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COEFFICIENT 0? FRICTION OF PAINTED STRUCTURAL STEEL SURFACES 

(70) 

By: Robert Thomas Dooley Jr. 

Advisor: Dr. F. W. Schutz Jr. 

This study comprises a series of tests to determine the coefficient 

of friction of various protective coatings used on structural steel. These 

protective coatings consist of greases and the major structural steel paints 

used today by the steel fabricators. 

The tests were conducted using a four bolt double lap joint. The 

surfaces of the plates were polished, and the fasteners used in the con­

nection were standard high strength bolts calibrated with SR^ strain gages. 

The bolts were torqued to 0.9 EPL, and the clamping force exerted on the 

plates was measured with great accuracy. 

A test of unpainted surfaces produced an average coefficient of 

friction of 0.230. This value was computed using the load attained before 

an average slip of 0.001 inch occurred in the joint. Tests at the University 

of Washington have shown that mill scale faying surfaces produce higher 

values of friction than the polished surfaces, because of the interlocking 

action caused by surface irregularity. 

A series of tests using the common structural steel paints produced 

a friction value before initial slip that was negligible. This series 

of tests supports the present specification of the Research Council on 

Riveted and Bolted Structural Joints of the Engineering Foundation, which 

prohibits the use of paint in joints where no slip is tolerated. 

The effect of long time sustained loads on painted connections 
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was also investigated. The_results shoved that the coefficient of 

friction produced was 8 5 per cent of that of the short time load. 

Of all paints tested the Red or Brown One-Coat Shop Primer (SSPC-

Paint 1 3 - 5 5 T ) produced the highest friction values. Tests involving var­

iations in thickness of paint coatings were performed and it was concluded 

that the amount of slip in a joint varies as the paint thickness. 

Tests involving wet paints and greased surfaces showed promise in 

developing a friction force in the magnitude of those for the uncoated 

test. Tests of low pressure greases produced values of friction much 

higher than the same tests using high pressure greases. Inspection of the 

surfaces coated with grease showed that the grease is squeezed out "between 

the surfaces and forced into the low regions of the plates. The actual 

contact surfaces of the plates were in a dry condition. 

It Is recommended that further study he made with the use of low 

pressure type greases as protective coatings. 

Approved: 
3 * 

Date of Approval 



1 

CHAPTER I 

INTRODUCTION 

The high strength bolt in itself is not a new device. Its 

application to large steel structures such as bridges and buildings is 

something new. The use of the high strength bolt in this work makes 

fact out of one of the "fictions" of riveted steel construction. This 

"fiction" is the idea that when the shank of a hot driven rivet shrinks, 

it develops a foroe that olaraps the connected parts of a joint so tightly 

that stress may be transferred from one part to another by friction, 

rather than by bearing and shear in the rivets (l). 

Engineers have long known that there is some friotional transfer 

of stress in almost all riveted joints. They also know that this stress 

transfer is not consistently developed and that its magnitude under 

ideal conditions is almost negligible, Friotional transfer is of little 

structural use in joints subjeoted to a static loading condition. A 

different condition is encountered in joints that are subjected to 

repeated loading conditions. Structural joints subjeoted to this loading 

demonstrate that stress concentrations that develop when rivets transfer 

stress by bearing against the sides of their holes will materially reduoe 

the fatigue strength of the joints (2). 

With this information known about the action of riveted joints, 

studies of bolted joints were made under the sponsorship of the Researoh 

Council on Riveted and Bolted Structural Joints of the Engineering 

Foundation. 
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Organized in 1947, the Research Council has pioneered all re­

search on bolted joints. It is the duty of the Council to determine 

the suitability and capacity of different types of joints used in 

fabricated structural frames. Investigations made by the Counoil 

showed that ordinary structural bolts (ASTIA Specification A-307) were 

only a little better than structural rivets. This finding led to the 

development of the heat treated carbon steel high strength bolt as 

specified by AST14 Specification A-325 (3). 

Structural engineers who make use of high strength bolts design 

the joints as riveted and merely replace the rivets with bolts. But 

•hen these bolts are used, no provision is made for the greater strength 

afforded by the bolt. Using the required minimum bolt tension value of 

32,400 pounds for a seven-eighth-inch high strength bolt, the clamping 

action attained is nearly twice as large as the maximum clamping action 

theoretically attainable in carbon steel structural rivets. Thus the 

bolts develop a friction force which transfers part or all the load 

normally causing shearing stress on the rivet. This shear force in a 

connection is usually critical. The frictional force that is developed 

decreases the shearing stress on the bolts and, in some oases, reduces 

the number of bolts required. It is with friotional foroe that this 

thesis is concerned. 

The attitude of the Research Counoil toward slip in joints 

assembled with high strength bolts has been extremely cautious. In 

1951, the first specification issued (4) prohibited the shop painting 

of all contact surfaces. Further study has indicated that painted 
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surfaoes are allowable where slippage into bearing oan be tolerated (5). 

Studies at the University of Washington have been concerned with 

the friction values produced by different protective surface ooatings. 

With perfect alignment of the bolt holes and using mill soale faying 

surfaces the average coefficient of friction is 0.250 for unpainted 

joints (6). 

The values of friction obtained from tests using a protective 

coating on mill soale faying surfaces might not be a true indication 

of the friotional force produced by the paint. The interlocking of the 

mill scale surfaces will influenoe this value. Few tests have been 

conducted on the common structural steel paints to see what the friction 

values would be if the interlocking actions caused by mill scale sur­

faces are disregarded. 

The purpose of this thesis is to find which of the commonly used 

structural steel paints will produoe the highest value of friotion and 

to find a general measure of its magnitude. A side study was carried 

out to see the effect of wet paint and grease on joint surfaces. Varia­

tions of surface coating thickness were also investigated. Such varia­

tions might be produced by application of paint by spraying and brushing. 

The majority of the joints were tested using a short time loading 

program. An additional long time load test was conducted for compara­

tive use with the short tests, and for verification of any results 

obtained by the short time test. 
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CHAPTER II 

EQUIPMENT AND CALIBRATION 

The utilization of the SR4 strain gage and high strength bolts as 

instrumented fasteners makes it possible to determine the clamping force 

exerted on a surface with great accuracy. 

The fasteners used consisted of seven-eighths inch diameter high 

strength bolts, four and one-half inches long, manufactured according to 

ASTM Designation 325-A (3). On opposite sides of the shank, three-quart­

ers of an inch down from the head, flat surfaces were milled one and one-

half inohes long and one-half inch wide. Small one-eighth inoh holes 

were drilled through the top of the bolt to the flat surfaces. The sur­

faces were prepared and SR 4 strain gages, Type A-11, were applied accor­

ding to the instructions furnished by the manufacturer. A protective 

coating of Petrosene wax was molded over the strain gages and lead wires 

to conform with the cylindrical shape of the bolt. 

Each bolt had two gages attached with the lead wires running 

through the small holes to the Hathaway Type RS-20A Strain Indicator. 

For each active gage, there was a corresponding temperature compensation 

gage on a similar bolt. Therefore, for eaoh bolt used in the joint, 

there were four gages connected in series to the strain indicator. Fig­

ure 1 shows a detailed drawing of the instrumented high strength bolt, 

and Fig. 2 shows a schematic wiring diagram of the bolt, instrument box, 

and strain indicator. 

Calibration of the bolts was necessary before any field tests 

could be run. This calibration consisted of placing eaoh bolt in pull 
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heads and applying a known tensile foroe. As this load was applied by 

the testing maohine, a corresponding strain in micro-inches per inch 

was read off the strain indicator. The readings obtained produced a 

straight line relation between strain and load (Fig. 9), with a slope 

of sixty micro-inches per inoh to one thousand pounds of bolt tension. 

During the tests of the joints, a noticeable decrease in bolt 

tension during the first series of tests was observed. This load de­

crease averaged about 900 pounds or 56 micro-inohes of strain per 

bolt. The deorease of bolt tension can be accounted for by the local 

yielding of the plates around the bolt holes and the variations of room 

temperature during the test. The local yielding of the steel around 

the bolt holes was caused by the intense stresses produced by the high 

strength bolts. A test on the bolts indicated that creep of the bolts 

under the load of 32,400 pounds was negligible. After Series A was 

tested, the bolt tension drop off was never more than an average of 

about 200 pounds during any test (Fig. 34). 

A recalibration of the bolts at the end of the tests indicated 

that the bolt calibration curve did not change with time during the 

period of tests. 

The tensile properties of the six inoh steel plates used for the 

joints are listed in Table 1. These results were obtained from the 

tests of ASTM Standard Tensile Coupons. 

Detailed drawings of the plates are shown on Figs. 5 and 6. The 

bolt holes shown on these drawings were reamed one-sixteenth inoh over­

size to enable the test to continue past failure without bringing the 

bolt into shear or bearing. Failure is defined as a total average slip 
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of one-sixteenth inch, which is now possible by the code if the holes 

are perfectly aligned. To assure alignment of the holes, two one-quarter 

inch pins were used, one at each end of the joint. After the instrumen­

ted bolt was centered in the hole and torqued to a speoifio elastic proof 

load value, the pins were removed and the test was started. Figure 4 

shows a typical assembled connection being tested. 

The plate surfaces included in the joint were machined clean and 

hand polished until,.all visual grooves were removed. The surfaces were 

tested with a Brush Electronics Company Model BL-110 Surfindicator to 

find an average value of smoothness. Figure 7 shows the Surfindicator 

in operation, and Table 2 gives the average plate values of smoothness. 

These plates go together to make up 4 separate joint specimens 

which were used repeatedly throughout the series of tests. On the aver­

age, each joint was tested about ten different times. A summation of 

friction values (Table 4) and the degree of repeatability of these 

friction values will be discussed in detail in Chapter V. 

The use of over-size washers was required to secure a total grip 

of three inches, which was necessary for the instrumented bolt. The 

washers were one-half inoh thick and conformed to standard inside and 

outside diameter sizes as specified by American Standard Heavy Washers, 

ASA Standard B-27.2 (3). After the washers were case hardened, they 

were tested in a Wilson Model Jr-3 Rockwell Hardness tester. The hard­

ness values ranged between C9 and C14 for all washers used. 

To measure the average slip of the joint, two micrometer mechani­

cal dials were mounted on the specimen, one on each side. Details of 

the instrumentation are shown in Figs. 4 and 6. 
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CHAPTER III 

SURFACE COATINGS 

Recommendations for the types of surface ooatings to be tested 

were suggested by steel fabricators and various paint industries. 

The paints used in series B through E are commonly used by all 

steel fabricators. Series F includes a paint now under consideration 

for use in steel construction. Series G. H, and I include greases of 

variable performance characteristics. 

The following descriptions are intended to furnish an averall 

pioture of the characteristics, performance, and composition of the 

surface ooatings. 

1. Red Lead and Raw Linseed Oil Primer* (Series B, J, and M) 

TT-P-86a Type I (DuPont Paint) 

This paint specification covers a very slow-drying red lead and 

raw linseed oil primer for use on structural steel. The paint will 

give better results if applied to a machined clean surface. When proper 

surface application is used, the paint has excellent wetting ability, 

rust inhibitive characteristics, and good durability. Red lead paint 

requires from 48 to 72 hours drying time at room temperature of 40° F. 

or above, in order to dry hard. 

SSPC-Paint 1-55T is commonly used by steel fabricators because it 

is suitable for use in exposed industrial, rural, or marine atmospheres. 

"The material in description 1-5 is based on that in Steel 
Structures Painting Manual, Volume II (7). 
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This paint is suitable for application by brushing or spraying. 

If spraying is to be used, thinning might be required to obtain the 

proper consistency. 

Ingredients Required 
wt. i 

Typical 
wt. i 

Composition 
vol. % 

PIGMENT: (77.5 wt % min.) Min. Max. 

Red Lead (97* P b 3 0 4 99.6 - 77.2 26.1 

Aluminum Stearate 0.3 0.4 0.3 0.9 

VEHICLE: (22.5 wt % max.) 

Raw Linseed Oil 94.0 - 21.1 68.2 

Driers and Thinners 6.0 1.4 
100.0 

4.8 
100.0 

2. Red Lead, Iron Oxide, Raw Linseed Oil and Alkyd Primer (Series C) 

SSPC-Paint 2-55T (Pittsburgh Paint) 

This specification covers a red lead, iron oxide, raw linseed oil 

and alkyd primer for use on structural steel. The paint will give bet­

ter results if applied to a surfaoe that has been maohined clean. When 

proper surfaoe application is used, the red lead, iron oxide paint gives 

excellent rust inhibitive characteristics and properties needed for 

resistance to weathering prior to the finish ooat. The paint requires 

about 24 hours drying time at a temperature of 40° F., or above, in order 

to dry hard. 
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S S P C - P a i n t 2 - 5 5 T i s a common p a i n t u s e d by t h e s t e e l f a b r i c a t o r s 

b e o a u s e o f i t s e x c e l l e n t s e r v i c e when e x p o s e d i n i n d u s t r i a l , r u r a l , o r 

m a r i n e a t m o s p h e r e s . 

T h i s p a i n t i s a p p l i e d by b r u s h i n g o r s p r a y i n g . T h i n n i n g t h e p a i n t 

t o t h e p r o p e r c o n s i s t e n c y i s o f t e n n e o e s s a r y when a p p l i e d by s p r a y i n g . 

I n g r e d i e n t s R e q u i r e d T y p i c a l C o m p o s i t i o n 
Wt. % Wt. i V o l . i 

PIGMENT: ( 7 5 w t . £ m i n . ) M i n , M a x . 

Red L e a d (97% P b 3 0 4 7 5 . 0 - 5 6 . 3 1 6 . 8 

Red I r o n O x i d e ( 7 0 $ F e 2O g a i n . ) 2 4 . 7 1 8 . 4 1 1 . 0 

Aluminum S t e a r a t e 0 . 3 0 . 5 0 . 3 0 . 8 

VEHICLE: M i n . Max. 

Raw L i n s e e d O i l 5 6 . 0 - 1 4 . 0 3 9 . 8 

A l k y d R e s i n S o l i d s 2 1 . 0 2 8 . 0 5 . 2 1 2 . 9 

D r i e r s a n d T h i n n e r s - 2 3 . 0 5 . 8 1 8 . 7 
1 0 0 . 0 1 0 0 . 0 

3 . R e d I r o n O x i d e , Z i n c C h r o m a t e , Raw L i n s e e d O i l a n d A l k y d P r i m e r 

S S P C - P a i n t 1 1 - 5 5 T (DuPont P a i n t ) ( S e r i e s D) 

T h i s p a i n t s p e c i f i c a t i o n i s f o r a r e d i r o n o x i d e , z i n c c h r o m a t e , 

raw l i n s e e d o i l a n d a l k y d p r i m e r f o r u s e on s t r u c t u r a l s t e e l . B e s t 

r e s u l t s a r e o b t a i n e d when t h e s u r f a c e i s m a c h i n e d c l e a n . With p r o p e r 

s u r f a c e a p p l i c a t i o n t h e p a i n t shows e x o e l l e n t r u s t i n h i b i t i v e c h a r a c t e r ­

i s t i c s , g o o d d u r a b i l i t y f o r n o r m a l p e r i o d s o f t i m e , a n d e x o e l l e n t w e t ­

t i n g a b i l i t y . R e d i r o n o x i d e , z i n c c h r o m a t e p a i n t r e q u i r e s 24 h o u r s 

d r y i n g t i m e a t a t e m p e r a t u r e o f 4 0 ° F , o r a b o v e , i n o r d e r t o d r y h a r d . 
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SSPC-Paint 11-55T Is used mostly for interior exposures, but is 

quite acoeptable for exposure in industrial, rural, or marine atmos­

pheres. It is very popular with the steel fabricators. 

Application of this paint can be by brushing or spraying. If 

spraying is used, the paint can be thinned for proper consistency. 

Ingredients Required Typical Composition 
Wt. % wt. i Vol. t 

PIGMENT: (50 wt.< - 2%) Min. Max. 

Red Iron Oxide (70*) 40 20.0 6.8 

Magnesium Silicate 20 10.0 5.5 

Zinc Chromate 40 20.0 8.5 

VEHICLE: (50 wt.£ ± 2%) 

Raw Linseed Oil 33 16.5 27.0 

Alkyd Resin Solids 33 16.5 23.5 

Thinners and Driers 34 17.0 28.7 
100.0 100.0 

4. Red or Brown One-Coat Shop Paint (Series E, K, and L) 

SSPC-Paint 13-55T (Pittsburgh Paint) 

This paint specification is for an iron oxide shop paint, which 

is composed of tung-oil-ester gum varnish with raw and bodied linseed 

oils added to zinc chromate and red lead pigment. The paint will give 

best results when the surface is machined clean. Since this is a low 

cost paint it has only fair wetting abilities, only fair rust inhibitive 

characteristics, but it has sufficient resistance to weathering condi­

tions for periods up to six months. This shop paint is quiok drying. 
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It takes about 8 to 24 hours at 40 F or above to dry hard. 

This SSPC-Paint 13-55T is acceptable for short periods when sub­

jected to exposure at normal environments, but is best suited for dry 

interior exposures where infrequent condensation takes place. 

This paint can be applied by flow coating, dipping, roller coat­

ing, brushing, or spraying. Thinning might be necessary when spraying 

is used, to get the paint to the proper consistency. 

Ingredients % by Wt Lbs./lOO Gal. % by Volume 

PIGMENT: ( 5 5 . 5 J ) 

Red or Brown Oxide 

( 8 5 f o F e 2 0 3 ) 60 

Red Lead 97% P b 3 0 4 ) 12 

Zinc Chromate 3 

Magnesium Silicate 25 

VEHICLE: ( 4 4 . 5 wt.%) 

25 gal. Tung Oil-Ester Gum 

Varnish (43 wt.% 
non-volatile) 

Raw Linseed Oil 

Pale Heat Bodied 
Linseed Oil 

Mineral Spirits and 
Driers 

49 

16 

17 

18 
100 

435 

87 

22 

181 

286 

94 

99 

106 
1,310 

11.50 

1.18 

0.76 

7.65 

39.60 

12.20 

12.20 

14.91 
100.00 

5. Zino Dust, Zinc Oxide, Phthalic Alkyd Resin Paint (Series F) 

Fed. Spec. TT-P-641b Type II (Pittsburgh Paint) 
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This specification covers a very quick drying zinc dust, zinc 

oxide, phthalic alkyd resin paint for use on structural steel or in 

galvanizing. This paint will give best results on a machined clean 

steel or galvanized surfaoe. It has good durability under weathering, 

even before the finish coating. While it has good rust inhibitive 

characteristics, the wetting ability for oily surfaces is very poor. 

This zinc dust paint will dry hard in 12 hours at a temperature of 

40° F or above. 

This FF-P-641B Type II Paint is best suited for areas where high 

humidity and condensation are present, or it is even good for fresh 

water immersion. Average results have been obtained from exposures in 

marine, rural, or industrial atmospheres. 

Since this paint has to be mixed on the job, it can be applied 

to the surfaoe by brushing and spraying. When spraying is used, the 

paint can be thinned to the proper consistency. 

Federal Specifications IT-P-64IB Type II (7) 

Composition by Volume 

Ingredient Gallon 

Zinc Dust 0.1350 

Zinc Oxide 0.0425 

Total Pigment 0.1775 

Non-Volatile Vehicle 0.2940 

Total Solids 0.4715 

Volatile (thin, and dry.) 0.5285 
1.0000 
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6. Grease - Sovanex L No. 1 (Series H) 

Standard Oil Company of Kentucky 

These figures oover a very high pressure grease; they are only 

general guides, not specifications. 

Grease Characteristics 

Soap Penetration at 77° F 

Type tfnwkd. Wkd. Struct. i Water Color 

Lime 370 305 Smooth 0.5 Yellow 

Max. 363 S. Fibre 

Mineral Oil 

S. V. Vise. ASTM Drop 

Percent 100 F 210 F Point F 

80 300 - 400 Min 

7. Grease - Nebula No, 1 (Series G) 

Standard Oil Company of Kentucky 

These figures cover a very high pressure grease; they are general 

guides, not specifications. 

Grease Characteristics 

Soap Type Calcium Complex 

Color Tan 

Texture Buttery 

Penetration, worked at 77° F 300 
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Grease Characteristics (Con't) 

Dropping Point, 0 F None 

Oil Viscosity, SSU at 100° F 500 

Wheel Bearing Test Pass 

Bomb Oxidation, pressure drop 230 

Water Resistance: 

Rotating Bearing, % loss, 120° F No loss 

Immersion in boiling water Insoluble 

4-Ball Wear Test, 7.5 Kg Load 

30 min. at 167° F., wear scar, mm 0.23 

8. Grease - Gulflex Multi Purpose Grease (Series I) 

Gulf Oil Company 

These figures cover a multi-purpose grease; they are only general 

guides, not specifications. 

Grease Characteristics 

Dropping Point F 370 

Penetration, unwkd at 77° F 286 

wkd at 77° F 287 

NLGI Consistency 2 

Soap Type Lithium 

Texture Smooth 

Color Light Brown 



Grease Characteristics (Con't) 

Oil Viscosity. SSU at 210° F 81.8 

Wheel Bear Test Pass 

Water Resistance: 

Rotating Bearing, % loss, 120° F No loss 

Immersion in boiling water Insoluble 

4-Ball Wear Test Pass 
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CHAPTER IV 

TEST PROCEDURE 

The surfaces of the.plates were thoroughly cleaned of all foreign 

material before any surface coatings were applied. The plates were 

soaked in carbon tetrachloride for a sufficient time and then wiped clean 

with a soft rag. Before application of any ooating, the surface was 

cleaned with compressed air to remove any excess dust. 

The different protective coatings were applied to the surface 

and allowed ;c dry the specific di ime recommended by the Steel 

Structures Painting Manual (7). A description of each test performed, 

as to type of surface ooating, surface condition, and drying time, can 

be found in Table 3. 

The plates were assembled and the bolts were oentered in the holes 

by use of templates. Eaoh bolt was torqued to a value of about 32,000 

pounds. The micrometer mechanical dials were mounted to the sides of 

the plates for the purpose of measuring slip, and the bolts were given 

final adjustment to 32,400 pounds. This bolt load is the equivalent of 

1,944 micro-inches of strain as read on the strain indicator. 

A constant strain rate was used for all tests. A reading of 0.025 

inches per minute was selected and set on the Thymetrol variable speed 

control of the Riehle Type PS-450 Universal Screw Power Testing Machine. 

A load range from 0 to 90,000 pounds was used in the tests of series A, 

D, E, G, I, J, K, and L. Each reading was accurate to the nearest 200 

pounds, A load range from 0 to 45,000 pounds was used in tests of series 

B, C, F, H, and M. Each reading was accurate to the nearest 100 pounds. 
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In the first series of tests, the joints were with unooated plates 

(Series A); that is, plates with no surfaoe ooating. The plates were 

assembled, the bolts were oentered in the holes and torqued to 32,400 

pounds, and the slip dials were mounted and zeroed. The load was applied 

at a constant rate of strain, until the load indicator seemed to falter 

or slow down. At this point the machine was stopped. The slip dials 

and bolt tension readings were recorded. In all oases the load indica­

tor did not falter or slow down in the early stages of the unooated tests, 

but readings were taken about every 3,000 pounds to provide points for 

the load-slip curves. 

At the major slip load of series A, there was a loud noise and a 

sharp decrease in load, caused by an instantaneous slip* The major slip 

load is defined as the load at which the joint has an average slip of 

over 0.001 inoh. After the sharp decrease in load, the machine was 

stopped, and the corresponding slip dials and bolt tension readings were 

recorded. The test was continued in the same manner until the load 

exceeded the slip failure load. The term slip failure is defined as an 

average slip in the joint of over 0,0625 inch. 

The second series of tests (Series B, 0 , D, B, F, L, and U) 

included the oommon structural steel paints used in steel construction 

after drying. The plates were assembled, the bolts were oentered in the 

holes and torqued to 32,400 pounds, and the slip dials were mounted on 

the plates and zeroed. The load was applied at a constant rate of strain 

until the load indicator faltered or slowed down. At this point the 

machine was stopped, and the slip dials and bolt tension readings were 
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recorded. These readings were taken past slip failure at 3,000 pound 

intervals to provide points for the load-slip curve. 

The third series of tests (Series G, H, I, J, and K) included all 

greased and wet surfaces. The surfaces of the plates were covered with 

the protective coating, and the plates were assembled immediately. The 

bolts were centered in the holes and torqued to the required minimum 

value of 32,400 pounds. The slip dials were mounted to the side of the 

plates. The specimens were loaded in the same manner as were the un-

coated plates (Series A). 

Considering all the previously mentioned tests as short time 

loading tests, a long time load test was performed on the Red or Brown 

One-Coat Shop Primer (SSPC-Paint 13-55T). The purpose of this test was 

to see what effect time would have on the performance of the paint. The 

procedure of testing was quite different from that of previous tests. 

The plates were assembled, the bolts were oentered in the holes and 

torqued to 32,400 pounds, and the slip gages were mounted on eaoh side of 

the plates. The load was applied at a constant rate of strain until the 

load indicator seemed to falter or slow down. At this point the machine 

was stopped. The slip dials and bolt tension readings were recorded. 

This same procedure was followed until a load of 5,000 pounds was reached. 

At this value, the load was maintained constant, plus or minus 250 pounds, 

by alternately stopping and starting the machine. At different intervals 

of time, the slip dials, and bolt tensions were recorded. This procedure 

was continued until the joint passed the "constant time period". This 

"constant time period" is defined as a minimum period of one hour in 
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whioh the load remains oonstant, and the average slip of the joint ohanged 

less than 0.0002 inch. This same test procedure was followed at average 

intervals of 4.000 pounds until slip failure ooourred. 

The long time load test took a total of 72 hours before slip 

failure ooourred. In search of a test method which would produce friotion 

values in less time. a similar joint was tested using a oonstant strain 

factor for loading and a surface coating of Red or Brown One-Goat Shop 

Primer (SSPC-Paint 13-55T). It was thought that by keeping the strain 

constant and allowing the load to drop off. a curve could be plotted 

which would give accurate values of friction in less time. This test was 

started in the same manner as the test of series B, C, D, E, and P. At 

average load intervals of 4,000 pounds, the machine was stopped and the 

specimen was held at a constant strain. Over a period of time the load 

was allowed to decrease until it reached the point of maximum drop off, 

that is, no drop in load over a period of 30 minutes. At this point, the 

load was inoroased another increment and the same procedure was followed 

until slip failure was encountered. The slip dials and bolt tension 

readings were recorded throughout the test. The total length of time 

of this test was 15 hours. 
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CHAPTER V 

DISCUSSION OP RESULTS 

Using the values recorded as test data, the coefficient of friction 

was calculated for each series of tests (Pig. 34). The normal force used 

for the slip failure coefficient of friction was a summation of the bolt 

tension readings at slip failure. In determining the normal force for 

the coefficient of friction at the major slip load, the summation of the 

bolt tension readings just before major slip was used. 

The results obtained from the Series A tests using unpainted bare 

plates indicate that the average value of the coefficient of friction of 

polished faying surfaces was 0.230. This friction value oould be counted 

on in design under the present code, sinoe the average slip in the joints 

tested was only 0.001 inch. Load slip ourves are shown in Fig. 10. 

The average value of friction from Series A was 0.230. This value, 

of course, was obtained using polished faying surfaces which would never 

be encountered in steel construction. Tests of similar joints using mill 

scale faying surfaces have been run at the University of Washington (6), 

and the average coefficient of friction obtained was 0.250. The mill scale 

faying surfaces produced the higher value of friction due to the inter­

locking action caused by the irregularity of the surfaces. It has long 

been the consensus of engineers that the misalignment of bolt holes would 

tend to increase the value of friction. Researoh at the University of 

Washington (6) has indicated that the average coefficient of friction with 

misalignment of bolt holes is 0.340. This higher value is caused by the 
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edges of the bolt holes cutting into eaoh other thereby increasing the 

interlocking action. This comparison is only a side study however, and 

is not the main purpose of this thesis. 

Using 0.230 as the average friction value of the polished plates, 

an equivalent shear stress on the bolt of 12,500 psi was developed. The 

average stress developed on the net section of the plates was 14,800 psi. 

These values are under the allowable stresses now allowed by steel 

specifications. 

Using the TT-P-86a Type I ooating (Series B ) , the average major 

slip load of 500 pounds is negligible, and the friotional value at slip 

failure averages 0.065 (Fig. 11). The red lead surfaoe coated joint 

slipped under the smallest of loads and proved to be the poorest paint 

tested for friotional purposes. This value could not be counted on in 

design where oases of no slip would be specified. 

The performance of the SSPC-Paint 2-55T (Series C) was similar to 

that of the TT-P-86a Type I, The average value of friotion at slip failure 

was 0.083. The joint slipped under the slightest load (Fig. 12), and 

the paint oould not be counted on in design to develop any friction force 

before some slip would take place. 

The average value of friction produced by the SSPC-Paint 11-55T 

(Series D) was 0.121 (Fig. 13). Although the value of friction at slip 

failure is 100 per cent greater than that of the TT-P-86a Type I Faint, 

the friotion produced at major slip is negligible and oould not be 

counted on. 

The TT-P-641b Type II Primer (Series F) had a performance character­

istic similar to that of TT-P-86a Type I. It produced an average friotion 
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value at slip failure of 0.074 (Fig. 15), and slipped under the slightest 

load. Results indicate that this, paint, which is just being introduced 

into steel construction, produces friotional forces which are negligible 

in cases where no slip could be tolerated. 

The results of tests oonducted with the SSPC-Paint 13-55T (Series E) 

indicated that the average friction value of 0.156 was the best obtained 

for all dry paints tested. The performance of this paint (Fig. 14) was 

similar to all of the other paints tested, but the coefficient of friction 

attained at the slip failure load was 300 per cent higher than the value 

of TT-P-86a Type I now so commonly used by all fabricators. 

In general, no paint tested produced,a coefficient of friction that 

could be counted on in the cases where no slip could be tolerated. Table 

3 gives a summary of all tests, showing friction values both at the major 

slip load and the slip failure load. 

Tests which included surface coatings of grease produced friction 

values ranging from 0.080 to 0.282, depending on the charaoter of grease. 

The high pressure greases tested (Series Or and H) gave the lowest values 

of friction (Figs. 16 and 1 7 ) . The high pressure grease was not squeezed 

out between the surfaoes when the tension in the bolts was applied to the 

joint. It did not break down but acted as a lubrioant between the plates. 

The multi-purpose grease, which was easily squeezed out from between the 

plates, produced a friction value in the same range as those obtained from 

uncoated plates. Load slip curves can be found on Fig. 18. 

At the end of the multi-purpose grease test, the oondition of the 

surfaces was inspected. The grease had been forced into the low regions 
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of the surfaces, and where actual contact with the other plate had been 

made, the surfaoe was in a dry condition. 

Tests of wet paints (Series J and K) also produced higher friotion 

values than those found for dry painted surfaoes (Figs. 19 and 20), This 

can be explained easily because the paint was forced or squeezed from 

between the plates similar to the actions of the multi-purpose grease, 

Figure 27 shows a comparison of curves resulting from tests using 

wet paints, multi-purpose grease, and dry surfaoes. It is readily seen 

that the friction value at the major slip load could be counted on In oases 

where no slip could be tolerated. 

Figure 28 shows a comparison of the performance of the three types 

of grease used. In all cases the friotion value at major slip load is 

reliable and oould be used. A definite comparison oan be seen as to the 

advantage of a low pressure grease over a high pressure grease. 

Figures 29 and 30 indicate what changes in friction value will 

result by varying the thiokness of the dry paint coatings. From the re­

sults of the tests on TT-P-86a Type I and SSPC-Paint 13-55T, there is a 

decrease in friotional value with increase in thickness of paint. The 

reason is that as the layer of material becomes thicker between the plates, 

it tends to break up and aot as ball bearings between the plates, thus 

reducing friotional resistance. 

Results from tests indicate that all paints containing Red Lead or 

Zinc Dust have a low coefficient of friotion. These two Items aot as 

lubricants between the plates and cause a plane of weakness which will 

tolerate slip at very low loads. 
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To correlate the results from the short loading test , a long time 

test was run on the SSPC-Paint 13-55T. Figure 25 shows a comparison 

between a short time loading curve and the long time loading curve. The 

major slip load of both tests are similar, and the friction values of the 

tests at the slip failure load are slightly different. The friction value 

of the long time test was found to be 85 per cent of the value for the 

short time tests. In general, the curves of both tests run similar to 

one another. 

Just as a load increment was applied to the joint, in the long time 

test, the slip was very rapid; but as time increased under the oonstant 

load, the average slip decreased until after a period of time the change in 

average slip of the joint was negligible. The slip time curve plotted 

of Fig. 31 shows the average slip versus time and indicates how the rate 

of slip decreases with time. Painted joint behavior over very long periods 

of time has been studied (6 ) and the general trend of the curve covering 

these long periods of time is similar to the long time load test run on 

SSPC-Paint 13-55T. 

A joint was tested using the constant strain factor rather than the 

oonstant load factor as a basis for comparison. By oonneoting the points 

where the load remained constant along with the strain, a curve was plotted 

for comparison with a ourve produced by the long time load test. The 

results of this test oan be found on Fig. 26. There seems to be a definite 

correlation between this long time constant strain test and the long time 

oonstant load test. In the long time oonstant load test it was found that 

the friction value produced was 85 per cent of the friction value of the 
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short time load test. Correspondingly, in the long time oonstant strain 

test the friction valve produced by oonneotlng the points of oonstant 

load was 85 per oent of the friction value of the short time load test. 

These results indicate that the same friction values of the long time 

load test were obtained by the long time constant strain test in much 

less time. A possible explanation of any differences in results may be 

in the use of different sets of plates and the lack of enough tests to 

get a good averaging effect. 

A plot of time against drop off of load shown on Fig. 32 indicates 

how the drop off decreases with time. 

Table 4 shows a summation of friotion values for similar tests on 

all plates. The small variations in the summations of these values in­

dicate the relative consistency of the joints and also indicate that 

all plates are smooth to the same degree. The summation of the friction 

values indicate that no speoimen was consistently high or low. As proved 

by the consistency of the results, the values obtained are reliable. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The R e s e a r c h C o u n c i l ' s r e c o m m e n d a t i o n s f o r p a i n t e d c o n n e c t i o n s a r e 

j u s t i f i e d b y t h i s i n v e s t i g a t i o n ( 5 ) . T h e p a i n t s i n c l u d e d i n t h e s e t e s t s , 

wh ioh a r e commonly u s e d by t h e s t e e l f a b r i c a t o r s , a r e n o t o f t h e q u a l i t y 

t o p r o d u c e a f r i o t i o n a l f o r c e l a r g e e n o u g h t o p r e v e n t s l i p p a g e u n d e r p r e ­

s e n t l y u s e d w o r k i n g l o a d s . 

The p r e s e n t r e s t r i c t i o n by t h e c o d e ( 5 ) o f p a i n t e d s u r f a o e s w h e r e 

s l i p c a n n o t b e t o l e r a t e d c a n be v e r i f i e d by t h e f a c t t h a t f o r a l l p a i n t s 

t e s t e d , t h e f r i c t i o n f o r o e d e v e l o p e d b e f o r e s l i p i s n e g l i g i b l e . 

I n t h e c a s e where s l i p c a n be t o l e r a t e d , t h e Red o r Brown One-

C o a t P r i m e r ( S S P C - P a i n t 1 3 - 5 5 T ) p r o d u o e d t h e h i g h e s t o o e f f i o i e n t o f 

f r i c t i o n ( u « 0 . 1 5 ) . The Red L e a d a n d Raw L i n s e e d O i l P r i m e r ( T T - P - 8 6 a 

T y p e I ) p o s s e s s e d t h e l o w e s t c o e f f i c i e n t o f f r i o t i o n o f a l l t h e p a i n t s . 

T e s t s i n d i o a t e t h a t o l e a n p o l i s h e d s u r f a o e s i n s t r u c t u r a l s t e e l j o i n t s 

h a v e a n a v e r a g e c o e f f i c i e n t o f f r i o t i o n o f 0 . 2 3 . B e c a u s e o f t h e p o l i s h ­

e d s u r f a c e s , t h e f r i o t i o n a l r e s i s t a n c e p r o d u o e d by e a c h f a s t e n e r i s l e s s 

t h a n t h e a l l o w a b l e s h e a r s t r e s s e s s p e c i f i e d f o r r i v e t s b y AASHO ( 8 ) , AREA 

( 9 ) , o r AISC ( 1 0 ) . 

Wet p a i n t s a p p l i e d t o t h e s u r f a c e o f s t r u c t u r a l s t e e l p r o d u c e h i g h e r 

f r i o t i o n c o e f f i c i e n t s t h a n t h e same d r y p a i n t s on t h e s u r f a o e s . Low 

p r e s s u r e g r e a s e s p r o d u c e f r i o t i o n c o e f f i c i e n t s u p w a r d s t o t h e v a l u e s 

o b t a i n e d w i t h u n o o a t e d s u r f a o e s . A l l j o i n t s c o v e r e d w i t h c o a t i n g s w h i o h 

o a n be s q u e e z e d o u t when b o l t t e n s i o n s a r e a p p l i e d a o t t h e same a s d r y 
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u n c o a t e d j o i n t s . 

The t h i c k n e s s o f t h e s u r f a c e o o a t i n g a f f e c t s t h e f r i c t i o n v a l u e 

p r o d u c e d i n t h e j o i n t . The t h i c k e r t h e s u r f a c e c o a t i n g , t h e l o w e r i s t h e 

c o e f f i c i e n t o f f r i o t i o n . 

P a i n t s t h a t c o n t a i n m e t a l l i c d u s t p r o d u o e l o w f r i o t i o n v a l u e s when 

u s e d i n a p a i n t e d c o n n e c t i o n . The p a r t i c l e s a o t a s b a l l b e a r i n g s a n d s l i p 

o c c u r s u n d e r t h e s l i g h t e s t l o a d s . 

I n t h e c o n s t a n t l o a d t e s t , t h e l a r g e s t amount o f s l i p o o o u r s a t t h e 

f i r s t a p p l i c a t i o n o f t h e l o a d , a n d t h e r a t e o f s l i p d e c r e a s e s w i t h t i m e 

u n t i l t h e p o i n t i s r e a c h e d w h e r e t h e f r i o t i o n f o r c e i s g r e a t e r t h a n t h e 

s l i p f o r c e a n d a l l movement s t o p s . 

Of a l l t h e oommonly u s e d s t r u c t u r a l s t e e l p a i n t s t e s t e d t h e Red o r 

Brown O n e - C o a t S h o p P r i m e r ( S S P C - P a i n t 1 3 - 5 5 T ) p r o d u c e d t h e h i g h e s t v a l u e 

o f f r i o t i o n . 

The v a l u e s o f f r i o t i o n p r e s e n t e d a r e v a l u e s f o r s h o r t t i m e t e s t s . 

H o w e v e r , t h e s e v a l u e s do n o t v a r y a g r e a t d e a l f r o m t h o s e o f t h e l o n g 

t i m e test. I n d i c a t i o n s a r e t h a t t h e l o n g t i m e t e s t v a l u e s f o r f r i o t i o n 

c o e f f i c i e n t s w i l l be 0 . 8 5 t i m e s t h e v a l u e s f o u n d i n t h e s e s h o r t t i m e 

t e s t s . 

F i n d i n g s o f t h e s e t e s t s i n d i c a t e t h a t no s t r u c t u r a l s t e e l p a i n t s 

u s e d t o d a y w i l l p r o d u o e f r i o t i o n v a l u e s w h i c h c a n be c o u n t e d on i n o a s e s 

where no s l i p c a n b e t o l e r a t e d . As a r e s u l t o f t h e s e f i n d i n g s , no f u r t h e r 

i n v e s t i g a t i o n i s - s u g g e s t e d u s i n g p a i n t s a s p r o t e c t i v e o o a t i n g i n o a s e s 

w h e r e s l i p c a n n o t b e t o l e r a t e d . From t h e r e s u l t s o f t e s t s u s i n g g r e a s e 

a s a p r o t e c t i v e o o a t i n g , i t w a s f o u n d t h a t h i g h f r i o t i o n v a l u e s w e r e 
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o b t a i n e d . I t i s s u g g e s t e d t h a t f u r t h e r i n v e s t i g a t i o n o f t h e u s e o f 

g r e a s e a s a p r o t e o t i v e c o a t i n g m i g h t p r o v e v e r y p r o f i t a b l e . I t m i g h t b e 

p o s s i b l e t o s p r a y s t r u c t u r a l s t e e l w i t h a p r o t e c t i v e c o a t i n g o f g r e a s e 

i n s t e a d o f p a i n t , w h i c h i s now u s e d . 
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APPENDIX 



TABLES 



T a b l e 1 . T e n s i l e P r o p e r t i e s o f t h e P l a t e s 

Coupon P l a t e U p p e r U l t i m a t e R e d u c t i o n 
T h i c k n e s s Y i e l d S t r e n g t h o f A r e a 
I n c h e s P S I P S I P e r C e n t 

l - A 1 / 2 3 7 , 9 0 0 6 0 , 4 0 0 4 6 . 3 
1 - B 1 / 2 3 5 , 7 0 0 6 1 , 7 0 0 5 2 , 9 
1-C 1 / 2 3 5 , 8 0 0 6 1 , 7 0 0 4 8 . 3 

2 - A 1 3 5 , 9 8 0 6 0 , 0 0 0 5 4 . 1 
2 - B 1 3 8 , 1 5 0 6 2 , 6 6 0 5 6 . 3 
2 - C 1 3 4 , 5 5 0 6 1 , 0 2 5 5 7 . 0 
2 -D 1 4 0 , 2 0 0 5 9 , 5 6 0 5 1 . 5 



T a b l e 2 . A v e r a g e P l a t e V a l u e s o f S m o o t h n e s s 

S p e c i m e n P l a t e A v e r a g e A v e r a g e 
RMS AA 

A 2 4 - 2 5 2 2 - 2 3 
B - l 2 5 - 2 6 2 3 - 2 4 
B - 2 2 8 - 2 9 2 5 - 2 6 
C 2 3 - 2 4 2 1 - 2 2 

A 3 1 - 3 2 2 9 - 3 0 
B - l 3 3 - 3 4 3 1 - 3 2 
B - 2 2 9 - 3 0 2 7 - 2 8 
C 3 0 - 3 1 2 8 - 2 9 

A 2 8 - 2 9 2 * - 2 7 
B - l 2 8 - 2 9 26-">7 
B - 2 2 6 - 2 7 2 4 - 2 5 
C 3 2 - 3 3 3 0 - 3 1 

A 2 5 - 2 6 2 3 - 2 4 
B - l 2 8 - 2 9 2 6 - 2 7 
B - 2 2 4 - 2 5 2 2 - 2 3 
C 2 7 - 2 8 2 5 - 2 6 
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T a b l e 3 . Summary C h a r t o f F r i c t i o n V a l u e s 

S e r i e s S u r f a c e C o a t i n g S u r f a c e J o i n t D r y i n g M a j o r S l i p 
No . C o n d i t i o n No. T ime S l i p F a i l u r e 

l o a d l o a d 
H r s , u u 

A - l U n c o a t e d Dry 1 m 0 . 2 4 0 
A-2 2 - 0 . 2 0 0 -
A-3 3 - 0 . 2 3 0 -
A-4 4 - 0 . 2 5 0 -
B - l T T - P - 8 6 a T y p e I 1 b r u s h c o a t 1 72 0 0 . 0 6 0 
B - 2 Dry 2 72 - 0 . 0 6 9 
B - 3 3 72 - 0 . 0 6 3 
B - 4 4 72 - 0 . 0 6 9 

C - l S S P C - P a i n t 2 - 5 5 T 1 b r u s h C o a t 1 4 8 _ 0 . 0 7 8 
C - 2 Dry 2 4 8 - 0 . 0 9 1 
C - 3 4 8 - 0 . 0 8 6 
C - 4 4 4 8 - 0 . 0 7 9 

D - l S S P C - P a i n t 1 1 - 5 5 T 1 b r u s h c o a t 1 24 - 0 . 1 0 6 
D-2 Dry 2 24 - 0 . 1 2 3 
D-3 3 2 4 - 0 . 1 3 8 
D-4 4 2 4 - 0 . 1 1 8 

E - l S S P C - P a i n t 1 3 - 5 5 T 1 b r u s h c o a t 1 2 4 0 . 1 8 3 
E - 2 Dry 2 24 - 0 . 1 4 8 
E - 3 3 2 4 - 0 . L 3 3 
E - 4 4 24 - 0 . 1 6 0 

F - l T I - P - 6 4 i b T y p e I I I b r u s h c o a t :. 24 0 . 0 7 0 
F - 2 Dry 2 24 0 . 0 6 3 
F - 3 3 2 4 - 0 . 0 7 4 
F - 4 4 2 4 0 . 0 8 8 

G - l N e b u l a No. 1 1 h e a v y c o a t 1 _ 0 . 0 7 2 0 . 1 2 1 
G - 2 1 t h i n c o a t 2 - 0 . 0 6 3 0 . 0 8 5 
G - 3 1 t h i n c o a t 3 - 0 . 0 7 8 0 . 1 7 9 

H - l S o v a r e x L No. 1 1 t h i n l a y e r I 0 . 0 6 8 0 . 0 8 0 
H-2 2 - 0 . 0 7 7 0 . 0 9 8 

1 - 1 G u l f l e x 1 t h i n l a y e r 1 - 0 . 1 6 2 0 . 2 8 2 
1 - 2 2 - 0 . 1 7 2 0 . 2 5 7 
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T a b l e 3 . ( C o n ' t ) Summary C h a r t o f F r i c t i o n V a l u e s 

S e r i e s S u r f a c e C o a t i n g S u r f a c e J o i n t D r y i n g M a j o r S l i p 
N o . C o n d i t i o n No. t i m e S l i p F a i l u r e 

h r s . L o a d L o a d 
u u 

J - l T T - P - 8 6 a T y p e I 1 wet l a y e r 3 — 0 . 1 0 5 0 . 1 6 0 
J - 2 3 - 0 . 1 1 3 0 . 1 6 0 

K - l S S P C - P a i n t 1 3 - 5 5 T 1 wet l a y e r 3 0 . 2 0 1 0 . 2 2 8 
K - 2 3 - 0 . 1 9 1 0 . 2 2 8 

L - l S S P C - P a i n t s 1 3 - 5 5 T 2 b r u s h c o a t s 1 4 8 - 0 . 1 3 2 
L - 2 ( d r y ) 2 4 8 - 0 . 1 1 9 
L - 3 I s p r a y c o a t 3 2 4 - 0 . 1 5 5 
L - 4 ( d r y ) 4 24 0 . 1 6 3 

M - l T T - P - 8 6 A T y p e I Z brii:.i c o n e s 3 144 0 . 0 6 0 
M-2 (dry) 4 144 - 0 . 0 5 5 
M-3 1 s p r a y c o a t ] 72 0 . 0 6 4 
M-4 ( d r y ) ro 72 0 . 0 6 8 
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T a b l e 4 . J o i n t F r i c t i o n V a l u e s 

S u r f a c e C o a t i n g 2 3 4. A v e r a g e 

None 0 . 2 4 0 0 . 2 0 0 0 . 2 3 0 0 . 2 5 0 0 . 2 3 0 

T T - P - 8 6 A T y p e l 0 . 0 6 0 0 . 0 6 9 0 . 0 6 3 0 . 0 6 9 0 . 0 6 5 

S S P C - P a i n t 2 - 5 5 T 0 . 0 7 8 0 . 0 9 1 0 . 0 8 6 0 , 0 7 9 0 . 0 8 3 

S S P C - P a i n t U - 5 5 T 0 . 1 0 6 0 . 1 2 3 0 . 1 3 8 0,118 0 121 

SSPC P a i n t 1 3 - 5 5 T 0 . 1 8 3 0 . 1 4 8 0 . 1 3 3 0 . 1 6 0 0 . 1 5 6 

T T - P - 6 4 1 b T y p e I I 0 . 0 7 0 0 . 0 6 3 0 . 0 7 4 0 . 0 8 8 0 . 0 7 4 

Summat ion o f f r i c t i o n 
v a l u e s o f t h e j o i n t 
i n c l u d i n g t h e 
u n p a i n t e d s u r f a c e s 0 . 7 3 7 0 . 6 9 4 0 . 7 2 4 0 . 7 2 4 

S u m m a t i o n o f f r i c t i o n 
v a l u e s o f t h e p a i n t e d 
s u r f a c e s o n l y 0 . 4 9 7 0 . 4 9 4 0 . 4 9 4 0 . 5 1 4 
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FIGURES 



Lead wires from strain gages 
to instrument box 

1/8" Drilled hole 
(one each side) 

Mill off 1/16" 
(each side) 

SR4 A-11 
Strain gage 

Petrosene wax 
covering, 
Conforming with 
bolt surface 

7/8" High Strength Bolt 

2 l/V Shank - h if2" Overall length 

Lead wires from 
strain gage to 
instrument "box 

Strain gage cemented ' 
to milled surface with 
Duco Cement 

•Protective "black 
rubber tape 

SRU Strain gage type 
A-ll, 
Resistance 120.0 t .2 
Gage factor 2.02 * 1# 
Lot No. 236-M 

Section A-A 

Fig. 1. Instrumented High Strength Bolt 
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E l l i s S w i t c h a n d 
1 — B a l a n c e M o d e l B S - 6 

S e c t i o n A-A 

F i g . 2 . S c h e m a t i c W i r i n g D i a g r a m o f S t r a i n E q u i p m e n t 





Fig. 5 . Detail of Test Specimen 
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Fig. 8 . Overall View of Test Specimen 
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F i g . 9. B o l t C a l i b r a t i o n C u r v e 
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Fig. 10. Curves for Uncoated Surfaces 
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S e r i e s B TT-P-86a T y p e I P r i m e r 

A v e r a g e S l i p o f J o i n t ( i n c h e s ) 

F i $ . 1 1 . C u r v e s f o r D r y TT-P-86a T y p e I P r i m e r 
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S e r i e s C S S P C - P a i n t 2 - 5 5 T 

2 0 i 

10-L 

T e s t C - l 

u - 0 . 0 7 8 

u - 0,079 

F i g . 12 

A v e r a g e S l i p o f J o i n t ( i n c h e s ) 

C u r v e s f o r Dry S S P C - P a i n t 2 - 5 5 T 



F i g . 1 3 . 

A v e r a g e s l i p o f J o i n t ( i n c h e s ) 

C u r v e s f o r Dry S S P C - P a i n t 1 1 - 5 5 T 
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S e r i e s E 

A v e r a g e S l i p o f J o i n t ( i n c h e s ) 

F i g . lb. C u r v e s f o r D r y S S P C - P a i n t 13-55T 



k9 

S e r i e s F F T - P - 6 4 l b T y p e I I 

A v e r a g e S l i p o f J o i n t ( i n c h e s ) 

F i g . 1 5 . C u r v e s f o r D r y T T - P - 6 1 + l b T y p e I I 
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Fig. 16. Curves for Nebula No. 1 Grease 



5 1 

F i g . 1 7 - C u r v e s f o r S o v e r a x L N o . 1 G r e a s e 
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Series I - Gulflex Multi Purpose Grease 

u = 0 .282 

T e s t 1 - 1 

Average Slip of Joint (inches) 

Fig", 1 8 , Curves for Gulflex Multi Purpose Grease 
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P i g . 1 9 . C u r v e s f o r Wet T T - P - 8 6 a T y p e I P r i m e r 
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S e r i e s . L D o u b l e C o a t S S F C - P f c i n t 1 3 - 5 5 ? 



Series L Spray Coat SSPC-Paint 1 3 - 5 5 T 

50 -r 

Average Slip of Joint (inches) 

Fig. 2 2 . Curves for Spray Coating of SSFC-F&int 1 3 - 5 5 T 
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S e r i e s M S p r a y C o a t T T - P - 8 6 a T y p e I 

2 5 1 

A v e r a g e S l i p o f J o i n t ( i n c h e s ) 

F i g . 2k. C u r v e s f o r S p r a y C o a t i n g o f n ? - P - 8 6 a T y p e I 
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Fig. 2 6 . Constant Strain Curve for SSPC - Paint 1 3 - 5 5 T 
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o 
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Average Slip of Joint (inches) 

Fig- 27. Comparison of Slip Performances 



50 T 

G u l f l e x M u l t t P u r p o s e G r e a s e 

CX 

o 

1 - 2 

H-2 

G - l 

o 
d 

o o o 

G u l f l e x 

o S o v e r a x 

j t N e b u l a 

O a 

i o n 
0.172 
0.077 
0.072 

O 

A v e r a g e S l i p o f J o i n t ( i n c h e s ) 

F i g . 2 8 . C o m p a r i s o n o f G r e a s e P e r f o r m a n c e s tSJ 



SSPC-Paint 1 3 - 5 5 T 

Symbol .Type Friction 
o 1 Brush 0 . l 6 0 

x 1 Spray 0 . 1 6 3 

^ 2 Brush 0 . 1 3 3 

Spray Coat 

Jingle Brush Coat 

Double Brush. Coat 

i o 
d 

O q 
o 0 
Average Slip of Joint 

3 
o 
(inches) 

o 
d 

Fig. 2 9 . Curves for Variations in Thickness of SSPC-Paint 1 3 - 5 5 T 
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Long Time Load Test (Fig. 2 5 ) 
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Fig. 31. Average Slip per Unit of Time at 1^,000 Pound Load Level of Long Time Load Test 
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Fig. 32. Decrease of Load Per Unit of Time at 30,000 pound Load Level of the Constant Strain Test 
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Formula used to calculate the coefficient of friction 

F - uN Where F - the force applied by the testing machine 
u = the coefficient of friction 
N - the normal force - the total clamping 

force of the high strength bolts 

EXAMPLE SERIES A EXAMPLE 

Test A - 4 

F = 63,900 lbs. (major slip load applied by the testing machine) 

u - - (coefficient of friction at the major slip load) 

N " 253.9 lbs. (summation of the last bolt tension readings before 
the major slip occurred X 2) 

u - 63,900/253.9 

u = 0.250 

EXAMPLE SERIES A EXAMPLE 

Test B - l 

F • 14,950 lbs. (major slip applied by the testing machine) 

u 3 - (coefficient of friction at the slip failure load) 

N - 253.0 (summation of the last bolt tension readings before 

the slip failure load X 2) 

u - 14,950/253.0 

u - 0.060 

Fig. 33. Calculation of the Coefficient of Friction 



• B o l t k T e s t A-l* 
L o a d D e c r e a s e 1000 l b s . 

. 0 6 - 1 

B o l t k T e s t 7 - 1 
L o a d D e c r e a s e 100 l b s 

F i r s t T e s t o f 

J o i n t k 
^ S i x t h T e s t o f 

J o i n t 1 

I n s t a n t a n e o u s S l i p 

1000 l b s . 1000 l b s . 

S t r a i n i n M i c r o - i n c h e s p e r i n c h 

F i g . 3 4 . B o l t L o a d V a r i a t i o n C u r v e 
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