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SUMMARY

Wireless and Mobile (WAM) networks have been evolving and extending their reach

to more aspects of human activity for years. As such, networks have been deployed in

wider and broader physical range and circumstances, so that end-to-end contemporaneous

connectivity is no longer guaranteed. To address this connectivity challenge, recent research

work on Disruption Tolerant Network (DTN) paradigm uses intermediate nodes to store

data while waiting for transfer opportunities towards the destination. However, this work

differs from conventional research work in WAM, e.g., Mobile Ad hoc Network (MANET)

routing, since the connectivity assumptions are so different.

In this thesis, we present the WAM Continuum framework which aims to provide a uni-

fied treatment of wireless and mobile networks. The framework is based on the construction

of a WAM continuum that defines the space of networks and a corresponding formalism

by which one can group related WAMs into classes that map into design and operational

regimes. We show a specific instantiation of this framework that classifies networks accord-

ing to their path properties and apply it to networks described by traces from both real

platforms and synthesized mobility models. Effect of introducing controllable node mobility,

e.g., message ferrying, is quantitatively evaluated in our study. We extend this framework

in a manner that enables the classification of a WAM’s energy “sufficiency” depending on

a combination of the network connectivity properties, available energy, and power man-

agement scheme. As another extension under the same WAM continuum framework, this

thesis studies the interaction of mobile computation collaboration and underlying network

connectivity characteristics.

Classification results from our framework indicate that heterogeneous connectivity may

exist in WAM networks. In such cases, protocols from different routing paradigms need to

work together to provide effective data communication. We focus on integration of MANET

routing and message ferrying in clustered DTNs. A hybrid routing approach is developed in

v



which both MANET routing and message ferrying are used to explore available connectivity

in clusters via gateway nodes. Different data aggregation as well as transmission scheduling

algorithms are proposed. To achieve better performance, we also study the ferry route

design problem in the clustered DTNs and develop three route design algorithms.

This thesis work also includes our experience to address challenges associated with new

data communication requirements in oil field operations at remote areas. Backed up by a

comprehensive measurement study of long range data links provided by satellite and cellular

services, we develop a WAM network where multiple data links are jointly used to achieve

an effective data communication solution in the challenged environment.
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CHAPTER I

INTRODUCTION

1.1 Conventional Wireless and Mobile Network

Wireless and Mobile (WAM) networks have been evolving and extending their reach to

more aspects of human activity than ever before. The advent of wireless portable devices

has enabled a broad range of new applications from social media on hand held devices to

wild life tracking with sensors and from location based services to mobile computation.

Wireless and mobile networks can be divided into two broad categories based on how

the network is constructed and what is the underlying architecture. There are infrastructure-

based networks with designated access points or base stations serving as gateways to voice/data

backbones, which normally are wired networks with fixed infrastructure. Mobile nodes es-

tablish direct connections with those gateways following a managed signaling sequence.

Among this type of networks, mobile cellular phone networks have had tremendous success

with nearly 400 million end user devices sold in 2011 Q2 according to IDC report [49].

Wireless LANs [58] operating in infrastructure mode have also gained significant popularity

as a cost effective and license-free way to provide data access in a local area.

In the meanwhile, other wireless and mobile networks fall into the infrastructure-less

(ad hoc) category in which the network is formed with cooperation of an arbitrary set of

nodes, none of which have a specific infrastructure designation. Infrastructure-less wireless

networks with mobile nodes, frequently called Mobile Ad Hoc Networks (MANETs) [33],

have been the subject of extensive research for at least three decades. Interest in such

networks is almost as old as the Internet [57].

In both infrastructured and infrastructureless wireless networks, a wireless link forms

between a node pair when their communication interfaces are both active and within radio

range of each other. Wireless networks are fundamentally different from wired networks

as the connectivity in these networks may keep changing throughout their operation as
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a wireless link goes up or down when nodes are in or out of communication range due

to reasons such as mobility. In keeping with the literature, we call such communication

opportunities between node pairs contacts.
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Figure 1: MANET Routing and Space Path

In conventional wireless and mobile networks, such dynamics of link status along end-

to-end paths is assumed to be transient and the same or alternate paths can be restored

relatively quickly. In MANET, nodes are recruited to serve as intermediate routers which

relay data packets between two hosts that are not in direct contact. Space path formed by

a set of contacts that exist contemporaneously is discovered in the routing process. Figure

1 shows snapshots of a MANET over time as the connectivity among nodes changes. Space

paths between node 2 and 3 are also illustrated. Various approaches, e.g., proactive ones

such as DSDV and OLSR protocols [32, 78] or reactive ones such as such as AODV and

DSR protocols [53, 79], have been developed with different design considerations. In the

meanwhile, interruptions on data communication between mobile nodes and base stations

in infrastructured wireless networks are handled by specific signalling. As nodes moves from

one base station’s coverage to another, a procedure called the handoff is triggered [47, 70]

to ensure the stability of data communication between these mobile nodes and backbones

via these base stations.
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1.2 Delay Tolerant Network

Regardless of the specifics of the MANET routing protocol or the handoff signalling, an

end-to-end contemporaneous path is always assumed between the source and the destina-

tion. However, as wireless and mobile networks have been deployed in wider and broader

physical range and circumstances, the end-to-end contemporaneous path assumption may

not be always valid. Recently, research has focused on these challenged wireless and mo-

bile network and the ways to transit data in such networks. These challenged networks

go by various names: delay-tolerant, disruption-tolerant, opportunistic or intermittently-

connected networks [39,64,91,99]. We will use the “DTN” acronym to refer to this class of

networks.
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Figure 2: Space Time Path

DTNs differ from conventional wireless and mobile networks on the assumption of end-

to-end connectivity. Figure 2 shows snapshots of a DTN over time. Conventional MANET

routing protocols are not able to deliver data packets between node 1 and 5 as network

partitions persist. However, asynchronous messaging of data bundles [39] provides mean-

ingful communication in a store-carry-and-forward paradigm. Data is forwarded by being

transmitted when link exists and then being stored at the intermediate node awaiting the

next communication opportunity.

In Figure 2’s example, data bundles can be forwarded from node 1 to 3 at time t1. And

they are stored on node 3 until t2 when they are forwarded again to node 4. Node 4 stores
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those bundles and eventually forwards data to node 5 at t4 when the link between node

4 and 5 forms. Assuming there are temporal links between the same node in consecutive

snapshots in addition to physical links, i.e., spatial links, among different nodes in the same

snapshot, those data bundles are forwarded along a space-time path.

BackboneBackboneBackbone

BS1 BS2

1 2 3

BS1 BS2

1 2 3

BS1 BS2

1 2 3

Time
1t 2t 3t

Figure 3: Path interruption in Infrastructured WAM

The end-to-end path from source to destination may also experience interruptions in

infrastructured wireless and mobile network. More extensive usage of mobile devices and

higher node mobility create challenges on the coverage of Wireless LAN, cellular system

and even satellite network. In Figure 3’s example, node 2 is able to access the backbone at

t1 via base station 1. Data bundles from node 2 to the backbone must be stored from t2 to

t3 which is the duration of disconnection between node 2 and base stations. Note that the

node 2 may access a distinct or even different type base station at t3 when it regains the

access to the backbone.

Examples of WAM networks in the DTN category include but are not limited to the

following:

• Sensor Networks [7, 46, 65]: Sensor networks consist of spatially distributed nodes to

cooperatively monitor physical or environmental conditions. These sensors are small

in size and have limited communication range, implying a connected path may not

always be established back to base stations.

• Human and Vehicular Networks [13, 48, 61]: Short-range wireless communication de-

vices can be carried by humans or vehicles for various data services from activity

4



monitoring to web access. Contacts between nodes are sporadic due to carriers’ move-

ments.

• Data collection at remote areas [29,75]: Operations such as oil field activities may be

conducted at remote locations under harsh working conditions. A satellite link may

be disconnected from time to time.

• Deep Space/Deep Sea Communication [22, 77]: Wireless communication extends its

reach to interplanetary or under-water data transmission. However, links in these

types of network are associated with intermittent connectivity, long delay and high

link loss.

• Disaster Recovery/Military Deployment [17, 97]: In these scenarios, data communi-

cation is essential for the success of missions. But frequent network partitions are

expected due to natural factors such as difficult terrain or hostile actions.

Various DTN routing algorithms have been proposed which choose forwarding paths

based on knowledge about network status [23,52,64], apply flooding to propagate messages

to all nodes in the networks [99], or make forwarding decision based on certain expectation

of the delivery performance [11]. When there is little or no contact opportunities in DTNs,

data delivery is difficult with any of those DTN routing protocols. In this case, additional

assistance is required to enable data delivery. Deploying inexpensive wireless nodes with

storage are shown to improve data delivery by providing more relay opportunities [111].

Different types of infrastructures, including base stations and wireless mesh, are compared

in [15]. Controllable mobility such as message ferrying [93, 108, 109] is another type of

assistance available for data delivery in DTNs.

1.3 WAM Continuum and Network Classification Frame-

work

In previous research work, studies of conventional wireless and mobile network is separated

from or in contrast to those for DTNs. Therefore, protocols developed for MANETs gener-

ally do not work in DTNs and vice versa, since the connectivity assumptions are different.
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In both cases, durations and intervals of contacts among wireless nodes determine charac-

teristics of communication opportunities and consequently the performance of data delivery.

Therefore, research work has been done on measuring and characterizing contacts in various

scenarios from recording people’s encounters by bluetooth devices [87] to tracking buses’

communication opportunities via open Wireless LANs [21].

In this thesis, we make the simple but powerful observation that MANETs and DTNs

fit into a continuum that generalizes these two previously distinct categories. Building on

this observation, we develop a WAM continuum framework that goes further to scope the

entire space of Wireless and Mobile networks so that a network can be characterized by its

position in this continuum. Certain network equivalence classes can be defined over subsets

of this WAM continuum and this classification can be used to determine network design

and operation.

We develop our quantitative classification formally and present a specific instantiation

of our framework based on connectivity in WAM networks. Unlike these empirical studies

of DTNs at the contact level, we characterize wireless and mobile networks on the path level

in this framework. The goal is to have a path classification usable to determine the most

appropriate operation of the network. Unlike previous approaches [19], this classification

admits granularity at the level of node-pairs, thus accommodating classification of portions

of the network as well as the network as a whole. Once per node pair results are generated,

they can be generalized into a network level classification.

Conventional MANETs and infrastructured wireless networks are characterized by the

availability of space paths. We use the term Space-Path Networks (SPNs) [19] to denote

networks where a space path can be found among all node pairs. Note that a wireless and

mobile network’s characterization not only decides which suite of protocols can be used but

also whether assistance is required. If certain assistance such as message ferrying is required

to provide effective data delivery in a DTN, such network is classified as “Assitance-needed

DTN or A-DTN. Otherwise, the term “Unassisted” DTN or U-DTN is used to describe

networks which is neither SPN nor A-DTN where data is deliverable using a DTN routing

protocol without any “assistance”.

6



By applying our framework to networks described by traces from real platforms and

mobility models, we show that it can be used as a systematic and formal descriptive and

evaluative tool. Furthermore, our classification results indicate that the boundary between

different classes of networks is not rigid. More importantly, by providing necessary “assis-

tance”, e.g., using message ferrying, a WAM’s classification can be changed due to trans-

formation of path level characteristic. In other words, data communication challenges in

such networks can be mitigated by allocating more resources and using them properly.

1.4 Network Classification Framework Extensions

Besides challenges on path connectivity in wireless and mobile networks, another category

of challenges in these networks is the power supply and management. Since the nodes

of a WAM network are usually small and powered by battery, energy management is a

critical issue for deployment and operation in those networks. Various power management

schemes have been proposed for MANET [28,101,103], infrastructured WAM [6] and DTN

contexts [16, 55, 100]. The principle is reducing energy consumption rate by turning off

communication interfaces from time to time. Related research work focuses on various

objectives from increasing nodes’ lifetime to keeping a area covered by a sensor network

[102]. However, an important yet practical question is always not answered: whether a

certain amount of energy provision in a WAM network is enough for its operation.

In our work, we characterize this category of challenges in WAM by first extending our

instantiation of the connectivity based classification framework. We start with the under-

standing that a network’s classification from energy perspective is jointly determined by

many factors, including its network connectivity properties, available energy, and power

management scheme. These last two factors affect network connectivity and possibly alter

the connectivity based classification results. Since power management schemes always in-

tentionally turns of radio interfaces and thus reduces communication opportunities, certain

level of “downgrading” is expected if power management scheme is used in a WAM network

since limited energy is provided. By quantifying such “downgrading”, we are able to deter-

mine to what level the communication between a node pair is affected by the energy supply
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and the power management scheme used. Results from node pairs are generalized into a

network classification on whether such network has “sufficient” energy for its operation. We

also evaluate the “downgrading” on traffic handling capacity by energy provisioning and

power management schemes. Characterization of traces from real platform and certain mo-

bility model using our classification framework provides useful insight on WAM operation

from energy management point of view.

Today’s mobile devices, e.g., smart phones, are equipped with processing capability and

storage capacity to handle computational tasks beyond simple voice/data communication.

In the meanwhile, advanced techniques such as application partitioning [31] and code of-

floading [34] are developed for mobile applications. These two factors make computational

collaboration possible between mobile nodes and infrastructure [31, 34] or among mobile

nodes [89]. In other words, a resource-intensive and time-consuming application can be

divided into a number of tasks, which are distributed in the WAM network. After their

executions, results of these tasks are returned to the node initiating the application. There-

fore, functionalities such as media processing and data analysis can be provided beyond

the resource limitation of a single mobile node. More importantly, the computational task

can be finished faster or with less energy consumption on mobile nodes with support from

resource inside the infrastructure or on other nodes.

In WAM networks where space-time path might exist between node pair, initiation and

coordination of the computational collaboration among mobile nodes become a challeng-

ing task [89]. After computational tasks are distributed, results of these task may not be

returned to the task initiator in time. We characterize such challenge in WAM networks

with the extension of our connectivity based classification framework. The process of com-

putational collaboration associated with each task is divided into a sequence of stages with

different time constraints. A “round trip” with these time constraints satisfied must exist

from the task initiator and the task executor to make such collaboration meaningful. By

counting the number of these “round trips” from a node to its peers, we are able to de-

termine whether it is “advantageous”, i.e., finishing computational task faster, to initiate

a computational collaboration at this node. Results from nodes are generalized into the
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network classification. In this thesis, we use such classification result to quantify the level

of “worthwhile” for computational collaboration in WAM networks described by real traces

and various mobility models.

1.5 Hybrid Routing in Clustered DTN

Heterogeneous spatial node distributions and concentration points of high node density

exist in many practical settings [84]. Nodes in sensor networks [8] could be deployed in

clusters to provide necessary sensing coverage and communication reliability. Connectivity

based classification results over different mobile traces also show that different path types

may exist among node pairs in the same WAM network. Therefore, to achieve efficient

data delivery in such a network, different classes of routing protocols may co-exist and

collaborate. In this thesis, we use message ferrying as the assistance among clusters of

nodes. While a MANET protocol is able to handle data communication in each cluster, we

evaluate its integration and interaction with a DTN routing protocol.

With extensive simulation results, we show that the integration of protocols from dif-

ferent routing paradigms requires careful evaluation of their interactions. The MANET

protocol has to aggregate traffic to efficiently utilize the intermittent communication oppor-

tunities with the ferry. In the meanwhile, ferry route decision is greatly affect by MANET

traffic in each cluster.

1.6 Mitigating Real Communication Challenges

In this thesis, we also report our experience of mitigating challenges in building a wireless

and mobile platform used in oil field operations. While most of research work related to

contact characteristics in wireless and mobile network focus on short-range and cost free

radios such as bluetooth and Wireless LAN, we evaluate long range data links including

cellular and satellite services in an outdoor challenged network where the connection be-

tween field locations and the data center cannot catch up with the new data communication

requirement.

In the development of this platform, we first identify connectivity challenges in this
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infrastructured network from application’s bandwidth and latency requirements. Solutions

are provided correspondingly. Due to regulation policy, we are not able to use controllable

mobility as assistance for additional communication opportunities to our systems located

at remote areas. In this piece of work, we first conduct a large scale measurement study

comparing cellular and satellite links side-by-side cross three states in US. We mitigate

challenges in this network by integrating new data links into existing system. Performance

measurements of such an infrastructured WAM network show that various access technolo-

gies have to be jointly used for an efficient yet cost-effective network solution in oil field

operations.

1.7 Outline

The rest of the thesis is organized as follows. Chapter 2 discusses existing work related to

the topics in our work. The WAM classification framework is defined in Chapter 3. We

present classification results of contact traces from real systems and mobility models in this

chapter as well. Our classification framework is extended to evaluate energy sufficiency of

WAM networks in Chapter 4. And it is used as the foundation to evaluate the decision

on computational collaboration in WAM networks considering connectivity characteristics.

Chapter 5 studies the challenge of conducting hybrid routing in clustered DTNs. Experience

of building a WAM system to mitigating communication challenges in remote areas is given

in Chapter 6 with comprehensive measurement results collected during the development.

We conclude this thesis and point out future research topics in Chapter 7.
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CHAPTER II

RELATED WORK

This chapter provides an overview of the related work on routing in WAM networks, followed

by a review of network characterization approaches. Recent research work on outdoor

wireless link evaluation are presented together with resource management in WAM network.

2.1 Routing in Wireless and Mobile Networks

MANET routing protocols normally assume an contemporaneous end-to-end path can be

found. On the other hand, DTN routing protocols generally assume completely isolated

nodes and focus on the one-hop data exchange. When the connectivity in the network is

heterogeneous and data delivery may go through multiple routing paradigms, Recent work

[71, 104] extended MANET routing to overcome network partitions by utilizing multiple

data duplications. Nain et.al introduced a message relay layer beneath DSDV protocol [71].

Local flooding duplicates data at the immediate neighbors, which send the duplicate to the

destination once a route is found. ASOS [104] used a similar approach but duplicates were

made at some designated storage-abundant nodes.

Authors of [74] extended AODV to enable it to discover nearby DTN routers during

route search and obtain routing hints from them. AODV is used as a vehicle to locate

DTN routers in case no end-to-end path can be determined. On the other hand, based on

the path information provided by AODV, DTN-based hop-by-hop communication might be

utilized instead of using an end-to-end path to improve the throughput.

The probability based routing protocol in [64] was extended in [94] which considered

disconnected networks where nodes move in groups. MANET routing, i.e., DSDV, was used

to keep the membership information in each group and update the probability of successful

delivery to other groups. Routing was first done among groups. Once messages arrived at

the group containing the destination node, they are delivered via MANET routing.
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Although applications in DTNs should be tolerant to long delay and high loss rate, better

delivery performance, i.e., shorter delay and higher delivery ratios, is always desirable. In

DTNs, intermittent data exchange happens during nodes’ contacts. Since the inter-contact

time may be heavy tailed [26], forwarding copies of message along multiple path is widely

used in DTN routing protocols to reduce the end-to-end delay. Many DTN routing protocols

are proposed on how to make message copies and forward them, which can be a simple and

aggressive approach like epidemic routing [99] or based on certain expectation of the delivery

performance [11]. With different level of knowledge of the network, a suite of unicast routing

protocols are developed and evaluated in [52].

2.2 Mobility Control in Wireless and Mobile Network

In MANETs, although the end-to-end connectivity is guaranteed due to dense node deploy-

ment, controllable node movement is used to adjust network topology to improve certain

metrics. [42] considers moving intermediate nodes along a end-to-end path so that distances

between node pairs are minimized so that lower energy is used to cover a shorter distance.

Other than energy consumption, survivability of end-to-end path is considered in [18, 97].

Algorithms are proposed in [18] to transform a non-biconnected network configuration to

a biconnected one by making certain nodes to move to new positions. Therefore, a single

node failure won’t create network paritions. Controlling a team of robots’ movement based

on signal strength on wireless links so that not network partitioning occurs is also discussed

in [97].

In DTNs, controllable mobility normally is used as “assistance” to provide additional

contact opportunities. In [63], mobile nodes modify their trajectories to move into commu-

nication range of each other and delivery message over network partitions. Moving special

nodes called message ferries along designated routes introduces more intermittent yet reg-

ular encounters with nodes. The ferry route can be designed so that traffic load from

stationary node can be satisfied [109]. This work has been extended to handle traffic from

mobile nodes [93] or in multiple ferries cases [110].

The movement of ferry or similar agent can be adjusted in real time as well. A control
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function considering a variety of network performance metrics is given in [24]. Special order

is given to resolve the conflicts in agent’s trajectory adjustments towards satisfying different

metrics. In [108], ferry’s movement can be adjusted based on communication requests from

nodes. Furthermore, nodes are able to intentionally move towards the ferry when the

communication request outweighs the interruption to their routine operation.

Mobility helps energy conservation in WAM networks as well. A mobile base station

was also used in [66] to increase network lifetime. Their technique leads to a more uniform

distribution of energy consumption by repeatedly relocating the base station, which changes

the bottleneck nodes which are closest to the base station and results in load-sharing the

burden of relaying.

Reducing number of intermediate hops equals to fewer times of forwarding for each

messages. Therefore, the energy consumption during communication can be reduced by

using nodes’ mobility to provide end-to-end path with fewer number of hops. However, the

tradeoff is longer latency in message delivery [56,90].

Opportunistic scheduling between nodes and gateway is proposed for a ferry-based net-

work in [45]. The contact time between ferry and gateways are sufficiently long to finish

all data exchange. Therefore, the objective is to minimize the delivery latency given the

information about ferry schedules.

2.3 Connectivity Characterization of Wireless and Mobile

Network

In MANETs, data packets are forwarded along an end-to-end contemporaneous path. Also,

one essential function of numerous routing protocols developed for MANETs is route main-

tenance between source/destination pairs with link dynamics. Information related to end-

to-end paths can be used to characterize MANETs from a routing perspective. As an

end-to-end path consists of hop-by-hop links, statistical property of link availability, i.e,

how long will two nodes remain connected, is shown to affect the performance of routing

protocols [68]. On the other hand, path duration statistics is modeled across a set of mo-

bility models in [9], which can be used to predict the general trends for reactive MANET
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routing protocols.

In a DTN, end-to-end connectivity is the exception instead of normal. Bundle/message

forwarding is along the space-time path which consists of contact opportunities between

node pairs. Therefore, a DTN is specified by the contacts between its nodes as well as

properties of each contact. Statistics of inter-contact time, i.e., the time interval between

two contacts, is studied in [26]. Inter-contact time determines the frequency of data ex-

change opportunities and has the most significant impact on the feasibility of opportunistic

networking. Studies of four different contact traces from human movements show that dis-

tribution of inter-contact times in those DTNs follows an approximate power law, which

is not consistent with exponential decay predicted by mobility models used in MANET

studies.

Chaintreau et al. characterized opportunistic wireless networks by a parameter called

diameter, which is the number of intermediate hops to find a space-time path between

node pairs given a time constraint [38]. A “small-world” phenomenon is observed that the

diameter grows very slowly as the network size increases. However, the diameter is affected

by the delay constraint on the space-time path.

Empirical study and analytical result of human movement traces in [27] show the “path

explosion” phenomenon, meaning the delay of the optimal path between a node pair may be

long but there normally exists a large number of sub-optimal paths with similar delay. Be-

sides their unique routing decision making policies, a few typical routing protocols developed

for DTNs surprisingly have similar performance in light of this phenomenon. However, het-

erogeneous contact rates between different node pairs affect how fast the “path explosion”

begins.

The author of [82] used a different approach to describe WAM. A framework for routing

formalizing is provided. With this formalism and three abstract constraints and three types

of pre-definedWAM networks, solvability for different WAM types is given with enumeration

of those constraints.
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2.4 Outdoor Wireless Link Utilization and Evaluation

A big portion of studies of outdoor data access focus on connectivity provided via open

WiFi Access Points (APs) [13, 25]. Due to the limited communication range of those APs

and their uncoordinated coverage, handoffs with predictive methods and using pre-fetching

improved downloading are discussed in [36]. Cellular data service is also considered as a

good source for outdoor data access due to its better coverage and less frequent service

interruptions. Using tools from information theory, the work in [105] shows certain level

of predicability of bandwidth on 3G links in a metro area. Most recently, performance

comparison between WiFi and 3G connectivity are conducted in urban areas. Although

these two types of data links have different characteristics, they can be good supplementary

to each other based on studies in [12,35].

Cellular data service providers normally apply sophisticated control/scheduling method

in their networks. The configuration can be highly customizable from location to location

due to Quality of Service (QoS) and business concerns [92]. Empirical study of of transport

layer performance over those managed cellular data links are reported in [60,67,81].

Satellite networks are under strict regulation and management due to the expensive and

limited bandwidth over the links. Research work over satellite links focus on measuring

TCP’s performance over those links and “tuning” the TCP protocol stack to fit the link

characteristics such as long end-to-end latency [30,50,107].

Modern oil field operations from exploration to production requires significant amount of

interactions between software and hardware as well as collaboration among field personnel.

Providing data communication at field locations is not only essential but critical. Wireless

technology has been well adopted since most of oil field operations are conducted at locations

where a conventional wired network infrastructure is physically or financially impractical.

Wireless LAN (WLAN) and two-way radio are common equipments of field crews with high

mobility nowadays. And wireless communication technology continues extending its reaches

at oil field operations [80,85,106].

[76].
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2.5 Power Management in Wireless and Mobile Networks

There are two complementary approaches to optimize the energy consumption in WAM

Networks: 1) Minimizing energy consumption between data communication; 2) Minimizing

energy consumption during data communication.

Wireless network interfaces consumes much less energy in their sleep mode. Keep those

interfaces at sleep mode as much as possible extends the operation time of the network be-

fore any node depletes its energy. But those interfaces should be available when there is data

communication requests. The straightforward approach is to make the network interface

cycle between sleep and active mode. This mechanism can be synchronous or asynchronous.

In former approaches such as 802.11 Power Saving Mode (PSM) [6], nodes wake up peri-

odically together. Additional mechanism must be provided to keep clocks synchronous on

those node. For the latter, special rules must be defined to make sure durations in which

neighboring nodes in active mode overlap. For example, the BECA/AFECA protocol [103]

is designed to be integrated with a reactive MANET routing protocol. Each node cycles

between sleep state and listening/active states. Those cycle intervals can be adjusted ac-

cording to information such as node density so that nodes sleep for longer time whenever

there are more potential alternate routes available.

Topological and connectivity information is also used to determine the energy consump-

tion mode of nodes. A special set, i.e., dominating set, of nodes are chosen to be in active

mode so that a routing backbone is maintained and the network connectivity is kept [28,101].

On the other hand, geographic information is used to divide the deployment area into grids

and one node in each grid is guaranteed to be in active mode. This approach [102] is in-

tended for sensor networking scenarios so that the whole area is covered and data collection

is possible through a connected network.

In MANETs, a node turns off its wireless interface whenever there is no traffic requests

or its neighboring nodes provide alternate route in the network. In the context of DTN,

nodes are sparsely distributed and the time when nodes are able to communicate is limited

in intermittent contacts. Therefore, considerable amount of energy can be saved by aggres-

sively turnning off radios between contacts. But it is challenging to determine when a node
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is able to communicate with other nodes and when it should stay in the sleep mode. Beacons

or probes are used to search for potential contact opportunities among nodes [16, 55, 100].

In those schemes, nodes use certain timers to control their state transitions. They wake up

from time to time and search surrounding with beacon signals. By responding to beacons,

nodes mutually discover the contact opportunity between them.

In reality, if the beacon/probe is used too frequently, too much energy is wasted if there

is long time period between node contacts; on the other hand, too few beacon/probe would

miss a lot of contacts and thus the data delivery performance will suffer. Schemes controlling

nodes’ state transition based on the availability knowledge about network connectivity are

proposed and evaluated in [55]. Results show that the level of knowledge on network

connectivity affects both energy saving and data delivery performance. On the other hand,

the tradeoff between missing a contact and the contact probing frequency is studied in [100].

This work also includes a framework for computing optimal probing interval as a function

of the contact arrival rate.

Different hierarchical power management schemes with multi-radio platforms are used in

DTNs [14,54]. In [54], a short range, low power radio is used with a long range, high power

radio. As the long range radio handles data transmission, the short range radio can be used

to discover contact opportunities. If traffic load can be predicted, sleep/wake-up interval of

those radios are tuned by approximation algorithm for maximum energy conservation while

discovering enough contacts for the expected traffic load. As this approach is appropriate

for relatively dense node deployment, a different usage of multi-tier radios is proposed

in [14] for DTNs with sparse node deployment. A low power, long range radio searches and

predicts contact opportunities with duty cycle. A high bandwidth radio can be waken up

for the data communication. In addition, a token-bucket algorithm is developed to satisfy

an average power consumption rate constraint.

Turning off wireless interfaces whenever possible minimizes energy consumption between

data communication requests/opportunities. Various techniques are used to reduce energy

consumption during data communication in WAM networks. How to route a sequence of

messages so that the lifetime of a network, i.e., the earliest time a message cannot be sent,
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is optimized is discussed in [62] an online approximation algorithm is proposed. Utilizing

nodes mobility to provide intermittent yet regular contact opportunities instead of setup

contemporaneous multi-hop paths conserves energy [56,88].
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CHAPTER III

CLASSIFICATION FRAMEWORK AND WIRELESS AND

MOBILE NETWORK CONTINUUM

For any particular network, the question of whether it is a MANET or a DTN (or equiv-

alently a network with space paths or space-time paths) is critical to answer. Protocols

developed for MANETs generally do not work in DTNs and vice versa, since the connec-

tivity assumptions are so different; hence categorizing a network is critical to its effective

operation. In practice, the question of network category is challenging to formulate and

answer. Many networks will not fit neatly within a simple classification scheme and/or they

may change their classification over time.

This chapter aims to take a fresh perspective on classifying wireless and mobile networks

(WAMs) networks. We develop the WAM continuum framework which provides a unified

treatment of wireless and mobile networks. We envision that each fully specified WAM

represents a point in a multi-dimensional space that we call the WAM continuum. Figure 4

illustrates this concept with a two-dimensional space that uses the average node density and

the average node speed as the two dimensions. A given WAM network will occupy a point in

this two dimensional space based on its density and speed properties. Furthermore, We can

group points on a WAM continuum into classes such that networks within a specific class

possess equivalent properties. A qualitative classification over this two-dimensional WAM

continuum results in three network categories mentioned in previous discussion: Class 1 is

with reasonably persistent space paths with high node density with slow movements; Class

2 is with no paths among certain node pairs due to low density and low speed; and Class 3

is where space time paths can be created from nodes’ movement.

Our characterization can apply to an entire network or can be different for different

parts of the network (e.g., different node pairs). Certain network equivalence classes can be

defined over subsets of this WAM continuum and such network classification can be used
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Figure 4: WAM Continuum Classification Example

to help guide WAM design and operation.

In this chapter, we develop a WAM classification framework based on the path type

between node pairs. We start with node pair classifications and then provide the whole

network classification from node pair classification results. The power of our classification

framework is demonstrated on both real contact traces which is from WAM deployments

and synthesized traces which have tunable parameters to highlight the interesting capability

of our framework.

3.1 Network Classification based on Connectivity

We consider wireless and mobile network comprising a number of nodes equipped with

wireless interfaces moving within a given space. Communication between two nodes is

established when they are within radio range of each other. Contacts between nodes i and

j are described by a link function Lij(t) as follows:

Lij(t) =























1 if nodes i and j are within radio range

of each other

0 otherwise

We call those time interval in which Lij(t) = 1 contacts between node i and j. Data

can be exchanged between nodes during those contact periods. Therefore, in terms of the

data transfer opportunities, a WAM is fully specified by the sequence of contacts, Lij(t),

between its nodes.
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At any given time, a graph G = (V,E) can be used to describe nodes and links. In order

to accurately describe a general WAM with time-varying contacts, we use the model based

on the concept of evolving graphs [40].

Definition 1. Evolving Graph [40]: An evolving graph G = (G,SG, ST ) comprises a graph

G = (V,E), the sequence of its T subgraphs SG = G1, G2, ..., GT and the sequence of its

T + 1 time instants ST = t0, t1, t2, ...tT . Gk is the subgraph in place during [tk−1, tk).

It is relatively straightforward to see how a wireless and mobile network can be described

as an evolving graph. As nodes move they potentially acquire and shed neighbors, changing

the shape of a graph. The exact nature of these neighbor changes is a function of the node

mobility and can be captured by the specifics of graph evolution.

Our notion of space-time paths is captured by the definition of journeys as follows:

Definition 2. JOURNEY [40]: A journey J = (R,Rδ) in an evolving graph G is com-

prised of R = e1, e2, ...., ek the sequence of edges it traverses, and Rδ = δ1, δ2, ..., δk the

corresponding time instants of edge traversal. Rδ must be in accordance with R and G 1.

Ferreira et al. [40] also define a foremost journey as one that has the earliest arrival time

at a destination. Note that a space path is a special type of journey in which all the links

in the journey exist in one of the graphs Gk describing the evolving graph over time period

[tk−1, tk). We use the terms “space-time path” and “journey” interchangeably in this thesis.

Both are similar to definitions in [37,51,69].

3.2 Node Pair Classification

In this section, we first formally define “ideal” node pair classes by mapping the connectivity

between them onto paths of certain properties without taking time consideration into ac-

count. This idealized classification is then extended to accommodate operational concerns,

including time constraints.

1That is, each edge traversed must be in the evolving graph at the time of traversal.
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3.2.1 An Idealized Node Pair Classification

For the following definitions we assume that an evolving graph G describes the WAM under

consideration.

Definition 3. Space-Path Pair (S-Pair): A pair of nodes i and j is called an S-Pair if a

space path can always be found between them in G.

Data can still be transferred between node pairs which are not S-Pairs with the store-

carry-forward paradigm. To capture the character of those node pairs, we have the following

node pair definition:

Definition 4. Space-Time-Path Pair (ST-Pair): A pair of nodes i and j is an ST-Pair if:

- ∀t, a journey exists in G between i and j at t.

- this pair is not an S-Pair.

It is possible that no path can be found between particular node pairs after certain time

point. Therefore, we introduce the last node pair class.

Definition 5. No-Path Pair (N-Pair): A pair of nodes i and j is an N-Pair if ∃t such that

no journey can be found from i to j after t in G.

Finally, it is important to note that both the ST-Pair and the N-Pair definitions are

not symmetric. That is if node-pair (i, j) is either an ST-pair or an N-Pair then node (j, i)

might follow a different classification. Although there is a space time path from node 1 to

node 5 at time tk, there is no path from node 5 to node 1 from tk to tk+3. Note, however,

that the S-Pair definition is symmetric.

3.2.2 A Practical Classification

We now augment our node-pair classification above to incorporate some degree of practical

routing consideration. To understand the motivation, consider a network where connectivity

changes rapidly but where a particular node pair is always connected through a space path.

While a space path exists all the time, the actual links forming the path change in such a
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manner that no specific path persists for a long time. According to our definitions above,

this pair will be classified as an S-Pair and one may reach the conclusion that a MANET

routing protocol may be suitable for routing between the two nodes. However, such routing

protocols need some time to discover a route and therefore require a certain amount of route

persistence. In that case we need to modify our S-Pair definition to take this into account.

To that end we define space path persistence as follows:

Definition 6. Space Path Persistence Time: Let i and j be an S-Pair in an evolving

graph G. By definition, the node pair is always connected by a space path that may change

over time. We denote the sequence of space paths connecting the two nodes over time as

p1, p2, p3, . . .. The persistence time for path pi is the time from when it is first formed in

the network until the time it is replaced by a new path pi+1.

Assuming that routing protocols need at least δ time units to discover a new path, we

define the following:

Definition 7. (δ) S-Pair: A (δ) S-Pair is an S-Pair where all the paths have persistence

time more than δ.

Now consider node pairs classified as ST-Pair. For such pairs, the important considera-

tion is the duration of the journey providing the space-time path. While such journeys are

usable if some form of DTN routing is used, such networks often impose a lifetime beyond

which data is not usable. This leads to the following definition.

Definition 8. (γ) ST-Pair: A (γ) ST-Pair is an ST-pair where the journeys according to

Definition 4 are always less than or equal to γ in duration.

3.2.3 Classifying Node Pairs Over Time

The previous classification provides a rather strict categorization of node pairs. For example,

if a node-pair that is connected through a space path, losing connectivity even for a brief

period of time make it not an S-Pair.

To address this issue we propose to classify network over time. Time is broken up into

epochs during which the network connectivity (or graph in an evolving graph) does not
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change. Our goal is to provide a classification for each node pair in each epoch according

to the following criteria for given δ and γ:

• A node-pair is classified as an S-Pair during epoch k represented by subgraph Gk

(one of the series of subgraphs in the evolving graph) if the node pair is in the same

connected component of Gk and either the epoch lasts for at least δ or the path

connecting the node pair does not change for at least δ time units and this period

consists of one or multiple epochs including epoch k.

• A node-pair (i, j) is classified as an ST-Pair during epoch k if it is not classified as an

S-Pair in this epoch and one can find a journey from i to j of duration no more than

γ starting form the beginning of this epoch.

• A node-pair is classified as an N-Pair otherwise.

Our procedure uses Dijkstra algorithm to compute space path and the algorithm de-

scribed in [40] for computing foremost journeys.

3.2.4 Examples of Node Pair Classification

We now illustrate our node-pair classification methodology by applying it to networks rep-

resented by two types of contact sequences: traces collected from real WAM deployment

or experiment [41, 43, 87, 95] and synthesized ones from mobility models such as Random

Way Point (RWP) and Levy Walk [83]. we consider the latter for their simplicity on tun-

ing different parameters to highlight the interesting capability of our classification scheme.

It should be clear that our goal in this illustration is to demonstrate the descriptive and

evaluative power of our framework and not to compare various network operation strategies.

With δ = 2 seconds and γ = 600 seconds, we first show epoch by epoch node pair

classification of the first three hours portion of a 9 node trace [86] collected in the Haggle

Project [87]. As a comparison, Figure 5a presents the classification results over a 11 node

trace collected from participants in a rollerblading event [95]. Time is shown on the x-

axis and node pairs are represented on the y-axis. Different node pair classification are

represented with different colors as indicated by the legend. Note that each node pair
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Figure 5: Epoch by Epoch Node Pair Classification: Small Time Scale

appears twice along the y-axis but in a reverse direction. The reason is that ST-Pair and

N-Pair classification is not symmetric between each node pair as we pointed out earlier in

Section 3.2.1.

Both traces are about 3 hours long and contain similar number of nodes. They all record

encounters between human participants using bluetooth devices. However, the classification

results presented in Figure 5 are quite different and the insight into properties of the trace

achievable from this visualization of the outcome of our classification is evident. Node pairs

in Haggle trace are mostly classified as S-Pair over time. On the contrary, node pairs in the

RollerNet trace are mostly ST-Pair over time. Such difference roots from the connectivity

characteristic of these two WAM network instances.

Haggle trace was collected in an office building environment where the distance between

node pairs is short. In addition, node movement in such setting is limited and constrained.

Abundant and stable physical links among nodes ensure that there are plenty space paths

in this WAM network.

Nodes in the network presented by RollerNet trace move in an open space so that

the physical distance between node pairs can be long. Furthermore, those nodes, i.e.,

rollerbladers, are in relatively fast movement all the time in the 3 hour period. Therefore,

direct contacts between node pairs are sporadic and duration of these contacts are short.
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Therefore, we can see space paths occur sparsely among node pairs and those paths generally

do not last long. On the other hand, nodes movement creates plenty space time paths in

this WAM network. Data communication is still feasible if the application can tolerate a

delivery latency of 600 seconds.
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(b) Shopping Mall Trace

Figure 6: Epoch by Epoch Node Pair Classification: Big Time Scale

Figure 6 shows classification results in a much bigger time scale. With δ = 2 seconds

and γ = 3600, classification result of the entire trace of Haggle trace is illustrated in Figure

6a. Figure 6b presents the result of the trace from an experiment conduct in a shopping

mall [41]. In this experiment, 25 mobile devices are distributed to sales in different stores

and contacts among those devices are recorded in a 4 days period.

In both WAM networks, the interval of network characteristic changes follows human

daily activity cycle, i.e., 24 hours. The long duration in which most of node pairs are N-Pair

is the time when most participants leave the experiment settings, e.g., their working places,

and carry those mobile devices with them. Beside heterogeneous classification results over

time, Figure 6 also indicates the spatially heterogeneous character in both WAM networks.

In Haggle trace, two nodes are in constant contact is represented by the two blue lines (ac-

tually representing the same node pair). In Shopping Mall trace, there are more node pairs

classified as S-Pair most of the time during the 4 days experiment. And such classification

result is not affected by the daily activity cycle. One possible explanation is that those
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Figure 7: Node Pair Classification and Simulation Result of the Haggle Trace

mobile devices are left in the stores by the experiment participants.

To show the variation on node pair classification in the Haggle trace from a different

perspective, we calculate percentage of time that each node pair belongs to each type of

classification and present the result in Figure 7a. Note that overall the classification varies

significantly among all node pairs. The impact of the parameters γ on the classification

of node pairs in the Haggle trace is illustrated in Figure 7b. A larger γ value means more

relaxed constraint on the allowed journey duration. A node pair classified as an N-Pair in

some epochs may be reclassified as ST-Pair. We notice an increase in the ST-Pair percentage

on most node pairs in Figure 7b when γ increases from 1 hour to 8 hours.

With the same contact trace, we run a simulation using the ONE simulator [59]. Sim-

ulation parameters are set as follows: TTL = 1 hour; traffic load is 1 kbps between each

node pair with average message size of 100 KB; the buffer size on each node is 50MB and

probabilistic routing [64] is used. The correlation between node classification results and

message delivery ratio is given in Figure 8, which demonstrates how our classification can

be used as a low cost performance prediction in certain instances.

The value of δ determines whether an end-to-end path can be classified as a space path.

To show the role of this parameter plays in the classification, we use the trace from an

outdoor MANET experiment [44] consists of 33 laptops carried by walking students on a
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Figure 8: Correlation between Classification and Simulation Result

sports field. Different MANET routing protocols were evaluated in this experiment [43].

Among the 33 mobile nodes, we select 16 with good and continuous GPS logs. A 4000

second contact trace is generated from these GPS logs accordingly.

δ S-Pair ST-Pair N-Pair

2 95% 4.8% 0.2%

4 93.6% 6.2% 0.2%

8 89.7% 10.1% 0.2%

16 79% 20.8% 0.2%

Table 1: Percentage of Node Pair Classifications

Averages of all node pair classification results with γ = 60 seconds and different δ values

are shown in Table 1. As the value of δ increases, a tighter constraint is put on the stability

of a space path, which leads to lower percentage of S-Pair classification. When the δ value

is 16, the average S-Pair classification of all node pairs is lower than 80%. In the routing

protocol implementations used in [43], intervals between basic operations such as neighbor

probing are several seconds. Therefore, a multi-hop route discovery might take more than

10 seconds to finish. End-to-end contemporaneous paths that exist shorter than that period

are not classified as space paths and the MANET protocol implementation is not able to

use them. This provides one explanation of why the data delivery ratios with MANET

protocols were low in the experiment reported in [43].
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3.3 Whole Network Classification

We now show how the per-node-pair classification described above can be aggregated to clas-

sify whole networks. In [19], three categories of network are proposed: Space Path Network

(SPN) in which MANET routing protocols can be applied among all nodes, Unassisted-DTN

(U-DTN) in which DTN routing protocols (such as epidemic routing [99] or probabilistic

routing [64]) are able to deliver data between all node pairs; and Assistance-needed-DTN

(A-DTN) in which extra assistance (such as message ferrying [108]) is needed because no

space/space-time path can be found between some node pairs.

While we use the same terminology for whole network classification as [19], the approach

in this paper is different in that it builds the network classification from components of node-

pair classifications. In addition, we allow some flexibility in the definition where for example

a network can be classified as an SPN even if some of the node-pairs are ST- or N-pairs.

Specifically we define the following:

Definition 9. x-SPN: A network is classified as an x-SPN in an epoch if at least x% of

the node pairs are classified as S-Pairs during that epoch.

Definition 10. x-U-DTN: A network is classified as an x-U-DTN in an epoch if at least

x% of the node pairs are classified as either S-Pairs or ST-Pairs and the network is not

classified as x-SPN during that epoch.

Definition 11. x-A-DTN: A network is classified as an x-A-DTN in an epoch if it is

neither an x-SPN nor an x-U-DTN.

Similarly as in node pair classification, in order to capture the potential network char-

acter change over time, we classify the network in each epoch and the network classification

over its lifetime is given by the percentage of time that it spends in each class2.
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x x-SPN x-U-DTN x-A-DTN

100 0.5% 6.6% 92.9%

90 0.5% 7.7% 91.8%

50 3.3% 17.3% 79.4%

Table 2: Network Classification on the Haggle Trace

3.3.1 Examples of Network Classification

We first apply our classification method to the Haggle trace with δ = 2 seconds and γ =

3600 seconds and results are presented in Table 2. When x=100, the network is mostly

classified A-DTN due to the strictness of the 100% constraint. As x decreases, classification

results show that a significant number of space and space-time paths actually exist for

certain epochs, thus revealing an intrinsic property of the network.

We next show classification results using synthetic traces derived from the RWP model.

In our model a given number of nodes move in a 2km by 2km area for 3 hours. Their

communication range is 250 m. The pausing time is uniformly distributed between 0 and

10 seconds. We adjust the number of nodes and the average node speeds in our experi-

ments. The results are shown in Figure 9. Each square in the space represents a network

with corresponding number of nodes (x-axis) and average speed (y-axis). Different colors

represent network classes (A-DTN, U-DTN and A-DTN) now. Each square is filled in with

a mixture of these colors that represent the percentage of time the network spends in each

class. These figures should be compared to the informal sketch in Figure 4: the blue shades

correspond to Class 1 networks and the red shades correspond to Class 2 networks.

These figures show that when node density (number of nodes) is low, increasing speed

creates more space time paths. However, when node density is high, a high speed causes

more unstable space paths and lower SPN classification accordingly. Similarly, when the

node speed is high, although high node density means more connectivity, the space path

is less stable. Note that classification with an x = 50 illustrates the trend better than the

classification result from x = 90. The reason is that with x = 90, a few N-Pairs in an epoch

2Note that while the classification in [19] is closely related to the classification presented here when x

= 100%, it is not identical because of the manner in which we define whole network classification as an
aggregation of node-pair classification.
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(c) x = 50; γ = 300; δ = 5
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(d) x = 50; γ = 600; δ = 2

Figure 9: Joint Effect of Node Density and Speed on Network Classification: Traces from
RWP Model

dominates other S-Pairs or ST-Pairs in the classification and the whole network is classified

as an A-DTN. This is especially noticeable for results in Figure 9a when the number of

nodes is large and the average node speed is high. Although over 50% nodes pairs are

S-Pair most of the time as revealed in Figure 9b, the network is classified as A-DTN in

significant portion of the 3 hours duration.

While these observations can possibly be made at least qualitatively without applying

our framework, we contend that our approach provides a more precise language and con-

text for discussing and evaluating network properties. One of the valuable aspects of our

approach is its ability to detect network character changes in a manner that considers only
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network properties.

The effect of other parameters in the classification procedure is shown in Figure 9b,

9c and 9d. With a smaller γ value, it is more difficult to find a space time path with a

satisfying duration. The time percentage that the network is classified as A-DTN increases

accordingly. On the other hand, a larger δ value puts stricter constraint on space path

persistence. Even with the same network features, i.e., number of nodes and average node

speed, less “usable” space paths are found and the network is classified as SPN in less

epochs.
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(c) x = 50; γ = 300; δ = 5
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(d) x = 50; γ = 600; δ = 2

Figure 10: Joint Effect of Node Density and Speed on Network Classification: Traces from
TLW Model

Beside the effect the parameters such as number of nodes and node speed, our network
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classification framework is applied to synthesized contact traces from a different mobility

model to illustrate its capability in describing intrinsic connectivity characteristics of the

WAM networks. We choose Levy Walk model from [83] as it is shown to fit human movement

better than RWP model. In this mobility model, nodes travel by short distances locally at

certain regions and occasionally make long “flight” to travel to a different region. Nodes in

Levy Walk model are distributed more evenly in the simulation area whereas RWP model

has a biased spatial node distribution near the center of the simulation area [10].

With the same parameters on simulation area and communication range as in contact

traces generated from RWP model, we adjust the number of nodes and the average node

speeds in generating contact traces for our classification framework. As nodes are distributed

more evenly and their movements are limited to local regions most of the time, space path

and space time path have less occurrence among most node pairs compared with traces

from the RWP model. Therefore, SPN and U-DTN percentages in classification results are

much lower than corresponding values in RWP traces’ classification results shown in Figure

9. However, effects of different parameters such as γ value on network classification results

are the same as those shown with RWP traces.

As a final illustration here we show how our scheme can also provide a methodology

to assess the effect of network enhancement schemes such as those proposed with the use

of message ferrying [93, 108]. In message ferrying, a special node called the ferry moves

in the network space and provides data movement capability among nodes. We consider

network classification using a trace generated from the RWP model described previously

with average node speed of 1 m/s. We consider two scenarios: one with just the nodes and

the other in which we introduce a message ferry moving along a square route with diagonal

points (500, 500) and (1500, 1500) at 20 m/s.

For each number of node and node speed combination, we generate 10 contact traces

with different random seed. Average and the range of each classification’s percentage for γ

= 600 seconds and δ = 5 seconds are shown in Figures 11a and 11b for cases without the

ferry and with the ferry respectively. While the SPN percentage does not change after the

ferry is introduced, a significant percentage of A-DTN classification is converted to U-DTN
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Figure 11: Effect of Message Ferrying on Network Classification

classification. This effect is well known and it’s not our objective to demonstrate the effect.

Rather, our framework, again allows us to formally evaluate the effect of a message ferrying
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enhancement from a connectivity viewpoint without needing to simulate the network.

We also show another classification result in Figure 11c when only contacts between node

and the ferry is considered. This represents the special case that only message ferrying is

used in this WAM network. While most of space paths no longer exist, the ferry is able to

provide space-time path among node pairs. In some cases, this approach is favorable due

to the tradeoff between data delivery latency and energy availability in the WAM [56].

The effect of message ferrying is also evaluated in the WAM network instances generated

from Levy Walk model. Figure 12b indicates that introducing message ferrying helps on

establishing space time path among nodes possibly moving at different regions. However,

the classification results in Figure 12c are significantly different from those in Figure 11c.

The reason is that nodes’ spatial distribution in RWP traces concentrates at the simulation

area center which is covered by the ferry route. Therefore, the ferry has frequent contacts

with most of the nodes. Plenty space time paths exist even with ferry/node contacts only.

On the contrary, node’s spatial occurrence in Levy Walk traces is distributed more evenly

over the entire simulation area which is not completely covered by the ferry route. Less

encounters between ferry and nodes lead to limited space time paths between node pairs.
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Figure 12: Effect of Message Ferrying on Network Classification

36



CHAPTER IV

NETWORK CLASSIFICATION FRAMEWORK

EXTENSIONS

In this chapter, we first extend our instantiation of the WAM Continuum framework de-

scribed above to further illustrate its power in formalizing and evaluating the effect of power

management schemes deployed in WAMs. Needless to say energy provisioning and man-

agement are essential issues in WAM networks. Various power management schemes have

been proposed for both MANET and DTN contexts. While most of them are designed

to efficiently use available energy, an important question that is not always answered is

whether a certain amount of energy is “sufficient” for the WAM network’s operation?

We provide a framework for answering this question by providing the classification of a

WAM’s energy “sufficiency”. We start with the understanding that a network’s classifica-

tion from energy perspective is jointly determined by many factors, including its network

connectivity properties, available energy, and power management scheme. These last two

factors are new elements that we bring to enhance our framework for the purpose of pro-

viding useful insight on WAM operation from energy management point of view.

Computational collaboration initiated from mobile nodes becomes a feasible approach to

support resource intensive applications in WAM networks with the advances on both device

hardware and code execution schemes. In WAM networks where space paths do not always

exist between node pair, results from distributed tasks may not be returned to the task

initiator in time. Therefore, various protocols have been developed on how to distribute

and schedule those tasks based on contacts among nodes.

In this chapter, we extend the existing classification framework to answer another im-

portant question about whether initiating computational collaboration in a WAM network

is “advantageous”, i.e., being able to finish such tasks earlier. Due to the nature of com-

putational collaboration, end-to-end round trips’ availability is evaluated. This and the
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collaboration time requirement jointly define the WAM network’s classification.

4.1 Energy Sufficiency Classification

We use a simple energy consumption model: when the radio is ON, it consumes energy

at a fixed rate R and when the radio is OFF, it does not consume any energy. Typical

power management strategies for WAMs turn off the radio [16, 55, 102] from time to time.

These schemes typically focus on maintaining necessary communications among nodes while

reducing the energy consumption rate as much as possible.

To describe network classes based on energy availability, we use the term Energy Suf-

ficient Node Pair to describe those node pairs between which the data communication, in

particular, the path type, is not affected by energy availability with the particular power

management scheme. Similarly, the term Energy Sufficient Network denotes those WAMs

in which the path properties among all nodes, is not affected. Energy limited node pairs

and networks are those that are not energy sufficient. In the same spirit of our previous

classification exercise, the level of “sufficiency” is flexible and is described by the extent

path properties among nodes are affected compared to the case when energy availability is

not a concern.

4.1.1 Energy Related Network Features

Available Energy

We assume that a WAM needs to operate for a period of T time units without running

out of energy. This could be the network lifetime or the time between recharging events.

We consider a network has run out of energy if any node’s energy is depleted. For simplicity

of exposition we assume that all nodes in a network start with the same energy supply of

E .

We define P as the normalized energy availability for a node which is defined as P =

E/RT . When P ≥ 1 then we can say that the node has abundant energy and does not need

to apply a power management scheme. Otherwise, we need to apply a power management

scheme that only turns the node’s radio on for at most P of the time.
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Power Management Schemes

Figure 13: Power Management Scheme Examples

How a WAM is classified will depend on its power management scheme. We consider

abstracted power management schemes. Figure 13 shows two schemes which we use in the

demonstration of our classification and their effect on contacts.

The first one is a fixed duty cycle scheme in which the radio shifts between the ON

and OFF states periodically. The proportion of the ON period in each cycle is equal to

max(P, 1). Duty cycles on nodes can be synchronized or with random offsets from node to

node.

The second scheme is an idealized contact-aware scheme where a node’s radio will be

turned off if no contact is possible. The radio is potentially ON only it is involved in a

contact with another node. We denote the cumulative time that a node i is involved in

some contacts during time period T as Ci. If Ci/T is less than or equal to P then the node

can stay ON during all its contacts. Otherwise, we require the node’s radio to be turned on

for the initial P/(Ci/T ) portion of an aggregated contact period of this node. In the above

example, the radio of node A only turns on some portion of the aggregated contact period

from t1 to t4.
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There are many other power management schemes. Each of them can be evaluated

under our framework. We do not exhaust all choices but select the above two to highlight

the potential of our classification scheme.

4.1.2 Routing Paradigm Based Classification

It is important to note that the combination of the specification of the normalized available

energy and a power management scheme will effectively change the contact sequence expe-

rienced by nodes in a WAM. This in turn will affect (actually degrade) their connectivity

specification within the framework we developed previously. Our energy-based classification

is, therefore, a taxonomy for characterizing this degradation.

More formally, a WAM is now defined by two evolving graphs: G which is the evolving

graph before applying any power management scheme and G′(E ,m) which is the evolving

graph resulting from applying the power management scheme m with an initial available

energy per node of E .

We now formally define the node pair energy sufficiency classes based on the path type

classification discussed in previous section.

Definition 12. Energy Sufficient Node Pair: A node pair is said to be energy sufficient

in an epoch if its classification under G is either S-Pair or ST-Pair in that epoch and its

classification under G′ does not not downgrade to N-Pair.

Definition 13. Energy Limited Node Pair: A node pair is said to be energy limited in

an epoch if its classification under G is either S-Pair or ST-Pair in that epoch and its

classification under G′ downgrades to N-Pair.

Note that if a node pair is N-Pair under G, we cannot classify it from energy sufficiency

point of view since whether we provide abundant energy or no energy at all, the path type

will not change.

We can further classify whole networks according to their energy sufficiency as follows:

Definition 14. y-Energy Sufficient Network (y-SN): A network is said to be energy suffi-

cient in an epoch if more than y% of S- or ST-Pairs do not downgrade to N-Pairs between

G and G′ during that epoch.
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Definition 15. y-Energy Limited Network (y-LN): A network is said to be energy limited

in an epoch if more than (100 − y)% of S- or ST-Pairs downgrade to N-Pais between G to

G′ during that epoch.

Note that if all node pairs are N-Pair under G, there is no definition of network classifi-

cation from energy sufficiency point of view since the network’s character does not change

given any possible energy availability.

4.1.3 Traffic Handling Capacity Based Classification

In previous section, we define the energy sufficient by comparing how much percentage

of the time that path types between node pairs degrade. On the other hand, missing

contact opportunities will possibly decrease the amount of traffic that can be delivered in

the network. In this section, we define the energy sufficiency from traffic handling capacity

point of view.

Definition 16. Deliverable Traffic Portion λ: Suppose bij is the long term average traffic

load between node i and j. λ is the maximum value that all λbij ’s are satisfied by multi-path

routing. We adopt the Linear Programming formulated in [111] for calculating λ.

Definition 17. z-Energy Sufficient Network (z-SN): Suppose λ is the deliverable traffic

portion with the original contact trace. λ’ is from G′. A network is said to be z% energy

sufficiency given z% = λ′/λ× 100%.

Under this new definition, we are able to evaluate different power management schemes’

effect on handling long term traffic load. So depends on what type of application is running

in the network: sporadic messaging whose concern is whether the delivery can be done

within a deadline or applications with constant traffic demand, we can provide corresponding

classification from energy sufficiency perspective.

4.1.4 Examples of Energy-based Classification

We now provide examples to illustrate the use of the classification framework in understand-

ing the effect of power management schemes and the amount of available energy on network
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classification. As with our previous classification illustrations, our goal is not to discover

new power management schemes or to argue for the use of one scheme over another. Rather,

we are interested in showing the power of our framework as an approach to understanding

and evaluating these effects on WAMs in a systematic and formal manner.

In these examples we apply power management schemes with varying levels of available

energy to the same set of traces (describing an evolving graph G) used in the previous

classification study. This results in modified contact traces (describing a modified evolving

graph G′). During the path type classification for node pairs, we choose δ = 5 seconds and

γ = 3600 seconds for the Haggle trace and δ = 5 seconds and γ = 600 seconds for traces

from the RWP model. In all our experiments, we choose y = 90.
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Figure 14: Energy Sufficiency Node Pair Classification: the Haggle Trace

We first fix the power management scheme and show how the energy availability affects

the outcome of energy-based node pair classification of the Haggle trace in Figure 14. The

fixed duty cycle scheme with a synchronized 300 seconds cycle is used. When the energy

availability level is as low as 10%, node pairs on average experience a 20% downgrading.

When the energy availability increases, radios on nodes are ON for a longer time and

less contact opportunities are missed. One interesting observation is that even with a

straightforward fixed duty cycle scheme, node pairs in the Haggle trace are mostly energy

“sufficient” even when energy availability is low. In Figure ??, we show that for this trace,

node pairs are classified as N-Pair in most epochs. Those epochs are not considered in the
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(a) Fixed Duty Cycle: 300 seconds
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(b) Fixed Duty Cycle: 60 seconds
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(c) Contact Aware

Figure 15: Energy Sufficiency Network Classification (from Capacity Perspective): the
Haggle Trace
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energy sufficiency classification because no downgrading can happen to N-Pairs in those

epochs. During time periods when space paths and space-time paths exist between node

pairs, there are plenty of connectivity opportunities among all nodes, i.e., high percentage

of S-Pair or ST-Pair classifications in those epochs. Therefore, alternate space-path/space-

time path can be found even when radios on some nodes are turned off.

Note for the same contact trace, we show the energy sufficiency classification based on

network capacity changes in Figure 15. In this case, the fixed duty cycle scheme is able

to keep certain percentage of contact opportunities given the level of energy availability.

Thus, the sufficiency level decreases linearly with the energy availability level. On the other

hand, the contact aware scheme saves energy for the period when node encounters happen.

therefore, it is able to handle as much traffic even when energy level is 30%.
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(a) Fixed Duty Cycle: Speed = 1m/s
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(b) Fixed Duty Cycle: 10 Nodes
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(c) Contact Aware: Speed = 1m/s
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(d) Contact Aware: 10 Nodes

Figure 16: Energy Sufficiency Network Classification: Traces from RWP Model
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We demonstrate the joint effect of energy availability and node density/node speed

on energy sufficiency classification in Figure 16. We only consider RWP traces in this

set of experiments. Synchronized duty cycle scheme with a fixed 300 seconds cycle and

contact aware scheme are used. In this figure, each square in the space represents a network

with a different energy availability level (x-axis) and number of nodes/node speed (y-axis).

Two colors (white and black) are used to represent energy sufficiency classes (Sufficient

and Limited). Each square is filled in with a mixture of these colors that represents the

percentage of time network stays in each class.

For extreme cases, networks are classified as 100% energy limited with 0% available

energy and classified as 100% energy sufficient with 100% available energy. Regardless of

other network features and power management schemes, networks are classified more as

energy sufficient with more available energy.

Note that when energy availability is high (P > 0.8), all those networks are classified as

energy sufficient most of the time, i.e., path types among nodes are not affected much. How-

ever, when energy availability is relatively low, different network features have interesting

effects on the classification.

Figure 16a illustrates the joint effect of node density and energy availability when the

average node speed is fixed at 1m/s. When the number of nodes is small, most of the existing

space paths or space-time paths consist of a small number of hops. As the number of nodes

increases, there are more space-time/space paths with more hops between node pairs. If

the energy availability is low and nodes have to turn off their radios frequently, a path

consisting of multiple links has a higher chance of being affected. The higher downgrading

rate results in higher energy limited classification percentage. However, with a large number

of nodes, there are many possible space-time/space paths between node pairs, the limited

energy might affect some of them but not all of them. Therefore, less downgrading occurs

and the percentage of energy sufficient classification increases again.

Similarly, with a fixed number of nodes, an increasing speed first creates forwarding

paths consisting of multiple hops, which leads to higher path type downgrading when node
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radios have to be turned off frequently. As the speed increases, more paths appear be-

tween node pairs which provide alternatives when some of them no longer exist because an

intermediate hop’s radio is turned off. This joint effect is illustrated in Figure 16b.

In terms of power management scheme selection, the classification result in Figure 16c

shows that the contact-aware scheme performs worse than the duty cycle scheme when the

energy availability is not high. The discrepancy is more obvious when the node density

increases. The reason is that contacts between nodes overlap more and result in longer

aggregated contact periods as illustrated in Figure 13. Since the contact aware scheme we

use in the classification always keeps the front portion of an aggregated contact period,

contacts that occur later in the aggregated contact period are removed in G′. Therefore,

increasing the number of nodes in this case leads to a sharp increase of energy limited

classification percentage. But when nodes are sparsely distributed, classification result in

Figure 16d illustrates that contact-aware scheme performs better than duty cycle scheme

when the energy availability is high because there are not many overlapping contact in this

set of experiment.

Similarly to the observation from Haggle Trace case, energy sufficiency classification

from capacity perspective degrades linearly with decreasing energy level (Figure 17a and

17b). However, this degradation is much slower with contact-aware scheme (Figure 17c).

This shows that the extra effort to keep radio ON during contact and OFF otherwise is

worthwhile when the concern is to reduce the degradation on deliverable traffic load.

If we introduce a ferry, which normally has good energy provisioning and does not need a

power management scheme, and only allows contacts between nodes and the ferry, we have

a 100% energy sufficiency WAM with 10 to 50 nodes with an average speed of 1m/s even

with a 10% energy availability. By removing node to node contacts, the space path between

node pairs might downgrade to space time path or the space time path’s span might be

longer as illustrated in Figure 11c. However, the Ci/T for node i drops significantly, which

contributes to little downgrading from the energy sufficiency perspective.
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(a) Fixed Duty Cycle: 300 seconds
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(b) Fixed Duty Cycle: 60 seconds
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(c) Contact Aware

Figure 17: Energy Sufficiency Network Classification (from Capacity Perspective): Traces
from RWP Model
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4.2 Collaboration Advantage Classification

The framework described thus far classifies networks based on the availability and type of

end-to-end paths between node pairs. Note that a space time path is asymmetric and its

temporal span is calculated over the journey from a source node to a destination node.

However, in mobile computational collaboration, a computational task is assigned from a

job initiator to worker nodes. After computation on each worker node finishes, the result

must be sent back to the job initiator to complete the task.

In our current classification framework, the classification of node pair is based on one

way communication. Due to the asymmetric nature of the space time path, existence of a

space time path from source node s to destination node d and another one from d to s at the

time t does not mean that a round trip from s to d and back to s cannot be found at t. To

describe network classification based on whether the computation collaboration initiation

can take the advantage of resource from peers, we first extend the framework to describe

Collaboration Advantageous Node based on round trip’s availability from such a node to its

peers. The network’s classification is then generalized from results of node classification.

4.2.1 Computational Collaboration Model

Round Trip Time

Round-trip time of the two way communication in a computational collaboration consists

of three parts as shown in Figure 18:

• Sending time: The time interval from the task leaves the source to the task arrives

the destination.

• Processing time: The time it takes to finish processing the data at the destination

node and generate a result/acknowledgement.

• Returning time: The duration of the result’s travel time from destination back to the

source.

We assume that the time of assembling all tasks’ results is negligible compared with the

three time components mentioned above.
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Figure 19: Collaboration Scheme Examples

Implementations of task distribution and result collection determine how round trips in

the network can be utilized in the computational collaboration. In this thesis, we consider

two abstracted schemes shown in Figure 19.

We assume a computational-intensive application needs γ time to finish with a single

node’s resource. It is divided into k tasks each of which takes γ/k time to finish and these

tasks are distributed among nodes. All nodes have same amount of resource and one node
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(including the task distributor) only accepts one task.

In the Collaboration All scheme illustrated in Figure 19a, the task distributor waits for

results from other nodes while it finishes its own task. When one result is returned at ti,

the application completion progress advances by γ/k. When k− 1 results from other nodes

are collected, the computational application finishes.

Figure 19b shows the Collaboration Single scheme. In this scheme, the task distributor

continues with tasks for other nodes in a round robin fashion after it finishes its own task.

Therefore, the application completion progress advances all the time. When one result is

returned at ti, the remaining part of corresponding task is no longer processed on the task

distributor node.

There are many possible task distribution and result collection approaches. We do not

exhaust all schemes but select the above two to highlight the capability of our classification

framework.

4.2.2 Node Classification

To extend our classification framework to accommodate the nature of these applications

requesting round trip communication, we have following definitions from an evolving graph

G which describes the wireless and mobile network as in Chapter 3.

Definition 18. Space Round-trip (SR) from i to j: The concatenation of a space path from

node i to node j and another space path from node j to node i in G.

Definition 19. Space Round-trip Pair (SR-Pair): A pair of nodes i and j is called an

SR-Pair if a space round-trip can always be found from i to j to i in G.

Note that the definition of SR-Pair is the same as S-Pair discussed in Chapter 3. The

reason is that a space path is always symmetric. If there is path consists of contemporane-

ously available links from node i to j, there is a space path from j to i. However, if a space

round-trip does not exist from node i to j to i, we have following definition.

Definition 20. Space-Time Round-trip Pair (STR-Pair): A pair of nodes i and j is an

STR-Pair if:
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- this pair is an SR-Pair or

- ∀t, a round trip consists of space or space-time path from i to j to i exists in G starting

at time t;
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Figure 20: Round Trip Time Breakdown

Node 1 and 4 is a STR-Pair in Figure 20’s example. There is a space time path from

node 1 to 4 starting at t1 and ending at t2. In the meanwhile, there is a space time path

from node 4 to 1 starting at t2 and ending at t4.

Definition 21. No Round-trip Pair (NR-Pair): A pair of nodes i and j is an NR-Pair if

it is not STR-Pair.

According to the definition, if node i and j are considered as a STR-Pair, they should

be classified as a space time path pair. On the contrary, a space time path pair is not

necessarily STR-Pair. For example, node 1 and 5 are a space time path pair but NR-Pair

in Figure 20.

Similar to the practical definitions of space time path, a space time round-trip should

be time-bounded for any meaningful WAM applications. Therefore, we have following

definition.

Definition 22. (γ) Space Time Round-trip Pair: A (γ) STR-Pair is an STR-pair where

the round-trips from i to j to i are always less than or equal to γ in duration.

Node 1 and 4 in Figure 20 is a (γ) Space Time Round-trip Pair if the value of (γ) is less

than or equal to t4−t1. Note that beside the practical requirement on the duration of entire

51



round-trip, the processing latency, i.e., the time needed to finish the collaboration task, can

be comparable to the duration of space time path among nodes as shown in Figure 18. If the

data processing does not finish when the space time path from destination node to source

node starts, this round-trip is not usable since no result can be returned via this path. In

the same example, if the processing on node 4 takes longer than t3 − t2, no results can be

returned on the space time path back to node 1. Therefore, we include the consideration of

this processing latency τ in following definition.

Definition 23. (γ, τ) Space Time Round-trip Pair: A pair of node i and j is a (γ, τ) STR

Pair if:

- this pair is an (γ) SR-Pair and

- ∀t, ∃t′ ≤ (t+ γ) such that a space time path from node i to j with duration less than

or equal to (t′ − t) exists and

- ∀t, ∃t′′ ≤ (t+ γ) such that a space time path from node j to i with duration less than

or equal to (t+ γ − t′′) exists and

- (t′′ − t′) ≥ τ ;

Note that (γ) Space Time Round-trip Pair is a special cases of this definitions with τ

equals to 0.

Note that in applications such as mobile computation, the source node may assign

data processing tasks to more than one node. If all nodes are equipped with similar stor-

age/computation capacity, it is more important to know whether the source node and a

certain number of work nodes are (γ, τ) STR-Pair than evaluating if the source node and a

particular destination node is (γ, τ) STR-Pair. Therefore, we have following definitions:

Definition 24. (γ, τ, k) Space Time Round-trip Node: a node forms a (γ, τ) Space Time

Round-trip Pair with at least k peers in the network.

We now formally define the node collaboration advantageous classes.
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Definition 25. Collaboration Advantage (CA) Node: Collaboration initiated from this node

in an epoch can finish the computation faster than completing all tasks at this node.

Definition 26. Collaboration Disadvantage (CD) Node: Collaboration initiated from this

node in an epoch finishes the computation using longer time than completing all tasks at

this node.

If the computation takes γ time with the resource from a single node and it is partitioned

in k tasks, a CA node is a (γ, γ/k, k − 1) Space Time Round-trip Node if Collaboration

All scheme is used. When Collaboration Single scheme is used, a CA node is a (γ, γ/k, 1)

Space Time Round-trip Node.
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(b) Haggle Trace; Collaboration Single
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(c) RollerNet Trace; Collaboration All
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(d) RollerNet Trace; Collaboration Single

Figure 21: Epoch by Epoch Node Classification

We apply the node classification methodology to the 3 hour portion of Haggle Trace and
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the RollerNet trace which are used in earlier discussion in Section 3.2.4. We choose γ= 600

seconds and k = 6. Classification results are presented in Figure 21.

Note that although the Haggle Trace has much more space path presence than RollerNet

trace as illustrated in Figure 5, classification results of these two traces are similar from Col-

laboration Advantageous perspective. The reason is that the computational collaboration

is able to tolerate certain latency. Round trips consists of space paths or space time paths

are considered the same in this classification as long as the latter return results within γ.

However, when space time paths are not available due to lack of node contacts, for

example, near the end of both Haggle and RollerNet traces, results from distributed tasks

have difficulty to be returned to the task initiator. Therefore, it is disadvantageous to

initiate the computational collaboration. In other words, the application can be finished

earlier by execution at the single node instead of distributing tasks to peers.

If the Collaboration Single scheme is used, the probability of a node being classified as

CA node increases noticeably due to the fact that the computation can be finished earlier

even only one result is returned earlier than γ from the time the computation starts.

4.2.3 Network Classification

Similarly to the previous work, network classification can be achieved by generalization

over node classification. There are two categories of network: Collaboration Advantageous

Network (CAN) in which the computational collaboration should be used and Collaboration

Disadvantageous Network (CDN) where it is not worthwhile to insatiate the collaboration.

In addition, we allow certain flexility in the definition so that a network can be classified

as CAN even some nodes are CD nodes.

Definition 27. x-CAN: A network is classified as an x-CAN in an epoch if at least x%

nodes are classified as CA nodes in that epoch.

Definition 28. x-CDN: A network is classified as an x-CDN in an epoch if it is not x-CAN

in that epoch.

With an x value of 50, we show the effect of γ and number of computation partitioning

on the network classification in Figure 22. Each square in the figure represent a network
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(b) Haggle Trace; Collaboration Single
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(c) RollerNet Trace; Collaboration All
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(d) RollerNet Trace; Collaboration Single

Figure 22: Joint Effect of γ and Number of Peers on Network Classification with x = 50

running the application requires γ (x-axis) time to finish and the number of peers (y-axis) in

the collaboration. A square is filled in with a mixture of colors that represent the percentage

of time this network is classified in such class.

Except the observations that Collaboration Single scheme can always take more advan-

tage than Collaboration all scheme and computational collaboration makes more sense as

the task initiator can wait longer for results to be returned, we can see how does the num-

ber of tasks affect the classification result. As the number of tasks increases, the value τ

decreases so that a round trip is easier to be found as one of the constraints in Definition 23

55



is relaxed. Therefore, it is more likely to find one required round trip and the CA classifica-

tion with Collaboration Single scheme improves. However, for networks with Collaboration

All scheme, the factor that more round trips have to be found out weight such constraint

relaxation. As a result, the CA classification degrades as this number increases.
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(c) RollerNet Trace; Collaboration All
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(d) RollerNet Trace; Collaboration Single

Figure 23: Joint Effect of γ and Number of Peers on Network Classification with x = 90

Such difference becomes more obvious when we set x’s value to be 90. When the number

of peer is increased, there is a high probability that a network is classified as CDN in an

epoch. When the per-epoch classification is averaged over all epochs, the trend of whole

network’s classification is noticeable in results from both Haggle trace and RollerNet trace

as shown in Figure 23.
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(a) RWP Trace; Collaboration All
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(b) RWP Trace; Collaboration Single
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(c) TLW Trace; Collaboration All
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(d) TLW Trace; Collaboration Single

Figure 24: Joint Effect of Node Density and Speed on Network Classification

We also apply our classification framework to synthesized traces from RWP and Levy

Walk model since we are able to adjust the number of nodes and average node speed in this

case. Figure 24 present the results when gamma = 600 seconds and number of tasks from

application partitioning is 5.

As number of nodes increases and average node speed increases, the connectivity in

traces from both model improves. Therefore, the percentage of CAN classification increases

as more round trips can be found. This trend is similar to what can be observed from

end-to-end path based classification results in Figure 9 and Figure 10.
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CHAPTER V

HYBRID ROUTING WITH MESSAGE FERRYING IN

CLUSTERED WIRELESS NETWORK

Numerous routing protocols have been developed for data delivery in wireless networks.

Most of these routing protocols are designed for mobile ad hoc networks (MANETs) [20]

or delay tolerant networks (DTNs) [39]. In MANETs, an end-to-end multi-hop path is

generally assumed between any node pairs. MANET routing primarily addresses the issues

of node mobility and limited resources, such as limited bandwidth and energy supplies,

that are common in MANETs. In DTNs, network partitions occur frequently and can last

for a long period of time. DTN routing, which forwards data in a store-carry-and-forward

manner, is concerned with how to utilize intermittent contact opportunities to deliver data

and focus on networks with completely isolated nodes.

In this chapter, we study routing in clustered DTNs where nodes are partitioned into

clusters. That is, nodes are neither connected as in MANETs nor completely isolated as

considered in previous DTN routing studies. Clustered DTNs may arise in a variety of

situations. For example, consider a sensor network that is deployed around “hot spots”.

Although sensors at the same “spot” are connected and collaborate in sensing and data

collection, there is a lack for direct communication among sensors in different “spots”. For

these scenarios, MANET routing alone would fail to deliver data between different clusters.

On the other hand, existing DTN routing, which focuses on utilizing node mobility to

transport data, considers completely isolated nodes and is not able to exploit connectivity

within each cluster. Therefore, to best utilize available network connectivity, new routing

algorithms are needed that combine components from both MANET and DTN routing.

We focus on clustered DTNs with stationary nodes using message ferrying, a DTN

scheme that utilizes controlled node mobility to deliver data [108, 109]. Message ferrying

uses a special type of node called message ferry, which moves along pre-determined routes

58



Figure 25: Clustered DTNs with Message Ferrying

to visit nodes. An example is shown in Figure 25. Ferries take messages from sources

and deliver the messages to the destinations during direct contacts with nodes. This store-

carry-and-forward scheme provides intermittent yet regular communication opportunities.

Message ferrying is particularly suitable for clustered DTNs with ferries transporting data

between different clusters. For example, in the above disaster relief and sensor network

scenarios, vehicles or airplanes can be used as ferries to deliver data among rescuers in

different areas and sensors in different “spots”. In the meanwhile, MANET routing is used

within each cluster to exploit rich connectivity in clusters. In this hybrid routing approach,

traffic may be carried via multiple routing paradigms. This raises a question of how message

ferrying and MANET routing interact with each other.

5.1 Hybrid Routing Framework

Multiple routing paradigms, namely MANET and DTN routing, must be jointly used to

forward data in clustered DTNs. The interaction between these two paradigms thus can

significantly affect data delivery performance.

5.1.1 Network Model

In this study, we consider networks with stationary nodes. All nodes are equipped with a

wireless radio capable of transmitting to other nodes within a distance r. The data rate of

the radio is B bits per second. The network is assumed to be partitioned into clusters 1.

1In later discussions, we will use the terms “cluster” and “partition” interchangeably.
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That is, nodes in the same partition are connected and can communicate with each other

using MANET routing protocols, while nodes in different clusters can not communicate

directly. Nodes are sources and destinations of communication. Data transmission between

nodes is in application layer data units called messages.

To support communication among different clusters which are disconnected, message

ferrying is used. Specifically, a special type of nodes called message ferries are used. We

assume that ferries are equipped with the same radios as nodes. They move around the

deployment area to visit nodes and communicate with nodes via a shared wireless channel.

Using physical movement, ferries gather messages from sources and deliver the messages

to the destinations during direct contacts with nodes. In this paper, we consider networks

with a single ferry, which has sufficient storage. That is, messages are not dropped at the

ferry due to buffer overflows. And the ferry moves at a constant speed repeatedly on a fixed

route. Ferry routes may be fixed due to application requirements. For example, the ferry

can be a public bus [98] whose movement is determined by passenger transportation con-

siderations. Alternatively, ferry movement can be controlled for communication purposes,

e.g., unmanned aerial vehicles (UAV) [17] or mobile robots [97] can be deployed to act as

ferries for data delivery. In the following, we assume that ferry routes are fixed. We will

address the issue of controllable routes in Section 5.4.

5.1.2 Interfacing between MANET and MF Paradigms

In the following, we consider two methods for the interaction of message ferrying (MF) and

MANET routing. In the first approach, the ferry would participate in the intra-partition

MANET routing when it has the connectivity to those partitions. During the period when

the ferry is not available, nodes buffer messages sent to other partitions in local storage.

Once a route to the ferry is available, nodes send stored messages to the ferry via the

MANET routing protocol used and the ferry will be responsible for delivering them to

other clusters.

In MF, due to ferry mobility, contact opportunities between the ferry and nodes might

be short with dynamic link status. During such a short period, routing information may
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not have a chance to reach nodes that are multiple hops away from the ferry, especially

for proactive routing protocols such as DSDV. Furthermore, even if the correct routing

information is propagated throughout the network, multiple nodes will transfer data to and

receive data from the ferry simultaneously, causing network congestion and data losses.

In the second approach, the ferry does not participate in the MANET routing in clus-

ters. Instead, the ferry interacts with only some designated nodes called gateway nodes (or

gateways for short) in each cluster. Gateway nodes operate in both the MF and MANET

routing paradigm. Specifically, inter-cluster traffic is first gathered at gateways in each

cluster. When the ferry visits a cluster, gateway nodes will exchange messages with the

ferry directly. After receiving messages from the ferry, gateway nodes relay these messages

to destinations within their clusters. This approach has several advantages. First, although

multiple nodes can send their messages to the same gateway node, these transmissions can

be scheduled over time to reduce interference. Without node mobility, routing paths to gate-

ways are stable. In addition, data exchange occurs between the ferry and gateway nodes

directly, which reduces the effect of dynamic link changes. Second, minimal modification is

required for MANET routing protocols used in clusters. Nodes in clusters send inter-cluster

traffic to gateways using unmodified MANET protocols. Gateways are required to interact

with the ferry for message exchange. Since gateways communicate with the ferry directly,

modification to routing protocols at gateways is not significant.

(a) Network topology used in simulation
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Figure 26: An illustrative example
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To illustrate the performance of the above approaches, we conduct simple ns simula-

tions [73]. Figure 26a depicts the simple network in which a 9-node cluster has a 50 second

contact with the ferry. Suppose all nodes have an equal number of messages to send to the

ferry. In the first approach, i.e., the ferry participates in MANET routing protocol, DSR is

used in our simulations for its fast adaptation to link dynamics caused by ferry movement.

Once the routes to the ferry become available, i.e., the ferry has contacts with a cluster,

nodes begin transferring buffered messages to the ferry along the shortest paths. In the sec-

ond approach, one node is selected as the gateway node and all other nodes send their data

to the gateway before ferry arrival. When the ferry visits a cluster, only the gateway node

sends messages to the ferry. In our simulations, we set the gateway at different locations to

evaluate the effects of the length of forwarding paths between the gateway and the ferry.

The simulation results are shown in Figure 26b. We can see that there is significant

performance difference between these two interfacing approaches. When the gateway node

is used, the effective bandwidth between the partition and the ferry is bounded by the

transmission capacity between the ferry and the gateway. If the transmission is over an

n-hop path for small n, the effective bandwidth is approximately 1/n of link capacity due

to the self-interference from the same transmission over different hops. This suggests that

it is preferable to select nodes with direct contacts with the ferry as gateways. We also

observe that in the first approach, i.e., all nodes send data concurrently to the ferry, the

multiple concurrent flows cause severe interference and the effective bandwidth is much less

than the cases when the gateway is near the ferry. Therefore, in the rest of this paper, we

focus on the approach that uses gateways to interact with the ferry.

5.1.3 Gateway Based Approach

To utilize gateways for interaction between clusters and the ferry, we extend previous MF

and MANET protocols as follows:

• MF Extension with GateWay (MFGW): Figure 27a depicts the operations of message

ferrying. To discover nodes, the ferry sends out periodic beacons. When receiving a

beacon message, a gateway node will respond with an acknowledgement message that
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(a) Ferry operations in MFGW proto-
col

(b) Node operations in DSDVGW (c) Gateway operations in DSDVGW

Figure 27: MF and DSDV protocol extensions

includes reachable nodes within its cluster. Once these acknowledgement messages

are received, the ferry selects one of the gateways randomly to exchange data, i.e., the

ferry receiver inter-cluster traffic from the gateway and transmits buffered messages

with destinations in the cluster to the gateway. The scheduling of message exchange

is determined by transmission scheduling algorithms described in the next section.

The ferry and gateways will stop data transmissions when a new beacon message is

broadcast. The same procedure is repeated, which allows different gateways in the

same clusters to interact with the ferry when the ferry moves around.

• DSDV Extension with GateWay (DSDVGW): Figure 27b shows the operations of

nodes in MANET routing protocols. Specifically, within each cluster, DSDV protocol

is used for intra-cluster traffic. We choose this protocol because nodes are stationary

and we do not consider energy constraints. DSDV maintains routes to all nodes

with a cluster. When a node generates a message to a destination which is not
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found in its routing table, this message is forwarded to the gateway node. If there are

multiple gateway nodes available, one of them is selected based on the data aggregation

approaches to be described in the next section. The operations of gateways are shown

in Figure 27c. A gateway can receive messages from other nodes in the cluster at any

time. When receiving beacon messages from the ferry, gateways exchange messages

with the ferry. Then gateways send received messages to destination using DSDV.

5.2 Interaction between Gateways and Ferry

In the previous section, we describe a hybrid routing framework that uses gateway nodes to

interface between MF and MANET routing. In this approach, inter-cluster traffic will be

forwarded to gateway nodes with a cluster. Since multiple nodes may have direct contacts

with the ferry and are suitable to act as gateway nodes, there is a question of how sources

select gateways to relay inter-cluster traffic. In fact, this is an issue of data aggregation at

gateways which are representatives of nodes within their clusters for communication with

the ferry. In addition, the ferry communicates with gateways over a shared wireless channel.

That is, data transmission in both directions will compete for the use of the wireless channel.

Given that the contact time between the ferry and gateways may be limited due to ferry

movement, this raises a question of how to schedule transmissions between the ferry and

gateways to best utilize available contact opportunities. As will be shown in our simulations,

both data aggregation and transmission scheduling have significant impact on data delivery

performance. In this section, we will describe different algorithms for data aggregation and

transmission scheduling.

5.2.1 Data Aggregation (Gateway Selection)

We first consider the issue of data aggregation. Note that nodes send inter-cluster traffic

to gateway nodes for delivery to destinations via the ferry. To select one of gateways

to forward an inter-cluster messages, one needs to consider two factors. First, to reduce

generated traffic in the network and consequently transmission interference, a node should

transmit data to a gateway that is as close as possible. Second, since gateways have limited

contact time with the ferry, nodes should transmit data to gateways in such a way that
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gateways are not overloaded. Depending on the network topology, ferry movement, and

traffic conditions, these two objectives may conflict with each other.

In this paper, we consider several data aggregation heuristics. As described in Sec-

tion 5.1.1, we assume that a fixed ferry route is used. Nodes with direct contacts with the

ferry are potential gateways. A node has a list of all potential gateways in its cluster. This

list can be hard-coded in each node or implemented by advertisement messages from the

potential gateways. We consider the following data aggregation schemes.

• Random selection: In this scheme, a source randomly selects one of the potential

gateways for each message. That is, if there is m gateway nodes, a message has a

probability of 1/m to be delivered to any of them. By distributing traffic load among

all potential gateways, this scheme tries to avoid overloading any gateway. However,

messages may be forwarded to gateways along a long path.

• Proportional selection: In this scheme, nodes distribute traffic load among gateways

according to their contact opportunities with the ferry. As in random selection, the

objective here is to avoid overloading gateways. This approach requires information

about contact opportunities between each gateway and the ferry. Specifically, for

each message generated, the source node selects gateway j with probability pj =

Cj
i /

∑

k C
k
i , where Cj

i (or Ck
i ) is the amount of traffic that gateway node j(or k) in

cluster i can exchange with the ferry during each ferry visit.

• Nearest selection: In the two approaches mentioned above, messages are forwarded

to different gateways to balance the traffic load on each gateway. In this scheme, we

focus on the effects on intra-cluster forwarding. Specifically, each node sends its data

to the nearest gateway in terms of the number of hops in the forwarding path. In

DSDV, this information is available in the routing table. By reducing the number of

forwarding hops, this scheme tries to reduce the total traffic generated in the cluster

and minimize interference.
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5.2.2 Transmission Scheduling

When the ferry is in contact with gateways, data transmission occurs in both directions.

That is, gateways try to forward data gathered from nodes within the cluster to the ferry,

while the ferry tries to relay buffered data to the gateways for delivery to destinations in

the cluster. Scheduling transmissions in both directions thus have significant impact on

the data delivery performance. If gateways are given priority to forward data to the ferry,

the ferry may be starved for transmission opportunities and not be able to relay messages

received. This is especially true when inter-cluster traffic load is high. In the extreme case,

the ferry would accumulate a large number of messages but none would be delivered. On

the other hand, if the ferry is given priority in transmission, gateways may not have enough

opportunities to forward data to the ferry. This may result in empty buffers at the ferry,

wasting the transporting capability of the ferry. Therefore, transmission scheduling needs

to achieve a proper balance between traffic in both directions.

We consider the following transmission scheduling algorithms in this paper. All these

algorithms are work-conserving in the sense that whenever contact opportunities are avail-

able, they are used for message forwarding unless all messages have already been forwarded.

• Outgoing traffic First (OF): In this approach, a gateway is given priority to send

the messages accumulated in its storage to the ferry first. The ferry is allowed to

send traffic to gateways only when there is no traffic from the gateway. From the

perspective of gateways, this approach transmits outgoing traffic first.

• Incoming traffic first (IF): In this scheduling algorithm, the ferry sends all the mes-

sages with destinations in a cluster to gateways before it receives traffic from them.

This is the opposite of the outgoing traffic first scheme.

• Round Robin (RR): In this scheme, the contact time between a gateway and the ferry

is divided into slots of equal size. These slots are assigned equally to traffic in both

directions.

In the above scheduling algorithms, data transmission assumes no knowledge about
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the incoming and outgoing traffic load. If such information is available, however, one

can schedule transmission to achieve fairness among traffic to different destined clusters.

Specifically, we consider a scheduling algorithm to achieve the following objective:

maximize λ (1)

subject to
n
∑

j=1

(a′ij + a′ji) ≤ Ci

a′ij = λaij

0 ≤ λ ≤ 1

where Ci represent the summation of data transmission capacity between cluster i and the

ferry, aij is the inter-cluster traffic load between cluster i and j, and a′ij is the achieved

rate. Suppose the objective is achieved, the following equation holds: a′ij/a
′
mn = aij/amn.

That is, the transmission capacity is allocated to traffic according to the corresponding data

rates. Based on this result, we have the following scheduling scheme.

• Proportional Allocation (PA): In this scheme, the contact time between gateways and

the ferry is assigned to traffic proportionally to the data rates. This can be done by

solving the linear programming formulation in (1) and schedule traffic accordingly.

5.3 Evaluation of data aggregation and scheduling algo-

rithms

In this section, we compare the performance of data delivery with various combination of

data aggregation approaches and transmission scheduling algorithms via ns simulations.

5.3.1 Simulation Settings

We implemented the MFGW and DSDVGW Protocols in ns2 simulator [73]. In our sim-

ulations, 80 wireless nodes form four stationary clusters in a 6000m ×6000m area. These

stationary clusters are centered at (1000, 1000), (1000, 5000), (5000, 5000) and (5000, 1000)

respectively. Each cluster has a dimension of 1000m×1000m and 20 randomly located nodes.

Nodes in the same cluster communicate with each other via wireless links. Our simulations

use the IEEE 802.11 MAC layer. The radio range is 200m and the data rate is 1Mbps.

67



A single ferry is used which moves along a fixed route with a constant speed of 10m/s.

In our simulations, we consider five ferry routes, which differ in the amount of contact

opportunities between gateways and the ferry. Figure 28 shows the five ferry routes in a

randomly generated network topology.
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Figure 28: Network Topology

Among the 20 nodes in each cluster, 10 nodes are randomly selected as sources which

generate CBR traffic with a message size of 1000 bytes and a data rate of 2 kbps. The

destinations are randomly chosen among nodes in other clusters by default unless we specify

differently. In this paper, we focus on routing performance. So we choose UDP as our

transport layer protocol.

The main objective of the hybrid routing protocols is to maximize the message delivery

ratio. In addition, although applications in DTNs should be able to tolerate large delay,

lower delivery latency is still preferable. Therefore, we use the delivery ratio and average

delivery latency in our evaluation. We average the results over 10 rounds, each of which

lasts for 20,000 simulation seconds.

5.3.2 Effect of Transmission Scheduling

We first study the effects of transmission scheduling on data delivery performance. In

proportional gateway selection, we calculate each node’s average contact time with the

ferry. When multiple nodes are within the ferry’s communication range, we divide this

time period into equal shares for each node. Figure 29a depicts the delivery ratio under
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different gateway selection heuristics. The X axis denotes the different ferry routes used.

In these simulations, proportional scheduling is the same as round robin algorithm because

incoming and outgoing traffic load at each cluster are the same. So we omit the results of

proportional scheduling in Figure 29a.

We make the following observations. First, when the ferry moves along the route 0 and

1, it encounters only a small number of gateways. All three algorithms yield a delivery ratio

less than 60% due to the limited contact opportunities. In particular, Outgoing traffic First

(OF) algorithm becomes unstable, i.e., the ferry is starved in transmission opportunities

to forward messages to gateways, and almost no data can be delivered. Second, OF and

Incoming traffic First (IF) algorithms perform differently under different ferry routes. IF

scheduling performs better when route 1 or route 2 is used. This is because OF scheduling

has stability problem when the traffic load is high as compared to the delivery capacity

provided by ferry/gateway contacts. In such cases, the ferry can only receive data from

gateways and no data can be actually delivered. As the contact opportunities increase,

however, OF scheduling has a better delivery ratio. This is due to the difference of data

forwarding at gateways and the ferry. Note that while a gateway can only send outgoing

traffic during its contact with the ferry, incoming traffic from the ferry can be given to any

gateways. So in IF scheduling, if the ferry carries plenty of traffic to one cluster, the first

few gateways the ferry encounters might not be able to send their outgoing traffic, leading

to lower delivery ratios. Third, the Round Robin (RR) scheduling intentionally balances

the incoming and outgoing traffic. Therefore, it avoids the problems with the other two

algorithms and exhibits consistently best performance on different ferry routes. We obtain

results for the average latencies of these three algorithms, which show similar trends. Due

to space constraints, we omit these results in this paper.

In the above simulations, we assume a symmetric incoming/outgoing traffic load. There-

fore, Proportional Allocation (PA) scheduling functions the same way as the RR scheduling.

When the traffic load is not symmetric, their operations become different. We consider sce-

narios where the incoming traffic of a “hot-spot” cluster is four times of the outgoing traffic

load (16 destination nodes and 4 source nodes). Each of the other three clusters has 6
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Figure 29: Ferry/Gateway Interaction: Source Rate 2 kbps
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destination nodes and 10 source nodes. With the proportional gateway selection, we show

in Table 3 the delivery ratios of these two scheduling algorithms when the ferry moves along

route 3. While both RR and PA scheduling have similar overall delivery ratios, PA schedul-

ing allocates contact opportunities between incoming and outgoing traffic more evenly. The

delivery ratios for traffic to and from the hot-spot cluster are 83.6% and 89.0% respectively,

as compared to 80.1% and 93.1% in the RR scheduling. This is because PA scheduling

takes into account of traffic load information, while RR scheduling gives equal opportunity

to incoming and outgoing traffic. These two schemes perform differently in clusters with

asymmetric incoming/outgoing traffic load.

RR PA

Traffic to the “hot-spot” cluster 80.1% 83.6%

Traffic from the “hot-spot” cluster 93.1% 89.0%

Total Traffic 86.1% 87.2%

Table 3: Delivery ratio with different scheduling algorithms

5.3.3 Effect of Gateway Selection

We now consider the effects of gateway selection schemes on data delivery performance.

We focus on the RR scheduling since it achieves the best performance. Figure 29b shows

the delivery ratios of different gateway selection approaches. We can see that the nearest

selection approach has the worst performance among the three. In this approach, gateway

selection is determined by factors other than the contact opportunities between gateways

and the ferry. Data may be forwarded to a gateway with very limited contact with the

ferry. Proportional gateway selection, on the other hand, has the highest delivery ratio

because it avoids overloading gateways which have limited contact opportunities with the

ferry. And by distributing outgoing traffic to multiple gateways, random gateway selection

has a similar delivery ratio as proportional selection. We note that the difference between

random selection and proportional selection is insignificant under all ferry routes. This

can be explained as follows. When there are plenty of contact opportunities, e.g., the

ferry moves along route 3, the traffic load on each gateway is always less than the effective

capacity and both gateway selection approaches have high delivery ratios. When the amount
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of contact opportunities is small, e.g., the ferry moves along route 1, the traffic load on each

gateway with both gateway selection approach can be higher than the effective capacity.

The achievable data delivery rate is half of the effective capacity since the round robin

scheduling algorithm is used.

The average latencies of these three approaches with round robin are illustrated in

Figure 29c. We can see that the proportional and random selection schemes have lower

delays. Simulations with other scheduling algorithms have similar results and thus are

omitted.

5.3.4 Effect of Intra-cluster Traffic

We consider only inter-cluster traffic in previous simulations. In a cluster, there are possible

data exchanges between nodes in the cluster. Furthermore, the data rate of such traffic can

be much higher than the inter-cluster traffic because it is sent over multi-hop paths. We

now evaluate the effect of background MANET traffic over the inter-cluster traffic. We use

route 0 and route 3 as the two extreme cases for contact availability. And 30% of the sources

now generate intra-cluster traffic; Figure 30 shows the delivery ratios under different date

rates and different ratios between inter/intra-cluster traffic. The label “Ratio 10” means

the intra-cluster traffic source generates message 10 times faster than an inter-cluster traffic

source; We can see that intra-cluster traffic has significant effect over the performance of

inter-cluster traffic. For example, when the source rate is 4kbps, the delivery ratio drops

from 62% to 32% under route 0 and high intra-cluster traffic load. This is because of two

reasons. First, with higher intra-cluster traffic load, wireless interference is more severe,

reducing the effective capacity between gateways and the ferry. So fewer messages can

be exchanged during the gateway/ferry contacts. Second, the large numbers of MANET

packets cause more collisions and more drops of any type of traffic, including inter-cluster

traffic.

5.4 Ferry Route Design

The discussion above is based on the assumption that the ferry follows a given route, which

is not specifically designed for optimal message delivery performance. As we have shown in
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Figure 30: Effect of intra-cluster MANET traffic.

the simulations, both the data delivery ratio and average delay change significantly as the

ferry moves along different routes. In cases where we are able to control ferry movement

or design a ferry route, we can customize the ferry route according to traffic condition to

improve performance.

Ferry route design has the potential for reducing message delay and supporting higher

throughput. In our prior work [109], we consider ferry route design in networks with sta-

tionary nodes that are separated from each other. In this paper, we study clustered DTNs

where connectivity within clusters provides opportunities to refine the ferry route. In the

following, we first review ferry route design in networks without clusters. Then we develop

algorithms for designing ferry routes in clustered DTNs.

5.4.1 Ferry Route Design without Clusters

In our prior work [109], we define the ferry route design problem. Specifically, let bij be

the data rate from node i to node j. For a ferry route T , the average delay is defined as

DT =
∑

i,j bijdij∑
i,j bij

where dij is the average delay for data from node i to node j under ferry

route T . Given a set of nodes and a traffic matrix between nodes, the ferry route design

problem is to determine a ferry route T such that the traffic requirement is met and the

average delay DT is minimized. It can be shown that solving the ferry route design problem

optimally is NP-hard. Thus we develop heuristic algorithms to compute ferry routes.

73



To compute a ferry route, we divide the overall problem into two sub-problems, which

consider minimizing delay and meeting traffic requirement respectively. For the first sub-

problem, which determines the order of visiting nodes to minimize the average delay, we

adapt solutions for the well-studied traveling salesman problem (TSP) which computes a

shortest route to visit all nodes. But instead of optimizing the length of the route as in TSP,

we minimize the average delay. Specifically, we first generate an initial route using some

TSP heuristic algorithm, e.g., the nearest neighbor heuristic, and then refine the initial

route using local optimization techniques.

In the first sub-problem, we consider only the average delay. In the second sub-problem,

we consider how to extend the ferry route, if necessary, to meet the traffic requirement. For

a given route, the transmission capacity between the ferry and a node is determined by the

fraction of time that the node communicates with the ferry. If the capacity is not enough

to support the traffic load, we need to extend the amount of time the ferry spends in the

vicinity of this node. Let xi be the length of route extension around node i, the total length

of ferry route segment within the communication range of node i is xi + 2r. Let si be the

summation of incoming and outgoing traffic load of node i. We have

(xi + 2r)W

L+
∑

j xj
≥ si

where L is the route length before extension. We formulate the route extension problem

as the following linear programming (LP) problem which can be solved efficiently using LP

methods.

minimize
∑

i

xi (2)

subject to Wxi − si
∑

j

xj ≥ siL− 2rW

xi ≥ 0

5.4.2 Ferry Route Design in Clustered DTNs

We now consider the design of ferry routes in clustered DTNs. In a clustered DTN, nodes

within a cluster can communicate with each other. As illustrated in the previous sections,

gateway nodes can be used to relay messages between other nodes in the cluster and the
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ferry. In this case, the ferry does not need to visit every node in the clusters. Thus in

clustered DTNs, route design has the flexibility to visit a subset of nodes, i.e., gateways, in

the network. This raises a question of how to select gateways in clusters.

In this paper, we design ferry routes in the following three steps.

1. Determining cluster visit order. The algorithm first creates a “virtual” node at the

center of each cluster which has the aggregate traffic load of the cluster. Then we

apply the route design algorithms in [109] to compute a ferry route for the “virtual”

nodes. That is, the algorithm determines the order in which the ferry visits each

cluster.

2. Gateway selection. In this step, the algorithm selects gateway nodes in each cluster.

Then the algorithm refines the ferry route to visit gateways instead of “virtual” nodes.

3. Bandwidth extension. The algorithms compute transmission capacity provided by the

ferry route generated in step (2). If the capacity is not enough to support the traffic

load, the ferry route is extended to meet the traffic requirement. This is done by

solving the linear programming problem in (2).

We consider several schemes to select gateways in each cluster. With connectivity in

clusters, the ferry is allowed to visit only a subset of nodes in the network. Depending on

which performance objective to optimize, one can select gateway nodes in different ways.

Specifically, we study the following three gateway selection schemes.

• MF with center node (MF-CN). In this scheme, we choose the center node of each

cluster as the gateway. This gateway will relay all inter-cluster traffic between the

cluster and the ferry. And the ferry visits these gateways in the same order as visiting

“virtual” nodes which is determined by step (1).

• MF with minimum length (MF-ML). In this scheme, we design the ferry route to have

the minimum length. Specifically, we choose one node from each cluster as the gateway

such that the total length of the ferry route is minimized. This can be determined by
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solving the following 0-1 integer linear programming problem.

minimize
∑

i

∑

j

dijxij

subject to
∑

j

xij −
∑

j

xji = 0

∑

ik

∑

j

xikj = 1 node ik is in cluster k

∑

ik

∑

j

xjik = 1 node ik is in cluster k

xij = 0 or 1;

where dij is the distance from node i to node j and xij is an indicator of whether the

ferry will visit node i and j in that order on the designed route.

• MF with sources/destinations (MF-SD). In this scheme, the ferry will visit all sources

and destinations. That is, each source and destination will act as a gateway for its

own traffic. So there is no need to transfer inter-cluster traffic over multi-hop paths

within clusters.

The above gateway selection schemes focus on optimizing different aspects of data de-

livery. The MF with center node scheme, which selects the center nodes as gateways, tries

to position gateways at the center of each cluster. This way, it minimizes the longest paths

from all sources and destinations to the gateway. In MF with minimum length, the length of

the ferry route is minimized. This scheme tries to minimize the message delay and increase

the contact capacity between gateways and the ferry. In the MF with sources/destinations

scheme, all sources and destinations communicate with the ferry directly. So it avoids the

data losses that otherwise would occur when transferring data over multi-hop paths within

clusters. In addition, by visiting all sources and destinations instead of single gateways in

other schemes, the ferry is able to utilize more contact opportunities.

5.5 Evaluation of ferry route design heuristics

In this section, we evaluate different ferry route design schemes. As discussed in the previous

section, ferry route design aims to improve message delivery ratios and reduce delay.
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5.5.1 Simulation Settings

In our simulations, we use the same simulation settings as in Section 5.3 except for the

following changes. Specifically, four stationary clusters are randomly deployed in a square

area of size 6000m×6000m and 3000m×3000m. The distance between cluster centers is

required to be larger than 2000m or 1000m respectively. Each cluster consists of a random

number of nodes. Either 20% or 50% nodes are chosen to be the source which generates

the traffic with a rate from 1 kbps to 4 kbps. And 30% of the sources choose a destination

within the same cluster. That is, 70% of total traffic load is between clusters. The ratio

between intra-cluster and inter-cluster traffic is 1 or 10. Although the wireless link capacity

is 1 Mbps, the effective bandwidthW never exceeds 800kbps in our measurement. To reflect

the impact of wireless interference, we also consider W = 300kbps in our simulations. We

run simulations for 20,000 simulation seconds, and each result is averaged over 5 rounds

using different random seeds.

To evaluate the utility of ferry route design, we also consider the case with fixed routes.

Specifically, we compute a fixed ferry route that visits the “virtual” nodes in the order

determined by step (1) in the ferry route design algorithm in Section 5.4.2. And all nodes

having contact opportunity with the ferry are considered as gateway nodes.

5.5.2 Delivery Ratio

We first evaluate how ferry route design affects the delivery ratio. Figure 31 shows the

delivery ratios under different route design approaches when 50% nodes generates traffic in

the 6000m×6000m area. We can see that as traffic generation rate increases, MF with fixed

routes becomes inferior because of limitations in contact opportunities between gateways

and the ferry. Without detours that allow the ferry to communicate with gateways for a

longer time, gateways are not able to forward gathered messages to the ferry. We also note

that all three MF schemes, which extend the ferry route based on traffic load, have better

delivery ratios than the MF scheme with fixed routes. This suggests that route extension

is necessary in situations where inter-cluster traffic load is high or contact opportunities

between gateways and the ferry is limited. Among the three MF schemes that extend the
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ferry route based on traffic load, MF with sources/destinations achieves the best delivery

ratio especially when the traffic load is high. The reason is that if we choose only one node

as the gateway for each cluster, all source nodes must send their inter-cluster traffic to the

gateway via multi-hop routing. Similarly, data received from the ferry must be distributed

to destinations via possibly multi-hop paths. Due to the interference and message losses,

the overall delivery ratio is reduced. However, if the ferry visits all sources and destinations

directly, the ferry would communicate with them directly, reducing the possibility of message

losses that otherwise would occur in multi-hop forwarding. In addition, in the case with

W = 800kbps, which ignores the effects of wireless interference on contact opportunity, the

delivery ratio is lower. This is because we underestimate the detour needed and the delivery

ratio suffers accordingly.

Figure 31b shows the delivery ratios with higher intra-cluster traffic load, i.e., the ratio

between intra- and inter-cluster traffic is 10. We can see that the delivery ratios for all route

design schemes decrease significantly. This is because with higher intra-cluster traffic, the

intensified interference not only reduces the effective capacity of gateway/ferry contacts,

but also cause more message losses when data are forwarded within clusters. We have

conducted simulations with 20% nodes as sources or under a 3km × 3km area. Due to

the low traffic load or the more frequent contacts between gateways and the ferry, most

messages are delivered successfully.

5.5.3 Message Delay

Small Area Large Area
Delay (sec) Low load High load Low load high load

MF-CN 936 1954 2190 4268

MF-ML 655 1177 1865 3643

MF-SD 957 1451 1531 2719

Fixed Route 904 1710 2072 4377
∗The ratio is 10 and W = 300kbps for all the results

Table 4: Different Route Design

We now show the simulation results for the average delay in Table 4. We depict the

message delay under both low traffic load where the source rate is 1kbps and high traffic
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Figure 31: Different Route Designs

load where the rate is 3kbps. With a smaller area, MF with minimum length is able to

achieve a 30% decrement in message delay as compared to other three approaches. This

is because the ferry route is designed to choose gateways such that the total length of the

ferry route is minimized.

In the large area simulations, the distance between clusters becomes the dominant factor

in determining the length of the ferry route. So in MF with minimum length, the reduction

in message delay due to the shortened ferry route is less significant. In fact, MF with

sources/destinations has the lowest delay under both low and high traffic load. This is

79



because as the total ferry route length increases for a larger deployment area, detour becomes

necessary to satisfy the traffic load. When the ferry visits each source and destination, the

ferry is able to use more contacts for transmission. Thus less amount of detour is required.

We also see that MF with minimum length has the second lowest delay because of the

shorter route length.
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CHAPTER VI

A WIRELESS AND MOBILE NETWORK SYSTEM IN

OILFIELD OPERATIONS

In today’s oilfield operations, data communication at field location is essential for oper-

ation control, equipment monitoring and crew coordination. Data communication is also

desirable between oil field locations and services running on Internet or inside Enterprise

network infrastructure. For example, important job parameters during a field job can be

sent to a central data server where clients are able to view the job progress and provide

feedback/comments. In the meanwhile, orders and notifications to the crew can be issued

by messaging or emails.

Figure 32: An Oilfield Network Example

Since most of field operations are conducted in remote areas, satellite links have been

considered as the only option for a long time. Figure 32 shows such an example. On the

one hand, a wireless or wired Local Area Network (LAN) provides good connectivity at the

site. On the other hand, a VSAT satellite link from iDirect [5] connects the operation crew

to the Internet and it is shared by various applications which need data links to central

servers.

After the BP Macnodo incidence [1], stricter governmental regulations introduce new

data communication requirements to field operations. For example, status of oilfield equip-

ments should be reported to data center regularly. In this chapter, we first present our
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observation that the existing network in Figure 32 became a challenged one for such a new

application. Then we report our effort of challenged network transforming which includes

a comprehensive outdoor wireless links measurement and evaluation.

6.1 Network Classification and Transformation

In infrastructure-less network, one major approach to transform a challenged network is

introducing node mobility. In transforming an infrastructure-based wireless and mobile

network to support specific applications, we focus on the wireless links’ characteristics and

how applications perform over those links.

6.1.1 Bandwidth Constraint

As a recent effort of improving reliability in job execution upon policy changes, a data col-

lecting and reporting application is developed to monitor numerous sensors on pumps used

in the oilfields. The data would be valuable for trouble diagnosis, maintenance scheduling

and loss prevention by early parts repair/replacement. Therefore, this set of data needs

to be sent back to data center for expert evaluation. However, the complete data set is

generated at a rate of hundreds of kbps even after compression. Although satellite link is

able to provides coverage at remote areas, the bandwidth is always limited. In order to

ensure quality of service to existing applications, there is an upper bound on bandwidth

consumption, especially on the upload link, for this new application.

In this case, the space path always exists between the job site and the data center.

However, the bandwidth constraint on the space path make the space path not usable. In

our connectivity based classification framework, this path is classified as assistant-needed,

in other words, unless further assistant would be able to create more contact opportunities,

the network is completely partitioned.

However, if we look at the data set further, we’d notice that the different types of

information can be extracted and separated in the whole data set. There are important

alarms which needs immediate attention of experts in the data center or operators at job

sites. For example, the engine oil temperature exceeds a limitation. The rest of the data

set is important but does not require real-time transmission. We name such data type as
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bulk data in our study. Therefore, we start from the application’s data set and split the

information. Only alarms will be sent in real-time with the bandwidth consumption around

15 kbps while the rest of the data set can be stored in local storage. Therefore, this satellite

link becomes a space path for the real-time data.

6.1.2 Latency Constraint

At the job site, those real-time alarms are sent out strictly with an one-second interval.

On the other side of the application, real-time monitoring of those alarms at data center

requires an average latency of data delivery less than 2 seconds.
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Figure 33: Latency Performance Comparison

With the existing transport layer library for data delivery from the job site to data

center, the average latency is around 4 seconds as shown in Figure 33. Therefore, although

a space path exists between job site and data center theoretically, it is not usable to the

application due to latency violation. Similar to bandwidth constraint handling mentioned

before, we focus on wireless link characteristic and the application using that link in the

challenged network transformation.

As we will show in later section, the end-to-end latency on satellite link is less than 2

seconds. The excessive latency is from inefficient real-time data transfer handling in the

application. We replace the existing transport layer library with a new Java Message Service

middleware which is designed for real-time data delivery. The improvement over latency is

significant and we make a successful transformation of the network from assistant-needed

83



to the one with a usable space path.

6.1.3 Alternate Wireless Links Provisioning

By separating alarm data and replacing transport layer library, portion of the data set is

able to use the satellite link in real-time. The rest of the data set is stored locally first but

it is required to be transferred to and managed by a central archiving system. With the

single satellite link between the job site to the Internet, other assistance is needed from the

connectivity-based classification.

Company IT policy rules out the possibility of using a ferry based approach like the one

we discussed earlier in Chapter 5 since it may relies a 3rd party, e.g., human or vehicle,

which may not always under the company’s regulation. Therefore, we add other direct

links between job sites and the Internet and explore the possibilities of making the network

transformation.

6.1.3.1 Feasibility Study
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Figure 34: Area of field test locations
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Recent research works evaluate outdoor Internet access from vehicles using cellular ser-

vice [12,35,105]. High bandwidth and stable connectivity from cellular data link exist at all

those areas even under fast movements. However, all these studies were conducted in urban

regions where cellular tower deployment density is high. Performance of cellular data links

at remote areas far from cellular towers has not been evaluated in-depth.

From 03/31/2010 to 04/09/2010, we visited 12 field locations spread out in an area of

nearly 35,000 km2 in northern Texas/Lousiana shown in Figure 34a1. At each location, we

connect AT&T or Verizon modem to a Dell Latitude laptop with Windows XP. Commercial

Internet speed test server [3] and an internal link speed test server inside our data center

are used to measure the upload/download link speed for a few times. If data service is

available, average link speed is recorded. Data service coverage and link speed of both

service providers are evaluated.

During our tests, we found out that the coverage map from service providers can be a

good reference but disagreements from actual measurement do occur. We overlaid Verizon’s

coverage map from [4] on the map of our field tests. Those shadows on Figure 34a represent

areas without coverage. Among the three field locations where we did not get Verizon data

service, two are actually inside those shadows. The one location “should” have service

but actually doesn’t is outside shadows. But its terrestrial condition is not favorable:

surrounding grounds are higher than the actual field location. We also monitor the TCP

throughput in a 3 hours driving from point A on the map (not among those field locations)

to a nearby city, i.e., point D. 600MB data is being continuously uploaded during the trip.

The TCP throughput variations over time illustrated in Figure 34b generally agree with

coverage along the route with occasional odds.

Coverage (%) ATT VZN Bandwidth ATT VZN

3G 0 75 Upload 94 323

non-3G 100 0 Download 106 645

Table 5: Field test summary of cellular links

1Due to business concerns, we cannot disclose those fields’ exact locations on this map.
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Field test results are summarized in Table 5. AT&T has EDGE service at all those

location but no high speed 3G coverage at any of them. On the other hand, Verizon

provides 3G EVDO service at 9 locations and no service in the rest 3. Therefore, significant

difference on the average uploand/download speeds between these two service providers are

observed during our tests.

6.1.3.2 Hardware Configuration

Figure 35: Antenna setup and Verzion’s 3G link speed

We plot download/upload speeds over Verizon’s 3G links against signal strength readings

from data modems in Figure 35. Assuming those readings represent strength of received

signal, linear fittings indicate that 1dB increment on signal strength can lead to an increment

of 28.4 kbps in download speed and 7 kbps in upload speed with the one antenna case. Using

two antennas generally increases average signal strength by 1 dB. However, the effect is a

15% download speed increment. We believe this is a result from spatial diversity provided

by two antennas. On the other hand, uploading speed is not affected much. Unlike the

signal spatial diversity study in [96] where geographic distance between antennas can be

up to 500 meters, the distance between antennas in our setting is a few meters. Using two

antennas helps on link speed in our field tests but cannot reach 3G data service either at

locations where a single antenna setup fails.
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Test results shown in Figure 35 are used to finalize the communication hardware config-

uration. We use two dual band flexible omnidirectional antennas. The choice of this type of

antenna is from specific oilfield operational restriction: the cellular antenna must be placed

on the roof top of trailers and should be flexible to prevent damage caused by potential

strong vibrations or impacts from vegetation as field operation are carried out at places

with harsh road conditions from time to time. This rules out many other choices such as

electronically steerable antenna [72]. The gain of this flexible antenna is 5 dB since higher

gain antennas are usually longer and associated with higher probability to break during field

operations. The AT&T and Verizon 3G modems we used are from DIGI and come with

one or two (Verizon model) external antenna connectors. Both antenna and cellular data

modems installation pass our internal environmental qualification procedure which involves

tests such as strong vibration and extreme temperature condition.

Figure 36: New Oilfield Network under Evaluation

In addition to evaluating cellular data link, we test the satellite link provided by BGAN

modem from Inmarsat [2] at those 12 field locations as well. Unlike cellular link, BGAN link

is available at all locations. Therefore, we include this type of link in our further evaluation.

The final network setup is shown in Figure 36.

All three modems are connected to the same laptop via the Ethernet port and two

USB/Ethernet convertors. Different IP addresses are assigned with DHCP protocols on

each of these three interfaces and we manipulate Windows’s local routing table to direct

the traffic according to the selection procedure illustrated in Figure 37.

During field crew’s operations, e.g., fracturing, real-time data is generated continuously
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(a) Real-time Data Transfer (b) Bulk Data Transfer

Figure 37: Wireless Links Selection

and sent to the server in data center if one of those data links is available. On the other

hand, bulk data is generated in terms of files with the size of 1 MBytes regularly. Once such

a file is generated, our application automatically tries to upload it to a ftp server. Unlike

real-time data, the bulk data files are kept on local storage until they are uploaded. Each

ftp transmission’s starting time, size and duration are recorded.

For both real-time and bulk data transfers, the selected data link from the selection

procedure is used until it becomes unavailable. Then the selection procedure repeats until

another choice is found.

6.1.4 Operation Result from the Pilot Unit

One pilot unit was deployed for field tests at Shreveport District at Northern Louisiana

on September 2010. We retrieved logs for an one-month span from Oct. 20, 2010 to Nov.

22, 2010 for performance evaluation. Note that AT&T data modem was used by this pilot

unit although Verizon’s service shows better coverage. The reason is the latter did not

have enterprise level access to our company’s intranet until early 2011 after certain business

procedures were fulfilled.

Figure 38a shows the number of real-time transfers over those three data links in each

day. Note that among the total more than 170 real-time data transfers in this one month

period, VSAT link is only used once. In the meanwhile, the cellular link and BGAN link

carry almost all real-time data with cellular link accounts for more than 60%. This result

indicates that today’s satellite link used in field operations has a poor availability although
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(b) Bulk Data Transfer Per day
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Figure 38: Data Transfer Statistics

it is supposed to have good coverage even at remote areas. Further investigation shows the

major factor accounting for this poor availability is the directional antenna with the VSAT
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modem, which has a diameter of 75cm - 1.2m and weights over 50kg, motor-driven mechanic

arms are used to elevate the antenna, track the signal as well as fold the antenna beneath the

roof when the vehicle hosting the VSAT system is in motion. As such movement is always

on unpaved road, strong vibrations may damage the mechanic part and control system.

In addition, this VSAT system requires close attention from field engineers throughout its

operation and maintenance, which is not always there in the intensive and fast-paced field

operations.

We summarize bulk data transfer distribution in Figure 38b where the y axis represents

the amount of daily data transferred over those data links. Note that cellular link handles a

big portion (>60%) of bulk data transfer. By comparing the time stamp of each bulk data

file’s creation and the time stamp of its real transfer, we collect and present the waiting

time of each bulk data transfer in Figure 38c. Most of bulk data transfer’s delay is less

than half an hour with a median value of 731 seconds. The maximum waiting time is 9027

seconds when bulk data transfers can use either cellular or BGAN link.

From network classification point of view, introducing cellular link and BGAN link to oil

field operations significantly improves the connectivity in terms of creating space path and

space-time path between field sites to the data center. However, unlike license free 802.11

or bluetooth links discussed and evaluated in most research works on wireless and mobile

networks, using cellular and BGAN links has associated operational costs. BGAN link has

tiered pricing models and the service used in our study costs USD 5/MByte. Cellular data

service’s pricing model is a simple flat one: USD 100 per month with 2G Bytes usage cap.

In this one month time period, more than 500 MByte data is sent via BGAN link and

it costs nearly USD 2,500. In the same time period, around 850 MByte data is sent via

cellular link. If we only used cellular link to transfer bulk data, some bulk data files may

have longer delay as the cellular link might not be available at the moments when they were

sent via BGAN link. However, the potential reduction of operational cost is significant.

The tradeoff of latency and operational cost can be shown by emulations over the same

trace collected in late 2010. In these emulation, we intentionally delay the data transmission

of the expensive satellite link for a certain amount of time. If a cellular data transfer
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Figure 39: Tradeoff of Latency and Operational Cost

opportunity occurs during these delays, the cellular link is used instead of the satellite

link. As the allowance of delay increases, the cost of data transmission reduces significantly

as more data is transferred using inexpensive cellular service. As a matter of fact, if the

application allows a latency of 5 days, which is feasible for operations such as general

equipment record archiving, the USD 2500 operational cost is completely eliminated.

6.2 Wireless Link Characterization at Oil Field Locations

With positive results from the pilot unit, we deploy more units in 2011. Due to the high cost

of using BGAN link in pilot unit, we only upload bulk data on cellular links in 2011. Besides

the usage of uploading job data, our application check the connectivity over each data link

every 30 seconds. Measurement results are recorded with time stamp in local database on

the laptop. We developed scripts to retrieve essential information from database records as

log files and upload them to a ftp server from time to time.

In this section, we present measurement results from four crews stationed at Shreveport,

Louisiana. They are named as SLA1 to 4 in our discussion. Measurement study was also

conducted at one crew stationed at Williston, North Dakota which is named as WIL1.

Normally, each crew operates within an area of thousands of square kilometer around the

city where it is stationed. Between January 26, 2011 to March 20, 2011, AT&T link was

used instead of Verizon service at SLA1 and measurements during this time is collected in
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an independent data set named “SLA1 ATT”. At the end of March, all units started using

Verizon data service. We present analysis of link availability, TCP throughput and end-to-

end latency from measurement results collected at those five crews. To our knowledge, this

is the first side-by-side comparison between cellular data link and satellite links at remote

areas with more than 300 days’ measurement. Our studies target an answer to the question

of whether we can cost-effectively improve the connectivity from remote oil field locations to

the Internet, in other words, transform currently challenged network connecting field crews

and the data center.

6.2.1 Availability

0 100 200 300 400 500 600 700
off
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(a) Cellular’s availability over time (in hour)
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Figure 40: Availability comparison at SLA2 in April 2011

Data link availability via cellular, BGAN and VSAT over time for each crew is the first

metric of interest in our measurement study. We find out this metric is affected by the

work shift pattern of each crew. Figure 40 shows the link up and down sequences of SLA2

crew in April 2011. This crew is a day crew which stops operation and shuts down all

equipment at night. SLA2 and SLA3 belong to this category and thus their link availability

is always interrupted by such operation halts. SLA1 and SLA4 are 24-hour crews which

operate continuously at field locations. All crews normally move to next field location after

working 5 to 10 days at one place. The job location transition may take 1 to 3 days during
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which all equipment is powered off.

We retrieved Windows OS’s native logs containing PC power on/off events from differ-

ent crews. With this type of information, we reprocessed availability logs of cellular and

satellite interfaces so that the probability that a link is available is only calculated when the

equipment is powered on. Therefore, we eliminated the effect of job transition/equipment

down schedule on availability evaluation of those data links.

Difference on costs associated with usage of satellite data links (USD 5/MByte) and

cellular one (USD 100 per month with 2 GByte cap) indicates a potential cost reduction

if a cellular link instead of a satellite link is used when data communication happens.

Therefore, we not only calculate P (X), probability that link X is available, but also the

P (X|Y ), conditional probability that link X is available given link Y is available. Higher

value of P (X|Y ) represents more opportunities of using link X instead of Y.

P (C) P(B) P(V) P (C|B) P (C|V )

SLA1 98.50% 71.29% 66.42% 98.99% 98.99%

SLA2 97.03% 83.95% 52.86% 99.52% 99.48%

SLA3 93.76% 88.15% 56.99% 98.12% 97.78%

SLA4 89.73% 88.90% 44.79% 91.89% 99.28%

C: Cellular; B: BGAN; V: VSAT

(a) Measurement results in April

P (C) P(B) P(V) P (C|B) P (C|V )

SLA1 96.86% 26.96% 87.10% 99.67% 98.31%

SLA2 96.07% 80.40% 75.19% 99.05% 99.07%

SLA3 97.28% 91.21% 63.86% 99.27% 99.02%

SLA4 76.11% 75.68% 50.89% 98.03% 97.79%

(b) Measurement results in May

Table 6: Normalized link availability comparison

Table 6 shows the availability analysis of SLA1 to 4 in April and May 2011. Note

that cellular data link has high availability comparable to the BGAN data link at those

measurement locations. The drop on BGAN’s availability at SLA1 in May is caused by a

device mis-configuration which was corrected after a few weeks. Note that the existing data

link solution using VSAT is not as reliable as the other two links as we discussed earlier in
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section 6.1.4.

High conditional probabilities in Table 6 indicate that a cellular link is always available

when satellite links are at locations around Shreveport, an geographical region with good

cellular service coverage. The same conclusion might not hold at other regions.
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Figure 41: Availability comparison at SLA4 in Aug. 2011

SLA4 crew traveled to southern Texas and operated there for two weeks from Aug. 10

to Aug. 25, 2011. Side-by-side link availability comparison in Figure 41 shows that cellular

link was down for a 5 day time period when satellite links were available. Therefore, P (C|B)

and P (C|V ) are 54.31% and 53.33% in those two weeks. In the meanwhile, P(B) and P(V)

are 90.24% and 84.84%.

Measurement results in Table 6 and Figure 41 indicate that no ideal data communication

solution can be provided by a single type of data links in our evaluation. A multi-interface

system with data link management policy should be developed based on financial consider-

ation and link availability.

Both Figure 40 and 41 show regular availability interruptions on those data links. These

interruptions may last for hours or even days. There are two reasons for such long inter-

ruptions: 1) The crew is working at a field location with no coverage for a few days; 2) The

job location transition takes a few days to finish.
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Figure 42: Interruptions on cellular link availability at WIL1

In the meanwhile, interruptions on those wireless links caused by weak signal can be

very frequent. We present cellular link’s availability from data collected at WIL1 during

August in Figure 42. In this month, over 1100 interruptions occurred with a peak rate of

more than 10 times per hour.

Overall, data access from field location to the Internet is a delay-tolerant network sce-

nario [39]. Applications running over these data links at field locations should include

disruption/delay-tolerance features to handle intermittent link availability as mentioned

in [12].

6.2.2 Classification of Different Links

We can also compare these links using the connectivity based classification framework. In

our deployment scenario, there is only one node pair as such data link is used to connect

the field crew with the data center. Therefore, we show the node pair classification results

over the contact traces collected in April, 2011 and August, 2011 respectively in Figure 43.

Note that even satellite links are not able to provide space paths all the time from remote

area to our data center. Therefore, real-time application is not expected to be feasible all

the time. However, for certain applications allow latency for a few hours or even days,

inexpensive cellular service is enough to provide the data link between the field crew and

the data center. And a BGAN link would be a good supplementary to cellular link when
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(a) Cellular Link, April
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(b) VSAT Link, April
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(c) BGAN Link, April
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(d) Cellular Link, August
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(e) VSAT Link, August
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(f) BGAN Link, August

Figure 43: Node Pair Classification Results

the the coverage of the latter is questionable, e.g., in the August’s operation.

6.2.3 Throughput Profiling

By uploading thousands of bulk data files from our units, we obtained substantial number

of samplings of average TCP throughput over cellular data link. There were 200 to 1000

FTP uploads via Verizon’s cellular links in each SLA crew during April 2011. Another 2000

FTP uploads were finished in data set SLA1 ATT. In addition, a BGAN link was used

for more than 600 FTP uploads from SLA1 crew from October 2010 to November 2010.

No FTP upload was conducted on VSAT link in our measurement study since this link

is strictly managed and only business applications with recorded and approved bandwidth

consumption profile may access it.

Figure 44 illustrates Cumulative density functions (CDFs) of average TCP throughput

in those data sets. We notice the significant variation on average TCP throughput over

cellular links. This is caused by fluctuation of signal quality as field locations are nor-

mally far from cellular towers or by contentions of spectrum usage, which will be discussed
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Figure 44: CDF of average TCP throughput

later in this section. Verizon’s cellular service provides higher maximum achievable uplink

speed (500kbps) than AT&T’s (250kbps) but is associated with bigger variations. The av-

erage TCP throughput is stable over the BGAN link as it is tightly managed and has less

background traffic fluctuation due to limited accesses.

Temporal correlation/predication of TCP throughput over wireless links in small time

scales of tens of seconds are investigated in previous work [35, 105]. We are interested in

average TCP throughput over cellular links and we conduct our study in a much larger time

scale.

We show the average TCP throughput of each upload from the SLA1 ATT data set

according to the hour when it starts in Figure 45a. Each dot represents one average TCP

throughput measured at a certain hour. We also draw the range bounded by 5 percentile

and 95 percentile of all values at each hour. Although 5% to 95% ranges are similar across

different hours as link quality fluctuates all the time, the 25% to 75% range is narrow

which indicates that a significant portion of TCP throughput measurements at each hour

are around the median value.

Average TCP throughput is generally low during busy hours of the day and high other-

wise. We believe this is related to contention of spectrum usage towards the cellular tower

from other cellular devices at the same field location or the diurnal congestion on cellular
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(a) SLA1 ATT data set

(b) SLA1-4 Verizon data set

Figure 45: TCP throughput at each hour of the day

service providers’ backbone. As median values change significantly from hour to hour, col-

lecting statistics for each hour of the day would help TCP throughput predication in the

same hour of the day. Similar hourly-shifted pattern can be found in Figure 45b, which

illustrates results from the data set consists of over 6000 TCP throughput measurements

over Verizon’s service from SLA1 to 4 in April and May, 2011.

6.2.4 End-to-end Latency

End-to-end latency is the link metric which essentially affects TCP stack’s performance and

determines service quality experienced by many applications. To collect measurement of
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this metric, ping packets are sent over SLA1-4’s cellular link and VSAT link periodically

with an interval of 5 minutes and 15 minutes respectively. Ping packets are also sent over

SLA4’s BGAN link with an interval of 15 minutes.
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(a) Measurements over Cellular Links
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Figure 46: End-to-end Latency via Ping

Figure 46 shows those measurements in August 2011. Note that VSAT link’s end-

to-end latency is stable around 500 ms. In the meanwhile, the latency on BGAN link is

significantly longer with a lower bound of 1000 ms and 80% measurement results are around

2000 ms. Compared with satellite links, cellular links have a better lower bound around

200 ms. However, measurements of latency on cellular links are heavy-tailed which means

long end-to-end latency may occur from time to time.

Although BGAN and cellular links may have higher availability than the VSAT link

according to previous discussions, they might not be used by applications having a tight
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latency requirement. On the one hand, this indicates multiple network interfaces should be

jointly used to provide effective data communication at remote areas; on the other hand,

significant differences on end-to-end latency characteristics could make the link management

a challenging task as one more criteria should be evaluated besides the cost and availability

mentioned in previous discussion. Furthermore, an application’s data communication may

switch between different interfaces when availability interruptions occur.
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CHAPTER VII

CONCLUSION

7.1 Research Summary

This thesis focuses on characterizing and mitigating challenges in wireless and mobile net-

works, including frameworks to quantify challenges associated with connectivity and energy

provisioning, studies of routing protocol integration, experiences in identifying and solving

challenges in building a real wireless and mobile network system. The major contribution

of this thesis work can be summarized as follows:

• Network Classification Frameworks. This thesis work will present a WAM con-

tinuum framework in contrast to previous approach of providing solution to distinct

network categories. A wireless and mobile network is characterized by its position in

this continuum. Certain network equivalence classes can be defined over subsets of

this WAM continuum and this classification can be used to determine network design

and operation.

– Connectivity based Classification Framework. We show one instantiation

of the WAM continuum framework on network connectivity classification and

apply it to traces from both real deployments and mobility models.

– Energy Sufficiency based Classification Framework. This thesis work

will first define the issue of energy sufficiency in WAM network and then de-

velop a classification framework based on how energy provisioning and power

management scheme affects network characteristics related to routing and traffic

handling.

– Collaboration Advantage based Classification Framework. This the-

sis work will extend the connectivity based classification framework to evaluate
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the interaction between mobile computation implementation and underlying net-

work’s connectivity characteristics.

The results of this work can be used to characterize various challenges in wireless and

mobile network and provide guidance on how to mitigate such challenges effectively.

• Development of a WAM System Working in a Challenged Environment.

We will report the process of data communication provisioning at oil field operations.

We introduce new access links to mitigate challenges associated with existing system

after a comprehensive measurement study.

• Integration of Routing Protocols. We will describe the integration of MANET

routing protocol with message ferrying in scenarios where heterogeneous connectivity

exists. Interactions between protocols from different routing paradigms are reported.

7.2 Future Directions

In this thesis work, we study issues related to characterizing and mitigating challenges in

wireless and mobile networks. Following is the list of potential research directions.

Clustering in Network Classification. Current network classification results are the

generalization of results from each node pair or node in the network. As the network of

interest scales up, the required amount of computation increases quickly. On the other hand,

clustering is a natural phenomenon in wireless and mobile network instances. Therefore, if

we are able to identify such clustering in the classification process, the whole classification

result might consist of two parts: characterization among nodes in the same “cluster” and

the inter-cluster characterization. This would improve the scalability of the classification

framework and provide guidance on operations at different areas of the WAM network.

Joint Control Framework in WAM Networks. As illustrated by our classification

framework, the connectivity characteristic of a WAM network is determined by contacts

among node pairs, which affects the way data is delivered in the network. Controllable

mobility is able to introduce extra contacts and thus improve network classifications. On

the other hand, the effective utilization of those contacts is limited by energy availability
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and the power management scheme in WAM networks. Data delivery in WAM networks is

a procedure to use available contacts with different routing protocols. It is worth evaluating

feasibility of a control framework in WAM networks which adjusts nodes’ behavior consid-

ering the joint effect of routing protocol, power management and controllable movement.

Cost Management in WAM Networks. In many WAM network deployments, the

usage of data link is associated with financial cost. Without a management scheme, such

usage can cost a lot as shown by examples in our study. Unlike power management schemes

which are based on a simple yet reasonable assumption: there is no energy consumption

when a node’s radio interface is shut down, there are various charging models on data

link usages. In our study, there are usage based model, e.g., BGAN link, and time based

model, e.g., monthly charges of cellular link and VSAT link. Finding an cost-effective way

to manage usages over such links would be as challenging and exciting as research work on

power management schemes in WAM networks.

103



REFERENCES

[1] “BP Deepwater Horizon Explosion.”

[2] “Broadband Global Area Network (BGAN).”

[3] “Speakeasy Speed Test.”

[4] “Verizon Coverage Locator.”

[5] “Very Small Aperture Terminal (VSAT).”

[6] “Wireless LAN Medium Access Control and Physical Layer Specifications,” 1999.

[7] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E., “Wireless
sensor networks: A survey,” IEEE Computer, vol. 38, pp. 393–422, Mar 2002.

[8] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E., “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393 – 422, 2002.

[9] Bai, F., Sadagopan, N., Krishnamachary, B., and Helmy, A., “Modeling path
duration distributions in manets and their impact on routing performance,” IEEE
Journal on Selected Areas in Communications, vol. 22, pp. 1357–1373, September
2004.

[10] Bai, F. and Helmy, A., “A survey of mobility models,” Wireless Adhoc Networks,
vol. 206, 2004.

[11] Balasubramanian, A., Levine, B. N., and Venkataramani, A., “Dtn routing
as a resource allocation problem,” in Proc. ACM SIGCOMM, pp. 373–384, August
2007.

[12] Balasubramanian, A., Mahajan, R., and Venkataramani, A., “Augmenting
Mobile 3G Using WiFi,” in Proc. of ACM MobiSys, pp. 209–222, 2010.

[13] Balasubramanian, A., Zhou, Y., Croft, W. B., Levine, B. N., and
Venkataramani, A., “Web search from a bus,” in Proc. ACM Workshop on Chal-
lenged Networks (CHANTS), pp. 59–66, September 2007.

[14] Banerjee, N., Corner, M., and Levine, B., “An energy-efficient architecture for
DTN throwboxes,” in Proceedings of IEEE Infocom, pp. 776–784, 2007.

[15] Banerjee, N., Corner, M. D., Towsley, D., and Levine, B. N., “Relays, Base
Stations, and Meshes: Enhancing Mobile Networks with Infrastructure,” in Proceed-
ings of ACM MobiCom, September 2008.

[16] Basu, P. and Chau, C., “Opportunistic forwarding in wireless networks with duty
cycling,” in Proc. of CHANTS Workshop, pp. 19–26, 2008.

104



[17] Basu, P. and Redi, J., “Coordinated flocking of uavs for improved connectivity of
mobile ground nodes,” in Proc. of IEEE Milcom, November 2004.

[18] Basu, P. andRedi, J., “Movement control algorithms for realization of fault-tolerant
ad hoc robot networks,” IEEE Network, vol. 18, pp. 36–44, July-Aug. 2004.

[19] Borrel, V., Ammar, M., and Zegura, E., “Understanding the wireless and mobile
network space: A routing-centered classification,” in Proceedings of CHANTS, pp. 11–
18, 2007.

[20] Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., and Jetcheva, J., “A
performance comparison of multi-hop wireless ad hoc network routing protocols,” in
Proc. of ACM Mobicom, pp. 85–97, 1998.

[21] Burgess, J., Gallagher, B., Jensen, D., and Levine, B. N., “Maxprop: Routing
for vehicle-based disruption-tolerant networking,” in Proc. of IEEE INFOCOMM,
2006.

[22] Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B.,
Scott, K., and Weiss, H., “Delay-tolerant networking: an approach to interplane-
tary internet,” IEEE Communications Magazine, vol. 41, pp. 128–136, June 2003.

[23] Burns, B., Brock, O., and Levine, B. N., “Mv routing and capacity building in
disruption tolerant networks,” in Proc. of IEEE INFOCOMM, March 2005.

[24] Burns, B., Brock, O., and Levine, B. N., “MORA Routing and Capacity Building
in Disruption-Tolerant Networks,” Elsevier Ad hoc Networks Journal, vol. 6, pp. 600–
620, June 2008.

[25] Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., and Madden, S., “A
Measurement Study of Vehicular Internet Access using In Situ Wi-Fi Networks,” in
Proc. of ACM Mobicom, pp. 50–61, 2006.

[26] Chaintreau, A., Hui, P., Scott, J., Gass, R., Crowcroft, J., and Diot, C.,
“Pocket switched networks: Real-world mobility and its consequences for opportunis-
tic forwarding,” Tech. Rep. UCAM-CL-TR-617c, University of Cambridge, Computer
Lab, 2005.

[27] Chaintreau, A., Mtibaa, A., Massoulie, L., and Diot, C., “The diameter of
opportunistic mobile networks,” in Proceedings of ACM CoNEXT, 2007.

[28] Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R., “Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless net-
works,” ACM Wireless Networks, vol. 8, pp. 481–494, September 2002.

[29] Chen, Y., Berg, J. O., Ammar, M., and Zegura, E., “Evaluation of data com-
munication opportunities from oil field locations at remote areas,” in Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement conference, IMC ’11,
pp. 117–126, 2011.

[30] Chotikapong, Y., Cruickshank, H., and Sun, Z., “Evaluation of TCP and Inter-
net traffic via Low Earth Orbit Satellites,” IEEE Personal Communications, vol. 8,
no. 3, pp. 28–34, 2001.

105



[31] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A., “Clonecloud: elas-
tic execution between mobile device and cloud,” in Proceedings of EuroSys, pp. 301–
314, 2011.

[32] Clausen, T., Jacquet, P., Laouiti, A., Muhlethaler, P., Qayyum, A., and
Viennot, L., “Optimized link state routing protocol,” in Proceedings of IEEE IN-
MIC, 2001.

[33] Corson, C. and Macker, J., “RFC2501: Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues and Evaluation Considerations.”
http://www.faqs.org/rfcs/rfc2501.html, 1999.

[34] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S.,
Chandra, R., and Bahl, P., “Maui: making smartphones last longer with code
offload,” in Proceedings of the 8th international conference on Mobile systems, appli-
cations, and services, MobiSys ’10, pp. 49–62, 2010.

[35] Deshpande, P., Hou, X., and Das, S. R., “Performance Comparison of 3G and
Metro-Scale WiFi for Vehicular Network Access,” in Proc. of Conference on Internet
Measurement, pp. 301–307, 2010.

[36] Deshpande, P., Kashyap, A., Sung, C., and Das, S. R., “Predictive methods
for improved vehicular WiFi access,” in Proc. of Mobisys, MobiSys ’09, pp. 263–276,
2009.

[37] Dubois-Ferriere, H., Grossglauser, M., and Vetterli, M., “Space-time rout-
ing in ad hoc networks,” in In Proc. Ad Hoc Now, 2003.

[38] Erramilli, V., Chaintreau, A., Crovella, M., and Diot, C., “Diversity of
forwarding paths in pocket switched networks,” in Proceeding of IMC, pp. 161–174,
2007.

[39] Fall, K., “A delay-tolerant network architecture for challenged internets,” in Proc.
of ACM SIGCOMM, pp. 27–34, 2003.

[40] Ferreira, A., “Building a reference combinatorial model for MANETs,” IEEE Net-
work, vol. 18, pp. 24–29, Set 2004.

[41] Galati, A. and Greenhalgh, C., “Human mobility in shopping mall environ-
ments,” in Proceedings of MobiOpp, pp. 1–7, 2010.

[42] Goldenberg, D. K., Lin, J., Morse, A. S., Rosen, B. E., and Yang, Y. R., “To-
wards mobility as a network control primitive,” in Proc. of ACM MobiHoc, pp. 163–
174, 2004.

[43] Gray, R. S. and et. al, “Outdoor experimental comparison of four ad hoc routing
algorithms,” in Proceedings of the ACM/IEEE International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM, pp. 220–229, 2004.

[44] Gray, R. S., Kotz, D., Newport, C., Dubrovsky, N., Fiske, A., Liu, J., Ma-

sone, C., McGrath, S., and Yuan, Y., “CRAWDAD data set dartmouth/outdoor
(v. 2006-11-06),” Nov. 2006.

106



[45] Guo, S., Ghaderi, M., Seth, A., and S.Keshav, “Opportunistic scheduling in
ferry-based networks,” in Proceedings of WNEPT, 2006.

[46] Heinzelman, W. R. and Balakrishnan, H., “Adaptive protocols for information
dissemination in wireless sensor networks,” in Proc. of ACM Mobicom, pp. 174–185,
1999.

[47] Hong, D. and Rappaport, S., “Traffic model and performance analysis for cellular
mobile radio telephone systems with prioritized and nonprioritized handoff proce-
dures,” IEEE Transactions on Vehicular Technology, vol. 35, no. 3, pp. 77–92, 1986.

[48] Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., and Diot, C.,
“Pocket switched networks and the consequences of human mobility in conference
environments,” in Proceeding of Workshop on Delay Tolerant Networking, pp. 244–
251, 2005.

[49] IDC Press Release, 2011 http://www.idc.com/getdoc.jsp?containerId=prUS22962811.

[50] I.F.Akyildiz, Morabito, G., and Palazzo, S., “TCP-Peach: a new congestion
control scheme for satellite IP networks,” IEEE/ACM Transactions on Networking,
vol. 9, no. 3, pp. 307–321, 2001.

[51] Jacquet, P., “Space-time information propagation in mobile ad hoc wireless net-
works,” in IEEE Information Theory Workshop, pp. 260–264, 2004.

[52] Jain, S., Fall, K., and Patra, R., “Routing in a delay tolerant network,” in Proc.
of ACM SIGCOMM, pp. 145–158, 2004.

[53] Johnson, D. B., Maltz, D. A., and Broch, J., “DSR: The dynamic source routing
protocol for multi-hop wireless ad hoc networks,” in In Ad Hoc Networking, pp. 139–
172, Addison-Wesley, 2001.

[54] Jun, H., Ammar, M. H., Corner, M. D., and Zegura, E. W., “Hierarchical
power management in disruption tolerant networks with traffic-aware optimization,”
in Proceedings of CHANTS, vol. 245-252, 2006.

[55] Jun, H., Ammar, M. H., and Zegura, E. W., “Power management in delay tolerant
networks: A framework and knowledge-based mechanisms,” in Proc. of IEEE SECON,
pp. 418–429, 2005.

[56] June, H., Zhao, W., Ammar, M., Zegura, E., and Lee, C., “Trading latency for
energy in wireless ad hoc networks using message ferrying,” in Proceedings of IEEE
PerCom, pp. 220–225, 2005.

[57] Kahn, R., “The organization of computer resources into a packet radio network,”
IEEE Transactions on Communications, vol. 25, pp. 169–178, January 1977.

[58] Kamerman, A. and Monteban, L., “WaveLAN-II: a high-performance wireless
LAN for the unlicensed band,” Bell Labs Technical Journal, vol. 2, no. 3, pp. 118–
133, 1997.
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