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SUMMARY 

On August 2 , 1974 at 8:52 GMT, a magnitude m^ = 4,3 earthquake 

occurred near the northern portion of the Clark Hill Reservoir. De­

tailed aftershock monitoring following this event has provided the 

most extensive documentation of an aftershock sequence ever obtained 

for a southeastern United States earthquake. The data include smoked 

paper seismograms which have been used to establish activity levels 

and to locate individual microearthquakes, and magnetic tape data 

which have provided information on both location of aftershocks and 

microearthquake particle displacement spectra. On the basis of these 

aftershock data the change in stress occurring along a fault during 

an earthquake was evaluated. The stress drop of selected aftershocks 

was calculated using the following five published stress drop-dependent 

relations; (l) the theoretical relations between spectral corner fre­

quencies as a function of magnitude and stress drop, (2) the empirical 

relations between stress drop, magnitude of the main shock and duration 

of aftershock activity, (5) the relations between stress drop and "b" 

value as 'a function of the difference between the magnitude of the main 

shock and the magnitude of the largest aftershock, (4) the comparison 

of the "b" value of the aftershock sequence to "b" values of numerous 

other well-studied aftershock sequences (of New Zealand and California) 

for which the main event's stress drop is known, and (5) the comparison 

of the magnitude of the main shock to its fault dimensions as estimated 
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from the size of the aftershock zone. All five methods imply a high 

stress drop for the August 2, 1974 event and its aftershocks. The 

stress drop values are much larger than had previously been reported 

for earthquakes of about the same magnitude in other areas. The data 

indicate that high stress conditions remained in the aftershock hypo-

central area after the August 2 , 1974 = 4*3 event. The direct 

methods of Randall (1973) indicated stress drops several times larger 

than those obtained by Gibowicz's (1973) statistical methods. 

The scatter of aftershock hypocenters indicated that faulting 

was not occurring along a single plane. Instead, the distribution of 

hypocenters suggest that faulting was occurring along two or more 

planes. The faulting was assumed to be at depths less than 1 .5 km 

since no hypocenters deeper than 1 .5 km were found. Relative to their 

magnitudes, the intensities of the aftershocks were high. This may be 

due in part to the shallow hypocsnters and the competence of the rock. 

Two possible explanations for this activity are suggested; one involves 

the rupture of brittle rocks during bending of the crust, while the 

other entails thermal perturbation of the stress field due to circu­

lating groundwater. 
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CHAPTER I 

INTRODUCTION 

On August 2 , 1974 at 4:52 a.m. EDT (8:52 GMT) an earthquake 

of magnitude = 4«5 (Earthqimke Data Report, United States (Geologi­

cal Survey) occurred in the northern portion of the Clark Hill 

Reservoir Area (CHRA). Locally the earthquake was felt with inten­

sities V and VI (Modified Mercalli Intensity) and as far away as 

Augusta (70 km) with intensity III-IV (Figure l). Following the main 

shock, portable seismic recorders were moved into the epicentral 3,rea 

to record aftershocks. An abnormally large number of aftershocks were 

recorded on both smoked paper and magnetic tape recording instruments 

to provide an unusually well-documented set of aftershock data for 

this southeastern United States earthquake. 

Stress drop is a measure of the decrease in stress which occurs 

along a fault during an earthquake. It is a critical factor in the 

understanding of the tectonic mechanism causing this and perhaps other 

southeastern United States earthquakes. The object of this thesis is 

to evaluate the stress drop of the August 2 , 1974 event and some of 

its aftershocks. 

the Clark Hill Reservoir Area prior to the August 2 , 1974 event was 

Seismic History of the Clark Hill Reservoir Area 

The only minor known to have occurred in 



gure 1. Intensity Map of the August 2, 1974 4:52 a.m. EDT Earthquake. 
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the November 1 , 1875 earthquake of Modified Mercalli Intensity VI. 

Based upon somewhat sketchy intensity data (Rockwood, I876; Atlanta 

Constitution, 1 8 7 5 ) , the epicenter was placed somewhere between Lin-

colnton, Georgia and Washington, Georgia (Figure 2 ) . Prior to instal­

lation of the Worldwide Standard Seismograph Station ATL in 19&3, 

been reported. Low level seismic activity may possibly have been 

occurring in this area for many years. In this sparsely populated 

area such activity would likely have gone unnoticed or have been passed 

off as large blasts from one of the numerous Elberton granite quarries. 

Since the installation of the ATL seismic station near Lovejoy, 

Georgia in 1963, the minimum detection level for events in the CERA has 

been local magnitude (M ) 1,8 ± 0 , 3 , This improved seismic detection 
L 

capability has revealed sporadic low-level seismic activity in the 

vicinity of the CHRA. At least 15 events in the magnitude range of 

M^ =3 2.6 to 3.4 have occurred in the CHRA between July, 1963 and 

July, 1974 (Table l). In addition, about 40 events in the magnitude 

range of 1.8 to 3»4 occurred during April through August, 19^9 (Long, 

1 9 7 4 ) . This swarm included four of the above 15 events. This swarm 

exhibited a "b" value of 1.3 ± 0 .5 . 

The data shown in Table 1 (after Lenman, 1974) indicate that 

these events are not all from the same epicentral area. S-P times 

recorded at ATL vary by as much as 2.52 seconds, indicating a radial 

scatter of activity of as much as 22.4 km. However, these S-P data 

cluster around two distinct values, 19 .34 ± 0.02 sec. and 21 .45 ± 0.40 

sec. This apparently indicates at least two separate areas of activity. 

events smaller than local probably would not have 
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Figure 2. Intensities of the November 1, 1875 Earthquake and Epicenters 
of Earthquakes of Intensity V or Greater in Georgia (Rockwood, 
1876; Atlanta Constitution, 1875; After Denman, 1974). 



Table 1 . Catalog cf Clark Hill Events, 

July, 1963 Through July, 1974 

Date 
Time (GMT) 
P at ATL+ 

S-P 
Seconds 

Distance 
Kilometers"1"1" M 

BLG 

7/04/74 02:18 21.60 192.4 ± 10 2.6 

2/13/74 06:56 21.50 191.5 ± 10 2. 7 

10/08/73 13:38 21.30 189.7 ± 10 3.3 

4/26/71 09:04 21.44 190.9 ± 10 2.7 

4/16/71 07:31 21.22 188.9 + 10 3.3 

5/18/69 10:56 21.66 192.9 ± 10 3.2 

5/18/69 10:54 21.65 192.8 ± 10 3.4 

5/09/69 12:14 21.47 191.2 ± 10 3.2 

5/05/69 22:39 21.60 192.4 ± 10 2.7 

4/07/65 07:41 21-10 187.9 ± 10 3.5 

4/06/65 21:19 19.36 172.4 ± 10 2.6 

12/29/64 07:16 21.69 193.2 ± 10 3.2 

12/28/64 17:33 21.83 194.4 ± 10 2.9 

3/07/64 18:03 19.31 172.0 ± 10 3.6 

10/07/63 06:02 21.04 187.4 + 10 3.4 

+P wave arrival at ATL to the nearest minute. 

"^Accuracy is ± 10 km based on a ± 0.1 sec error in the measured 

S-P times. 
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The seismic history of the CHRA prior to the August 2 , 1974 event is 

discussed in more detail by Denman (1974)# The August 2 , 1974 event 

and its aftershocks are the subject of this study. 

The Geology of the Clark Hill Reservoir 

The CHRA is located on the Savannah River about 80 km northwest 

of Augusta, Georgia. The reservoir falls within the Piedmont Physio­

graphic Province. The rocks of the CHRA are of both metamorphic and 

igneous origin. The metamorphic rocks, which are Precambrian to Paleo­

zoic in age, consist of both metasedimentary and metaigneous rocks. 

Some of the rocks (Denman, 1974) have been through as many as four 

major metamorphic events (approximately 1100, 550, 450 and 250 million 

years before present). In general, the original features of the rocks 

are greatly obscured. The texture of most of the rocks of the CHRA is 

gneissic Basalt or diabase dikes of Mesozoic age cut through the 

metamorphic rocks and generally trend northwest. Additional informa­

tion and references for the regional geology of the CHRA are given by 

Denman ( 1 9 7 4 ) . 

The Geology of the Epicentral Area 

In the immediate epicentral area of the August 2 , 1974 event, 

the rocks are commonly coarse grained and gneissic in texture with nu­

merous quartzite veins ranging up to a meter in thickness. Feldspar 

phenocrysts with diameters ranging up to a centimeter or two are quite 

common. Because of their marked lateral variability Crickmay (1952) 

has interpreted these rocks as largely metasedimentary in origin. The 
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metamorphic grade implies formation under moderately high temperature 

and pressure (amphibolite facies). 

In the immediate epicentral area, one of the most perplexing 

characteristics of these rocks is their cracked and jointed texture, 

readily observed at the surface. This is particularly perplexing 

since such fractured rocks woulc. not ordinarily be expected to sustain 

high shear stress. 
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CHAPTER II 

INSTRUMENTATION AND EQUIPMENT 

Typically, a seismic recording system (Figure 3) consists of a 

seismometer which generates a voltage proportional to the particle ve­

locity of the earth, a voltage amplifier which may increase the 

seismometer output voltage "by a factor as high as 100,000, a timing 

system accurate to within ± 0.1 second per day, 12 volt battery power 

supplies and a smoked paper or magnetic tape recorder. Such systems 

may also employ electronic filters to attenuate sixty hertz noise or 

to narrow the bandpass of the system. 

Magnetic Tape Recorders 

Magnetic tape recordings (Figure 4) were used for the investi­

gation of the spectral character of the microearthquakes. In the field, 

signal levels were set by the use of a portable oscilloscope so that at 

the tape input the level of seismic background noise corresponded to 

approximately forty millivolts peak to peak; the tape saturation level 

of four volts peak to peak provided a dynamic range of 42 dB or 100:1 

for this system. Unfortunately, at the time of this study, chronome­

ters had not yet been installed in these systems. However, by playing 

back individual microearthquakes on a strip chart recorder at 125 mil­

limeters per second S-P times accurate to ± 0.01 second were easily 

obtained. This represents an error of aftershock location distance of 

less than 100 meters. 
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Figure 3. Schematic Diagram of an Earthquake Seismograph. 
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RELATIVE FREQUENCIES OF AIRGUN SHOTS 
VERSUS MICROEARTHQUAKES 

AIRGUN SHOT 

i 
0 TIME (Seconds) 0 

' I I 
• 16 8 

I 1 
4 2 

FREQUENCY (Hertz) 

MICRQEARTHQUAKE (m b»Q ) 

Figure 4. Strip Chart Playback of Events Recorded on Magnetic Tape. 
Note that the Microearthquake Energy is in High Frequencies 
(-100 hz). For Comparison, the Characteristic Frequency of 
the Airgun is About 20 Hertz. 



11 

Examination of magnetic tape data was facilitated by playing 

back the tapes into a smoked paper recorder with time marks from a 

chronometer (Figure 5)» A stable recording and playback speed was 

assumed. These smoked paper seismograms were then compared to other 

smoked paper seismograms from the same time period to correlate indi­

vidual microearthquakes. 

Tape recorders used included a Honeywell 8100 half-inch, reel-

to-reel, seven-channel FM recorder and a Sony RG-800B one-quarter inch 

reel-to-reel portable AM recorder. The Honeywell recorder's frequency 

response was DC to 600 Hertz (at 1 7/8 ips); the Sony tape recorder's 

frequency response, however, was 20 to 4000 Hertz (at 15/l6 ips). 

Seismograms from the Honeywell FM recorder established that the corner 

frequencies of the aftershocks were always several times greater than 

twenty hertz; hence, the low frequency cut off of the Sony recorder 

did not affect the evaluation of aftershock corner frequencies. Fre­

quency response curves for the Honeywell and Sony tape recorders as 

well as the Hewlett Packard Strip Chart Recorder are given in Appen­

dix I. 

Smoked Paper Recorders 

Smoked paper recorders provide a simple visual mode for pro­

ducing seismograms. First, a sheet of smooth finish paper is taped 

or rubber cemented to a cylindrical drum. This drum is then rotated 

over a sooty kerosene flame until the paper is coated with carbon 

black. The recording is effected by a stylus attached to a penmotor 

that produces displacements that are proportional to the current output 



60 Cycle 
A.C. Clock 
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Figure 5. Schematic Diagram for Magnetic Tape Data Playback. 
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of the seismometer-amplifier system. Hence, a displacement of the 

ground (such as may he caused "by a tremor or a footstep) produces a 

proportional displacement of the stylus. As the drum rotates, the 

penmotor and stylus are translated along the length of the drum, pro­

ducing a helical recording (Figure 9)« The paper is then removed from 

the drum and "fixed" "by coating it with a mixture of twenty parts al­

cohol to one part shellac. The alcohol evaporates, leaving a permanent 

shellac coating on the smoked paper record. Details of the instrumen­

tation of these smoked paper seismographs are given in Appendix I. 
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CHAPTER III 

PROCEDURE 

Field Operations 

Following the August 2 , 1974 event, several portable micro-

earthquake stations were deployed in a pattern around the epicenter. 

Aftershock monitoring with three or more stations was carried out 

until September 2 1 , 1974 . A high level of microearthquake activity 

continued throughout this period. As late as September 2 1 , 1974, 

500 microearthquakes having local magnitudes of zero or greater were 

being recorded each day within a five km radius of the epicentral 

zone (Figure 6). During this period, microearthquake recording sta­

tions were continuously relocated to improve resolution of the events. 

At first travel was by truck, but due to difficulty of road access to 

desirable recording sites, a boa,t was later used. Except during high 

Winds and foul weather, boat travel proved to be a very effective meth­

od for conducting a microearthquake survey due to the many convenient 

waterways in the epicentral area. 

From September 22, 1974 through January 2 1 , 1975 a smoked paper 

seismograph station was located in Danburg, Georgia approximately 

18 km west of the epicentral area. The station had a magnitude thresh­

old of local magnitude 1 .5 ± 0 .2 , From January 25 , 1975 until 

March 1 5 , 1975 epicentral seismic coverage consisted primarily of 

smoked paper seismograms from a station located at Bobby Brown State 
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Figure 6. Clark Hill Lake, Station Locations. 
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Park, nine km north of the epicentral area. This station had a magni­

tude threshold of local magnitude 0.5 ± 0 .2 . Since March monthly week­

end and occasional quarter-break recording trips of 2-4 day duration 

have provided supplementary data. Appendix II contains details of 

these trips as well as seismic recording station data. 
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CHAPTER IV 

RESULTS 

Earthquake Frequency of Occurrence and Magnitude 

The distribution of earthquakes as a function of magnitude may 

be represented by the recurrence equation (Richter, 1958) 

l o g 1 0 ( V = a " b M ( 1 ) 

where N is the number of shocks of magnitude M or greater per unit c 
time and a and b are generally observed to be constants. The magnitude 

M is usually assumed to be the Richter local magnitude M^. Evemden 

(1970) has shown this linear relationship to be valid for most areas. 

For most areas, the "b" value is between 0.8 and 1.0 (Richter, 1958; 

Gibowicz, 1973)> this means that the frequency of occurrence of shocks 

of a given magnitude is eight to ten times the frequency of occurrence 

of shocks one magnitude unit higher. 

Magnitudes 

Local magnitudes (M^) are used by both Randall (1973) and 

Gibowicz (1973) for the evaluation of stress drop. For this study, 

magnitudes were evaluated using a local magnitude scale (^g-g) devised 

by Long (1973)• This scale employs a local attenuation function de­

rived from more than 100 quarry blasts and natural events occurring 
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in the southeastern United States, The M scale is based on the 
LbE 

trace amplitude for the largest recorded phase of period near one 

second on the short period vertical ATL seismogram. Because of the 

similarity of the World V/ide Standard short period vertical seismome­

ter's frequency response to tha" of the Wood-Anderson torsion 

seismometer (used by Richter's scale), and because of the similarity 

of the definition of Richterfs local magnitude (M^) to Long's 

these two magnitudes are assumed to be equivalent. Magnitude relations 

derived for the smoked paper seismograms from station TDS and SUM are 

based on the local magnitude M T c, . 

When possible, magnitudes were also calculated by Nuttli's 

(1973) M g ^ scale. The theoretical trace amplitude of a zero magni­

tude event at the distance range.' of the CHRA is within ± 0 . 3 magnitude 

units for both M̂ g-g and M-g^* ^ o r magnitudes in the range 2.0 to %5> 

this study has found these two scales to be within ± 0 . 3 magnitude 

units of each other. The reported (Earthquake Data Report, United 

States Geological Survey) M-g^ magnitude for the August 2 , 1974 event 

was 4*8; this was the assumed value for local magnitude used in the 

stress drop calculations. Bath (1973) and Gibowicz (1972) give plots 

of M^ versus m^ for statistically significant numbers of earthquakes. 

Bath's results indicate that a body wave magnitude m^ = 4*3 earthquake 

is approximately equal to a local magnitude M^ = 4.6 earthquake; 

Gibowicz's data indicate that an m^ = 4*3 earthquake is approximately 

equal to an = 4.8 earthquake. Based on the similarity among M-̂ , 

^LSE ^BLG' ^ese r e s u l ^ s indicate that our assumed value of 
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= 4.8 for the August 2 , 1974 earthquake is a good estimate, since 

its body wave magnitude (m^) based on nine reporting stations was 4 . ? 

(Earthquake Data Report, United States Geological Survey), 

Evaluation of Stress Drop Using Gibowicz!s 

Empirical Relations 

Gibowicz (1973) made a statistical study of aftershock sequences 

and developed empirical relations between stress drop and (l) "b" value, 

(2) aftershock activity duration and (3) difference in magnitude be­

tween the main shock and the largest aftershock. He found that high 

stress drop led to high "b" value, low magnitude of the largest after­

shock, long duration of aftershock activity, and conversely. In 

addition, la,rger magnitude events generally had higher stress drops. 

In order to utilize these empirical relations, computation of 

"a" and "b" values for the recurrence relation of equation (l) was 

necessary. Using the ATL records, a catalog of events was constructed 

for the first month and a half following the August 2 , 1974 event 

(Table 2 ) . Using this catalog of events, a plot of recurrence rate 

versus magnitude (Figure 7) was obtained. A straight line fitted by 

eye indicated a "b" value of 1 .77 ± 0.3 and a value for "a" (the 

logarithm of the number of magnitude zero or greater events occurring 

per month) of 4.70 + 1 . 0 . This would indicate that for the month and 

a half following the August 2 , 1974 event there were approximately 

1600 events of magnitude zero or greater occurring per day and one 

event of magnitude two or greater occurring every tiro days. 
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Table 2. Catalog of Major Aftershocks of the August 2, 1974 

M L = 4.3 Clark Hill Reservoir Earthquake 

Arrival Arrival 
Time of P S-P 

\ 
Time of P S-P 

\ Date Wave at ATL (sec) \ Date Wave at ATL (sec) \ 

8- 2-74 11:14:52.2 21.61 2.00 8-12-74 14:57:24.24 21.3 1.96 

8- 2-74 11:40:00 ? 2.00 8-13-74 10:33:53.75 21.7 2.18 

8- 2-74 12:09:23.0 21.61 2.27 8-22-74 19:16:57.48 21.9 2.36 

8- 2-74 13:31:10.56 21.1 1.88 8-25-74 10:59:00 7 1.78 

8- 2-74 13:31:19.01 21.6 2.02 8-27-74 08:46:19.56 21.8 2.29 

8- 2-74 13:34:34.70 ? 2.18 8-27-74 08:47:37.31 22.0 2.73 

8- 2-74 14:23:23.94 21.9 2.22 8-27-74 08:52:55.66 21.7 1.78 

8- 2-74 15:30:00 ? 1.88 9- 1-74 03:19:00 7 2.18 

8- 2-74 16:23:45.87 22.1 2.81 9-21-74 06:23:43.06 21. 6 2.41 

8- 2-74 17:04:00 ? 2.02 9-21-74 07:43:48.40 21.7 1.88 

8- 2-74 18:14:00 1 1.88 9-22-74 04:57:00 7 1.66 

8- 3-74 08:35:10.36 21.5 1.73 9-22-74 02:37:00 7 1.78 

8- 3-74 11:35:00 7 1.66 9-22-74 17:50:00 7 2.02 

8- 4-74 00:19:04.02 21.4 1.88 9-22-74 20:19:11.90 21.7 2.18 

8- 4-74 03:44:00 7 1.78 9-22-74 20:19:51.93 21.6 2.08 

8- 4-74 04:07:00 7 1.88 9-23-74 06:16:28.13 22.29 2.15 

8- 4-74 06:14:00 7 1.66 9-23-74 07:26:16.69 21.98 2.29 

8- 7-74 04:06:57.25 23.5 2.08 9-23-74 09:03:00 7 1.94 

8- 7-74 08:23:25.65 21.5 2.08 

8- 8-74 16:20:00 7 1.88 

8-11-74 18:55:57.43 22.1 1.78 
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Table 2. Catalog of Major Aftershocks of the August 2, 1974 

= 4.3 Clark Hill Reservoir Earthquake (Continued) 

Arrival 
Time of P S-P 

Date Wave at TDS (sec) 

9-23-74 

9-24-74 

9-24-74 

9-24-74 

9-24-74 

9-24-74 

9-24-74 

9-24-74 

9-24-74 

9-25-74 

9-25-74 

9-25-74 

9-25-74 

9-25-74 

9-25-74 

9-26-74 

9-26-74 

9-28-74 

9-30-74 

10- 8-74 

10- 8-74 

23:49: 

00:03: 

04:34: 

06:28: 

06:29: 

07:31: 

14:16: 

16:32: 

21:57: 

02:15: 

09:18: 

15:48: 

15:58: 

16:55: 

17:05: 

13:31: 

19:52: 

22:41: 

18:51: 

02:16: 

22:35: 

58.04 

40.27 

33.18 

19.55 

25.54 

31.64 

25.89 

50.67 

51.67 

23.14 

05.09 

15.81 

13.80 

00 

59.30 

44.89 

42.77 

35.68 

08.26 

38.99 

07.74 

2.06 

2.07 

2.08 

2.05 

2.07 

2.19 

2.21 

2.17 

2.10 

2.15 

2.17 

2.17 

2.21 

? 

2.08 

2.12 

2.05 

2.03 

2.14 

2.02 

2.07 

M.. 
Arrival 
Time of P S-P 

2.00 

1.77 

1.92 

1.92 

1.83 

2.43 

2.08 

2.30 

2.08 

2.08 

2.53 

2. 25 

1.65 

2.08 

2.00 

1.48 

1.88 

1.97 

2.11 

1.77 

2.17 

Date Wave at TDS (sec) M, 

10-8-74 

10-13-74 

10-15-74 

10-17-74 

10-17-74 

10-17-74 

10-21-74 

10-22-74 

10-23-74 

10-31-74 

11- 1-74 

11- 4-74 

11- 5-74 

11- 5-74 

11- 5-74 

11- 9-74 

11-10-74 

11-16-75 

11-19-74 

11-21-74 

11-25-74 

23:22 

22:01 

07:40 

12:28 

13:09 

17:05 

15:05 

20:30 

17:09 

00:42 

16:39 

04:31 

02:02 

02:22 

05:17 

13:16 

14:02 

07:41 

21:07 

03:31 

16:36 

00.00 

51.71 

51.13 

28.63 

23.59 

46.10 

41.64 

18.18 

21.39 

36.13 

27.30 

11.08 

14.32 

41.15 

20.77 

56.81 

30.06 

32.27 

01 

01 

37 

2.13 

2.09 

2.17 

2.16 

2.08 

1.99 

2.04 

2.35 

2.05 

1.95 

2.38 

2.07 

2.34 

2.07 

2.59 

2.26 

2.03 

2.18 

2.1 

2.1 

2.1 

3.22 

1.92 

2.38 

2.35 

1. 57 

1.71 

2.52 

2.89 

1.57 

1.97 

2.00 

1.77 

3.25 
? 

1.77 

2.70 

2.17 

1.92 

1. 77 

1.92 

2.08 
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Table 2. Catalog of Major Aftershocks of the August 2, 1974 

M^ = 4.3 Clark Hill Reservoir Earthquake (Continued) 

Date 

Arrival 
Time of P 

Wave at TDS 
S-P 
(sec) Date 

Arrival 
Time of P 
Wave at TDS 

S-P 
(sec) 

11-25-74 14:27:04 2.1 2.69 1- 8-75 14:00:00 2.1 1.92 

12- 3-74 07:24:00 2.27 3.28 1-10-75 10:00:00 1.0 ? 

12-12-74 03:00:00* 2.1 2.00 1-22-75 23:00:00 2.1 1.48 

12-15-74 04:00:00 2.1 2.35 1-23-75 02:00:00 2.1 1.48 

12-24-74 13:00:00 2.1 2.43 1-23-75 02:00:00 2.1 1. 92 

12-27-74 19:00:00 2.1 2.40 1-23-75 23:00:00 2.1 1.77 

12-29-74 04:00:00 2.1 1.71 

^Arrival times on the following 11 events are approximate due to clock 

malfunction. 
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Gibowicz (1973) provides the following empirical formula for 

evaluating stress drop from "b" value 

b = 0.84 f log 

where Aao is the observed stress drop in the main shock and Aam is a 

normal stress drop for an earthquake of the same magnitude. This 

emperical formula had a correlation coefficient of O . 6 3 . Using this 

formula with a "b" value of 1 .77 gives a ratio of 8 .5 . That is, 
Aam 

based on this calculation, the August 2, 1974 event had a stress drop 

which was 8.5 times that of a "normal" event. Gibowicz also develops 

an empirical relation through which he defines "normal" stress drop, 

Aam, as follows 

Aao 
Aam (2) 

^ = (5.0 + 0.4) + (1.5 ± 0.4)log (Acrm). (3) 

Using M = 4»8, a normal stress drop (Aam) of 0.74 bars is obtained, 

hence, a stress drop of 6.3 bars is indicated for the August 2, 1974 

event. 

In addition, Gibowicz obtained an empirical formula which re­

lates the "b" value and the difference between the magnitude of the 

main shock and the largest aftershock to the stress drop. His equa­

tion is 

b(M L - M 1) = 1.0 + 21og 10 
Aao 
Aam (4) 
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where is the local magnitude o:f the main shock and is the local 

magnitude of the largest aftershock. This empirical formula had a 

data correlation coefficient of 0*64. Using = 4 . 8 , = 3.3> 

b = 1 .77 and Aam = 0 .74, a stress drop of 5.0 bars is obtained. 

According to a relation often called Bath's law, the normal 

difference in magnitude between the main shock and the largest after­

shock is 1 .2 magnitude units; in this study the difference was 1 . 5 . 

According to Gibowicz, in general}, the greater the stress drop, the 

larger the magnitude difference. A plot from Gibowicz (1975) data 

of magnitude differences versus the magnitude of the main shocks (Fig­

ure 8, Table 3) indicates a random relationship; hence, the magnitude 

difference appears to be independent of the magnitude of the main 

shock. 

Gibowicz explains the relationship between the magnitude differ­

ences and stress drop as follows, "The difference between the magnitudes 

of the main shock and the largest aftershock is small when the stress 

drop of the main shock is low, or the remaining stress high, and con­

versely." In the case of the August 2 , 1974 event, there may have been 

a substantial amount of remaining stress, since several relatively 

large aftershocks were observed (two M T = 3.2 and one M T = 3*3) . A 

high level of remaining stress would also explain the long duration of 

aftershock activity (Figure 9 ) . Further evidence for this idea is 

given in a later section on the source dimensions of the August 2, 1974 

event. 

Gibowicz defines the duration of aftershock activity as the 
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Figure 8. Difference in Magnitude Between the Main Shock and Largest Aftershock (M^-M ) 
Versus the Magnitude of the Main Shock. Full and Open Circles Represent 
California and New Zealand Earthquakes, Respectively. Event Numbers are 
Identified in Table 3 (After Gibowicz, 1973). 
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Table 3. Aftershock Data for California and New Zealand 

Earthquakes (After Gibowicz, 1973) 

Event # Location Date M. + 

CALIFORNIA 

Desert Hot Springs 12- 4-48 6.5 4.9 1.6 

Kern County 7-21-52 7.7 6.4 1.3 

San Francisco 3-27-57 5.3 4.4 0.9 

Watsonville 9-14-63 5.4 4.6 0.8 

Corralitos 11-16-64 5.0 3.5 1.5 

Antioch 9-10-65 4.9 2.8 2.1 

Parkfield 1-28-66 5.6 4.9 0.7 

Truckee 9-12-66 5.8 4.9 0.9 

San Fernando 2- 9-71 6.6 5.5 1.1 

NEW ZEALAND 

1 Hawke's Bay 2- 2-31 7.8 6.9 0.9 

2 Pahiatua 3- 5-34 7.5 5.7 1.8 

3 Wairarapa 1-24-42 7.0 5.3 1.7 

4 Wairarapa 12- 2-42 6.0 4.7 1.3 

5 Fiordland 5-24-60 7.0 5.6 1.4 

6 Westport 5-10-62 5.9 5.6 0.3 

7 Gisborne 3- 4-66 6.2 5.0 1.2 

8 Seddon 4-23-66 6.0 4.6 1.4 

9 Inanguhua 5-23-68 7.1 6.0 1.1 

^Magnitude of the main shock 
+Magnitude of the largest aftershock 
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time following the main shock required for the rate of aftershock 

activity to fall to less than one magnitude 3*0 event per day. 

Gibowicz obtained the following empirical relation for the calculation 

of aftershock duration 

l Q8lO 

where t is the duration of activity in days for a given sequence, and 

t^ is the duration in days expected for a given fault area. An ex­

pression for the calculation t (Gibowicz, 1973) is given as 
A 

^ B 1 0 ( t A ) = 1.31og1()(A) - 2.4 , (6) 

where A is the fault area in square kilometers. The correlation coef­

ficient for the data on which both of these empirical formulas are 

based was given as 0 .78. 

In order to use these formulae, we must first estimate the area 

of the fault from its aftershock zone. The length of the fault plane 

is taken as the longest dimension of the area In which the aftershocks 

occur (Liebermann and Pomeroy, 1970) ; the width of the fault plane is 

taken as the depth of the deepest aftershock, and is corrected for the 

dip of the fault plane whenever possible. A plot of aftershock loca­

tions (Figure 10) indicates a maximum fault length of five kilometers 

and a maximum depth of 1 .5 kilometers (see Appendix III for details 

of the aftershock hypocenter calculations). Using equation ( 6 ) , the 

= 31og 10 
Aao 
Aam (5) 
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predicted duration for the August 2 , 1974 event's aftershock sequence 

was 0.054 days, or 1 .5 hours. It should be reiterated that this is 

for the occurrence of one magnitude 3»0 or larger event per day. 

To determine when the activity level had fallen below one mag­

nitude three or larger event per day, Gibowicz plotted the number of 

events per day above the minimum magnitude detection level for a par­

ticular aftershock sequence. A relation of the form 

n = n 1(t)" P (7) 

where n = the number of events per day, n^ = the number of events on 

the first day, t = the number of days since the main shock and p is a 

parameter called the decay coefficient, was fitted to Gibowicz's data. 

However, the small sample size of the August 2 , 1974 aftershock rate 

of occurrence data (Figure 1 1) prevented accurate computation of the 

constants in equation ( 7 ) . A relation (equation ( 7 ) ) with n^ = 11 

and p = 1 .7 was visually fitted to the data in Figure 1 1 . The data 

were not considered adequate for statistical analysis of the precision 

of this fit. The minimum detection level for the data from ATL which 

was used in Figure 1 1 was = 1.8. Using a "b" value of 1 .77 (Fig­

ure 7)» we may predict that when there is one magnitude 3«° or greater 

event occurring per day, there are 133 magnitude 1.8 or greater events 

occurring per day. Applying this value (n = 133) to equation (8) 

gives t = 0.23 days until the activity falls to less than an average 

of one magnitude three or greater event per day. 



Figure 11. Decay Plot of August 2, 1974 Aftershock Sesquence 
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Using the duration (t = 0,2y days, extrapolated from rate of 

occurrence data) in equations (5) and (6) gives ^ ~ - 1.62, or 

Aao = 1.2 bars. While this is a slightly high stress drop, the valid­

ity of Gibowiczfs equations in this low of a magnitude range (M^ = 4«8) 

is questionable, since Gibowiczfs study had a mean magnitude of 6.3 and 

a minimum magnitude of 4.9» Therefore, extrapolation of his results to 

this study is subject to substantial doubt and computations using his 

equations are presented more for the purpose of a comparative evalua­

tion than for their merit as individual independent measures of the 

stress drop. 

Evaluation of Stress Drop Using Theoretical Relations 

Based on a circular dislocation model, Brune (1970) developed 

relationships between earthquake source parameters and seismic spectra. 

Randall (1973) generalized these relations by showing that the far 

field results of Brunefs spectral theory are largely independent of his 

dislocation source model. Randall derived expressions for seismic 

spectral energy and characteristic stress which were independent of 

assumptions about the source model. He also derived a theoretical re­

lationship between fault size, local magnitude and stress drop (Fig­

ure 1 2 ) ; this relationship was used to evaluate the stress drop of 

the August 2 , 1974 event and its aftershocks. In addition, Randall 

showed that this theoretical rela.tion (Figure 12) was consistent with 

empirical relations between magnitude and fault size, and between 

seismic energy and magnitude. His theoretical relationship for the 

calculation of stress drop was found to give results that agree well 
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Figure 12. Theoretical Relationship Between Fault Radius (R) and 
Local Mangitude (M L) as a Function of Stress Drop (a). 
Stress Drop of an Event May Be Determined by Measuring 
Vertical Displacement from a = 1 Curve Using Logarithmic 
Scale for a (Randall, 1973). 
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with those obtained from spectral estimates of seismic moment and 

fault size for earthquakes with local magnitudes ranging from 1.0 to 

7 . 0 . 

We define a characteristic fault radius, r, according to 

Randall (1973) as 

Using our previous estimate of 7 .5 square kilometers for the fault 

area, A, of the August 2, 1974 event, we obtain a characteristic fault 

radius of 1 .54 kilometers. Using Randall's relationship (Figure 12), 

we obtain a stress drop of 5.0 bars for the August 2, 1974 event. 

Theoretical fault radii are also commonly calculated from spec­

tral corner frequencies; conversely, theoretical corner frequencies 

may also be calculated from fault radii. Based on circular disloca­

tion theory, Brune (1970) provides the following theoretical relation 

for the calculation of corner frequency (v ) from fault radius (r) 

where 6 is the rupture velocity (generally accepted to be the shear 

wave velocity). If we assume a fault radius of 1.54 kilometers based 

on aftershock activity and a rupture velocity of 3*5 kilometers per 

second, we may calculate a theoretical corner frequency of 0.85 hertz 

for the August 2, 1974 event. 

(8) 

2TTV = 2.343/r, (9) 
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In an attempt to determine the corner frequency of the Au­

gust 2 , 1974 event, a four-second portion of the compressional wave 

train recorded at AMG was digitized by the method described in Appen­

dix IV. A spectrum for this wave form was then calculated (Figure 1 3 ) . 

A corner frequency may exist at around 1 .4 hertz. However, the noise 

level of digitization was too high to allow observation of a clear 

corner frequency. The digitization interval for this analysis was 

0.04 seconds; hence, we would not expect to resolve frequencies higher 

than about four hertz which is one third of the folding frequency. 

Above five or six hertz, the spectrum probably represents white noise. 

The relative amplitude of the spectrum at frequencies of 8 to 12 hertz 

increases at the same slope as the inverse of the instrument response 

curve (dashed line in Figure 1 3 ) . Since the spectrum of white noise 

is flat, the application of the instrument response correction would 

explain these equal slopes. The increase in the relative amplitude 

of the left hand portion of the spectrum may be partially due to D.C, 

shifts in the digitized data. 

If we accept a corner frequency of 1 .4 hertz, and assume a 

rupture velocity of 3*5 km/sec, the characteristic fault radius of 

the August 2 , 1974 event may be evaluated as 0.93 km (equation (9))« 

This indicates that the fault area of the August 2, 1974 shock may 

have been considerably smaller than the zone of aftershocks or that 

the rupture velocity was higher than the assumed 3#5 km/sec. Using 

our calculated characteristic fault radius based on corner frequency 

0.93 kilometers, we may return to Randall's (1973) curves (Figure 12) 



gure 13. Compressional Wave Displacement Spectrum of the August 2, 1974 Event Recorded 
AMG. Dashed Line is the Inverse of the Displacement Response of Station AMG. 
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and reevaluate the stress drop of the August 2 , 1974 event. For 

M^ = 4»8 and r = 0.93 km, we obtain a stress drop of about 12 bars. 

This is extremely high, since the normal stress drop for an event of 

this magnitude is 0.74 bars (Gibowicz, 1 9 7 3 ) . 

If we assume that the fault ruptured at a velocity as high as 

the compressional wave velocity (i.e., 3 = 6.0 km/sec) rather than the 

shear wave velocity (3 = 3»5 km/sec), we may reevaluate the character­

istic fault radius. This assumption gives a fault radius of 1.60 km 

and, hence, (Randall, 1973) a stress drop of 4«0 bars. This is still 

anomalously high. 

By assuming a rupture at the compressional wave velocity (6,0 

km/sec), we obtained a characteristic fault radius of 1.60 km. This 

is virtually the same as the fault radius estimated from the after­

shock zone (1.54 km), indicating that the rupture velocity of the 

August 2 , 1974 event could possibly have been at or near the compres­

sional wave velocity of 6.0 km/sec. 

Aftershock Spectral Analysis 

Displacement spectra were obtained for several of the after­

shocks. Appendix IV gives the details of these calculations. The 

aftershock spectrum for an event occurring September 18, 1974 at 

20:15 GMT is typical of these events (see Figure 1 4 ) . It shows a cor­

ner frequency at 76 hertz, which is apparently quite high; however, in 

order to evaluate just how high this corner frequency really is (in 

terms of stress drop), we must first determine the magnitude of the 

aftershock. 
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gure 14. Shear Wave Displacement Spectrum of a Microearthquake that Occurred September 18, 
1974 at 20:15 GMT. This Event Was Recorded on the Honeywell Tape Recording System. 
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Evaluation of Aftershock Magnitude 

In order to obtain an estimate of magnitude, all events for the 

period 20:11 GMT, September 18, 1974 through 20:00 GMT, September 19 

recorded on an MEQ-800 smoked paper seismograph were cataloged accord­

ing to amplitude. Since more than five hundred events were cataloged 

for this period, the effect of hvpocentral distances (which ranged 

from 1.0 to 3.0 km) on trace amplitude was considered statistically 

random and was, therefore, ignored. These data were then divided into 

five amplitude divisions and normalized by dividing the number of 

events in each division by the division's width (i.e., the number of 

events in the amplitude division of two to four millimeters was divid­

ed by two, whereas the number of events in the division of eight to 

twelve millimeters was divided by four). They were then plotted 

(Figure 15 ) as log N (cumulative number) versus log A (amplitude). 
c 

Since the magnitude is generally defined to be proportional to the log 

of trace amplitude, the resulting plot is essentially a plot of recur­

rence rate. As will be shown later, if the actual "a" and "b" values 

from equation (l) were known, then a relationship could be established 

between trace amplitude and magnitude. A relationship of this type is 

derived for this study. 

A Magnitude Relation For Station TDS 

In order to determine values for "a" and "b" in equation (l), 

it was first necessary to establish a relationship between local mag­

nitude and microearthquake trace amplitude. For this purpose, smoked 

paper seismograms recorded at station TDS were available. These 
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Figure 15. Cumulative Number of Events (N c) of Amplitude A or 
Greater Versus Zero to Peak Amplitude (A) in Milli­
meters at Station SUM. 
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covered the period September 24, 1974 through January 2 1 , 1 9 7 5 . Using 

these data, we may establish the time varying character of the "a" and . 

"b" values, and estimate their values for September 18, 1974 . 

Twelve shocks with a magnitude range of 1.8 to 3*3 magnitude 

units were recorded at both stations, ATL and TDS. The local magnitude 

at station ATL was calculated and plotted as a function of the log of 

shear wave trace amplitude at station TDS. The resulting graph (Fig­

ure 16) demonstrates a strong linear relationship between local magni­

tude which can be described by the following equation 

^ = 1.77 + 1.321og10(A) (10) 

where A is the maximum shear wave zero to peak trace amplitude in 

millimeters. 

Recurrence Hates For Data From Station TDS 

Using this relation, the events recorded at TDS were cataloged 

by trace amplitude and local magnitudes were calculated (Table 2 ) . 

The magnitudes were than plotted as a function of the log of the cumu­

lative number of events (Figure 17) with the values for "a" normalized 

to a one month period. Then the values for "a" and "b" were plotted 

as a function of time (Figure 18),, Using these graphs, the approximate 

"a" and "b" values for September 18 were obtained as follows 

log 1 0(N c) = 4.2 - 1 . 5 ^ . (11) 



Figure 16. Trace Amplitude Versus Magnitude, Station TDS. 
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Figure 17. Recurrence Relations for the Aftershocks of the August 2, 
1974 Event. 



VARIATIONS IN RECURRENCE 
RATES WITH TIME 
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Evaluation of Magnitude From Trace Amplitude, 

Station SUM 

In order to determine the relationship between local magnitude 

and trace amplitude at station SUM, we assume a dependence of magni­

tude on trace amplitude of the form (Richter, 1958) 

where C and D are constants, and further assume, for the particular 

"a" and "b" values obtained for September 18 

where A is the zero to peak shear wave trace amplitude at SUM for 

events recorded on September 18 and E and F are constants (from 

Figure 1 5 , E = 2.18 and F = 1 . 06 ) . By taking derivatives of equations 

(12) and ( 1 3 ) 9 we obtain 

We need now only determine the value of C. For a magnitude 

zero event, we have 

M L = C + D (108 1 0(A>) (12) 

(13) 

(14) 

(15) 
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where A is the trace amplitude of a magnitude zero event, and 

(16) 

hence, when the right half of equation ( l 6 ) is satisfied, we may read 

A Q from the graph (Figure 15) and C may he evaluated using equation 

( 1 5 ) . We finally obtain 

Using equation ( 1 7 ) the stress drop of the aftershock whose 

spectrum is shown in Figure 14 may now be evaluated. Using this equa­

tion and the microearthquake1s recorded trace amplitude of 24.0 

millimeters recorded at station SUM, a magnitude of 1 .2 is obtained 

for the event. Assuming the circular dislocation model of Brune (1970) 

and using the measured corner frequency of 75 hertz, equation (9) 

gives a characteristic fault radius of 17 meters for a rupture at the 

shear wave velocity (3 = 5,5 km/sec) and a characteristic fault radius 

of 29 meters for a rupture at the compressional wave velocity (8 = 6.0 

km/sec). Applying these values to Randall's (1973) theoretical curves 

(Figure 1 2 ) , a stress drop of 100 bars for 3 = 3*5 km/sec and a stress 

drop of 30 bars for 3 = 6.0 km/sec were obtained. These stress drops 

are extremely high for a magnitude 1 .2 event; normal stress drop for 

(17) 

which is the approximate magnitude relation for station SUM. 

Evaluation of Aftershock Stress Drop 



an event this size according to Gibowicz (1973• equation (3 ) ) 

0.07 bars. 
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CHAPTER V 

DISCUSSION 

Significance of the Stress Drop Calculations 

The definition of "normal"' stress drop given by Gibowicz in 

equation (3) was based on statistical studies of well-developed fault 

zones (the San Andreas Fault of California and the Kermadec and 

Tonga trenches and associated fracture zones of New Zealand), The 

faulting usually occurs in shear zones in which the rocks have been 

reduced to a mylonitic texture. The fractured zones in these rocks 

would certainly not be expected to withstand the accumulation of very 

large amounts of shear stress. Large magnitude earthquakes are com­

monly produced by relatively low levels of shear stress acting on very 

large fault zones. 

In contrast, all available evidence indicates that the Clark 

Hill epicentral zone is characterized by relatively fresh rock and the 

absence of large and well-developed fault zones. Surface faults with 

measurable recent movements have not been observed in the area. Con­

sequently, it seems reasonable that large shear stresses must accumu­

late before faulting can take place, resulting in earthquakes whose 

magnitudes are large relative to "heir source dimensions. Due to the 

ability of the relatively crystalline rocks of the Clark Hill area to 

support substantial shear stresses before structural failure occurs, 

an earthquake having a characteristic fault radius of 17 meters (see 
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previous section) produced a local magnitude 1.2 event in the Clark 

Hill epicentral zone. By contrast, an earthquake having the same 

source dimensions but occurring in the highly sheared rock of Califor­

nia would probably have a local magnitude of - 1 or less (see Figure 1 2 ) . 

Because the source dimensions of the Clark Hill events are small, 

more seismic energy is released in higher frequencies, or equivalently, 

the spectral corner frequencies of these microearthquakes are higher. 

It should be noted that in comparison to most aftershock investigations 

the upper limit of frequency response for the instrumentation used 

during this study is uncommonly high (greater than 200 hertz). Most 

aftershock, instrumentation is designed to attenuate energy above a few 

tens of hertz at most, since the observation of seismic energy in fre­

quencies above about ten hertz is unusual at common hypocentral record­

ing distance of about 25 Ion. 

If we assume the fault rupture propagated at the shear wave 

velocity, the direct method of Randall (1973) gives an estimate for 

stress drop for the August 2 , 1974 event which is about twice as large 

as is predicted by the statistical methods of Gibowicz (Table 4 ) . 

However, it must be again emphasized that Gibowicz's empirical rela­

tions were developed on the basis of data from well-established fault 

zones, which is not believed to be the case in the Clark Hill epicen­

tral zone. 

Two of the three empirical relations given by Gibowicz use "b" 

value as a variable in the calculation of stress drop. The "b" values 

of the aftershock sequences Gibowicz studied ranged from 0 .51 to 1.09 
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Table 4. Stress Drop Estimates for the August 2, 1974 

Earthquake. Normal Stress Drop for an Event of the 

Same Magnitude is (Gibowicz, 1973) 0.74 bars. 

Stress Drop Estimate 
(bars) Method 

12. 

4.0 

5.0 

Theoretical - Fault Area 
Estimated from Spectrum 
Rupture Velocity = 3.5 km/sec 

Theoretical - Fault Area 
Estimated from Spectrum 
Rupture Velocity = 6.0 km/sec 

Theoretical - Fault Area 
Estimated from Aftershock Zone 

6.3 EmDirical - Based 

5.0 

1.2 

Empirical - Based 
on "b" Value and 

Empirical - Based 
on Aftershock Duration 
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with a mean of 0.83 and a standard deviation of 0.16. Since the "b" 

value for the six weeks following the August 2 , 1974 event was 1 . 7 7 , 

almost six standard deviations from the mean "b" value of Gibowicz*s 

study, the application of Gibowicz1s empirical relations to this study 

is questionable. However, the results obtained by two of Gibowicz*s 

methods are surprisingly close ti the results of Randall's method when 

we assume a rupture velocity of 6.0 km/sec, the compressional wave 

velocity (Table 4 ) . Since the stresses in this area are considerably 

higher than most earthquake zones, the rupture of the fault may have 

progressed with the first arrival of seismic energy, i.e., the compres­

sional wave. If this is true, two of Gibowicz*s methods may have 

given fair estimates of the stress drop. 

The direct method of Randall (1973) indicated stress drops of 

30 bars at a rupture velocity of 6.0 km/sec and 100 bars a/t a rupture 

velocity of 3.5 km/sec for the September 18, 1974 20:15 GMT event. Al­

though 30 and 100 bars are remarkably high stress drop values for this 

event, they are possible values since shear strengths of hard rocks 

are on the order of one to two kilobars for depths of zero to two 

kilometers (Hadley, 1 9 7 3 ) . 

Intensities 

In the immediate epicentral area, events as small as M T = 1.0 
Li 

could easily be both felt and heacd (Modified Mercalli Intensity of 

II to III); events as small as M^ = 0.5 could be heard but not gener­

ally felt. Usually events of this low a magnitude are not sensed. 

However, these events were unusually shallow (generally less than one 
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kilometer), and consequently hypocentral distances were unusually 

short. How much of the high intensity character of these events is 

due to the shallow depth of the activity or the competence of the coun­

try rock is not known. 

Since the immediate epicentral area is unpopulated woodlands, 

the maximum Modified Mercalli intensity (V) shown on the August 2 , 1974 

earthquake intensity map (Figure l) may be misleadingly low. There was 

at least one verified instance of cracked cinder block construction. 

In this case, fresh chips of paint and plaster were scattered below 

the cracks. However, the resident had built the dwelling and store 

himself and the construction would probably be classified as Masonry C 

(Richter, 1958)- This site was located north of Bobby Brown State 

Park, ten kilometers northwest of the epicentral area. In view of the 

extent of damage, relatively large hypocentral distance (ten km) and 

undeveloped state of the epicentral area, it is believed that the in­

tensity of the August 2 , 1974 event would have been as high as VI if 

it had occurred in a populated area. An intensity of VT would normally 

be expected for an M T = 4 . 8 event (Richter, 1958) . 

Possible Source Mechanisms for the Seismic Activity 

Since the earthquake activity (l) has not been found to be as­

sociated with geologically observa.ble fault zones in the field, (2) has 

demonstrated some planar trends in hypocenter plots (Appendix V) indi­

cating the possible existance of two or three different planes of 

faulting, and (3) has a high stress drop character, it is interesting 

to speculate about the cause of the faulting. Bollinger (1973) and 
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Long (1975) have suggested that such faulting is a result of the crust 

in the southeastern United States undergoing a gentle warping. If this 

were the case, we might expect areas of particularly brittle rocks to 

accumulate high levels of stress and eventually fracture (ductile rocks 

would be deformed by these tectonic forces and elastic rocks would be 

bent). Fracture in brittle areas where stress is amplified should 

typically produce high stress drop earthquakes. 

A second possibility is a thermal mechanism for the strain 

accumulation and resulting seismic activity of the Clark Hill Reser­

voir. In Chapter I, it was noted that many of the surface rocks of 

the epicentral area are fractured. Cold water from the reservoir, 

surrounding creeks and ground water may seep down into these cracks 

and cool the warmer rocks a kilometer or so beneath the surface. As 

these rocks were cooled, they would contract; this contraction could 

be the source of the stress which eventually results in faulting 

(Lister, 1 9 7 4 ) . In addition, as more faulting occurred, more cracks 

would open and more cooling water would be introduced; in this manner 

the activity could be sustained for a long period of time because of 

the large time factors required for heat conduction in rocks. In ad­

dition, one might expect high stress drop events if the cracking were 

not too extensive and the rocks were generally well consolidated. 

This type of mechanism might also be feasible for other lake- and 

reservoir-associated aftershocks and earthquake swarms, such as the 

Lake Hopatcong, New Jersey sequence of August through September, 19^9 

(Sbar et aJL^ 1 9 7 0 ) . 
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CHAPTER VI 

CONCLUSIONS 

Based on the evidence presented in this thesis, the following 

may he concluded: 

1 . ' The August 2 , 1974 Clark Hill earthquake and its aftershocks 

are unusually high stress drop events. This indicates faulting in 

relatively unfractured rock, 

2. High stress conditions continued in the epicentral area 

after the August 2 , 1974 event and throughout much of the aftershock 

period. 

3. The aftershock activity of the August 2 , 1974 event was 

generally confined to the upper ~wo kilometers of the surface. 

4 . The aftershock activity probably occurred along two or 

more fault planes. 

5. The intensities of the aftershocks were high relative to 

their magnitudes. This may be partially or wholly due to their short 

hypocentral distances. 
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CHAPTER VII 

RECOMMENDATIONS 

The primary direction of "his study has been the investigation 

of the stress drop of the aftershock activity of the August 2 , 1974 

event. A great deal more information than has been used in this in­

vestigation is contained in the data obtained during this study. 

Numerous other aspects of this earthquake sequence should be studied. 

These other aspects include focal mechanism solutions from first mo­

tions and short term variations cf "a" and "b" values for use in 

predicting larger aftershocks and relationships between coda lengths 

and magnitudes. In addition to studies of already existing data, 

geologic (including detailed mapping of the epicentral area with field 

checks on possible fault traces described in Appendix V), geophysical 

(gravity, magnetics, focal plane studies and reflection seismology) 

and engineering (including core drilling and tests of rock shear and 

compressive strengths) studies could provide valuable information on 

the cause and nature of the faulting. 

It is also recommended tha:, if possible, a detailed seismic 

reflection line be shot across the epicentral area. This should be 

done as soon as possible because the continued aftershock activity 

rate indicates the continued existence of large stresses acting within 

this area. Such stresses may perturb the velocity. If the ambient 

stress field changes and most of the stresses are relieved the 
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velocities may change. At this time, the seismic line should be shot 

again. Time variation of velocities along this line could provide 

data for measurement of stress conditions in the earth. Variations 

in the arrival times of seismic waves reflected from subsurface struc­

tures could be used to estimate the percentage dilatancy as well as to 

define a dilatant volume. Such studies would be helpful to current 

research on earthquake prediction; if such a study were successful, 

it would be the first example of a truly accurate determination of the 

dimensions of a dilatant volume. This would be especially meaningful, 

since there is currently controversy over whether dilatant volumes are 

characterized by small percentage (1-2^) velocity changes of regional 

extent or large percentage (8-1Qj) velocity changes over a smaller 

volume (a few cubic kilometers). The magnitude of the volume effect 

is difficult to establish with current refraction methods. However, 

a reflection seismic study is very possible for this area due to the 

unusually shallow nature of the aftershock activity and the probable 

existence of a reflector at abou" ten km. 

If a reflection seismic survey were not possible, the existence 

of dilatancy might be proved or disproved by a regional refraction 

seismic line which sampled the hypocentral volume. This study would 

also involve shooting the line again after the cessation of seismic 

activity (hopefully corresponding to the relief of stress). 

With regard to the two proposed tectonic models for faulting 

(Chapter V), the following recommendations are made. The possibility 

of a thermal source for the activity could be investigated using finite 
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difference heat flow models (Lister, 1974) such as have been used in 

a study of thermal springs in the Southeast (Lowell, 1 9 7 5 ) . Using 

such a model, the actual contraction of the rocks at depth might be 

estimated and its significance be evaluated. The brittle rock-crustal 

warping theory would be more difficult to directly assess; however, 

since high stress drop might be expected for shocks of this type, a 

study of the spectral corner frequencies of well-recorded southeastern 

United States earthquakes is recommended. Such studies may be used 

to estimate the dimensions of the fault planes, hence allowing the 

stress drops to be evaluated by the method of Randall ( 1 9 7 3 ) . This 

study would be relatively straight forward and could provide substan­

tial insight into the currently active tectonic forces as well as the 

nature of faulting in the Southeast. 
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APPENDIX I 

SEISMIC RECCRDHTG- SYSTEMS 

The seismic recording system used in the microearthquake recon­

naissance surveys included four systems with smoked paper recorders 

and two systems with magnetic tape recorders. Detailed information of 

the make-up of these systems is given in Tables 5 and- 6. Except with 

the Sony tape system, seismometers used were generally Hall-Sears 

HS10-1A one hertz vertical or horizontal geophones. In a few instances 

a pair of 15 hertz exploration geophones was used. Typically the 

smoked paper systems operated with voltage gains of 1,000 to 16,000, 

and displacement gains at 10 hertz of 2,000 to 32,000. Typical accel­

eration response curves and particle velocity response curves for 

smoked paper systems are plotted in Figure 19. 

The Honeywell FM tape system had a response which was essen­

tially flat from 0 to 600 hertz for recordings made at 1 7/8 ips; 

however, the amplifier and geophone limited this system's response to 

0 .5 to 100 hertz. Figure 20 givc=s the particle velocity response curve 

for this system. 

The Sony AM tape recorder's response ranged from 20 to 4,000 

hertz at a tape speed of 15/l6 ips to 20 to 18,000 hertz at 7 l/2 ips. 

Seismic recordings were made at 15/l6 ips and. 1 7/8 ips; only those 

events recorded at 1 7/8 ips were used for spectral analysis. These 

events were played back at 15/16 ips to extend the upper frequency 
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response limit of the strip chart recorder. Using this method, resolu­

tion of frequencies as high as 400 hertz was possible. Figure 21 shows 

the particle velocity response of the Sony tape recorder - Hewlett 

Packard Strip Chart Recorder system. The lower end of the frequency 

response is limited by the Sony tape recorder; the higher end of the 

frequency response is limited by the Hewlett Packard Strip Chart 

recorder. Corrections for this response were made to the spectra 

obtained for microearthquakes recorded by this system. 

Figures 22 and 23 give the displacement responses for stations 

ATL and AMG- (Americus, Georgia) respectively. Corrections for the 

response at AMG were made in the spectral calculations for the 

August 2 , 1974 event. 



Table 5. Smoked Paper Seismograph Component Information 

Instrument 
Designation 

Amplifier 
System 

Timing 
System 

Sniper 
Case 

Teledyne-Geotech 
AS-330 Gain 58 to 
112 dB in 6 dB 
Steps 

Sprengnether TS-
300-1 Crystal 
Oscillator 

Yellow 
Box 

Homebuilt Amplifi­
er, Gain 60 to 95 
dB in Approximate­
ly 6 dB Steps 

Sprengnether TS-
300-1 Crystal 
Oscillator 

Sprengnether AS-
110, Gain 60 to 
120 dB in 6 dB 
Steps 

Sprengnether TS-
300-10 Crystal 
Oscillator 

LTL 
Special 

Teledyne-Geotech 
AS-330, Gain 58 to 
112 dB in 6 dB 
Steps 

Sprengnether TS-
300-1 Crystal 
Oscillator 

Recorder Sprengnether Model 
R-6034 3" Diameter 
Drum Recorder 

Sprengnether Model 
R-6034 3" Diameter 
Drum Recorder 

Sprengnether Model 
R-6040 13.5" Diam­
eter Drum Recorder 

Homebuilt 6" Diam­
eter Drum Recorder 

i—1 
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Table 6. Magnetic Tape Seismograph Component Information 

Instrument 
Designation 

Model Number 

Record Mode 

Frequency 

Response @ 1 7/8 ips 

Tape Reel Diameter 

Tape Width 

Power 

Maximum 
Recording Time 

Weight 

External 
Amplifier 

Internal 
Amplifier 

Sony 

TC-800B 

AM 

20-8000 Hz 

5" 
1/4" 

12 Volt DC 
or 113 Volt AC 

8.5 Hours 

11 Pounds 

1 K Voltage 
Gain Amp Built 
Into Geophone 

0.1 to 40 
Times Record 
Volume Gain 

Honeywell 

8100 

FM 

0 to 600 Hz 

10 1/2" 

1/2" 

12 Volt DC 
or 110 Volt AC 

8 Hours 

100 to 150 Pounds 

1 K to 100 K 
Voltage Gain 
(Home Built Amp) 

None 

Geophone 15 Hertz 
Exploration 

Hall-Sears 
HS-10-1 
Vertical or Horizontal 



Figure 19. Typical Acceleration and Particle Velocity Response Curves for Smoked Paper 
Systems. 



Figure 20. Particle Velocity Response Curve for the Honeywell-Amplifier System. 
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Figure 21. Particle Velocity Response Curve for the Sony Tape 
Recorder-Hewlett Packard Strip Chart Recorder System. 
Recording Speed 1 7/8 ips. 
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Figure 22. ATL Worldwide Standard Seismograph Station Short Period 
Seismometer Displacement Response. 
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Figure 23. AMG Short Period Vertical Seismometer Displacement Response. 
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APPENDIX II 

DETAILS OP FIELD TRIPS AND SEISMIC RECORDING STATION DATA 

The data presented in this thesis involved many weeks of field 

microearthquake reconnaissance study, A summary of these data are 

given in Table 7. Table 8 presents locations of temporary field seis­

mic recording stations occupied during this study. 
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Table 7. Summary of Dal:es of Station Occupation* 

Instrument 

Sniper Yellow LTL MEQ- Honey-
Datê  Case Box Special 800 well Sony 

1974 

August 3 TIG AMT 

4 TIG SCL AMT 

5 DBG BBP AMT 

6 DBG BBP 

7 DBG SCL SCL 

8 DBG CRK SCL 

9 DBG BBR 

10-19 

20 HFR CEB CRP 

21 HFR CEB CRP FRT 

22 HFR CEB CRP FRT 

23 HFR HUL CRP FRT 

24 CPK HUL HES FRT 

25 CPK HUL HES FRT 

26 CPK HUL HES 

27 CPK HUL HES 

28 CPK HUL HES 

29 CPK HUL HES 

30 CPK HUL HES 

31 CPK HUL HES 

*Three letter codes indicate station location 
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Table 7. Summary of Dates of Station Occupation (Continued) 

Date 

Instrument 

Sniper Yellow LTL MEQ-
Case Box Special 800 

Honey­
well Sony 

September 1 

2 

3 

4 

5 

6-15 

16 

17 

18 

19 

20 

21 

22 

23-30 

October 1-25 

Nov. 3-Dec. 2 

Dec. 11-Dec. 31 

1975 

Jan. 1-Jan. 23 

January 24 

25 

26 

CPK 

CPK 

CPK 

CPK 

CPK 

CEB 

NAT 

NAT 

KAT 

KAT 

KAT 

KAT 

HES 

FRT 

FRT 

HUL 

HUL 

HUL 

HUL 

HUL 

CRP 

CRP 

CRP 

CRP 

CRP 

CRP 

CRP 

BOB 

BBN 

BBN 

HES 

HES 

HES 

HES 

HES 

HST 

HST 

HST 

SUM 

SUM 

SUM 

SUM 

TDS 

TDS 

TDS 

TDS 

TDS 

HUL 

HUL 

FRT 

FRT 

FRT 

FRT 

FRT 

FRT 
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Table 7. Summary of Dates of Station Occupation (Continued) 

Date 

Instrument 

Sniper Yellow LTL MEQ-
Case Box Special 800 

Honey­
well Sony 

Jan. 27-Feb. 20 

February 21 

22 

23 

24 

Feb. 25-March 19 

March 

April 

May 

July 

20 

21 

22 

23 

24 

23 

24 

25 

26 

22 

23 

24 

25 

19 

20 

21 

NAT 

NAT 

NAT 

NAT 

NAT 

NAT 

NAT 

NAT 

NAT 

DKE 

DKE 

DKE 

DKE 

DKE 

DKE 

DKE 

DKE 

BBN 

BBN 

BBN 

BBN 

BBN 

BBN 

KPG 

KPG 

KPG 

KPG 

KPG 

JAM 

JAM 

JAM 

JAM 

JAM 

JAM 

JAM 

JAM 

SNT 

SNT 

SNT 

SNT 

SNT 

SNT 

SNT 

SUM 

SUM 

SUM 

SUM 

SUM 

SUM 

SUM 

SUM 

SUM 

HUL 

HAL 

HAL 

HAL 

HUL 

HUL 

HUL 

HUL 

HUL 

HUL 

HUL 

SUM 

GNT 

HHH 

HHH 

HHH 

HHH 

CKF 

CKF 

CKF 

CKF 

CKF 

CKF 

CKF 
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Table 8. Field Seismic Recording Station Location Data 

Station // Latitude Longitude 
Elevation 
(in km) 

Station 
Designation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

33°55.60' 

33°55.42' 

33°56.22' 

33°56.17' 

33°55.79' 

33°54.73' 

33°55.40' 

33°53.13' 

33°53.21' 

33°57.05' 

33°57.19' 

33°57.00' 

33°57.74' 

33°56.71' 

33°58.11' 

33°58.29' 

33°56.23' 

33°57.76' 

33°56.82' 

33°56.75' 

33°58.75' 

82*32.70' 

82"32.28' 

82"31.99' 

82*32.41' 

82°32.06' 

82c30.93' 

82c30.65' 

82°28.27' 

82°28.03' 

82°31.43' 

82°30.38' 

82°31.76' 

82°30.23' 

82033.85' 

82°34.69' 

82°35.21' 

82°30.14' 

82°30.25' 

82°30.52' 

82°29.41' 

82°28.65' 

.1228 

.1036 

.1036 

.1219 

.1021 

.1371 

.1051 

.1067 

.1067 

.1067 

.1036 

.1067 

.1402 

.1188 

.1173 

.1124 

.1158 

.1408 

.1280 

.1646 

.1372 

HES 

HST 

HTR 

HFR 

KAT 

FRT 

CRP 

CPK 

CRK 

NAT 

SUM 

HTL 

HUL 

CEB 

BOB 

BBN 

SNT 

HAL 

JAM 

DKE 

HHH 
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APPENDIX III 

AFTERSHOCK LOCATION PROCEDURE 

Data Preparation 

Smoked paper seismograms were compared until events were found 

which were recorded clearly on three or more stations. Compressional 

(p) and shear (s) wave arrival times were then read to ± 0.05 seconds 

with the aid of a low power microscope and a slide etched with a milli­

meter scale. When accurate absolute time control was not possible, 

S-P times were read instead. 

Events which were also recorded on magnetic tape were played 

back on a strip chart recorder at 125 mm/sec. S-P times for these 

events were read to + 0.01 second or better. 

Hypocenter Location 

A Fortran program, "DOALL," which was developed by Dr. L, T. 

Long to compute the location of Southeastern earthquakes, was modified 

for the Clark Hill epicentral area. The velocity model used was a 

semi-infinite medium with a compressional wave velocity of 6.0 km/sec 

and a shear wave velocity of 5.5 km/sec. The program "DOALL" is 

listed at the end of this Appendix. 

The program "DOALL" employs the method of Wiggins (1972) to 

find an origin time and hypocenter corresponding to the least mean 

squares fit of the observed travel times to theoretical travel times. 
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This method requires an initial guess with a small error. Therefore, 

hypocenters were first estimated using graphical techniques; this esti­

mate was then used as the initial guess. If the seismic wave arrival 

times were accurately determined,, the program rapidly converged to a 

solution. The hypocenters listed in this Appendix (Table 9 ) are 

accurate to better than ± 0 , 3 km in latitude and longitude (± 0,2 min­

utes) and ± 0,4 km in depth. 



Table 9. Aftershock Hypocenters 

Precision 
Origin E = ±0.1 km 

Event // Date 
Time 
(GMT) 

North 
Latitude 

West 
Longitude 

Depth 
(km) 

G = ±0 
F = ±0 

1 1-26-75 04:04:34.25 33°56.94? 82°30.12' 0.9 G 

2 1-26-75 04:24:51.95 33°57.84' 82°29.52' 0.8 F 

3 1-26-75 04:26:15.65 33°57.96' 82°29.88' 1.0 F 

4 2-22-75 04:09:19.08 33°57.61' 82°29.47' 1.0 F 

5 2-22-75 17:37:55.77 33°57.67' 82°29.15' 1.0 F 

6 2-22-75 17:38:21.53 33°57.85' 82°29.13' 1.0 F 

7 2-22-75 18:11:33.39 33°55.93' 82°29.93' 0.28 F 

8 2-22-75 18:31:02.35 33°58.37' 82°29.12' 0.27 F 

9 2-22-75 20:25:52.66 33°57.95' 82°29.36' 1.0 F 

10 2-22-75 23:35:01.74 33°58.06' 82°29.56' 1.0 F 

11 2-23-75 00:45:24.31 33°58.16' 82°29.65' 1.0 F 

12 2-23-75 23:55:58.15 33°56.99' 82°29.15' 0.94 G 

13 2-24-75 02:08:16.18 33°57.78 82°29.69' 1.1 F 



Table 9. Aftershock Hypocenters (Continued) 

Precision 
Origin E = ±0.1 km 
Time North West Depth G = ±0.2 km 

Event # Date (GMT) Latitude Longitude (km) F = ±0.4 km 

14 4-24-75 04:04:56.00 33°57.66' 82°29.77' 0.91 G 

15 4-24-75 05:50:17.49 33°57.52' 82°29.66' 0.97 G 

16 4-24-75 05:52:22.36 33°57.48! 82°29.46' 0.89 G 

17 4-24-75 05:53:36.12 33°57.47' 82°29.42' 0.86 G 

18 4-24-75 06:27:59.36 33°57.56' 82°29.52' 0.93 G 

19 4-24-75 06:28:54.18 33°57.52' 82°29.73' 0.97 G 

20 4-24-75 15:33:00.38 33°57.51' 82°29.14! 0.48 G 

21 4-24-75 17:31:52.61 33°57.54! 82°29.69f 0.96 E 

22 4-24-75 18:50:27.54 33°57.60' 82°29.59? 0.92 G 

23 4-25-75 00:55:24.32 33°57.39f 82°29.64f 0.91 G 

24 4-25-75 04:59:20.16 33°57.47' 82°29.65' 0.99 G 

25 4-25-75 05:01:07.75 33°57.04' 82°30.21T 0.95 G 

26 4-25-75 05:46:56.91 33°57.44' 82°29.52» 0.47 G 



Table 9. Aftershock Hypocenters (Continued) 

Event // Date 

Origin 
Time 
(GMT) 

North 
Latitude 

West 
Longitude 

Depth 
(km) 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

4-25-75 

4-25-75 

4-25-75 

4-25-75 

4-26-75 

4-26-75 

4-26-75 

4-26-75 

4-26-75 

4-26-75 

4-26-75 

4-26-75 

4-26-75 

17:50:49.80 

18:10:01.24 

18:12:14.96 

18:20:43.59 

00:25:34.22 

00:36:55.95 

05:34:22.12 

06:54:57.92 

06:56:28.53 

07:24:31.39 

07:25:12.01 

07:36:39.78 

08:17:13.28 

33°57.78' 

33°57.59' 

33°57.46' 

33°57.55' 

33°57.65' 

33°57.64' 

33°57.65' 

33°57.61' 

33°57.58' 

33°57.49' 

33°57.72' 

33°57.57' 

33°57.64' 

82°30.44' 

82°30.00' 

82°30.24' 

82°29.66f 

82°29.67' 

82°29.50' 

82°29.80' 

82°29.74' 

82°30.10' 

82°29.71' 

82°29.46! 

82°29.74f 

82°29.25' 

1.01 

1.19 

0.66 

0.96 

0.79 

0.00 

0.98 

0.96 

1.43 

0.98 

0.31 

0.82 

0.28 

Precision 
E = ±0.1 km 
G = ±0.2 km 
F = +0.4 km 



Table 9. Aftershock Hypocenters (Continued) 

Precision 
Origin E = +0.1 km 
Time North West Depth G = ±0.2 km 

Event // Date (GMT) Latitude Longitude (km) F = +0.4 km 

40 4-26-75 08:25:10.59 33°57.55' 82°29.43* 0.02 E 

41 4-26-75 08:40:30.37 33°57.49' 82°29.52' 0.66 E 

42 4-26-75 17:36:06.14 33°57.04' 82°29.86f 0.47 E 

43 4-26-75 18:12:31.88 33°57.09T 82°29.79f 0.12 E 

44 4-26-75 19:03:00.34 33°58.41' 82°30.17' 0.50 G 
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PRINTOUT OF DOALL 

001 0F0R»i5 MAIN 002 C****PROGRAM DO-ALL. ITERATT/E-WEIGHTED-LEAST SQUARES EPICENTER LOCATION 003 C 004 C 
005 DIMENSION PHAS<30> >LABEL*8) »C (5) * IpH(t>0) ,Q(50) ,sl (50> , ID(50) » 006 2DC(50) »S(5o)rA(50'4>'W(4> >DP(4) »FDpU) ,SPD(50) 007 COMMON STAT(200) ,SlAT(2()0) ,SLONG(200> ,ELEV(200J 003 C 
009 C******READ STATIONS TO BE USED********** 
010 201 READ(5,109)ISTAtSTaT(1ST*)t5LAT(1ST*)*SLONG<ISTAJ»ELEy(ISTA) OH 109 F0RMAT(I5»5XfA3,7X,3F10. 012 IF (ISTA.EQ.200)GO TO 70 013 WRITE ( 6» HO) ISTA»STAT (I STA)» SLAT ( I S T A ) * SLONG (IsTA ), E|_EV ( I S T A ) 0l'+ 110 F0RMAT(lXrI5»2XfA3,3Fl5.̂ ) 
015 GO TO 201 
016 70 CONTINUE 
017 C******RFAQ PARAMETERS FOR TRAVEL-TIME COMPUTATION********** OiB CALL TTIME(PHAS) 019 C*****̂EAO BASIC EQ DATA

 CArD CONTAINING ESTIMATES OF EPICENTER******** 020 C THIS CARD SHOULD Be IN FORMAT OF CARD FILE OF EARTHQUAKES 021 200 READf5»100,END=99)IYR,M0'IDA,IHR,MIN>SEC,ELAT,EL°NG,E2» 
022 2IST, TQ»SP,(LABEL(Ur)*JR=1,8) 
023 IF (IYR.EQ.O) GO To 99 02̂  lOO F0RMAT(I4'4I2»F3.1,2F7.3'F<+.1» 2I1>A4»8A5> 025 WRITE(6»105)MOrIDA,IYR#lHR,MIN»SEC.ELAT»ELONS»(L̂BEL(j8)tJ8=1>8J 026 105 F0RNIAT{2HltI2#lH/»l2»lH/»I»/î H H=»12» 2X»12 * 2X, F4 • 1/» 6H LAT=» 027 2F7.3/S7H LONG=,F7•3/'2X»A4f8A5//) 028 C*****READ WEIGHTS To BE ASSIGNED IN COMPUTATION OF X,Y,T * Z 029 C CAN ELIMINATE Z OR Z AND T BY SETTING TO ZERO EITHER y|Z OR WZ « WT 030 READf5»l0l) WX,tfy»wT*WZ,-ZtCD I ST»NlTEK,SECERR»SMlNER 031 101 F0RMAT(2X'6F8.3»l5,2F5.1) 

032 WRITE(6»10U WX»WY,WT,wZ'EZ»CDIST»NlTtR»SECERR,.SMINEr 033 XCDIST=CDlST/2. 03̂  IF(WZ.LT,0.0001)GO TO 22 035 M = 4 036 GO TO 23 037 22 IFCWT.LT.0.0001) Go TO 2'* 038 M=3 039 GO TO 23 0̂0 24 M=2 Ot+1 23 TO=IHR*360o.+MlN*6o. + SEC 042 WRITE(6»120) IHR, MjN» SEC • TO»M 043 120 FORMAT(1H ,2l5,2E2o«6»15J 044 M=l 
045 W(1)=SQRT(WX) 046 W(2)=SQRT(WY) 047 W(3)=S0RT(WT) 0'+8 W(4)=SQRT(WZ) 049 XW4=W(4) 050 W(4)=0.0 051 M=3 052 C*****READ STATlON»PHA5E,ARRIVAL TIME DATA 053 N=0 054 6 N=N+1 
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PRINTOUT OF DOALL (Continued) 

0 5 5 R E A D f 5 . 1 Q 2 , E N D = 5 ) I P H ( N ) ' I D < N ) » I H , I M , b E C , S H N ) 
0 5 6 102 F O R M A T ( 1 5 » 5 X » 15, 5 X , 2 1 3 ,> F ' . 3 , F l 0 . 3 ) 

0 5 7 Q ( N ) = I H * 3 6 o O . O + I M * 6 0 . 0 " S t . C 

0 5 B I F ( I D ( N ) . L T . l ) G O T O jj 
0 5 9 G O T O 6 
0 6 0 5 C O N T I N U E 
061 Nsn-1 
062 7 C O N T I N U E 
0 6 3 C C A L C U L A T E D I S T A N C E S B A S E D O n S - P 
0 6 1 N B = N / 2 
0 6 5 N8=NB*2 
066 DO 38 I = 2 ' N B » 2 
0 6 7 S P D ( I ) = ( Q ( I ) - Q ( I - 1 ) ) * ! • 3 7 * 6 . 0 
0 6 8 S P D ( I - 1 ) = S P D ( I ) 
0 6 9 38 C O N T I N U E 
070 KL=0 
0 7 1 39 C O N T I N U E 

0 7 2 DO 8 I N = 1 » N 
0 7 3 CALL A T I M E ( I P H ( I N ) , T O # J U ( I N ) , E L A T , L L O N G , E Z » C » R ) 
074* D C ( I M ) = 0 ( I N ) - C ( 1 ) 
0 7 5 A ( I N » 1 ) = C < 3 > 
0 7 6 A ( I N » 2 ) = C ( i f ) 
077 A ( I N » 3 ) = C ( 2 ) 
0 7 8 A ( I N # 4 ) = C ( 5 ) 
0 7 ^ S ( I N ) = 1 . 0 / S Q R T ( S I * I N ) ) 
0 8 0 8 C O N T I N U E 
0 8 1 CALL M A M A N ( A , D C , S » W ' N » D P ' M ) 
082 DO 14 1 6 = 1 , 4 
0 8 3 14 F D P ( l 6 ) = D P ( I 6 ) * W ( l 6 > 
0 8 4 T 0 = T 0 + F D P l 3 ) 
0 8 5 E L A T = E L A T + F D P < 2 ) / l l l . l l 
0 8 6 E L O N G = E L O N G + F D P ( l ) / ( H I . l l * C O S ( E L A T * 0 . 0 1 7 4 5 ) ) 
0 8 7 E Z = E Z + F D P U ) 
088 I H T O = T O / 3 6 0 0 

0 8 9 I M T O = ( T O - I H T O * 3 6 0 0 ) / 6 o 

0 9 0 T S E C = T O - I H T O * 3 6 0 0 - I M T O * 6 U 

0 9 1 E L O M N = ( E L O N G - I F I X ( E L O n G ) > * 6 0 . 

0 9 2 E L A M N = ( E L A T - I F I X ( E l A T ) J * b o . 

0 9 3 W R I T E ( 6 » 1 0 8 ) I H T O ' I WTO * T ^ E C » E L A T r E L A ^ N , E L O N G , E L O M N , E Z 

0 9 4 1 0 8 F O P M A K 1 H 1 , ' T H E R E C O M P U T E D E P I C E N T E R * S • / 2 X ' 2 1 4 , F 7 . 2 » / 2 X » 

095 I ' L A T I T U O E * , F 1 0 , 4 , ' 33 ' , F 6 . 2 / 2 X » » L O N G I T U D E • , F l O . , • fi2 » , F 6 . 2 / 

0 9 6 2 2 X , » D E P T H » , 3 X » F 7 . 2 / 2 X ) 
0 9 7 W R I T E ( 6 » 1 0 6 ) 
0 9 8 1 0 6 F O R V A T ( 1 H , ' S T A T I O N P H A S ^ H R M I N S E C CI C ? C3 C4 
0 9 9 * C 5 D I 5 T OBS-THt- + O R - ( S E C ) R (LOC) R ( S - P ) ' ) 
100 DO 18 IN=1,N 
1 0 1 I I D = I D ( I N ) 
1 0 2 I I P H r i P H ( l N ) 
1 0 3 CALL C X Y ( b L A T ( U D ) , S L O N G < I I D ) » E L A T , E L O N G , X , Y ) 

1 0 4 R = ( X * X + Y * Y ) * * 0 . 5 
1 0 5 R R = ( R * R + E Z * E Z > * * 0 » 5 
1 0 6 l H = Q { I N ) / 3 6 0 0 . 
1 0 7 l M = ( Q ( I N ) - I H * 3 6 0 0 » ) / 6 0 . 
1 0 8 S E C = 0 ( I N ) - I H * 3 6 0 0 » - I M * 6 0 » 
1 0 9 W R I T E ( 6 » 1 0 7 ) S T A T < I I D ) , P r t A S < I I P H ) , I H , i M » S E C » 
H O C < C ( I > ,1 = 1,5) , R » D C < I N ) , S I U N ) , R R , S P D U N ) 

H I 107 FORMAT(3X,A3»3X#A3,2X,12 '1X»12 ,1X,F^ .2 ,F10 .1#4F7.3 ,F8 ,2»2F7.2»5X,2 
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PRINTOUT OF DOALL (Continued) 

1 1 2 * F 9 . 2 ) 

1 1 3 1 8 C O N T I N U E 

1 1 4 T F S T C = S G R T ( F D P ( 1 ) * F D P ( 1 ) + F D P ( 2 > * F U p I 2) ) 

U 5 I F ( T F S T C . L T . C D I S T > M = : ' 

l i f t I F ( T E S T C . L T . C D I S T ) W < 4 ) = X W * * 

H 7 I F ( K L . E 0 . 1 ) K L = 5 
1 1 8 I F ( T E S T C . L T . C D I S T > K L . : : K L + 1 
1 1 9 I F ( K L . E Q , 1 ) 6 0 T O 3 g 
1 2 0 I F C T E S T C . L T . X C D I S T ) G 0 T O 2 0 0 

1 2 1 I F { N I T E R , L t . O ) G O T O 2 0 0 
1 2 2 N I T E R = N I T E R - 1 

1 2 3 I F ( S E C E R R . L T . S I M N E R ) G O T O 3 9 
1 2 4 N R E D = 0 
1 2 5 D O 9 1 = 1 » N 
1 2 6 9 2 O C S = A B S < D C ( i + N R E D J / S ( l + N ^ E D ) ) 

1 2 7 I F ( D C S . L T . S E C E R R ) G O T O 9 
1 2 8 N R E D = N R E D + 1 
1 2 9 J E N D = N - N R E D 

1 3 0 I F ( J E N D . L T . I ) G O T O 9 1 
1 3 1 D O 1 0 J = I » J E N Q 
1 3 2 Q ( J ) = G ( J + 1 ) 
1 3 3 I D C J ) = I D ( J + l ) 
1 3 4 I P H C J ) = I P H ( J + l ) 
1 3 5 1 0 S I ( J ) = S I U + 1 ) 
1 3 6 G O T O 9 2 
1 3 7 9 C O N T I N U E 

1 3 8 5 E C E R R = S E C E R R / 2 . 0 
1 3 9 N = N - N R E D 
1 4 0 G O T O 3 9 
1 4 1 9 1 N = N - N R E D + 1 
1 4 2 I F ( M . L E . , 4 ) G O T O 2 0 0 
1 4 3 G O T O 3 9 
1 4 4 9 9 S T O P 
1 4 5 E N D 
1 4 6 ^ F O R » I T T I ^ E 
1 4 7 S U B R O U T I N E T T I M E ( P h A S ) 
1 4 8 D I M E N S I O N C ( 5 ) , A ( 2 0 ) * P H A b ( 3 0 ) 
1 4 9 C O M M O N S T A T C 2 0 0 ) , S l A T ( 2 0 U ) f S L 0 N G C 2 Q 0 ) ' E L E V C 2 0 0 ) 
1 5 0 C * * * * * * * * 

1 5 1 C D E S I G N E D F O R A C O N S T A N T V E L O C I T Y S E M I I N F I N I T E H A L F S P A C £ , 

1 5 2 C D E P T H C O N S T R A I N E D T O 0 . 5 K M A B O V E O R M E L O W S E A L E V E L , 

1 5 3 C R E A D C R U S T A l M O D E L . . . I P H A = 2 0 . F O R L A S T C A R D . 
1 5 4 C * * * * * * * * * * 
1 5 5 4 9 R E A D ( 5 - 5 0 ) I P H A f A ( I p H A ) . p n A S < I P H A ) 
1 5 6 I F ( I P H A . E v J . 2 0 ) R E T U R N 
1 5 7 W R I T E ( 6 , 5 0 ) I P H A , A ( I P H A ) ' P H A S ( I P H A ) 
1 5 8 G O T O 4 9 
1 5 9 5 0 F O R M A T C I 5 ' F 1 0 . 4 , A 6 ) 

1 6 0 E N T R Y A T I M E C I P H » T ° » I D , E L A T » E L O N G » E Z ' C * R ) 
1 6 1 I F ( E Z . L T . - 0 . 5 ) E Z = - 0 . 5 
1 6 2 C A L L C X Y ( S L A T C I D ) ' S L O N G C A D ) r E L A T , E L O N b , x , Y ) 
1 6 3 R = S Q R T ( X * X + Y * Y ) 
1 6 4 D = S 0 R T { R * R + ( E L E V ' l D ) + E Z U * 2 . ) 

1 6 5 C C 1 ) = T 0 + A ( I P H ) * D 
1 6 6 C C 2 ) = 1 . 
1 6 7 C ( 3 ) = A ( I P H ) * X / D 
1 6 8 C ( 4 ) = A ( I P H ) * Y / D 



82 

PRINTOUT OF DOALL (Continued) 

169 C ( 5 ) = A ( I P H ) * ( E L E V < l O ) + E Z > / D 
170 RETURN 
171 END 
172 B F O r , i CXY 
173 C 
174 C 
175 SUBROUTINE CXY ( Y O ' X°'ALA «,ALONG, X , y ) 
176 C * * * * * ( Y O , X O ) IS ORIGIN IN DEGKEES<500KMFROM DATA FOR < 1KM ERROR 
177 C « * * * * ( A L A T , A L O N G ) LATITUDE AN^ LONGITUDE Oh DATA POImTs 
178 C*****FROM RICHTER-ELEM SE lS-U^ ING CLARKE SPHEROID 
179 C**** *LONGTTUDE IS NEGATIVE FOR WEST,X IS POSITIVE EAST, Y iS POSITIVE 
180 C NORTH, ( X , Y ) IS D lsT A NCE TO (ALAT»ALONG) FROM ORIGIN (XO 'YO) 
181 DIMENSION B(90) ,AC(90) 
182 DATA (B ( I ) ,1=20,45>'/ l • 844*98,1. 845213,1 f 845437,1. 8<+566e 11.845907» 
183 CI .846153,1.846408'1.8466'0,1.846938'1.847213,1.R47495,1.8t |7781» 
184 C1.848073,1.848372'1.8466 '3»1.848980'L84929»1.849605,1.849922, 
185 C1.850242,1.850565' l . a 508^0,1.851217'1«851543,1.851873.1.852202/ 
186 D A T A ( A C ( I ) , 1 = 2 0 * 4 5 ) / l . e 5 G l 0 0 , 1 . 8 b 6 l ? 3 » 1 . 8 5 6 2 4 8 , i . 8 5 6 3 2 5 , 1 . 8 5 6 4 0 4 » 
187 CI,846153,1.846408'1.8466^0,1.846938'1.847213,1.R47495,1.847781, 
188 CI.857132,1.857231'1.8573^1,1.857435'1.857538,1.^57643,1.857750, 
189 CI.857858,1.857964'1.8580^4,1.858184'1.858294,1.858403,1.858512/ 
190 DLAT=ALAT-YO 
191 DLOMG=ALONG-XO 
192 IA= (YO+ALATJ /2 .0 
193 A A = ( A C ( X A ) + ( A C ( X A + 1 ) - A C ( * A ) ) + ( ( Y O + A L A T ) / 2 . 0 - I A ) ) 
194 AA = AA*60.0* COS (0 » 017453 29*ALAT) 
195 X=AA*DLONG 
196 B B = ( R ( I A ) + ( B ( I A + 1 ) - B ( I A ) U ( ( Y O + A L A y ) / 2 . O - I A ) ) * 6 0 » 0 
197 Y=R9*DLAT 
198 RETURN 
199 END 
200 QFOR,i MAMAN 
2Q1 C 
202 C 
203 SUBROUTINE MAMAN(A , DC , s» w , N , DP, M) 
204 DIMENSION A ( 5 0 , 4 ) ' D C ( 5 0 ) ' S ( 5 0 ) , W ( 4 ) • A N ( 5 0 , 4 ) , A T A ( 4 , 4 ) , A V R T ( 5 , 5 ) , 
205 CATDC(4)»DP(4) 
206 DO 7 1=1,N 
207 D C ( I ) = S ( I ) * O C < I ) 
208 DO 7 J=1»M 
209 7 A N ( I , J ) = S ( I ) * A ( I , J ) * W ( J ) 
210 DO 20 IA=1,N 
211 20 W R I T E ( 6 ' 2 0 l ) ( A N ( l A , J A ) , J A = 1 , M ) 
212 201 F0RMAT(1X'4F12.4) 
213 DO 8 L = l , 4 
214 DO 8 LL=1»4 
215 8 ATA(L» LL)=0 
216 DO 9 I1=1,M 
217 Do 9 J1=1,M 
218 DO 9 K1=1,N 
219 9 A T A C I l , J l ) = A N < K l , I l ) * A N ( K l , J l ) + A T A * U » J l ) 
220 WRITE(6f202) ( ( A T a ( * B , J B ) , I B = 1 , 4 ) , J B = 1 , 4 ) 
221 202 F O R M A K l X / / , ( 4 (1X 'F12 .2 ) ) ) 
222 Ml=M+l 
223 CALL MlNVRT(AVRT,AyA»M,Ml) 
224 WRITE(6,203) < ( A V « T < I C , j C ) , I C = 1 , 4 ) , J C = 1 , H ) 
225 2Q3 F 0 R M A T ( 2 X / / , ( 4 ( 1 X ' F 1 2 . 2 )M 
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PRINTOUT OF DOALL (Continued) 

226 Uo 10 12=1,4 
227 10 ATDC(I2)=0 
228 DO H 13=1,M 
229 DO 11 K3=1»N 
230 11 ATDC( I3 )=AN(K3 , I3 ) *DC(K3 )+ATDC( I3 ) 
231 WRiTf!(6i203) < ATDC ( I t ) , l E = l 14) 
23? DO 12 14=1,4 
233 12 DP( I4 )=0 
234 DO 13 15=1,M 
235 Do 13 J5=1,M 
236 13 D P ( I 5 ) = A V R T ( I 5 , J 5 ) * A T D C ( ^ 5 ) + D P ( I 5 ) 
237 W R I T E ( 6 » 2 0 3 ) ( D P ( I S ) , I G = 1 ' 4 ) 
238 RETURN 
239 END 
240 apOR, i MINVRT 
241 SUBROUTINE MINVRT<A»X,NN'MM) 
242 DIMENSION A ( 5 r 5 > , X ( 4 » 4 ) 
243 C MATRIX INVERSION SUBROUTINE, A IS T H E INPUT MATRIX, 
244 C X IS THE OUTPUT 
245 8 DO 9 1=1,NN 
246 DO 9 J=1»NN 
247 9 A { I , J ) = X ( I » J ) 
248 DO 16 N=1»NN 
249 A(1»MM)=1. 
250 DO 10 I=2»MM 
251 10 A( I ,MM)=0. 
252 DO 11 J=1»NN 
253 11 A ( M M , J ) = A ( 1 , J + l ) / A ( 1 , 1 ) 
254 DO 12 I=2»NN 
255 XX=A( I , 1 ) 
256 DO 12 J=1»NN 
257 12 
258 
259 16 
260 
261 
262 OXQT 
263 
264 1 
265 2 
266 3 
267 4 
268 5 
269 6 
270 7 
271 8 
272 9 
273 10 
274 11 
275 12 
276 13 
277 14 
278 15 
279 16 
280 17 
281 18 
282 19 

A ( I - 1 , J ) = A ( I , J + 1 ) - X X * A ( M M , J ) 
DO 16 J=1»NN 
A(NN,J)=A<MM,J) 
RETURN 
END 

HES 33.9266 82.5449 .1128 
HST 33.9237 82.5381 .1036 
HTR 33.9370 82.5332 .1036 
HFR 33.9362 82.5402 .1219 
KAT 33.0298 82.5343 .1021 
FRT 33.9121 82.5154 .1371 
CRP 33.9233 82.5109 .1051 
CPK 33.8854 02.4711 .1067 
CRK 33.8868 82.4672 .1067 
NAT 33.9508 82.5238 .1067 
SUM 33.9532 82.5063 .1036 
HTL 33.9500 82.5293 .1067 
HUL 33.9623 82.5038 .1402 
CEB 33.9452 82.5642 .1188 
BOB 33.96e5 82.5782 .1173 
BBN 33.9715 82.5068 .1124 
SNT 33.9372 82.5023 .1158 
HAL 33.9627 82.5042 .1408 
JAM 33.9470 82.5087 .1280 
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PRINTOUT OF DOALL (Continued) 

2 8 3 2 0 D K t : 
2 8 4 2 1 H H H 

2 8 5 2 0 0 

2 8 6 1 . 1 6 6 7 P 

2 8 7 2 , 2 8 8 8 S 

2 8 8 3 . 1 2 1 7 S - P 

2 8 9 2 0 

2 9 0 1 9 7 5 0 4 2 6 1 8 1 2 3 2 , 3 3 . 9 6 

2 9 1 1 . 0 1 . 0 
2 9 2 1 1 8 

2 9 3 2 1 8 

2 9 4 1 1 9 

2 9 5 

CM 1 9 

2 9 6 3 2 0 
2 9 7 

2 9 8 1 9 7 5 0 4 2 6 1 9 0 1 3 8 . 3 3 . 9 6 

2 9 9 1 . 0 1 . 0 
3 0 0 1 1 9 

3ol 2 1 9 

3 0 2 1 1 8 
3 0 3 3 2 0 
3 Q 4 

3 3 , 0 4 5 8 8 2 . 4 9 0 2 . 1 6 4 6 
3 3 . 9 7 9 2 8 2 . 4 7 7 5 . 1 3 7 2 

6 2 . 5 
1 « ° ! • 1 . 0 . 0 1 2 ° 1 6 0 . 1 

1 8 1 2 3 2 . I d 0 . 5 ' * l 

1 8 1 2 3 2 . 3 U 0 . 5 
1 8 1 2 3 2 . 0 * 0 . 5 
1 8 1 2 3 2 . 2 4 0 . 5 
1 8 1 2 3 1 . 9 9 0 . 5 

8 2 . 5 
i * ° ! • 1 . 0 . 0 1 2 0 1 6 0 . 1 

1 9 0 1 3 6 . 3 ^ > 0 . 5 * ' l 

1 9 0 1 3 8 . 6 * 0 . 5 
1 9 0 1 3 8 . O U 0 . 5 
1 9 0 1 3 8 . 2 ^ 0 . 5 
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APPENDIX IV 

CALCULATION OF EARTHQUAKE SPECTRA 

Data Preparation 

The aftershocks recorded on magnetic tape and selected for spec­

tral analysis were played back at half speed (recorded at 1 7/8 ips, 

played back at 15/l6 ips) on a two channel strip chart recorder at 

125 mm/sec. These strip chart seismograms were then placed in a micro­

film reader and projected onto a screen (magnification 14»8X). They 

were then traced onto a large fine lined sheet of graph paper. Digit­

ization was performed at a 1,0 millisecond interval for the events 

recorded on the Honeywell system (giving a maximum resolvable frequency 

of 500 hertz) and a 0.5 millisecond interval for events recorded on the 

Sony system (giving a maximum resolvable frequency of 1000 hertz). 

Program SPEC1 was used to calculate the spectra of these events. 

Due to the marginal quality of recording of the AMG seismogram 

of the August 2 , 1974 event, this seismic trace was represented by 

measuring the times and heights of the peaks and troughs of the seis­

mogram. Regular time interval digitization was then performed by fit­

ting a cosine function to the peaks and troughs and interpolating 

between data points (see subroutine DIGI, program SPEC2). 

Theory of Spectral Analysis 

The digitized time series representations of the compressional 

and shear waves of the earthquakes were transformed into the frequency 
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domain using a numerical Fourier Transform method (see subroutine 

SERTRA), The Fourier transform pair is as follows 

and 

N i 2 T T f . t 1 

Z(ti) = J Z(fj)e dt (18) 

N - ± 2 f , t ± 

Z(fj) = I Z(t ±)e df (19) 
i=l 

where Z(t.) is time domain representation of the wave form and Z(f.) 

is the frequency domain representation of the wave form, a n (^ 

Z(f.) a r e discrete functions of time and frequency respectively. 

Z(f.) is complex and takes the form 
0 

Z(f i) = R(f.) + il(f.) (20) 
J J 

where R(f.) is the real part of Z(f.) and l(f.) is the imaginary part 

of Z(f.). The modulus of the frequency-domain function Z(f.) is given 

by 

[Z(f,)] = (R(f ) 2 + I(f ) 2 ) % (21) 
*J J J 

This is the quantity plotted in t i e spectral representations of the 

wave forms. 



87 

PRINTOUT OF SPEC1 

O o l B h D G > N X . M » 6 6 » 0 » 0 . 
0 q 2 O F O r . I M A I M 

0 0 3 D I M E N S I O N A ( 5 0 0 0 ) ' A ™ E . Q ( 2 5 0 0 ) , P H ( 2 5 ° 0 ) ,LABEL(13) » J ( 5 0 p O ) » S F R E Q ( 2 5 0 
0 0 4 # 0 ) 

0 0 5 P I = 3 . 1 4 1 5 9 2 4 5 3 6 
0 0 6 1 R E A D ( 5 , 2 , E N D = 9 9 9 ) N , I P # T » * L A B E L ( I ) » I = l » 1 3 ) 
0 0 7 2 F 0 R M A T ( 1 X ' 2 I 3 » F 8 . 7 . 1 3 A 5 ) 
O o f l R E A D ( 5 , 1 2 ) A M P 6 0 , p H i 6 0 

0 0 9 1 2 F O R M A T ( 1 X » 2 F 1 0 . 5 ) 
0 1 0 H 2 F 0 R M A T ( / / 1 7 H D l R E C j T R A N S F 0 R M » 6 H WO = , 2 E l 7 . 7 / i n H M q O U L U S * 
O H H O H A N D P H A S E / ( l X , F 1 5 . 6 ' F l 0 . 2 , E 1 5 , 6 , F i o . 2 r E 1 5 , 6 » F l O . a » E 1 5 . 6 , F l O . 2 

O l ? 2 r E l 5 . 6 , F l 0 . 2 ) ) 
0 1 3 5 F O R M A T ( 1 H 1 / / , 4 0 X » l 3 A 5 / / / > 

0 1 4 8 F O P M A T I I X r l O F l O . l ) 
0 1 5 6 F o r m a t ( 4 o x » » n u m b e r o f d i g i t i z e d p o i n t s = » , I 5 m t i m e i n t e r v a l = • 
0 1 6 1 » F 1 0 . 8 , ' S E C V / ) 
0 1 7 R E A D ( 5 , 3 ) ( J ( I ) , I r l , N ) 
0 1 8 3 F O R M A T ( l X r l 9 I 4 ) 
0 1 9 L = 2 0 0 - N 
0 2 0 N N = N 
0 2 1 N = 2 0 0 
0 2 2 n o 2 ? I = 1 » L 
0 2 3 2 2 A ( l ) = o . O 
0 2 ^ D O 4 I = 1 , N N 
0 2 5 I L = I + L 
0 2 6 4 A ( I L ) = J ( I ) 

0 2 7 W R I T E ( 6 , 5 ) ( L A B E L ( I ) » 1 = 1 , 1 3 ) 
0 2 8 W R I T E { 6 , 6 ) N , T 
0 2 9 W R I T E ( 6 , 8 ) ( A ( I ) » I = l » N ) 
0 3 0 W R I T E ( 6 , 7 ) 
0 3 1 7 F 0 R M A T ( 1 H 1 / / , » P L O T O F A M P L I T U D E V E R S U S T I M E — W l T H 6 0 C Y C L E N O I S E 
0 3 2 * » / / ) 
0 3 3 D F = 1 . 0 / < N * T ) 

0 3 4 N W = N / 2 
0 3 ^ C A L L D R A W ( N , 1 , A ) 
0 3 6 W R I T E ( 6 , 2 3 ) 
0 3 7 2 3 F O R M A T ( 1 H 1 / / , • R A W S P E C T R A L D A T A W I T H 6 0 C Y C L E n O i s E ' } 
0 3 8 C A L L S E R T R A ( 0 . 0 > N » N W » D F » A F R E Q » P H r W O » A ) 
0 3 O C A L L T I C ( N W p D F . A F R E Q ) 
0 4 0 N W = N W - 1 

0 4 1 W R I T E ( 6 , 1 8 ) 
0 4 2 1 8 F O R M A T ( 1 X / / , 9 X , t p L o T O F L o G l O S P E C t R A V E R S U S F R e < 3 U E N C y ( W U H 6 0 C Y C 
0 4 3 * L E N O I S E ) • / / ) 
0 4 4 C A L L D R A W M U N W , 1 , A f R E q , D F ) 
0 4 5 S F P E O ( 1 ) = A F R E Q ( 1 ) 
0 4 6 S F R E Q ( N W ) = A F R E G ( N ' W ) 
0 4 7 N L = N W - 1 
0 4 B D O 1 4 I = 2 » N L 
0 4 9 K = I + 1 
0 5 0 L = I - 1 
0 5 1 1 4 S F R E 0 ( D = < A F R E Q ( I ) + A F r E Q ^ L ) * . 5 + A F R e Q ( K ) * . 5 ) / 2 . 
0 5 2 W R I T E ( 6 , 1 0 ) 
0 5 3 1 0 F O R M A T ( l H l / / # * r O X » ' S M O O T H E D S P E C T R A ? / ) 
0 5 4 W R I T E ( 6 » 1 1 2 ) W O , D F ' ( S F R E Q < I ) » P H ( I ) , 1 = 1 » N W ) 
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0 5 ^ W R I T F ( 6 » 1 6 ) 
O 5 6 1 6 F O R M A T ( I X / / / , 3 0 X » ' P L O T O F LOG10 OF S M O O T H E D S P E C T R A V E R S U S F R E Q U E N 
057 i « C Y » / / ) 
0 5 0 c a l l d r a w m l ( N w . i » s f R e : q , d f ) 
0 5 9 GOTO 1 
0 6 0 9 9 9 S T O P 

061 E n d 
062 
063 S U B R O U T I N E S E R T R A < D ^ T , N » N W • D F » G » P H , W O t T ) 

064 C DF.T = 0 T I M E T O F R E Q D O M A I N , N O T = 0 F R E Q T O T I M E , N = N U M B E R O F TIME 
06^ C N w = N / 2 O R N O . OF FREQUEmcY F T S . O F = F R t Q I N T E R V A L = 1 / T ' T = N * D T 
0 6 6 D I M E N S I O N G ( N W ) . p H ( N W ) , T ' N ) » C F N ( 5 0 0 > » S F N ( 5 0 0 ) 

067 PI = 3.1415926536 
0 6 8 CF = 0.017^532925 
0 b 9 AM = N 
0 7 0 D O 1 1 9 I = 1 » N 
0 7 1 A ~ I 
0 7 ? ARC, = ( 6 . 2 b 3 l 8 5 3 1 * A ) / A N 
0 7 3 U 9 CFM ( I ) = C O S ( A R G ) 
074 S F M ( I ) = S I M ( A R G ) 
0 7 5 IF ( D E T ) 1 3 1 . 1 3 2 . 1 3 1 
0 7 6 132 D O 133 I = l . N W 
0 7 7 

G ( I ) - 0.0 
07^ 1 3 3 

P H U ) - 0 . 0 
0 7 9 WO = 0 . 0 

080 D O 139 J = 1»NW 
o a i X = 0.0 
0 8 2 

Y - 0.0 0 8 3 D O 140 I = 1 » N 
0 8 4 I J = I * J - N * ( ( I * J - D / N > 
0 8 5 X = X + T ( I ) * C F N < l J ) 
0 8 6 140 Y = Y - T ( I ) * S F N { I j ) 
0 8 7 P H ( J ) = ( A T A M 2 l - Y . - X ) ) / C F +180. 
0 8 8 139 G ( J ) = ( l . c / ( A N * D F * 6 . 2 8 3 1 8 5 3 1 ) ) * S Q R T ( X * X + Y * Y ) 
0 8 9 D O 134 I = 1 , N 
0 9 0 134 WO = WO + T ( I ) 
091 WO = ( 1 . 0 / ( A N * D F * 6 . 2 8 3 1 » 5 3 1 ) ) * W O 
092 W R I T E ( 6 - 1 1 2 ) W O » D F , ( G ( I ) , P H { I ) f I = l . N W ) 

F 0 R M A T < / / 1 7 H D l R E C j T R A N S F D R M • 6 H WO = » 2 E l 7 . 7 / i n H M 0 D l j L u S » 093 U 2 
W R I T E ( 6 - 1 1 2 ) W O » D F , ( G ( I ) , P H { I ) f I = l . N W ) 

F 0 R M A T < / / 1 7 H D l R E C j T R A N S F D R M • 6 H WO = » 2 E l 7 . 7 / i n H M 0 D l j L u S » 
094 U O H A N D P H A S E / ( l X , E l 5 . 6 ' F 1 0 . 2 . E 1 5 , 6 , F l o , 2 , E 1 5 . f , » F 1 0 . Z » E l 5 . 6 . F l 0 . 2 

095 2 » E 1 5 . 6 . F 1 0 , 2 ) ) 
096 R E T U R N 

097 1 3 1 D O 142 I = 1 , N 
098 1 4 2 T f l ) = W O / 2 . 0 
099 D O 143 J = 1 , N W 
l o o NSG = ( P H ( J ) / 3 6 0 « ) * A N 

1 0 1 D O 143 I = 1 » N 
102 I J = I * J + NSG - N * ( ( I * J + N S G - 1 ) / N ) 
103 1 4 3 T ( I ) = T ( I ) + G ( J ) * C F N ( 1 J ) 
104 D O 1 4 4 I = 1 » N 
105 1 4 4 T ( I ) = 1 2 . 5 6 6 3 7 0 6 * D P " * T ( I J 
106 D T = ( 1 . 0 ) / ( A N * D F ) 
107 R E T U R N 
l o a E N D 
1 0 9 B F O r » i DRAW 
1 1 0 SUBROUTINE DRAW ( N T O T , I N C * F) 
1 1 1 C N T O T = T O T A L NUMBER O F POINTS .[N F . F I S THE DATA (ONE D j M E N s l O N A L ) 
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I]?. C T O 111" P L O T T E D . I l l C I ' i T i l l : '"• A M P L E I N T E R V A L F O R P L O T T I N G p . 
1)1 C S C A L F T S T H L A M P L I T ' J f t F Of- " N E F U L L S C ^ L L D E F L E C T I O N 

l i n n w i s i o n k ( n t o r > 

U S D A T A A A l / l H / » A A 2 / l H * / # A ' < 3 / 1 H + 

U 6 S C A L F = 0 . 

I l 7 D O 1 I = l » f J T O T 

l l f l I F ( < ; C A L E . G T . A 1 3 S ( F < I ) ) ) G O ^ O 1 

1 1 9 S C A L E = A R S l F ( I ) + 0 . 1 * F r < I > ) 
1 2 0 1 C O N T I N U E 
1 ? 1 W p i T E ( 6 , 1 0 H ) ( I . I = - 9 , 1 Q J , ( A A 2 » M = l , 2 l ) 

1 2 2 1 0 1 1 F O R M A T ( 3 X r 2 0 X 5 / 2 X » 2 ? A i > ) 
1 2 3 1 0 n o 1 5 0 1 K = 1> N T O T ' I N C 
1 2 4 F K = 5 0 . 0 * ( ( F ( K ) / S c ^ L L ) + U . 0 0 0 1 ) 
1 2 5 K l = F K / 5 0 . 

1 2 6 K K = F K - K I * 5 0 . + 5 0 . 4 Q 5 
1 2 7 5 i i f o r m a t ( i x . h o a d 
1 2 8 W R I T E ( 6 . 5 i i ) A A 2 • ( A A 1 , J = 1 . K K ) , A A 2 

1 2 9 l 5 o l C O N T I N U E 
1 3 0 R E T U R N 
1 3 1 E n d 
1,3/2 ( 3 F O R , i D R A W M L 

1 3 3 S U B R O U T I N E D R A W M L ( N T O T • 1 N C • F » D F ) 

1 3 4 C N T O T = T O T A L N U M B E R O F P O I N T - 1 I N F , F I S T H E D A T A ( O n e O j M E N s i O N A L ) 

1 3 5 C T O B E P L O T T E D . I N C I s T H E - A M P L E I N T E R V A L F O R P L O T T I N G p , 
1 3 6 C S C A L E I S T H E fi O F L O G C Y C L E S 
1 3 7 C A M A X L I S M A X V A L U E 0 ^ G ( I ) 
1 3 8 D I M E N S I O N F ( N T O T ) 
1 3 9 D A T A A A l / l H / , A A 2 / 1 H + / A A 3 / 1 H + 
1 4 0 A M N L = F ( 1 ) 
H i A M A X L = 0 . 

1 4 2 D O 2 1 = 1 . N T O T 
1 4 3 i F ( A M A X L . G T . F d ) ) G o T O 1 

1 4 4 A M A X L = F ( I ) 
l t + 5 1 I F ( A M N L . L T . F ( I ) ) G O t O 2 

1 4 6 A M N L = F ( I ) 
1 4 7 2 C O N T I N U E 

1 4 8 S C A L E = I F l X ( A L O G l O ( A M A X D - A L O G 1 0 ( A M N L ) + 1 . 5 ) 
1 4 9 J 1 = 1 0 0 . / S C A L E - 1 
1 5 0 I 2 = S C A L E 
1 5 1 W R I T E C 6 . 1 0 1 0 ) A A 2 , ( ( ( A A 3 . J = 1 , J 1 ) , a A 2 ) , 1 = 1 , 1 2 ) 
1 5 2 1 0 1 0 F 0 R M A T ( 1 1 X , 1 1 5 A 1 ) 
1 5 3 a l m a x = a l o g i o ( a m a x l ) 
1 5 4 m a x f = a l w a x 
1 5 5 S C A L = F L o A T < M A x F ) + 0 . 5 + S I t i N ( 0 . 5 , A L M A X ) 
1 5 6 D O 1 5 0 1 K = l , N T O T » l N C 

1 5 7 F K = 1 0 0 . 0 * ( A L O G 1 0 < F ( K ) ) - S i ; A L ) / S C A L E 
1 5 « K I = F K / 1 0 0 . 
1 5 9 K I = - K I + < 1 . 0 - S I G N ( 1 . 0 » F K ) J / 2 . 0 

1 6 0 K K = F K + 1 0 0 . * K I 
1 6 1 D D F = D F * K 
1 6 2 W R I T E ( 6 , 5 l l ) D D F , A A 2 ' < A A l < > 1 = 1 f K K ) t A A 2 
1 6 3 5 H F O R M A T ( l X » F 1 0 . 2 , l l o A l ) 
1 6 4 1 5 0 1 C O N T I N U E 
1 6 5 R E T U R N 
1 6 6 E N D 
1 6 7 O F O R r g l T I C 
1 6 8 S U B R O U T I N E T I C ( N W , D F , G ) 
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t r y ) C Or JMK f O l H - h C T l O N F I ' ^ M Af.-,|' AND HAl.L-Sfc"ARS FREO CURVES 
170 H l r i r M ^ i O N &SOR(,?3» , F i < r . £ ) ( « ! 3 ) »GiriW) 
171 DATA f - R F S / , 5 , . 7 5 , 1 . 0 ' 1 „ 2 ^ , 1 . 5 , 1 . 7 5 , 2 , 0 , 2 , 5 , 3 . 0 , 4 . 0 , 5 . 0 » 
1 7 2 * 7 . 5 » J G . O , l b . O » 2 0 . ' 3 0 . , 4 0 » » 5 0 . , 6 0 . , 7 0 . ' 8 0 . » 9 0 . , l n U . / 
l77> DATA GSCR/6 .6 ,23 .6 ,50 .9 , ' 8 . 3 , 1 1 1 . 2 , 1 3 5 , 2 , 161. 0,?0t, ,6» 
174 + 2 5 3 . , 3 4 3 . , 4 3 5 . , 6 5 3 . , 8 7 1 . ' 1 3 0 6 . , 1 6 8 9 . » 2 4 5 4 . , 3 0 6 1 , » 
175 * 3 f , 9 5 . ,4117, ,4433. '4750, ,5106. ,5278, / 
176 FMIN=0.50 
177 FMAX=100.0 
178 l F ( D F . L T . O f 5 0 ) GO T^ 7 
17 Q FMIM=UF 
180 7 IF(NW+DF«GT.FMAX) G^ TO « 
181 FMAX=NW*DF 
182 8 I5TART=FMIN/DF +0*00001 
183 ISTOP=FMAX/DF 
184 J = l 
185 DO 1« I = l S T A R T , I 5 T o P 
186 Fq=i*dF 
187 40 I F ( F 0 . L T . F R E S ( J ) ) GO TO 42 
188 J=J+1 
189 GO TO 40 
190 42 V A L = G S 0 R ( J - 1 ) + ( G S 0 r ( J ) - G S 0 R ( J - 1 ) ) * ( F Q - F R E S ( J - l ) ) / 
191 * ( F R E M J ) - F R F S ( J - I ) ) 
192 18 G ( I ) = G ( I ) / V A L 
193 RETURN 
194 END 
195 Qx^T 
196 7 i 0.0006873 S WAvE D A T A , T P « r T A P E 2»SlOE 2 AT 1778, MARCj_| 23,1975 
197 
198 10 27 53 120 145 l52 H O 15 -80-155-1*8-190-108 "73 - 7 2 - 6 8 -10 9o 
lg9 180 193 177 H 5 55 - 3 i -61 "62 -67 - 6 8 -15 35 57 53 5 5 55 33 -30 
200 -86 -65 -54 -56 -57 - 5 3 -38 "12 30 6 3 58 36 28 20 "0 1 51 95 
2Ql 70 20 -20 -38 -76 -7g -65 "37 -27 -15 24 25 10 "40 
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001 BASG'T 41»D 002 «USE 41..TPFS. 
003 O F O r » s I main 
004 C NQT (NO.OF INTERVALS) 'TTlME(LENGTH OF ylME) DT*NDT 
005 C HEIGHT SCALE FACTOR MM/MM,LA* 215,4Flo.3»4A6»I1 
006 C DATA ( ) H ( I ) . T ( I ) . I ( 1 » N ) (10,-7.1) 
007 c he igh t sca le f a c t o r mm/mm#la« 2I5,4Fio.3»5A6 
ooa c data 0-193 mm t ime sca le 
009 DIMENSION G(500) ,P|-i(500) » T ( 1000) »H( 1000) ,F(2000) »LAB(<|) ,FN(2000) 
010 DIMENSION IBUFF(50oO) 
011 CALL P L O T S d B U F F ( l ) «5000"+ l ) 
012 PI2 = 6.2831853072 
013 NI=1 
014 NTOT=100 
015 IND=1 
016 READ(5f101»END=999) N,NOT,DT tTI rTCaL.HCALrLAB, Iv 
017 101 FORMAT (2 I5»4F10 .3 .4A6 .2X , I 1 ) 
018 I F ( N . E Q . O ) GO TO 9g9 
019 WRITE (6,103) N » N D T « D T # T i » T C A L , H C A L ' L A B . I V 
020 103 F0RMAT( lH l , I5 r44H PAIRS OF POINTS ARE TO BE INTERPOLATED AT #15 
021 *»7H POINTS,F10 .2 , l i |H SECONDS APART, / /13H BEGINNING AT , F l O . 3 / 

022 *15H TCAL UNITS/SEC, l F l O . 3 »15H HCAL UNlTS/MM' lFlo«3»//«vA6» 
023 *5x,15HTYPE CORRECTION,I1> 
024 TTIME = DT*NDT 
025 Nw = NDT / 2 
026 DF = 1.0 / TTIME 
027 47 READ(5,102) ( T ( I ) , H < I ) t 1 = 1 * N ) 
028 102 FORMATU0F7.0) 
029 WRITE(6»104) < H ( I ) , T < I > » 1 - 1 » N ) 

030 io4 format(ix» i o f i o . 3 > 
031 Do 20 I=1»N 
032 21 H ( I ) = H ( I ) * H C A L 
033 20 T ( I ) = T ( I ) / T C A L 
034 WRITE(6«180) 
035 180 FORMAT(lHlf 'VALUES °F H AND T CORRCECTED TO MM And S ^ C » / ) 
036 WRITE(6»105) < H < X ) , T ( I ) » I » 1 » N ) 
037 lQ5 FORMAT(1X«10F10.3) 
038 CALL D I G K h# It N, T I , Nj)T, DT# F) 
039 600 CONTINUE 
040 46 DO 10 I=1»NDT 
041 F ( I ) = - F ( I ) 
042 10 F N ( I ) = I * D T 
043 CALL CALFT (FN ,F , lBUFF ,NOT,LAB) 
044 CALL STLNFT(FN,F ,N ,A ,B»SGA,SGB) 
045 60I CONTINUE 
046 DO 11 I=1»NDT 
047 11 F ( I ) = F ( I ) - A * I * D T - B 
0t|8 CALL SERTRA(0.0»NDt.Nw#O^I GrPH,WO,F) 
049 221 CONTINUE 
050 GO TO (60*61 ,62) , IV 
051 60 CONTINUE 
052 CALL WWSSC(NW»DF,G,PH) 
053 GO TO 602 
054 61 CONTINUE 
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055 CALL SCSPC (NW,DF'G'PH) 
056 GO TO 602 
057 62 CONTINUE 
058 CALL TIC (NW.DF»G'pH) 
059 602 CONTINUE 
060 W R I T E ( 6 r l l 2 ) WO, D F , I V , ( G 1 I ) , P H ( I ) » I=1,NW> 
061 H 2 F0RMAT(//17H D i r e C t TRAN$fORM,6H WO = ,2e17.7/1qH M0DULUS» 
062 H O H AND PHASE/,16H CORRECTION T Y P E , U r / 1 X , 5 < E 1 5 . & » F 1 0 . 2 ) ) 
063 DO 12 J=1,NW 
064 F N ( J ) = L O G 1 0 ( G ( J ) } 
065 F N ( J ) = - F N ( J ) 
066 12 F ( J ) = L 0 G 1 0 ( D F * F L O A T f J ) ) 
067 CALL SPLOT(FN»F, lB(jFF,NW'LAB) 
068 999 s top 
069 End 
070 OFORfgl , CALFT 
071 SUBROUTINE CALFT <FN,F , I tUFF ,NDT , LAB) 
072 DIMENSION lRUFF(50oO) ,FN(500) »F(500) »l-AB(5) 
073 CALL P L O T ( 5 . 0 » - 1 0 . 0 ' " 3 ) 
074 CALL P L O T ( 0 . 0 » + 3 . 0 , - 3 ) 
075 CALL SYMBOL 5 * 0 . 0 , 0 . * * , L A B , 9 0 . , 3 0 > 
076 CALL SCALE ( F N ( l ) » 5 . 0 , N D T , + 1 ) 
077 CALL SCALE ( F t 1 ) , 2 . 0 » N D T ' + 1 > 
078 CALL L I N E ( F ( 1 ) , F N < 1 ) , N D T ' + 1 » 4 0 , 3 ) 
079 CALL AX IS (0 ,0»0 .0 '7HSECONDS#-7»5 .0 ,90 . , F N ( N D T + i ) » F N ( N D T + 2 ) ) 
080 RETURN 
ob i end 
082 BFORrSl iSTLNFT 
083 SUBROUTINE STLNFT<X'V'N»A ,B#SGA»SGB> 
084 DIMENSION X (N> , Y<N> 
085 SX =0.0 
086 SXX =0.0 
087 SY =0.0 
088 SYY =0.0 
089 SXY =0.0 
090 DO 325 I=1»N 
091 SX = SX + X ( I ) 
092 SXX = SXX + X ( I ) . X ( I ) 
093 SY = SY + Y d ) 
094 SYY =SYY + Y ( I ) * Y ( I ) 
095 325 SXY = SXY + X ( I ) * Y < I > 
096 AN = N 
097 DNOM = AN+SXX - S X * S * 
098 A = (AN+SXY -SX*sY) /°NOM 
099 B = (SY*SXX - SX*SxY)/DN0^1 
100 D2 s SYY -A*SXY-B*SY 
101 SGA = SORT (AN*D2 / (DN0M*UN-2 . ) ) ) 
102 SGR = S 0 R T ( S X * S X * 0 2 / ( D N 0 M * ( A N - 2 . ) ) ) 
103 D2=SQRT(D2/AN) 
104 WRITE(6r326) A,SGA,B,SGB'02 
105 326 FORMAT ( 3oH LEAST SQUARE F I T , Y = A*X + B/3H A= 'E13«6»4H+0R- , 
106 1E13.6,3H B=,E13.6 '4H+0R- 'E13.6,13HMIN D E V l A T I 0 N , E l 5 . 6 ) 
107 RETURN 
lOB END 
109 OFOR,sI T IC 
110 SUBROUTINE TIC (nW,DF,g,PH) 
H I C GT TAPE CORRECTION FROm AMP And HALL-SEARS FREQ CURVES 
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112 DIMENSION GT0R(23) ,frRET(23) »G(NW) ,PH(NW) 
113 DATA FRET/.5,.75,1.0»1.25,1.5,1.75,2,0,2.5,3.0,t|«0»5.o» 111 *7.5,10.0,l5.0'20.'30.,40* »50.,60. ,70.'80. ,90. »1q0./ 115 DATA GTOR/6,6,23.6,50.9,78.3,111.2,135.2,161.0,204.6> H6 *253.r343, r (+35,, 653., 871., 13C6. ,1689. »2tt5U.. 3061, r 

H7 *3695. ,4117,,4433.'475o,»5106.,5278./ 
118 FMlNr0.50 119 FMAX=100,0 120 IF(DF.LT.0,50> GO TO 7 121 FMIN=DF 
122 7 IF(NW.DF.GT.FMAX) GO TO 8 
123 FMAX=NW*DF 
124 8 I5TART=FMIN/DF +0.()0001 125 ISTOP=FMAX/DF 126 J=l 127 DO 18 I=ISTART,ISToP 128 FQ=I*DF 129 40 IF(F0,LT.FRET<J)) GO TO 42 130 J=J+1 131 GO TO 40 
132 42 VAL=GTOR(J-1)+(GT0r(J)-gT0RIJ-1))*(FQ-FRET(J-l))/ 
133 •(FRET(J)-FRET(J-I)) 
134 18 G(I)=G(I)/VAL 
135 WRITE(6,1066) ISTART,ISTOp,DF 
136 1066 FORMAT(1H1.55HDATA corrected for displacement reSponŝ  BETWEEN 1ST 137 *ART,I5,3H*DF,10HANd ISTOP , I5,3H*DF'/6H DF = »F8«3> 138 RETURN 
139 End 
140 »FOr,sI #DIGI 
141 SUBROUTINE DIGI(H'T*N#TI'NDT,DT»F) 
142 DIMENSION H(I),T(I)»F(NDT) 
143 PI=3.1415926536 144 1=0 145 DO 20 J=1,NDT 146 TlME=TI + (J-1)*DT 147 22 IF (T(IU) .GT.TIME) Go TO 20 
148 1=1+1 
149 GO TO 22 
150 20 F(J)=H(I)+(TIME-T'I))*(H«I+1)-H(I))/(T(I+l)-TCn) 
151 RETURN 
152 end 
153 OFOR,Sl ,SERTRA 154 SUBROUTINE sERTRA*qET,N»NW,DF,G»PH#WO(T) 155 C DeT = 0 TIME TO FREQ DOMAIN, NOT = 0 FREQ TO TIME, N=NÛBER OF TIME 
156 C Nw=N/2 OR NO. OF FREQUENCY PTS. OF = FREQ INTERVAL = 1/T' T=N*DT 
157 DIMENSION G(NW),PH(NW),T<N)#CFN(50o)«SFN(500) 
158 PI = 3.1415926536 
159 CF = 0.0174532925 
160 AN = N 161 DO 119 I = 1,N 162 A = I 163 ARG = (6.28318531*A)/AN 
164 SFN(I) = SIN(ARG) 165 119 CFN(I) = CoS(ARG) 166 IF (DET> 131,132,131 167 132 DO 133 I = 1,NW 168 G(I) = 0.0 
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PRINTOUT OF SPEC2 (Continued) 

16<» 133 P H ( I ) = 0.0 
170 wo = 0.0 
171 DO 139 J = 1»NW 
172 X = 0.0 173 Y = 0.0 174 OO 140 I = 1»N 175 IJ = I * J - N*((I*J-1)/N) 
176 X = X + T(I)*CFN<IvJ> 177 140 Y = Y - T(I)*SFN(Ij) 178 P H ( J ) = ( A T A N 2 ( - Y r - X ) ) / C F +180. 
179 139 G ( J ) = (1.0/(AN*DF*6.28316531))*SQrT(X*X + Y * Y ) 180 DO 134 I = 1,N 
181 134 WO = WO + T ( I ) 
182 WO = (1.0/(AN*DF*6.28318531))*WO 
183 W R I T E ( 6 r H 2 ) WO,DF, (G(I)»PH(I), I = 1,NW) 184 112 F0RMAK//17H DIReCj TrANSF0RM,6H WO = ,2El7.7/loH M0D|)LUS 185 l l O H AND PHASE/ ( lX ,F l5 .6 'F10 .2 ,E15 .6 ,F 1 0 . 2 ,E15 . s ' F lO .E15 .1 186 2 ,E15 .6 ,F10 .2 ) ) 
187 RETURN 
188 131 DO 142 I = 1,N 
189 142 T ( I ) = W O / 2 . 0 
190 DO 143 J = 1,NW 
191 NSG = ( P H ( J ) / 3 6 0 . ) * A N 
192 DO 143 I = 1»N 
193 I J = I * J + N S G - N * ( ( I * J + NSG - 1 ) / N ) 
194 143 T ( I ) =T< I ) + G ( J ) * c F N ( I J ) 
195 

D O 144 I = 1»N I96 144 T ( I ) = )2 .5663706*DE*T( I ) 
197 DT = <1.0)/<AN*DF> 
198 RETURN 
199 END 
2oO QfOr»sI . wwssc 
201 SURROUTINE WWSSC(Nw»DFrG»PH) 
2o2 c WORLD WIDE SEISMIC S Y s . CORRECTION FROM FREQ RESPONSE CUrVE 2u3 c WWSSC ( N W f G r O F » I S T A R T f I S T O P ) 
2o4 c NWrNO. O F PTS. IN SPEcTRAJ G=MODULUS oF SPECTRA 
2o5 c DFrFREQ INCREMENT l / T T=«"CTTAL TIME 2o6 DIMENSION G C O R ( H ) , F R E Q ( l l ) »G(NW) tpH(NW) 207 DATA GCOR/ .65#300»0 '400. ( J»540.0#580«0 '610.0»590.0 ,480.0 , 
2o8 • 3 1 0 . 0 , 3 8 . 0 , 1 . 8 / 
209 DATA F R E Q / . l , . 8 , 1 . 0 ' 1 . 2 5 ' 1 . 4 3 , 1 . 6 7 , 2 . 0 0 , 2 . 5 0 , 
2l0 +3 .33 ,10 .0 ,50 .0 / 
211 f m i n = o . i 
212 FMAX=50.0 
213 IF(DF.LT.O.I) GO To 7 214 FMIN=DF 
215 7 IF(NW*DF.GT.FMAX) GO TO 8 2i6 FMAX=NW*DF 2l7 8 lSTART=FMlN/DF+O.OoOOl 2i8 ISTOP=FMAX/DF 2i9 J = l 
220 DO 18 I=ISTART,ISToP 
221 FQ=I*DF 222 40 IF(FQ.LT.FREQ(J)) GO TO 4 2 223 J=J+1 
224 GO TO 40 225 42 VAU=SC0R<J-1)+(GC0r<J)-GC0R(J-1))*(FQ-FREQ(J-1))' 
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PRINTOUT OF SPEC? (Continued) 
226 * < F R E O ( J ) - F R E Q ( J - 1 > ) 
227 18 G ( I ) = G ( I ) / V A L 
228 WHITE(6»1066) I S T ^ R T , I S W , D F 
229 1066 F0RMAT<1H1,55HDATA CORRECTED FOR DISPLACEMENT ReSPONS^ BETWEEN 1ST 
230 *ART»I5»3H*DF»10HAND ISTOP t15,3H+DF'/&H DF = ,F8»3) 
231 RETURN 
232 end 
233 BFOR,sI SCSPC 
234 SUBROUTINE SCSPC (NW,DF, t t rPH) 
235 C SGS f JKS CORRECTION, S«C.SEISMIC PROGRAM'FROM FREO ReSPONSe CURVE 
236 DIMENSION GSOR(18),FRES( Ui) »G(NW),pH(NW) 
237 DATA F R E S / . 7 2 ' . 8 , • 9 ' 1 . ' 1 • 8 » 2 . 0 , 3 . , 5 » ' 7 . , 1 0 . , 1 2 . 2 ' 2 0 • » 
238 * 3 0 . , 4 0 . ' 5 0 . , 6 0 . , 7 0 . , 8 o . / 
239 DATA G S O R / 2 0 . • 2 2 . ' 3 0 • , 3 8 « > 7 2 . , 1 2 0 . , 1 8 0 t , 3 1 0 • » 4 2 0 • • 5 8 0 . » 
240 *880 . ,1010 . ,1050 . ,1075 . ,1080 . ,1067 . .1060 . ,1020 . / 
241 FMIN=0.72 
242 FMAX=80.0 
243 I F ( D F . L T . 0 . 7 2 ) GO j O 7 . 
244 FMIN=DF 
245 7 IF(NW*DF.GT.FMAX) GO TO 8 
246 FMAX=NW*DF 
247 8 ISTART=FMlN/DF +0*00001 
248 ISTOP=FMAX/DF 
249 J = l 
250 DO 18 I=ISTART,ISToP 
251 FQr I *DF 
252 40 I F ( F 0 . L T . F R E S ( J ) > GO TO 4;? 
253 J=J+1 
254 GO TO 40 
255 42 V A L = G S O R ( J - 1 ) + ( G S 0 r ( J ) - G S 0 R ( J - l ) ) * ( F Q - F R E S ( U - 1 ) ) / 
256 * ( F R E S ( J ) - F R E S ( J - 1 > ) 
257 18 G ( I ) = G ( I ) / V A L 
258 WRITE(6,1066) I S T ^ R T , I S T O P , D F 
259 1066 F0RMAT(1H1,55HDATA CORRECTED FOR DISPLACEMENT ReSP0NSE BETWEEN 1ST 
260 *ART,I5,3H*DF,10HAND ISTOR ,15, 3H*DF' /6H DF = ,F8»3) 
261 RETURN 
262 END 
263 OFOR,sI ,SPLOT 
264 SUBROUTINE SPLOT I FN» F, I BljFF' NW, LAB) 
265 DIMENSION IRUFF{5O0O ) ,FN<500) ,F (50Q) 'LAB(5) 
266 CALL P L O T ( 5 . 0 , - 1 0 . 0 ' - 3 > 
267 CALL P L O T ( 0 . 0 » + 3 . 0 , - 3 ) 
268 CALL SYMBOL ( - 1 . 0 ' 0 . 0 , 0 . U , L A B , 9 0 . , 3 0 ) 
269 FN(NW+1)=0.0 
270 FN(NW+2)=1.0 
271 F(NW+1)=-1.0 
272 F(MW+2)= 0.5 
273 CALL LINE (FN,F»NW»+1»40'3> 
274 CALL LGAxIS ( 0. 0 , +0 • 0 , 2HH.2, + 3 , 6 . 0 , 9 0 . , 0 .1 ' 0 .5 ) 
275 CALL AXIS (5 .0 , - 1 .0 ' 12HLOG DIS SPEC'+ 1 2 t5.0 » 1 8 0 , , - 3 . 0 , 1 , 0 ) 
276 RETURN 
277 END 
278 GhDG,N X .M ,66 ,0 ' 0 . 
279 DuSE 4 l ,TPF$ 
280 raxQT 
281 22 97 0.04 0.0 50. .1 AUG 2 19 74 CHR EVENT,AM 
282 00« 00. 11. 12. 28. - 4 2 . 41, 59. 50. 18. 
283 63. - 5 . 70. « 4 . - 3 2 , 100. 3o. l o 4 . 14. 1 
284 112. 49. 120. -50 . 126. 44. 130. -41 . I 38 . - 1 7 , 
285 150. - 4 5 . 158. 54. 166. 43. 171, 58, 1 7 6 . -78 , 
286 188, 68. 193, 0*0 
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APPENDIX V 

EARTHQUAKE HYPOCENTER PLOTS 

In order to better understand the three dimentional distribu­

tion of hypocenters, four profiles of aftershock locations were 

constructed. These profiles were centered at 33°57-5 * North Latitude 

and 82°30 ! West Longitude. Each profile was three km long. The orien­

tations of these four profiles were NW, NE, N75°E, and N15°W. 

The plots of these profiles are shown in Figures 24, 25, 26, and 

27. It is felt that no single strong linear trend is apparent on Fig­

ures 24 and 27. However, there are several apparent lineations on 

Figures 25 and 26. In Figure 25 (the NE-SW profile) a lineation of 

hypocenters possibly indicating e, fault plane is apparent between A 

and A 1. A second lineation with a similar orientation (dipping about 

50° SW) is apparent between C and C" on C 1 and C". The three hypocen­

ters in the vicinity of C may also be interpreted as being part of a 

third lineation between B and B f. The lineation B-B 1, dipping about 

60° NE, nearly orthogmal to the other two lineations (A-A1 and C f-C"), 

and could possibly represent a faulting on a co-plane. 

Figure 26 also demonstrates significant lineations. The linea­

tion D - D * dips at about 60° SW as does the lineation E-E 1. The 

lineation D - D 1 may be associated with the A-A* lineation of Figure 25, 

and the E-E* lineation may be associated with the C'-C" lineation of 

Figure 25 . These lineations might represent two planes of faulting; 
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however, it is felt that the quality and quantity of aftershock hypo­

centers is insufficient at this time to make any definitive statements 

on fault planes. 
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