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Abstract:  This paper addresses a knowledge gap that exists for city- or neighborhood-wide applications of 

on-site water-conserving technologies, such as rainwater and gray-water systems. We develop a framework 

for evaluating policies requiring on-site rainwater and gray-water systems in residential units. Our 

framework incorporates housing stock dynamics, fixture retrofitting, and water demand models. It assesses 

costs and benefits of policy implementation strategies for three urban neighborhoods selected according to 

their built environment and socio-economic characteristics. Evaluation results identify a potential 5.4 to 

37.2 percent reduction in future neighborhoods’ water demand. With the most cost-efficient water-

conserving technologies, a household is expected to save $160 – $393 from their annual water bills. The 

cost-benefit analyses indicate substantial variation in water-saving potential and the cost-efficiency of on-

site water-conserving technologies across neighborhoods. Our findings present that to maximize 

effectiveness, the specific choice of water conserving technology and implementation strategy needs to 

account for local conditions of land-use characteristics, household structure, and water fixture conditions. 

Keywords: Sustainable urban water management, On-site water-conserving technology, Water 

demand projection, Rainwater harvesting, Grey-water recycling, Cost-benefit analysis, Water 

affordability 
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Introduction 

Current urban water management predominantly uses a linear approach that is also described as the 

take, make, waste approach (Daigger 2009). Conventional urban water systems contain extended collection 

and distribution networks, as well as functionally specialized infrastructure that leads to the loss of valuable 

resources such as water, energy, and nutrients (Wong and Brown 2009; Younos 2011). Also, the system 

lacks the flexibility necessary for efficient reconfiguration in response to changing operational conditions 

(Brown et al. 2011; Schramm and Felmeden 2012). A variety of factors ranging from  slow or declining 

population growth, deteriorating infrastructure, tighter regulatory controls, and climate variability, places 

increasing pressure on water prices (Baird 2010; Leigh and Lee 2019).  At the same time, urban water 

systems may be unable to ensure water affordability due to requirements of high capital investment and 

long depreciation times (Schramm and Felmeden 2012). Consequently, 11.9 percent of U.S. households are 

at risk for paying their water bills, and this number is expected to grow to 35.6 percent in the near future 

based on projected water rates (Mack and Wrase 2017). Thus, the conventional urban water system is 

broadly recognized as unsustainable and under stress from demographic, socio-economic, and climate 

changes (Daigger 2009). 

As a response to the significant challenges of the current urban water management, there has been 

growing attention to alternative water sources and water-conserving technologies. Previous studies reported 

that water-conserving technologies that use locally available water sources, such as rainwater and gray 

water, reduce residential water and energy consumption (Malinowski et al. 2015; Steffen et al. 2013; 

Younos 2011; Zadeh et al. 2013; Zhang et al. 2010), as well as increase environmental benefits, including 

reduced stormwater runoff and pollutant loads (Malinowski et al. 2015). Water-conserving technologies, 

such as rainwater and gray-water systems, provide cities with the means to augment the current supply 

capacity without extending the existing water supply network and infrastructure (Domènech and Saurí 2010; 

Lucas et al. 2010). Further, on-site water-conserving technologies allow up to a 40 percent reduction in 
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residential potable water demand (Steffen et al. 2013; Zadeh et al. 2013) that can result in a substantial 

reduction in household’s water-bill burden (Gurung et al. 2016). 

Financial benefits and costs are key decision criteria for the adoption of on-site water-conserving 

technologies (Tam et al. 2010), and there is a wide variety of studies that investigate the financial feasibility 

of water-conserving technologies (Farreny et al. 2011; Friedler and Hadari 2006; Liang and van Dijk 2010; 

Roebuck and Ashley 2007; Tam et al. 2010; Yu et al. 2015; Zadeh et al. 2013; Zhang et al. 2010). Most of 

these are conducted for a single unit or a residential complex (Farreny et al. 2011), thereby offering little 

policy insight for city- or neighborhood-wide applications of technologies. On the other hand, studies 

conducted for a city or neighborhood suggest little beyond how built-environment characteristics affect 

water-saving potential or the cost-efficiency of water-conserving technologies. More critically, previous 

studies employ a static approach that assumes fixed built-environment characteristics and water fixture 

conditions over the period of analysis. This approach neglects housing stock dynamics and a growing 

proportion of residential units equipped with high-efficiency fixtures. Consequently, this approach is likely 

to overestimate benefits of water-conserving technologies. 

In this study, we present a comparative analysis of water-saving potential and financial feasibility of 

policy implementation strategies requiring on-site rainwater or gray-water systems in residential units in 

three neighborhoods in the city Atlanta, Georgia. The three neighborhoods are distinguished by income 

level and each represents a high-, medium-, or low-income neighborhood. We developed a dynamic model 

that incorporates changes in housing stock and fixture-efficiency conditions to evaluate on-site water-

conserving technologies of rainwater and gray-water systems at the neighborhood scale. Taking into account 

the difference in household profiles and built-environment characteristics of the three neighborhoods, we 

examine how these characteristics affect the effectiveness and efficiency of water-conserving technologies. 

We also extend our cost-benefit analysis to explain how on-site water technologies may reduce the high 

water-bill burden that exists in low-income neighborhoods in Atlanta.  
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Descriptions of Three Neighborhoods in Atlanta 

The city of Atlanta is located within a fast-growing metropolitan area of the Southeastern United 

States (Figure 1). The population of the metropolitan area of Atlanta grew by 11.3 percent since 2010 and 

is now at 5,884,736. The city of Atlanta population grew by 15.7 percent during the same period and now 

is 486,290. Another 2.5 million in population is projected to be added to the metro area by 2040 (Atlanta 

Regional Commission 2018). Meeting the growing demand for water from the influx of new population and 

businesses is a major challenge for the city.  

The primary source of water for the metro area and core city is the Chattahoochee river. This river 

is part of the Apalachicola-Chattahoochee-Flint river basin which three states, Georgia, Alabama, and 

Florida, rely upon and have been in litigation over water use for nearly three decades. Atlanta is under 

significant pressure to reduce its water use. Further, aged water infrastructure has led to major loss of water 

from the system. The city is still using its original water supply pipelines, installed between 1893 and 1924, 

with water mains last renewed in the 1950s. It is has recently undertaken a major upgrade and greening of 

its water system to extend its current three-day water reserve level to more than 30 days (Saunders 2016). 

The three neighborhoods analyzed for our Atlanta study were carefully selected to maximize 

variations in land-use and socio-economic characteristics with each having a transit station. To confirm the 

boundary of each neighborhood, we took the following systematic steps; 1) designated the transit station as 

the neighborhood center, 2) drew a radius boundary that was a half-mile from the center, and then 3) defined 

a set of Census Block Groups that intersect with each buffer as a neighborhood. We selected the 

neighborhoods of Lindbergh, King Memorial, and Bankhead, which represent the high-, the medium-, and 

the low-income neighborhood, respectively (Figure 1). 

In Table 1, the authors present data on key characteristics of each neighborhood. Lindbergh is an 

affluent neighborhood located northeast of downtown Atlanta. It has a mixed land-use pattern with dense 

commercial and multifamily buildings around the transit center surrounded by large single-family parcels. 
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King Memorial is also a mixed-use and dense urban neighborhood east of downtown. The residential parcels 

for single-family homes are relatively small and there are also many small-size multifamily units for one- 

or two-person households. Bankhead is a distressed neighborhood with a large number of abandoned homes 

and vacant parcels. The housing stock of this neighborhood is relatively old compared to other two 

neighborhoods and contains low-rise and small-scale multifamily buildings as well as single family homes. 

 

 

Figure 1. Location and Climate Statistics of Atlanta and Selected Neighborhoods 

 

 

Table 1. Socio-economic and Land-use Profiles of Selected Neighborhoods 

 Lindberg King Memorial Bankhead 

Socio-economic profiles    

% white 81.89 70.97 12.76 

Unemployment rate 4.07 7.86 28.96 

% Poverty 6.12 12.80 34.59 

Median income ($) 95,480 65,420 26,000 

% of home ownership 76.92 66.80 48.82 

Land-use profiles    

Site areas (km2) 5.92 5.16 8.26 

Land use characteristics    

  Single-family 36.84% 21.94% 11.47% 

  Multifamily 15.61% 17.13% 5.00% 

Average parcel footprint (m2/unit)    

  Single-family 1,189 544 788 
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  Multifamily 161 136 203 

  # of multifamily units per parcel 34.33 13.49 13.95 

Population per unit    

  Single-family 2.15 1.80 2.35 

  Multifamily 1.96 1.64 2.14 

Vacancy rate 12.93% 16.88% 37.03% 

Units by built years    

  Constructed after 2012 5.87% 6.32% 7.71% 

  Constructed 1991-2011 52.08% 42.28% 36.34% 

  Constructed before 1990 42.05% 51.40% 55.95% 

Number of Units    

  Single-family 1,833 2,080 1,202 

  Multifamily 5,733 6,491 2,036 

Total population 13,206 11,953 4,527 

Source: American Community Survey 5-year Estimates (2011-2015), Fulton County Tax Parcel GIS data 

(2017), and Fulton County Building Structure GIS data (2016) 

 

 

Methodology 

Neighborhood Water Demand Model 

The modeling framework is presented in Figure 2. The model begins with a neighborhood’s housing 

stock and examines the dynamics of its continuous changes through a process of old residential units being 

replaced by new ones. Tracking housing dynamics is imperative to this study because it provides basic data 

for the water demand projection, such as the number of residential units by type, and enables estimates of 

Low-Efficiency Fixture (LEF) and High-Efficiency Fixture (HEF) stocks in a neighborhood. Combining 

these estimates with other parameters that represent household water-use patterns and local climate, we 

evaluate indoor and outdoor water consumption by water-use purposes and types of residential unit. Based 

on this information, we project future neighborhood water demand, non-potable water consumption, and 

the amount of gray water produced. This process is required to evaluate water-saving potential of on-site 

water-conserving technologies.  
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Figure 2. Modeling Framework for Neighborhood Water Demand Projection 

Housing Stock Dynamics 

The housing stock dynamic is often characterized by the new construction rate, renovation and 

transformation rate, and the demolition rate (Aksözen et al. 2017). However, in the absence of robust 

parameters for three neighborhood areas, we developed a simplified housing dynamic model from the 

demolition rate. For simplification, we adopted two assumptions. First, we assume that demolished housing 

stock will be immediately replaced by new housing stock (100% construction rate). Second, we consider a 

housing unit that has undergone a major renovation as a newly developed unit, thereby eliminating the use 

of a renovation rate in our analysis. This is because a housing unit that has either been demolished or 

undergone a major renovation is assumed to be equipped with high-efficiency fixtures. 

Demolition activity is a function of the age profile of existing housing stock and expected building 

lifetime. We obtained age profiles within the three neighborhoods from American Community Survey 5-

year Estimates (2011-2015). Lifetime distributions are often approximated in previous studies due to limited 

data availability. This study adopts a normal distribution function to represent the lifetime distribution of a 
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building following Bergsdal et al. (2007) and Sartori et al. (2008). A normal distribution function requires 

defining two parameters: the mean (μ) and the standard deviation (σ). Previous studies take values that 

range from 75 to 125 as the expected lifetime of a building, and use 0.25μ as the standard deviation of the 

expected lifetime (Bergsdal et al. 2007; Sartori et al. 2008). The expected period for a major renovation of 

a building is commonly assumed in a range from 30 to 50 years (Sartori et al. 2008). Based on these 

estimates, we take 50 and 12.5 as the mean and standard deviation of the normal distribution function. The 

survival rate of a building at time t is represented as the following equation (Equation (1)) with the normal 

probability density function f(x). 

S(t) = 1 − ∫ 𝑓(𝑥 | 𝜇 = 50 , 𝜎 = 12.5)
𝑡

0
     (1) 

The number of residential units by built years is calculated using the above survival function with 

additional assumptions on land-use change and the vacancy rate. To compare the effectiveness and the 

efficiency of water-conserving technologies under status-quo growth scenarios in the three case-study 

neighborhoods, we assume that the current land-use patterns are fixed throughout the period of study. In 

other words, the total number of single-family and multifamily residential parcels will remain unchanged in 

the three neighborhoods. The vacancy rate is assumed to gradually decline, reaching 4.3 percent by 2068, 

the rate that is considered as the equilibrium or natural vacancy rate of Atlanta (Gabriel and Nothaft 2001). 

 

Fixture Efficiency 

Our model estimates the composition of LEF and HEF within neighborhoods based on the housing 

stock profiles and the assumption of the natural replacement rate (NRR) of a water fixture. In estimating the 

fixture efficiency, we pay special attention to two years, 1991 and 2012, when Georgia’s Plumbing Code 

first adopted, and subsequently reinforced the prohibition of LEF. We calculated the composition of LEF 

and HEF for toilets, bathroom faucets, showerheads, kitchen faucets, washing machines and dishwashers 

applying NRRs associated with the expected lifespan of each water fixture. For example, the annual NRR 
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of 4 percent is applied to toilets with an expected lifespan of 25 years, while that of 12 percent is applied to 

showerheads (CUWCC 2005). 

 

Water Demand Projection 

Using neighborhood household profiles and fixture conditions, the model estimates current and 

future household water demands by water-use purposes. Indoor water demand is calculated based on 

assumptions of household water-use behaviors from Oldford and Filion (2012) and DeOreo et al. (2016), as 

well as fixture water flow rates. For the water requirement of LEF, we employed estimates from Koomey 

et al. (1995), while, for HEF, we referenced Georgia’s Plumbing Code that specifies the maximum flow rate 

of high efficiency plumbing fixtures (Georgia Department of Community Affairs 2012). According to our 

estimates of fixture water flow rates, unit water consumption is expected to decrease by 9 – 63 percent for 

HEF. The equation for estimating the household indoor water demand (IWD) is presented as Equation (2). 

All parameters used to estimate water demand is presented in Appendix 1. 

IWD = 𝑃𝐻 × (𝑇𝐹 × 𝑇𝑈 + 𝐵𝐹𝐹 × 𝐵𝐹𝑈 + 𝑆𝐹 × 𝑆𝑈) + (𝐾𝐹𝐹 × 𝐾𝐹𝑈 + 𝑊𝐹 × 𝑊𝑈 + 𝐷𝐹 × 𝐷𝑈)  (2) 

where, 𝑃𝐻 is the number of persons per household, 𝑇, 𝐵𝐹, 𝑆, 𝐾𝐹, 𝑊, and 𝐷 represent toilet, bathroom 

faucet, showerhead, kitchen faucet, washing machine and dishwasher. Subscripts 𝐹 and 𝑈 indicate fixture 

types (LEF or HEF) and household water-use patterns. In the absence of reliable benchmarking 

parameters, we assume that water use from a kitchen faucet, washing machine, and dishwasher is fixed 

per household. We acknowledge this is a limitation of our study considering previous findings of 

correlation between household size and appliance use frequency (Abdallah and Rosenberg 2012; DeOreo 

et al. 2016). 

We estimated outdoor water demand using the size of irrigation areas in the three neighborhoods 

and water requirements for a unit irrigation area. To estimate the average size of irrigation areas, we use 

aerial images from the National Agriculture Imagery Program (NAIP) and identify vegetated areas within 

residential parcels. The images from NAIP have a spatial resolution of one meter and include four spectral 
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bands (red, green, blue, and near infrared). Using these images, we calculate the Normalized Difference 

Vegetation Index (NDVI) that combines red and near-infrared (NIR) wavelengths to identify sunlight 

reflected by plants (Baret and Guyot 1991). Typically, the higher NDVI value indicates a denser 

concentration of vegetation within a pixel (Cheng et al. 2008; Gandhi et al. 2015). This study applies the 

thresholds that consider the NDVI values between 0.15 – 0.30 as less densely vegetated areas and the values 

larger than 0.3 as densely vegetated areas. A detailed description of NDVI thresholds are presented in 

Appendix 2. The NDVI values are calculated using standard equations (Rouse et al. 1974). Then, we 

calculate the total irrigation areas by the NDVI threshold, residential unit types, and neighborhoods.  

The unit water requirement for irrigation area is associated with local climatic conditions and the 

concentration of vegetation within irrigation areas. The equation used for the calculation of irrigation water 

requirement per square meter is presented as Equation (3) (Alliance for Water Efficiency 2016). 

Outdoor water demand (
𝐿𝑖𝑡𝑒𝑟

𝑚2 ) =
1

𝐼𝐸
× (𝐸𝑇0 × 𝐾𝐿 − 𝑃 × 𝑅𝜀) × 25.385   (3) 

where, 𝐼𝐸 is typical irrigation efficiency, 𝐸𝑇0 is Atlanta’s 5-year average of reference evapotranspiration 

(40.2 inches per year), 𝐾𝐿  is a landscape coefficient that represents the percent of reference 

evapotranspiration needed by plant (0.6 for less densely vegetated area and 0.65 for densely vegetated 

areas), 𝑃  is Atlanta’s 5-year average of annual rainfall measured in inches (49.71 inches), and, 𝑅𝜀  is 

effective rainfall of the U.S. Southeastern area (47%), which represents the percent of annual rainfall 

contributing to plant water requirement. 
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Evaluation of On-site Water Conserving Technologies 

Types of Technology 

We examined on-site rainwater harvesting systems that supply non-potable water for outdoor water 

use, and rainwater and gray-water systems that supply non-potable water for both outdoor and indoor water 

uses. Following the general perception of recycled water, the purposes for non-potable water use are limited 

to garden irrigation for outdoor uses, and toilet flushing and washing machines for indoor uses (Farreny et 

al. 2011; Roebuck et al. 2012). In general, these types of water use comprise approximately 41 percent of 

households’ indoor water consumption (DeOreo et al. 2016), and we expected to account for over the half 

of households’ water consumption including outdoor water uses. 

A rainwater system typically consists of a collection network, rainwater tank, and other attachments, 

such as filters, pumps, and controlling devices. Rainwater is a relatively high-quality water source that can 

be used for indoor potable water with an additional disinfection process (Cook et al. 2013). Atlanta’s potable 

rainwater ordinance enacted in 2011 also requires chlorination, UV, ozone, or iodine treatment for indoor 

uses of rainwater, and it only allows rainwater collected from roof surface (Atlanta Georgia 2011). In this 

study, we only take rainwater collected from rooftop surfaces into account, even for outdoor-use only 

rainwater systems given the lower quality of rainwater collected from other surfaces (Göbel et al. 2007). 

The difference between rainwater systems for outdoor uses, and for both indoor and outdoor uses, is the 

presence of purification components and distribution network for indoor water uses. 

A gray-water system consists of multiple components involved with filtration, sedimentation, 

disinfection, and storage, while the technological complexity of a system may differ depending on the 

required quality of reclaimed water. Gray water can be collected directly from domestic wastewater with 

dual pipe networks that separate less contaminated wastewater generated from hand-washing sinks, 

showers, bathtubs, and washing machines from blackwater (Yu et al. 2015). Thus, gray-water technology 

is less affected by local climatic conditions (Rozos et al. 2009), and the scalable adoption in a dense urban 

environment is more applicable than the rainwater technology (Bertrand 2008). On the other hand, because 
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its water quality is inferior to rainwater, there are concerns over health risks (Dixon et al. 1999). State 

governments, including Georgia, have established regulations on gray-water reuse, which makes illegal the 

adoption of low-tech gray-water systems that do not have disinfection treatment. For this reason, we only 

consider high-tech commercially-available gray-water systems that satisfy Georgia’s minimum quality 

guidelines for gray-water recycling (State of Georgia 2009).  

 

Policy Implementation Strategies 

This study evaluates three policy implementation strategies that aim to disseminate on-site water-

conserving technologies for residential units (Table 2). The first implementation strategy is designed to 

enforce a new plumbing code that requires all newly constructed residential units to be equipped with on-

site water technologies. We expect minimum policy resistance from this strategy because costs required for 

the strategy are hidden in housing prices or rents, and, further, owners and renters will eventually benefit 

from reduced water bills. The second strategy is the most progressive one that requires on-site water-

conserving technologies to all new and existing residential units. In this case, all existing residential units 

are required to undergo major retrofitting to install water-conserving technologies, e.g., installation of water 

tank, pump, purifier, and water pipes. Although substantial policy resistance is expected, this strategy is 

suitable for a neighborhood that aims to reduce water demand the in a short-term. Lastly, the third strategy 

is also aimed at both for newly constructed and existing residential units, but it assumes an incremental 

diffusion of technologies for existing residential units. This paper assumes the annual adoption target as 2.5 

percent of residential stock built before the enforcement of the new plumbing code, which means it will take 

40 years to retrofit all residential stock. 
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Table 2. Descriptions of three policy implementation strategies 

 
Implementation Strategy 1 

(Minimum intervention) 

Implementation Strategy 2 

(Maximum water-saving) 

Implementation Strategy 3 

(Incremental diffusion) 

Newly 

developed 

units 

Built with on-site water-conserving technologies 

Existing 

units 

No adoption of water 

technologies 

Equip with on-site water-

conserving technologies in 

first year 

2.5% of existing units will 

be equipped with 

technologies annually 

 

Water Saving Potential  

The water-saving potential of on-site residential water-conserving technologies is defined as the 

minimum value between the amount of non-potable water produced from technology and the amount of 

non-potable water demand by a household. The non-potable water demand is defined as household’s water 

consumption that can be replaced by non-potable water. In other words, it is the sum of a household’s water 

consumed for garden irrigation, toilet flushing, and washing machines. The amounts of non-potable water 

produced from a rainwater and a gray-water system are calculated using the Equation (4) and Equation (5).  

Rainwater production (𝐿𝑖𝑡𝑒𝑟) = 𝑅𝐴 × 𝑃 × 𝐶𝐸 × 25.385   (4) 

where, 𝑅𝐴 is squared meters of rooftop area, 𝑃 is Atlanta’s 5-year average of annual rainfall measured in 

inches, and, 𝐶𝐸 is collection efficiency, assumed to be 0.7 followed by observations from Liaw and 

Chiang (2014). 

Gray water production = (𝑊𝑊𝐵𝐹 + 𝑊𝑊𝑆 + 𝑊𝑊𝑊) × 𝑇𝐸   (5) 

where, 𝑊𝑊 is the amount of wastewater generated in a household, and subscripts 𝐵𝐹, 𝑆, and 𝑊 

represents bath faucets, showerheads, and washing machines. 𝑇𝐸 is treatment efficiency of a gray-water 

system, assumed to be 0.85 in this study.  

 

  



  06/27/2019 

PLED Working Paper #4 Copyright 2019 15  

Cost-benefit Analysis 

We conducted cost-benefit analyses both for the individual adoption of technology over its life span 

(20 years), and for 50-year outcomes of neighborhood-wide adoptions of technology according to the three 

implementation strategies. The cost-benefit analysis is the most common method to assess economic 

feasibility of an environmental program that involves comparing the flow of expected costs and benefit from 

the program over a designated period (Atkinson and Mourato 2006). Among various decision rules of cost-

benefit analysis (Christian Amos et al. 2016), we present Net Present Values (NPV), Benefit-Cost ratio (BC 

ratio), and payback period in this study. 

The NPV is the sum of current value of future cash flows from a project. Thus, the NPV larger than 

zero indicates that benefits resulted from a project exceed its costs, which offers an economic rationale for 

the project. To calculate the current value, the assumption of a discount rate is required. We used a zero 

percent discount rate because we lacked data to support an expectation that the water price, as well as costs 

required for acquisition, installation, and operation would not increase at a similar rate of inflation over our 

extended period of investigation. 

The BC ratio is the sum of discounted benefits divided by the sum of discounted costs, and a ratio 

greater than one indicates the benefits of a project exceed its costs. We use the BC ratio is to facilitate the 

comparison of analysis results by implementation strategies and neighborhoods at different scales 

(Boardman et al. 2017). The payback period is the time expected for a project to earn net revenue equal to 

net cost of a project. In this study, the payback period reflects the time required to offset capital costs when 

a household adopt water-conserving technologies.  

We also estimate benefits of on-site water-conserving technologies by measuring reduced water bills 

for households. We calculate reduced water bills based on combined water rates of Atlanta, which is the 

sum of water and sewer rates. Depending on monthly household water consumption, the price of one CCF 

of water will fall within the range of $12.32 – $21.85, according to Atlanta’s tiered water rate structure (City 

of Atlanta 2017). 
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For the evaluation of costs associated with technologies, we estimate the total cost of a system 

includes expenses for acquisition, installation, maintenances, and operation of systems. To estimate the 

acquisition cost, we first estimated required storage sizes or daily treatment capacities by unit types and 

neighborhoods. We calculate the storage capacity of a rainwater system according to the Water Balance 

Method that takes yearly distribution of rainwater supply and demand into account (Texas Water 

Development Board 2005). The required treatment capacity of a gray-water system is assessed based on 

results of our simulation model. Then, we reference actual market prices of commercially available 

rainwater and gray-water systems from websites of U.S. distributors and product catalogs (Aqua2Use 2018; 

INTEWA United States 2018; RainHarvest Systems LLC 2018). We specifically identified product lines 

that offer size and treatment capacity options, and selected a product best fitted to each residential unit in 

our neighborhoods.  

Installation costs include material and labor expenses for placement of systems, as well as 

establishing collection and distribution systems. We only considered above-the-ground installation which 

is less expensive than under-the-ground installation. We also assumed that residential units are already 

equipped with basic rooftop fixtures, such as gutter and downspouts, and irrigation systems. The expected 

installation workload is highest for installing gray-water systems which require collection, indoor 

distribution, and outdoor distribution networks. The workload is lowest for installing rainwater systems for 

irrigation that only require an outdoor distribution network. To evaluate costs associated with material and 

labor, we primarily followed the methodology employed in Yu (2015) after the adjustment of local-specific 

parameters, such as the number of bathrooms. 

Lastly, maintenance and operation costs of systems are estimated based on product information 

provided in catalogs and user manuals. In general, most systems recommend replacing filter cartridges 

within 1-5 years and UV lamps annually. The maintenance costs associated with these activities are 

estimated based on actual market prices of replacement components. We also considered electricity uses for 

the operation of systems. According to product specifications, a system with purification devices requires 
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less than 2kWh, while one without requires 1kWh per one kiloliter treatment. Although a larger system is 

likely to be more efficient, because of lacking appropriate data, we applied these values for all systems to 

calculate annual electricity uses. Finally, the annual electricity cost is calculated by multiplying annual 

electricity uses by Atlanta’s average electricity cost ($0.121/kWh) (Bureau of Labor Statistics 2018). 

 

Water Affordability 

The most widely applied method of measuring water affordability is to calculate the average per 

household costs of water and wastewater bills relative to the median household income and compare this 

percentage with a set of affordability standards. This study adopted the water affordability standard 

suggested by the U.S. Environmental Protection Agency (EPA) that considers annual household water bills 

greater than 4.5 percent of median household income to be unaffordable and a high burden (National 

Drinking Water Advisory Council 2003). Note that this affordability metric has some flaws. First, it does 

not take income stratification of a neighborhood into account and, thus, is likely to obscure water 

affordability problems of the lower income groups. Second, this measurement is insensitive to the costs of 

living that vary across cities and determine household disposable income (Teodoro 2018).  

 

Results and Discussions 

Future Household Water Consumption and Neighborhood Water Demand 

Our model estimates that the average monthly water consumption in the three neighborhoods ranges 

from 12.22 (King Memorial) to 16.10 (Lindbergh) cubic meters for a single-family unit, and 9.89 (King 

Memorial) to 11.78 (Bankhead) cubic meters for a multifamily unit in 2018 (Figure 3). A single-family unit 

in Lindbergh is expected to consume the largest amount of water primarily because of outdoor water 

consumption. For a multifamily unit, Bankhead has the largest average amount of water use due to aged 

water fixtures, more persons per unit, and more irrigation water consumption. The authors validate our 
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estimates using the actual water meter data of Atlanta (2013-2015), which was provided by city’s 

Department of Watershed Management. Actual water meter readings in the three neighborhoods ranges 

from 12.71 (King Memorial) to 15.85 (Lindbergh) cubic meters for a single-family unit, and 10.36 (King 

Memorial) to 13.23 (Lindbergh) cubic meters for a multifamily unit. The percent errors of estimated water 

demand fall in a range of -18.26 – 10.79 percent, which gives confidence to our estimates. 

Retrofitting of conventional water fixtures into water-conserving fixtures in accordance with 

Georgia’s Plumbing Code (Georgia Department of Community Affairs 2012) would reduce the average 

amount of water consumed by existing residential units. Between 2018-2068, water consumption of an 

existing single-family residential unit is projected to decrease between 16.1 – 17.2% percent and an existing 

multifamily unit would decrease by 15.9 –17.2 percent (Figure 4). The reduction in water consumption from 

fixture retrofitting tends to be larger in single-family units than multifamily units since single-family units 

have higher water-conserving potential due to using water indoors and outdoors. The projected percent 

reduction in average water consumption between 2018-2068 will vary among three neighborhoods, as a 

result of differences in their age distribution of existing housing stock and household water-use patterns 

associated with their built environment. 

Based on per household water consumption and changes in the number of residential units between 

2018-2068, projected water demand is expected to increase in Bankhead, 25.1 percent, while that of other 

two neighborhoods decrease by 8.3 percent (Lindbergh) and 4.3 percent (King Memorial). Neighborhood 

water demand decreases slightly in Bankhead between 2018 and 2026 until the water demand from new 

infill residential exceeds the amount reduced by fixture retrofitting. In 2068, our model predicts that 73,466, 

71,260, and 32,940 cubic meters of water will be required monthly for Lindbergh, King Memorial, and 

Bankhead, respectively. 



  06/27/2019 

PLED Working Paper #4 Copyright 2019 19  

 

 Figure 3. Household water consumption of three neighborhoods in 2018 

 

 Figure 4. The percent of water consumption reduced in three neighborhoods between 2018-2068 
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Water Saving Potential of On-site Technologies 

The effectiveness of an on-site system is defined as the maximum amount of reduced potable water 

consumption resulting from the system’s production and household consumption capacity of non-potable 

water. In general, a rainwater system for a single-family unit can produce enough non-potable water for a 

household. However, most multifamily buildings require a gray-water system to meet the non-potable water 

demand as per unit rainwater collection area would be too small to support the households’ demand as can 

be seen in the case of Lindbergh (Figure 5). King Memorial represents an exception as its multi-family 

rainwater system is expected to produce enough non-potable water because of unique built-environment 

characteristics of small-scale development with a large building-to-land ratio, and a small household size 

per unit. 

The amount of reduced potable water consumption will vary across types of technology, residential 

unit, and neighborhood (Table 3). In general, a rainwater system for both indoor and outdoor use has the 

highest water-saving potential for a single-family unit, and a greywater system is the most effective for a 

multifamily unit. The type of residential unit that has the highest water-saving potential is the existing 

single-family unit. This unit type is expected to reduce potable water consumption by 13.7 to 25.5 percent 

with a landscape rainwater system, and 29.1 to 34.0 percent with a greywater system. A single-family unit 

in Lindbergh and a multifamily unit in Bankhead which has the higher average household water 

consumption, both have the highest water-saving potential with landscape rainwater and gray-water 

technologies. However, the indoor rainwater system for a multifamily unit is the most effective technology 

for King Memorial due to this neighborhood’s unique built-environment characteristics. 

In Figure 6, projections of reduced residential water demand of Lindbergh for three implementation 

strategies are presented. The percent reduction in potable water demand with water-conserving technologies 

decrease over time as the growing number of housing units is equipped with HEF. All implementation 

strategies will reach to the similar level of potable-water saving in 2068, while the time required to achieve 

the maximum water-saving potential varies. The most effective water-saving strategy, Implementation 
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Strategy 2, which requires all newly developed and existing residential units to equip with water-conserving 

technologies is expected to reduce neighborhood’s water demand by 34.0 to 37.2 percent in 2068 with on-

site greywater systems. In Strategy 1, which requires only newly developed residential units to equip with 

technologies, the total amount of reduced potable water with on-site greywater systems are 49.8 to 60.1 

percent levels compared to that of Strategy 2. The total amount of reduced water demand in Strategy 3, 

which aims at incrementally adopting on-site technologies for existing residential units, is 71.6 to 78.1 

percent levels of that from Strategy 2. 

 

 

 Figure 5. Non-potable water production and consumption potential per household – Lindbergh, 2018 
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Table 3. Reduced potable water consumption (cubic meters) per residential unit in 2018 

Neighborhoods 
Single-family, 

new 

Single-family, 

existing 

Multifamily,  

new 

Multifamily, 

existing 

Rainwater (landscape) system 
  Lindbergh 4.109 4.109 0.238 0.238 

  King Memorial 1.672 1.672 0.134 0.134 

  Bankhead 2.408 2.408 0.388 0.388 

Rainwater (landscape and indoor) system 

  Lindbergh 6.560 7.263 1.681 1.681 

  King Memorial 3.949 4.633 2.238 2.238 

  Bankhead 4.959 5.827 1.636 1.636 

Gray-water system 

  Lindbergh 3.999 4.690 2.592 3.249 

  King Memorial 3.538 4.154 2.330 2.970 

  Bankhead 4.263 5.012 2.833 3.641 

 

 

 

Figure 6. Reduced water consumption: three Lindbergh implementation strategies 
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Estimated Costs Associated with On-site Technologies 

The cost of on-site water conserving technologies depends on multiple factors that vary across types 

of residential unit and land-use characteristics. The material cost related to the purchase of an on-site system 

(e.g., a rainwater tank and a greywater system) and its accessories (e.g., filter, pump, and controller) is 

determined by the required treatment capacity. The price of a commercially available above ground 

rainwater system with a capacity for a single-family unit ranges from $1,200 (2,650-liter cistern) to $1,580 

(6,435-liter cistern), and a greywater system for a single-family unit costs approximately $6,000 (200 liters 

per day). The equipment cost per capacity tends to decrease rapidly as the capacity of an individual system 

increases. Thus, the cost of equipping a multifamily unit is significantly lower than that of a single-family 

unit. The equipment costs for multifamily units also varies depending on characteristics of a multifamily 

building and are estimated to be $733 for a new multifamily unit in King Memorial and $1,259 for an 

existing multifamily unit in Bankhead (Figure 7). 

Installation costs for a water-conserving system depends on the type of technology adopted. 

Parameters used for estimating installation costs are presented in Appendix 3. The installation cost of a 

rainwater system for landscape water-use only is much smaller than a rainwater system for both indoor and 

landscape water use which requires fixture retrofitting for non-potable water transfer. The installation of a 

greywater system costs more because it requires additional pipes to collect greywater from bathroom sinks, 

showers, tubs, and washing machines. The cost for installing distribution and collection pipes are much 

higher for existing residential units due to the higher labor costs required for retrofitting. The estimated cost 

of installing a greywater system in a new multifamily unit is $993 – $1,002, compared to $3,429 – $3,474 

in an existing multifamily unit. 

Lastly, the annual operation cost associated with system maintenance and electricity use range from 

$27.8 to $116.3 per single-family unit and from $4.6 to $24.5 per multifamily unit. Again, a rainwater 

system for landscape water use has the smallest operation cost mainly because the city’s water quality 

guideline for rainwater systems are not applied to irrigation-purpose rainwater systems. In general, the 



  06/27/2019 

PLED Working Paper #4 Copyright 2019 24  

operation costs for greywater systems are highest because of their many components, including prefiltration 

devices, air blowers, and UV disinfection devices, require regular maintenance. 

 

Figure 7. Estimated capital cost and 20-year operation cost of a greywater system 
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The cost-benefit analysis results show that on-site rainwater systems are economically feasible for 

single-family and multifamily units, except those in the King Memorial neighborhood. Rainwater systems 

for single-family units in King Memorial are not economically feasible because of insufficient non-potable 

water demand due to smaller household sizes and smaller irrigation areas. In the three neighborhoods, on-

site rainwater systems supply enough non-potable water for single-family residential water use mainly 

because of sufficient rainfalls (48.79 inches per year) and small monthly rainfall fluctuation in Atlanta. 

Similar to the results of previous studies, the NPV of greywater systems applied to single-family 

units are negative in all neighborhoods (Brown 2007; Memon et al. 2005; Yu et al. 2015). However, 

greywater systems applied to a multifamily unit in all the three neighborhoods have positive NPVs, and 

relatively short payback periods (12-14 years) compared to the 16-22 payback years reported in previous 

studies (Imteaz and Shanableh 2012; Liang and van Dijk 2010). The shorter payback period in our analyses 

is likely attributable to gray-water systems are greater sensitivity to economies of scale and cost-effective 

when applied to a large-scale and densely developed multifamily complex.  

Our cost-benefit analysis results show that on-site water-conserving technologies are cost-effective, 

even when applied to a neighborhood’s average residential unit. However, the prolonged payback periods  

may be the reason for the slow diffusion of on-site water-conserving technologies, since consumers are 

reluctant to invest in energy-saving equipment with extended payback periods (Cunningham and Joseph 

1978). As the authors noted earlier, Atlanta imposes a flat sewer charge for indoor rainwater systems. This 

charge would increase the annual cost of indoor rainwater systems by $88.63 (King Memorial) to $208.74 

(Lindbergh) lowering the economic feasibility of indoor rainwater systems. After considering the flat sewer 

charge, BC ratio for a single-family indoor rainwater system in Lindbergh slightly exceeds one (NPV: $233, 

BC ratio: 1.024). 
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Table 4. BC ratios of water-conserving technologies (zero interest rate applied) 

Types of resident units Rainwater (landscape) 
Rainwater  

(Indoor and landscape) 

Gray water  

(Indoor and landscape)  

Single-family, New 

Lindbergh    

  NPV ($) 3,919 4,408 -2,799 

  BC ratio 2.238 1.771 0.721 

  Payback period (years) 7 8 n.a. 

King Memorial    

  NPV ($) -700 -354 -5,362 

  BC ratio 0.759 0.934 0.464 

  Payback period (years) n.a. n.a. n.a. 

Bankhead    

  NPV ($) 1,298 -1,971 -3,290 

  BC ratio 1.433 1.359 0.673 

  Payback period (years) 12 12 n.a. 

Multifamily, New    

Lindbergh    

  NPV ($) 132 565 1,128 

  BC ratio 1.900 1.371 1.544 

  Payback period (years) 8 13 12 

King Memorial    

  NPV ($) -131 895 708 

  BC ratio 0.545 1.475 1.326 

  Payback period (years) n.a. 12 14 

Bankhead    

  NPV ($) 107 400 1,107 

  BC ratio 1.309 1.245 1.465 

  Payback period (years) 13 15 12 

 

 

Evaluation of Three Implementation Strategies 

Table 5 shows the neighborhood-scale cost-benefit analysis results of on-site water-conserving 

technologies by the three different implementation strategies. Land-use profiles and household 

characteristics of each neighborhood employed as parameters for the neighborhood-scale analysis are 

presented in Table 1. The implementation strategy that regulates equipping new residential units with on-

site water-conserving technologies (Strategy 1) shows the highest economic feasibility, while the water-

saving potential of such strategy is relatively low (Figure 6). The maximum water-saving approach, Strategy 

2, which forces all residential unit a neighborhood to install water-conserving technologies by a designated 
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date (2018) is a less preferable in terms of cost-effectiveness. However, in Lindbergh, Strategy 2 produces 

a slightly higher BC ratio than that of Strategy 3, which calls for incremental retrofitting of existing 

residential units. This is mainly because the benefits of on-site technologies decrease over time as the 

increasing number of housing units is equipped with HEF. 

The NPVs and BC ratios presented in Table 5 are calculated based on the technologies that have the 

highest NPV by each neighborhood and residential type. The most cost-effective technologies differ by 

neighborhood and implementation strategy. This implies that it will be difficult to establish a city-wide 

policy that mandates on-site water-conserving systems. It also shows the need for a policy that is flexible 

enough to incorporate large differences in household and land-use characteristics across neighborhoods 

within the city. In addition, any policy aiming at the diffusion of on-site water-conserving technologies 

should be carefully designed considering the synergy between technologies and implementation strategies.  

Note that the BC ratios for the neighborhood-wide application of water-conserving technologies are 

lower than those of individual applications presented in Table 4. This can be understood as the cost of 

inflexibility resulting from obligating the adoption of technologies without considering the planned or 

remaining lifetime of residential buildings. For instance, according to Strategy 2, each residential unit that 

becomes obsolete before the lifetime of on-site water conserving technologies (20 years) still installs the 

technologies. If we incorporate administrative costs for auditing the installation and the operation of on-site 

water-conserving systems, the BC ratios for the neighborhood-wide application will even be lower. Thus, 

policy decisions on water-conserving technologies should be made in consideration of such inefficiency and 

implementation costs. 

This study conducts cost-benefit analysis from a customer perspective and assumes that water and 

sewer rates reflect capital, operation, and maintenance costs of a city’s water service. However, water rates 

may not accurately reflect potential benefits of water-conserving technologies, such as deferrals of future 

infrastructure augmentation and reduction in pumping energy (Gurung et al. 2016; Lucas et al. 2010; 

Malinowski et al. 2015). They also do not account for negative environmental consequences associated with 
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centralized urban water infrastructures, such as stream depletion and habitat destruction (Gleick 1998; 

Werbeloff and Brown 2011). Thus, policy decisions on water-conserving technologies should be made with 

technical, environmental, and societal concerns, rather than solely on financial assessments.  

It is important to note that our study is conducted based on residential units having average 

characteristics of neighborhoods and tests implementation strategies that target every residential unit. In 

reality, there is a wide variation in the characteristics of households and residential units. To accommodate 

household variability, future modeling should be refined with a detailed housing unit profile in a 

neighborhood. For example, researchers may want to explore the use of recently developed real-estate 

databases that offers an application programming interface (API), such as Zillow and Trulia. Resulted model 

may facilitate cities’ development of regulations applied to residential units that meet specific conditions, 

such as sizes and types of residential unit. The implementation of more refined regulation may further 

enhance cost-efficiency of the city-wide application of on-site water-conserving technologies. 

Table 5. Estimated costs and benefits for 50 years of operation of three implementation strategies 

 

Selection of the best technology* 

NPV (US$) BC ratio 

Cost per 

unit water 

saving 

(US$/m3) 

Single-family 

units 

Multi-family 

units 

Implementation Strategy 1  
  Lindbergh RW (indoor) Gray water 15,481,495 1.559 3.121 

  King Memorial RW (indoor) RW (indoor) 6,987,450 1.225 3.522 

  Bankhead RW (indoor) Gray water 6,178,029 1.461 3.325 

Implementation Strategy 2  

  Lindbergh RW (indoor) Gray water 14,424,748 1.198 4.127 

  King Memorial RW (landscape) RW (indoor) -2,988,296 0.945 4.751 

  Bankhead RW (indoor) Gray water 4,299,003 1.147 4.348 

Implementation Strategy 3  

  Lindbergh RW (indoor) Gray water 10,379,063 1.195 4.167 

  King Memorial RW (indoor) RW (indoor) 849,838 1.017 4.382 

  Bankhead RW (indoor) Gray water 4,320,333 1.198 4.160 

* Choice of the best technology has been made based on the maximum NPV. 
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Social Implications of On-site Water Conserving Technologies 

On-site water-conserving technologies have substantial social implications as these technologies 

contribute to the improvement of water access across social groups. Indeed, the enhancement of water 

affordability can be achieved not only by reducing water rates but also by equipping low-income households 

with water-efficient fixtures and technologies. Low-income households may benefit more from on-site 

water-conserving technologies given that they tend to live in older homes with less efficient fixtures and 

appliances (Cluett et al. 2016). Furthermore, plumbing codes that require residential units to use water-

efficient fixtures and technologies can be an effective solution to the split incentive problem; that is, 

situations where landlords and tenants respond differently to incentive, which can hinder the adoption of 

energy-efficient technologies  (Bird and Hernandez 2012). 

In Table 6, we present the effects on-site technologies have on water affordability. According to the 

US EPA criterion, Bankhead low-income neighborhood, where the average single-family unit spends 4.27 

percentage of its annual income for water, has a substantial water affordability problem. On-site water-

conserving technologies could have a considerable effect on water affordability in this neighborhood by 

reducing households’ annual water bills by $230 for a single-family unit with a rainwater irrigation system, 

and $279 for a multifamily unit with a gray-water system. These results suggest that on-site technologies 

can be used as a policy instrument for low-income households to correct unequal access to safe water (Leigh 

and Lee 2019). 
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Table 6. Effects of on-site water conserving technologies on water affordability  

 Lindbergh King Memorial Bankhead 

Annual median household income $95,480 $65,420 $26,000 

Estimated annual water bill (2018)    

  Single-family, existing $1212 $901 $1111 

  Multifamily, existing $794 $713 $865 

% of water bill to annual income    

  Single-family, new existing 1.27% 1.38% 4.27% 

  Multifamily, existing 0.83% 1.09% 3.33% 

Estimated annual water bill after adopting the best technologies of Strategy 1 

  Single-family, existing $820 $741 $881 

  Multifamily, existing $565 $529 $586 

% of water bill to annual income after adopting the best technologies of Strategy 1 

  Single-family, existing 0.86% 1.13% 3.39% 

  Multifamily, existing 0.59% 0.81% 2.25% 

 

Conclusions 

In this paper, the authors presented an integrative modeling framework that incorporates housing 

dynamics, water fixture retrofitting, and water demand to investigate the effectiveness and the efficiency of 

on-site water-conserving technologies. The approach taken in this study can be especially useful when 

designing city- or neighborhood-wide policies on water-conserving technologies, which require long-term 

considerations of dynamics in land use, population, water fixtures, and water-use patterns.  

Our research established that the costs and benefits of the neighborhood-wide application of on-site 

water-conserving systems are different from the sum of costs and benefits of individual systems. Although 

we found positive NPVs from implementing water-conserving technologies at the neighborhood scale, the 

value is lower than that from the cost-benefit analysis of a single on-site system. This was due to 

inefficiencies that that are the result of applying uniform regulations to different neighborhood types. 

Consequently, our research points to the need to design implementation strategies that require residential 

units adopting of on-site technologies targeted to specific conditions. 

Our comparative neighborhood analysis showed that effectiveness and cost-efficiency of on-site 

water-conserving technologies can vary significantly across sub-areas within a city. This implies that 
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effective water-conserving technology programs can be developed by focusing on a homogeneous 

neighborhood boundary. The choice of technology and implementation strategies should take into account 

local conditions, such as land-use characteristics and household structures. It is also necessary to consider 

socio-economic conditions of neighborhoods and to adopt technologies that can help relieve energy burdens 

and achieve equitable access to water for low-income neighborhoods. 

In conclusion, our research demonstrates that the city-wide application of on-site water-conserving 

technologies is economically viable and can be a useful local policy tool to address environmental, 

economic, and social concerns associated with the delivery of urban water service. Further studies are 

needed to compare on-site water-conserving technologies and clustered-scale technologies. Finally, to 

bridge the current knowledge gaps and overcome institutional inertia that impede the diffusion of 

decentralized water technologies (Brown et al. 2006), there is need for a decision-making framework for 

specific implementation strategies.  
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