18 and Raz’s parallel repetition theorem [63], we have:

Proposition 19 It is NP-hard to distinguish between:

YES Case: OPT (L′) = 1, and

NO Case: OPT (L′) ≤ 2−γs, for some constant γ > 0.

38

Remark 1 In fact, in the YES case, there are 6s disjoint labelings that satisfy all the

constraints.

This property will be used crucially in the remaining section. The known reductions from

GAP-MAX-3-SAT to label cover, implicit in [16, 49], are not sufficient to guarantee that

there is more than one labeling satisfying all the edges. This was our motivation for using

GAP-MAX-3-COLORING instead.

The final step of the proof is to define an instance of the allocation problem from L′.

For that we need the following definition:

Definition 2 A Partition System P (U, r, h, t) consists of a universe U of r elements, and

t pairs of sets (A1, Ā1), ...(At, Āt), (Ai ⊂ U) with the property that any collection of h′ ≤ h

sets without a complementary pair Ai, Āi covers at most (1 − 1/2h′

)r elements.

If U = {0, 1}t, we can construct a partition system P (U, r, h, t) with r = 2h and h = t.

For i = 1, ..., t the pair (Ai, Āi) will be the partition of U according to the value of each

element in the i-th coordinate. In this case the sets Ai, Āi have cardinality r/2.

For every edge e in the label cover instance L′, we construct a partition system P e(U e, r, h, t =

h = 3s) on a separate subuniverse U e as described above. Call the partitions (Ae
1, Ā

e
1),...., (A

e
t , Ā

e
t).

Recall that for every edge e = (u, v), there are 3s different colorings of the s shared

vertices of u and v. Assuming some arbitrary ordering of these colorings, we will say that

the pair (Ae
i , Ā

e
i) of P e corresponds to the ith coloring of the shared vertices.

We define a set system on the whole universe
⋃

U e. For every node v and every label i,

we have a set Sv,i. For every edge e incident on v, Sv,i contains one set from every partition

system P e, as follows. Consider an edge e = (v, w). Then Ae
j contributes to all the sets Sv,i

such that label i in node v induces the jth coloring of the shared vertices between v and w.

Similarly Āe
j contributes to all the Sw,i such that label i in node w gives the jth coloring

to the shared vertices (the choice of assigning Ae
j to the Sv,i’s and Āe

j to the Sw,i’s is made

arbitrarily for each edge (v, w)). Thus

Sv,i =
⋃

(v,w)∈E

B
(v,w)
j

39

where E is the set of edges of H, B
(v,w)
j is one of A

(v,w)
j or Āj

(v,w)
, and j is the coloring

that label i gives to the shared vertices of (v, w).

We are now ready to define our instance I of the allocation problem. There are n = 6s

players, all having the same utility function. The goods are the sets Sv,i for each node v

and label i. If a player is allocated a collection of goods Sv1,i1 ...Svl,il , then his utility is

|
l
⋃

j=1

Svj ,ij |

It is easy to verify that this is a monotone and submodular utility function. Let OPT (I)

be the optimal solution to the instance I.

Lemma 20 If OPT (L′) = 1, then OPT (I) = nr|E|.

Proof : From Remark 1, there are n = 6s disjoint labelings that satisfy all the constraints

of L′. Consider the ith such labeling. This defines an allocation to the ith player as follows:

we allocate the goods Sv,l(v) for each node v, to player i, where l(v) is the label of v in this

ith labeling. Since the labeling satisfies all the edges, the corresponding sets Sv,l(v) cover

all the subuniverses. To see this, fix an edge e = (v, w). The labeling satisfies e, hence

the labels of v and w induce the same coloring of the shared vertices between v and w,

and therefore they both correspond to the same partition of P e, say (Ae
j , Ā

e
j). Thus U e is

covered by the sets Sv,l(v) and Sw,l(w) and the utility of player i is r|E|. We can find such

an allocation for every player, since the labelings are disjoint. �

For the No case, consider the following simple allocation: each player gets exactly one

set from every node. Hence each player i defines a labeling, which cannot satisfy more

than 2−γs fraction of the edges. For the rest of the edges, the 2 sets of player i come from

different partitions and hence can cover at most 3/4 of the subuniverse. This shows that

the total utility of this simple allocation is at most 3/4 of that in the Yes case. In fact, we

will show that this is true for any allocation.

Lemma 21 If OPT (L′) ≤ 2−γs, then OPT (I) ≤ (3/4 + ε)nr|E|, for some small constant

ε > 0 that depends on s.

40

Proof : Consider an allocation of goods to the players. If player i receives sets S1, ..., Sl,

then his utility pi can be decomposed as pi =
∑

e pi,e, where

pi,e = |(∪jSj) ∩ U e|

Fix an edge (u, v). Let mi be the number of goods of the type Su,j for some j. Let m′
i

be the number of goods of the type Sv,j for some j, and let xi = mi + m′
i. Let N be the

set of players. For the edge e = (u, v), let N e
1 be the set of players whose sets cover the

subuniverse U e and N e
2 = N\N e

1 . Let ne
1 = |N e

1 | and ne
2 = |N e

2 |. Note that for i ∈ N e
1 , the

contribution of the xi sets to pi,e is r. For i ∈ N e
2 , it follows that the contribution of the

xi sets to pi,e is at most (1 − 1
2xi)r by the properties of the partition system of this edge2.

Hence the total utility derived by the players from the subuniverse U e is

∑

i

pi,e ≤
∑

i∈Ne
1

r +
∑

i∈Ne
2

(1 − 1
2xi)r

In the YES case, the total utility derived from the subuniverse U e was nr. Hence the

loss in the total utility derived from U e is

∆e ≥ nr −
∑

i∈Ne
1

r −
∑

i∈Ne
2

(1 − 1
2xi)r = r

∑

i∈Ne
2

1

2xi

By the convexity of the function 2−x, we have that

∆e ≥ r ne
2 2

−
∑

i∈Ne
2

xi

ne
2

But note that
∑

i∈Ne
1

≥ 2ne
1, since players in N e

1 cover U e and they need at least 2 sets to

do this. Therefore
∑

i∈Ne
2

xi ≤ 2ne
2 and ∆e ≥ r ne

2/4. The total loss is

∑

e

∆e ≥ r/4
∑

e

ne
2

Hence it suffices to prove
∑

e n
e
2 ≥ (1 − ε)n|E|, or that

∑

e n
e
1 ≤ εn|E|.

For an edge (u, v), let N e,≤s
1 be the set of players from N e

1 who have at most s goods of

the type Su,j or Sv,j . Let N e,>s
1 = N e

1\N e,≤s
1 .

2To use the property of P
e, we need to ensure that xi ≤ 3s. However since i ∈ N

e
2 , even if xi > 3s, the

distinct sets A
e
j or Āe

j that he has received through his xi goods are all from different partitions of Ue and

hence they can be at most 3s.

41

∑

e

ne
1 =

∑

e

|N e,>s
1 | + |N e,≤s

1 | ≤ 2n|E|
s

+
∑

e

|N e,≤s
1 |

where the inequality follows from the fact that for the edge e we cannot have more than

2n/s players receiving more than s goods from u and v.

Claim 22
∑

e |N
e,≤s
1 | < δn|E|, where δ ≤ c′s2−γs, for some constant c′.

Proof : Suppose that the sum is δn|E| for some δ ≤ 1. Then it can be easily seen that

for at least δ|E|/2 edges, |N e,≤s
1 | ≥ δn/2. Call these edges good edges.

Pick a player i at random. For every node, consider the set of goods assigned to player

i from this node, and pick one at random. Assign the corresponding label to this node. If

player i has not been assigned any good from some node, then assign an arbitrary label to

this node. This defines a labeling. We look at the expected number of satisfied edges.

For every good edge e = (u, v), the probability that e is satisfied is at least δ/2s2, since

e has at at least δn/2 players that have covered U e with at most s goods. Since there are

at least δ|E|/2 good edges, the expected number of satisfied edges is at least δ2|E|/4s2.

This means that there exists a labeling that satisfies at least δ2|E|/4s2 edges. But, since

OPT (L′) ≤ 2−γs, we get δ ≤ c′s2−γs, for some constant c′. �

We finally have
∑

e

ne
1 ≤ 2n|E|

s
+ δn|E| ≤ εn|E|

where ε is some small constant depending on s. Therefore the total loss is

∑

e

∆e ≥
1

4
(1 − ε)nr|E|

which implies that OPT (I) ≤ (3/4 + ε)nr|E|. �

Given any ε > 0, we can choose s large enough so that Lemma 21 holds. From Lemmas 20

and 21, we have:

Theorem 23 For any ε > 0, there is no polynomial time (3/4+ε)-approximation algorithm

for the allocation problem with monotone submodular utilities, unless P = NP.

42

3.4 A Hardness of 1-1/e

In this section we obtain a stronger result by using a k-prover proof system (i.e., a label

cover problem on hypergraphs) for MAX-3-COLORING. The new proof system is obtained

in a similar manner as the proof system for MAX-3-SAT by Feige [16].

Let G be an instance of GAP-MAX-3-COLORING(c). From the graph G, we will

define a new label cover instance. The label cover instance is now defined on a hypergraph

H instead of a graph. Let s and k be constants to be determined later. The hypergraph

H consists of k layers of vertices, V1, ..., Vk. To every layer Vi, we associate a binary string

Ci ∈ {0, 1}s of weight3 s/2, with the property that the Hamming distance between any 2

strings is at least s/3. One can obtain such a collection of strings by using the codewords

of an appropriate binary code (see [16] for more details). Notice that each Ci defines a

partition of the indices {1, ..., s} into 2 sets Ai, Bi, each of cardinality s/2, where an index

l belongs to Ai (resp. Bi) if the l-th bit of Ci is 1 (resp. 0).

We will refer to the vertices of H as nodes. One difference from Section 3.3 is that now

a node of H will contain both edges and vertices of G. To be more specific, a node v in Vi

is an ordered s-tuple v = (v1, ..., vs), where for l ∈ {1, ..., s}, if l ∈ Ai, then vl is an edge of

G, otherwise it is a vertex of G. Clearly there are at most nO(s) nodes in each layer Vi and

since k and s are constants, the size of H is polynomial in the size of G.

A label of a node v in Vi will be a proper coloring of the s/2 edges corresponding to

v and a coloring of the s/2 vertices corresponding to v. Hence there are 6s/23s/2 distinct

labels. For technical reasons we make 6s/2 copies of each label so that in total we have 6s

labels in every node.

Edges of the hypergraph H have cardinality k and contain one node from each layer.

For every ordered tuple of s edges (e1, ..., es), of G and a choice of s vertices (u1, ..., us),

one from each ei, we will have a hyperedge (v1, ..., vk) in H, with vi ∈ Vi if and only if the

nodes v1, ..., vk satisfy the following:

1. vl
i = el if l ∈ Ai.

3The weight of a binary string is the number of 1’s in it.

43

2. vl
i = ul if l ∈ Bi.

We will call the vertices u1, ..., us the shared vertices of the hyperedge (v1, ..., vk). Given a

labeling to the nodes of H, let (l(v1), ..., l(vk)) be the labels of the hyperedge e = (v1, ..., vk).

We will say that e is weakly satisfied if there exists a pair of nodes vi, vj that agree on

the coloring of the shared vertices as induced by their labeling. We will call the pair

of labels (l(vi), l(vj)) a consistent pair with respect to the hyperedge e and the labeling.

We will say that a hyperedge is strongly satisfied if for every pair vi, vj , (l(vi), l(vj)) is

consistent. This completes the description of the label cover instance L. Let OPT weak(L)

(resp. OPT strong(L)) be the maximum fraction of hyperedges that can be weakly (resp.

strongly) satisfied by any labeling. The following lemma is essentially Lemma 5 in [16].

Lemma 24 It is NP-hard to distinguish between:

YES Case: OPT strong(L) = 1

NO Case: OPTweak(L) ≤ k22−γs, for some constant γ > 0.

Remark 2 In the YES Case of Lemma 24, there are 6s disjoint labelings that strongly

satisfy all the hyperedges.

This follows from a similar argument as for Remark 1.

To define the instance of the allocation problem, we will first construct a set system as

in Section 3.3. For this we will need a more general notion of a partition system:

Lemma 25 ([16]) Let U = [k]n. We can construct a partition system on U of the form

P = {(A1
1, ..., A

1
k), (A

2
1, ..., A

2
k), ..., (A

n
1 , ..., A

n
k)}, with the properties that

1. For i = 1, ..., n, ∪Ai
j = U .

2. Any collection of l ≤ n sets, one from each partition, covers exactly (1−(1−1/k)l)|U |

elements.

For every hyperedge e, we will have a separate subuniverse U e. Let n = 6s be the number

of labels of each node. For each hyperedge e we construct a partition system P e on the sub-

universe U e as in Lemma 25. Let P e = {(Ae
1,1, ..., A

e
1,k), (A

e
2,1, ..., A

e
2,k), ..., (A

e
n,1, ..., A

e
n,k)}.

44

Notice that for a hyperedge e = (v1, ..., vk), we can always find n disjoint labelings of the

nodes v1, ..., vk that strongly satisfy the hyperedge e. This follows from the fact that there

are 6s proper colorings of an s-tuple of edges of G and for each such coloring we can pick

a label from each node vi that respects this coloring. Due to the multiple copies of each

distinct label, we in fact have more than n labelings that strongly satisfy e. We arbitrarily

pick n of these disjoint labelings (note that any other labeling that strongly satisfies e is

”isomorphic” to one of the n labelings picked). Assuming some arbitrary ordering among

the n labelings, we associate the jth partition of P e with the jth labeling of e, for every e.

If (lj1, ..., l
j
k) is the jth labeling of e and (Ae

j,1, ..., A
e
j,k) is the jth partition of P e we will also

say that the set Ae
j,i corresponds to the label lji of vi.

We can now define our set system. We will have one set Sv,i for every node v and label

i. Let v ∈ Vl for some l ∈ [k]. For an edge e that contains node v, suppose label i is in the

jth labeling of e. We will then include the set Ae
j,l from the jth partition in Sv,i. Hence

Sv,i is the following union of sets:

Sv,i =
⋃

e:v∼e

Ae
je(i),l

where je(i) is the labeling of edge e that contains i.

As in Section 3.3, the instance of the allocation problem contains n = 6s players with

the same submodular utility function. The goods are the sets Sv,i and the utility of a player

for a collection of sets is the cardinality of their union. Let I denote the instance of the

allocation problem and let OPT (I) be the optimal solution of I. Let r = |U e| and let E be

the set of the hyperedges of H.

Lemma 26 If OPT strong(L) = 1, then OPT (I) = nr|E|.

Proof : Since OPT strong(L) = 1, consider a labeling that strongly satisfies all the

hyperedges. By the discussion above, we can always pick a labeling such that when restricted

to the nodes of an edge, it corresponds to one of the n disjoint labelings of that edge. Let

l(v) be the label of each node. Pick a player and allocate to him all the sets {Sv,l(v)}. We

claim that the sets cover the subuniverse U e for every edge e and the utility of the player is

45

therefore r|E|. To see this, fix an edge e = (v1, ..., vk). Since the labeling strongly satisfies

the edge, it corresponds to some partition of the partition system P e, say the jth partition.

Hence for i = 1, ..., k, the set Ae
j,i which corresponds to label l(vi) is contained in Svi,l(vi).

Thus the player covers the entire subuniverse U e with the sets Svi,l(vi). Since this is true

for every edge, his utility is exactly r|E|. By Remark 2 we can repeat the above for all the

6s players.

�

Lemma 27 If OPTweak(L) ≤ k22−γs, then OPT (I) ≤ (1 − 1/e + ε)nr|E|, where ε > 0 is

some small constant depending on s and k.

Proof : Consider an allocation of the goods to the players, i.e., an allocation of the labels

of each node. We decompose the utility pi of player i as: pi =
∑

pi,e, where pi,e is as in

Section 3.3. For a node v and a player i, let mv
i be the number of sets of the type Sv,j that

player i has received. Fix an edge e = (v1, ..., vk). Let xe
i =

∑k
l=1m

vl
i . Define the set of

players:

N e
1 = {i : ∃vj , vl such that i has a pair of consistent labels for these 2 nodes}

Let N e
2 = N\N e

1 , and let ne
1 = |N e

1 |, ne
2 = |N e

2 |. Trivially, for i ∈ N e
1 , the contribution of the

xe
i sets to pi,e is at most r. For i ∈ N e

2 , the xe
i sets of the type Svl,j do not contain even one

pair of labels which are consistent for some pair of nodes in e. For each set Svl,j that player

i has received, let Ae
t,l be the set from the partition system P e contained in Svl,j . It follows

that the sets Ae
t,l corresponding to the labels of player i come from different partitions of

U e. Therefore, by Lemma 25, we get that the sets Svl,j cover exactly 1− (1− 1
k)xe

i fraction

of the subuniverse U e. Hence the total utility derived by the players from the subuniverse

U e is
∑

i

pi,e ≤
∑

i∈Ne
1

r +
∑

i∈Ne
2

(

1 − (1 − 1
k)xe

i
)

r

The loss in the total utility compared to the YES case is:

∆e ≥ nr −
∑

i∈Ne
1

r −
∑

i∈Ne
2

(1 − (1 − 1
k)xe

i)r = r
∑

i∈Ne
2

(1 − 1

k
)xe

i

46

By the convexity of the function (1 − 1
k)x, we have that

∆e ≥ rne
2(1 − 1

k
)

∑

i∈Ne
2

xe
i

ne
2 (5)

Let N e,≤k2

1 be the set of players from N e
1 who have at most k2 goods of the type Svl,j .

Let N e,>k2

1 = N e
1\N e,≤k2

1 .

∑

e

ne
1 =

∑

e

|N e,>k2

1 | + |N e,≤k2

1 | ≤ kn|E|
k2

+
∑

e

|N e,≤k2

1 |

where the inequality follows from the fact that for the edge e we cannot have more than

n/k players receiving more than k2 goods from the nodes v1, v2, ..., vk.

Claim 28
∑

e |N
e,≤k2

1 | < δn|E|, for δ ≤ ck32−γs, for some constant c.

Proof : The proof is similar to that of Claim 6. If we assume the contrary to the

statement then we can find a labeling which weakly satisfies more than k22−γs fraction of

the edges, a contradiction. �

Hence
∑

e n
e
1 ≤ n|E|

k +δn|E|, which implies
∑

e n
e
2 ≥ (1−β)n|E|, for some small constant

β > 0. In Section 3.3, this sufficed to obtain the hardness result of 3/4, because
∑

i∈Ne
2

xe
i ≤

2ne
2. Here a similar argument would need that

∑

i∈Ne
2

xe
i ≤ kne

2, which may not be true for

every edge because players in N e
1 are only weakly satisfying e. However, we will see that

for most edges,
∑

i∈Ne
2

xe
i is still small.

Since
∑

e n
e
1 ≤ βn|E|, it follows that for at least a 1 − √

β fraction of the edges, ne
2 ≥

(1 −√
β)n. Call these edges good. For each good edge e:

∑

i∈Ne
2

xi

ne
2

≤ kr

(1 −√
β)n

≤ k(1 + β′)

for some small constant β ′ > 0. From (5), we get that for every good edge the loss ∆e ≥

rne
2(1 − 1

k)k(1+β′) ≥ rne
2(1 − β′′)1

e , for some small constant β ′′ > 0. Summing the loss over

all the good edges, we get that the total loss in utility is at least

r
∑

e:eis good

(1 −
√

β)n(1 − β′′)1
e ≥ n

e
r|E|(1 −

√

β)2(1 − β′′) ≥ 1

e
nr|E|(1 − ε)

where ε > 0 is some small constant. Hence the total utility is at most (1 − 1
e + ε)nr|E| �

47

Given any ε > 0, we can choose large enough constants s, k so that Lemma 27 holds.

Hence we get:

Theorem 29 For any ε > 0, there is no polynomial time (1− 1
e+ε)-approximation algorithm

for the allocation problem with monotone submodular utilities, unless P=NP.

3.5 Conclusion and Open Problems

In this chapter we proved a (1− 1/e ' 0.632)-hardness of approximation in the value query

model. Thus the known results for the allocation problem with submodular utilities can be

summarized as in Table 1.

Table 1: Approximability results for submodular utilities

Algorithms Hardness

Value Queries 1/2 [43] 1 − 1/e

Demand Queries 1 − 1/e [15] 1 −O(1/m) [58]

There is a gap between the upper and lower bounds in both the models. It would be

interesting to narrow these gaps. It will also be interesting to obtain truthful mechanisms

with a good approximation guarantee for the allocation problem.

48

CHAPTER IV

THE USE OF RANDOMIZATION IN AUCTION DESIGN

4.1 Introduction: Truth-revealing Auctions

In this chapter we will introduce the notion of a truth-revealing auction. A truth-revealing

(or strategy-proof) auction is one in which bidders, upon knowing the rules of the auction,

have no incentive to misreport their utility for the item or items being sold. One (trivial)

way to design a truth-revealing auction is to declare up front that all the goods will be sold

to one special player for free. Clearly no bidder can change the outcome (and hence his

profit) by misreporting his utility. Of course, one wants to design auctions so that not only

is the auction truth-revealing, but also that it results in a desirable outcome, e.g., one which

maximizes total utility of the bidders, or one which maximizes the profit of the auctioneer.

Classical auction design techniques restrict the auctioneer to designing deterministic

auctions. However, there is not much freedom of choice when it comes to designing de-

terministic truth-revealing auctions. It is a classical result (folk theorem) that the only

deterministic truth-revealing auctions are those which are bid-independent, i.e., the price

offered to a bidder is independent of his own bid (but may depend on the other bidders’

bids), and the goods are sold to that bidder whose bid is at least the price offered to him.

This freedom of design is further cut down when one wants to design deterministic

truth-revealing auctions which also maximize the total utility of the outcome. Here, it is

known that the famous Vickrey-Clarke-Groves mechanism (which, in the single-item case,

is simply the second-price auction) is the only auction with both these properties.

Very recently, researchers have started looking at the role randomization can play in

designing better auctions. Randomization has yielded extremely efficient algorithms for

many optimization problems in computer science, in several cases where no deterministic

algorithms were known. One may expect such a powerful role even in auction design. In

a line of very interesting results, [22, 17, 21] prove that randomization indeed provides

49

truth-revealing auctions which maximize auctioneer profit much better than deterministic

auctions can. They demonstrate this in one very important case - that of unlimited supply,

or what is called digital goods.

Of course the notion of truth-revelation in randomized auctions is different from that

in deterministic auctions. The simplest notion in the randomized case is truth-revelation

in expectation - i.e. truth-revealing against risk-neutral bidders (bidders who wish to sim-

ply maximize their expected profit, where the expectation is over the coin tosses of the

auctioneer).

With this new notion of truthfulness and armed with the power of randomization, we get

much more freedom to design auctions. Indeed now auctions need not be bid-independent,

but the price offered to a bidder may depend on his own bid in some random manner.

However, we will show in this chapter that the freedom of design is still quite limited in the

case of unlimited supply.

In the digital goods setting we prove that for any randomized auction which is truthful in

expectation, there exists an equivalent randomized auction which randomizes over truthful

deterministic auctions. By equivalent auctions we mean auctions in which the probability

of winning and the expected price offered are the same for all bidders for all bid values.

We also prove an approximate equivalence proof in the case where the bids come from a

discrete space. Finally, we consider the computational issue of finding an efficient equivalent

auction.

4.2 Previous work and a statement of the main result

Pioneering work in the study of auctions includes that of Vickrey [73], its generalization to

the Vickrey-Clarke-Groves mechanism [73, 12, 23], and that of Myerson [64]. Recent interest

in the Computer Science community has led to the study of various computational issues

in auction design and mechanism design in general - computational infeasibility of VCG

mechanisms [57], the complexity of combinatorial auctions [45, 55, 4, 41], approximating

50

optimal revenue of auctions [65, 66], and competitive analysis1 of auctions [22, 17, 21], among

others. One important paradigm that has emerged [22, 17, 21, 8, 4] is that of randomized

auctions - auctions in which the auctioneer is allowed to randomize over different outcomes.

One advantage of randomized auctions over deterministic auctions is that they can be more

efficient for the auctioneer in terms of generating revenue. For example, [21] prove that

in the digital goods setting no deterministic auction can be competitive w.r.t. a utility-

knowing auction (in terms of revenue maximization) but there exist simple competitive

randomized auctions. [8] prove a similar result in an online digital goods auction model.

In auction design one important property that is often desired is truth-revelation. A

deterministic auction is said to be truthful if for every bidder, bidding true utility maximizes

his profit, no matter what the other bidders bid (truth-telling as a weakly dominant strat-

egy). Truthful auctions have the advantage that the auctioneer knows that the bidders will

bid their true utility, and the bidders themselves can decide what to bid without worrying

about modeling other bidders. It is well known that deterministic truthful auctions are

precisely those which are bid-independent - the price offered to a bidder does not depend

on his own bid.

In the case of randomized auctions truth revelation does not have a standard defini-

tion. In [21] truthful randomized auctions are defined to be distributions over deterministic

truthful auctions. The competitive randomized auctions of [21] are in fact of this type. We

call these auctions strongly truthful or randomizations over truthful auctions.

Another definition that has been considered in the literature is that for every bidder,

bidding true utility maximizes his expected profit, no matter what the other bidders bid.

We call such auctions truthful in expectation. [4] provide a combinatorial auction for single-

parameter agents which is truthful in expectation. 2

The natural question which arises is: what is the relationship between these two defini-

tions of truthful randomized auctions? It is clear that every randomized auction which is

1Bounding the worst case ratio of the revenue generated by the given auction to that generated by an
optimal utility-knowing auction.

2Other notions of truthful randomized auctions have also been considered, e.g. truth-telling with high
probability, or small (bounded) incentives to lie. The example of [4] is also truthful with high probability.

51

strongly truthful is also truthful in expectation. For the other direction, strongly truthful

is considered to be a strictly stronger definition than truthful in expectation ([21, 4]). In-

deed, there exist simple examples of auctions which are truthful in expectation but are not

strongly truthful (see Section 4.4 for an example).

In this chapter we consider the digital goods setting in which the auctioneer has an

unlimited number of copies of the item to be sold, each bidder bids for one copy of the item,

and any number of bidders can be sold a copy, possibly at different prices. In this setting

we prove that for every randomized auction which is truthful in expectation there exists

an equivalent auction which is strongly truthful. By equivalence we mean that for any bid

values, the probability that a bidder wins is the same in the two auctions and so is the

expected price offered. Equivalent auctions look identical to bidders who bid to maximize

their expected profit.

Thus our result proves that when the bidders and the auctioneer are just concerned

about their expected profit, then the auctioneer may as well (in principle) restrict himself

to strongly truthful auctions. Our simulation considers each bidder independently, hence it

cannot meet additional constraints that auctions in other settings may have, e.g. that only

a single item is sold (in single-item auctions) or that no item is over-sold (in combinatorial

auctions).

We provide the main definitions in Section 4.3. In Section 4.4.1 we prove the main

result. Section 4.4.2 deals with the case that the bidders bid from a discrete set of val-

ues, for example, the integers. We consider the question of efficiency of our simulation in

Section 4.4.3.

4.3 Preliminaries

In the digital goods auction setting [22] there is an auctioneer (mechanism designer) who is

selling some item. There are n bidders who wish to purchase that item. The auctioneer has

unlimited copies of the item and can sell copies to any number of bidders, possibly offering

different prices to different bidders. Each bidder requires only one copy, and has a private

valuation, or utility for the item. We assume that the utility of bidder i is a single number

52

ui. The bidders bid for the item in a sealed bid manner. Let the bids be denoted by the

n-vector b. Let bi denote bidder i’s bid. Let b−i be the vector of bids without bi. We may

write b as (b−i; bi). The auctioneer looks at b and decides which bidders get a copy of the

item and at what price. We say that a bidder wins if he gets a copy. The price offered to

a winning bidder must be less than or equal to his bid. If a bidder wins, he has to buy the

item at the offered price, even if the price is more than his true utility (which may happen

if he bid more than his true utility). Bidders bid with the aim of maximizing their profit,

which for a winning bidder is the difference between the true utility and the price offered,

and for a losing bidder is 0.

A randomized auction is an auction in which the auctioneer is allowed to flip coins

to determine who wins and how much they pay. The auction should be such that every

sequence of coin tosses results, for each bidder, either in a rejection or a price less than

the bid (it is not sufficient, e.g., that the expected price is less than the bid). Thus, a

randomized auction can be considered to be a probability distribution over deterministic

auctions. The expected profit of bidder i in a randomized auction is the expected value of

the random variable which is 0 if the bid is rejected, and is ui − pi if the bid is accepted

with a price of pi. Bidders bid to maximize their expected profit.

Truthfulness is an extremely useful property that is often desired in auction design -

knowing the rules of the auction, the bidders should want to bid their true utility. For

deterministic auctions, a very strong notion of truthfulness that we may impose on the

bidders is that of truth-telling as (weakly) dominant strategy. This is also the easiest way

to analyze auctions. A bid value bi is said to be a weakly dominant strategy for bidder i if

it is the case that no matter what the other bidders bids b−i are, bi is a best bid.

Definition 3 A deterministic auction is said to be truthful if for every bidder, bidding the

true utility maximizes profit, no matter what the other bidders bid, i.e. reporting the true

utility is a weakly dominant strategy for bidders who wish to maximize their profit.

Truthful deterministic auction have a neat characterization.

Definition 4 A deterministic auction is said to be bid-independent if it is of the following

53

form: for each bidder i, compute a threshold ti which is a function only of the other bidders’

bids; bidder i wins if bi ≥ ti and is offered a price of ti; bidder i loses otherwise.

The following is well-known and is easy to see:

Theorem 30 A deterministic auction is truthful iff it is bid-independent.

The simplest example of a bid-independent auction is Vickrey’s single item auction [73],

in which the threshold is the maximum of the other bidders’ bids.

For randomized auctions there are two different definitions of truthfulness that have

been considered in the literature [5, 4, 21].

Definition 5 A randomized auction is said to be truthful in expectation if for every bidder,

bidding the true utility maximizes expected profit, no matter what the other bidders bid,

i.e. reporting utility is a weakly dominant strategy for bidders who wish to maximize their

expected profit.

Definition 6 A randomized auction is said to be strongly truthful if it is an oblivious

randomization over deterministic truthful auctions.

By an oblivious randomization we mean that the different deterministic truthful auctions

are chosen (for bidder i) with probabilities that do not depend on bidder i’s bid. However,

these probabilities may depend on b−i.

4.4 The Equivalence Theorem

Truthful in expectation is considered to be a (strictly) weaker definition of truthfulness than

strongly truthful ([4, 21]). Bidders in a strongly truthful auction will bid truthfully even if

they are told the outcome of the coin tosses, while this may not be the case in an auction

which is truthful in expectation. Indeed, the following is an example of an auction which is

truthful in expectation, but is not strongly truthful.

Example: Given a bid vector b, let Mi = max{bj , j 6= i}. D1 is the deterministic

auction that always rejects. D2 is the deterministic auction that for each bidder i, rejects

54

if bi < Mi, offers Mi if Mi ≤ bi < Mi + 2 and offers Mi + 1 if bi ≥Mi + 2. The randomized

auction R considers each bidder i independently. For bidder i, R calls D2 with a probability

of 0 for bi < Mi, with a probability of 1/2 if Mi ≤ bi < Mi + 2, and with a probability of

1 if bi ≥ Mi + 2. With the remaining probability R calls D1. It can be verified that R is

truthful in expectation. However, D2 is not a truthful deterministic auction. Furthermore,

the probability with which R calls D2 depends on bi. Hence R is not strongly truthful.

Our main result (Theorem 32) says that for every randomized auction which is truth-

ful in expectation there is an equivalent strongly truthful randomized auction, where the

equivalence is as defined below.

Let R be a randomized auction. Fix a bidder, say i. In the rest of the analysis we will

only consider R’s actions for bidder i. For bids b, we say that bidder i wins in R if bidder i

is offered the item. Let qi(b) be the probability with which bidder i wins. Let pi(b) be the

expected value of the price offered, conditioned on bidder i winning. Define the expected

price tuple offered to bidder i to be the tuple (qi(b), pi(b)). In the case that bidder i loses

(i.e. qi(b) = 0), we define the expected price offered to be (0,∞).

We say that two expected price tuples (q, p) and (q′, p′) are equal if q = q′ and p = p′.

Definition 7 Two randomized auctions R and R′ are said to be equivalent if for every

bidder i, for every bid vector b, the expected price tuple offered in R is equal to the expected

price tuple offered in R′.

Note that two equivalent auctions would appear identical to bidders and auctioneers

who aim to maximize their expected profit.

Example contd. (see figure): The following strongly truthful randomized auction

R′ is equivalent to the auction R in the example above. Again, R′ considers each bidder i

independently. R′ reads b−i and randomizes over two deterministic truthful auctions. With

Mi = max{bj , j 6= i}, as in R, let DMi be the truthful deterministic auction with threshold

Mi, and let DMi+2 be the deterministic truthful auction with threshold Mi + 2. R′ calls

DMi and DMi+2 with probability 1/2 each. It can be verified that R′ is equivalent to R.

55

reject

M+2

M+1

M+2

bi
ds bi
ds

al
w

ay
s

 r
ej

ec
t

R R’

w.p. 1/2 w.p. 1/2

D1 D2

M
Pr 1/2

Pr 1

Pr 0

M+1

M M

MD MD +2

Figure 4: An example of the simulation proving the equivalence between two notions of
truthfulness in randomized auctions

We need the following definition.

Definition 8 We call a randomized auction monotonic if for every bidder i, for fixed bids

of the other players b−i if bi < b′i then qi(b
−i; bi) ≤ qi(b

−i; b′i), i.e. the probability of winning

does not decrease if the bid increases, all other bids remaining the same.

It is well known that every randomized auction which is truthful in expectation has to

be monotonic. We provide a proof below for completeness.

Lemma 31 Every randomized auction which is truthful in expectation is monotonic.

Proof : Suppose a randomized auction which is truthful in expectation is not monotonic.

This means that for some bids b−i there exist two bids bi = x and bi = y, x < y s.t. the

probability of acceptance for x is greater than that for y. Let the expected price tuple for

(b−i;x) be (qx, px) and for (b−i; y) be (qy, py). We have x < y and qx > qy. Now since the

auction is truthful in expectation we have:

When the utility is x, bidding y does not increase expected profit:

qx(x− px) ≥ qy(x− py)

When the utility is y, bidding x does not increase expected profit:

qy(y − py) ≥ qx(y − px)

56

Let α = qx/qy > 1. We get

y ≤ αpx − py

α− 1
≤ x

a contradiction. �

Thus for any randomized auction which is truthful in expectation, qi(b
−i; bi) is a non-

decreasing function of bi. We assume that there is a number a0 s.t. qi(b
−i;x) = 0 for all

x < a0, i.e. if the bid is low enough then it will be rejected with probability 1. We also

assume that there is a number a1 s.t. qi(b
−i;x) = 1 for all x ≥ a1, i.e. if the bid is high

enough then it will be accepted with probability 1. These assumptions are made so that we

can think of qi(b) as a probability distribution with bounded support. The analysis will go

through even without these assumptions.

4.4.1 The Main Theorem

The main idea behind the theorem is the following: The given auction R looks at all the

bids b and decides qi(b) and pi(b). The simulating auction R′ will only look at b−i and

then average over all possible bids bi that bidder i could have made (without reading the

actual bid). In particular, R′ will consider qi(b
−i; bi) as a probability distribution, choose

at random a bid value bi according to the distribution qi(b
−i; bi) and play the deterministic

auction with threshold bi.

Theorem 32 For any randomized auction R which is truthful in expectation, there is a

strongly truthful randomized auction R′ s.t. R′ is equivalent to R.

Proof : Given R, a randomized auction truthful in expectation, we shall define a strongly

truthful randomized auctionR′ equivalent toR. Fix bids b−i. ForR we know that qi(b
−i; bi)

is a non-decreasing function of bi, which attains a minimum of 0 and a maximum of 1. Thus

we can think of qi(b
−i; bi) as a (cumulative) probability distribution function.

R′ is a randomized auction that considers each bidder independently. Let Dx be the

deterministic truthful auction with threshold x. For each bidder, R′ randomizes over (pos-

sibly) all Dx, x ∈ R:

57

On bids b, for bidder i, R′ picks x ∈ R according to the probability distribution

qi(b
−i;x), and runs the auction Dx.

R′ is strongly truthful since it randomizes over the truthful deterministic auctions Dx.

Note that the coin tosses of R′ also do not depend on the bid bi.

To prove that R′ is equivalent to R we need to show that for any bid values b, (i) the

probability that bidder i wins is the same in R and R′, and (ii) the expected price offered

is also the same.

For the sake of presentation we shall assume that qi(b
−i; bi) and pi(b

−i; bi) are both

differentiable functions of bi. (The result holds in general). Fix b−i. For ease of notation

we shall denote qi(b
−i; bi) by q(bi), when i and b−i is known from context. Similarly

pi(b
−i; bi) will be shortened to p(bi).

(i) For a bid bi = x, R accepts with probability q(x). R′ accepts iff it picks Dy with

y ≤ x. But this happens with probability precisely q(x).

(ii) The expected price offered by R is p(x). From the definition of R′ we can see that

the expected price offered by R′ is

1

q(x)

∫ x

a0

bq′(b)db

Hence we need to prove that for any randomized auction which is truthful in expectation

p(x) =
1

q(x)

∫ x

a0

bq′(b)db

However, this is known (originally in [54], and also used recently in [5]). We provide the

proof for the sake of completeness:

Since R is truthful in expectation the function

fb(y) = q(y)(b− p(y))

is maximized at y = b. (fb(y) denotes the expected profit when the utility is b and the bid

is y). For y > a0, q(y) and p(y) are both differentiable, hence we have:

f ′b(y) = q′(y)(b− p(y)) − q(y)p′(y)

58

Hence we have that for every b > a0,

q′(b)(b− p(b)) = q(b)p′(b)

i.e. bq′(b) = [p(b)q(b)]′

Hence
∫ x

a0

bq′(b)db =
[

p(b)q(b)
]x

a0

= p(x)q(x)

as required. (It can be shown that since R is monotonic, the second derivative is negative

at y = b).

�

In the general case when q(bi) is not a differentiable function of bi, the proof is the same,

by treating q(bi) as a cumulative probability distribution function. We note here that this

proof technique has been used before - the lemma on probability and price is originally

from [54], and has been applied in [64, 5, 4].

Note: Since the equivalent auction considers each bidder independently, it makes sense

only in the digital goods setting. While the statement of the theorem holds for all one-

parameter mechanisms, general one-parameter mechanisms may have further constraints

which the simulation may not meet. For example, a k-item auction cannot sell more than k

items. Combinatorial auctions for known single minded bidders (see e.g., [4]) require that

no item is over-sold. Our simulation works independently for each bidder and may not

meet such constraints. (The simulation will, however, work in auctions in which the set of

winning bidders is the same over all outcomes - the example given above works even if the

auction is a single-item auction, since only the highest bidder ever wins).

4.4.2 Discrete Bid Values

In the case when the bidders bid from some discrete set of values, say for example the

integers, then the equivalence is not exact as in Theorem 32. However we can still prove an

almost exact equivalence.

First note that for discrete bid values deterministic truthful auctions can be more general

than for real bid values. Asusme that the bid values are integers. Then a deterministic

59

truthful auction can find a threshold t(b−i) ∈ Z, reject if bi < t(b−i) and accept if bi ≥

t(b−i) and offer a price of t or t− 1.

Definition 9 Two randomized auctions R and R′ are said to be (λ, s)-equivalent (for 0 ≤

λ ≤ 1, s > 0) if for every bidder i, for every bid vector b, if (q, p) is the expected price tuple

in R and (q′, p′) is the expected price tuple in R′ then |q− q′| < λ and |p− p′| < s. If λ = 0

then we simply say that R and R′ are s-equivalent.

We get the following version of Theorem 32. The proof is a discrete version of the proof of

Theorem 32.

Theorem 33 Suppose the bidders can only bid integer values. Then for any randomized

auction R which is truthful in expectation, there is a strongly truthful randomized auction

R′ s.t. R′ is 1-equivalent to R.

4.4.3 Efficient Simulations

Definition 10 A randomized auction is said to run in polynomial time, if for every bid

vector b and for every bidder i, the auction can determine in polynomial time (possibly

after reading a polynomial number of random bits) whether to offer the item to bidder i or

not and at what price to offer.

Given an auction which is truthful in expectation and runs in polynomial time it is not

clear that the equivalent strongly-truthful auction of Theorem 32 also runs in polynomial

time. For a polynomial time simulation one needs to be able to sample from the probability

of winning, q(bi), considered as a probability distribution over the reals.

Definition 11 For a randomized algorithm R and a bidder i, we say that the probability

of winning q(bi) is polynomial time samplable if there exists a polynomial time randomized

algorithm which can generate a random number distributed according to q(bi) viewed as a

cumulative probability distribution.

Corollary 34 For every randomized auction R which is truthful in expectation and is such

that the probability of winning q(bi) is polynomial time samplable for every bidder i, there

exists a polynomial time strongly-truthful randomized auction R′ which is equivalent to R.

60

Proof : This follows from the proof of Theorem 32: the equivalent strongly truthful auc-

tion R′ of Theorem 32 samples from the set of all deterministic truthful auctions, sampling

Dt according to the cumulative probability distribution q(bi). �

The following lemma shows that we can approximately sample from q(x) in polynomial

time when the bids are from a discrete space.

Lemma 35 Suppose we are given a polynomial time auction which is truthful in expectation

and in which the bidders bid integer values. Suppose that for any bi we can compute q(bi)

in polynomial time and also that for each bidder i we know the bid values a0 and a1 such

that q(a0) = 0 and q(a1) = 1. Let A = a1 − a0. Then we can sample x ∈ Z approximately

according to the probability distribution q(bi) in time poly(n, logA) with error exponentially

small in n.

Proof : We only sketch the proof here. Since the given auction runs in polynomial time

(and uses, say, m = poly(n) random bits) q(bi) is a discrete distribution with minimum

weight at least 2−m. Use m2 random bits to pick a number r between 0 and 1 uniformly at

random with granularity 2−m2

. Now perform a binary search between a0 and a1 and find

an x such that q(x− 1) < r ≤ q(x). �

From Corollary 34 and Lemma 35 we get:

Theorem 36 Suppose we are given an auction R which runs in polynomial time, is truthful

in expectation and in which the bidders bid integer values. Suppose that for any bi we can

compute q(bi) in polynomial time and also that for each bidder i we know the bid values

a0 and a1 such that q(a0) = 0 and q(a1) = 1. Let A = a1 − a0. Then there is a strongly

truthful auction which runs in time poly(n, logA) and is (O(2−n), 2)-equivalent to R.

4.5 Conclusion and Open Questions

While it is clear that every strongly truthful randomized auction is also truthful in expec-

tation, there are simple examples of auctions which are truthful in expectation but not

strongly truthful. Our result provides the following equivalence in the digital goods setting:

61

For any auction which is truthful in expectation we can find one which is strongly truthful

such that it looks identical to bidders who are bidding to maximize their expected profit.

In the equivalent auction even if the bidders know the coin tosses of the auction they will

have no incentive to lie.

For other auction settings it is important to also preserve the correlations between the

probabilities of winning of different bidders, e.g., a single item auction can only have one

winning bidder in any outcome. It is interesting to see if such correlations can also be

preserved in an equivalent auction.

It is also interesting to see if this kind of equivalence also holds for randomized group-

strategyproof mechanisms, for example, for randomized cost-sharing mechanisms.

62

CHAPTER V

PLAYING LARGE GAMES USING SIMPLE

STRATEGIES - COMPUTING NASH EQUILIBRIA IN

GAMES

In this chapter we prove the existence of ε-Nash equilibrium strategies with support loga-

rithmic in the number of pure strategies. We also show that the payoffs to all players in any

(exact) Nash equilibrium can be ε-approximated by the payoffs to the players in some such

logarithmic support ε-Nash equilibrium. These strategies are also uniform on a multiset

of logarithmic size and therefore this leads to a quasi-polynomial algorithm for computing

an ε-Nash equilibrium. This is the first subexponential algorithm for finding an ε-Nash

equilibrium. Our results hold for any multiple-player game as long as the number of players

is a constant (i.e., it is independent of the number of pure strategies). A similar argument

also proves that for a fixed number of players m, the payoffs to all players in any m-tuple of

mixed strategies can be ε-approximated by the payoffs in some m-tuple of constant support

strategies.

We also prove that if the payoff matrices of a two person game have low rank then the

game has an exact Nash equilibrium with small support. This implies that if the payoff

matrices can be well approximated by low rank matrices, the game has an ε-equilibrium

with small support. It also implies that if the payoff matrices have constant rank we can

compute an exact Nash equilibrium in polynomial time.

5.1 Introduction: Nash equilibrium in finite games

Non-cooperative game theory has been extensively used to analyze situations of strategic

interactions. Recently, it has been pointed out [61, 39, 68] that many Internet related

problems can be studied within the framework of this theory. The most important solution

63

concept in non-cooperative games is the notion of Nash equilibrium.

Consider a two person game G, where for simplicity the number of available (pure)

strategies for each player is n. We will refer to the two players as the row and the column

player and we will denote their payoff matrices by R,C respectively. The results of Sec-

tion 5.4.1 are also generalized for multiple person games in which the players do not have

the same number of pure strategies.

A mixed strategy (or a randomized strategy) for a player is a probability distribution

over the set of his pure strategies and will be represented by a vector x = (x1, x2, ..., xn),

where xi ≥ 0 and
∑

xi = 1. Here xi is the probability that the player will choose his

ith pure strategy. If xi > 0 we say that the mixed strategy x uses the ith pure strategy.

The support of x (Supp(x)) is the set of pure strategies that it uses. A mixed strategy is

called k-uniform if it is the uniform distribution on a multiset S of pure strategies, with

|S| = k. For a mixed strategy pair x, y, the payoff to the row player is the expected value of

a random variable which is equal to Rij with probability xiyj . Therefore the payoff to the

row player is (x,Ry), where (. , .) denotes the inner product of two n-dimensional vectors.

Similarly the payoff to the column player is (x,Cy).

The notion of a Nash equilibrium [56] is formulated as follows:

Definition 12 A pair of strategies x∗, y∗ is a Nash equilibrium point if:

(i) For every (mixed) strategy x̄ of the row player,

(x̄, Ry∗) ≤ (x∗, Ry∗), and

(ii) For every (mixed) strategy ȳ of the column player, (x∗, Cȳ) ≤ (x∗, Cy∗)

Similarly we can define ε-equilibria (this definition is well known in the literature):

Definition 13 For any ε > 0 a pair of mixed strategies x′, y′ is called an ε-Nash equilibrium

point if:

(i) For every (mixed) strategy x̄ of the row player,

(x̄, Ry′) ≤ (x′, Ry′) + ε and

(ii) For every (mixed) strategy ȳ of the column player, (x′, Cȳ) ≤ (x′, Cy′) + ε

64

5.2 Two criticisms of Nash equilibrium as a solution con-
cept

In this chapter we consider the following two issues concerning Nash equilibria:

First, it is currently not known if Nash equilibria can be computed efficiently. For two

player games the known algorithms [36, 37, 38, 40, 46, 47, 51] either have exponential worst-

case running time (in the number of available pure strategies) or it is unknown whether they

run in polynomial time. For three player games, the problem seems to be even more difficult.

While for two player games it can be formalized as a Linear Complementarity Problem (and

hence some of the algorithms above) the problem for three player games is a Non-linear

Complementarity Problem. Furthermore there exist examples of small three player games

with rational payoff matrices in which all Nash equilibria are irrational. Algorithms for

approximating equilibria in multiple player games (among others, [67, 75]) are also believed

to be exponential. The problem of computing Nash equilibria has been of considerable

interest in the computer science community and has been called one of the central open

problems in computational complexity (Papadimitriou [61]). In fact it is known that the

problem for two-person games lies in some class between P and NP [60]. It is also known that

determining the existence of a Nash equilibrium with some additional natural properties

(e.g. maximizing payoff sum, maximizing support) is NP-hard [19, 70]. For surveys on

computational issues of Nash equilibria see [74, 53].

A second and related issue is the need to play simple strategies. Even if Nash strategies

can be computed efficiently, they may be too complicated to implement. This has been

pointed out, among others, by Simon [72] and later by Rubinstein [69] in the context of

bounded rationality. Players tend to prefer strategies as simple as possible. They might

prefer to play a sub-optimal strategy (with respect to rationality) instead of following a

complex plan of action which might be difficult to learn or to implement. In this chapter

we consider normal form games and our notion of simple strategies is strategies which are

uniform on a small support set. The importance of small support strategies becomes clear

if we consider the pure strategies to be resources. In this case an equilibrium is almost

impractical if a player has to use a mixed strategy which randomizes over a large set of pure

65

strategies. The problem with the requirement of small strategies, of course, is that there

exist games whose Nash equilibria are completely mixed (i.e., a player has to randomize

over all his available pure strategies).

5.3 Statement of the results and previous work

We address both these problems (namely, the need for efficient algorithms and the need for

simple strategies), by using the weaker concept of ε-equilibrium (strategies from which each

player has only an ε incentive to defect). More precisely:

Our main result (Section 5.4.1) is that for any two-person game there exists an ε-

equilibrium with only logarithmic support (in the number of available pure strategies).

Moreover the strategy of each player in such an equilibrium is uniform on a small multiset

and can be expressed in polylogarithmically many bits. In our opinion, this is an inter-

esting observation on the structure of competitive behavior in various scenarios - namely,

extremely simple approximate solutions exist. This result directly yields a quasi-polynomial

(nO(ln n), where n is the number of available pure strategies) algorithm for computing such

an approximate equilibrium. To our knowledge this is the first subexponential algorithm

for ε-equilibria. In addition to being small, our approximate equilibria provide both players

with a good payoff too: the payoff that each player gets using these strategies is almost

the same as that in some exact Nash equilibrium. Finally, our result holds not only for

two person games but also for games in which the number of players is independent of the

number of pure strategies. It is interesting to note that although the problem of finding

exact equilibria seems to become more difficult in the “transition” from two player games

to three and more, this is not the case for approximate equilibria.

A second result (Section 5.4.2) is that if the players are allowed to communicate and

“sign treaties” then there are constant support strategies which approximate the payoffs

that each player gets in an equilibrium (in fact there are constant support strategies that

approximate the payoffs of any pair of strategies). In real life, such treaties are not unknown

(though often tacit) - this result can be considered as an explanation of why certain small

strategies behave well and are used in real games, as opposed to a large and complicated

66

Nash equilibrium.

A third question we investigate is: “when does a game have small support exact Nash

equilibria?” In Section 5.4.3 we give a sufficient condition for two person games: if the

payoff matrices of the players have low rank then there exists a Nash equilibrium with

small support. Our original proof of this Theorem was a generalization of a result due

to Raghavan ([62]) which deals with completely mixed equilibria. The generalization was

based on a careful Gaussian elimination type step. However, we suspect that this Theorem

should not be unknown to the Game Theory community as we have recently found simple

proofs. We would still like to bring the Theorem to the attention of the broader CS and

Economics community as it has some interesting corollaries regarding the computation of

Nash equilibria. We prove that if the matrices can be well approximated by low rank

matrices, then there exists an approximate equilibrium with small support. It also follows

that if the payoff matrices have constant rank, we can compute an exact Nash equilibrium

in polynomial time.

The problem of looking for small support equilibria has been studied earlier. Koller

and Megiddo [36] prove that for two person games in extensive form there exist equilibrium

strategies whose support is at most the number of leaves of the game tree. However, not

all games can be represented in the extensive form with a small number of leaves (where

by small we mean logarithmic in the number of pure strategies). Our result guarantees the

existence of equilibria with logarithmic support for any two person normal form game (and

also for multiple players as stated above) but the equilibria are only approximate.

It should be noted that since Nash equilibria are fixed points of a certain map [56],

ε-equilibria can be found using Scarf’s algorithm [71], a general algorithm for finding ap-

proximate fixed points of continuous mappings. However, no sub-exponential upper bounds

are known for approximating equilibria using this algorithm. In fact, Scarf’s algorithm is

known to take exponential time in the worst case for a general fixed point approximation

([26]). Polynomial time algorithms for exact or approximate equilibria but only for special

classes of games have also been obtained in [35, 48, 34].

For the class of two-person zero-sum games, results for approximate minmax strategies

67

have been proved independently by Lipton and Young [49] and Althöfer [1]. In fact the

proofs of Section 5.4.1 use the same technique (sampling). While [1] gives no details, the

author claims that a similar result holds for non-zero sum two person games. The implica-

tion from approximate minmax strategies to ε-Nash equilibria which also approximate the

payoffs in some exact Nash equilibrium does not seem to be direct. Furthermore our result

holds for multiple player games too and not only for bimatrix games, which is interesting

because multiple player games seem to be more difficult.

The rest of the chapter is structured as follows: In Section 5.4.1 we prove our main result

on logarithmic support ε-Nash equilibria, and the resulting algorithm. In Section 5.4.2 we

prove our result on constant support strategies that approximate the payoffs of arbitrary

strategy pair. In Section 5.4.3 we prove that low rank payoff matrices imply the existence

of equilibria with small support.

5.4 The Main Results

5.4.1 Logarithmic support ε-Nash equilibria

For the present we assume that all entries of R and C are between 0 and 1. Our main result

is:

Theorem 37 For any Nash equilibrium x∗, y∗ and for any ε > 0, there exists, for every

k ≥ 12 ln n
ε2

, a pair of k-uniform strategies x′, y′, such that:

1. x′, y′ is an ε-equilibrium,

2. |(x′, Ry′) − (x∗, Ry∗)| < ε, (row player gets almost the same payoff as in the Nash

equilibrium)

3. |(x′, Cy′)− (x∗, Cy∗)| < ε, (column player gets almost the same payoff as in the Nash

equilibrium)

Proof :

The proof is based on the probabilistic method. For the given ε > 0, fix k ≥ 12 lnn/ε2.

Form a multiset A by sampling k times from the set of pure strategies of the row player,

independently at random according to the distribution x∗. Similarly form a multiset B by

68

sampling k times from the pure strategies of the column player, independently at random

according to the distribution y∗.

Let x′ be the mixed strategy for the row player which assigns probability 1/k to each

member of A and 0 to other pure strategies. Let y′ be the mixed strategy for the column

player which assigns probability 1/k to each member of B and 0 to other pure strategies.

Clearly, if a pure strategy occurs α times in the multiset, then it is assigned probability

α/k.

Denote by xi the ith pure strategy of the row player, and by yj the jth pure strategy of

the column player. In order to analyze the probability that x′, y′ is an ε-Nash equilibrium

it suffices to consider only deviations to pure strategies.

We define the following events:

φ1 = {| (x′, Ry′) − (x∗, Ry∗) |< ε/2}
π1,i = {(xi, Ry′) < (x′, Ry′) + ε}, (i = 1, ..., n)

φ2 = {| (x′, Cy′) − (x∗, Cy∗) |< ε/2}
π2,j = {(x′, Cyj) < (x′, Cy′) + ε}, (j = 1, ..., n)

GOOD= φ1 ∩ φ2

n
⋂

i=1

π1,i

n
⋂

j=1

π2,j

We wish to show that Pr[GOOD] > 0. This would mean that there exists a choice of A

and B such that the corresponding strategies x′ and y′ satisfy all three conditions in the

statement of the theorem.

In order to bound the probabilities of the events φc
1 and φc

2 we introduce the following

events:

φ1a = {| (x′, Ry∗) − (x∗, Ry∗) |< ε/4}
φ1b = {| (x′, Ry′) − (x′, Ry∗) |< ε/4}
φ2a = {| (x∗, Cy′) − (x∗, Cy∗) |< ε/4}
φ2b = {| (x′, Cy′) − (x∗, Cy′) |< ε/4}

Note that φ1a ∩φ1b ⊆ φ1. The expression (x′, Ry∗) is essentially a sum of k independent

random variables each of expected value (x∗, Ry∗). Each such random variable takes value

69

between 0 and 1. Therefore we can apply a standard tail inequality [27] and get:

Pr[φc
1a] ≤ 2e−kε2/8

Using a similar argument we have:

Pr[φc
1b] ≤ 2e−kε2/8

Therefore Pr[φc
1] ≤ 4e−kε2/8 and the same holds for the event φc

2.

In order to bound the probabilities of the events π1,i’s and π2,j ’s we define the following

auxiliary events:

ψ1,i = {(xi, Ry′) < (xi, Ry∗) + ε/2}, (i = 1, ..., n)

ψ2,j = {(x′, Ryj) < (x∗, Ryj) + ε/2}, (j = 1, ..., n)

We can easily see that

ψ1,i ∩ φ1 ⊆ π1,i, (i = 1, ..., n)

ψ2,j ∩ φ2 ⊆ π2,j , (j = 1, ..., n)

Using the Hoeffding bound again we get:

Pr[ψc
1,i] ≤ e−kε2/2

Pr[ψc
2,j] ≤ e−kε2/2

Now by combining the above equations we see that:

Pr[GOODc] ≤ Pr[φc
1] + Pr[φc

2] +
n
∑

i=1

Pr[πc
1,i] +

n
∑

j=1

Pr[πc
2,j]

≤ 8e−kε2/8 + 2n[e−kε2/2 + 4e−kε2/8] < 1

Thus Pr[GOOD] > 0. �

70

Note that not only do the strategies x′, y′ form an ε-equilibrium, but they also provide

both players a payoff ε-close to the payoffs they would get in some Nash equilibrium. In

fact, the payoffs of every Nash equilibrium can be thus approximated by a small strategy

ε-equilibrium. This provides another incentive for the players to remain in the ε-Nash

equilibrium. Furthermore x′, y′ are k-uniform, which implies the following corollary:

Corollary 38 For a 2-person game, there exists a quasi-polynomial algorithm for comput-

ing all k-uniform ε-equilibria (by Theorem 37 at least one such equilibrium exists).

Proof : Given an ε > 0, fix k = 12 ln n
ε2

. By an exhaustive search, we can compute

all k-uniform ε-equilibria (by Theorem 37 at least one such equilibrium exists; verifying

ε-equilibrium condition is easy as we need to check only for deviations to pure strategies).

The running time of the algorithm is quasi-polynomial since there are
(

n+k−1
k

)2
possible

pairs of multisets to look at. �

To our knowledge this is the first subexponential algorithm for finding an approximate

equilibrium. Furthermore, given the payoffs of any Nash equilibrium the algorithm can find

an ε-Nash equilibrium in which both players receive payoffs ε-close to the given values.

When the entries of R and C are not between 0 and 1 the ε incentive to defect and the ε

change in payoff both get magnified by Rmax−Rmin for the row player and by Cmax−Cmin

for the column player. Here Rmax and Rmin denote the maximum and minimum entry of

R, and similarly for C. Additionally if the players do not have the same number of pure

strategies (say n1, n2) then the same result holds with k ≥ 12 ln max{n1,n2}
ε2

.

Our results can also be generalized to games with more than two players. In particular

for an m-person game:

Theorem 39 Let s∗1, ..., s
∗
m be a Nash equilibrium in an m-person game. Let p∗1, ..., p

∗
m be

the payoffs to the players in the Nash equilibrium. Then for any ε > 0, there exists, for

every k ≥ 3m2 ln m2n
ε2

, a set of k-uniform strategies s′1, s
′
2, ..., s

′
m, such that:

1. s′1, s
′
2, ..., s

′
m is an ε-equilibrium,

2. |p′i − p∗i | < ε for i = 1, ...,m

71

where p′1, ..., p
′
m are the payoffs to the players if they play strategies s′i.

As we see from Theorem 39 we can guarantee an

ε-equilibrium with logarithmic support only when m is independent of n. It seems to us that

the technique of sampling cannot help us prove a more general theorem than that. It is an

interesting question to see whether this can be done using a different technique. However,

it is still interesting that we can prove the existence of simple approximate equilibria even

for three player games. This is so because the problem of finding exact equilibria for three

player games seems to be much more difficult than for two player games due to irrational

equilibria and non-linearity of the Complementarity Problem.

Corollary 38 also generalizes to games with a constant number of players since in this

case the number of combinations of multisets that the algorithm has to look at is still

quasi-polynomial . Again it would be interesting if a more general result could be proved.

5.4.2 Approximating Payoffs of Nash equilibria with Constant Support

In terms of the size of the support we can do much better, if we have weaker requirements.

There may be applications in which we would not even insist on an approximate equilibrium.

All we would care for is to approximate the payoffs in an actual Nash equilibrium. The

next result is in that direction:

Theorem 40 For any Nash equilibrium x∗, y∗ and any ε > 0, there exists, for every k ≥

5/ε2, a pair of k-uniform strategies (x, y), such that

1. |(x,Ry) − (x∗, Ry∗)| < ε (row player gets almost the same payoff), and

2. |(x,Cy) − (x∗, Cy∗)| < ε (column player gets almost the same payoff),

Again this result can be generalized to multiple player games. For an m-person game

the support of the k-uniform strategies will be O(m2 lnm).

Theorem 40 establishes the existence of constant support strategies which approximate

the payoffs that both players get in a Nash equilibrium. The techniques used to prove

this are the same as those used to prove Theorem 37, and the proof is omitted. Again,

we assume that the entries of R and C are between 0 and 1 (in the general case we get a

72

magnification by Rmax −Rmin and Cmax − Cmin as before). Note that Theorem 40 is true

for any pair of strategies x∗, y∗, not necessarily for Nash equilibria.

A situation in which this result could be applicable is the following: Consider a game

between two players both having a very large number of pure strategies at their disposal.

Let v1, v2 be the payoffs in a Nash equilibrium to the row and column player respectively.

If the support of the equilibrium strategies is very big, then it would be preferable for both

players to sign a “bilateral treaty” and use only a small number of strategies, as provided

by the result. In that case, both players would still receive a payoff close to v1 and v2

respectively, while using a small number of strategies. Furthermore, each player will be

able to check, during the game, if the other player has violated the treaty, in which case he

can switch to any other strategy.

5.4.3 Low Rank Implies Small Support Exact Equilibria

In this section we investigate the question: when does a two person game have small support

exact Nash equilibria? We show that if the payoff matrices have low rank then the game

has a small support Nash equilibrium. Furthermore we show that if the payoff matrices

can be approximated by low rank matrices then the game has a small support approximate

equilibrium (where the approximation factor depends on how well the matrices can be

approximated).

Denote again by R,C the payoff matrices for the row and column player respectively.

Suppose that R and C are m× n matrices.

Theorem 41 Let x∗, y∗ be a Nash equilibrium.

If rank(C) ≤ k, then there exists a mixed strategy x for the row player with |Supp(x)| ≤ k+1

such that x, y∗ is an equilibrium point. Similarly, if rank(R) ≤ k, then there exists a mixed

strategy y for the column player with |Supp(y)| ≤ k + 1 such that x∗, y is an equilibrium

point. Furthermore the payoff that both players receive in the equilibria x, y∗ and x∗, y is

equal to the payoff in the initial equilibrium x∗, y∗.

Our original proof of this Theorem was a generalization of a result due to Raghavan

([62]) which deals with “completely mixed equilibria”, i.e. equilibria which use all the pure

73

strategies. The generalization was based on a careful Gaussian elimination type step. How-

ever, we suspect that this Theorem should not be unknown to the Game Theory community

as we recently realized that a simple proof follows from the polyhedral structure of the prob-

lem and the polyhedral structure of the set of Nash equilibria (see [74, 30]). We would still

like to bring the theorem to the attention of the broader CS and Economics community as

it has some interesting corollaries regarding the computation of Nash equilibria. We present

below another simple proof suggested to us by N. Vishnoi and N. Devanur ([14]):

Let S be the k-dimensional space spanned by the columns of R. Since Ry∗ is a convex

combination of the columns of R, it can be written as a convex combination of at most k+1

columns of R (by Caratheodory’s Theorem). Let this new convex combination be Ry. Note

that Supp(y) ⊆ Supp(y∗). This implies that y is a best response to x∗. Since Ry∗ = Ry,

x∗ is also a best reponse to y. Hence x∗, y is a Nash equilibrium. Since Ry∗ = Ry the first

player receives the same value in x∗, y as in x∗, y∗. The second player will also receive the

same value as in the initial equilibrium because Supp(y) ⊆ Supp(y∗).

Definition 14 For n× n matrices C,D, D is an

ε-approximation of C if C = D + E, where |Eij | ≤ ε for i, j = 1, ..., n.

Lemma 42 Let D be an ε-approximation of C. Let x∗, y∗ be a Nash equilibrium for the

game with payoff matrices R,D. Then x∗, y∗ is a 2ε-Nash equilibrium for the game with

payoff matrices R,C.

Proof : Clearly (x∗, Ry∗) ≥ (x̄, Ry∗), ∀ x̄. For any strategy ȳ:

(x∗, Cy∗) = (x∗, Dy∗) + (x∗, Ey∗) ≥ (x∗, Dȳ) + (x∗, Ey∗)

Since |Eij | ≤ ε, ∀ i, j,

(x∗, Eȳ) − (x∗, Ey∗) ≤ 2ε

Hence,

(x∗, Cy∗) ≥ (x∗, Dȳ) + (x∗, Eȳ) − 2ε = (x∗, Cȳ) − 2ε

�

74

Corollary 43 For any game R,C, and for any k < n, if C can be ε-approximated by a

rank k matrix then there exists a 2ε-equilibrium x, y with |Supp(x)| ≤ k + 1. Similarly for

R.

In particular, we can use the Singular Value Decomposition to approximate the payoff

matrices R,C by rank k matrices for any k. The approximation factor ε of Corollary 43 is

then a function of the singular values of the matrices.

A useful corollary arises from the observation that for 2-person games, if we know the

support of a Nash equilibrium, then we can compute the exact equilibrium strategies in

polynomial time. This is because an equilibrium strategy y for the column player equalizes

the payoff that the row player gets for every pure strategy in his support and vice versa.

Hence we can write a linear program and compute the Nash equilibrium with the given

support. The following is a direct consequence of this observation and Theorem 41.

Corollary 44 If the payoff matrices R,C have constant rank, then we can compute an

exact Nash equilibrium in polynomial time. In particular if one of the players has a constant

number of pure strategies, we can compute a Nash equilibrium in polynomial time.

5.5 Discussion

Another attempt to prove the results of Section 5.4.1 would be to approximate the vectors

of a Nash equilibrium by vectors of small support. It is not difficult to see that we can

approximate any probability distribution vector by a vector of logarithmic support in the

l∞ norm with error at most 1/ log n. However, approximating an equilibrium x∗, y∗ in this

manner does not imply that the approximating vectors will form an ε-equilibrium, for any

given fixed ε. On the other hand it can be shown that an ε-approximation in the l1 norm

does yield an ε-equilibrium, but such an approximation is not always possible (e.g. if the

Nash strategies are the uniform distributions).

An interesting open question is whether we can generalize the results of Section 5.4.1 to

games where the number of players is an increasing function of n. Another question would

be to generalize the result so that the incentive to defect won’t depend on the range of the

payoff matrices (which can be much higher than the expected payoff in any equilibrium).

75

REFERENCES

[1] Althöfer, I., “On sparse approximations to randomized strategies and convex com-
binations,” Linear Algebra and Applications, vol. 199, pp. 339–355, 1994.

[2] Andelman, N. and Mansour, Y., “Auctions with budget constraints,” in 9th Scan-
dinavian Workshop on Algorithm Theory (SWAT), pp. 26–38, 2004.

[3] Andelman, N. and Mansour, Y., “Auctions with budget constraints,” in SWAT,
2004.

[4] Archer, A., Papadimitriou, C., Talwar, K., and Tardos, E., “An approxi-
mate truthful mechanism for combinatorial auctions with single parameter agents,” in
SODA, pp. 205–214, 2003.

[5] Archer, A. and Tardos, E., “Truthful mechanisms for one-parameter agents,”
FOCS, 2001.

[6] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., “Proof verifi-
cation and hardness of approximation problems,” in FOCS, pp. 14–23, 1992.

[7] Bansal, N., Fleischer, L., Kimbrel, T., Mahdian, M., Schieber, B., and Sviri-
denko, M., “Further improvements in competitive guarantees for QoS buffering,” in
ICALP, vol. 3142 of LNCS, pp. 196–207, Springer, 2004.

[8] Bar-Yossef, Z., Hildrum, K., and Wu, F., “Incentive-compatible online auctions
for digital goods,” SODA, 2002.

[9] Bartal, Y., Gonen, R., and Nisan, N., “Incentive compatible multi unit combina-
torial auctions,” in TARK, pp. 72–87, 2003.

[10] Blumrosen, L. and Nisan, N., “On the computational power of ascending auctions.”
Manuscript, 2004.

[11] Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., and Saberi, A., “Multi-
unit auctions with budget-constrained bidders,” 2004. Manuscript.

[12] Clarke, E. H., “Multipart pricing of public goods,” Public Choice, 1971.

[13] Cramton, P., Shoham, Y., and Steinberg(editors), R., Combinatorial Auctions.
MIT Press, Forthcoming (2005).

[14] Devanur, N. and Vishnoi, N., “Private communication,” 2003.

[15] Dobzinski, S., Nisan, N., and Schapira, M., “Approximation algorithms for
combinatorial auctions with complement-free bidders.” Manuscript available at
http://www.cs.huji.ac.il/ noam/mkts.html, 2004.

[16] Feige, U., “A threshold of lnn for approximating set cover,” Journal of the ACM,
vol. 45, no. 4, pp. 634–652, 1998.

76

[17] Fiat, A., Goldberg, A., Hartline, J., and Karlin, A., “Competitive generalized
auctions,” STOC, 2002.

[18] Freund, Y. and Schapire, R., “Adaptive game playing using multiplicative weights,”
Games and Economic Behavior, vol. 29, pp. 79–103, 1999.

[19] Gilboa, I. and Zemel, E., “Nash and correlated equilibria: Some complexity consid-
erations,” Games and Economic Behavior, vol. 15, no. 5, pp. 745–770, 1989.

[20] Goemans, M. and Kleinberg, J., “An improved approximation algorithm for the
minimum latency problem,” Mathematical Programming, vol. 82, pp. 111–124, 1998.

[21] Goldberg, A., Hartline, J., Karlin, A., Wright, A., and Saks, M., “Compet-
itive auctions,” 2003.

[22] Goldberg, A., Hartline, J., and Wright, A., “Competitive auctions and digital
goods,” SODA, 2001.

[23] Groves, T., “Incentives in teams,” Econometrica, 1973.

[24] Gul, F. and Stacchetti, E., “Walrasian equilibrium with gross substitutes,” Journal
of Economic Theory, vol. 87, pp. 66–95, 2000.

[25] Henzinger, M., “Personal communication,” 2004.

[26] Hirsch, M. D., Papadimitriou, C. H., and Vavasis, S. A., “Exponential lower
bounds for finding brouwer fixed points,” Journal of Complexity, vol. 5, pp. 379–416,
1989.

[27] Hoeffding, W., “Probability inequalities for sums of bounded random variables,”
American Statistical Journal, pp. 13–30, March 1963.

[28] Jain, K., Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V., “Greedy
facility location algorithms analyzed using dual fitting with factor-revealing lp,” J.
ACM, 2003.

[29] Jain, K., Mahdian, M., and Saberi, A., “A new greedy approach for facility location
problems,” in STOC, pp. 731–740, 2002.

[30] Jurg, A. P., “Some topics in the theory of bimatrix games.”
www.ub.rug.nl/eldoc/dis/non-rug/a.p.jurg/.

[31] Kalyanasundaram, B. and Pruhs, K., “On-line network optimization problems,” in
Developments from a June 1996 seminar on Online algorithms, pp. 268–280, Springer-
Verlag, 1998.

[32] Kalyanasundaram, B. and Pruhs, K. R., “An optimal deterministic algorithm for
online b -matching,” Theoretical Computer Science, vol. 233, no. 1–2, pp. 319–325,
2000.

[33] Karp, R., Vazirani, U., and Vazirani, V., “An optimal algorithm for online bi-
partite matching,” in Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, 1990.

77

[34] Kearns, M. J., Littman, M. L., and Singh, S. P., “Graphical models for game
theory,” in UAI, pp. 253–260, 2001.

[35] Kearns, M. J. and Mansour, Y., “Efficient nash computation in large population
games with bounded influence,” in UAI, 2002.

[36] Koller, D. and Megiddo, N., “Finding mixed strategies with small support in
extensive form games,” International Journal of Game Theory, vol. 25, pp. 73–92,
1996.

[37] Koller, D., Megiddo, N., and von Stengel, B., “Fast algorithms for finding
randomized strategies in game trees,” in Annual ACM Symposium on the Theory of
Computing, pp. 750–759, 1994.

[38] Koller, D., Megiddo, N., and von Stengel, B., “Efficient computation of equi-
libria for extensive two-person games,” Games and Economic Behavior, vol. 14, no. 2,
pp. 247–259, 1996.

[39] Koutsoupias, E. and Papadimitriou, C. H., “Worst case equilibria,” in Annual
IEEE Symposium on Theoretical Aspects of Computer Science, pp. 404–413, 1999.

[40] Kuhn, H. W., “An algorithm for equilibrium points in bimatrix games.,” in Proceed-
ings of the National Academy of Sciences, pp. 1657–1662, 1961.

[41] Lavi, R., Mu’alem, A., and Nisan, N., “Towards a characterization of truthful
combinatorial auctions,” 2003.

[42] Lehman, B., Lehman, D., and Nisan, N., “Combinatorial auctions with decreasing
marginal utilities,” in Proceedings of the 3rd ACM conference on Electronic Commerce,
pp. 18 –28, 2001.

[43] Lehmann, B., Lehmann, D., and Nisan, N., “Combinatorial auctions with decreas-
ing marginal utilities,” in ACM Conference on Electronic Commerce, 2001.

[44] Lehmann, D., O’Callaghan, L., and Shoham, Y., “Truth revelation in approxi-
mately efficient combinatorial auctions,” in ACM Conference on Electronic Commerce,
1999.

[45] Lehmann, D., O’Callaghan, L., and Shoham, Y., “Truth revelation in approxi-
mately efficient combinatorial auctions,” JACM, no. 49(5), 2002.

[46] Lemke, C. E., “Bimatrix equilibrium points and mathematical programming,” Man-
agement Science, vol. 11, pp. 681–689, 1965.

[47] Lemke, C. E. and Howson, J. T., “Equilibrium points of bimatrix games,” Journal
of the Society for Industrial and Applied Mathematics, vol. 12, pp. 413–423, 1964.

[48] Littman, M. L., Kearns, M. J., and Singh, S. P., “An efficient, exact algorithm
for solving tree-structured graphical games,” in NIPS, pp. 817–823, 2001.

[49] Lund, C. and Yannakakis, M., “On the hardness of approximating minimization
problems,” Journal of the ACM, vol. 41, no. 5, pp. 960–981, 1994.

78

[50] Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V., “A greedy facility
location algorithm analyzed using dual fitting,” RANDOM-APPROX, pp. 127–137,
2001.

[51] Mangasarian, O. L., “Equilibrium points of bimatrix games,” Journal of the Society
for Industrial and Applied Mathematics, vol. 12, no. 4, pp. 778–780, 1964.

[52] McEliese, R., Rodemich, E., Jr., H. R., and Welch, L., “New upper bounds
on the rate of a code via the delsarte-macwilliams inequalities,” IEEE Trans. Inform.
Theory, pp. 157–166, 1977.

[53] McKelvey, R. and McLennan, A., “Computation of equilibria in finite games,”
Amman, H., Kendrick, D., Rust, J. eds, Handbook of Computational Economics, vol. 1,
1996.

[54] Mirrlees, J., “An Exploration into the Theory of Optimal Income Taxation,” Review
of Economics Studies, vol. 38, pp. 175–208, April 1971.

[55] Mu’alem, A. and Nisan, N., “Truthful approximation mechanisms for restricted
combinatorial auctions,” AAAI-02, 2002.

[56] Nash, J. F., “Non-cooperative games,” Annals of Mathematics, vol. 54, pp. 286–295,
1951.

[57] Nisan, N. and Ronen, A., “Computationally feasible vcg mechanisms,” Electronic
Commerce, 2001.

[58] Nisan, N. and Segal, I., “The comminication requirements of efficient allocations
and supporting lindahl prices.” To appear in Journal of Economic Theory, preliminary
version available at http://www.cs.huji.ac.il/ noam/mkts.html, 2004.

[59] Papadimitriou, C. and Yannakakis, “Optimization, approximation and complexity
classes,” Journal of Computer and System Sciences, vol. 43, pp. 425–440, 1991.

[60] Papadimitriou, C. H., “On the complexity of the parity argument and other inef-
ficient proofs of existence,” Journal of Computer and System Sciences, vol. 48, no. 3,
1994.

[61] Papadimitriou, C. H., “Algorithms, games, and the internet,” in Annual ACM Sym-
posium on the Theory of Computing, pp. 749–753, 2001.

[62] Raghavan, T. E. S., “Completely mixed strategies in bimatrix games,” Journal of
London Math Society, vol. 2, no. 2, pp. 709–712, 1970.

[63] Raz, R., “A parallel repetition theorem,” SIAM Journal of Computing, vol. 27, no. 3,
pp. 763–803, 1998.

[64] R.B.Myerson, “Optimal Auction Design,” Mathematics of Operations Research,
vol. 6, pp. 58–73, Feb. 1981.

[65] Ronen, A., “On approximating optimal auctions,” Electronic Commerce, 2001.

[66] Ronen, A. and Saberi, A., “Optimal auctions are hard,” FOCS, 2002.

79

[67] Rosenmuller, J., “On a generalization of the lemke-howson algorithm to non-
cooperative games,” SIAM Journal of Applied Mathematics, vol. 21, pp. 73–79, 1971.

[68] Roughgarden, T. and Tardos, E., “How bad is selfish routing,” in Annual IEEE
Symposium on Foundations of Computer Science, pp. 93–102, 2000.

[69] Rubinstein, A., Modeling Bounded Rationality. Cambridge, Massachusetts: MIT
Press, 1998.

[70] Sandholm, T., “An algorithm for optimal winner determination in combinatorial
auctions,” in IJCAI, 1999.

[71] Scarf, H., “The approximation of fixed points of a continuous mapping,” SIAM
Journal of Applied Mathematics, vol. 15, pp. 1328–1343, 1967.

[72] Simon, H., Models of Bounded Rationality, Volume 2. Cambridge, Massachusetts:
MIT Press, 1982.

[73] Vickrey, W., “Counterspeculation, auctions and competetive sealed tenders,” J. Fi-
nance, 1961.

[74] von Stengel, B., “Computing equilibria for two-person games,” Aumann, R. and
Hart, S. eds, Handbook of Game Theory, vol. 3, 2002.

[75] Wilson, I., “Computing equilibria of n-person games,” SIAM Journal of Applied
Mathematics, vol. 21, pp. 80–87, 1971.

[76] Yao, A. C., “Probabilistic computations: towards a unified measure of complexity,”
FOCS, pp. 222–227, 1977.

80

VITA

Education

Georgia Institute of Technology, Atlanta, GA

Algorithms, Combinatorics and Optimization.

Indian Institute of Technology, Mumbai, India

Bachelor of Technology, Computer Science and Engineering, August 2000.

Publications

1. Aranyak Mehta, Amin Saberi, Umesh Vazirani, Vijay Vazirani. Adwords and General-
ized Online Matching. To appear in IEEE Foundations of Computer Science (FOCS),
2005.

2. Richard Lipton, Evangelos Markakis, Aranyak Mehta, Nisheeth Vishnoi. On the
Fourier Spectrum of Symmetric Boolean Functions with Applications to Learning
Symmetric Juntas. IEEE Conference on Computational Complexity (CCC), 2005.

3. Deeparnab Chakrabarty, Viswanath Nagarajan, Aranyak Mehta, Vijay Vazirani. Fair-
ness in Congestion Games. ACM Electronic Commerce, 2005 (Full Version).

4. Aranyak Mehta, Vijay Vazirani. Randomized Truthful Auctions of Digital Goods
are Randomizations over Truthful Auctions. ACM Electronic Commerce, 2004 (Full
Version).

5. Parikshit Gopalan, Richard Lipton, Aranyak Mehta. Randomized Time Space Trade-
offs for Directed Graph Connectivity. Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS), 2003.

6. Richard Lipton, Evangelos Markakis, Aranyak Mehta. Playing Large Games using
Simple Strategies. ACM Electronic Commerce, 2003 (Full Version).

7. Aranyak Mehta, Scott Shenker, Vijay Vazirani. Profit-Maximizing Multicast Pricing
by Approximating Fixed Points. ACM Electronic Commerce, 2003. Also to appear in
Journal of Algorithms.

8. Parikshit Gopalan, Howard Karloff, Aranyak Mehta, Milena Mihail, Nisheeth Vishnoi.
Caching with Expiration Times. ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2002. Also to appear in Internet Mathematics.

81

9. Bharat Adsul, Aranyak Mehta, Milind Sohoni. Keeping Track of the Latest Gossip
in Shared Memory Systems. Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 2000.

10. Howard Karloff, Subhash Khot, Aranyak Mehta, Yuval Rabani. On Earthmover Dis-
tance, Metric Labeling and 0-Extension, (Manuscript) 2005.

11. Mihalis Kolountzakis, Evangelos Markakis, Aranyak Mehta. On the Fourier Spec-
trum of Symmetric Boolean Functions and Learning Symmetric Juntas in time no(k),
(Manuscript) 2005.

12. Subhash Khot, Richard Lipton, Evangelos Markakis, Aranyak Mehta. Inapprox-
imability Results for Combinatorial Auctions with Submodular Utility Functions,
(Manuscript) 2005.

13. Kamal Jain, Aranyak Mehta, Vijay Vazirani. A Simple Characterization for Truth-
revealing Single Item Auctions, (Manuscript) 2005.

14. Sanjiv Kapoor, Aranyak Mehta, Vijay Vazirani. An Auction-Based Market Equilib-
rium Algorithm for a Production Model, (Manuscript) 2005.

82

