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SUMMARY

Chemical evidence is presently available in the literature for and égainst
the existenée of brancheé other than the unit galactose side chains in softwood
glucomannans; however, chemical methods will provide no information on the length
of the branches. The goal of the present study is to determine if long-chain

branching occurs in the glucomannan isolated from black spruce (Picea mariana )

and to elucidate the extent and nature of possible branch points.

A glucomannan was isolated from the 10% sodium hydroxide extract of a black
spruce holocellulose prepared by a mild acidified sodium chlorite delignification
at room temperature.- The purified glucomannan was shown to'be typical of conifer-
ous glucomannans by quantitative sugar analysis, electrophoresis, and its infrared
spectrﬁm. The glucomannén was acetylated and carefully fractionated by fractional
precipitation. The hydrodynamic and molecular properties of the acetylated frac-
tions were determined by osmometry, viscometry, sedimentatién equilibrium experi-
ments, and analysis of the transient state during ultracentrifugation. Analysis
of these properties according to existing polymer theories showed that the gluco-
mannan had a relatively compact molecular configuration in comparison to linear
B-1,4 linked polysaccharides ana, therefore, definitely contained long—chéin

branches.,

Lignin was found to be tenaciously associafed with glugomannanAfraétions
which had been extensively purified and the hypothesis was made that lignin may
be involved in the long-chain branching. A detailed inspection of the behaviof
of the glucomannan fractions in relationship to the lignin content, molecular
properties, solubility properties, and ease of extraction from the holoqellulose
and a critical review of the literature indicated that lignin was quite probably
chemically linked to the glucomannan chains. The results of this investigation

were consistent with a model involving the cross-linking of essentially linear
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glucomannan chains through common lignin moieties. This model adequately explained
the fact that degrees of polymerization found in this study were higher than prev-
iously reported in the literature for wood glucomannans and was consistent with

the increase in the degree of branching with increasing degree of polymerization

exhibited by the black sprﬁce glucomannan fractions.

The above hypothesis gained support from a theoretical treatment of the
viscosity-molecular weight results in order to obtain a measure of the degree of
branching. This treatment showed that the results were best described by a model
involving cross-linking of linear chains. Using this model the number of cross-
links per molecule increased from 0.1 for an essentially linear fraction with a
weight average degree of polymerization (P?w) of 82 to a value of 7.1 for a

highly branched fraction with wa equal to 557. The calculated degree of polymer-
ization of the linear chains which are cross-linked together was constant within
a narrow range for all fractions (with an average value of 77), regardless of

the degree of polymerization of the entire cross-linked molecule. This constant

value is good support for the validity of the crosslinked model which was employed.

Extension of the results of this investigation to the original state of the
glucomannan within the fiber indicates that the glucomannan and lignin are present

in a cross-linked matrix containing at least occasional lignin-carbohydrate linkages.

Supplementary investigations carried out on other isolated glucomannans and
galactoglucomannans from black spruce support the conclusions obtained from the
more intensive investigation of the glucomannan isolated from the 10% sodium

hydroxide extract.




_5_
INTRODUCTION

Glucomannan is the most abundant noncellulosic polysaécharide of coniferous
woods (i), constituting for example approximately 20% of the carbohydrate content
of black sprucewood (2). The polysaccharide:consists of a linear or slightly
branched chain of 1-L4 linked B-D-glucopyranose and B-D-mannopyranose residues
containing about 3 to 5% 6f 1-6 linked, terminal side chains of a-D-galactopyranose
residues (2). The ratio of galactose to glucose to mannose sugar residues is
generally 0.1-0.2:1:3-4 (3). The second mannose-containing polysaccharide in
coniferous woods 1is the galactoglucomannan which has a sugar ratio of galactose
to glucose to mannose residues of 0.6-1.0:1:3 (é). With the exception of the
greater amount of galactose residues, this polysaccharide has a structure similar
to the glucomannan and contains one or two branches per molecule (3). The galac-
toglucomannan is about l% of the carbohydrate content of black sprucewood (g).
The number average degree of polymerization (an) of isolated glucomaﬁnans from
coniferous woods varies from 35 to 140 but most_ére in the range of 70 to 110.
Isolated galactoglucomannans have been found to have a P?n range of 45 to 100
(3). Galactoglucomannans are readily extracted from coni;érous holocelluloses

with dilute alkali whereas the glucomannans exhibit a greater resistance to ex-

traction and concentrations of sodium hydroxide of 10% or greater must be employed.

In a recent review article, Timell (é) states that chemical evidence is
presently availlable for and against the existence of branches other than the
unit galactose side chains in softwocd glucomannans. Branching is clearly indi-
cated in three studies in the literature and a linear backbone in four (2). A
pine glucomannan (E) and a spruce glucomannan (2) were found to contain one and
three branch points per molecule, respectively. Methylation and subsequent hy-

drolysis, periodate oxidation, and partial hydrolysis have been employed in
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determination of the glucomannan structure.” These chemical methods give the
number of branches per molecule and the location of the branch points but do
not give any information concerning the length of the branches. With these
methods it is impossible to determine if the branches are one unit side chains
or chains fifty or more units long. The length of the branches will have a pro-
found effect on the physical behavior of the glucomannan in the fiber and also
in its isolated state and for this reason is an extremgly important aspect of

the glucomannan structure.

Long-chain branching in a polymer results in a more compact molecular con-
figuration and a decreased hydrodynamic volume. The decreased hydrodynamic
volume results in a lower hydrodynamic frictional coefficient and lower intrinsic
viscosity for a branched polymer than for a linear polymer. Thus, determination
of tﬁe hydrodynamic properties of an isolated glucomannan can be used to deteét
long-chain branching and provide a measure of the extent of the long-chain branch-

ing.

A considerable volume of evidence exists in the literature pointing to the
existence of a lignin-carbohydrate linkage in coniferous woods. Strong evidence
has been obtained for a lignin-glucoménnan linkage in isolated glucomannan frac-
tions (2—1). Most investigators have not analyzed isolated glucomannan fractions
for lignin but the presence of only a small amount of lignin can be an extremely
important factor in the branching of this polysaccharide if it is chemically
linked to the glucomannan molecule. ft is possible that lignin may be involved
in the crosslinking of two or more glucomannan chains or simply be attached to
individual chains. Although a tremendous amount of evidence supports the concept
of a lignin-carbohydrate linkage, much of this evidence is indirect and a review

of the literature must be made in order to appreciate the high probability for
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the existence of the linkage. For this reason a literature review of the pertin-
ent references cn the lignin-carbohydrate linkage is presented in Appendix I,

p. 80.

The present study was undertaken to determine if long-chain branching occurs

in the glucomannan from black spruce (Picea mariana). The extent and nature of

this branching is elucidated and the possible role that lignin plays therein is
investigated. Conclusions are drawn from theories relafing hydrodynamic proper-
ties to the molecular configuration and/or the degree of branching. Since it is
impossible to isolate the entire glucomannan component of black spruce in a pure
state, physicochemical measurements are made on various isolated glucomannan
fractions to supplement the intensive investigation of one glucomannan fraction.
In this manner the differences and similarities of-the glucomannan fractions are
elucidated and it is possible to extend conclusions drawn from the intensive
investigation of one fraction to the entire spectrum of mannose-containing poly-
saccharides of black spruce. In order to prevent the possible Eleavage of iong-
chain branches during isolation and preserve the possible presence of a lignin-

glucomannan linkage, it was necessary to employ a mild isolation process.
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ISOLATION OF GLUCOMANNAN POLYSACCHARIDES
HOLOCELLULOSE PREPARATION

Black spruce was chosen as the wood from which the glucomannan polymers are
isolated because the chemical properties of sprucewood glucomannans have been
studied extensively (2, 4, 8-16). In order to minimize degradation of the poly-
saccharides during delignification, a chloriting process at room temperature was
employed similar to that recently described by Thompson and Kaustinen (ll). In
this investigation a slight modification of this process was employed in which
sodium chlorite at a pH of 4 to 5 and a concentration of 200 g./l. was allowed
to react with the wood chips for five days at ambient temperature. A holocellu-
lose yield of 75.1% of the ovendry wood with a Klason lignin content of 2.30%
was obtained. This holocellulose contains polysaccharide material that has been
subjected to & minimum of degradation due to the low temperature of delignifica-
tion and the specificity of the écidified'sodium chlorite for lignin. The
presence of a nonreducing carboxyl end-group which is introduced by the chlorite
ion oxidation retards degradation of the polysaccharide under alkaline conditions.
This is a definite advantage as subsequent isolation of the glucomannan from the
holocellulose is carried out by alkaline extraction. The experimental details

and a discussion of the reactions involved dre presented in Appendix II, p. 88.
EXTRACTION AND PURIFICATION OF THE GLUCOMANNAN FRACTIONS

The holocellulose was extracted with a sequence of 0.1N sodium hydroxide,
10% sodium hydroxide, 18% sodium hydroxide, 18% sodium hydroxide containing 4%
boric acid, and finally water. Precipitates from the crude extracts were initi-
ally isolated by precipitation with barium hydroxide and purified by extraction

with sodium hydroxide solutions, fractional precipitation with barium hydroxide,
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and utilization of the solubility properties at pH 4-5. Dialysis and freeze
drying were then employed in the isolation of the final fractions. The details
of the extraction and purification procedures are presented in Appendix III, p.

92, which also contains figures summarizing the isolation.

Sixteen hemicellulose fractions were isolated which amoun£ed to 4.80% of the
holocellulose. Althoﬁgh hO.E% of the ovendry holocellulose had been extracted,
4.80% recovered is a fairly good yield when it is considered that the major
criterion was to isolate pure glucomannan fractions. Fractions 8 and 9 from
the 10% sodium hydroxide‘extract which amounted to 2.20% of the ovendry holo-
cellulose were typical glucomannan fractions with a normal sugar content for
coniferous glucomannans. The major part of this investigation is concentrated
on these fractions, which are referred to as the main fractions. Other frac-
tions which are investigated are the xylose containing galactoglucomannan
fractions 6 and 7 from the 10% sodium hydroxide extract, Fraction 13, the
typical glucomannan (galactose:glucose:mannose = 0.1-0.2:1:3-4) from the 18%
sodium hydroxide extract, the galactose-fich glucomannan Fraction 14 from the
18% sodium hydroxide containing h% boric acid extract, the galactoglucomannan
Fraction 16 from the wash solution, and a typical glucomannan, Fraction 17 from

the wash solution.
" CHARACTERIZATION OF HOLOCELLULOSE AND EXTRACTED RESIDUE

A chemical and physical characterization of the holocellulose showed that a
minimum carbohydrate degradation occurred during delignification. The extracted
residue was chemically characterized and a material balance was carried out for
the extraction process. The exhaustive extraction procedure employed in this
investigation removed 68% of mannose residues originally present in the holo-

cellulose. Most of the xylose residues (86%) and only 57% of the galactose
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residues originally present were extracted. The assumption is made that all the
resistant galactose and mannose residues are present in the extracted residue in
the form of a galactoglucomannan in which the glucose-to-mannose ratio is 1:3.8.
Then it can be concluded that a galactose-rich glucomannan with galactose:glucose:
mannose = 1.4:1,0:3.8 and accounting for 32% of the mannose residues in the holo-
cellulose is extremely resistant to extraction. The material balance also showed
that lignin and hemicelluloses are extracted in a relatively constant ratio, thus
indicating the possibility of a close association between these components of the
holocellulose. The experimental results and a detailed discussion are presented

in Appendix IV, p. 105.
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ACETYLATION, FRACTIONATION, AND CHEMICAL
CHARACTERIZATION OF THE MAIN GLUCOMANNAN

CHEMICAL NATURE COF THE MAIN GLUCOMANNAN FRACTIONS

Tt was decided to carry out the major investigation on Fractions 8 and 9
(isolated from thevlo% sodium hydroxide extract) which qualitative sugar analysis
showed to be typical softwood glucomannans. This was corroborated by quantitative
sugar analysis of the acetate derivatives of Fractions 8 and 9. The sugar ratios
were (on a weight basis) galactose:glucose:mannose:xylose:arabinose = 0.20:1,00:
3%.27:0.12:0 énd 0.24:1.00:3.47:0.12:0, respectively. The infrared spectra of
Fractions 8 and 9 were typical of coniferous glucomannans and in particular were
identical to an infrared spectrum of a glucomannan from Parafia pine (;@). Char-
acteristic bands were present in the spectra for B-1,4 linked mannans and gluco-
mannans. A weak band which was attributed to lignin was also present. The
infrared results are presented in Appendix XII, p. 1h42. Fractions 8 and 9 be-
haved identically when subjected to free boundary electrophoresis in a borate
buffer. The electrophoretic analysis showed that at least 95% of the polymer
was homogeneous. Whether the remaining material was an impurity or an artifact
resulting from complexing of the borate ion is unknown. The resuits of the
electrophoresis experiments are presented in Appendix V, p. 112. It can be
concluded from the above results that the main glucomannan Fractions 8 and 9 are

pure and representative glucomannans.
ACETYIATION

It appeared desirable to work with a derivative rather than the glucomannan
itself because a derivative would not be expected to aggregate as readily in
solution, can be fractionally precipitated more easily, and should be soluble in

organic solvents which are preferable for measurements of physical properties in
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dilute solution. The acetate derivative was chosen because polysaccharide acetates
are very stable (lg). The acetylation procedure is based on a method originally
developed by Carson and Maclay (20) and recently used by Koleske (21). With high
molecular weight polysaccharides, this procedure will generally give a fully
acetylated polymer. However, with hemicelluloses which are relatively low molecu-
lar weight polysaccharides, it is often difficult to obtain a fully acetylated
product (;&, 20, gg). This acetylation difficulty is probably due to the tendency
of hemicelluloses to form aggregates and thus resist dispersion in the acetylation

mixture.

The method of Carson and Maclay failed to give a fully acetylated glucomannan
acetate and the yield was low. Therefore, a modification of this procedure was
necessary. The details of the modifications employed and the results obtained
are presented in Appendix VI, p; 114, The triacetate derivatives of Fractions 8
and 9 (designated by 8-A and 9-A) had degrees of substitution of 2.97 (4k.3% acetyl)
and 2.98 (Lk4.6% acetyl), respectively. Full acetylation corresponds to 4ki.78%

acetyl.
SOLUBILITY OF THE GLUCCOMANNAN TRIACETATE

A solubility study was made of the acetylated glucomannan Fraction 8-A in
172 solvents, exhibiting a wide range of solvent power. The results show that the
glucomannan triacetate is most soluble in solvents which exhibit a high degree of
proton-donating character and ié insoluble in inert¥* solvents. This indicates that
the factor of primary importance in dissolving the glucomannan triacetate is the

solvation of the polymer in which the ester carbonyl group forms a hydrogen bond

*Solvents which exhibit little or no interaction with the polymer.
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with a proton donated by the solvent. The details and results of the investiga-

tion are presented in Appendix VII, p. 118.
FRACTIONATION OF THE GLUCOMANNAN TRIACETATE

The acetylated glucomannan Fractions 8-A and 9-A were fractionally precipi-
tated from a pyridine solution at an initial concentration of 0.5 g./lOO milli-
liters by the gradual addition of ligroin (65-90°C.). The isolated fractions were
then refractionated in a similar manner to obtain 19 glucomannan triacetate frac-
tions fractionated with respect to molecular weight. The theory,zprocedure, and
results of the fractional precipitation are presented in Appendix VIII; p. 125,

CHEMICAL CHARACTERIZATION OF THE ACETYIATED GLUCOMANNAN
FRACTIONS OBTAINED BY FRACTIONAL PRECIPITATION

SUGAR CONTENT

Quantitative sugar analyses by the method of Saeman, et al. (22) are pre-
sented in Table I for the glucomannan triacetate fractions obtained by fraction-
ation of the main acetylated glucomannans 8-A and 9-A. From the number average
degrees of polymerization (P?n) (their determination is described in Appendix XV,
P. lSM), reported in Table I,—gt is seen that the fractions chosen for quantita-
tive sugar analyses are widely separated with respect to molecular weight. From
duplicate sugar analyses of Fraction 5(1), it appears that the analytical experi-
mental error is greater than the variation in sugar content from fraction to
fraction. The conditions employed during this fractionation were more ideal than
those generally employed in the fractional precipitation of hemicelluloses due to
the large ratio of solution volume to hemicellulose weight used in this study.

The nonvariable sugar content of the fractions thus obtained is strong support

for the chemical homogeneity of the fractions. The ratio of glucose to mannose




92 00T

AR

-12-

@mo.>®
@wm.mm
@mp.om

16°¢6
@MH.jw

oaA& ‘103
PI3UNODDY T80T

*sashATeUur 938oTTdNQ

T

3

*Jda aIsudty quaardde JO UOTIORIT ®HQSHowcHo

*POPNTOUT 20U FUSIUOD UTUITI

.&ww.:n Jo quaquod TA390® TBOIZ2I0SYL 9UT pPasn

o o

*STARTTBAB USYM SIUIQUOD UTUSTIT SUdZUSQOILTU pur ‘yse ‘TL190® ‘aedns Jo ESmQ

*93®ys pozTaswATod JITSY] JO STISBq aY} U0 PIjBINOTBO ST sIedns Jo oTrel w:&@

cl'l 0 Tc°0 9L ¢ 00°T e 0 s~
GLT 0 gr’o 88°¢ 00°'T Tc°0 T9<
6¢°1T - 0 910 9T % 00°T g2 o ¢et
on'tT 0 gr'o 00 " 00°T 9T°0 G 20T
¢0°c 0 0T'0 ¢€9°¢ 00°'T Tc'0 6 20T
19°T 0 "9T°'0 9T ' 00°'T 9¢ 0 9709
Lt°e 0 7T'0 gL ¢ 00T 0¢'0 ¢ 9¢
uBsTAY uBqBIy TUBTAY luBUUBY rueonTH :uel0oBTED UOTABZTISWATOS
{UBQOBTEY Jo 93x3sq
sTSed 1UITIoM U0 OT2eY JIBINg o8eIsAy J2quUMY

B

NOILVLITOHE TVNOILOVHA WOo¥d
SNOILOVHd HLVIALIOYV 40 SINHILNOD ¥VONS HAALILVLIINVAY

I HI9VL

", Tosur
(T)e
g-(2)e
M@qm-ﬁavm
wpmd-ﬁﬁvm
(2)¢

¢-6

UOT20BI



-13-

of these fractions is within the range of 1 to 3.3 + 0.8 that Timell (2) has

reported for 24 isolated glucomannans from gymnosperms.

Galactose residues are present in amounts of 3.1 to 5.8% based on the total
sugar content. Although no direct evidence exists for the presence of a chemical
linkage between the galactose residues (generally present in amounts of 3 to 5%)
and the mannose or glucose residues in glucomannans ) much indirect evidence
strongly suggests that the galactose residues are integral parts of all softwood
glucomannans (3). A small and nearly constant amount of xylose residues (2.2 to
M.O% based on the total sugar content) is present in every fraction listed in
Table I. Considering the extensive purification and fractionation that was
carried out for these fractigns, the presence of a relatively constant amount
of xylose is evidence that the xylose méy be chemically linked to or strongly
associated with the glucomannan employed in this étudy. In order to test for a
possible correlation between the amount of xylose and the amount of galactose,
the ratio of the galactose residues to xylose residues is presented in Table I.

This ratio varies from 1.1 to 2.2.

Since it was impractical to determine the quantitative sugar contents of
all the-fractions, qualitative sugar analyses were run on all the fractions to
sﬁpplement the preceding quantitative data. Ratios of the areas of the sugar
spots after chromatographic separation were calculated in order to determine if
the sugar contents were constant. The details of the qualitative sugar analyses
are presented in Appendix IX, p. 132. The results support the quantitative data
and show that the sugar content is constant for all the fractions with the excep-
tion of a slight increase in the galactose content in\the lowest molecular weight

fractions. The presence of a small amount of xylose in all fractions was sub-

stantiated and no uronic acid content was detected.
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LIGNIN CONTENT

The acetylated glucomannan fractions Insol., 2(1), and 3(2) were analyzed
for lignin by'alkaiine nitrobenzene oxidation and subsequent separation énd
quéntitative determination of vanillin and syringaldehyde (24). The method was
standardized by the determination of the nitrobenzene lignin content apd the
Klason lignin content of black sprucewood. Nitrobenzene oxidation was chosen as
the method of lignin analysis becauée it is specific for lignin and can be used

to determine small amounts of lignin in small samples. The results are presénted

in Table TII.
TABLE IT
LIGNIN CONTENTS
Per Cent Lignin Per Cent Lignin
Based on Based on

o Glucomannap Unacetylated % Vanillin:%
Fraction an Triacetate Glucomannan Syringaldehyde
3(2) 60.6 1.82 3.19 95.7:4.3
2(1) 261 2.34 k.09 97.7:2.3
Insol'. --€ 3.11 5. 40 94.6:5.L
Woodd - -- -- 96.4:3.6

aNumber average degree of polymerization.
Corrected for ash content determined by ashing at 575 + 25°C. for three hours.
Fractions 3(2) and 2(1) had a negligible ash content and Fraction Insol. had

03.03% ash.

Based on total amount of vanillin and syringaldehyde.
eBlack sprucevood.

Insoluble fraction of apparent higher an.

The presence of lignin in three glucomannan triacetate fractions with widely
separated degrees of polymerization is significant, particularly since these frac-
tions have been extensively purified and carefully fractionated. An increasing

trend in lignin content with increasing degree of polymérization is noticeable.
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ACETYIATION, PURIFICATION, AND CHEMICAL
CHARACTERIZATION OF VARIOUS ISOLATED GLUCOMANNANS
AND GALACTOGLUCOMANNANS

GENERAL

In a study of this nature, the purity éf the polymer is a prime requisite.
‘Since losses occur in the isolation of pure glucomannan fractions it was impossi-
blevto‘carry out the isolation quantita&ively and investigate;the éntire amount
of glucomannan in the holocellulose.;‘It is, therefore, important to know if the
main Fractions 8 and 9 are representative of the entire glucomannan component of -
bléck spruce and also to understand the relationship of these fractions to the
broad spectrum (ﬁith respect to sugar content, structure, and resistance to ex-
traction from the holocellulose) of the mannose-containing polysaccharides of
this wood.v For this reason many other glucomannan and galactoglucomannan frac-
tions which varied widely in their resistance to extraction and in their galac-
tose content were studied following isolation from the 10% NaOH extract, 18%
NaOH extract, and 18% NaOH-containing L% H3BO5 extract.

ACETYIATION AND PURIFICATION OF THE
VARIOUS GLUCOMANNANS' AND GALACTOGLUCOMANNANS

The'variousAglucomannan and galactoglucomannan fractions were acetylated by
the pr&cedure described in Appendix VI, p. 114 and the results are presented in
Appendix X, p. 136. A portion of every acetylated fraction was ingoluble in all
solvents investigated. Since physical measurements were madé on these acetylated
fractions it was necessary to subject them to further purification in order to
-remove the insolubie material and the inorganic material that wa; present. The
Purification procedure and resulté are p;esented in Appendix X, p. l36. (Ihe
acetate derivatives before purification are designated by -A and the corresponding

soluble and insoluble portions are designated by -S and -I, respectively. )
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CHEMICAL CHARACTERIZATION OF THE VARIOUS
ACETYIATED GLUCCMANNANS AND GALACTOGLUCOMANNANS

SUGAR CONTENT

Quantitative sugar analyses by the method of Saeman, et al. (gé) are pre-
sented in Table III for the various acetylated glucomannan and galactoglucomannan
fractions. From Table III, it is seen that the Fractions 8-S, 9-S, 13-S, 13-I,
and 17~5S are typical glucomannans which are chemically similar to the main gluco-
mannan Fractions 8-A and 9-A. Fractions 6-7-8, 1k4-S, and 16-S have sugar ratios
typical of galactoglucomannans, contaminated with 29.6, 9.1, and 9.0% xylose

residues (based on the total sugar content), respectively.

Isolated galactoglucomannans from gymnosperms generally have the ratio of
0.5-1.2:1.0:1.4-3,7 of galactose:glucose:mannose residues (1:1:3 is the most
common ratio) and are usually extracted from the holocellulose or pulp with water
or dilute alkali (2), It is interesting that the galactoglucomannan Fractions
1L-S and 16-S which have sugar ratios of 0.62:1.00:3.42 and 1.01:1.00:3.07 were
extremely resistant to extraction and could only be extracted from the holo-
cellulose with 18% sodium hydroxide containing 4% boric acid. These fractions
are undoubtedly similar to the galactoglucomannan extracted from black spruce
holocellulose with freezing 18% sodium hydroxide by Thompson (2). Comparison of
the soluble fractions, 13-S and 17-5, with the corresponding insoluble fractions,
15-T and 17-I, shows that the insoluble component of the glucomannan triacetate
fractions contains a greater amount of galactose, glucose, and xylose than the

corresponding soluble component.

For all fractions investigated except Fraction 6-7-S which contains a con-
siderable amount of xylose residues (29.6% based on the total sugar content) the

ratio of galactose-to-xylose residues is 1.2 to 2.4, Thus, within these limits
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a relationship may exist between the amount of xylose and the amount of galactose

present in the glucomannan fractions.

Qualitative sugar contents and spot area ratios of the sugars whose deter-
mination is described in Appendix IX, p. 132, were determined for all of the
acetylatea glucomannan and galactoglucomannan fractions. The results, presented
in Appendix XI, p. lhO, support the conclusions obtained from the more limited
amount of quantitative data. A small amount of xylose was present in every

fraction analyzed and no uronic acid was detected.
INFRARED SPECTRA

The infrared spectra of the various fractions were determined and analyzed
with the objective of relating the spectra to the structure of the polysacchar-
ides in order to elucidate the similarities and differences between these frac-
tions. The infrared spectra of the unacetylated fractions were more informative
than the spectra of the acetylated fractions due to the strong interference of
the carbonyl and ester bands of the latter. A detailed analysis of the spectrum
was made for the typical glucomannan, Fraction 8, and the spectra of the various
other glucomannan and galactoglucomannan fractions were compared to this épectrum.
The detailed infrared spectra analyses are presented in Appendix XITI, p. 142,

The spectra of the glucomannans, Fractions 8, 9, 13, and 17 are identical and
have the characteristic bands for B-1,4 linked mannans or B-1,4 linked gluco-
mannans., Since these glucomannan fractions had exhibited widely different resis-
tances to extraction from the holocellulose it is significant that they are all

structurally similar.

The spectra of the galactoglucomannan Fractions 7 and 16, have considerably

diminished B-1,4 mannan bands and also differ from the glucomannan spectra in the
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C-H, C-0, O-H, and C-0-C regions. The spectrum of the galactoglucomannan,
Fraction 14, has the characteristic B-1,4 mannan bands but differs in the C-H
and O-H regions. From the above results it is obvious that glucomannan frac-
tions isolated and purified by various techniques all have a similar structure
which apparently differs significantly from the galactoglucomannan structure as
revealed by the infrared spectra. A portion of this structural difference is
undoubtedly due to the large amount of a-l,6 linked galactose groups in galacto-
glucomannans but whether all the differences in the spectra can be attributed

to these groups is unknown.
LIGNIN CONTENT

The lignin content determined by nitrobenzene oxidation of Fractions 13-S
and 13-I (originally extracted with 18% sodium hydroxide) and Fractions 1L,
14-5, and 14-I (ordiginally extracted with 18% sodium hydroxide containing 4%
boric acid) are presented in Table IV. Included in this table is the nitrobenzene
lignin content of the unacetylated Fraction 14 to demonstrate that the determined
lignin is not an artifact originatinglduring acetylation. The lignin contents
are substantially greater for the fractions which were initially more resistant
to extraction from the holocellulose (Fractions 14, 14-S, and 14-I) than for the
fractions which were less resistant to extraqtion (Fractions 13-5 and 13-I). It
is also significant that the insoluble fractions, 13-I and 14-I, have higher
lignin contents than the corresponding soluble fractions, 13-S and 1h4-S.

THE SPECTRUM OF THE MANNOSE-CONTAINING
POLYSACCHARIDES OF BLACK SPRUCE

Thompson (g) studied the noncellulosic polysaccharides of black spruce holo-

cellulose and carried out a material balance for his extraction and isoclation. He

was able to account for the entire mannose content of the holocellulose. Thus,
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13-1

14-8
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14
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TABLE IV

LIGNIN CONTENTS

Isolation

18% NaOH extraction,
soluble as acetate

18% NaOH extraction,
insoluble as acetate

18% NaOH-4% H,BO
extraction, s®luble
as acetate

18% NaOH-4% H: B
5 giuble

extraction, ins
as acetate

18% NaOH-L4% HzBO3
extraction, unacety-
lated

Per Cent Lignin
Based on
Glucomannan
Triacetate

1.7h

3.28

5.91

5.29

Per Cent Lignin
Based on
Unacetylateg

a
Glucomannan

5.05

5.69

6.75

9.05

T7.17

% Vanillin:
% Syring-
aldehyde

..100:0

90.2:9.8

95.1:4.9

96.8:3.2

86.9:13.1
96.4:3.6

8corrected for ash content determined by ashing at 575 + 25°C. for three hours.
Fractions 13-S and 14-S had negligible ash contents and Fractions 13-I, 14-1I,
and 14 had ash contents of 3.42, 1k4.51, and 21.6%, respectively.

bBased on total amount of vanillin and syringaldehyde.

“Black sprucevwood.
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comparison of the glucomannan and galactoglucomannan fractions isolated by
Thompson with those studied in this investigation provides a clear picture of

the relationship of these latter fractions to the entire spectrum of the mannose-
containing polysaccharides of black spruce. From the comparison which is pre-
sented in Appendix XIII, p. 149, it is seen that the glucomannan Fractions 8 and
9 isoclated from the lO% sodium hydroxide extract and on whiéh the intensive

study was carried out are typical of the major portion of the mannose-containing
polysaccharides of black spruce. It is als§ apparent that various types of
glucomannans and galactoglucomannans-are present and thét these polysaccharides
which were isolated in this study are similar to those isolated by Thompson in
his quantitative isoclation and material balance. Therefore, conclusions based
on the results of the intensive investigation of the main glucomannan Fractions

8 and 9 and the supplementary investigations of the other glucomannan and galacto-
glucomannan fractions in this study are applicable to the bulk of the mannose-

containing polysaccharides of black spruce.
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CONFIGURATION OF THE GLUCOMANNAN DETERMINED FROM THE
MOLECULAR AND HYDRODYNAMIC PROPERTIES OF THE
MAIN ACETYIATED GLUCOMANNAN FRACTIONS

MOLECULAR AND HYDRODYNAMIC PROPERTIES OF THE
MAIN ACETYIATED GLUCOMANNAN FRACTIONS

The degrees of polymerization and hydrodynamic properties were determined
for the fractions obtained by fractional precipitation of the acetylated gluco-
mannans 8-A and 9-A. The number average degrees of polymerization, P?n’ and the
intrinsic viscosities in ml./g., [n], determined on the fractions in 1,_1,2-tri-
chloroethane are listed in Table V. The analysis of P?n with a Mechrolab High
Speed Membrane Osmometer is described in Appendix XV, pj 154, and the determin-.
ation of intrinsic viscosity made with a number 50 Cannon Ubbelohde semimicro
dilution viscometer is described in Appendix XVI, p. 159. An attempt was made
to determine the weight average molecular weights from light-scattering measure-
ments but abnormally high moleqular weights were obtained (see Appendix XVII, p.
l6h), This behavior was attributed to the presence of small amounts of very

high molecular weight material (or aggregates) or the unusually large fluores-

cence correction that was involved.

Sedimentation equilibrium experiments were carried out with a Spinco Model
E Analytical Ultracentrifuge, using the schlieren optical system, to determine
the weight average degrees of polymerization, wa, and the z-average degrees of -

polymerization, sz, shown in Table V. This technique was particularly applic-
able since large p;;ticles or aggregates sediment to the bottom of the cell and
have little effect on the determined degree of polymerization (gi—gz) and no

error is incurred by fluorescence of the solutions. The measurements were made
in acetophenone and the data were analyzed by the method of Lansing and Kraemer

(g@). The details of the calculations and experimental techniques are described

in Appendix XVIII, p. 166.
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TABLE V

MOLECULAR AND HYDRODYNAMIC PROPERTIES OF THE
MAIN ACETYIATED GLUCOMANNAN FRACTIONS

D x 107 &5 o x 10tk esf
Fraction  DP ° pe® pp®  [q]% ml./e.  m.®/sec. sec.
i 32,0 e - 3.1 -- -
9-3 36.3  40.8 37.3 1kh.2 5.18 5.31
3(2) 60.6 82.1  95.8 23.h -- --
9-2 . 82.2 132 157 29.7 3.37 9.95
3(1). - 102.5 165 216 357 . 2.61 9.26
2(2) 123 257 452 k.6 2.45 12.3
9-1 155 -- -- k.0 - --
I(2) 165 -- -- 45,7 -- --
Insol. -1 205 - - 47.6 -- -
2(1) 261 557 729 53.6 2.10 16.7‘

aDetermined in 1,1,2-trichloroethane by osmometry. Based on the value of 288
for the triacetate monomer unit.

bDetermined in acetophenone by sedimentation equilibrium, Based on the value
of 288 for the triacetate monomer unit.

“Determined in 1,1,2-trichloroethane.

dDetermined in acetophenone from transient state analysis of the sedimentation
equilibrium experiments.

®calculated from M and D_.
= =

fDeter_mined at a concentration = 5 x lO_3 g./ml. _
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The diffusion coefficient, 2&’ was determined from analysis of the transient
state (approach to equilibrium) in the sedimentation equilibrium experiments (29)
and the sedimentation coefficient, s, was calculated from the weight average
molecular weight, diffusion coefficient, density, and partial specific volume.
The determinations of the diffusion coefficients and sedimentation coefficients
are described in Appendices XX, p. 193, and XXI, p.: 203, respectively. The
results of the determinations are summarized in Table V. These values are used
in subsequent analyses. A measure of the heterogeneity of the fractions is given
by the ratios of P?w/an and DP_/DP_ presented in Table VI. Also presented in

this table are the average values obtained by making the assumption that the

Zimm-Schulz distribution applies (see Appendix XIX, p. 191).

TABLE VI

RATIO OF DP_:DP, :DP,

" lla
Measured Averaged

Fraction DP_/DP DP, /DP DP /DP DP_/DP
--w --n ==z =W ==w --n ==z --W

9-3 1.12 0.916 1.05 1.05
3(2) 1.36 1.16 1.26 1.21
9-2 1.61 1.19 1.37 1.27
3(1) 1.61 1.31 1.53 1.35
2(2) 2.09 1.76 2.51 1.61
2(1) 2.13 1.31 1.71 1.4

aAverage values obtained by making the assumption that Zimm-Schulz distribution
applies.
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CONFIGURATION OF THE GLUCCMANNAN--DETERMINED FROM THE
HYDRODYNAMIC PROPERTIES OF ITS TRIACETATE DERIVATIVE

INTRINSIC VISCOSITY-MOLECULAR WEIGHT RELATIONSHIP

The viscosity and molecular weight data can be represented by the empirical

Mark-Houwink equation
[n] = (1)

where K and a are constants for a given polymer (égfég). This relationship was
determined for the number average, weight average, and z-average molecular
weights. The log [n] versus log M plots are shown in Fig. 1. It is seen that
these plots are not linear over the entire molecular weight range and exhibit
a decreasing slope in the higher molecular weight region. Therefore, the con-
stants of the Mark-Houwink equation were determined by the method of least
squares from that data in the low molecular weight region and from the data in
the high molecular weight region. These results are summarized in Table VII.
Included in Table VII are values of Ei for the intrinsic viscosity versus the
molecular weight and Eé for the intrinsic viscosity versus the degree of poly-

merization.

Linear polymers generally obey the Mark-Houwink equation and have a linear
log [n] versus log M relationship throughout a limited molecular weight range
such as that employed in this investigation. A curvature in this plot which
shows a progressively decreasing slope with increasing molecular weight is typical
of branched molecules (zg, 2_). The abrupt change in slope exhibited in this

study is indicative of a greater degree of branching or longer branches in the

high molecular weight region than in the low molecular weight region.




‘W 307 snsaap (U] Sop - eanSrg-

o W 907
SS €S .

6v oy
B 1

Sp v ) |
q | | T o'l

-26-

[4] 01




-27-

TABLE VII

CONSTANTS OF THE MARK-HOUWINK EQUATION

Molecular Weight Range of a b
Average Data Points a Ei Eé

. . -3 -1
M First 6 points 0.897 3.60 x 10 5.79 x 10
M last 4 points 0.355 9.80 x 1077 7.3k
M First 5 points  0.622 4.30 x 1072 1,15
M Last 2 points 0.238 3.08 1.19 x 10
M, First 4 points 0.521 1.13 x 107% 2.16
M, last 3 points 0.331 2.96 x 107" 1.93 x 107

®Determined from the (n], ml./g. versus M relationship.

Phetermined from the (nl, ml./g. versus DP relationship.

The constant a is related to the configuration of the polymer molecule in
solution and can be predicted theoretically by assuming various models. Theo-
retically, a equals zero for a rigid Einstein sphere (27, 38). For nondraining
tightly packed coils & = 0.5, for loosely packed coils which exhibit complete
free draining, a = 1.0 (30, 34-36) and a rigid rod exhibits a value of a equal to
2.0 (37-39). From Table VII, it is seen that the value of a in the high molecular
weight region varies from 0.24 to 0.36. Thus, in this region the glucomannan
triacetate molecule exhibits a behavior intermediate between an Einstein sphere
and a nondraining coil. In the low molecular weight region the values of a are
0.90, 0.62, and 0.52 for the data from Mh, Mw’ and %2’ respectively. The viscosity
average molecular weight is always consi;éra;iy clos;; to the weight average molec-
ular weight than to the number of Z-average molecular weights when a is in the

range of 0.5 to 1.0 (30-32). For this reason, all conclusions will be based on

the value of a equal to 0.62 from the data for Mw' This value of & indicates that
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the glucomannan triacetate molecule approaches the behavior of a nondraining

tightly packed coil in the low molecular weight region.

The exponent in the Mark-Houwink equation for various polysaccharides is
given in Table L of Appendix XXII, p. 205. In every case listed in these tables
the weight average molecular weights or the molecular weights from sedimentation
diffusion were employed in the viscosity molecular weight relationship. From
the values given in the tables, it is apparent that the B-1,4 linked linear
polysaccharides exhibit a behavior typical of free draining or partially free-
draining coils. In comparison to these polysaccharides, the wood glucomannan
triacetate behaves as a relatively compact molecule. Considerable evidence
exists in the literature which shows that coniferous glucomannans are composed
primarily of B-1,4 links (2). Therefore, the relatively compact molecular

structure of the glucomannan triacetate molecule must be due to branching.

The log-log plot of {n] versus P?w for various polysaccharides is shown in
Fig. 2. The relatively compact struct&ge of the glucomannan triacetate molecule
from this study is indicated by the relatively low position of its curve in the
figure. Cellulose in cadoxen, cellulose acetate, and cellulose trinitrate all
have higher intrinsic viscosities at a given P?w than the glucomannan triacetate
from this study. The curves for a high molecul;¥ weight glucomannan triacetate
from salep orchid tubers and guaran triacetate (a linear B-1,4 linked mannan
backbone with single unit branches of @-1,6 linked galactose groups ) are also
above the glucomannan triacetate curve but pass through the two low DP points in
this study upon extrapolation into the low DP region. The relationship of these
two curves to the curve from this study can be interpreted as the wood gluco-
mannan triacetate molecule having essentially a linear structure in the P?w range

of 40 to 80, slight branching occurring in the DP  range of 80 to 250, and an
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CURVE POLYSACCHARIDE
O CELLULOSE TRINITRATE (21)
A  CELLULOSE ACETATE, DS=2.3 (105)
A CELLULOSE IN CADOXEN (128)
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800 ~-X-~ SALEP GLUCOMANNAN TRIACETATE (88)
— O GLUCOMANNAN TRIACETATE
600  (PRESENT STUDY)
@ BRANCHED DEXTRAN (22)
400}~
. 200}~
<
-
=
~ ¢
el
80}
60}
40
20}
o—L 1 1t L 1 b1l
40 60 80 100 200 400 600 800 000
DR,

Figure 2. Log [n] Versus Log DP_ for Various Polysaccharides
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abrupt increase in the extent of branching above a wa of 250. The curve for
the glucomannan triacetate is seen to lie above the curve for the more highly
bra§ched dextran.

DIFFUSION COEFFICIENT AND SEDIMENTATION COEFFICIENT
VERSUS MOLECULAR WEIGHT RELATIONSHIPS

Values of log Qa versus log Mw and log s versus log Mw are shown in Fig. 3

and 4, respectively. The corresponding equations in acetophenone are
D =3.39 x 107 u ~0-¥1 (2)
o] ) W
216
s = 3.36 x 10+ 1v1WO'5L‘5 (3)

where Pa’ s, and Mw are at a concentration = 5 x 'lO_3 g./ml. For comparison
purposes it is des;;able to know the limits of the exponents in Equations (2)
and (3). The D versus M relationship has exponenfs of -0.33, -0.50, and -0.67
to -1.00 for rigid (Eins;éin) spheres, tightly packed nondraining random coils,
and loosely packed coils which exhibit free draining, respectively (29, 22). In
the case of the corresponding sedimentation coefficient relationship the expon-
ents are 0.67, 0.50, and 0.33, and O for rigid spheres, nondraining coils, free
draining coils, and long rigid rods,frespectively (29, é_). The exponent of

the glucomannan triacetate lies between the exponents of a rigid sphere and a

nondraining random coil,

Comparison with other polysaccharides according to Equations (2) and (3)
is made in Tables LI and LII of Appendix XXII, p. 205. In contrast to the be-
havior of B-1,4 linked linear polysaccharides which have exponents typical of
free draining or partially free-draining coils, the glucomannan triacetate behaves
as a relatively compact molecule. The diffusion coefficients of the glucomannan

triacetate fractions are higher than the values for B-1,4 linked linear
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polysaccharides at a given molecular weight (see Table XLIII of Appendix XXIT,

p. 205). Thus, the molecular frictional coefficient, f, defined by (40) £ =

g@/? (where k is the Boltzmann constant and T is the absolute temperature) is
lower for the glucomannan triacetate than for B-1,4 linked linear polysaccharides.
The relatively low value of the frictional coefficient is further evidence for a

compact molecular configuration.

The above conclusions are further supported from an analysis of the diffusion
coefficient data in which the ratio of the measured frictional coefficient to that
of a hypothetical unsolvated sphere, z/gmin?' is calculated (40).  The deviation
of E/gmin from 1.0 depends on two factors, solvation and asymmetry and is thus a
measure of the configuration of the molecule in solution. The analysis of the
data and a comparison of E/gmin with various polysaccharides is presented in
Appendix XXIII, p. 210. The values of E/Emin for the glucomannan triacetate mole-
cule are in the range of 1.9 and 2.5 which are considerably lower than the values
for this parameter which have been found for B-1,4 linked linear polysaccharides.
This behavior is due to a smaller molecular volume and/or to the more symmetrical
shape of the glucomannan triacetate molecule in comparison to the linear poly-

saccharides and can be attributed to branching in the glucomannan.

THE EIZNER-PTITSYN THEORY

Eizner and Ptitsyn (El, Eg) have derived equations describing the hydro-
dynamic properties of semirigid linear polymers. By application of their theory
to intrinsic viscosity data the persistence length, a, which is a measure of chain
stiffness can be calculated (Eg). The theory describes the experimental results
obtained on semirigid B-1,4 linked linear polysaccharides more adequately than
any of the other existing polymer theories (&l—&i). The persistence length deter-

mined from the theory is generally in the range of 50 to 70 A, for B-1,4 linked
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linear polysaccharides, with the one exception of a = 132 A. for cellulose
nitrate (&2). Thus, the generalization can be made that if a polysaccharide

has a linear B-1,4 linked structure then it has a persistence length greater
than 50 A. The glucomannan triacetate from this study had a persistence length
of 20.2 A. determined by analysis of the intrinsic viscosity and molecular weight
data according to the Eizner-Ptitsyn theory. (The theory, analysis, and results
are presented in Appendix XXIV, p. 21k ). Since coniferous glucomannans are com-
posed primarily of B-1,k4 links (2), one arrives at the conclusion that the gluco-

mannan in this study is branched.

The experimental diffusion and sedimentation coefficients deviated from the
theoretical values calculated from the Eizner-Ptitsyn theory (41) by 3 to 18%
(see Appendix XXIV, p. 214k). Thus, it appears that the gross behavior of the
molecule in solution is adequately described within about 20% by the theory
regardless of the detailed structure of the molecule. In other words, a low
value of the persistence length obtained from the theory indicates that the
molecule has a relatively compact configuration in solution and it is apparently
not important whether this compact configuration results from a flexible linear

molecule or a branched molecule made up of semirigid chains.

A convenient method for comparing the configuration of polymers in solution
. —2.\1/2
is to plot log [(gg) /Lhax} versus log L (45). The contour length, Loy’

is the product of P?w and 5.15 x 10-8 cm. , the length of the monomer unit and

gi is the z-average mean square radius of gyration. (The value Eg is determined

from the Eizner-Ptitsyn theory in Appendix XXIV, p. 21L.) This type of plot was

recently made for various polysaccharides by Swenson (45) and is shown in Fig. 5.
The results for the glucomannan triacetate in this study were also plotted. This

curve lies considerably below the family of curves for the linear B-1,4 linked
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polysaccharides, thereby demonstrating the compactness of the glucomannan tri-

acetate molecule and strongly indicating a branched structure.
DISCUSSION

Analysis of the hydrodynamic properties has definitely shown that the gluco-
‘mannan triacetate molecule has a relatively compact configuration in comparison to
B-1,4 linked linear polysaccharides. A compact configuration is also indicated
from analyses of the second virial coefficient, 52, from osmometry and the
Huggins constant, Ei, from viscometry presented in Appendices XXV, p. 229, and

XXVI, p. 251, respectively.

In light of the solubility difficulties that were encountered, it is impor-
tant to consider the possibility of association or aggregation of the glucomannan
triacetate molecules in solution. An apparent compact molecplar configuration in
solution might arise from association of polymer molecules. This type of behavior
in which it is possible to get extensive aggregation accompanied by a relatively
small increase in viscosity would be brought about by indiscriminate or random
association to form gel-like aggregates in contrast to association at the ends
of the molecule which can result in a tremendous increase in viscosity (46).

The following discussion is presented to show that aggregation is not an important

factor in this investigation and the results indicating a compact configuration

are due to the properties of the molecules and not of aggregation.

The number average molecular weight determined by osmometry was reproducible
to within 1.4% in two different solvents for Fraction 3(2) which is strong evidence
that association is not occurring (see Appendix XV, p. lsu). The extrapolation
of ‘the osmotic pressure and the viscosity data to zero concentration gave extremely

good linear correlations with high correlation coefficients (see Appendices Xv,
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p. 154, and XVI, p. 159). TIf aggregation was a factor one would expect scatter

in the data and a relative increase in n/g with dilution which did not occur.

The osmotic pressure second virial coefficients were positive and had reasonably
high values (Appendix XV, p. 154). Since association of solute molecules is known
to decrease the virial coefficient to negative values (EQ) this evidence is further

support for the absence of association in this study.

The extrapolation of the apparent molecular weights from sedimentation
equilibrium to obtain Mw and Mz for Fraction 3(2) had little scatter and positive

second virial coefficients of the same order of magnitude as those from osmometry

(Appendix XVIIT, p. 166). The agreement between Mh’ Mw’ and Mz was reasonable

1

and if association was a factor one would expect to find greater differences in
these values than was found. The agreement between the molecular weights and the
second virial coefficients determined by osmometry and by sedimentation equil-
ibrium is particularly significant since different solvents were used in these
determinations. Furthermore, any aggregates that are present are effectively

removed in the sedimentation equilibrium determination (géfgl)'

From the above discussion, it is apparent that association is not an impor- -
tant factor in this study. This conclusion 1s further supported by the relatively
low scatter in the log-log plots of molecular weight versus intrinsic viscosity
since aggregation would contribute to scatter in these plots. The results,
indicating a compact configuration, therefore, show that the glucomannan in this
study is branched and that long-chain branching is present since there is a sub-

stantial effect on the hydrodynamic properties.
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MOLECULAR PROPERTIES OF THE VARIOUS GLUCOMANNANS
AND GALACTOGLUCOMANNANS

"DEGREE OF POLYMERIZATION IN RELATION TO RESISTANCE
TO EXTRACTION FROM THE HOLOCELLULOSE

In order to determine whether the degree of polymerization of the isolated
glucomannan and galactoglucomannan fractions increased with increasing resistance
to extraction from the holocellulose, intrinsic viscosities in cupriethylenedi-
amine (cuene) were determined for Fraction 8 isolated from the 10% sodium hydrbx-
ide extract, Fraction 13 isolated from the 18% sodium hydroxide extract, and
Fraction 1l isolated from the 18% sodium hydroxide containing 4% boric acid
extract., These intrinsic viscosity values were then converted to the weight
average degrees of polymerization, PPW, using a log [n] versus log p?w curve
determined for the main glucomannan f;éctions. This curve was constr;;ted by
using the intrinsic viscosities in cuene determined for the main acetylated
glucomannan Fractions 3(2), 3(1), and 2(1) and the previously determined values
of wa for these fractions. This is a valid procedure since complete deacetyla-

tion takes place in cuene solutions (47, 48). Details of the determination are

presented in Appendix XXVII, p. 237, and the results are presented in Table VIII.

TABLE VIII

CUENE VISCOSITIES AND DEGREES OF POLYMERIZATION
OF UNACETYIATED FRACTIONS

Solution Used to Extract (],
Fraction from Holocellulose ml./g. DP,
8 10% NaOH 37.96 111
13 18% NaOH 40,52 130
1k 18% NeOH-L H,BO, 46,20 2742

aThe large increase in P?w with respect to the relatively small

increase in [n] is due to the progressively decreasing slope of
the log [n] versus log DP_ plot shown in Fig. 38 of Appendix XXVII,

p. 237. This type of behavior is typical of branched molecules.
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It is apparent from the results presented in Table VIII that P?w increases

with increasing resistance to extraction. This increase in DPw is particularly

noticeable for Fraction 14 which could only be extracted from the holocellulose

with 18% sodium hydroxide containing 4% boric acid. The DP_ of Fraction 14 is

three times greater than the wa of Fraction 8 from the 10% sodium hydroxide

extraction. It should be pointed out, however, that there is only a small in-

crease in [n] and the large increase in DP_ depends on the extremely low slope of

the log [n] versus log DP curve. This relatively small increase in [n] with

respect to an increase in~p§w is typical of branched molecules (ég, 22).

MOLECULAR PROPERTIES OF VARIOUS ACETYLATED
GLUCOMANNANS AND GALACTOGLUCOMANNANS

The number average molecular weights, M , and intrinsic viscosities, [n],
in 1,1,2-trichloroethane were determined for the soluble portions of the various
acetylated glucomannans and galactoglucomannans. The determinations are described

in Appendices XV, p. lSh, and XVI, p. 159, and the results are presented in Table

IX.
TABLE IX
M AND [n] OF VARIOUS ACETYIATED GLUCOMANNANS
= AND GALACTOGLUCOMANNANS
a Type of M [n],
Fraction Extraction Solution Polymer - ml./g.
8-8 10% NaOH ¢.Mm.° 23,400 35.09
9-8 10% NaOH G.M. 24,700 38. 41
6-7-s 10% NaOH Gal.G.M.° 25,900 32.65
13-8 18% NaOH G. M. 23,500 38.65
14-5 18% NaOH-L4% Bo5 Gal.G.M. 28,300 35.84
16-8 Wash solution Gal.G.M. 26,900 3k, 96
17-8 Wash solution G. M. 25,500 38.22
%Solution used to extract the polymer from the -holocellulose.
cG°M' = glucomannan,
dGal.G.M. = galactoglucomannan.

Wash solution = water wash after 18% NaOH containing 4% H5B05 extraction.
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In Fig. 6 the relationship of these fractions to the log [n] versus log M
curve for the main acetylated glucomannan fractions is shown. The fact that t;é
points for all the fractions lie close to the main curve indicates that the chain
structures of the various glucomannans and galactoglucomannans from bléck spruce
do not differ in any gross characteristic. It should be emphasized that this is
only an approximate generalization since exact interpretation of the data is
impossible due to the hetercgeneity of the fractions. However, it does appear

that all the fractions have a similar hydrodynamic volume and thus probably have

similar long-chain branching.

The narrow molecular weight range (23,400 to 28,300) of the fractions is
quite remarkable since they had been isolated under widely varying conditions.
These fractions are the soluble portions of the acetate derivatives and this
narrow Mn range indicates that fractionation into soluble and insoluble fractions
(Appendi; X, p. 136) is controlled primarily by modecular weight, with insolu-
bility occurring above a given molecular weight. Therefore, the P?n of a portion
of glucomannan molecules in the main acetylated Fraction 8-A is eve; greater than
the value of 261 determined on the highest molecular weight soluble fraction
(Appendix XV, p. 154) since 25% of Fraction 8-A was insoluble (Appendix VIII, p.

125). This is an interesting conclusion because the value of 261 is the highest

reported number average degree of polymerization for wood glucomannans.
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DISCUSSION OF THE LIGNIN-GLUCOMANNAN LINKAGE
INTRODUCTION

The first indication that lignin might be present in the isolated glucomannan
and galactoglucomannan fractions came from infrared spectra studies of the frac-
tions. ZEvery fraction investigated contained a weak band at about 1515 cm.-l
which was attributed to the aromatic groups of lignin. Some fractions contained
other bands which could also be explained by the presence of lignin. Further
evidence indicating the presence of lignin came from the gqualitative sugar analysis.
During hydrolysis with 72% sulfuric acid, it was noticed that all fractions con-
tained a small amount of insoluble material. This material had the appearance of
Klason lignin and undoubtedly would show up. in a Klason lignin analysis. The
above results, indicating the presence of lignin, were corroborated from nitro-
benzene lignin analyses on a few selected fractions which showed that the lignin
content based on the unacetylated glucomannan varied from 3 to 9% (see Tables II

and IV).
INDICATION OF LIGNIN-CARBOHYDRATE LINKAGE

A summary of the behavior of the lignin during isolation of the glucomannan
and galactoglucomannan fractions is presented in Fig. 7. The presence of lignin
after the fractions have been extensively purified indicates that this lignin may
be chemically linked to the glucomannan. In particular, lignin is found in widely
separated fractions obtained by careful fractional precipitation of the main
glucomannan triacetate. The large ratio of the volume of solvent to the weight
of polymer used minimizes occlusion by polymer species present as impurities
during fractional precipitation. Thus, the presence of lignin in an insoluble
fraction (Fraction Insol'.), a fraction of DP = 261, [Fraction 2(1)], and a

fraction of DP = 61 [Fraction 3(2)] is very significant.
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Fractions Derived Fractions Derived Fractions Derived
From Fraction 8 From Fraction 13 From Fraction 1L

More resistant to acidified sodium chlorite in the holocellulose than the
bulk of the lignin l

Not extracted from the holocellulose with 95% ethanol overnight
\

Extracted with 10% . Extracted with 18% Extracted with 18%
NaOH NaOH NaOH - L BO

l % H5B0;
Precipitated at 0.10M Precipitated at O.lOM Prigipitated at 0.20M
Ba' concentration Ba++ concentration Ba concentration

l } }

Not delignified at pH 4-5 with sodium chlorite
)

Not extracted with Not extracted
10% NaOH l with 1% NaOH

After acetylation was precipitated into 2% aqueous HCl. Was insoluble in
2% aqueous HCl wash. Was not extracted in 95% ethanol wash or in steeping
overnight in 95% ethanol l

v ¥ v } A ' I

Precipitated in 50% ethanol

Insoluble in Soluble in Insoluble in Soluble 'in  Insoluble in Soluble in
pyridine ) pyridine pyridine: pyridine pyridine pyridine
Tnsol'. I y 13-1 L 1h-T

Fractionally Precipitated Precipitated
(Lignin=5.40%)  precipitated (Lignin =  with ligroin (Lignin = with ligroin
(An apparently  with ligroin  5.69%) 13-8 6.75%) 1hoS
high DP frac-
tion) (Lignin=3.05%) (Lignin=9.03%)
N (D = 81.4) (o = 98.1)

l l ‘ ‘

2(1) 52)

(Lignin=k.09%) (Lignin=3.19%)

(DP, = 261) (DB, = 60.6)

Lignin present in widely
separated fractions

Figure 7. Behavior of the Lignin in the Glucomannan
and Galactoglucomannan Fractions During Isolation




-

This lignin was more resistant to the action of acidified sodium chlorite
than the bulk of the lignin in the holocellulose and also was not destroyed in
the isolated fractions by dilute aqueous sodium chlorite at pH L4 to 5 at room
temperature. Chlorine dioxide which is produced from acidified sodium chlorite
destroys the aromatic nature of lignin (see Appendix II, p. 88). Since nitro-
benzene oxidation of the lignin in the fractions gave vanillin and syringaldehyde,
it is obvious that the aromatic nature of this lignin remained intact. The re-
sistance of this lignin to reaction with acidified sodium chlorite may be due
to the presence of a lignin-carbohydrate linkage. This resistant lignin was
not extracted from either the holocellulose or the isolated lignin fractions
with ethanol. Since some isolated lignin fractions are soluble in alcohol (&2—
ég) the insolubility of this lignin may be due to a lignin-carbohydrate linkage.
To summarize the information in Fig. 7, the fact that lignin is present in
widely separated glucomannan fractions, while the solubility properties of
lignin differ considerably from glucomannans indicates that the lignin may be
chemically linked to the glucomannan. A literature review of the lignin-carbo-
hydrate linkage presented in Appendix I, p. 80, reveals that there is a consider-
able amount of experimental evidence supporting the existence of this type of
linkage. Therefore, the hypothesis is made that the lignin is chemically linked
to the isolated glucomannan and galactoglucomannan fractions and the results of
this investigation are reviewed in light of this concept.

LIGNIN IN RELATIONSHIP TO SOLUBILITY AND MOLECULAR
SIZE OF THE GLUCOMANNAN AND GALACTOGLUCCMANNAN FRACTIONS
It is seen from Tables II and IV that the insoluble acetylated Fractions
Insol'., 13-I, and 14-T have higher lignin contents than the correspbnding
soluble acetylated fractions, 3(2) and 2(1), 13-S and 14-S. This can be ex-

plained by a cross-linking of glucomannan molecules through a common lignin molecule.
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This cross-linked moclecule would have a higher molecular weight and probably would
be less soluble than a glucomannan molecule not linked to lignin. The higher the
lignin content in a glucomannan fraction, the higher the probability of cross-
linking which may explain the greater lignin contents in the insoluble fractions

as compared to the soluble fractions. Some evidence which indicates the insol-
uble fractions have higher molecular weights than the corresponding soluble frac-
tions is presented in the Molecular Properties of Various Glucomannans and Galacto-

glucomannans section, p. 38.

Further evidence is obtained from the magnitude of the molecular weights
found for the glucomannan fractions investigated in this study. For the fractions
obtained from fractional precipitation, the range for Pfh is 32 to 261, the range
for @fw is 41 to 557, and the range for PPZ is 37 to 7297 The degrees of polymer-
izatio; at the upper end of the ranges are considerably greater than the values
reported for wood glucomannans in the literature. The greater molecular weights
found in this study are probably due to a lignin-glucomannan linkage as discussed

above. This concept is further supported by the greater lignin content of

Fraction 2(1) with DP_  of 261 as compared with Fraction 3(2) with DP, of 61.

Further evidence indicating a trend in increasing molecular weight with increasing
lignin content is given in the following section on the relationship of the lignin

content to the extraction sequence.

The hypothesis that two or more glucomannan molecules are joined to a common

lignin moiety, giving a branched lignin-carbohydrate complex explains the rela-

tively compact molecular structure of the glucomannan fractions found in this study.

It has been shown previously that the relatively high molecular weight Fraction
2(1) has a more compact structure than the lower molecular weight fractions such

as Fraction 3(2). If the above hypothesis is correct, one would expect to find
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a greater lignin content in Fraction 2(1) than in Fraction 3(2). The ligniﬁ
contents in Fractions 2(1) and 3(2) are 4.09 and 3.19%, respectively (based on
the unacetylated glucomannan); thus, the above prediction is substantiated.
Although the lignin-carbohydrate linkage appears to contribute toward the compact
structure of the glucomannan molecule it is not the only possible cause. Other
investigators have found evidence that some glucomannans from gymnosperms contain
carbohydrate branches (2).. Thus, it is possible that both lignin-carbohydrate

linkages and carbohydrate branches are contributing toward the compact structure.

A great deal of difficulty was encountered in attempting to find a solvent
which would completely dissolve the main acetylated glucomannan 8-A (Appendices
VII, p. 118, and VIII, p. 125). In light of the preceding discussion on the
lignin-carbohydrate linkage it is a good possibility that this type of linkage
is responsible for the insolubility of a portion of the glucomannan triacetate
fractions in many organic solvents. This phenomenon may be similar to the
reported insolubility of nitrated wood in acetone although nitrocellulose and

nitrolignin are known to be soluble in acetone (53, 5k).

The question arises, why haven't other workers found high molecular weights
for isolated glucomannan fractions if the probability of a lignin-carbohydrate
linkage is so high? As was discussed above, solubility problems are encountered
with the acetate derivative of glucomannans. For this reason, most investigators
have made molecular weight measurements on the nitrate derivative of glucomannans.
Meier (2) found that nitration of a lignin-glucomannan complex resulted in com-
Plete delignification. Therefore, molecular weight measurements on a glucomannan
nitrate give a value for the glucomannan molecule and not the lignin-~glucomannan
complex even though the original glucomannan fragtion may have contained lignin.

Viscosity measurements alone on the original lignin-glucomannan complex would not
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reveal a relatively high molecular weight since the viscosity would increase very
little with an increase in molecular weight resulting from a cross-linked lignin-
glucomannan complex. The probability of isolating a lignin-glucomannan complex
was enhanced in this study due to the extremely mild conditions employed in the
holocellulose preparation (Appendix II, p. 88). Although, the mild chlorite
delignification at room temperature reduced the Klason lignin content in the
holocellulose to 2.3%, the acid-soluble lignin content was 14.0% and much of this
lignin may have been involved in lignin-carbohydrate linkages.

RELATIONSHIP OF LIGNIN CONTENT TO RESISTANCE TO

EXTRACTION OF GLUCOMANNANS AND GALACTOGLUCOMANNANS

The lignin contents of the unacetylated Fractions 8, 13, and 14 were esti-

mated from a material balance on the acetylated fractions derived from them.
The calculation of these values is presented in Appendix XXVIII, p.'i242;.&nd the

results along with the measured lignin content of Fraction 14 are presented in

Table X.
TABIE X
LIGNIN CONTENT IN RELATION TO RESISTANCE TO EXTRACTION
Lignin Content,
(pased on unacetylated
Fraction Extraction Solution glucomannan’), %
8 10% NaOH 4. 23>
13 18% NaOH | b, 53%
1k 18% NaOH-L H, B0 8. 472
)
1k 18% NaOH-L4% H5B03 7.17b

fEstimated lignin content from material balance.

bMeasured lignin content.
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from Table X it is seen that there is a slight increase in the lignin content
from Fraction 8 to Fraction 13 and a substantial increase in the lignin content in
Fraction 14 which could only be extracted with 18% sodium hydroxide containing M%
boric acid. This trend to an increased lignin content with an increased resis-
tance to extraction for the glucomannan fractions can be explained by a strong
association of the lignin with the glucomannan in the holocellulose, perhaps
through a chemical linkage. Many investigators have explained the resistance of
the glucomannan to extraction by its close association with the cellulose in the
fiber. From the results of this investigation, it is hypothesized that the
cellulose-glucomannan association is only one factor and that the lignin-gluco-
mannan association in the fiber also plays an important role in the glucomannan's

resistance to extraction.

The physical picture is siﬁilar to that suggested by Lindberg (Qi) in which
the lignin and the carbohydrates are present in a solid solution containing many
hydrogen bonds and occasional chemical linkages between 1lignin and carbohydrate
molecules, resulting in a cross-linked network. The extraction of resistant
glucomannan fractions at higher alkali concentrations is then pictured as the
result of a combination of increased solubility, increased accessibility due to
swelling and partial disruption of the fiber structure, and destruction of
occasional lignin-carbohydrate linkages. This hypothesis agrees well with the
fact that a considerable amount of carbohydrate material is removed as the last

2 or 3% lignin is removed from a holocellulose (56, 57).

The hypothesis given above predicts that the more resistant glucomannan
fractions, containing a greater lignin content should have a higher molecular
weight than the easily extractable glucomannan fractions with a lower lignin

content since the probability of cross-linking increases with increasing lignin
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content. This behavior was found from a determination of the intrinsic viscosi-
ties in cupriethylenediamine. The calculated weight average degrees of polymer-

ization were 111, 130, and 374 for Fractions 8, 13, and 1L, respectively.

From the results of a material balance on the holocellulose and the extracted
residue, it was shown that the ratio of lignin to hemicellulose was constant in
the holocellulose, the sum of the extracts, and the extracted residue (Appendix
Iv, ». 105). This type of behavior is consistent with the existence of a lignin-

hemicellulose linkage.
RELATIONSHIP OF LIGNIN CONTENT TO SUGAR CONTENT

From the quantitative and the qualitative sugar analyses, it is seen that
the galactose and xylose content is greater in Fraction 1k from the 18% sodium
hydroxide containing 4% borate extract than in Fractions 8 and 13 from the 10
and 18% sodium hydroxide extracts, respectively. Since Fraction 14 contains
more lignin than the other two fractions, the greater content of galactose and
Xylose in this fraction may be due to the presence of a lignin-carbohydrate
linkage of the type suggested by Meier (5, 7). Meier found that a glucomannan
fraction from pine contained xylose and galactose residues which could not be
separated before delignification but were easily removed after delignification.
From these results and from electrophoresis studies, Meier concluded that differ-
ent polysaccharides, glucomannans and xylans, as well as galactans or arabo-
galactans, may be linked to the same lignin molecule. The presence of a small
amount of xylose in every fraction investigated in this study may be due to this

type of linkage.
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- DEGREE OF BRANCHING AND NATURE OF THE BRANCH POINTS
POSSIBLE STRUCTURES

The results of this investigation have shown that the glucomannan from
black spruce has a significant degree of branching which results in a consider-
able decrease in its molecular hydrodynamic volume. Evidence has also been found
that lignin is closely associated with the glucomannan molecule and it appears
that lignin may be involved in the branching. The possible branched structures
are presented in Fig. 8. 1In a linear chain all monomer units are attached to
only one or two other monomer units but in a branched chain, certain monomer
units may be attached to three or more monomer units. These monomer units are
calledlbranch units. The number of monomer units attached to a branch unit is

defined as the functionality of the branch unit.

In Fig. 8 two basic types of branching are considered. The first type of
branching involves only sugar branch units which are considered to occur only
as trifunctional units. The restriction to trifunctional branch units is
necessary because the occurrence of four bulky chains linked to one sugar monomer
unit is highly improbable and no evidence for tetrafunctional sugar units in
glucomannans has been found from methylation studies reported in the literature,
The branching would occur through glycosidic linkages. Structures A and C repre-
sent the two possibilities of branching onto a linear backbone and branching
resulting in a highly ramified structure. The second type of branching that is
considered involves lignin in which sugar units from separate glucomannan chains
are linked to a common lignin moiety, thus resulting in a branch point. The
branch unit in this case is the lignin moiety and the sugar units from the
separate chains which are combined to the lignin moiety. Structures B and D

represent the case of trifunctional branch units. It is felt that these types
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TRIFUNCTIONAL BRANCH UNITS - LINEAR BACKBONE:
; A o B
TRIFUNCTIONAL BRANCH UNITS ~HIGHLY RAMIFIED STRUCTURE:

TETRAFUNCTIONAL BRANCH UNITS~LINEAR CHAINS
LINKED TOGETHER IN RANDOM MANNER:

’ E

ONE MULTIFUNCTIONAL BRANCH UNIT:

F

~—LINEAR CHAIN
® LIGNIN MOIETY

Figure 8. Possible Structures of the Branched
Glucomannan Molecule
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of structures are improbable since they would occur only from the rather special
case of a glycosidic linkage from a sugar monomer unit of one chain to & lignin
hydroxyl group and a linkage of hydroxyl group from a sugar unit in the second
chain to either a lignin hydroxyl group or carbonyl group. Since the glycosidic
linkage could only occur at the reducing end group, one chain would be linked to
the lignin moiety at the end of the chain and the other chain would be linked to
the lignin at any point along its chain. Structure F is another special case in
which only sugar glycosidic linkages to lignin hydroxyl groups occur. In this
case, the branching would result in a star-shaped molecule with many linear

chains attached to a common lignin moiety at their reducing end groups.

A more general type of branching would occur if the hydroxyl groups on all
sugar monomer units could link with equal probability to lignin hydroxyl or
carbonyl groups. In this case linear chains would be cross-linked in a random
manner by common lignin moieties resulting in tetrafunctional branch units made
up of the lignin moiety and the two sugar units to which it is linked. This
type of branching is represented by Structure E and from the ideas formulated
in this study this structure is the most probable result of a lignin-carbohydrate
linkage. This type of cross-linking could easily result in a continuous lignin-
hemicellulose matrix in the fiber. Structures similar to E with multifunctional
branch units greater than tetrafunctional are also possible but will not be
considered because of the greater probability of two chains linked to a common
lignin moiety than three or more chains at the low lignin levels of 3 to L4%.

Of course, combinations of the above structures are possible but will not be
considered because of the lack of exact information and the simplicity of the

above idealized models.
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- DEGREE OF BRANCHING

A branched molecule has a smaller hydrodynamic volume and consequently a
lower intrinsic viscosity than a linear molecule at the same molecular weight
(33, 58-69). The decrease in the mean square radius of gyration with branching
has been treated theoretically by Zimm and Stockmayer (59) and they present
tables relating the ratio g of the mean square radius of gyration of a branched
to a linear molecule of the same molecular weight to the degree of branching for
various branched mocdels. Various relationships have been suggested relating the
ratio g' of the intrinsic viscosity of a branched polymer to that of a linear
polymer of the same molecular weight to the ratio g (59-62) and the most satis-
factory relationship to date is g' = 5}/2 (61, 62). Kilb (62) has used this
relationship and theoretically treated the case of a polydisperse polymer with
a random distribution of tetrafunctional cross-links. His model is a polymer
which is composed of linear chains with an initial molecular weight distribution
such that MV/Mh = 2. These chains have then been linked together randomly through

tetrafunctional cross-links to give a polydisperse branched polymer.

The model that Kilb treated is similar to Structure E of Fig. 8, which is
considered to be the most probable structure of the branched glucomannan molecule
in this investigation. The one questionable point in applying Kilb's model to
the present case is the necessary assumption that the primary linear chains (the
linear chains remaining if all the cross-links were broken) and the branched cross-
linked glucomannan molecule have molecular weight distributions which are adequately
described by the distribution function employed by Kilb. However, Kilb was able
to show that his treatment was not very sensitive to the exact distribution func-
tion as long as the ratio g' is calculated by comparing the intrinsic viscosities
of the branched and linear molecules at the same weight average degree of polymer-

ization. Therefore, Kilb's model should adequately apply to Structure E by
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calculating g' at the same weight average degree of polymerization, thus minimiz-
ing the effect of the molecular weight distribution. The degree of branching is
calculated in the following manner. The branching parameter, vy, is calculated
from tables relating the intrinsic viscosity ratio g' to tﬁe branching parameter

y at various values of the exponent, a, in the viscosity-molecular weight relation-
ship for the corresponding linear polymer, [n] = KM i. Then the weight

linear -——W

average number of cross-links per molecule, m is calculated with Equation (L4).

. m = (I_%_§7 (%).

The weight average degree of polymerization of the primary linear molecules,

Primary DP , is given by Equation (5).

Primary DP_ = DP_ (1 - 7) (5)

where P?w is the weight average degree of polymerization of the cross<linked

molecule.

To apply the above theory it is necessary to have an [n] versus PFW relation-
ship for a linear glucomannan triacetate. Juers's (Ez) data for a line;; high
molecular weight salep glucomannan triacetate is shown in the log [n] versus
leg wa plot of Fig. 2. It is necessary to extrapolate his data into the lower
molecuzér welght region of this study. The salep glucomannan triacetate curve
and the guaran triacetate (gl) curve essentially coincide and both curves pass
through the two lowest molecular weight points of the wood glucomannan triacetate
in this study. Guaran is a linear B-1,4-linked mannan with single unit side chains
of galactose linked a-1,6. The curve for guaran triacetate (the DP employed is
that of the mannan backbone) was used as a reference in this study ;éther than

the salep glucomannan triacetate curve since the data points of the former curve

extend into the molecular weight region of this study and, therefore, are probably
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more accurate than the extrapolated salep glucomannan triacetate curve. Due to
the similarity of the two curves, essentially the same results would have been
obtained if the salep glucomannan triacetate curve had been used for the refer-
ence linear glucomannan. Since different solvents were used to measure the
intrinsic viscosities of the guaran triacetate fractions than the glucomannan
triacetate fractions, the assumption is made that the solvent effects are neglig-
ible. This is a reasonable assumption since the intrinsic viscosities of B-1,4-
linked polysaccharides are less affected by polymer-solvent interaction than

flexible polymers (45).

Before calculations were made of the long-chain branching by Kilb's treat-
ment, 1t was necessary to first correct for the presence of short-chain branching.
It is believed that the galactose groups are present as unit side chains linked
to the main glucomannan chain (2). It was assumed that the small amount of
xylose in the fractions was also present as unit side chains and a correction
was made for the galactose and xylose side groups in the following manner. The
following equation derived by Stockmayer (70) for a monodisperse system with
equally spaced short branches was used to calculate g.

1

— 1 +s(1 - of +2f2-2f3)+s2(-f+uf2- 5)] (6)

g:

where s is the number of branches per molecule and f is the fractional length

of a branch. The average mole ratio of sugar residues for Fractions 3(2), 3(1),
2(2), and 2(1) is galactose:glucose:mannose:xylose:arabinose = 0.21:1.00:3.97:0.16:0.
Since the mole ratio of galactose and xylose residues is 6.9% of the neutral sugar

= = 1 ! -
content, s = (0.069) (P?w) and f l/@fw. The ratio g'y) 4 4 oiipes FOT ShOTt

chain branching is calculated from g' = 5}/2(§£)° The value of g' corrected for

short-chain branching, g a’ is then calculated with Equation (7).

1
correcte




-56-

gl

_ ~ experimental (7)
corrected g )

t

g ]
short branches

From the results presented in Table XI, it is seen that the reduction in intrinsic

viscosity due to the unit side chains of galactose and xylose groups is less than

L.

The corrected ratio, 5,corrected’ was used in the treatment of Kilb and the
results are presented in Table XI. The weight average number of branch points per
molecule increases from 0.1 for the low DP Fraction 3(2) to 7.1 for the high DP
Fraction 2(1). These values are considerably more reasonable than the corre-
sponding values calculated by assuming trifunctional branched models. In the
latter case the number of branch points per molecule are unrealistically large,
thus lending support to the validity of the randomly branched tetrafunctional
model that was chosen. The P?w of the primary chains are reasonably constant
within the range of 69 to 82, ;hd have an average value of 77. This fairly
constant value of Primary QEW regardless of the DP of the entire cross=zlinked
molecule is good support for_the validity of the branching theory and the
branched model employed in this treatment. It should be mentioned that reason-
ably closé results and essentially the same conclusions would have been obtained
if the correction for short-chain branching had not been applied.
THE STRUCTURE OF THE GLUCOMANNAN FRACTIONS
AND THE NATURE OF THE BRANCH POINTS

The average mole per cent of galactose and xylose residues is 3.9 and 3.0%,
respectively. Therefore, each primary chain with a P?w of 77 has on the average
3.0 galactosg residues and 2.3 xylose residues attacheg as unit side groups to

a linear chain of 72 glucose and mannose residues. These primary chains are

linked together by lignin through tetrafunctional cross-links as shown in Fig. 9.
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The degree of branching varies from the essentially linear structure of the low
DP Fraction 3(2) to the highly branched structure of the high DP Fraction 2(1)
which contains approximately 7 cross-links and 8 primary chains per molecule.
All the fractions are considered to be artifacts occurring from the cleavage of
the lignin-carbohydrate linkages of a continuous lignin-hemicellulose matrix

within the fiber.

The number average degrees of polymerization of isolated glucomannans from
coniferous woods vary from 35 to 140 but most are in the range of 70 to 110 (2).
It is felt that the P?w of 77 obtained for the primary chain in this study is
quite reasonable in co;farison to these values. It should be pointed out that
the branching theories are not exact and the actual DP of the primary chain could
easily be approximately 100 which would agree with the Pgn of many isolated
glucomannans in the literature (2). Although it is impos;ible to tell if the
isolated glucomannans in the literature were completely delignified, they
probably contained less lignin than the fractions in this study and, therefore,

should have a DP closer to that of the primary chain than the relatively high DP

Fractions 2(2) and 2(1) of this study.

For randomly cross-linked polymers the branching parameter y is unity at
incipient gelation (62, 71, 72). The value of y for Fraction 2(1) is 0.876.
This value of y close to unity might explain the substantial amount of insoluble
material that was present in all the acetylated fractions before purification.
If this explanation is correct then the insoluble material consists of primary
chains cross-linked to such an extent that the molecule has a value of y close to

unity and, therefore, has solubility properties similar to a gel.

In order to obtain an idea of the type of lignin moiety involved in the

cross-linking sites the DP_ of the lignin present was calculated for Fractions 3(2)
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and 2(1). The wa of the lignin present was calculated by multiplying Mw by
the fraction of l;énin present and dividing by 185 where 185 is the aver;ée
molecular weight of the phenylpropane unit (73, 7h4), considered to be the basic
monomer unit of lignin (75, 76). The results are presented in Table XII. The
P?w of the lignin per branch point and the P?w of the lignin per primary chain

are also calculated.

TABLE XII

LIGNIN IN REILIATION TO BRANCH UNITS

Lignin Lignin
Per Cent
Number of Lignin (on P?K of P?K Fer ‘P?K Per
Branch Units Glucomannan ILignin Branch Primary
Fraction Pgw Per Molecule Triacetate ) Present Unit Chain
3(2) 82. k4 0.10 1.82 2.33 -- 2.12
2(1) 557 7.06 2.34 20. k4 2.89 2.53

Both fractions have approximately two phenylpropane units per primary chain.
The similar lignin contents of the two fractions are consistent with the concept
that the low DP Fraction 3(2) was derived by cleavage of the lignin-carbohydrate
branch points of a fraction similar to the high DP Fraction 2(1). A slightly
greater lignin content for Fraction 2(1) is expected since some of the lignin
in Fraction 3(2) has undoubtedly been removed completely from the chains due to
degradation. Since Fraction 3(2) is essentially linear, the major part of the
lignin in this fraction is not involved in branching. The lignin P?w per branch
unit for Fraction 2(1) is 2.9. Experimental evidence exists that 1i;£in is made
up of basic "building units" which contain about five phenylpropane units (76).
Thus, it is possible that in Fraction 2(1) and perhaps the other branched frac-

tions each branch unit may be composed of approximately one "lignin building

unit. "
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After lignin has reacted with acidified sodium chlorite it is modified so
that it does not yield vanillin on oxidation with alkaline nitrobenzene (see
Appendix II, p. 88). The sum of the sugar, acetyl, ash, and nitrobenzene lignin
contents for Fractions 3(2) and 2(1) are 94%. Thus, 6% of the fractions is un-
accounted for and since acidified sodium chlorite modifies the lignin there may
be additional lignin fragments present in the molecule which have not been Qe—
tected. The basic aromatic nature of these fragments has probably been destroyed

if they are present.

The model employed in this study is based on linkages occurring between
lignin and the hydroxyl groups of the glucomannan chain. From methylatioﬁ studies
in the literature (é) it appears that the hydroxyl groups at the Number 2, 3, or
6 carbon atoms of the glucose or mannose residues are all possible branching
sites. These hydroxyl groups may be involved in an ether linkage with a phenolic
hydroxyl group or an aliphatic hydroxyl group on the propane chain of lignin.
Lignin contains one carbonyl group per lignin building unit (53) and the sugar
hydroxyl groups also may be involved in an acetal or hemiacetal linkage with
this carbonyl group. From evidence obtained from Fraction 2(1) it is possible

that two glucomannan chains may be linked to a lignin buillding unit containing

approximately five phenylpropane units.
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CONCLUSIONS

A glucomannan isolated by a mild process from black spruce was shown to
contain long-chain branches. Previous chemical investigations have presented
contradictory evidence for and against branching in coniferous glucomannans but
have provided no insight into the length of the branches. The relatively compact
configuration of the fully acetylated glucomannan as revealed by its hydrodynamic

properties clearly demonstrated the presence of long-chain branches.

Lignin was found to be tenaciously associated with glucomannan fractions
which had been extensively purified and the hypothesis was made that this lignin
may be involved in the long-chain branching. A detailed inspection of the be-
havior of the glucomannan fractions in relationship to the lignin content, molecu-
lar properties, solubility properties, and ease of extraction and & critical
review of the literature indicated that the lignin was quite probably chemically

linked to the glucomannan chains,

Theoretical treatment of the viscosity-molecular weight results in order to
obtain a measure of the degree of branching showed the results were best described
by a model involving cross-linking of linear chains. This model adequately de-
scribed the abrupt decreasing slope of the log [n] versus log DP_ plot and gave
consistent results when applied to the data. In particular, the‘Ealculated Dp
of the linear chains which are cross-linked together was constant for all frac-
tions, regardless of the DP of the entire cross-linked molecule. The hypothesis

was then made that lignin was the cross-linking unit between eésentially linear

or slight branched glucomannan chains,

This model, which involves a cross-linked matrix of lignin and glucomannan

within the fiber, adequately described all the results of this investigation.
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It implies that all isolated glucomannans from gymnosperms are actually artifacts
originating from the original lignin-glucomannan complex. If delignification is
complete then isolated glucomannans from different investigations should have
similar properties; however, if lignin is present in the isolated fractions then
the glucomannans can have widely varying properties such as degree of polymeriza-
tion, degree of branching, solubility, and perhaps sugar content. These latter
properties would depend on the degree and nature of lignin-carbohydrate linkages.
Thus, the relatively high degrees of polymerization found in this study are
readily explained. This may also be a partial explanation of the contradictory
literature evidence concerning branching in coniferous glucomannans. The concept
of a cross-linked lignin-carbohydrate matrix is applicable to various areas of
wood chemistry and the pulp and paper industry and a brief discussion of possible

applications is presented in Appendix XXIX, .p. 2L3.
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NOMENC LATURE

constant in Mark-~Houwink equation

persistence length

value of x at the solution-air meniscus

axial ratio of a prolate ellipsoid

area under schlieren curve

second virial coefficient

length of the monomer unit equal to 5.15 x 10_8 cm.
value of x at the solution-oil meniscus

weight average and Z-average sedimentation equilibrium second
virial coefficients, respectively

theoretical osmotic pressure and light scattering second virial
coefficients, respectively

concentration

initial concentration of the solution
concentration at point x in ultracentrifuge cell
refractive index gradient of the solute
density of air

density of liquid in pycnometer

density of weights

degree of polymerization

number average degree of polymerization
weight average degree of polymerization
z-average degree of polymerization
diffusion coefficient

diffusion coefficient

fractional length of a short branch

molecular frictional coefficient
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frictional coefficient of hypothetical solwated sphere

molecular frictional coefficient of a hypothetical unsolvated
sphere

normalized weight distribution of the molecular weight, M

ratio of the mean square radius of gyration of a branched to a
linear polymer

ratio of the intrinsic viscosity of a branched to a linear polymer
édjustable parameter in the Zimm-Schulz distribution

thickness of the solution in the centrifuge cell perpendicular
to the plane of rotation

number of Rayleigh fringes

flux of particles in Fick's first law of diffusion
Boltzmann constant

constants in.Mark-Houwink equation

viscosity extrapolation constants

contour length

optical lever arm

weight average number.of cross-links per molecule
magnification factor for the camera in the radial direction

magnification of the cylinder lens

molarity of chemical solutions

molecular weight

number average molecular weight

weight average molecular weight

Z~average molecular weight

weight average molecular weight at point x in ultracentrifuge cell
Z-average molecular weight at point x in ultracentrifuge cell
normality of chemical solutions

degree of polymerization in Eizner-Ptitsyn theory
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N = Avogadro's number
EE, Eﬂ’ Eéf :gﬁﬁfrr::;ZifiéeY;ight average, and z-average degrees of polymeriza-
Primary QEW = weight average degree of polymerization of the primary linear
— molecules
o] = adjustable parameter in the Zimm-Schulz distribution
i3] = solute concentration
go = a factor to correct for sample heterogeneity for Flory coefficient
I, = hydrodynamic radius of the monomer unit
Ty = distance from ?he center of rotation to the boundary position in
- the ultracentrifuge cell
E = distance of the center of the solution column from the center of
rotation in the ultracentrifuge cell
R = gas constant
Bo = radius of hypothetical solvated sphere
Bs = maximum radius of hypothetical solvated sphere
gf = sedimentation coefficient
Ei = Z-average mean square radius of gyration
gf = number of short branches per molecule
t = time of ultracentrifugation run
T = absolute temperature, °K.
E = the partial specific volume of the solute
Xi = specific volume of pure solvent
YQ = partial specific volume of polymer
W = true weights
H( = welghts used
X, X9, X5 = distance from center of rotatidén in ultracentrifuge cell
x = average X = (Ei + 52)/2
Z = the ordinate of the photographic plate obtained with the schlieren

optical system
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type of linkage

type of linkage

branching parameter

gamma function

a parameter which depends on polymer-solvent interaction
an empirical degree of solvation

difference in concentration across ultracentrifuge cell
change in free energy

resultant of energy absorbed in breaking polymer — polymer and
solvent — solvent bonds and the energy emitted in forming
polymer — solvent bonds in solution processes

change in entropy

a measure of the departure from equilibrium in ultracentrifugation
solution viscosity

sclvent viscosity

intrinsic viscosity

phase plate angle

wavelength of light

ratio of a to b in-Eizner-Ptitsyn theory

osmotic pressure

density of solution

density of solvent

apparent specific volume

Flory coefficient

hydrodynamic function of N and A in Eizner-Ptitsyn theory

geometric function of N and A in Eizner-Ptitsyn theory

angular velocity
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APPENDIX I

LITERATURE ON THE LIGNIN-CARBOHYDRATE LINKAGE
INTRODUCTION

Much work has been carried out on the problem of the lignin-carbohydrate

linkage and the subject has been reviewed by various workers (53, 75, 77-80).

In summarizing the evidence for and against the existence of a lignin-
carbohydrate bond, Merewether (53) states, "The considerable volume of evidence
for the existence of lignin-carbohydrate complexes in wood that has been sub-
Jjected to a variety of chemical and physical treatments leaves one in no doubt
as to their existence, and the question is no longer whether there is a lignin-
carbohydrate linkage, but whether all the lignin is combined with carbohydrate

' The existence of a

and whether all the carbohydrate is combined with lignin.'
lignin—cafbohydrate linkage in coniferous woods has an important bearing on this
study and some of the literature supporting this linkage will be presented. The

presence of this linkage in sprucewood and between lignin and glucomannans will

be emphasized.
THE POSSIBILITY OF THE LINKAGE ON MORPHOLOGICAL GROUNDS

The first point which must be clarified is whether a lignin-carbohydrate
linkage is possible on morphological grounds. Staudinger (Q;) completely
delignified woods with chlorine dioxide and in a separate experiment completely
removed the carbohydrates with alternate treatments of sulfuric acid and cupr-
ammonium.hydroxide. He then compared photographs of these sections and the
untreated wood and was able to show that in softwoods the lignin skeleton was
distributed throughout the fiber wall as well as in the middle lamella. Iange

(§g) employed a method of ultraviolet microscopy to study the distribution of
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lignin in the fiber walls of spruce. His results showed that although 70% of
the lignin is located in the compound middle lamella, the lignin is continuously
distributed in the fibér walls. The lignin decreases from a high concentration
in the middle lamella to a very low concentration at the lumen, but the concen-
tration never reaches zero. Iange's results also indicated that the lignin is
prartly oriented in stratification in the cell. ILange claimed this is evidence
for some form of bonding between the lignin and the more oriented carbohydrate.
Merewether (_Z> summarizes the evidence by stating that there can be no objection
on morphological grounds in the postulation of a lignin-carbohydrate complex
since lignin occurs in the secondary wall and the middle lamella contains approx-
imately 25% of material which is not lignin.
EVIDENCE BASED ON THE SOLUBILITY OF THE
POLYSACCHARIDE COMPONENT OF WOOD

The simultaneous removal of carbohydrates with the last few per cent of
lignin from a holocellulose is often explained by the presence of a lignin-
carbohydrate linkage. Wise and co-workers (Eé) found that if a chlorite holo-
cellulose was delignified below about 3% K}ason lignin, a marked loss of hemi~-
celluloses occurred. Jayme and Wettstein (57) have shown that when the last
portion of lignin was removed from a coniferous Asplund pulp by chilorination,
an appreciable amount of carbohydrate was also removed. Complete delignifica-~
tion also increased the amount of carbohydrate which could be extracted by
alkali. Since there was no increase in the copper number, it was inferred
that there was no degradation of the carbohydrate. Jayme suggested that the
data are best explained by the existence of complexes of lignin with compara-
tively small polysaccharide units. These complexes would be sufficiently large

to be insoluble in alkali, but would become alkali-soluble after removal of

the lignin.




-82-

The insolubility of the polysaccharide component of wood prior to
delignification or hydrolysis indicates the presence of a lignin-carbohydrate
linkage. Extraction of sprucewood with cold 4% aqueous sodium hydroxide ex-
tracts only 0.5% hemicellulose while extraction of}spruce holocellulose with
the same solvent extracts 8.9% hemicellulose (83). It, therefore, appears that
a hemicellulose-lignin complex is decomposed during the preparation of the holo-
cellulose. Cuoxam lignin is prepared by alternately treating wood with boiling
1% sulfuric acid and cold cuprammonium hydroxide (84, 85). The acid hydrolysis
is an essential step and only a small amount of polysaccharide is removed when
the hydrolysis is not made. Delignification also renders the carbohydrate
component ‘of wood soluble in cuprammonium hydroxide. Staudinger, et al. (§§)
found that in forty-eight hours only 3.6% of sprucewood dissolved in this sol-
vent, whereas a bleached wood pulp readily dissolves in cuprammonium hydroxide.
Merewether (77) reviews other studies on the solubility of the carbohydrate

component of wood and concludes that whether wood is extracted with cuprammonium
or cupriethylenediamine or whether it is xanthated, it is impossible to separate
the carbohydrate and the lignin. Even when some of the wood is dissolved, this

dissolved material is not pure carbohydrate and always contains lignin.

Experiments involving the nitration of wood support the concept of a lignin-
carbohydrate linkage. When wood is nitrated, a portionof this nitrate is
insoluble in acetone. It is known that both nitrocellulose and nitrolignin
are soluble in acetone; therefore, the insolubility of wood nitrate is inter-
preted as the result of a nitrated lignin-carbohydrate complex which is insol-
uble in acetone (22). Hydrolysis of wood before nitration will decrease the
amount of insoluble material considerably. Abadie-Maumert (2&) found that the
nitration of sprucewood gave a product, of which 59% was insoluble in acetone.

When the wood was boiled with water for fifty days prior to the nitration the
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yield of acetone-insoluble nitrate was only 4%. It is quite plausible that a
lignin-carbohydrate bond was broken by this hydrolysis.
EVIDENCE BASED ON THE' SOLUBILITY OF THE
LIGNIN COMPONENT OF WOOD

Evidence on the solubility 6f lignin as well as the solubility of the carbo-
hydrate component of wood indicates the existence of a lignin-carbohydrate link-
age. Wacek and Schroth (E_) obtained a lignin fraction from spruce holocellulose
which became alcohol soluble after isolation, but could not be extracted from the
holocellulose with alcohol prior to isolation. The lignin fraction was removed
with the hemicelluloses by alkaline extraction of the holocellulose and remained
in solution when the hemicelluloses were precipitated. One explanation of the
solubility:of this lignin fraction in alcohol only after isolation and the fact
that it waé relatively resistant to the action of chlorite,.in contrast to the
remainder of the lignin, is that it was chemically combined with carbohydrate

in the holocellulose.

Lindberg (_i) studied the digestion of wood meal with dimethylsulfoxide at
100°C. He reasoned that the properties of dimethylsulfoxide were such that if
only hydrogen bonds existed between the lignin and the carbohydrates in wood,
an appreciable amount of lignin would be dissolved under these conditions.

Since very little lignin was dissolved, Lindberg concluded that real chemical
bonds exist between the lignin and the carbohydrates in wood. He suggested that

the bonding state of the lignin-carbohydrate complex is a solid solution contain-

ing chemical bonds interspersed and embedded in the hydrogen bond network.

Only a trace of lignin is extracted from sprucewood with ethylene glycol
at 160°C. However, boiling the wood with 1% hydrochloric acid for two hours

renders 55% of the lignin soluble on subsequent extraction under the above
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conditions (QZ). The solubility of the lignin might arise from the decomposition
of a lignin-carbohydrate complex. Hachihama and Takamuku (§§) found that the
solubility of lignin was increased by irradiating pinewood with varying doses of
y-rays in the presence of air but the properties of the lignins were not differ-
ent. The authors explained the increased solubility by a splitting of the lignin-
carbohydrate complex.
EVIDENCE FROM THE MICROBIOLOGICAL
DEGRADATION OF WOOD
Studies involving the microbiological degradation of wood have given good
evidence for the existence of a lignin-carbohydrate linkage. An interesting
approach is to first extract wood with ethanol to remove the 2 to 5% soluble
lignin and then decay the extracted wood with brown rot fungi which preferen-
tially attacks the carbohydrate components of the wood, leaving the lignin
essentially unaffected. When Schubert and Nord (50, 51) subjected coniferous
woods to this decay, an additional amount of alcchol-soluble lignin was liberated.
This behavior indicates that a lignin-carbohydrate linkage is destroyed by the
microbioclogical degradation of the carbohydrate components of wood. Ieopold
(ég) studied sprucewood and also found an increased yield of alcohol-soluble
lignin resulting from the decay by brown rot fungi. He also reported that com-
plete delignification occurred when this brown-rotted sprucewood was sulfonated
at pH 5.3 and 135°C. while under similar conditions sound wood gave only 30%

delignification.

The evidence from fermentation of wood supports the view that a chemical
linkage exists between lignin and carbohydrate. Virtanen, et al. (89, 90) and
Ploetz (2;) in separate investigations found that, when pulp or wood is fermented,

the fermentation ceases after a certain stage has been reached, leaving an
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unfermentable residue containing both lignin and carbohydrate. Only half of

the cellulose of coniferous woods and two-thirds of the cellulose of hardwoods
were fermented by thermophilic cellulose bacteria (gg). This behavior can be
explained by the existence of a chemical linkage between the lignin and the
carbohydrate which is resistant to fermentation. It is also of interest to note
that the loss of carbohydrate during fermentation was accompanied by a loss of

lignin,
ISOLATED LIGNIN-CARBOHYDRATE COMPLEXES

The most direct evidence for a lignin-carbohydrate linkage comes from the
isolation and subsequent investigation of lignin-carbohydrate complexes. Bj8rkman
(ZZ) %, 22) extracted lignin-carbohydrate complexes (L.C.C.) from sprucewood
which had been milled vigorcusly under nonswelling conditions. He first extracted
the milled sprucewood with aqueous dioxane to obtain a material which contained
primarily lignin and which he called milled wood lignin (M.W.L.). Then extrac-
tion of the reéidue with acetic acid or dimethylformamide gave lignin-carbohydrate
complexes which contained 1 part of lignin to 3 to 4 parts of carbohydrate. The
carbohydrate composition in L.C.C. corresponded very closely with the relative
amounts of sugars in the hemicellulose components of the sprucewcod. Thus, it
appears plausible that the carbohydrates involved in the lignin-carbohydrate
linkage of sprucewood are the hemicelluloses. The lignin in L.C.C. appeared to
be identical with M.W.L. and upon further milling of L.C.C. more "free" lignin
was liberated which was soluble in dioxane. Since this lignin could not be
separated from L.C.C. and was not soluble in dioxane before milling, Bj8rkman
explained the above behavior by a splitting of a lignin-carbohydrate bond

during milling.
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Lindgren (Q) studied Bj8rkman's fractions with paper and free boundary
electrophoresis. The fraction L.C.C. could be separated into two subfractions
having different electrophoretic mobilities. The slower subfraction contained
only carbohydrate and the faster subfraction contained both carbohydrate and
lignin materials in approximately equal amounts. This latter fraction moved
more slowly than did the lignin in the M.W.L. fraction. The mobility of the
subfraction containing lignin and carbohydrate materials strongly supports

Bj8rkman's hypothesis of a lignin carbohydrate linkage.

Meier (5) has obtained good evidence for a lignin-carbohydrate linkage in
isolated glucomannan fractions from pine. Two glucomannan fractions were studied
with paper electrophoresis. One fraction contained about 6% lignin and had a
mobility distinctly different from the other glucomannan fraction which con-
tained only a trace of lignin. He, therefore, concluded that the mannose
residues in the former fraction must either have been present in a different
type of molecule, or be in & glucomannan chemically bound to some other species.
After complete delignification this fraction had a mobility similar to the frac-
tion which originally contained only a trace amount of lignin.' This indicates
that a lignin-carbohydrate complex was involved. Furthermore, it was found that
glucomannan fractions with about 5% lignin contained 11% galactose and 5.5%
xylose which could not be separated by conventional methods. After delignifica—
tion to 0.3% lignin, the galactose residues could be reduced to 1 to 2% and the
xXylose residues to traces (Z). It was concluded that different polysaccharides,
glucomannans, and xylans, as well as galactans or arabogalactans may be linked
to the same lignin molecule. It is of interest to note that Meier (2) found
that nitration of the glucomannan fractions resulted in complete delignification
and therefore molecular weight determinations on glucomannan nitrates gave values

for the glucomannan molecule and not the glucomannan-lignin complex.
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McPherson (94) obtained a series of lignin-carbohydrate complexes along
with relatively pure lignin and hemicellulose fractions from milled sprucewood
by successive extraction, fractional precipitation, and separation on various

columns.
THE NATURE OF THE LIGNIN-CARBOHYDRATE LINKAGE

The type of chemical bond between lignin and carbohydrate has not been
established. The favored linkage is a B-phenyl glycosidic bond because of the
sensitivity of this type of bond to acid, alkali, and heat treatments and its
abundance in plants (22; 96). Lindgren (97) reviewed the research in this field
and suggested that the most likely linkage is a B-phenylvglycoside or a benzyl
ether bond. An ether linkage at the B-carbon of the propyl group (2@) or an
acetal linkage in which the carbonyl group comes from the lignin (22) are also

possible. Brauns (75) discusses the various possible lignin-carbohydrate linkages.

SUMMARY

From the evidence presented above, it is seen that a chemical linkage be-
tween the glucomannan and the lignin component of sprucewood is not only possible
but it is highly probable. Considerably more evidence is available from investi-
gations based on extraction of cell wall components, microbiological degradation
of wood, alkaline hydrolysis of wood, acid hydrolysis of wood, holocellulose
preparation, alkylation of wood, alcoholysis of wodd, acetylation and acetolysis

of wood, nitration of wood, sulfonation of wood, and other miscellaneous reactions

(23, 11)-
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APPENDIX II

HOLOCELLULOSE PREPARATION
.WOOD

Two eight-foot logs were obtained from Consolidated Papers,..Inc.,. Appleton,
Wis., and identified as black spruce by Irving H. Isenberg (;99). The logs were
debarked, chipped, and screened, Chips that passed through a one-half inch
screen and were retained on a one-fourth inch screen were saved for: delignifi-

cation.
GENERAL ON PREPARATION AND THEORY OF DELIGNIFICATION

In order to minimize degradation of the polysaccharides during delignifica-
tion, a room temperature chloriting process was employed similar to that recently
described by Thompson and Kaustinen (;Z). Several modifications were employed in
this study to shorten the reaction time of Thompson's process of three to four
weeks: (1) small (one-fourth inch) chips were employed rather than wood blocks,
(2) the chips were evacuated prior to contact with the solution to aid in pene-
tration, (3) a sodium chlorite concentration of 200 g./l. was used in contrast
to the 45 g./l. employed by Thompson, and (4) as soon as possible the chips were
defibered in order to improve the accessibility of the lignin and the delignifi-
cation allowed to proceed at a lower concentration. These modifications reduced

the reaction time to less than 6 days.

- The delignification of an acidic sodium chlorite solution is due to the
reaction of chlorine dioxide with lignin (;9;, lgg). The chlorine dioxide
specifically attacks the lignin compounds but does not react with the carbochydrates
(;9;, ;92). In acid solutions containing pulp the chlorite ion reacts to form

chlorine dioxide according to the simplified reaction (101, 102), SClqg- +
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+ -
LHE - hClO2 + Cl + EHEO. The chlorite ions do not form chlorine dioxide above
pPH 7 and thus are not reactive toward lignin above this pH. However, as the pH
drops to four, the chlorite ions become increasingly reactive (102, 103). The

chlorite ion will attack carbohydrates by oxidizing the aldehyde group on an end

group reducing sugar to a carboxyl group (104-106).

When acidified sodium chlorite or chlorine dioxide reacts with compounds
having a guaiacyl nucleus, oxidation and splitting of the benzene ring take
place between the methoxyl and hydroxyl groups (lg@, lgg). This type of reaction
may occur when acidified sodium chlorite or chlorine dioxide reacts with conifer-
ous woods since the lignin in these woods is composed primarily of phenylpropane
units contalning the guaiacyl nucleus. It is probable that the aromatic nature
of the lignin is destroyed by reaction with acidified sodium chlorite since spruce
periodate lignin which has been treated with acidified sodium chlorite does not
yield vanillin upon alkaline nitrobenzene oxidation whereas the untreated perio-
date iignin does yield vanillin, similar.to the behavior of other lignins (;92),
Lignin also undergoes some demethoxylation when 1t is reacted with acidified

sodium chlorite or chlorine dioxide (108, 109).

A slight modification of this delignification from that described by Thompson
and Kaustinen (17) is that the sodium chlorite solution in this procedure was not
acidified to pH 4 before reaction with the wood. The initial pH of the chlorite
solution was 12.4; thus, little delignification will occur at first. This
results in a greater penetration of the chips by the solution before the deligni-
fication reaction begins and thus supposedly a more uniform delignification. As
the chlorite solution penetrates the chips, wood acids and carboxyl groups are
formed. These acids initiaté the formation of chlorine dioxide and the reaction

of chlorine dioxide and lignin creates more aclds and thus the pH drops. The pH
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does not drop below pH 4, however, due to the buffering action of the salts of
the organic acids (17). Thus, the reaction is self-initiating and also self-
buffered, preventing the formation of a dangerously low pH. The pH of the solu-
tion quickly drops as indicated by the evolution of chlorine dioxide a few hours
after contact of the chips with the chlorite solution. The pH of the final
solution was 5.4 to 5.6. Rapson (103) claims that optimum bleaching with chlor-
ine dioxide occurs between pH 5-7. It can be inferred that this delignification
behaves in the same manner since chlorine dioxide is the active agent and since

bleaching is primarily a delignification reaction.

The resulting holocellulose should contain polysaccharide material that has
been subjected to a minimum of degradation due to the low temperature of deligni-
fication and the specificity of the chlorine dioxide for lignin. Furthermore,
the presence of a nonreducing carboxyl end-group (introduced by the chlorite ion
oxidation) on the polysaccharide chain retards degradation of the polysaccharide
under alkaline conditions. This is a definite advantage as subsequent isolation
of the glucomannan from the holocellulose was carried out by alkaline extraction.
In addition to minimizing degradation, the room temperature chloriting process
made it feasible to prepare kilogram quantities of holocellulose. Since heat
was not applied in this process, degradation due to local overheating which
occurs in. large-scale preparations of other holocelluloses was prevented in this
holocellulose preparation. Wood chips rather than wood meal were used in order
to preserve the fibrous structure since this undoubtedly influences the sequence

of hemicellulose extraction.
PROCEDURE OF HOLOCELLULOSE PREPARATION

Four kilograms of one-quarter inch black spruce chips (3.20 kg. of ovendry

wood ) were delignified. Nonextracted wood was used as it has been found
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unnecessary to extract sprucewood when using the room temperature chloriting
procedure (;Z). The chips were placed in 6 ten-inch vacuum desiccators and 4
elght-inch vacuum desiccators and evacuated. The chips were then delignified
with an 8:1 (volume to weight) ratio of liquor to wood. The delignification
solution was made up with 200 grams of sodium chlo?ite to every liter of HQO.
Initial pH of solution was 12.40. The delignification was then allowed to pro-

ceed at ambient temperature for five days. The pH of the solution after this

first reaction stage-was 5. 43,

The liquor was then filtered from the chips and the chips were defibered in
a Waring Blendor for 50 seconds. The chips were defibered in order to speed up
the final delignification by aiding diffusion of chemicals into and lignin re-
action products out of the fibers and to provide for a more uniform reaction in
the final delignification. A uniform reaction is probably more critical in the
final stage when the fibers are not protected by the lignin. In the final stage
the solution from the first stage was diluted to one-third of its volume.
Assuming 50% of the sodium chlorite on the basis of ovendry wood had reacted
during the first stage (;Z), this diluted solution would be at a concentration
of approximately 50 grams of sodium chlorite per liter. The solution and fibers
were then placed in the desiccators at an 8:1 ratio. This second-stage delignifi-

cation was allowed to proceed for 22 hours. The final pH of the solution was

5.67.

At the end of the second stage the fibers were washed well with water, steeped
in water overnight, washed again with excess water, pressed, and steeped in 95%
ethanol overnight. The fibers were then pressed and air dried. The final ethanol
washing was to give a holocellulose which would be readily dispersed in a O.1N
sodium hydroxide solution in the following extraction experiments. The final air-
dried product weighed 2,616 grams and had a slight yellow tint. The ovendry yield

was 2,404 grams or 75.1% based on the ovendry wood.
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APPENDIX III

EXTRACTION AND PURIFICATION OF THE GLUCOMANNAN FRACTIONS
PRELIMINARY INVESTIGATION

Preliminary experiments were carried out to determine the best method of
isolating pure glucomannan fractions from the holocellulose in fairly large
quantities with a minimum of degradation. Two preliminary experiments were run
in which the extraction éequences were similar but the methods of precipitation
and purification were different. The extraction sequence employed was O.1N
sodium hydroxide, 10% sodium hydroxide, 18% sodium hydroxide, and 18% sodium

hydroxide containing 4% boric acid.

In the first series of experiments the initial precipitates were isolated
by neutralizing the extracts and, in the second series of experiments, barium
acetate was added to the extracts to cause precipitation. PFurther purification
of the initial fractions gave 56 final fractions. Determination of the yields
and qualitative sugar contents of these fractions showed that the second method .
of isolation was superior to the first method. The second method was simpler
and faster to carry out than the first method and gave higher yields with less

chance of degradation.

Barium precipitation was shown to be a highly effective method of isoclating
glucomannan fractions. Meiler (;;9) first discovered that barium ions would
precipitate glucomannans from alkaline solutions and postulated that barium
ions form a complex with the cis-hydroxyl groups on carbon atoms 2 and 3 of the
mannose units. From this series of experiments, it has been found that the
selectivity of the barium ion for mannose-containing polysaccharides can be

enhanced through a fractional precipitation scheme. It was shown that up to
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about 0.08 to 0.10M in barium ion concentration the glucomannan is selectively
precipitated while the xylan remains in solution, but in the range of 0.10 to

0.20M the xylans are also precipitated.
LARGE-SCALE ISOLATION

GENERAL

Direct barium precipitation of the extracts was employed. Solutions of
barium acetate were used to cause precipitation rather than the conventional
barium hydroxide because of the greater sclubility of the former which enabled
solution volumes to be kept to a minimum (l;;). By precipitating the hemicellu-
lose fractions immediately after extraction, excessive degradation should be
prevented by minimizing the contact time between the alkaline solution and the

hemicelluloses.

The 0.1N, 10%, and 18% extraction solutions were made 0.10M in barium ion
concentration and the 18 and 4% and wash solutions were made 0.20M in barium
ion concentration to cause precipitation. This was done to minimize the precipi-
tation of xylans (which is appreciable above 0.10M barium ion concentraﬁion ) in
the 0.1N, 10, and 18% solutions. Iess xylan is extracted by the 18 and 4% and
wash solutions, permitting the use of a higher concentration of barium ion.
Also, Vaughan (l;;) claims that an excess of barium ion is needed to precipitate
glucomannans in the presence of borate ions. Due to the large amount of holo-
cellulose being extracted, it was necessary to divide it into two batches. A

summary of the isolation and purification procedures are given in Fig. 10 and 11.

EXTRACTION AND PRECIPITATION

A total of 2,200 grams of ovendry holocellulcse were extracted. The extrac-

tion was carried out in two batches of 1,100 grams each. The extraction and




SUOTIORL] SPNI) JO UOTIB[OSI ‘OT 9INSTJ

-94-

¢-.,q -1dd a1sed OYOH 23nTIP JO 93sed
spna) TOouBU}® JO WIOJ UT SUOT3IOBII TIV
HO%I %56
! ut
VOH ; 2-.0 *qdd v *add
‘qdd apnI) apna)
HO®BN %02 HOMI %66 HOM %G6
T-.3 "3dd @ "3dd T-,0 "3dd g rydd
uoTINTog apnI) opna) uoTInTog spna) apna) uoTINTOG PIBOSI(
"Tog CTosug HO%H %56 *Tog  "Tosul HO %66 : *Tog  “Tosur
uoTInTog uoTAINTOY
SutyoraTq SuryoesTq SutyoraTq SuTtyowsTq JuryoewaTq
93 TIOTYD 93 TIOTYD 93 TIOTYD 93TIOTYD 93 TIOTYD
‘ oyOH | ‘ OYOH ‘ OYOH ‘ OYOH ‘ OYOH
g r3dd a "add 0 "3dd g -1dd v "add
spna) apna) apna) apna) apna)
2 = . g = . g = . 4 = . c = .
(9v0)ed WO "2 (ov0)®ed WO "2 (9v0)=d Wo'2 (ov0)ed WO 2 (ovo)®=d WO "2
uoTINTOS ¢ uotTinTog uoTINTOS UOTINTOG uoIINTog
ommm bt + _
ysem HO®N %QT HO®N %QT HO®N %0T HO®N NT 'O

9sOTUTTa20ToY sonads 3oeld

BUTITIOTYD aanjeiadwal WOOY %

sd1y) oonadg yoeld



_95_

#¢‘2-0T

HOM %56
‘OYOH ‘paurquo)

T

#-01 ¢-0T 2-0T

(ov0)eT u3TA
‘u3zdd TBUOTIOBIL

uoT10TOg T-0T
‘ToS .ﬁOmnH.

HO®N NT'0 “

ot

jonpoxd Twut] 9ATS 0%
HOY %$6 Pu® SYOH

mﬁo<ovmm q3ta
‘uzdd {BUOT3OBIT

uoTINTOg PUZ

JutLIp oz981]

SUOT}OBIL SPNID JO UOTIBITITING ‘T[T oInBid

9T ¢-91
| 2 _
9T . B0 %$6  S(oyo)=a Wo'2
OVOH |
HOME %%6 ‘pauTquod R
¢ SvoH O TINTOS 1-91
St _ ' _ *Tog  Tosul
"3dd 2-91
. HOME %56 €-9T 2-9T T-9T 9 _
A ¢ -
(vo)ys Fo'z| oVOH S(ov0)=a o'z ’ HO®N %0T
uoTINTOS aTqnTOSuUL _
F.Hom —— ‘ uoIjnTeg ~ ITQNIOSUT
<1 *Hom demﬁH
_ i
HO®M %1 mwpmmﬁmm HO'=N *oa,
1-,8 *3dd spuxp VOH Gt
pIedSTQ aTqniosul an
LT
‘ ‘Tos : "Tosuz
s®e .:H
93BUdTSaQq _
se .
HO®N %T syBudTSaq
2-.3 "3dd sprapy 2=, -"3dd spnip ,
@ "3dd spnap
qonpoad TeuTr] SAT3 02
HOMI %G6 Pu® OYOH A
T A TN
8 f3 9 6 f HOM %56
OVOH UT

£q peyeToST HO®N %0T (ovo)eg uwata ‘uw3dd TeuoTyORIZ
SuoT}OBII TIV aTqurosug ToTINTOS IS8T
STqnTosur aTqnTos
S HO®N %0T
g "3dd spnIp

T-.0 "3dd spnip

- g T
L

UOT3BITITING

WV 3dd
|pnad




-96-

immediate precipitation procedures were identical for each batch. The holocellu-
lose from each batch was placed in 2 ten-inch vacuum desiccators. Three extrac-
tions for one-half hour each were carried out for each of the following concentra-
tions: (1) O.1N NaOH, (2) 10% NaOH, (3) 18% NaOH, (4) 18% NaOH and 4% H5B05, and
(5) wash water. The volume-to-weight ratio of the solution to ovendry holocellu-
lose was 10:1. A vacuum was applied during all extractions in order to aid in

penetration and minimize degradation.

After each extraction, the solution was removed from the holocellulose by
filtration on a large bench Buchner funnel without filter paper and the fines
removed from this solution by filtration on a large fritted glass funnel. This
procedure markedly decreased the filtration time and allowed a one-half hour
extraction schedule to be maintained. A yield of the large-scale residue was
not determined but in an identical small-scale experiment 40.2% of the ovendry

holocellulose was extracted.

Immediately after each extraction, 2.0M barium acetate solution was added
to cause precipitation. The resulting barium ion concentrations were 0. 10M,
0.10M, 0.10M, 0.20M, and 0.20M for the 0.1N sodium hydroxide solution, 10% sodium
hydroxide solution, 18% sodium hydroxide solution, 18% sodium hydroxide containing
4% voric acid solution, and the final water wash, respectively. The three extrac-
tion solutions for each concentration were then placed in a five-gallon pickle
Jjar and the precipitates allowed to settle for about 12 hours. The top solution
was then siphoned off and the remaining precipitate filtered. A large bench
Buchner funnel covered with coarse filter paper sandwiched between two sheets of
nylon allowed for fairly rapid filtration. Only a small amount of the O.1N
precipitate was collected due to the difficulty of filtering. The 10% precipitate

was centrifuged rather than filtered to prevent mechanical losses.
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- The barium precipitates were then slurried in acetic acid solutions main-
tained at pH 4-5 by addition of glacial acetic acid. Ice was added to prevent
the temperature from rising considerably above room temperature. The following
amounts of sodium chlorite were then added for each batch: 0.1N (11.00 g.), 10%
(5.50 g. ), 18% (1.10 g.), 18 and 4% (1.10 g. ), wash (1.10 g.). The delignifica-

tion reaction was carried out overnight.

The "ecrude" precipitates were then isolated. The insoluble precipitates
were centrifuged from the 0.1N and the 18% solutions and the soluble fractions
were collected by precipitating with addition of an equal volume of 95% ethanol.
The 10 and 18% and 4% solutions contained very little insoluble precipitate and,
therefore, the entire soluble fractions were collécted by addition of an equal
volume of 95% ethanol. The insoluble precipitate from the wash solution was
removed by centrifugation and the supernatant was made about 10% in NaOH by
addition of 20% NaOH solution. The resulting precipitate was removed by centri-

fugation, slurried in 1N acetic acid, and reprecipitated with 95% ethanol.
PURIFICATION OF "CRUDE" FRACTIONS

Purification of 0.1N Precipitate

An attempt was made to obtain a galactoglucomannan from this precipitate
by dissolving in a 1% sodium hydroxide solution and adding an equal volume of
Fehling solution. However, the attempt failed and no precipitate was obtained
upen standing overnight. Apparently, the galactoglucomannan was not present in
sufficient quantity to form a precipitate. A rather involved procedure employ-
ing precipitation with barium acetate and Fehling solution was then used to

obtain three fractions designated as Fractions 1, 2, and 3.
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Purification of the 10% Precipitate

The 10% precipitate was the largest fraction. It was decided to precipitate
the hemicelluloses fractionally from an alkaline solution and to divide the 10%
precipitate into two batches in order to keep the time of contact between the
hemicellulose and the solution to a minimum. The precipitate was first slurried
in 2.2 liters of 10% NaOH solution for one-half hour. The insoluble precipitate
was then removed and reslurried in 2.2 liters of 10% NaOH solution to give a
second solution. After 2-1/2 hours the insoluble precipitate (which constituted
the bulk of the original precipitate) was removed by centrifugation from the
second solution. Fractional precipitation was then carried out on both solutions
by the gradual addition of 2.0M barium acetate solution. The fractionation

sequence is reported in Table XIII.

TABLE XIII
FRACTIONATION OF 10% PRECIPITATE

1st Solution

Fraction Reslurried L 5 6 7
Resulting
Ba*" concn. Insol. 0.035M 0.08M 0.15M 0.20M

2nd Solution

Fraction 8 9 10 11
Resulting
Ba'" concn. Tnsol. 0.03M 0.15M 0.20M

A1l precipitates were slurried in acetic acid solution maintained at pH 4-5

and reprecipitated by addition of an equal volume of 95% ethanol. The dilute acetic

acid solution of Fraction 8 contained a small amount of insoluble precipitate and

this was removed by centrifugation and discarded before the ethanol addition.
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Purification of 18% Precipitates

The insoluble 18% Precipitate was slurried in 1N acetic acid and repre-
cipitated by the addition of an equal volume of 95% ethanol. This fraction

was designated as Fraction 12.

The soluble 18% precipitate was slurried in 4.4 liters of 1% NaOH solution.
After standing for two hours, the insoluble fraction (which constituted the bulk
of the original precipitate) was removed by centrifugation, slurried in lﬁ acetic
acid, and reprecipitated by addition of an equal volume of 95% ethanol. This

fraction was designated as Fraction 13.

The supernatant from the 1% NaOH solution was made 0.05M in barium ion
concentration. The solution was discarded since only a small amount of precipi-

tate was formed.

Purification of 18 and 4% Precipitate

The 18 and 4% precipitate was considered in a sufficiently pure state and
therefore no further purification was carried out. This fraction was designated

as Fraction 1kL.

Purification of Wash Precipitates

The insoluble wash precipitate was slurried in 4.4 liters of l% NaQCH solu-

tion for six hours. The insoluble fraction was then removed by centrifugation,

slurried in 1N acetic acid, and reprecipitated by addition of an equal volume of

95% ethanol. This fraction was designated as Fraction 15.

The l% NaOH supernatant was made 0.05M in bérium ion concentration by addi-
tion of 2.0M barlium acetate solution. This caused the formation of precipitate
which was collected by centrifugation, slurried in 1N acetic acid, and repre-
cipitated by the addition of 95% ethanol. This fraction was designated as Fraction

16. The above supernatant was tested by making the solution 0.20M in barium




-100-

ion concentration but only a small amount of precipitate was formed and the solu-

tion was therefore discarded.

The original soluble wash precipitate was in a sufficiently pure state and

was not treated any further. This fraction was designated as Fraction 17.
CHARACTERIZATION OF THE PURIFIED FRACTIONS

The Fractions 1 through 17 were then hydrolyzed with 72% sulfuric acid (Q )
and subjected to qualitative sugar analysis on a chromatogram. From the results
of this analysis it was decided to attempt a further purification of Fractions
10 and 16 and they were set aside for further study. The quantity of Fraction 2
was so minute that it was completely used up in the qualitative analysis. The
other fractions were slurried in acetic acid solution maintained at pH 3-5 and
dialyzed in cellophane bags against distilled water for 12 to 18 days (the dis-
tilled water was acidified the first night in order to facilitate removal of
inorganic salts). After dialysis, the solutions were concentrated by evaporation

and freeze dried.

All fractions appeared white or a shade of white after freeze drying.
Fractions 1 and 3 had a gritty feel, while all other fractions were in a light
fluffy state. Although no change in sugar content was expected during dialysis,
evaporation, and freeze drying, a check was made by reanalyzing Fraction 7 and
Fraction 8 after freeze drying. As was expected, no change in sugar content
occurred. Fraction 3 failed to give a spot on a chromatogram after hydrolyzing
as the ethanol paste and was analyzed again after freeze drying. It again failed
to give a spot and this evidence, coupled with its gritty feel indicated it was
an inorganic material. Moisture contents and ovendry yields were then determined
and are reported in Table XIV along with appearances of the ethanol pastes and

qualitative sugar analyses.
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FURTHER PURIFICATION OF FRACTIONS 10 AND 16

Purification of Fraction EQ

Fraction 10 was a galactoglucomannan with a xylose impurity. An attempt

was made to remove the xXylose impurity with the following fractionation procedure.
Fraction 10 was slurried in a O.1N NaOH solution, the insoluble portion was re-
moved by centrifugation, and 2.0M barium acetate solution added to obtain a total
of 4 fractions. The precipitates were slurried in 1N acetic acid, reprecipitated
by addition of 95% ethanol, collected, and analyzed qualitatively for sugar con-
tent. The Fractions 10-2, 10-3, and 10-4 were identical and thus were combined,
dialyzed, concentrated, and freeze dried. The results, together with moisture

content and ovendry yield, are reported in Table XV.

TABLE XV

REFRACTIONATION OF FRACTION 10

Fraction 10-1 10-2 10-3 10-4

Resulting conecn.

of barium ion Insol. 0.10M 0.15M 0.20M

Appearance of light light light

ethanol paste cream yellow yellow yellow

Qual. sugar Gl."’ab M. > M, > M, >

analysis Gal. > Gl. Gl.~ GlL.
M. > Gal. > Gal. > Gal. >
X. > X. > X. > X >
A.(T) U) A(T) |

Redesignafion \\\““——”//

of fractions -- 10-2,3,4

0.D. yield

(freeze dried) -- 0.4 g.

Moisture content
(freeze dried) - 9.60%

ar«aDesig,nates similar to.
> Designates greater than.
Columns in the table are read vertically.
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The conclusion is that the fractionation did not result in a change in the
original sugar content and the Fraction 10-2,3,4 is a galactoglucomannan with a

xylose impurity.

Purification of Fraction 16

Fraction 16 was a galactose-rich glucomannan with a possible glucose im-
purity. An attempt was made to remove the glucose impurity with the following
fractionation procedure. Fraction 16 was slurried in a 10% NaOH solution. The
inseluble portion was removed by centrifugation and reslurried in a 10% NaOH
solution to give a second solution. The insoluble precipitate from the second

solution was removed and designated as 16-1.

The centrifugate from the first solution was made O.lSM in barium ion con-
centration and the resulting precipitate removed and designated as 16-2. The
centrifugate from the second solution was made 0.15M in barium ion concentration
and the resulting precipitate removed and designated as 16-3. All precipitates
were slurried in 1N acetic acid, reprecipitated by addition of 95% ethanol,
collected, and analyzed for qualitative sugar content. The three fractions
were identical in sugar content and they were combined, dialyzed, concentrated,
and freeze dried. The results, together with moisture contents and ovendry

yields are reported in Table XVI.

The conclusion is that the fractionation did not result in a change in the
original sugar content and the Fraction 16-1,2,3 is galactose-rich glucomannan

with a small amount of xylose impurity.
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TABLE XVI

REFRACTIONATION OF FRACTION 16

Fraction 16-1 16-2 16-3

Appearance of light light cream

ethanol paste brown yellow

Qual. sugar M. >Z b M. > M. >

analysis Gal.wv Gal.~ Gal.~
GL. > Gl. > Gl. >
X, > X, > X, >

Redesignation of
fractions 16-1,2,3

0.D. yield, g.
(freeze dried) 2.2

Moisture content, %
(freeze dried) 4.80

& Designates greater than.
~ Designates similar to.
Columns in the table are read vertically.
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APPENDIX IV
CHARACTERIZATION OF HOLOCELLULOSE
AND EXTRACTED RESIDUE

The results of the characterization of the holocellulose are presented in
Tables XVII and XVIII. The paper tests were carried out according to TAPPI
Standard T 220 m-60. The following analytical procedures were used: Klason
lignin (I.M. 13), sulfated ash (ignited at 650°C.), sugar analysis [Saeman, J. F.,.
et al. (23)], carboxyl [Davidson, G. J., and Nevell, T. P., J. Textile Institute
39:T93(1948)]1, carbonyl [Gladding, E. K., and Purves, C. B., Paper Trade J. 116,
no. 14:26(1943)], methoxyl (TAPPI T 209 m-45), viscosity (TAPPI T 230 sm-50),
soluble lignin [Hess, C. L., Tappi 35, no. 7:312-20(July, 1952)] - Absorbance at
280 myu divided by factor of 18, burst (TAPPI T 403 m), tear (TAPPI T L1L),
Instron tensile (TAPPI T 404 in which an I.P.C. line-type specimen clamp was
employed), zero-span tensile (TAPPI T 231 sm-60 modified by Wink, et al., Tappi,
in press) and z-direction tensile. In order to form a handsheet for strength
measurements it was necessary to steep the fibers in O.1N sodium hydroxide for

M-l/E hours. Thompson (;1) has found that this procedure does not effect the

strength properties of the handsheet.

The manncse content and the arabinose content are slightly less and the
glucose content slightly greater than the corresponding sugar contents of a
black spruce holocellulose prepared by Thompson (;Z) in a similar manner. The
Klason lignin content of the holocellulose prepared in this study was a little
greater than that of Thompson's holocellulose (1.1%) and the soluble lignin

content was in the 7—15% range obtained by Thompson.

In general, the holocellulose prepared in this study is similar to the black
spruce holocellulose prepared by Thompson. The carboxyl content obtained in this

study was close to the value 27 mmol./lOO g. for Thompson's holocellulose. These
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TABLE XVII

CHEMICAL CHARACTERIZATION OF HOLOCELLULOSE

Yield, % 75.1

Galac£an, % 3. 42 ( 4.22)?
Glucan, % 56.2 (69.26)
Mennan, % . 2.4 (15.28)
Xylan, % 7.78 ( 9.59)
Araban, % 1.3L4 ( 1.65)

Total carbohydrate content, % 81.14
Klason lignin, % 2.30
Soluble lignin, % 14.0

Total lignin content, % 16.3
Sulfated ash (as sodium chlorite), % 5.77

Total accounted for, % 103.2b
Carboxyl content, mmol./100 g. 22.8
Carbonyl content, mmol./100 g. 22.3
Methoxyl, % 1.76
Methoxyl of total lignin, % 10.80°
Viscosity did not dissolve completely

in cupriethylenediamine

%( ) = based on neutral carbohydrate content.

bSum of the sugar content, the total lignin content, and the ash

content.

“Assumes that the entire methoxyl content of the holocellulose is
due to the total lignin content.
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TABLE XVIII
PHYSICAL CHARACTERIZATION OF HOLOCELLULOSE
Burst = 133 points/100 1lb.
Tear factor = 0.89
Instron tensile = 37.0 1b./inch
Zero-span tensile = 63.4 1b./inch

z-Direction tensile = 16.8 kg./sq. cm.

relatively high values of carboxyl content are characteristic of the room tem-
perature sodium chlorite holocellulose and may be due to the high retention of
hemicelluloses containing uronic acid groups and terminal oxidized end groups
(;1). The strength properties of the holocellulose in this study are comparable

fo the values which were obtained by Thompson.

The results from the characterization of the residue remaining after ex-
traction are presented in Table XIX. The per cent of material extracted based
on the total amount of holocellulose for the individual sugar residues and the
Klason and soluble lignin is presented in Table XX. Also presented in this
table 1s the per cent of each individual component extracted based on the amount
of that component originally present in the holocellulose. The values presented
in this table were calculated from a material balance on the holocellulose and

residue.

Galactose is more resistant to extracfion than the other hemicellulose sugars,
excluding the 17.4% of glucose extracted, and only 57.0% of the galactose residues
were extracted from the holocellulose by the exhaustive extraction procedure
employed. In contrast to this behavior, 86.1% of the xylose residues were ex-
tracted. The sugar ratios for the holocellulose, the extract, the residue, and

a typical glucomannan fraction from this study are presented in Table XXI.
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TABLE XIX

Yield, % 59.8°%

Galactan, % 2.6 ( 2.76)b
Glucan, % 77.6 (87.16)
Mannan, % 6.66 ( 7.48)
Xylan, % 1.81 ( 2.03)
Araban, % 0. 50 ( 0.56)

Total carbohydrate content, %

Klason lignin, %
Soluble lignin, %
Total -lignin content, %

Sulfated ash (as sodium chlorite), %

Total accounted for, %

aBased on holocellulose.

89. 03
0.80
h. 72
5.52
1.94

9. 49°¢

2( ) = based on neutral carbohydrate content.
Sum of the sugar content, the total lignin content, and the

ash content.

TABLE XX

AMOUNT OF MATERIAL EXTRACTED FROM HOLOCELLULOSE

Component

Galactan, %

Glucan, %

Mennan, %

Xylan, %

Araban, %

Total carbohydrates, %
Klason lignin, %
Soluble lignin, %
Total lignin, %

Total carbohydrates
and lignin, %

Holocellulose Extracted, %

1.95
9.80
8. k2
6.70
1,04
27.90
1.82
11.18
13.00

40. 90

Original ComponentL
Extracted, %
57.02
17. kb
67.90
86.12
77.61
34.39
79.15
79.86
79.775

L1.97

aBased on the amount of component originally present in the holocellulose.
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TABLE XXI

SUGAR RATIOS OF HOLOCELLULOSE, EXTRACT, AND RESIDUE

Sugar Ratio Sugar Ratio

Sugar of Holo- Sugar Ratio Sugar Ratio of Fraction
Residue cellulose of ExtractP of Residue o2(1)
Galactan 1.05 0.88 1.40 O.él
Glucan 7% b b2 7% 1.00
Mannan 3.80° ©3.80° 3.80° 3.88
Xylan ' 2.38 3.02 1.0% 0.12
Araban 0.41 0. 47 0.29 0

aNo estimate is available of the amount of noncellulosic glucose residues present.
Calculated from a material balance.

CAssumed 3.80 to compare with the typical sugar ratio of Fraction 2(1).

From this table it is seen that a relatively high amount of galactose remains
in the residue after extraction. These resistant galactose residues may be present
in the form of a galactose-rich glucomannan such as Fraction 14 which could only
be extracted with 18% NaOH containing 4% EBBOB. The assumption is made that all
the resistant mannose and galéctose in the extracted residue are present in the
forﬁ of a glucomannan with a glucose:mannose ratio of 1:3.8 which is typical of
most of the purified glucomannan fractions in this study. Then it can be con-
cluded that a glucomannan with éalactose:glucose:mannose = 1.4:1.0:3.8 and
accounting for 32.1% of the mannose residues in the holocellulose is extremely
resistant to extraction. Also extremely resistant to extraction are xylose and
arabinose residues which amount to 17.5% of the resistant hemicelluloses in the
extracted residue. These xylose residues account for 15.9% of the xylose

originally present in the holocellulose.

From Table XXI it can be seen that the extract contains considerably more

glucose than the typical amount present in glucomannans and galactoglucomannans
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which generally have a glucose:mannose ratio of 1:3.0 to kilL. Since gluco-
mannans and galactoglucomannans are the only known glucose-containing hemi-
celluloses in gymnosperms, the major portion of these extracted glucose residues

are probably present in the form of glucans.

It is interesting to note from Table XX that the per cent of Klason lignin
and acld-soluble lignin extracted based on the amount of each component origin-
ally present in the holocellulose were essentially the same with values of 79.1
and 79.9%, respectively. 1In Appendix I, p. 80, the possibility of the hemi-
celiluloses being chemically combined with the lignin is discussed. In order to
check for a correlation between the total lignin content and the hemicellulose
content, the per cent lignin based on the sum of the hemicellulose and lignin
content in the holocellulose, in the extract, and in the residue was calculated
as follows: The total noncellulosic sugar content was calculated by making the
assumption that the ratioc of the noncellulosic glucose units to the mannose
units in the holocellulose and the residue is equal to the glucose-to-mannose
ratio in the extract. The per cent lignin calculated in this manner is 30.2,
31.8, and 22.4% for the holocellulose, extract, and residue, respectively. If
the assumption is made that the noncellulosic glucose units in the residue are
all present in the form of a glucomannan with glucose:manncse = 1.0:3.8 then
the per cent lignin based on the sum of the lignin and hemicellulose content in
the residue is 29.5%. It thus appears that the lignin and the hemicellulose are
removed together and that there may be a close association of the lignin and the
hemicellulose components in the black spruce holocellulose. Furthermore, this
lignin contains the same relative amounts of Klason lignin and soluble lignin
in the holocellulose, extract, and residue as seen by the ratios of soluble lignin
to Klason lignin of 6.09, 6.1k, and 5.90, respectively. The above discussion leads

to the speculation that the resistant hemicelluloses in the residue cannot be
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readily extracted because they are chemically linked to the residual lignin in

the residue.
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APPENDIX V

ELECTROPHORES IS
EXPERIMENTAL

Free boundary electrophoresis experiments were carried out on Fractions 8
and 9 in order to determine the extent of chemical homogeneity of these frac-
tions. In order to obtain a complete solution of the glucomannan fractions at
not too high a pH, it was necessary first to dissolve them in 2M NaOH and 1M
HsBOg (at pH 12.6) and then to dilute with 0.6M HyBO; and water to give a re-
sulting solution of 0.296M in borate ion (111). The pH of this final solution
was 9.2 and the concentration of glucomannan was 0.5 g./lOO ml. This procedure
was necessary as the glucomannan fractions, if added directly, could not be
completely dissolved in sodium borate solutions in the pH range of 9 to 10.
The temperature was 30.0°C., and the current applied across the Tiselius cell
was 16 ma. The runs were continued for five hours until the boundaries were

out of view.
RESULTS

The results of electrophoresis of Fractions 8 and 9 were very similar.
The ascending boundary of 8 on careful examination shows five small faster
moving peaks (two of which can reasonably be grouped together and three which
can reasonably be grouped together) and one small, very sharp slower moving
peak. The descending boundary of Fraction 8 has a small faster moving peak and
a small slower moving peak. The ascending boundary of 9 has at least two small
faster moving peaks and one small, fairly sharp slower moving peak. The descend-

ing boundary of 9 has a small faster moving peak and a small slower moving peak.
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The area under each peak is proportional to the concentraticon of the migrating
material (112, 113). A photograph of the schlieren pattern was enlarged ten times
and the area under each peak measured with a planimeter. The percentage of each
peak for the ascending and descending boﬁndaries of Fractions 8 and 9 are given

in Table XXIT.

TABLE XXIT

PERCENTAGE OF DIFFERENT POLYSACCHARIDES
IN FRACTIONS 8 AND 9 DETERMINED BY ELECTROPHORESIS

Percentage of Peak

Fraction | Boundary Fastest Middle Slowest
8 Ascending 3.3 (1st 89.7 b1
2 peaks)
2.9 (2nd
3 peaks) |
8 Descending 2.1 97.2 .7
9 Ascending 3.6 (1st) 90.0 3.8
2.6 (2nd)
9 Descending 3.4 95.7 0.9

INTERPRETATION OF RESULTS

The faster moving peéks may be due to impurities of one or more of the
following polysaccharides wﬁich are known to move faster on electrophoresis
in a borate buffer than a glucomannan, xylan, galactan, and/or galactogluco-
mannan (114-116). This amounts to 2 to 6% in:Fraction 8 and 3 to 6% in Fraction
9. The slower moving peaks might be due to a glucan impurity. This amounts to
1 to 4% in Fraction 8 and 1 to 4% in Fraction 9. The slower moving peaks can
also be explained through the formation of aggregates, possibly due to cross-
linking by means of a borate complex (117). This explanation would account for
the fact that the trailing peaks are sharper and larger for the ascending‘bound-

ary than the descending boundary.
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APPENDIX VI

ACETYTIATION OF THE MAIN GLUCOMANNAN FRACTIONS
PRELIMINARY ACETYLATIONS

It was initially attempted to acetylate Fraction 8 according to the method
employed by Koleske (g;). This resulted in a low yield and law acetyl content
and therefore it was necessary to carry out a series of trial acetylations in
order to determine which method would give a fully acetylated glucomannan in
sufficient yield. The procedures were modifications of the method used by
Koleske which is described as follows on a one gram of polysaccharide basis.

One gram of glucomannan is shaken in 17.5 milliliters of formamide for three
hours. Pyridine (32.5 ml.) is added and the mixture is shaken for two hours.
Acetic anhydride (25.0 ml.) is added over three hours with shaking. The re-
action mixture is allowed to stand for fourteen hours and then the glucomannan
acetate is precipitated in a 5% methanol solution to which ice has been added.
The precipitate is washed successively with 2% hydrochloric acid in distilled
water, 95% ethanol, absolute ethanol, petroleum ether, and finally dried. Mod i -
fications included increases in the reaction time, increases in the amount of
acetic anhydride, changes in the precipitation solution, collection of the
precipitate by centrifugation rather than filtration, and changes in the washing

solutions. The results are presented in Table XXIII.

The conclusions from these acetylations are: (1) Centrifugation is superior
to filtration as some polysaccharide is lost through the filter and the filter
becomes clogged quickly. (2) Iength of reaction time is the important variable
in obtaining complete acetylation. A reaction time of four additional days gave
a sufficiently high acetyl content. (3) A methanol wash is superior to a water

wash as the glucomannan acetate is peptized to a finely divided state in water
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and cannot be completely collected. (4) Preliminary experiments on freeze drying
the glucomannan acetate from a water slurry indicated that the products obtained
by solvent exchanging and by freeze drying were similar in their dried state and

solubility properties.

TABLE XXIII
TRIAL ACETYLATIONS OF THE MAIN GLUCOMANNAN FRACTION 8

% of
Theoretical b
Sample Change from Koleske's Procedure Yield® Acetyl, %

¢

1 None 57.% 20.14°

Ppt. into 44.5% ethanol with ice.
Collect ppt. by centrifugation. 39.5 39,84

N

Reacts 1 additional day.
Ppt. into 2% HC1 solution with ice. 4
Collect ppt. by centrifugation. 51.1 40. 46

N
NN NS

N

.Reacts 4 additional days.

Ppt. into 2% HC1 solution with ice.

Collect ppt. by centrifugation.

Wash with methanol instead of water. 4.0 43,00

— Rl — e

e Tyw

Reacts L additional days.

Ppt. into 100% methanol with ice. .

Collect ppt. by centrifugation.

Wash with 2% HC1 in methanol.

Wash with methanol instead of water. 68.2 42.69

= \N O

Amount of acetic anhydride increased

1.5 times.

Reacts 4 additional days.

Ppt. into 2% HC1l solution with ice.

Collect ppt. by centrifugation.

Wash with methanol instead of water. 4.7 42,78

P N —~ N P~~~ —

U1 WO

aBased on the triacetate.

Doesn't consider ash content.

Appeared to have some grit from glass filter which would result in too high
a2 determined yield and too low a determined acetyl content.
Ash = 0.619%.
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ACETYYL, ANALYSIS

Acetyl contents were determined by the method of Eberstadt as modified by
Genung and Mallatt (;}Q). This method involves a saponification of the acetate
groups with sodium hydroxide and effectively measures any other acid groups
present as well as the acetate groups. Since the glucomannan fractions should

not contain any appreciable amount of carboxyl groups this error is negligible.

In order to conserve on material, the sample size was reduced from the
suggested 1 g. to 0.2 g. and all other quantities correspondingly reduced.
The accuracy was checked on standard cellulose acetate (hO.S% acetyl). The
measured acetyl content was U40.4% with a precision of + 0.1% on duplicate samples.
The burets were calibrated but this was found to have only a small effect on the

determined acetyl contents and the calibrations were not used.
LARGE-SCALE ACETYILATION

The large-scale acetylations were carried out by the procedure used for
Sample 6 of the trial acetylations with the exception that a 95% ethanol wash
was used instead of the methanol wash and the precipitates were isolated by
freeze drying from a water slurry instead of solvent exchanging. The results
of the acetylations are presented in Table XXIV. The fully acetylated deriva-
tives were obtained in yields of 19.8 grams and 5.10 grams for Fractions 8 and

9, respectively. The triacetate derivatives are designated as 8-A and 9-A.

Color formation was appreciable in all the acetylation solutions and after
the first 14 hours of reaction the solutions were very dark. Although some of
this color is removed in the following washing steps, much of it remained with
the isolated fractions, giving them a light brown tint. The same color forma-

tion occurs in the acetylation of higher molecular weight polysaccharides but
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in those cases it is readily removed with washing. In order to determine if the
color formation is due to the presence of the glucomannan, a blank acetylation
was carried out. Color formation occurred in the absence of a polysaccharide
but at a lower rate. However, after four days of reaction the blank solution

was very dark.

TABLE XXIV
LARGE-SCALE ACETYLATION

Per Cent of

Fraction Theoretical Yield®’P Ash, % Acetyl, % ps?
8-A 75.2 2.28 Li. 25 2.97
9-A T2.6 2.53 bh.61 | 2.9

@

Ash content not taken into account.
Based on the triacetate.

Ash content taken into account.
Degree of substitution.

&0 o

The mechanism of color formation is not known but it is probably due to a
reaction of pyridine. Wilson and Hughes (;lg) found that dry pyridine reacts
with dry acetic anhydride to give a dark resinous condensation product; however,
this undesirable side reaction could be prevented 1if water was present in an
amount of 0.3 to 0.5% and the pyridine was previously purified. Thus, in future
acetylations of polysaccharides it appears possible to eliminate the color forma-

tion in cases where this may be detrimental.
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APPENDIX VII

SOLUBILITY OF THE GLUCOMANNAN TRIACETATE
THEOCRY

No satisfactory quantitative theory exists for the solubility of polysac-
charides and polysaccharide derivatives. A quantitative theory has been developed
for nonpolar polymers like rubber or polystyrene which is based on the concept of
the cohesive energy density (energy of vaporization per cubic centimeter) of the
polymer and solvent (lgg). Nonpolar polymers are found to be soluble in solvents
with a similar cohesive energy density but the theory does not yield consistent
results when applied to polysaccharide derivatives (gi, ;gg). This behavior is
due to the polar nature of the polysaccharide molecule. In order that a polymer
containing polar groups be made soluble, it is necessary to solvate these groups
through some kind of positive interaction between the polymer and the solvent
(121-125). For polysaccharide acetates the important polar group is the carbonyl
group of the ester <l§2: ;gi). This group behaves as a proton acceptor and there-
fore it is found that solvents for polysaccharide acetates are genefally proton

donors.

This discussion, which is taken from a review article by Howlett and
Urquhart (123), is presented to explain the necessity of a polymer-solvent

interaction in order to dissolve polysaccharides and their derivatives.

In order to dissolve, a polymer must have a decrease in free energy, AF =
AH-T AS. ‘The product of the temperature, T, and the entropy, A4S, is always
positive in solution processes. The rigidity of the polysaccharide chain mini-
mizes the entropy term and thus the problem is one of keeping the heat term,

AH, at as low a value as possible. The term AH is the resultant of the: energy
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absorbed in breaking polymer-polymer and solvent-solvent bonds and the energy
emitted in forming polymer-solvent bonds. The energy involved in solvent-solvent
bonds is small; however, for polysaccharides and their derivatives a large amount
of energy is required in breaking polymer-polymer bonds. Therefore, in order to
keep AH at a low positive or negative value, a large amount of energy must be

liberated in the formation of the polymer-solvent bonds.

This, in effect, means that a relatively strong interaction between solvent
and polymer, commenly called solvation, is a prerequisite to solution of poly-
saccharides and their‘derivatives. This behavior is quite different from the
solubility behavior of nonpolar synthetic polymers in which only a small amount

of energy 1is necessary to break polymer-polymer bonds.
RESULTS

The solubility of Fraction 8-A was investigated in 172 solvents. The
concentration was 0.005 g./ml. The solutions were shaken overnight in small
test tubes containing glass rods to insure complete dispersion of the polymer
in the solvent. Solubility ratings were then made according to the appearance
of the solution. The classifications in order of decreasing solubility are
S = soluble by eye (clear solution), S-AS' = slight cloudiness or a few fine
particles visible, AS' = hazy, AS = almost soluble but a little insoluble, P =

partially soluble, and I = insoluble.

In order to interpret the results, solvents having a classification of S5,
S-AS', and AS' were considered as having a relatively high degree of solvent
power and solvents with the classification of I were considered as nonsolvents.
It was found that the data could be correlated quite well using the concept that
in order to be a solvent, a compound must be able to donate a proton in the form

of a plus dipole to the carbonyl group of the ester. Of the 53 solvents with a
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high degree of solvent power (S, S-AS', and AS'), 46 could be placed in classes
of compounds that are known to have some plus dipole character, generally in the
form of a proton. The plus dipole character of many of the classes is obvious.
For example phenols, cyanides, aromatic nitro compounds, chlorinated aliphatic
compounds, alcohols substituted with electron attracting groups, and aromatic
rings substituted with electron attracting groups are known to have some proton
donating character. Others such as conjugated ketones and aldehydes, pyridine
rings, amides, and phenylamines are amphoteric and their plus dipole character
is apparent when the resonance forms are considered. For example, the resonance

forms of phenylamine can be shown to have a plus dipole character:

NH, +NH2 +1\1H2 +NH2

A1l of the nonsolvents (I) could be placed in classes which were either inert
compounds such as hydrocarbons or compounds whose primary behavior was that of
an electron donor such as ethers, esters, alcohols, aliphatic amines, or non-
conjugated ketones. In any case not one of the nonsolvents exhibited appreciable
proton donating character. No attempt was made to classify the partial solvents

(AS ana P).

Table XXV lists compounds with a relatively high degree of solvent power,

Table XXVI nonsolvents, and Table XXVII partial solvents.




TABLE XXV

COMPOUNDS WITH A RELATIVELY HIGH DEGREE OF
SOLVENT POWER (S, S-AS', AND AS')

Phenols

p-chlorophenol (S)

m-cresol (S-AS')
2-methoxy-4-methylphenol (S-AS')
o-chlorophenol (S-AS')
3-trifluoromethylphenol (S-AS')
eugenol (AS')

o-bromphenol (AS')

Alcohols Substituted with
Electron Attracting Groups

furfuryl alcohol (S)
2-phenoxylethanol (S)
benzyl alcohol (AS')

Conjugated Aldehydes & Ketones

furfural (S)
benzaldehyde (S-AS')
acetophenone (S-AS')
anisaldehyde (AS')
acetylacetone (AS')
cyclohexanone (AS')
carvone (AS')

Amides
formamide (S-AS')

Unsymmetrical Substituted Double
Bond Compounds

amylene (AS')
limonene (AS")

Pyridine Rings

pyridine (S-AS')
a-picoline (S-

B-picoline (8-
y-picoline (S-
2-amino-3-methyl

AS')
AS')
As')
pyridine (AS')

Cyanides

benzyl cyanide (S-AS')
benzonitrile (AS')

Aromatic Nitro Compounds

nitrobenzene (AS')

Chlorinated Aliphatic Compounds

1,2,3-trichloropropane (S)
1,3-dichloro-2-propancl (S)
1,1,2,2-tetrachloroethane (S-AS')
1,1,2-trichloroethane (S-AS')
chloroform (AS')
1,2-dichlorcethane (AS')
2-chloroethanol (AS')
dichloroethylether (AS')

Esters & Ethers Substituted on
Aromatic Ring

phenyl acetate (S-AS')

ethyl benzenesulfonate (AS')
ethyl benzoate (AS')

methyl benzoate (AS')
phenetole (AS')

Phenyl Amines

2-amino picoline (S)
phenyl hydrazine (S)
aniline (S-AS')

m-toluidine (S-AS')

Sulfoxides
dimethyl sulfoxide (S-AS')

Compounds Not Readily Explainable
ethanolamine (S)
morpholine (S)
benzylamine (S-AS')
cyclohexylamine (S-AS')

Benzene g?enzene (s-AS")

Amines

Derivatives) COLTuene (s-45")
xylene (S-AS')




Esters

triethyl citrate
dibutyl phthalate
butyl acetate
diethyl carbonate
n-propyl acetate
n-butyl d-tartrate
n-butyl oxalate
ethyl propionate
octyl acetate
ethyl butyrate

Ethers

benzyl ether

iso-amyl ether

n-hexyl ether

phenyl ether
1,1,3,3-tetraethoxypropane
diethylether

petroleum ether

Nonconjugated Aldehydes
and Ketones

formaldehyde
di-isopropyl ketone
diethyl ketone
methyl n-amyl ketone

Acetals

diethyl acetal
dimethyl acetal

Mono-Halides

ethyl bromide
butyl bromide
a-bromonaphthalene
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TABLE XXVI
NONSOLVENTS (I)
Alcohols

isopropyl alcohol
terpineol
diethyl carbinol
iso-amyl alcohol
butanol

methyl cellosolve
ethylene glycol
allyl alcohol
1,5-propane diol
ethyl alcohol
methyl alcohol
octanol

glycerine

water

Aliphatic Amines
diethyl amine
diethyl aniline
di-n-propylamine
Aliphatic Hydrocarbons
n-decane
n-heptane
diphenylmethane
Aromatic Hydrocarbons
1,2,3,4-tetra hydronaphthalene
l-chloronaphthalene
o-dichlorobenzene
m-dichlorobenzene
Sulfides
carbon disulfide

Isocyanates

phenyl isothiocyanate

aAlthough water is not an alcohol it is included in this class.
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TABLE XXVII

PARTIAL SOLVENTS (AS AND P)

AS

diethyl oxalate
acetic acid
ethylene dichloride
anisole

ethyl lactate
dichloromethane
nitromethane
dioxane

N, N-dimethyl formamide
chloracetonitrile
ethyl iodide

ethyl malonate

chlorobenzene acetonyl acetone propiophenone
phenyl ethyl alcohol diacetone alcohol trimethylene
mesitylene ethylene dichloride epichlorohydrin

P
trifluoroethanol acetonitrile tetrahydrofuran
chlorobenzene acetic anhydride acetone
ethyl acetate nitroethane carbon tetrachloride
cyclohexane hydroxymethyl-furfural methyl salicylate

3-bromo-1l-propanol
n-butylamine
cyclohexanol
acrylonitrile

methyl isopropyl ketone
acetal safrole

dihydro pyran
cyclohexene
o-nitrotoluene
ammonium hydroxide

(28-30%)

ethylene diamine

methyl acetate
methyl-iodide

methyl-ethyl ketone
cinnamaldehyde

frenchone

tripropionin
dicyclohexylamine

benzyl chloride .
2,2,3,3-tetrafluropropanol
1,1,1-trifluoro-2-propanol

DISCUSSION

vinyl acetate
triethylphosphate
gquinoline

ethylidene chloride
propionaldehyde

methyl propyl ketone
trimethylener chlorohydrin
diethanolamine

cineole
1,5-diflucro-2-propancl

The data indicate that the factor of primary importance in dissolving the

glucomannan triacetate (Fraction 8-A) is the solvation of the polymer in which

an oxygen atom such as that of the ester carbonyl group forms a hydrogen bond

with a proton donated by the solvent.

In further support of this hypothesis

examples are given in Table XXVIII of pairs of compounds which differ only in

their capacity to donate a proton and in all instances the better proton donor

is the better solvent.
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TABLE XXVIII

EVIDENCE FOR PROTON DONOR THEORY OF SOLVATION

Better Solvent and Reason Why Poorer Solvent
Better Proton Donor Poorer Solvent is Poorer Proton Donor
(1) CH-Cl5 (AS') C-Cl, (P) No ‘H available
(2) C1-CH,~CH,-OH (As") CHBCH?OH (1) Desirable inductive effect
of Cl group is absent
H
(3) CHO GHO The OCH group has an unde-
(s-45"') (As') sirable inductive effect on
the carbonyl resonance with
the ring
o
[ i
[ I
(&) CH3-C—CH2-C—CH3 (As') CHB-C-CH5 (P) Conjugation to the enol form
is not possible as with the
p-diketone
NH2 .
CHj—CHe-CHE-CHg—NHe (P) The aliphatic amine cannot
(5) (S-AS") exist in a resonance form
5 like aromatic amine

NH CH5\\\ //CH3 No H available on the
N

2 nitrogen group
(6) (S-As")
(1)

(7) C1-CH,-CH,-0-CH,-CH,C1 CH3-CH2-O-CHé-CH3 Desirable inductive effect
(s-as') (1) of Cl groups is absent




-125-

APPENDIX VIIT

FRACTIONATION OF THE GLUCOMANNAN TRIACETATE
PRELIMINARY INVESTIGATION OF SOLVENTS AND PRECIPITANTS

A preliminary investigation of nine promising solvents and six precipitants
for the glucomannan triacetate fraction 8-A was carried out in order to determine
which solvent and precipitant combination would be desirable for fractionation.

A portion of the acetylated glucomannan was insoluble in all solvents investigated.
The amount insoluble varied from 135 to 50%,and the ash content of the insoluble
material was about 2%. A measure of the relative size of the molecules going into
solution was obtained from intrinsic viscosity* determinations of the soluble
material which varied from 34 to 48 ml./g. in the various solvents. The effective-
ness ‘of various precipitants was investigated by determining (1) the initial
turbidity point (122, 126), and (2) the amount of soluble polymer recovered by
.addition of a given volume of precipitant. The solvent finally chosen for the
large-scale fractionation was pyridine and the precipitant was ligroin (65 to

90°C. ).
THEORY

There is a large volume of literature on the theoretical and practical
aspects of polymer fractionation (lg, EQZTEEE) and in particular much experi-
mental work has been done on cellulose acetate (19, 146-150). - It was concluded
from these references that fractional precipitation will be employed since for
any new ﬁolymer, this technique requires a minimum of trial and error to achieve

satisfactory fractionation.

*Intrinsic viscosity reported in ml./g. rather than the customary 100 ml./g.
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Fréctional precipitation consists of the slow addition of a precipitant to
a polymer solution until turbidity occurs, at which point the precipitated poly-
mer is removed. Fractionation according to molecular weight resui£s from the
separation of the solution into a polymer-rich precipitated phase and a super-

natant phase (31, 125, 128, 131, 143). Every polymer species is more soluble

in the precipitated phase but the higher the molecular weight of the polymer the
greater is the solubility in this phase. This is because the lower molecular
welight species have fewer units per molecule to interact with the less favorable
environment of the supernatant phase and consequently are distributed at more
nearly equal concentrations in the two phases. It is desirable that the polymer
precipitate in an amorphous form. If crystallization or aggregation occurs,

fractionation according to molecular weight will be hindered (121, 125, 128).

This 1s due to the slower rate of crystallization of the higher molecular weight

species.
FRACTIONATION PROCEDURE AND RESULTS

The only complete fractionation of a glucomannan acetate in the literature
was accomplished by the addition of methanol to a 9:1 tetrachloroethane:ethanol
solution (gg). A successful trial fractionation was carried out from tetra-
chloroethane by the addition of ethanel in this investigation, but the high
density of tetrachloroethane made it difficult to collect the first few frac-
tions quantitatively by centrifugation. This difficultylwas not encountered
with the solvent pyridine and the precipitant ligroin (65—90°C.). A fairly
dilute solution is necessary in order to get efficient fractionation. However,
for a low molecular weight polymer, satisfactory fractionation can be achieved
at a higher initial concentration than for a higher molecular weight polymer

(128). Twelve grams of the acetylated glucomannan Fraction 8-A were fractionated
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from a pyridine solution at an initial concentration of 0.5 g./100 ml., which
should be satisfactory for the relatively low molecular weight glucomannan. In
order to keep the insoluble material to a minimum, the solution was stirred and

shaken vigorously for two days and heated to 49°C. prior to fractionation.

For the>firs£ three fractions collected, the solution was warmed after the
turbid point was reached and allowed to cool slowly overnight with stirring
before collecting the precipitate. This was done in order to insure equilibrium
between the supernatant solution and the precipitate when it forms. However,
on standing for any length of time, the turbid solution formed agglomerates.
Therefore, in order to avoid the undesirable effect of aggregation, the precipi-
tate was collected immediately after the addition of ligroin for the ensuing
fractions. Fractions 5 and 6 were collected by evaporating the preceding super-
natant to 570 ana 100 ml., respectively, before the addition of ligroin. Frac-

tion 7 is the residue remaining after evaporation of the supernatant.

More homogeneous fractions are obtained if the initial fractions are combined

and reprecipitated (125, 129, 131, 132, 147, 150). Refractionation is more im-

portant for the higher molecular weight fractions which are more heterogeneous
than the last fractions precipitated. The first two fractions (la and 1b) were
combined and refractionated into three fractions [I(1), I(2), and I(3)]. The
next two fractions (2a and 2b) were combined and refractionated into two frac-
tions [2(1) and 2(2)]. Fraction 3 was refractionated into two fractions [3(1)
and 3(2)]. The original insoluble material was extracted again with pyridine
and two more fractions collected [Insol. (1) and Insol. (2)] plus the amount
that remained insoluble (Insol'. ). All‘refractionations were carried out from
a pyridine solution at approximately 0.5 g./lOO ml.. initial concentration. The

precipitates were isolated by freeze drying from a pyridine water solution at
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approximately a 1:3 ratio. This gave a light, fluffy product. Fraction 8-A was
recovered in a yield of 91.56%, The results of the fractionation of 8-A are

reported in Table XXIX.

Fraction 9-A is chemically identical to Fraction 8-A and is an acetylated
glucomannan of lower molecular weight. Three grams of Fraction 9-A were also
fractionated under the conditions used for 8-A. Fraction 9-A was recovered in a
yield of 98.37%. These results are reported in Table XXX. The fractionation of

the acetylated glucomannans is summarized in Fig. 12.

The color that was formed during the acetylation appears to be associated
preferentially with the lower molecular weight fractions. In order to determine
if any degradation had taken place in the pyridine solution during fractionation,
infrared spectra were run for the original Fraction 8-A and Fractions 2(1) and
3(2). The proper concentration of each KBr pellet was adjusted by trial and
error. Then, in an attempt to get rid of as much water as possible, the pellet
was reground and dried overnight under vacuum at 110°C. The pellet was then re-
molded and the infrared spectrum obtained. The spectra were identical in every
aspect and thus it appears that no degradation and in particular no deacetylation

occurred in the pyridine solution.




‘UOT3BUOTIOBIJ JUTIND 3SOT SBM UDTIYM TBTISIBU JO JUNOWE UB JUNMOIDB OJUT SONE]

‘uotyerodeas Aq PSISA0OSY
‘uotderodeas Aq poleIZUIOUOY

‘2ansesw 03 TTBUS 00]
*PO3BUOTAOBIIDI FON
"TWw 00 ‘2 = uoTjuros TBRUTSTIO

8 Q OT O 4y

66616 Te307,
UMOIQ IED 6T 2 mmmm.o pw 10
unoxq 0TS¢ 0 ¢lgo0°0 2 0 «
S000°T
umoIq 6Q¢ "0 L9v0 "0 pm 00T «
09T°¢
UMOJIQ — UMOJQ AUSTT I SA 98920 p: 0.LS -
LOTT L
& uMoIq YITT ¢ro°¢e 919L°2 (e) ¢
s umoIq WBTT  2gl°gl 6¢62°2 (1) ¢ 09T‘S
JUTY UMOIQ UITM FUSTT 0g9°2 912¢°0 (e) ¢ 05L¢
umoaq yIIT ¢L6TT Q9o " T (T) 2 0L9¢¢
IUTY WAOIQ YA IYBTT  GLG'T GS¢T 0 (€) 1 095°¢
JUT3 UMOIq UITA FUITT @:mm.m TLt2°0 (e2) 1
SITUM  0TE"0 L9200 (1) 1 06¢¢
JUT} UMOIQ UFTM JYITT 6G66°T T6¢2 0 (2) -Tosur
99 TyYM Mg o ¢T0T 0 (T) -Tosur
FUTY UMOIq UITa FUSTT 65t 22 ™69°e *, Tosur T
JOTOD PIIBA0DDY *3 UOTIOBIL ‘T

Qua) I8 ° ‘junowy  POIBUOCTIOBRIISY ‘queieuiadng
JO SumToA

V-8 J0 ‘NOILVNOILOVYA
XIXX HIEViL

S 0 L

e 006 9
- 4

- 009°¢2 G
- 4

5 000°¢ f
¢ < 006°T ¢
9 0ST - - qg
92 0ST B2
T°¢ 0ST at
3°Q 005 el
o) 0 *Tosur
TTW ‘W ‘pappy UOT}ORII

‘oyeyrdroaag UTOISTT 1SITH

JO SumTOoA

JO SumTOoA




-130-

uMmoIq

JUT} UMOIQ
UITM JUSTT

uMoJIq YIIT
uMoxq YITT
33 TUM

JOTOD

0L¢ g6

¢ls o
90T Qg

9¢6 °66
0¢S "he
€29°¢

PaI2a003y
us) J9g

Te30L
elto 00§ q”
2¢he o j«T
omww T Q"
T98L°T 086 T°¢
65¢L°0 008 | 0°h
LgoT"0 2585 ¢'Q
'8 *Tu “Tw
‘ qaumoury ‘queyruradng ‘ogmytdrosag
JO aumToA JO aumTOA

V-6 40 NOILVNOILOVHL

XX HI9VL

Tw 4 0% Ump@h0&ﬁ>ﬂo

*aInsesuW 03 T[BWS OO0,

q

"TW 009 = UOTIINTOS TBUTSTIO

005

008
00c
ole

0

‘Tu ‘pappy
UTOI3T]
JOo sumToOA

-6

¢-6
c-6
-6
"TosuI-6

UOTIOBRIg



V-6 PuU®B y-Q SUOT}OBIJ UBUTBLOOINTH
porerf3eoy 9y3 Jo uoilelrdidsig TBUOTIOBRIJ

Sutrhap ozssag

*ZT oIndtdg

UTOIITT
‘peyeiqusduo) |
9= UoTINTOS ¢-6 c-6 -6
Aq pejetoST : sTqnrog _ _ _
SUOT3OBRII TTV pPaUTqmO)
. ﬂ _ . UTOIBTT U3ITA
*uldd TeuoT3ORI,
L 4 9 4 1dd TeuoTyORIg
pererodeng d uOstaom *TosuI-6
uoTAnTOS 9 M aTqnIog STquUTOSUI
o ’ stanTog ’ AJVN Aﬁwm (9)1 (3)I (1)1 i
1 | _ _
' UTOJIFTT uToIITY UTOIBIT onﬁvﬁuhmﬂ
¢ po3BIFUIOUOYH fourptIid ‘outptaid <_m
. 4 ¢ =
S ¢ P93BUOTIOBITSY D3} BUOTIOBIINY |
(2)¢ (T)¢ qg a1
aTqn
TANTOS _ . _ % %3
B2 L:23 - "Tosur T-"TOSug
UTOI3TT UTOI3TT SUTqWO _ SUTqUO, ﬁllllllllg * 10
¢ pe3BITUSIUOY ‘ourprIid pauTquop PauLq o’ - T MﬁH
4 1
uoT3nTOS peIBUOTIORIS m , “ | UTOITTT UGTA STanTosTr |
B ‘u3dd T'UOTZO
ﬂ sTanTos a m nw w nw JH 3dd TeuoT308BLI |
uToI3TT y3ta ‘ujdd ﬁmaoﬁpownm_ SuTpPTILg
. uoT3INTOS -Tosur
— sTantos sTqnrosur
SUTPTIA]

V-g




-132-

APPENDIX IX
QUALITATIVE SUGAR ANALYSIS OF THE ACETYLATED GLUCOMANNAN
FRACTIONS OBTAINED BY FRACTIONAL PRECIPITATION

PROCEDURE AND RESULTS

Qualitative sugar analyses were carried out on the 13 fractions and the 5
fractions obtained from fractional precipitation of the acetylated glucomannan
Fractions 8-A and 9-A, respectively. Thirty-milligram samples were dissolved in
one milliliter of 72% sulfuric acid, diluted with fifteen milliliters of water,
autoclaved at 120°C. for one hour, neutralized with barium carbonate, filtered,
and evaporated to dryness. Four drops of water were added to dissolve the sugars
and the samples were spotted on Whatman Number I chromatography paper. The
papers were irrigated with 8:2:1 (ethyl acetate:pyridine:water) for twenty-four

hours and developed with silver nitrate reagent.

The results are presented in Tables XXXI and XXXII., The qualitative sugars
are presented in the order of decreasing amount as judged by the size and density
of the spot. As a measure of the quantitative amount, the ratio of the spot
areas are presented. Although these ratios are not directly proportional to the
amounts, they should remain constant within about 20% for a given sugar content.
It should be noted that, although the amount of xylose is less than the amount of
galactose for most fractions, the spot area of xylose is consistently larger
because it is less dense due to the greater distance traveled on the chromato-
gram. These spot area ratios are presented in order to illustrate when a given
series of fractions are constant in their sugar ratios and to illustrate trends
in the comparison of various fractions. The spot areas were determined with a

planimeter.
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TABLE XXXII

QUALITATIVE SUGAR ANALYSIS — FRACTIONS FROM 9-A

9-
Fraction Insol. 9-1 9-2 9-3 9-4
Qualitative M. % M. > M. > M. > M. >
sugar Gl. > Gl. > Gl. > Gl. > Gl. >
analysis Gal. > Gal. > Gal. > Gal. > Gal.
X. X. X. X.

M: 3 3 3 3 3
Spot Gl: 2.1 1.8 1.9 1.9 2.3
area Gal: 1.1 1.2 0.9 1.3 1.3
ratios X: 1.5 1.2 1.0 1.2 --

A: 0 0] 0 0 -
Spot X:
area ) 1.3 1.0 1.2 1.0 --

. Gal.

ratios
M. = mannose, Gl. = glucose, Gal. = galactose, X. = xylose, A. = arabinose,

.> greater than.
Columns in table are read vertically.

DISCUSSION

The fractions obtained from fractional precipitation of 8-A and 9-A are
quite constant in their sugar ratios. No particular trend occurs in the sugar
ratios except for a slight increase in the galactose content in the very low
molecular weight range (Fractions 5-6, 9-3; and 9-4). The glucose content is
also slightly higher for Fractions 5-6 and 9-4. With the exception of Fractions
9-Insol. and 4, the xylose content remains fairly constant. This implies either
that the xylose is assoclated with the glucomannan molecule or that the fractional
precipitation was a remarkably good one with respect to molecular size since the
chemical nature of the xylose groups of a possible xylan contaminant had little
apparent effect on the fractionation. Hydrolysis of Fraction 7 showed that no
sugars were present in this fraction. . It appears that this dark brown fraction

is entirely composed of the colored impurity which was formed during acetylation.
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-During hydrolysis, it was noticed that all fractions contained a small amount
of material insoluble in 72% sulfuric acid. This material had the appearance of
Klason lignin and undoubtedly would show up in a Klason lignin analysis. This
observation is in agreement with the previous result that the unacetylated Frac-
tions 8 and 9 had a very small band in the infrared spectra which could only be

attributed to lignin or an aromatic ring.
QUALITATIVE DETECTION OF URONIC ACIDS

The Fractions Insol'., 2(1), and 3(2) obtained from fractional precipitation
of the acetylated glucomannan Fraction 8-A were analyzed qualitatively for the
presence of glucuronic or galacturonic acid and A-Q-methylglucuronic acid. Accord-
ing to a procedure developed by Lambert (;2;), the qualitative hydrolyzates were
spotted in the center of a double length sheet of chromatography paper. The sheet
was then irrigated with 8:2:1 (ethyl acetate :pyridine:water) for 20 hours to
separate the neutral sugars from the uronic acids. The half of the sheet contain-
ing the neutral sugars was then removed and irrigated with 9:2:2 (ethyl acetate:
acetic acid:water). The uronic acids migrated from the initial line and were
qualitatively analyzed by developing the sheet with silver nitrate reagent.
Glucuronic acid, galacturonic acid, and L-O-methylglucuronic acid were not de-

tected in the fractions analyzed.




_136_

APPENDIX X
RESULTS OF THE ACETYLATION AND PURIFICATION OF
VARTIOUS GLUCOMANNANS AND GALACTOGLUCOMANNANS
The various glucomannans and galactoglucomannans isclated from the different
extractions were acetylated by the procedure described in Appendix VI, p. 11k,
The yields and acetyl contents are presented in Table XXXIIIXI, The acetate deriv-

atives are designated by -A.

TABLE XXXIII

ACETYIATION OF VARIOUS GLUCOMANNANS
AND GALACTOGLUCOMANNANS

Fraction AcziZiiaffg. f;:i i?:ig%fs Ash, % Acetyl, %° pst
6-7-A% 1.00 8.9 2.78 42.80 2.79
13-A 2.20 62.0 2.85 43.97 2.93
1L-A 2.30 62.0 11.76 42.85 2.79
16-A 1.00 40.1 59.39 39.15 2.40
17-A 2.80 63.0 20.95 bh. 11 2.93

Ash content not taken into account.

Based on the triacetate.

Ash content taken into account.

eDegree of substitution.

Acetylated a mixture of 5.5 g. of Fraction 7 and 0.8 g. of Fraction 6.
Low yield due to purification procedure carried out.

oo

PURIFICATION OF GALACTOGLUCCMANNAN ACETATE

The unacetylated Fractions 6 and 7 were possible galactoglucomannan fractions
with considerable xylan impurities. An attempt was made to remove the xylan im-
purity by a method developed by Hamilton, Partlow, and Thompson (152) in which
the galactoglucomannan agetate is extracted with acetone and the xylan acetate

remains insoluble. Fractions 6 and 7 were combined, acetylated, extracted two
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hours with 11k milliliters of acetone, the insoluble material removed by centri-
fugation and filtration, the supernatant concentrated to 15 milliliters and pre-
cipitated into 200 milliliters of diethyl ether, and the precipitate freeze dried
from a water slurry. The yield of the purified and acetylated Fraction 6-7 is
presented in Table XXXIII.
PURTFICATION OF THE VARIOUS ACETYLATED
GLUCOMANNANS AND GALACTOGLUCOMANNANS

A portion of every acetylated glucomannan and galactoglucomannan fraction
was insoluble in all the solvents investigated. Since physical measurements are
to be made on these acetylated fractions, it was necessary to subject them to
further purification in order to remove the insoluble material and the inorganic
material that was present. The fractions in Table XXXIII and the main Fractions
8-A and 9-A were purified. A 2% solution of each fraction was made in pyridine
and shaken from one to three days. The insoluble material was removed by centri-
fugation and the supernatant solution was filtered. . Precipitation of the soluble
material from the supernatant solution was attempted by addition of 95% ethanol.
However, a large excess of 95% ethanol added to the supernatant of 8-A and 135-A
resulted in the formation of only a wvery small amount of precipitate. Therefore,
the ethanol was removed by evaporation and ligroin was employed as the precipitant.
A volume of ligroin corresponding to five times the volume of pyridine was added
to each supernatant solution. The precipitate was collected by centrifugation
and designated as the soluble portion. All fractions were freeze dried from a

pyridine-water solution and then dried overnight at 50°C. under vacuum.

The ash contents were determined on the soluble fractions by ashing for three
hours at 575-600°C. All results are reported in Table XXXIV. In every instance

the insoluble portion had & darker color than the soluble portion for a given
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fraction and the ash contents have been reduced considerably for the soluble
fractions. The soluble and insoluble acetylated fractions are designated by

-5 and -I, respectively.
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APPENDIX XI
QUALITATIVE SUGAR CONTENTS OF THE VARIOUS ACETYLATED
GLUCOMANNAN AND GALACTOGLUCOMANNAN ERACTIONS

The results of the qualitative sugar analyses and spot area ratio deter-
minations (determination described in Appendix IX, p. 132) for the various acety-
lated glucomannan and galactoglucomannan fractions are presented in Table XXXV.
Comparison of the qualitative chromatograms of the acetylated fractions, 8-A, 9-4,
6-7-A, 13-A, 1h-A, 16-A, and 17-A, with their unacetylated counterparts showed
that no significant change in their sugar ratios is caused by acetylation. Frac-
tions deriving from 6-7-A, 1k-A, and 16-A are galactose-rich glucomannans while
fractions deriving from 8-A, 9-A, 15-A, and 17-A are more typical glucomannans
with a lower galactose content. In most instances the sugar ratios of the soluble
and the corresponding insoluble fractions are fairly constant. The galactose
contents of the insoluble Fractions 13-1 and 17-1 are slightly higher than the
soluble Fractions 15-S and 17-S, respectively. Again, kylose is found in every
fraction. The xylose-to-galactose ratios are presented to see if there is a
possible relationship between the xylose and galactose content. In most cases
this ratio is in the range of 1.0 to 1.4 except where the fraction appears to

be contaminated with a considerable amount of xylan.

Glucuronic acid, galacturonic acid, and M—Eymethylglucuronic acid were not
detected (by the qualitative method of analysis described in Appendix IX, p.

1%32)in Fractions 8-A, 9-A, 6-7-A, 13-A, 1Lh-A, 14-S, 1k-I, 16-A, and 17-A.
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APPENDIX XII

INFRARED SPECTRA

The infrared spectra were run for the unacetylated Fractions 7, 8, 9, 13,
14, 16, and 17 and for the acetylated Fractions 6-7-A, 8-A, and 9-A%*. The spectra
were then analyzed with the goal of relating them to the structure of the poly-
saccharides in the fractions in order to determine the similarities and differ-
ences between the fractions., The spectra and the possible assignménts of the
bands are given in detail for Fraction 8 before acetylation and after acetylation
(Fraction 8-A). All other spectra are compared to these spectra. Many sources
(iéz-iéi) were used to interpret the spectra. The results are as follows, where

vs = very strong, s = strong, m = medium, W = weak, and vWw = very weak

FRACTION 8
Band, cm._l Intensity Possible Assignments
3950 W 0-H
3130 vs 0-H, H,0
2890 s C-H, C°H,
2330 vw --
2070 vw -- .
1725 m C=0 (of normal aldehyde or ketone, of xylan
uronic acid, or carboxyl group)
1615 m-s H,0, C00” (salt)
1515 Ww-m lignin, phenyl C=C (of aromatic)
1410 (s) (broad area) -OH (cellulose has this)
1380 (s) (broad area) C-H (ivory nut mannan has this), -OH
1308 m-s (broad area) m%
1240 m-s (broad area) 0-8 of mannan, xylan (C-H, O-H, or C-0)
1143 m-s (broad area) ¢-0, C-OH, C-0-C
1095-1010 vs (broad band) c-0, C-C
935 m-s B-1,4 mannan
890 m B-1,4 mannan, characteristic of B-link, xylan
868 S B-1,4 mannan ring stretching or C;, configura-
tion characteristic of glucomannan
807 s B-1,4 mannan ring stretching, characteristic

of glucomannan

*¥The spectra have been filed in the Analytical Department of The Institute of
Paper Chemistry.
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FRACTION 8 (Continued)

Band, cm.—l Intensity Possible Assignments
775 m (shoulder to
807) glucan B-linkage
753 W glucose or galactose, @-1,4 linked ring
breathing, methyl mannose has this
663 W cellulose has this

Discussion: (1) Fraction 8 has a considerable H,0 or CO0™ band at 1615 cm.

This is a little below the usual absorbed H.O band at 1630 em. T to 1640 cm. "+

2
and it is a little above the usual 0007 band at 1613 em. "t to 1563 em. ™. Tt

is probably due to a combination of these two bands. The COO™ band probably

arises from the ash which might be Ba(OAc) (2) The occurrence of a C=0 band

2"
at 1725 cm.-l indicates the presence of a xylan, some oxidation to C=0 or COOH,
or the presence of HOAc or possibly acetyl groups. Unoxidized cellulose or

ivory nut mannan do not have this band but it could be due to carboxyl groups

introduced by oxidation with chlorite. (3) It appears that there may be a small
l). (4) The characteristic bands for a B-1,4

linked mannan and glucomannan are present and distinct (935 cm.-l, 890 cm.-l,

l).

amount of lignin present (1515 cm.

and 807 cm. (5) The spectrum of 8 is identical to a deaéétylated gluco-

mannan isolated from Parafla pine (18).

FRACTION 8-A

Band, cm. -1 Intensity Possible Assignments
3950 W 0-H
3430 m 0-H, H2
2950 m C-Hé, -H2, C-H
2130 W --
1750 vs C=0 (acetyl)
1635 W HEO
1507 W ‘1ignin
1438 m (acetyl)
1373 S (acetyl)
1318 w 0-H

Nk

1230 Vs -OR (acetyl)
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FRACTION 8-A (Continued)

Band, cm._l Intensity Possible Assignments
1173 w-m .C-0, C-0H, C-0O-C
1107 w --
1067 s (broad area) c-0, C-C
1038 s (broad area) c-0, C-C
990 w -C-~0
955 m B-mannose acetate has this
900 m mannose acetate has this, B-linkage xylan,
acetate group
867 vw B-mannose acetate has this
833 VW a-mannose derivatives have this
775 m B-glucans have this

Discussion: (1) The band at 2950 cm.-l in 8-A is probébly due to CH3 in

contrast to the C-H band at 2890 cm."l

cm._l for 8 has been considerably reduced and shifted to 1635 cm.

in 8. (2) The H,0 or CO0” band at 1615
1
(HEO) on
acetylation. (3) The characteristic B-1,4 mannan bands at 935 cm._l, 868 cm._l,
and 807 em. "L for 8 are missing or greatly diminished after acetylation. (4) A

distinct band at 775 cm._l is present and is possibly characteristic of a B-

linkage.

FRACTION 9 — COMPARED TO FRACTION 8

The spectrum is identical to the spectrum of 8.

FRACTION 9-A — COMPARED TO FRACTION 8-A

The spectrum is identical to the spectrum of 8-A.
FRACTION 7 = COMPARED TO FRACTION 8
(1) Has C=0 (of normal aldehyde or ketone, of xylan u{onic acid or carboxyl
group) at 1735 cm. ! and larger than 8 (1725 cm. ).
(2) Has coolor H.O band at 1607 em. 1 instead of 1615 em. ™t for 8. The
position of this band indicates it is probably CO0™ rather than H20.
Also this band is quite large.

(3) The possible lignin or aromatic band at 1510 em. T is larger and more
pronounced for 7 than for 8 (1515 cm. %),
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(4) Has O-H, G, or lignin band at 1465 em. ™ which is blocked out or absent
for 8.
(5) Has band at 1410 cm. T which is blocked out or absent for 8.

(6) Possible C-H band at 1380 cem. ¢ (which also occurs in ivory nut mannan) not
as strong as in 8.

(7) Possible CH, band at 1308 em. T is absent (is present in 8).

(8) Has distinct C-H (possibly C-H for B-1,3 linkage) or lignin band at 1265 cm.
which is blocked out or absent in 8.

(9) Possible mannan or xylan band at 1240 cm._l is absent (a small band or
plateau is present in 8).

(10) Has possible O-H band at 1205 em. T which is blocked out or absent in 8.
(11) B-1,4 mannan band at 935 em.” is absent (is present in 8).

(12) B-1,4 mannan, B-linkage, or xylan band at 893 em. " more pronounced than in

8 (890 cm."1
(13) B-1,4 mannan band at 868 em. T is absent (is large in 8).
(14) B-1,L4 mannan band at 807 em. "L is absent (is large in 8).
(15) Possible glucose or galactose or o-l,4 linkage band is absent (is present
but small in 8).
Discussion: (1) The presence of possibly some xylan and some lignin is
indicated. (2) Has a notable lack of mannan peaks at 935 cm.-l, 868 cm.-l, and

1

807 em.” ~. (3) Some COO™ is present. (4) Fraction 7 also differs from 8 in the

O-H and C-H regions.
FRACTION 6-7-A — COMPARED TO FRACTION 8-A

(1) Has a small COO” or aromatic C=C band at 1595 _— (is absent in 8-4).

(2) Bas a more_pronounced lignin or aromatic band at 1515 cm.—l than 8-A

(1507 cm.™1).

(3) Has a band at 962 cm.-l which is smaller than 955 cm.-:L (same as in B-
mannose acetate) band at 8-A.

(4) Has band at 893 em. T rather than 900 em. L as in 8-A. This is possibly
attributed to xylan or Q-galactose tetraacetyl group.

- Discussion: (1) Possibly contains some lignin.
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FRACTION 13 — COMPARED TO FRACTION 8

(1) Has CO0~ or H,0 band at 1615 em. "L as does 8.

(2) Has lignin band at 1515 em. " as does 8.

(3) Has small possible C-H band at 1413 cm.-l which is more pronounced than in 8.

[ -
(4) The O-H of mannan or C-H, O-H, or C-0 of xylan band at 1238 cn. 1 is. more
pronounced than in 8 (1240 cm.1).

(5) B-1,4 mannan band at 935 em. T more pronounced than in 8.
J

(6) Mannan bands at 890 cm._l, 868 cm.'l, and 805 em. "L are identical to 8.
Discussion: (1) The spectrum is similar to the spectrum of 8.
FRACTION 14 — COMPARED TO FRACTION 8

(1) The COO™ or H.O band is at 1605 cm. T rather than 1615 cm.” ' as in 8. The
band is also considerably larger than in 8. The position of this band
indicates it is probably mainly COO~.

(2) ILignin or aromatic band at 1510 em. ™Y more pronounced than 8 (1515 cm._l).

(3) Possible O-H band at 1L62 cm. "L present (similar to 7 which is blocked
out or absent in 8).

(4) Has possible C-H band at 1405 cm._l which is blocked out or absent in 8,
-1

(5) Has distinet C-H (possibly C-H for B-1,3 linkage) or lignin band at 1265 cm.
- ’
. (same as in 7) which is blocked out or absent in 8

(6) Possible mannan or xylan band at 1240 em. T is absent (a small band or
plateau is present in 8).

(7) Mangan pands at 935 cm.-l, 888 cm.-l, 869 cm._l, and 805 em. F are identical
to C.

Discussion: (1) Fraction 14 is similar to 8 with respect to the mannan

-1

peaks at 935 cm.'l, 888 cm.'l, 869 cm.'l, and 805 cm. (2) Fraction 1L is

similar to 7 in the C-H and O0-H regions. (3) CO00~ is present.
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FRACTION 16 — COMPARED TO FRACTION 8

(1) The COO~ or H,O band is at 1605 em. T rather than at 1615 em. T as in 8.
It is probably coo™L. The intensity of this band for 16 is greater than
for the other fractions (approaching the intensity of the O-H band at
3420 cm."1).

(2) The possible lig%in or aromatic band at 1510 c:m."l is a little smaller than
for 8 (1515 cm.” ).

(3) Has O-H or C-H band at 1440 cm._l which is blocked out or absent for 8.
(4) Has distinct band at 1398 em. T which is blocked out or absent for 8.

(5) The C-H band (which ivory nut mannan has) at 1380 em. "1 is sbsent or blocked
(is present for 8). '

(6) Has C-H (possibly C-H for B-1,3) or lignin band at 1267 o (same as in
7 and 14) which is blocked out or absent for 8.

(7) Has C-0, C-OH, or C-0-C band at 1175 em. "t (14 nas a shoulder there) which
is blocked out or absent in 8.

(8) Has bands at 1020 cm.-l, 982 cm.~l, and 945 cm. ™t which are blocked out or
absent in 8.

(9) B-1,4 mannan band at 935 em. "t is absent (is present in 8).

(10) B-1,4 mannan, ?-linkage, or xylan band at 893 em.”! is much smaller than
in 8 (890 cm.”).

(11) Mann%n bands at 872 c:m.—l and 808 cm. ™ are much smaller than for 8 (868
em. ™+ and 807 cm. 1),
Discussion: (1) The B-1,4-mannan bands have been greatly diminished or are
absent. (2) Fraction 16 differs considerably from 8 in the C-H, C-0, 0-H, and
C-0-C regions. (3) The intensity of the COO~ is very great which corresponds

with the high ash content of this fraction.
FRACTION 17 — COMPARED TO FRACTION 8

(1) Has EOO' or Hy0 band at 1607-1615 em. T (about the same intensity as 1615
em. ”— band for 8).

(2) Has C-0, C-OH, or C~0-C band at 1177 cm.-l which is blocked out or absent
for 8 (16 has this band and 1L has a shoulder at this point).
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(3) B-1,4 mannan bands at 933 cm.-l, 890 cm.-l, 868 cm._l, and 807 em. "L are
identical to 8.
Discussion: (l) For all practical purposes the spectrum of Fraction 17 is

similar to the spectrum of 8.
CONCLUSION

Fractions 8, 9, 13, and 17 are identical. Fraction 1L has the B-1,L-mannan
bands but differs from Fraction 8 in the C-H and O-H regions. Fraction 16 has
considerably diminished B-1,L4-mannan bands and differs from Fraction 8 in the
C-H, C-0, O-H, and C-0-C regions. Fraction 7 has a notable lack of B-1,4 mannan

bands and differs from Fraction 8 in the C-H and O-H regionms.

A band at 3430 cm._l which is attributed to water or hydroxyl abéorption
appeared in all the acetylated samples. This band also appeared at approximately
the same intensity in a sample of KBr which had been ground and dried. Therefore,
it appears that this band is due to absorbed water rather than free hydroxyl

groups in the acetylated samples.
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APPENDIX XIIT
COMPARISON OF THE GLUCOMANNAN AND GALACTOGLUCCMANNAN
FRACTIONS ISOIATED IN THIS INVESTIGATION WITH THE
FRACTIONS ISOLATED BY THOMPSON (g) IN A QUANTITATIVE
MATERIAL BALANCE OF BLACK SPRUCE HOLOCELLULOSE
In this investigation and the investigation by Thompson (2), black spruce
holocellulose fibers were prepared by the room femperature acid chlorite process
at room temperature and the extractions were identical up to and including the
18% NaOH extraction. In this study this extraction was followed by an 18% NaOH
containing 4% H5B05 extrac¢tion and a final water extraction while Thompson froze
the holocellulose first in 18% NaOH and then in 10% NaOH. A comparison of the
holocelluloses and the éxtracted residues is given in Table XXXVI. From the re-
sults presented in Table XXXVI, it is seen that 7.1% more of the carbohydrates
of the holocellulose wefe extracted in this investigation than in Thompson's in-
vestigation which is probably due to the final alkaline borate.extraction step.

Considerably more glucose and mannose, less galactose, and slightly less xylose

and arabinose were extracted in this investigation.

A comparison is made between the glucomannan and galactoglucomannan fractions
from both investigations. The methods of isolation and purification of the frac-
tions differed considerably in the two investigations. Thompson isolated a
galactoglucomannan with a galactose:glucose:mannose ratio of 1:1:3 from the O.1N
NaOH extract in a yield of 0.5% of the holocellulose. It was not possible to
isolate this polymer from the O.1N NaOH extract in this study but it was probably
present in Fraction 1 which contained glucose and manncse along with a large
amount of galactose and xylose. Some of this polymer may have been previously
extracted by the acid chlorite liquors (162) and some of it was resistant to the
0.1N NaOH extraction and was subsequently extracted with the 10% NaOH solution

(Fractions 6, 7, 10, and 11). Further purification of these fractions gave a
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galactoglucomannan with a galactose:glucose :mannose ratio of 0.99:1.00:1.77

(Fraction 6-7-S) which contained 29.6% xylose and 4. 4% arabinose.

TABLE XXXVI

COMPARISON OF HOLOCELLULOSES AND EXTRACTED RESIDUES

Holocelluloses Extracted Residues
Thompson's Thompson 's
Study This Study Study This Study

Yield, % 72 75.1 - -
Klason lignin, %p ) 2 2.3 - -
Galactose, % | k.o 4.22 0. bk 1.81
Glucose, % 66.5 69.26 64.5 57.18
Mannose, % 16.8 15.28 7.15 k.91
Arabinose, %F 2.9 r 1.65 trace 0.37
Xylose, % 9.8 9.59 0.65 1.33
Total sugar, % 100 100 72. 7Tk 65.60

®Rased on wood.

Based on holocellulose.

Based on neutral sugar content of the holocellulose.

In Thompson's investigation glucomannan fractions were isolated from the

10% NaOH and 18% NaOH extracts and had ratios which varied from 0.03:1:3 to
0.04:1.%3:3 to 0.3:1.1:3. In this investigation the glucomannan fractions iso-
lated from the 10% NaOH extract (Fractions 4, 5, 8, 9, and all the fractions
obtained from Fractions 8 and 9 by fractional precipitation of their acetate
derivatives) had galactose:glucose:mannose ratios of 0,16-0.30:1.00:3.27-4.16
and the ratios for the glucomannan fractions isolated from the 18% NaOH extract
(Fraction 13 and the soluble and insoluble portions of its acetate derivative)
were 0,16-0.24:1.00:3.96-4.38, These fractions contained 2.1 to k4.0% xylose and

many of Thompson's fractions also contained a small amount of xylose. The above
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ratios remained constant within the above limits during careful fractional pre-
cipitation of the acetate derivatives of Fractions 8 and 9. In this study the
bulk of tpe glucomannan was isolated from the 10% NaOH extract whereas in
Thompson's extraction most of the glucomannan polymers were concentrated in the
18% NaOH extract although in other experiments Thompson also found the major
portion of the glucomannan in the 10% NaOH extract. Thompson (2) points out

that this extraction behavior is dependent on the lignin content and the severity

of the drying procedure of the holocellulose.

From the freezing 18% NaOH and 10% NaOH extracts; Thompson isolated gluco-
mannans (0.1:1.2-1.3:3) and galactoglucomannan polysaccharides (0.7:0.7:3,
1.4:2.2:3, and 3-3.3:1-1.4:3) containing 10.4 to 42.3% xylose and from a trace
to 6.0% arabinose. In this investigation the resistant polysaccharides (Frac-
tion 14 and the soluble and insoluble acetate derivatives of Fraction 14) were
extracted with 18% NaOH containing L% H5305 and had a galactose:glucose:mannose
ratio of 0.62:1:3.42 (Fracfion‘lh-s) and contained 9.1% xylose and 1.6% arabin-
ose. It is possible that this fraction may have been a mixture 6f a galactose-
rich galactoglucomannan (1-3:1:3-L4) and a glucomannan (0.1-0.3:1:3-4) similar
to those found by Thompson even though fractionation of the acetate derivative
of this fraction into its soluble and insoluble components failed to reveal any
variation in the sugar ratios. A final washing of the holocellulose with water
resulted in the isolation of a resistant galactoglucomannan (1.01:1.00:3.07)
containing 9.0% xylose and 2.1% arabinose (Fraction 16 and the fractions derived
from its acetate derivative such as Fraction 16-S) and a resistant glucomannan
(0.27-0.35:1.00:2.54-3.89) containing 3.9 to 6.7% xylose (Fraction 17 and the

soluble and insoluble portions of its acetate derivative).
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The greater amount of mannose in the glucomannan fractions in this study
than in those from Thompson's investigation may be due to the different methods
of sugar analysis employed. In this study the method of Saeman, et al, (23)

was used and Thompson employed a spot area method.
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APPENDIX XIV

PURIFICATION OF SOLVENTS

The acetophenone and 1,1,2-trichloroethane were purified by fractional
distillation in a glass column which had a three-fourth inch inside diameter
and was packed to a height of 31 inches with single-turn l/h by 1/32-inch glass
helices. The middle fraction was collected and stored under nitrogen in the

absence of light and the first and last fractions were discarded.
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APPENDIX XV

OSMOMETRY
INTRODUCTION

Number average molecular weights and second virial coefficients were deter-
mined with a Mechrolab High Speed Membrane Osmometer, Model 501 (;éé). Flow
through the membrane is detected with this instrument by means of an optical
system.in the solvent chamber and any net flow is prevented by means of an electro-
mechanical servo system. Solvent flow is detected by a change in light scattering
as a bubble in the capillary on the solvent side of the membrane moves into the
light path. Since practically no flow of solvent is needed to establish equil-
ibrium, an osmotic pressure measurementAat a given concentration is obtained in
about three to twenty minutes, and no dilution occurs on the solution side of the
membrane, Diffusion of loﬁ molecular weight species is kept to a minimum . in this
short time interval and thus the determined molecular weight should be more accur-

ate than that obtained with a conventional osmometer.
/

It has been shown that the osmotic pressure is lowered by the presence of a
low molecular weight species which is capable of diffusing through the membrane,
even when extrapolations to zero time are made (164-166). Tung (167) has demon-
strated the importance of using a fast osmometer because measurements made close

to zero time give values that deviate little from the true osmotic pressure.

The osmotic pressure-concentration relationship is expressed by Equations

(8) and (9) (30, 31, 166).

x/c

RT [1/M + Ay + A302 +ommeee ] (8)

]

RI/M_ [1 +T.c +g r22 Sl — ] ‘ (9)

n/c
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where
it 1is the osmotic pressure

is the concentration

el

is the number average molecular weight

is the second virial coefficient

I\ID:D Iéz

is also a parameter which depends on polymer-solvent interaction

—
n

In this investigation only the first two terms on the right-hand side of the

equation were included in the extrapolation to zero concentration.
EXPERIMENTAL

Schleicher and Schuell number O7 membranes (Schleicher and Schuell Company,
Keene, New Hampshire) with averége pore diameters of five to ten millimicrons
were employed. The membranes were conditioned by solvent exchanging. The sol-
vent was purified 1,1,2-trichloroethane for the acetylated fractions (purifica-
tion is described in Appendix XIV, p. 153 ). The bubble in the capillary of the
csmometer slowly dissolved in this solvent. In order to replace the bubble it
is necessary to change the membrane and this resulted in the use of nine differ-
ent membranes in the determination of twenty number average molecular weights.
Although the membranes varied in porosity, the determined molecular weight did

not appear to be affected by the membrane.

Sufficient solution of each fraction was prepared to make duplicate osmotic
molecular weight determinations, duplicate concentration determinations, and an
intrinsic viscosity determination. As a precautionary measure against aggrega-
tion the solutions were shaken overnight, any insoluble material then removed b&
filtration, and finally the solutions shaken overnight again. The solutions were

then filtered again before osmotic pressure or viscosity measurements were made.
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All solutions were made up by weight and the concentrations determined by weight.
Excellent precision was obtained for duplicate concentration determinations on
the milliliter aliquots. Drying was carried out for two days under vacuum at
110°C. 1If appreciable insoluble material was present, the solution was first
centrifuged before filtration. Ash contents of the material remaining after

concentration determination were negligible.

The osmotic pressure measurements were made at 37°C. Duplicate osmotic
Pressure measurements were made at a given concentration before making a run at
the next concentration. In this manner, any error due to polymer adsorption

onto the membrane was minimized.
RESULTS

The extrapolation of n/g versus concentration was carried out by means of
the method of least squares. Génerally, the set of values of the duplicate
analyses were chosen for extrapolation which gave the highest correlation coef-
ficient. The results are presented in Table XXXVII and examples of the n/g
versus ¢ extrapolations are shown in Fig. 13. The precision of the osmotic
Pressure measurements is indicated by the results of separate determinations
for Fraction 3(2) in acetophenone and trichloroethane. Measurements in aceto-

l

phenone gave Mn = 17,700 and ée = L.5x 10" cm.5 mole/g.2 and measurements in

trichloroethane gave Mn = 17,500 and 52 =7.0 x lO_4 cm.5 mole/g.2. The number

average molecular weights differ by only 1..4% thus confirming the reliability

of the osmotic pressure measurements.,
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APPENDIX XVI

VISCOMETRY
PROCEDURE

The intrinsic viscosity of each fraction was determined on a one or two-
milliliter aliquot taken from the solution prepared for osmometry. The solvent
was 1,1,2-trichlorcethane. Viscosity measurements were made with a number 50
Cannon Ubbelohde semimicro dilution viscometer. According to Cannon, et al.
(168) the kinetic energy correction is negligible for this viscometer when a
solvent is used with the kinematic viscosity of 1,1,2-trichloroethane. As a
further check, an equation employed by Timell (lég) was used to estimate kinetic
energy correction of 0.5% which is certainly negligible for this system. No
dependence of the intrinsic viscosity on shear rate occurs for polysaccharides
with a degree of polymerization less than about 1,000 (169). Therefore, it was
unnecessary to determine the intrinsic viscosity at various shear rates and
extrapolate to zero shear rate. All dilutions were carried out with a micro-

syringe fitted with a Chaney adaption. The measurements were made at 30 + 02005°C,
RESULTS

The intrinsic viscosity, [n], is expressed in ml./g. rather than the custo-
mary 100 ml./g. The other viscosity expressions, defined according to the

I.U.P.A.C. (170) recommendations, are 1 = solution viscosity, N, = solvent

viscosity, ¢ = concentration in g./ml., (n-no)/nog = viscosity number, and

[n(n/n )1/c

ways to yield the intrinsic viscosity: (1) the viscosity number versus concentra-

logarithmic viscosity number. The data were extrapolated in three

tion, (2) the logarithmic viscosity number versus concentration, and (3) the

logarithm of the viscosity number versus concentration. The method of least
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squares was employed for extrapolation. The equations are (ég)

(n=ny)/n.e = [n] + K [n)% ~ (20)
[1a(n/n,))/e = [n] - K, [n)% (11)
Wl(n - n )/nel = 1n [n] + K [nle (12)

where Ei is the Huggins constant and Eé and 53 are also constants.

The results are presented in Tables XXXVIII and XXXIX and examples of the
extrapolations are shown in Fig. 14. The values for the intrinsic viscosity are
consistently different for the three plots. The viscosity number plot yields the
lowest value, the logarithm of the viscosity number plot yilelds an intermediate
value, and the logarithmic viscosity number plot yields the highest value; how-
ever, the values differ only by the order of 1%. The values of the intrinsic'
viscosities determined from the viscosity number plot are employed in future

analyses.
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APPENDIX XVII

LIGHT SCATTERING

Weight average molecular weights were determined from light scattering for
the acetylated glucomannan Fraction 3(2) in acetophenone (purification of aceto-
Phenone is described in Appendix XIV, p. 153). The calculated molecular weights
at wavelengths of 5461 A. and 4358 A. were 306,000 and 515,000, respectively,
which are considerably higher than the number average value (17,MOO). The un-
reasonably high molecular weights from light scattering may be caused by the high
fluorescence of the glucomannan triacetate solutions. Since the determined molecu-
lar weights and the fluorescence are both higher at the wavelength of 4358 A. than
the wavelength of 5461 A., it appears that the corrections which have been applied
do not adequately correct for the large amount of fluorescence involved. The
molecular weights corrected for fluorescence were similar in magnitude to the
molecular weights corrected for depolarization which indicates that most of the

depolarization is.due.t6 fluorescence. =~ , . Gt

Another possible cause of the high light-scattering molecular weights is
aggregation or the presence of a small amount of high molecular weight material,
Aggregation was indicated by the extremely small second virial coefficieﬁts at
the wavelength of 5461 A, and the negative second virial coefficients at the
wavelength of U358 A, Tanford (40) shows that when aggregation occurs a negative
second virial coefficient is theoretically predicted. Other workers have attributed
abnormally high molecular weights obtained by light scattering to the presence of
small amounts of colloidal material or aggregation when working with various poly-
saccharides (37, 171-173) and in particular with hemicelluloses (174-176). The

presence of lignin in the glucomannan triacetate fractions may be a contributing
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factor in the aggregation or the lignin may be involved in a small amount of high

molecular weight lignin-glucomannan complex.

The abnormally high molecular weights did not appear to be caused by the
experimental technique since the data had very little scatter on extrapolation to
zero concentration. Therefore, no further attempt was made to improve the light-

scattering method.
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APPENDIX XVIII

SEDIMENTATION EQUILIBRIUM
INTRODUCTION

The possibility of a small amount of aggregation affecting the light-
scattering molecular weights was discussed previously (Appendix XVII, p. l6h).
In sedimentation equilibrium experiments with an ultracentrifuge, dust and large
aggregates sediment to the bottom of the cell and have little effect on the
determined molecular weight (22f21)° The theoretical and practical aspects of
ultracentrifugation have been discussed by many authors (gi, gé, Eg, iZZfl@i)'
In this study weight average and z-average molecular weights were determined from
sedimentation equilibrium experiments employing a short column (é@g). Molecular
welghts are determined from the equilibrium state in which the sedimentation of
the molecules passing across a given surface in the sedimenting direction is

exactly balanced by the centripetal transport due to diffusion (gi). The data

were analyzed according to the method of Iansing and Kraemer (183 ).
THE z-AVERAGE MOLECUIAR WEIGHT

Iansing and KraemerA(l85) have shown that for a heterogeneous polymer the
z-average molecular weight at each point in the cell, Mr " corresponding to the

point X = (51 * X, )/2 at equilibrium is given by

m[( X)

(1-vp)

(13)

Zx
2 l

where

(SN
1]

the ordinate of the photographic plate obtained with the schlieren
optical system

the distance from the center of rotation

[~
il
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T = the absolute temperature
R = the gas constant
E = the partial specific volume of the solute

® = the angular velocity = (r.p.m.) (2x)/60

p = the density of the solution

The density, p, can be calculated from the solute concentration in grams per
100 grams of solution, p, the partial specific volume, E, and the density of

the solvent, p_, from Equation (14).

i (14)

(1 + (Fpo - 1) p/100]

In this study, MEX was calculated for 31 to 4l intervals across the cell. These
molecular weights must then be integrated to give a Z-average molecular weight
for the entire solution, MZ' Iansing and Kraemer (183 ) carry out the integration

—

employing Equations (15), (16), and (17).

(15)

b b
b b4 Z 4
o B 1 !
(J; Zdx _Z £ Zdx = Z SET <X——2 - X—-—l> (16)
o Xy o bx .
b Z Z
1 b a
g Moy 2 =22 \3 - ;:> (1)
(- %)

where A =
2RT
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a and b = the values of x at the solution-air meniscus and the solution-
0il meniscus, respectively.

These calculations were carried out with the aid of an I.B.M. 1620 computer.

The above method of calculation was employed to calculate the values of

MZ which were used throughout the rest of this investigation. However, initially

a separate method of calculation devised by this investigator but employing the
same basic equations of Iansing and Kraemer (183) was carried out. For a homo-
geneous polymer, a plot of log (Z/x) versus 5? should yield a straight line and
the slope gives the molecular weight according to Equation (13) in which

1n [(ge/gl)(gi/gg)]/(gg - gi) is replaced by (2.303)(slope) (184). If the
polymer is heterogeneous then an upward curvature will be obtained. It was found
that this curve could be approximated by a series of linear segments and the
slope of a particular segment (determined by the method of least squares) gave

M, for the range of x in that segment according to Equation (13). Equation (15)

was then used to integrate across the cell in the following manner,

b X
b \} [ 2
J M, Zdx Lo Mox %, 29X .
a zXx segment i=1 1 segment i
M = = (18)
2 b b -
[ zax [ zax
a a
X2
Since the area under the Z versus x plot is equal to f Zdx from X, to x, we
X
get Equation (19). -1
h
E: E(MZX Area)segment i
segment i=1
M, = =5 (19)
‘ Total Area

The areas under each segment were determined with the aid of a planimeter.
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WEIGHT AVERAGE MOLECULAR WEIGHT

Lansing and Kraemer (183 ) have shown that the weight average molecular

weight, &wy? at each point in the cell corresponding to g = (51 + §2)/2 is

1n Gx /cx>
1 1 2

given by Equation (20).

'Mmu(= A 2.2 (20)
2 1
where
(1 - ¥o)w?
A= g

2RT

To use this equation for data obtained with the schlieren optical system, the
value of Z which is proportional to the gradient of refractive index, gg/gg, at

the point x must be converted to the concentration at point x, Sy Van Holde

and Baldwin (26, 182) give a good approximation for c, which enables this con-

version to be made.

c = B (21)
& 'Ac/co
e -1
where
Sy = the solute concentration at x = a at equilibrium
¢” = the initial concentration of the solution
oc = ¢ - at equilibrium

S " Sy

The value Ac is determined from. Equation (22).

tan 6

b
Ac = 5 (an/ae) izw (22)

where
©® = the phase plate angle

the optical lever arm

I
It

the thickness of the solution in the centrifuge cell perpendicular
to the plane of rotation

=
i
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gg/gg = the refractive index gradient of the solute.

The value Sy is then calculated from Equation (23).

tané@ X

Cx - Th{dn/dc) £ Zax + Ca (25)

b X
The values of I—?gf and I §g§ were previously calculated in the determination of
a a
the z-average molecular ﬁéight. The same intervals that were used for the z-

average molecular weight were also used for the weight average molecular weight.

The values of y%n<were integrated to give a weight average molecular weight for

the entire solution, M_, with the use of Equations (24), (25), and (26).

x
M4W= b (21")
f X ¢ dx
X
a
})\ z ‘J'-XE c 1
X c dx=Z X c dx=z (c. =-c_ ) (25)
A = %) - Ry "Xy Xy

) | (26)

WX X - —2A

These calculations were carried out with the aid of an I.B.M. 1620 computer.
EXPERIMENTAL
SEDIMENTATION EQUILIBRIUM MEASUREMENTS

Molecular weight determinations were made on the glucomannan triacetate
Fractions 9-3, 3(2), 9-2, 3(1), 2(2), and 2(1) in acetophenone. Sedimentation
equilibrium runs were made on the Spinco Model E Analytical Ultracentrifuge,

using the schlieren optical system. This system gives a photographic record
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of the refractive index gradient of the solute within the centrifuge cell. The
abscissa of the photographic curve is the distance from the center of rotation,
X, and the ordinate of the photographic curve, Z, is proportional to the gradient

of refractive index, dn/dx, at the point x and is given by Equation (27).

(an/dx) Ih m,

Z = tan 6 (27)

where m, = magnification of the cylinder lens.

The acetophenone was purified as described in Appendix XIV, p. 155. Deter-
minations were made at four concentrations for Fraction 5(2). For all other
fractions determinations were made at a concentration of about 5 x lO—3 g./ml.

The solutions were shaken overnight before being placed in the centrifuge cell.

Centrifugation was done in aluminum-filled Epon double sector cells. The
sector shaped cell minimizes or eliminates convective flow (gi). One sector is
filled with solution and the other with solvent. The solvent base line is then
recorded on the photographic plate along with the schlieren image for the solu-
tion. Runs were made with both one and two cells in the rotor. When two cells
were run at once, a 1° positive wedged window was placed in one cell. The
wedged window displaced the schlieren image, permitting the two samples and
their respective base lines to be photographed simultaneously (;ZZ). The cells
were filled, taking precautions to stagger the menisci of the solution and the
solvent in order to obtain a sharp photographic image for each meniscus. The
depth of the solution columns was approximately 0.2 cm. These short solution
columns reduce the time required to reach equilibrium since this time depends
directly on the square of the column depth (179, 182). In order to give a
surface at the cell bbttom with an arc of the center of rotation; a dense, inert
liquid is placed on the cell bottom (25). Fluorochemical FCL3(Spinco 6394) was

immiscible with acetophenone and was used in this investigation.
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The runs were made at 50.0 + 0.1°C. and were considered to be at equilibrium
when no measurable change occurred on the schlieren photograph. The runs were
continued for a half a day to a day or more past the time of estimated equilibrium
in order to be certain that equilibrium had been reached. The optimum speed of
the rotor for each fraction was estimated as described in the Beckman manual (;ZZ).
When two cells were run simultaneously it was necessary to choose a speed that
was a compromise between the optimum speeds of the two fractions. The rotor
speeds for the solutions were 19,160 r.p.m. for 3(2) (~1 x 1072% g./ml.); 19,160
r.p.m. for 3(2) (~0.7 x 107" g./ml.); 19,160 r.p.m. for 3{(2) (0.5 x 107" g./ml. );
25,980 r.p.m. for 3(2) (~0.3 x 1072% g./ml. ); 25,980 r.p.m. for 9-3; 17,980 r.p.m.
for 9-2; 17,980 r.p.m. for 3(1); 14,290 r.p.m. for 2(2); and 14,290 r.p.m. for

2(1).

The optical constants for the schlieren optical system were 2.1011 for gx,

the magnification factor for the camera in the radial or x direction; 3.7363 for

m, the magnification factor for the cylinder lens; and 59.79 cm. for the optical

lever arm. The optical lever arm was determined with the aid of a Spinco calibra-
tion cell (185) and the values for m and m had previously been determined by
Carlson (186). The thickness of the—golutigﬁ in the centrifuge cell perpendicular
to the plane of rotation, h, was determined to be 1.20L4 cm. by measuring the cell
thickness with a micrometer. The phase plate angle, was 74.6°. The photographic
plates were measured on a Wilder microprojector. Measurements were made at 0.0050-
inch intervals in the x direction. Measurements were made in the Z direction from
the solvent base line to the solution image. Measurements in the x direction were

converted to distances from the center of rotation by using the position of the

wire in the counterbalance as a reference when one cell was used and by using the

*Concentration of solution.




-17%-

position of the inside edge of the rotor reference hole when two cells were run

simultaneoﬁsly.

REFRACTIVE INDEX GRADIENT

The refractive index gradients of Fractions 9-3, 3(2), 9-2, 3(1), 2(2), and

2(1) in solutions of approximately 1.5 x 1072 g./ml. in acetophenone were deter-

mined from sedimentation velocity runs on the Spinco Model E Analytical Ultra-

centrifuge, using the Rayleigh optical system. The refractive index gradient,

dn/dc,

where

| &

=2

<

is calculated from Equation (28) (177).

the

the

the

the

JA
dn/dc = o (28)

number of Rayleigh fringes
wavelength of light used = 5.461 x 1077 cm.
cell thickness = 1.204 cm.

concentration in g./ml.

This equation is based on the fact that the refractive index of dilute soluticns

is a linear function of concentration for most polymers.

Five measurements were made on each Rayleigh photographic plate and the

average value of the number of fringes, J, was employed in the calculation of

the refractive index gradient. Centrifugation was carried out in aluminum-filled

Epon capillary-type synthetic boundary double sector cells at 30.0 + 0.1°C. and

at rotor speeds of 7,000 to 8,000 r.p.m. The values for gg/gg are presented in

Table XIL.

The values for Fractions 9-3 and 2(2) were a8 little lower than the

values for the other fractions. An average refractive index gradient for Fractions

3(2), 9-2, 3(1), and 2(1) was determined to be -0.0277 ml./g. and this average

value was employed in the calculation of the weight average molecular weights.
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TABLE XL
REFRACTIVE INDEX GRADIENT

Refractive Index Gradient,

Fraction ml./g.
9-3 -0.0225
3(2) -0. 0284
9-2 -0.0263
3(1) -0. 028k
2(2) -0.0255
2(1) -0.0277

PARTTIAL SPECIFIC VOLUME

Partial specific volumes were determined for Fractions 3(2) and 2(1) at |
concentrations of 0.6 x 10—2 to 0.7 x 10_2 g./ml. in acetophenone. Density
measurements were made with a Lipkin pycnometer at 30.00 + 0.005°C. on 4.5 to
5.0 ml. of solution. The pycnometer had previously been calibrated by other

investigators (187, 188). Buoyancy corrections were made with Equation (29)

(289).

W=W +W da (l/dm - l/dw) (29)

where

W = true weights

W' = weights used

d = density of air

=

gm = density of liquid in pycnometer

gw = density of weights

The partial specific volume, E, was calculated by making the assumption that it

is equal to the apparent specific volume, ) In actual practice ﬁl is only

1
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slightly concentration-dependent and the above assumption is a very good one

(178). The partial specific volume is then given by Equation (30) (189).

100 (p - p_)
vehs s T (30)
o Do
where -
py = density of solvent
p = density of solution
P = concentration of solute in grams per 100 grams of solution

The average of two determinations for Fraction 3(2) is E = 0.750 + 0.012
ml./g. and the value from one determination for Fraction 2(1) is i = 0.75k
ml./g. The average density of acetophenone from duplicate determinations at
30.0°C, is 1.01949 + 0. 00008 g./ml. The partial specific volume of a polymer
species in solution is practically independent of its molecular weight (;IQ,
181). The nearly identical values for Fraction 3(2) with a DP = 60.6 and

Fraction 2(1) with a DP = 261 substantiate this.

RESULTS AND DISCUSSION

MOLECUILAR WEIGHTS AT A GIVEN CONCENTRATION

method of integration for three concentrations of Fraction 3(2). An example of
the log (Z/x) versus 5? plot is given in Fig. 15. The upward curvature of this
plot is due to the heterogeneity of the fraction. The results are compared to
the z-average molecular weights calculated by the method of ILansing and Kraemer
in Table XLI. It is seen that the values of the molecular weights calculated by
the two methods agree reasonably well. The method of lansing and Kraemer is

The z-average molecular weights were calculated employing the planimeter
more accurate than the method in which the planimeter was used to carry out the
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integration and the z-average molecular weights of all the fractions were calcu-

lated by the former method.

TABLE XLI

COMPARISON OF Z-AVERAGE MOLECULAR WEIGHTS FROM THE
"PLANIMETER" METHOD AND THE METHOD OF LANSING AND KRAEMER

. .M from "Plan- M. from L. & K.
Concentration, -z -z
Fraction g./ml. imeter" Method Method
3(2) Al x 1072 19,800 21,800%
3(2) ~0.7 x 1072 25,700 214,800
3(2) ~0.5 x 1072 - 25,400 24,300

&This rlate was remeasured and Mz recalculated for future analysis.

The data were plotted as Z versus X on an expanded graph and smoothed before
calculations were carried out. Due to optical effects, the values of Z from the
schlieren photograph generally cannot be measured with high precision in the
regions near the ends of the cell and must be obtained by extrapolation in these
regions (179, 181). For Fractions 9-3 and 3(2) this extrapolation was relatively
easy. However, for the other fractions this extrapolation was carried out with
some arbitrariness due to the abrupt increase in the slope of Z versus X in the
region near the solution-oil meniscus at the cell bottom. This abrupt increase
in slope is due to the presence of a small amount of very high molecular weight
material or a small amount of aggregation. In either case it is not representa-
tive of the molecular weight of the bulk of the polymer molecules in the fraction
and was effectively ignored by making a "reasonable' extrapolation which did not
consider the apparent abrupt increase in slopevnear the cell bottom. In this

]
respect sedimentation equilibrium is superior to light scattering because it

allows one to obtain a realistic molecular weight even when a small amount of

high molecular weight impurities or aggregates are present.
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The molecular weights calculated from the highest extrapolation and the
"reasonable"” extrapolation are presented in Table XLII. Also included in this
table are values obtained from the lowest extrapolation which gives a minimum
molecular weight. The molecular weights in Table XLII were calculated by the
method of Iansing and Kraemer and are at a given concentration. The molecular
weights obtained by the "reasonable" extrapolation were used in further analysis
of the data. Two examples of the plots of Z versus X' and the extrapolations are
shown in Fig. 16 and 17, where x' 1s the measured value of the abscissa before

conversion to the distance from the center of rotation.

Examples of the MZX versus g plot and the wa versus g plot are shown in
Fig. 18 and 19 and Fig:-EO and 21, respectively.--The molecular weight should
theoretically increase from X=8atox =D>b. In the'MEX versus g plot, Fraction
3(2) (Fig. 18) shows this increasing trend which is t;;ical for all the other
fractions except Fraction 2(1). Fraction 2(1) has a slight minimum although the
general increasing trend is present (Fig. 19); The plots of wa versus g have a
slight minimum for all fractions with the over-all trend in moi;cular weight in-
creasing from x = & to x = b. These slight minimums may be due to errors involved
in measuring the schlieren photographs or may be due to the concentration depen-
dence of the molecular weight. If the former reason is the cause, these errors
would be minimized by the integration throughout the cell in which the abnormally
high molecular weights .ould be compensated by the abnormally low molecular
-weights. An attempt was also made to calculate the weight average molecular
weights by the hinge point method of Van Holde and Baldwin (182) which employs
a one point measurement of Z at the midpoint of the solution column from the
center of rotation. The results obtained by this method were not satisfactory
and the values of the molecular weights were generally too low. The low values

of molecular weights obtained by this method can be attributed to the minimum

that is observed in the wa versus g plots.




_179_

TABLE XLII

MOLECUIAR WEIGHTS FROM SEDIMENTATION EQUILIBRIUM
AT A GIVEN CONCENTRATION

Concentration

Fraction  x 10°, g./ml.

WANWN 0O WOUWWW W
1

_5 ~~Q0.

(2) ~l
(2) ~ 0,
(2) 0.
(2) ~ 0.

2 ~0,
-2 ~ 0,

1) ~O.
1) ~O,
1) ~O.
~O.

~0,
~0.

~0.
~0.

)
)
)
) ~Q0,
)
)

P
b

\J1\J1\Nn U1\ U1\ W3 O

1\

Extrapolation

highest
"reasonable

highest
"reasonable"
lowest

highest
"reasonable”
lowest

highest
"yeasonable"
- lowest

M
-

11,000

19,000
20, 500
21,500
21,800

3h,000
31,800

42,700
38,100
36,700

62,300
54,000
51,000

93,500
87,000
81,000

M,
-z

10,300

22,600
24,800
24,300
26,200

46,500
38,400

95,100
50,100
41,900

163,000
86,000
69,600

138,000
114,000
9k, 500

iBased on the value of 288 for the triacetate monomer unit.
~v Designates approximately.

EXTRAPOLATION OF MOLECULAR WEIGHTS TO ZERO CONCENTRATION

DP
=sw

38.3

65.9
1.5
Th.7
5.7

119.0
110.0

148.0
132.0
128.0

216.0
188.0
177.0

324,0
302.0
281.0

D%,

35.

78.
86.
8h.

90,

162.
133.

O F =

O O

323.0
174.0
145.0

564, 0
£299. 0
242, 0

478.0

396.0
328.0

The molecular weights were determined at four concentrations for Fraction

3(2). The extrapolation to zero concentration is shown in Fig. 22.

has shown that for a polydisperse system the following equations hold.

1/M
/ app

1/M!
/ app

1/M, + B

sp ©

3 e}
/M, + Bopy ©

o}

Fujita (181)

(31)

(32)

The values 1/M ! are the weight average and z-average molecular weights
/My 803 1/M) g g g ghts,

respectively, at an initial concentration equal to g?,

The sedimentation equilibrium
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Figure 16. Z Versus x'.
Fraction 3(2). Concentration = 1 x 1070 g./ml.
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Figure 17. Z Versus x'.

Fraction 2(1). Concentration = 0.5 x 1072 g./ml.
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second virial coefficients are designated by BSD and EéD for the weight average

and the z-average molecular weights, respectively. Fujita (181) also shows that

Equation (33) applies when M, 1.

BSD

B.o = 33
Sy (1/12) (A,MZ.)2 (33)

where EIS = the light-scattering second virial coefficient,
(1-7 p ) -2°) &
YT 5T
Py = density of solvent

The assumption was made in this study that an equation of the same form applies

to the second virial coefficients for the z-average molecular weights.

Bl
. SD
B!, = 5 (34)
1+ (1/12)(M M,)
For a monodisperse system §9§ = 1/2 E@S where EQ? is the osmotic pressure second

virial coefficient (181). Although this relationship does not generally hold for
a polydisperse system, the approximate values of EOS and Ebs were calculated on
the assumption that the deviation from this relationship is not very great. The

molecular weights at zero concentration and the second virial coefficients for

Fraction 3(2) are presented in Table XLIII.

It is interesting that although the lowest concentration was run at a dif-
ferent rotor speed than the three higher concentrations, all the values fall on
the same line for the extrapolation in Fig. 22. Thus, the variation in rotor
speed had no appreciable effect on the values of molecular weight in this' case.
From Table XLIII, it is seen that the z-average second virial coefficients are

lower than the weight average second virial coefficients. This behavior is
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expected theoretically since the second virial coefficient theoretically de-
creases with increasing molecular weight (&9). For this reason, the approximate
osmotic pressure second virial coefficients given in Table XLITI are lower than
the actual values. The value of EOS = 4,30 x lO-)+ in acetophenone from Table
XLIITI is of the same order of magn;;ude as the measured value of 6.98 x lO-u for

Fraction 3(2) in trichloroethane.

TABIE XLIII

EXTRAPOLATION TO ZERO CONCENTRATION
FOR FRACTION 3(2)

- - 3 2
Molecular Molecular Second Virial Coefficient, (cm.” mole/g.<)
. Weight Weight Sedimentation Light Osmotic
Average at ¢ =0 Equilibrium Scattering Pressure
. o 3 _ N L -l
Weight av. 1\_/1E = 23,700 By = 1.02x10 Big = 8.59x10 Bys = 4. 30x10
- s -4 L. -k o ~k
z-Average M~W~ = 27,600 B?P = 7.70x10 E}? = 6.50x10 By = 3.25x10

The molecular weights of all the other fractions were extrapolated to zero
concentration with the use of Equations (31) and (32) and with the assumption
that §SD and EéD for all fractions were equal to the corresponding values for

Fraction 3(2). This is a reasonable assumption as shown by the following analysis.
First,'the assumption is made that the light-scattering second virial coefficient

in acetophenone, ELS or @is, is proporticnal to the measured second virial coef-

ficilent, A ; in trichloroethane. Then from this assumption and Equations (33)

—2(08)

and (34) we get the following equations from which and B! for each fraction

Bsp 47 Zgp

can be calculated..

‘ _ @Istl' + '(1/12)(>»*MZ)2]}“

BSD—given fraction
Byp-Fraction 3(2) g%s[l + (l/lE)(XMZ

-given fraction

2
) ]} -Fraction 3(2)

2
@2LOS)[1 " (l/lg)(XMZ) ]} -given fraction

2
{Az(os)[l * (1/12)()‘Mz) ]} -Fraction 3(2) (35)




_189_

t 1 2
BSD—given fraction _ {%Ls[l i (1/12)(XMZ)-i}-given fraction
Bin_ . - ' 22}

SD-Fraction 3(2) {?Is(l + (1/12) M)y o 5(2)

1 2
{?Q(OS) (1 + (1/12)(XMZ) i}-given fraction

1 2
{%2(08) [1+ (l/le)(XMZ) i}-Fraction 3(2) (36)

. . 1
The previously determined values of éQ(Q@) were used to calculate E?P and §SD

for each fraction. The molecular weights at zero concentration were then calcu-

lated with Equations (31) and (32) employing these calculated values of Byp and

@éD. These molecular weights are presented in Table XLIV along with the devia-

tion from the molecular weights at zero concentration calculated by assuming a

' .
constant §§P and §§P for all fractiomns.
TABLE XLIV
MOLECULAR WEIGHTS EXTRAPOIATED TO ZERO CONCENTRATION
WITH THE USE OF 52(9§)
Deviation from Deviation from
M Calculated M. Calculated
- =
Assuming Constant Assuming Constant
Fraction Mﬂ B@P’ % MZ §§P, %
9-3 11,300 -3.4 10,500 2.4
3(2) 2% 700 0 27,600 0
9-2 39,3500 3.2 46,000 +1.7
3(1) 50, 400 +6.1 66,100 +.0
2(2) 79,600 7.5 141,000 8.1
2(1) 145,000 -9.8 189,000 -9.8

aPreviously extrapolated value.
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The molecular weights which were extrapolated to zero concentration with the

assumption of constant ESD and EéD for all the fractions agree within 10% with the

molecular weights presented in Table XLIV. Thus, the assumption of constant E%D
and BéD is a good one and the molecular weights extrapolated to zero concentration

with this assumption were used in the further analysis of the data. These molecu-

lar weights are presented in Table XLV.

TABLE XLV

‘MOLECULAR WEIGHTS EXTRAPOLATED TO ZERO
CONCENTRATION ASSUMING CONSTANT B, AND B,

—8D =
Fraction M pp * M, pp *
9-3 11,700 40.8 10,800 37.3
3(2) 23 700" 82. 4 27,600 95.8
9-2 38,100 132.0 45,300 157.0
3(1) 47,500 165.0 62,300 216.0
2(2) 74,200 257.0 130,000 452.0
2(1) 161,000 557.0 210,000 729.0

aBased on the value of 288 for the triacetate monomer unit.
Previously extrapolated value,
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APPENDIX XIX

MOLECULAR WEIGHT HETEROGENEITY AND DISTRIBUTION

The number average, weight average, and z-average molecular weights are

defined by Equations (37), (38), and (39), respectively (25, 30).

Xn.m, Zc

H
.

ZniMi }:clMl
M= = (38)
\ }_jnimi zc
>n M.3 e M.2
M, = ——5 = (39)
Z 2 »e.M
In. M, i
i :

The variables n, and ¢, are the number of molecules and the weight concentration

of molecules of molecular weight, Mi’ respectively. The ratios of Mw/Mh‘and

MZ/MW are measures of the polydispersity of a polymer fraction. The measured

values of M /M and M_/M_ are presented in Table XLVI.
= =2’ =

The most probable distribution or the Zimm-Schulz distribution is given

by (181, 190, 191)

ph+l, h -pM
(M) = e Me (40)

where

£(M) = the normalized weight distribution of the molecular weight, M

it

E and p adjustable positive parameters

ﬁhe Gamma function,

1t

r

The parameter, h, increases as the molecular weight distribution becomes
sharper. Therefore, the deviation of l/g from zero is a measure of the hetero-

geneity of the fraction. Based on the assumption that the Zimm-Schulz distribution
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applies to glucomannan triacetate fractions, the following relationship was used

to calculate three values of h by using the three possible combinations of Mn’

M , and M_ for each fraction.
— -z

h h + 1 _ h +2 (ul)

The three values of h differed and it was assumed that this was due to errors in
the molecular weight measurements rather than failure of the Zimm-Schulz distribu-
tion to apply. Therefore, an average value of h was determined for each fraction
and the ratios of Mw/Mn and M%/Mw were calculated from Equation (41). These

"averaged" values of M /M and M, /M are presented in Table XLVI.
W Y

TABLE XLVI
RATIO OF M :M :M,

Measured "Averaged" Average

Fraction M_ ME M_/gE ME/ME MZ/ME h

9-3 1.12 0.916 1.05 1.05 20.7
3(2) 1.36 1.16 1.26 1.21 3.79
9-2 1.61. 1.19 1.37 1.27 2.70
3(1) 1.61 1.31 1.53 1.35 1.88
2(2) 2.09 1.76 2.51 1.61 0.663

2(1) 2.1% 1.31 1.71 1.h1 1.be
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APPENDIX XX

DIFFUSION COEFFICIENTS
INTRODUCTION

If a concentration gradient exists in a solution, matter will flow from the
region of higher concentration to the region of lower concentration, tending to
equalize the concentration throughout the solution (EQ). For one-dimensional

“diffusion this process is described by Fick's first law of diffusion (EQ).

c
J =-D < (42)
3, t
where
J = the flow of particles per second, across unit area of a plane
perpendicular to the direction x of the concentration gradient
(3c/3x),
D = diffusion coefficient
c = concentration

When a polymer solution of initially uniform concentration is subjected to a
centrifugal force in an ultracentrifuge cell, a concentration gradient is set
up due to the sedimentation of the polymer molecules toward the bottom of the
cell. In a sedimentation equilibrium experiment, equilibrium is attained, when
the material migrating across a given surface in a centrifugal direction is

exactly balanced by the transport centripetally due to diffusion (gi).

Van Holde and Baldwin (182) have shown that the diffusion coefficient can
be obtained from an analysis of the transient state (approach to equilibrium)
in a sedimentation equilibrium experiment. They applied the equations of Mason
and Weaver (;22) for a rectangular cell to approximate the conditions in a
sector-shaped cell. This is a very good approximation when the height of the

solution column is less than 3 mm. The diffusion coefficient is cobtained from
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the following equation:

:)
-f. PRv——
. k{1 + cosh <;a ] _DﬂeU(a)t
log € = log 5 - (43)
1 (a) 2.30%(b-a)
where
D = diffusion coefficient
t = time
b-a = length of solution column
RT
o =
M(1-vp) & r(p-a)
r = (b+a)/2 = the distance of the center of the solution column from
the center of rotation
Ule) = (1 + 1/(urP))
Ace - Act
€ = ———%é————— = a measure of the departure from equilibrium (Lh)
eq.
4c = c(b)-c(a) = the concentration difference between the top and bottom

of the solution column.

The parameter ¢ is measured as a function of time and the diffusion coefficient

is determined from the slope of the plot of log .€¢ versus time.

When the sample is heterogeneous the following average diffusion coefficient

is obtained (182)

q
B, =) @ D; Ule,)/u@)

1=
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n
R, = sg\j> = the differential refractive increment evaluated
i at zero concentration of all solutes
- I)EJE]'_(#O)

Unfortunately, this is an unusual average diffusion coefficient. Van Holde and
Baldwin (182) point out that almost the same average is obtained by combining
results of sedimentation -velocity and sedimentation equilibrium experiments as

long as no very high molecular weight species are present. The equation is

ﬁzaf——;ggl:f— (45).
M (1 - vo)

In a recent paper LaBar and Baldwin (193) reinvestigated the approximations

made in deriving Equation (43). They concluded that the optimum conditions occur

when € is less than 0.5 and @ is greater than 1.0.
EXPERIMENTAL

The transient state data were obtained from the approach to equilibrium in
the sedimentation-equilibrium experiments. The experimental conditions are given

in The Sedimentation Equilibrium Section, Appendix XVIII, p. 166.

The schlieren optical system was employed. Photographs were taken at inter-
vals of time ranging from the time at top speed to the time when equilibrium was
reached. Fach photograph gives a record of the refractive index gradient of the
solute versus radial distance within the centrifuge cell at a given instance of

time.
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The concentration difference between the top and the bottom of the solution

column, Ac, is given by (177)

T\ dc tan 8 ]i }
Ac = AxX = s———— Zdx = K | Zdx (46)
y x IhmmeAn 2 2
where
Z = the ordinate on the photographic plate
x = the abscissa on the photographic plate

b

The area, A, on the photographic plate is given by A= I_?gg. Substituting this
a

expression and Equation (L46) into Equation (L4k), the following expression for €

is obtained

__ed. 't (u7).

The areas were determined by projecting the photographic image onto a ground-
glass screen with a Wilder microprojector and tracing this image on onionskin
raper. The area was then measured with a planimeter. This method of determining
the area is much more rapid than the conventional method of measuring each plate

on a microprojector and then integrating.

The time was corrected to take into account the lower angular velocities

during acceleration with the following equation (182)

% 2 2
foor, =) & (E)at/e (1)
where
t = the measured time to top speed
t = the corrected time to top speed
—cor.
w(t) = the angular velocity

the angular velocity at top speed

nE
I
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The height of the solution columns were about 2 mm. The concentrations of
the solutions were approximately 5 x lO-5 g./ml. in acetophenone. The temperature

was 30°C,
RESULTS

Equation (43) was employed in two ways to.determine the diffusion coeffic-
ient. In Method 1, log (lO2 € ) was plotted versus time and the slope was deter-
mined by the method of least squares. When this was done, the intercept given
by the method of least squares differed from the theoretical intercept given by
Equation (43). Therefore, Method 2 was also employed in which the theoretiéal
intercept was calculated from the known value of . A line was then drawn through
the theoretical intercept and the points which were consistent with this line.

The slope was then determined from this line, The points employed in this method

were generally below € equal to 0.5.

The schlieren pattern was somewhat irregular near the solution-air meniscus
in the transient photographs. This resulted in some ambiguity in the determina-
tion of the area. Due to this ambiguity the points employed in the two methods
of calculation may differ slightly. However, a consistent interpretation of the
area near the solution-air meniscus was employed in each method of calculation.
Results were obtained for Fractions 9-3, 9-2, 3(1), 2(2), and 2(1). No attempt
was made to extrapolate the diffusion coefficients to zero concentration. The
results are presented in Table XLVII and examples of the ¢ versus time plots for

Method 1 and Method 2 are shown in Fig. 23 and 24, respectively.

Since viscosity and osmometry was carried out in 1,1,2-trichloroethane it
is desirable to know the diffusion coefficients in this!:solvent... The: diffusion
coefficients 'in 1,1,2-trichloroethane .were ¢al¢ulated from the following relation-

ship (L40)
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TABLE XLVII

DIFFUSION COEFFICIENTS — IN ACETOPHENONE

Method 1 Method 2
.Da Da’
-, . -
a 5 Correlation o b
Fraction M, o’ em. /sec. Coefficient cm. /sec. Intercept
9-3 11,000 1.071 491 x 107 -0.986 5.18 x 107/ -0.240
9-2 31,800 0.710 3.29 x 107 ' -0.998 3.37 x 1071 -0.188
3(1) 38,100 0.567 2.43 x 107/ -0.992 2.61 x 1071 -0.157
2(2) 54,000 0.673 3.08 x 1077 -0.985 2.45 x 1077 -0.181
2(1) 87,000 0.419 2.4 x 107 ( ~0.991  2.10 x 1070 -0.112

ZAt concentration = 5 x 107 g./ml.
Intercept from log € versus time.

D, =D, Tl2/"1

where n = the viscosity of the solvent.

It should be emphasized that this is merely an algebraic procedure to correct
for the change in frictional coefficient due to a change in solvent viscosity.
It does not correct for a change in the frictional coefficient due to a change
in the polymer configuration or solvation. The viscosities of 1,1,2-trichloro-
ethane and acetophenone were determined by measuring the flow times of these two
solvents and water in a Cannon number 50 viscometer. The flow times were con-
verted to viscesities, using water as a standard with the following equation

(168)

where p = density.
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TIME, SEC. X 1073

: Figure 24. € x lO2 Versus Time
Methed 2 (Line Determined by Intercept). Fraction 9-2
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The viscosities at 30°C., are 1.516 c.p. for acetophenone and 1.024 c.p. for
1,1,2-trichloroethane. The diffusion coefficients in 1,1,2-trichloroethane

are presented in Table XLVIIT.

TABLE XLVIII

DIFFUSION COEFFICIENTS - IN 1,1,2-TRICHLOROETHANE

Method 1 Method 2
D,? p,®
Fraction M & cm.e/sec. cm.2/sec.
v

9-3 11,000 7.27 x 1077 7.66 x 1071
9-2 31,800 4.87 x 107 4.98 x 1077
3(1) 38,100 3.61 x 1077 3.87 x 107/
2(2) 54,000 k.55 x 1077 3.63 x 1071
2(1) 87,000 3.64 x 1077 3.11 x 107/

@At concentration = 5 x 1072 g./ml.
DISCUSSION

The diffusion ccefficients calculated by Method 1 and by Method 2 differ
from 2 to 7% for Fractions 9-3, 9-2, and 3(1) and differ about 20% for Fractions
2(2) and 2(1). The results from Method 2 ‘are theoretically the most sound since
they have been calculated from the slope of a line which has been forced to pass
through a theoretical intercept at zero time. Furthermore, although Method 1
émploys more points in the determination of the slope, the points used in Method
2 have more theoretical significance for the following reason.l It was mentioned
rreviously that LaBar and Baldwin (;22) claim the optimum conditions occur when
o is greater than 1 and € is less than 0.5. In this series of experiments &
ranged from 1 to 0.4 (Table XLVII). From curves presented by IaBar and Baldwin

it can be seen that the error is negligible for & = 0.5 when € is less than 0.3.
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In Method 2 the lower values of € were employed; generally, these values were less
than 0.3. For this reason the diffusion coefficients calculated by Method 2 are
the most reliable and the future analyses is based on these values. The accuracy
of this determination is controlled by the accuracy in the determination of the

area under the schlieren pattern on the photographic plate.

. IaBar and Baldwin (;22) point out that the method has not been tested for
systems that are heterogeneous or have appreciable concentration dependence. The
diffusion coeffiéients were detérmined at a given concentration and therefore the
concentration dependence is an unknown factor in this study. The effect of poly-

dispersity was discussed previously.
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APPENDIX XXI

SEDIMENTATION COEFFICIENTS

The sedimentation coefficient, s, is defined from the following relation-

ship (40)
dr
1 H
5 = v d)g at (14-9)
H
where
r.. = the distance from the center of rotation to the boundary position

time.

The sedimentation ccefficients were calculated from the following relationship

(182)

D, M, (1-vp)

_ Ta
s = = (50).

It was stated in Appendix XX, p. 193, that Qa approximates the average value

that is obtained by combining results of sedimentation velocity and sedimentation
equilibrium experiments. Thus, if the weight average value of molecular weight
obtained from sedimentation equilibrium and Qa are employed in Equation (50) the
value of s should be almost the same average that is obtained from sedimentation

3 g./ml.

velocity experiments. Values of Mw and Qa at a concentration of 5 x 10~
were used to calculate s. The results are presented in Table XLIX. For the

reasons given in Appendix XX, the results from Method 2 are employed in future

analyses.
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TABLE XLIX

SEDIMENTATION COEFFICIENTS — IN ACETOPHENONE

. Methoa 127 Method 2%7P

Fraction Mw s, sec. s, sec.

9-3 11,030 50,4 x 10”1 5.31 x 107 1%

9-2 31,770 9.72 x 1071* 9.95 x 10" *

3(1) 38,080 8.62 x 107" 9.26 x 107

2(2) 5k, 020 1.55 x 1072 1.25 x 1071

2(1) 87,010 1.96 x 1077 1.67 x 107
a . -3

At concentration = 5 x 10 © g./ml.

Method 1 and Method 2 are defined in Appendix XX, p. 193.




Polysaccharide

Cellulose
Cellulose

Cellulose

Cellulose
Cellulose

Cellulose
nitrate

Cellulose
nitrate

Cellulose
nitrate

Cellulose
nitrate

Cellulose
nitrate

Methyl cellulose

Ethyl cellulose

Hydroxyethyl
cellulose

Hydroxyethyl
cellulose

Hydroxyethyl
cellulose
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APPENDIX XXII
COMPARISON OF HYDRODYNAMIC PROPERTIES OF
VARIOUS POLYSACCHARIDES
TABLE L

EXPONENTS OF THE MARK-HOUWINK
EQUATION FOR VARIOUS POLYSACCHARIDES

Solvent Structure Exponent
Cadoxen Linear, B-1,L4 0.77
Cadoxen " 0.76
Cupriethylene-

diamine " 0.9
Cuprammonium " 0.9
EWNN Y 1.01
Ethyl acetate " 0.86
Acetone " 1.00
BEthyl acetate " 1.01
Acetone " 1.0
Acetone " 1.0
Water " 0.63
Methanol " 0.65
Cadoxen " 0.79
Water " 0.87
Water " 0.70

Reference

(201)
(200)

(203)

(204)

~
no
(@)
=

g

(205)




Polysaccharide

Sodium carboxy-
methyl cellulose

Sodium carboxy-
methyl cellulose

Sodium carboxy-
methyl cellulose

Sodium carboxy-
methyl cellulose

Sodium carboxy-
methyl cellulose

Sodium carboxy-
methyl cellulose

Guaran triacetate
Amylose

Amylose

Amylose acetate
Amylose acetate
Dextran

Dextran

Dextran

Glucomannan
triacetate
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TABLE L (Continued)

EXPONENTS OF THE MARK-HOUWINK
EQUATION' FOR VARIOUS POLYSACCHARIDES

Solvent

Cadoxen

Aqueous
0.1M NaCl

Aqueous
0.01M NaCl

Aqueous
0.001M NaCl

Aqueous
0.2M NaCl

Aqueous
0.005M NaCl

Acetonitrile
Bthylenediamine
Aqueous N KOH
Chloroform
Nitrcmethane
Water

Water

Water

Trichloro-
ethane

Structure

Linear, B-1,k4

Branched
Branched

Branched

Exponent

0.73

0.91

1.20

1.40

0.7k

0.95
0.87
0.70
0.89
0.9
0.87
0. 50
0.42

0.32

0.62

Reference
(135)

(37)

\N

N
N
e

(31)

P
o
Q

AN

ey
no
o}

Py P P
—~~ —~ o no no
|\N Q Q Q
= NO (09] (@5]
—r p S S ~— p—— g g g

N N
% & [

Present study




Polysaccharide
Cellulose nitrate

Hydroxyethyl
cellulose

Sodium cellulose
xanthate

Cellulose
Cellulose

Carboxymethyl
cellulose

Methyl cellulose

Xylan

Glucomannan
triacetate
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TABLE LI

Solvent

Acetone

Water

Aqueous NaOH
Cuprammonium

Cadoxen

Aqueous NaCl
Water

Dimethyl sulfoxide

Acetophenone

EXPONENTS IN THE D VERSUS M RELATIONSHIP

Structure

Linear, B-1,4

Exponent

-0.685

-0.54

~0.521
-0. 547

-0.61

~0.65
-0.56

-0.79

~0.451

Reference

Present

study




Polysaccharide

Cellulose nitrate
Cellulose nitrate
Cellulose nitrate

Sodium cellulose
xanthate

Cellulose
Cellulose

Hydroxyethyl
cellulose

Carboxymethyl
cellulose

Carboxymethyl
cellulose

Carboxymethyl
cellulose

Methyl cellulose
Amylose acetate
Dextran
Dextran
Dextran

Glucomannan
triacetate
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TABLE LII

EXPONENTS IN THE S VERSUS M RELATIONSHIP

Solvent Structure Exponent
Ethyl acetate Linear, B-1,4 0.29
-- " 0.30
Acetone " 0.316
Aqueous NaOH " 0.483
Cuprammonium " 0.452
Cadoxen " 0.40
Water " 0.46
Aqueous 0.1M NaCl " 0.35
Aqueous 0.01M NaCl " 0.23
Aqueous 0.001M NaCl " 0.11
Water " 0.45
Nitromethane Linear, a-1,4 0.38
Water Branched 0.42 -
Water Branched 0.50
Water Branched 0.4k

Acetophenone -- 0.543

Reference
(204)
(20k)

(210)

(210)
(210)

(35)

N

(205)

~ ~
SIS
g S

N
n o~
8 X

R N . ™ I W N N

— N N
% 1B [

,\
[

Present study
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APPENDIX XXIII
RELATIVE SHAPE AND SIZE OF THE GLUCOMANNAN
TRIACETATE MOLECULE
The following technique is often used in the analysis of diffusion coeffic-
ients of proteins to obtain a measure of the relative shape of the polymer mole-

cule in solution. The frictional coefficient, f, is given by (&9)

- —11/3
(v, + 5.v.°)
£ =5l gng I e 11 (51)
D T]fo Lt
where
k = Boltzmann's constant
n = solvent viscosity
M = molecular weight
X; = specific volume of pure solvent
XQ = partial specific volume of polymer
n = Avogadro's number
61 = an empirical degree of scolvation = number of grams of a solvent
associated with 1.0 g. of unsolvated polymer
Eo = frictional coefficient of a hypothetical sphere which includes the
solvent associated with the polymer (sphgre volume = actual polymer
volume plus associated solvent volume = L2 + 0 Xl)
Bo = radius of hypothetical solvated sphere

The factor f Eo represents the deviation of the shape of the polymer hydrodynamic

particle from a sphere. The minimum possible frictional ccefficient, gmin , for

an unsolvated sphere is obtained by setting g/go = 1 and 61 = 0.

=\ 1/3
rp. =L _ 5 5MV2> (52)
min. Dm ™ L

N
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From Equation (51) and Equation (52), the useful ratio, g/gmin is obtained.

(53)

The ratio, f Emin.' depends on two factors, solvation and asymmetry. With-
out further information it is impossible to separate the effects of these two
variables. However, it is possible to determine the range of possible values
which these variables might possess. At one extreme, we assume that the differ-
ence between the actual value of E/Emin. and the ideal value of 1.0 for unsolvated
spheres 1is due éntirely to solvation. In this case, the assumption [ £o =1 is
made and the maximum value of 61 is calculated from Equation (53). This is the
value of &, required to produce a sphere yith the measured diffusion coefficient.

1

The radius of this sphere, R can be obtained from Stoke's equation, £ = 6anR_.
)_S) P T]—S

The extreme, in which the entire effect is assumed to be due to asymmetry, is
determined by setting 61 = 0, In this case f Eo = —/gmin.' The magnitude of

the asymmetry is expressed in terms of the axial ratio, g/g, of a prolate ellip-
soid which would produce f Eo' This maximum value of g/g is calculated by use of

Equation (5k4)

. (1 - be/ae)l/e | (54)
fo 2/5 . 1+ (1 - v/a)l?
(v/a) / 1n |: (b/a /

Svedberg and Pedersen (178) have compiled tables of g/g'versus f io' The values
of f, E/Emin.’ maximum 61, Bs, and maximum g/g for the glucomannan triacetate in

acetophenone are presented in Table LIV.

The values of E/imin for the glucomannan triacetate molecule are in the
range of 1.9 to 2.5. This is considerably lower than the values for this parameter

which have been found for B-1,4 linked linear polysaccharides as seen in Table LV.
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Thus, the glucomannan triacetate molecule in solution assumes a smaller sphere
and/or a more symmetrical shape than typical linear B-1,4 linked polysaccharides.
In fact, the values for f Emin. lead to the conclusion that the shape of the gluco-
mannan triacetate molecule in solution more closely approximates that of a rela-

tively compact branched dextran molecule than a linear B-1,4 linked polysaccharide.

TABLE LIV

SHAPE AND SIZE PARAMETERS FROM DIFFUSION COEFFICIENT

Maximum Solvation

5 Maximum

a a 1’ Asymmetry
Fraction Mﬁ £, g./sec. E/gmin. grams/gram Bi (é? a/b
9-3 11,030  8.09 x 108 1.90 4,52 28.3 17.8
9-2 31,770 1.2h x 107/ 2.06 5.91 43.5 21.7
5(1) 38,080  1.60 x 1071 2.50 11.11 56.0 3h.3
2(2) 54,020  1.71 x 1077 2.37 9. 40 59.8 30.1
2(1) 87,010  2.00 x 1077 2.36 9.29 69.8 30.0

%At concentration = 5 x 107 g./ml.
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TABLE 'LV

THE PARAMETER f/f . ~ FOR POLYSACCHARIDES

Polysaccharide Structure Range f . Reference
—min

Hydroxyethyl .

cellulose Linear, B-1,4 125x105- 545x103 3.96-5.29 (205)
Cellulose

nitrate " 17.9x105- 586xlo5 2.2 -6.1 (211)
Methyl cellulose " 14.1x105-58.1x105 3.04-4.5 (212)
Cellulose " uuxlo5-5900xlo5 4, 6-13.10 (210)
Cellulose . 3

nitrate : 2L0x107 - 780xlo5 6.0-12.2 (210)
Sodium cellulose

" ) V)

xanthate 35x10” - 126x10 3.2.-4.3 (210)
Dextran Branched 21.6x103- 526xlo5 2.03%-3.22 (58)
Dextran Branched 59.8X105- 215xlO3 2.07-2.98 (58)
Glucomannan 3 3

triacetate -- 11.0x10"-87.0x10 1.90-2.50 Present study

Molecular Weight
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APPENDIX XXIV

THE EIZNER-PTITSYN THEORY
THEORETICAL

Eizner and Ptitsyn (E&, &g) have derived equations for the intrinsic vis-
cosity, diffusion coefficient, and sedimentation coefficient of semirigid macro-
molecules. The '"wormlike" chain of Kratky and Porod (213) is used to evaluate
(i7£;;7*. In the case of the diffusion and sedimentation coefficients this value
is s&gstituted into a general expression for the translational frictional coef-
ficient of macromolecules given by Kirkwood (214) to obtain the theoretical

hydrodynamic equations. In order to derive the theoretical equations for in-

trinsic viscosity the expression for (l7£pt5* is substituted into the intrinsic

viscosity equation of Peterlin (215, 216). Eizner and Ptitsyn (42) show that the
theory of Peterlin can be considered as general since it agrees with the most
precise existing theories for the completely flexible Gaussian chain model, the
flexible chain model in a good solvent which is impermeable to this solvent, and

the rod-shaped molecule model.

The expression derived by Eizner and Ptitsyn (L ) for the intrinsic vis-

cosity of semirigid macromolecules is given in Equation (55).

25/2 -8 (b3/Mo) N x (N/A)

bs(on/3)2 1 1 /2
52(5_21[2) X + )..75 ,@(X;N)Nl

[n] = (55)

*The variable r is the distance between the p and t monomer units and the

Pt
averaging is carried out for all chain configurations.
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where [n] is the intrinsic viscosity in ml./g., N is the degree of polymerization,

2> mole-l at high

@O is the Flory coefficient whose limiting value is 2.86 x 10

molecular weight (&g), T, is the hydrodynamic radius of the monomer unit, Mo is

‘ the molecular weight of the monomer unit, b is the length of the monomer unit
equal to 5.15 x 10_8 cm. for B-1,4 linked hexosans, and M = g/g. The "stiffness"

| of the molecule is characterized by the persiétence length of the Kratky-Porod

wormlike chain, a. The persistence length is defined as the integral of the
average projections of chain elements of the infinitely long chain on its initial

‘ direction (31, 199, 213). The geometric function X(N/A) and the hydrodynamic

function @(\,N) are complex functions of A and N and are given in Equations (56)

and (57), respectively.

x(W/2) = 1-13/(/n )] él\l/x)2 - E.ﬁN/h) -1+ e'(N/)“ﬂ} (56)

n=1
g(\,N) = lB(“/B)l/Q - ZE (15 +e-Ne-20) g (1/2.)
LI—(B - 21/2) )\,1/2 N5f2 ) [:k/x_l_,_e'(k/‘}\-)] l@
(n/2)-1
- [(P/2)- 2% + N] y(k/2) (57)

. Where

45 (k/M)° = 156K/n + 010-5l (hate/2)e” K/ M)y o™ (35/2)

27|E/>» -1+ e"(k/’”i] i

The expressions derived by Eizner and Ptitsyn (U4 ) for the diffusion coef-

y(k/M) = 0.427 + 0.573

(58)

ficient, D, and the sedimentation coefficient, s, are given in Equations (59) and

(60), respectively.
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kTA
D = gﬂ—ﬂo__N (59)

M (1-v)A
= — (60)

67 U NA

where T is the absolute temperature, s is the viscosity of the solvent, i is the

partial specific volume of the solute, p is the density of the solvent, EA is

Avogadro's number, and A is defined by Equations (61) and (62),

1 ose(an) NP

A== + (61)
Yo V3n VEN
N-1
\6x 1 (N-k) y (k/0)
£(A,N) = (62)
S 2 kgl Vi/a - 1+ KA
where y(k/A) is defined by Equation (58).
The Flory coefficient, ¢, is defined by (217, 218)
(n] M
8 = —— (63)
6(sn2) 2

where §n2 is the number average mean square radius of gyration. The theoretical

value of the Flory coefficient from the Eizner-Ptitsyn theory is given by

$

N us(en/B)l/2 b\ 1/2 1/2
B(A,N) s - 21/2) T (ﬁ) X< (N/A)

(64)
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RESULTS AND DISCUSSION

TREATMENT OF THE EXPERIMENTAL DATA TO OBTAIN THE
PERSISTENCE LENGTH

In order to treat the intrinsic viscosity data, Eizner and Ptitsyn re-

arrange Equation (55) to yield:

5
22 8 2 x(up)
o]
en 1/2 45 b 1 /2
<237 30(5 - 3/2) M, N A 1 (65)

which is of the form, Y = A + BX. When the appropriate value of A is used, a
plot of Y = QB/EQO(Eé/MO)(H/[n])x(H/X) versus X = ﬁ(x,y)yl/e should be a straight
line. The appropriate value of M was determined by trial and error. Initial
values of ki were assumed and from a least squares treatment of the data accord-

ing to Equation (65) a final value of kf was calculated. This procedure was

repeated several times and a correct value of A was determined from the inter-

section of the curve relating ki to kf with the straight line, ki = kf. Equa-

tions (56) and (57) were used to calculate x(N/A) and #(MN). Calculations were

carried out with the aid of an IBM 1620 computer.

Examples of the Y versus X plots are shown in Fig. 25 and 26. Intrinsic
viscosity correlations with respect to the number average molecular weights,
the weight average molecular weights, and the z-average molecular weights were
treated. In the Intrinsic Viscosity-Molecular Weight Section it was shown that
there was a definite break in the log[n] versus log M plot in the high molecular
weight region. Therefore, treatment according to the Eizner-Ptitsyn theory was

applied to the data points which determine the initial linear portion of the
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logn] versus log M plot (the lower molecular weight range) as well as the data
over the entire molecular weight range. From Fig. 25 and 26 it is seen that the
theory applies better to the lower molecular weight data than to the data over
the entire molecular weight range. For this reason, the future conclusions and
discussion will be based on data from the lower molecular weight range. The

values of ) and the persistence length, a, are presented in Table LVI.

TABLE LVI

RESULTS FROM EIZNER-PTITSYN THEORY

Molecular Weight Persistence

Average Employed Data Points Employed A Iength, A.
M Lover M.W.% range 6.78 34.9
M A1l points L.70 2h.2
Mw Lower M.W. Range 5.92 20.2
M, All points 3.19 16. 4
M, Lower M.W. range 3.34 17.2
~Z All points 2.82 14,5

a

M.W. = molecular weight.

The Eizner-Ptitsyn theory describes the experimental data of the semirigid
linear B-1,L4-linked polysaccharides more adequately than any of the other exist-
ing polymer theories (L41-45). Swenson (45) has tabulated the results of an
Eizner-Ptitsyn treatment of the experimental data for various linear B-1,4-linked
polysaccharides. These results are presented in Table LVII along with the results
for the glucomannan triacetate from this study and the results for a branched
dextran. From Table LVII, it is seen that the persistence length of linear B-1,L4-
linked polysaccharides is generally in the range of 50 to 70 A. The one exception

to this rule is cellulose nitrate which has a persistence length of 132 A, Thus,
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TABLE LVIT

RESULTS FROM EIZNER-PTITSYN THEORY
FOR VARIOUS POLYSACCHARIDES

Polysaccharide Structure A a, A, Reference
Cellulose b
trinitrate Linear, B-1,4 25.5 132 (198)
Cellulose in FeTNa " 13.8 71.9 (45)°
Cellulose in b
cadoxene " 13.8 70.8 (35)
Cellulose acetate " 11.5 59.3 (240)P

Galactomannan

triacetate g 11.2 57.8 (21)
Cellulose acetate " 11.0 55.6 (Ei)b
Glucomannan

triacetate " 10.7 55.3 (43)
Diethylacetamide

cellulose b

xanthate " 10.5 54.0 (241)
Cellulose caproate " 9.3 Lr.7 (219)b
Dextran Branched 1.60 8.23 (éé)b
Glucomannan a a

triacetate -- 3.92

20.2 Present study

Results obtained by using the data from the lower molecular weight range for M
Eizner-Ptitsyn treatment by Swenson (45). -




-221~

the generalization can be made that if a polysaccharide has a linear B-1,4-
linked structure then it has a persistence length of approximately 50 A. or
greater. Since the glucomannan triacetate from this study has a persistence
length of 20.2 A,, it by necessity is not a linear B-1,4-linked polysaccharide.
Considerable evidence exists in the literature which shows that coniferous
glucomannans are composed primarily of B-1,4 links (2). Therefore, one arrives
at the conclusion that the glucomannan from this study is branched. It was
previously mentioned that the persistence length is a measure of chain stiff-
ness. Low values of the persistence length for branched polymers are due to
the compact molecular structure resulting from branching.
CAICUIATION OF THEORETICAL INTRINSIC VISCOSITY, MEAN SQUARE
RADIUS OF GYRATION, AND FLORY COEFFICIENT

Equation (55) was used to calculate the theoretical values of the intrin-
sic viscosity. Examples of the theoretical curve and the experimental data are
shown in Fig. 27 and 28. It is seen that the theoretical curves fit the data
considerably better in the lower molecular weight range than over the entire
molecular weight range. Thus, the previous decision to base the conclusions
on results obtained from data in the lower molecular weight range is given
support. The failure of the theory to adequately describe the data over the
entire molecular weight range is undoubtedly due to the branching in the gluco-

mannan molecule.

Equation (6L4) was used to calculate the theoretical value of the Flory

coefficient, & An "experimental' value of the Flory coefficient, @

theor.’ exp.’

was calculated with Equation (66)

a, [1] M -
¢ = ———:25-372 (66)
6(s,)

Z




[7)

(7]

40

-222-

80}
ol © EXPERIMENTAL POINTS

| —— THEORETICAL CURVE
40
201
0 I B I L1
10 20 40 60 80 100 200 300

DRy

Figure 27. [1] Versus DP  For Lower
Molecular Weight Range

80~ 0 EXPERIMENTAL POINTS
60l —— THEORETICAL CURVE
-
ZOL— {
o
0 [ RN | 11|

{0 20 40 60 80100 200 400 600
DRy

Figure 28. [n] Versus DB For All Points




~P23 A

where §¥2 is the z-average mean square radius of gyration and a4, is a factor to

correct for sample heterogeneity. A Zimm-Schulz distribution (181, 190, 191) was

assumed and g was calculated with Equation (67) (219, 2209

3/2
_ (h+2)2/ F (h+2) (67)
(h +1)° 7 (h + 1.5)

4

where h is the Zimm-Schulz parameter, and I' is the gamma function. The z-average

mean square radius of gyration, §22, was calculated with Equation (68) which was

derived from the Kratky-Porod "wormlike" chain model (199, 221).

(g) - a? &Nz b/3a - 1 + (Ea/wa)[l - (a/Nnb)] } (68)

and ¢ for the lower molecular data from

2
The values of Sy o0 95 8 theor.

=0’ “exp.’

Mw are given in Table LVIII. The limiting value of the Flory coefficient is

2?86 X 1025. The results are plotted in Fig. 29. A reasonable correlation is
obtained between the theoretical and "experimental values of §. Since the
"experimental" value was calculated using A and a from the Eizner-Ptitsyn theory,

agreement between ¢ and Qexp is not proof of the validity of the theory

theor.

but merely an indication that the theory and the experimental data are internally

consistent. The agreement between § and Qexp for the data from Mh and M%

theor.
was not nearly as good as for the data from Mw. For linear polymers the Flory

coefficient increases up to its limiting value as the molecular weight increases
and the molecule becomes more tightly coiled. The values of the Flory coeffic-

ient higher than the limiting value is undoubtedly due tc the compact structure

of the glucomannan molecule caused by branching.

CAICULATION OF THE THEORETICAL DIFFUSION COEFFICIENT
AND SEDIMENTATION COEFFICIENT

A true test of the applicability of the Eizner-Ptitsyn equaticns is to use

intrinsic viscosity versus molecular weight data to calculate LN and M and then
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TABLE LVIIT

.FLORY COEFFICIENTS

Q;?; en.® L Pexp. * 102 Ytheor. ¥ 1022
9.4 x 100 108 422 3.29
2.95 x 1000 1.37 3.20 2.97
5.05 x 1002 1.k9 3.19 2.91
7.09 x 10 1.63 3.16 2.90
1.5 x 102 2.16 2.58 2.89

| 0 "EXPERIMENTAL" FLORY COEFFICIENT
—— THEORETICAL FLORY COEFFICIENT
[ —---LIMITING FLORY COEFFICIENT =

| 2.86 x 1023
K
L_—W'-o--
(o]
, I I I 1
10 20 40 60 80 100 200
My X 1073

Figure 29. ¢ Versus Mw
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use these values to calculate a theoretical diffusion coefficient, cheor ; Or a

theoretical sedimentation coefficient, If these theoretical values then

Stheor.
compare favorably to the experimental values, Qexp. and Eexp.’ one can then say
that the theory is valid for this particular set of data. The theoretical values
of D and s were calculated using Equations (59), (60), (61), and (62). Since the
experimental diffusion and sedimentation coefficients were calculated at concen-
trations of approximately 5 x J_O_5 g./ml., the data from the weight average
molecular weights corresponding to these concentrations were used to calculate
the theoretical values.  These results are presented in Table LIX and Fig. 30 and
31. Also shown in Fig. 30 and 31 are the theoretical curves obtained by using
the data from the weight average molecular weights which have been extrapolated
to zero concentration. The similarity of the two theoretical curves indicates
that the previous use of a diffusion coefficient versus molecular weight correla-
tion and a sedimentation coefficient versus molecular weight correlation at a

concentration of approximately 5 x lO-5 g./ml. rather than at zero concentration

did not introduce any large error.

TABLE LIX

THE THEORETICAL DIFFUSION AND SEDIMENTATION COEFFICIENTS

2exp. * 107? Dineoy. * 107? Sexp. * lolu’a Stheor. ¥ lolu’a

Fraction M ° cm.2/sec. em.9/sec. sec. ' sec.

9-3 11,000 5.18 6.30 5.31 6.49

3(2) 21,500 -- L.34 - 8.73

9-2 31,800 3.37 3.49 9.95 1.04

3(1) 38,100 2.61 3.18 9.26 1.13

2(2) 54,000 2.45 2.65 1.23 1.34

2(1) 87,000 2.10 - 1.67 --

®At a concentration of approximately 5 x 1070 g./ml.
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[ O EXPERIMENTAL POINTS FROM METHOD 2
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Figure 50.‘ Log D Versus Log Mw
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The experimental values of the diffusion and sedimentation coefficients
deviate from the theoretical values by 3 to 18% in the range investigated. The
agreement between theory and experiment is best in the high molecular weight range.
In light of the unknown effect of polydispersity and the error involved in the
determination of the experimental diffusion coefficients it is felt that the 3 to
18% agreement is reasonable. Since the equations of Eizner and Ptitsyn are based
on a linear polymer chain model it is remarkable that theory and experiment agree
within 20% for the branched glucomannan triacetate fractions. Thus, it appears
that the gross behavior of the molecule in solution is adequately described by
the theory regardless of the detailed structure of the molecule. Thus, a low
value of the persistence length obtained from the theory indicates that the
molecule has a relatively compact configuration in solution and it is not impor-
tant whether this compact configuration results from a flexible linear molecule

or a branched molecule made up of semirigid chains.
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APPENDIX XXV

SECOND VIRIAL COEFFICIENT FROM OSMOMETRY

The values of ée and F2 are presented in Appendix XV, p. 154. The log-log

plots of 52 versus Pgn and I, versus P?n are shown in Fig. 32 and 33, respectively.

Only the most reliable second virial coefficients as indicated by the highest cor-

relation coefficients are plotted. The second virial coefficient, 52, depends on

three factors: (1) the molecular weight, (2) the thermodynamic interaction par-
ameters which characterize the segment-solvent interaction, and (3) the configura-
tion, or size of the molecules in solution (ég). The latter factor is important
in the interpretation of the results in Fig. 32. For rodlike molecules or extended
chains, A, should be independent of molecular weight; however, as the molecules

2

become less extended and more compact due to coiling or branching, 52 decreases

and becomes dependent on the molecular weight (ZQ_, lp_O, 22_2_) At the l1limit of
extreme compactness for solid spherical molecules, ég is very small and theoret-
ically varies inversely as the molecular weight (LO, 222). Disregarding for the
moment the low DP Fractions 4 and 9-3, it is seen from Fig. 32 that the highest
molecular weight Fraction 2(1) has a significantly lower 52 than the other frac-
tions. This low value is undoubtedly due to the greater compactness caused by a
greater degree of branching of this fraction than the other fractions. The low
values of 52 for Fractions 4 and 9-3 are probably'due to a relatively low segment-
solvent interaction but the reason for this phenomenon is unknown. From Fig. 33,

it is seen that all the fractions lie on the smooth curve of log FE versus log

DP .
<-n
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APPENDIX XXVI

VISCOSITY EXTRAPOLATION CONSTANTS

The most important variable besides molecular weight which influences vis-
cosity is the concentration of the solute. In general, the viscosity of a dilute
polymer solution increases more rapidly than the concentration (22)- This be-
havior is due to increasing disturbances of the flow caused by a greater proba-

bility of interaction between molecules as the concentration increases.

The values of the viscosity extrapolation constants are presented in
Appendix XVI, p. 159. The plot of Ei versus [n] is shown in Fig. 34. Only the
most reliable extrapolation constants as indicated by the highest correlation
coefficients are plotted. For all fractions except the two lowest molecular
welght fractions an increasing trend in K, with increasing [n] is evident. This
behavior is not typical of a pure polymer which is homogeneous with respect to
molecular weight and structure and has a constant configuration. Under these

conditions a constant value of XK, is obtained which is generally in the range

1
of 0.30 to 0.40 for flexible polymers (30, 32, L4O). Only Fraction 3(2) with

(n] =23.4 ml./g. has a value of K, in this range (K, = 0.398) and the values

1 =1
of Ei for the other fractions is between 0.50 to 0.92. Although polydispersity
increases K, the effect is quite small (31, 32, 223) and does not account for

1

the increases in Ei observed in this study.

Branching or cross-linking results in a higher El for these molecules than
for linear molecules because the relatively dense and compact branched molecules
de not affect the solution viscosity as much as linear molecules at very low
concentrations but the denser branched molecules have a greater opportunity to

interact as the concentration is increased and thus the solution viscosity in-

creases faster with concentration (224). The increase in Ei with branching has
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been found for synthetic polymers (224, 225), amylopectin (226), and branched

dextrans (22, 2@). The high values of K, in Fig. 34 and the increasing trend

1
in El with increasing molecular weight in the high molecular weight region is

probably due to branching in these fractions. When the two low molecular weight

fractions are considered, a minimum occurs in Kl with respect to molecular

weight. Senti and co-workers (33) also found a minimum in Ki for a branched
dextran but were unable to explain this minimum. In a poor solvent, El is higher
2
]

(even though the slope, El[n is lower) than in a good solvent (32, 224, 227,

ggé). The high values of gl for the low molecular weight fractions in this study
may be due to a lower polymer-solvent interaction for these fractions. The rela-
tively low second virial coefficients of these fractions (see Appendix XV, p. 154)
support this explanation but the cause of the low polymer-solvent interaction is
unknown., Another possible explanation for the high values of El for the low
molecular weight fractions is based on the fact that an ellipsoid has a larger

Ki than a sphere (ggz). If the assumption is méde that the low molecular weight
fractions (below a DP of 40) have an ellipsoidal shape which approaches a spherical
shape as the molecular weight 1s increased, the high values of El for the low

molecular weight fractions is accounted for and a satisfactory explanation is

arrived at for the minimum in El for branched molecules.

The curve of 55 versus [n] is similar to the curve of K, versus [n] and is
shown in Fig. 34. Also shown in Fig. 34 is the plot of K, + K, versus [n]. The
sum K, + K, should theoretically equal 0.5 (31, 32, 229) and is in the range of
0.51 to O0.70 in this study. It was found empirically that all the data fall: on
a straight line if a log-log plot is made of the slope for 51, Kl[n]g, minus the
slope for K, -Ké[n]2, versus [n] (Fig. 35). This value Kl[n]2 + gé[q]e is a

measure of the separation of the two straight lines in the double extrapolation

plot.
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From the above discussion of the variables which effect Ki and from the
previous discussion of the variables which affect A, (Appendix XXV, p. 229) it
is apparent that the same variables are important in both cases and that there

should be an inverse relationship between ée and Ki. From the log-log plot of

K. versus A

1 5 in Fig. 36, it is seen that a correlation does exist between the

Huggins constant and the second virial coefficient with Ki decreasing as ég

increases.
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APPENDIX XXVII

VISCOSITIES IN CUPRIETHYLENEDIAMINE

Viscosity measurements were made in O.5M cupriethylenediamine (cuene) with
a Cannon-Ubbelohde semimicro dilution number 100 viscometer at 30 + 0.005°C,
One per cent solutions were made up by first dispersing the glucomannan in water,
adding sufficient i.OM cuene to make the solution 0.5M, shaking under nitrogen,
and finally centrifuging prior to the viscosity determination. The viscosity
measurements were made in the presence of nitrogen over a period of an hour to
minimize degradation and the glucomannan was in contact with the cuene for 1-1/2
to 2 hours prior to the viscosity determination. Viscosity measurements were
made on the acetylated main glucomannan Fractions 3(2), 3(1), and 2(1) and on
the unacetylated glucomannan Fractions 8 and 13, and the unacetylated galacto-
glucomannén Fraction 14, The ash contents were determined on Fractions 8, 13,
and 14 by ashing at 575 + 25°C. for three hours and the viscosities were cor-
-rected with these values. Fraction 14 had some insoluble material which was
collected, the ash content determined, and the viscosity subsequently corrected
for the amount of insoluble organic material. Examples of the extrapolations
to give the intrinsic viscosities are shown in Fig. 37. The (n-no)/nog versus
¢ plots all have correlation coefficients greater than 0.97 and no degradation
trend is noticeable. Therefore, it can be concluded that degradation is not an
important factor over the pericd of time required for the viscosity determina-

tion.

The number average, weight average, and z-average degrees of polymerization
have been determined previously on the acetylated main glucomannan Fractions 5(2),
3(1), and 2(1) (Appendices XV, p. 154, and XVIII, p. 166). These degrees of

polymerization and the intrinsic viscosities in cuene are given in the log-log
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plot in Fig. 38 and presented in Table IX. In the cuene solutions complete de-
acetylation takes place and the viscosities are therefore determined on the un-

acetylated glucomannan (47, 48).

TABLE IX

CUENE VISCOSITIES AND DEGREES OF POLYMERIZATION
OF ACETYLATED FRACTIONS

Fraction [q], ml./e. DP_ DP_ DP,
3(2) 33.62 82.4 60.6 95.8
3(1) 43,01 165 102.5 216
2(1) b7.67 557 261 729

The intrinsic viscosities of the unacetylated Fractions 8, 13, and 14 in
cuene are reported in Table IXI. The curves presented in Fig. 38 were used to
determine the degree of polymerization from the limiting viscosity number in
cuene. The viscosity average degree of polymerization is closer to the weight
average degree of polymerization than other degrees of polymerization (29—22).
Therefore, the value determined in the above manner is less affected by the poly-
dispersity of the fractions and consequently more reliable than the values of P?n

and PPZ‘ These latter two values were determined merely to give an estimation

of their range if the unacetylated Fractions 8, 13, and 14 had distributions

similar to the acetylated glucomannan Fractions 3(2), 3(1), and 2(1) and all con-

clusions will be based on Pgw.
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TABLE LXI

CUENE VISCOSITIES AND DEGREES OF POLYMERIZATION
OF UNACETYLATED FRACTIONS

Solution Used to

Extract from Determined from Figure

Fraction Holocellulose [q], ml./g. DP DP DP,,

8 10% NaOH 37.96 111 79.1 144

13 18% NaOH 40.52 130 90.8 178
1k 18% NaOH —

b i BO; 46.20 374® 197" 5167

aThe large increase
increase in [n] is
the log [n] versus

in DP with respect to the relatively small
due to the progressively decreasing slope of
log DP plot shown in Fig. 38. This type of

behavior is typical of branched molecules.
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APPENDIX XXVIII
ESTIMATION OF LIGNIN CONTENTS IN THE UNACETYLATED FRACTIONS

The estimated lignin contents in the unacetylated Fractions 8, 13, and 1L
are presented in Table IXII. The estimated lignin content in the acetylated
Fraction 8-A was calculated by assuming that the lignin contents in the acetyl-
ated fractions derived from 8-A, Fractions Insol'., 2(1), and 3(2) are repre-
sentative of the total lignin in Fraction 8-A, This is a fairly good assumption
since the fractions are widely separated and account for 57.4% of the original
acetylated Fraction 8-A., The lignin content in the unacetylated Fraction 8 was
then calculated by correcting for the presence of acetyl groups. The same type
of analysis was carried out for the soluble and insoluble acetylated fractions,
13-S and 13-I, which account for 91.0% of the acetylated Fraction 13-A and for
the soluble and insoluble acetylated Fractions 1L-S and 14-I, which account for
9k4.5% of the acetylated Fraction 1L4-A. The reliability of the estimation is
indicated by the value of 8.5% for the estimated lignin content of the unacetyl-

ated Fraction 14 compared to the measured value of T7.2%.

TABLE IXII
LIGNIN CONTENT

Estimated Lignin Content,
(based on unacetylated

Fraction glucomannan), %
8 4,23
13 4,53

1k T.17
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APPENDIX XXIX
POSSIBLE APPLICATIONS OF THE CROSS-LINKED
LIGNIN-CARBOHYDRATE MATRIX CONCEPT

The concept that lignin is chemically linked to the glucomannan and perhaps
other polysaccharides within the fiber, resulting in a cross=linked lignin-
carbohydrate matrix is applicable to various areas of wood chemistry. The
existence of this type of linkage may be significant in interpreting the func-
tion of the glucomannan in the fiber. A branched lignin-glucomannan complex
with a relatively high degree of polymerization would be expected to play a quite
different role in its contribution to the strength properties of the fiber than
smaller and essentially linear glucomannan chains. The effect of the lignin-
gluéomannan linkage on the resistance to extraction of the glucomannan from the
holocellulose has Eeen discussed in the text and this type of linkage may also
relate to other chemical reactions of the glucomannan in the fiber. It is
mentioned in the text that this linkage may be important in interpreting the
degree of polymerization, degree of branching, and sugar content of isolated

glucomannans,

Along more practical lines, a detailed knowledge of the lignin-carbohydrate
linkage would be valuable in developing pulping methods in which this type of
linkage is cleaved without the simultaneous degradation of the polysaccharides.
One possible application is in the interpretation of the pretreatment of conifer-
ous woods to obtaiﬁ increased yields of the glucomannan during pulping. Increased
yields by alkaline pretreatment have been explained by a deacetylation of the
glucomannan and subsequent adsorption and/or crystallization onto the fiber sur-
face (gég). However, it is also possible to obtain increased yields of the gluco-
mannan by pretreatment with acid sulfite solutions (231) under conditions where no

deacetylation should occur. A possible explanation of this phenomenon is that
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during the acid sulfite pretreatment, lignin-glucomannan linkages may be cleaved,
releasing relatively short and essentially linear glucomannan chains which are
then adsorbed or crystallized onto the cellulose surface. These "absorbed" gluco-
mannans should be more resistant to chemical degradation than the glucomannans in

the original cross—linked matrix.

Cellulose acetates prepared from dissolving pulps of coniferous woods often
exhibit haze and anomalous viscosities (gég;géé), These phenomena are probably
closely related to the insolubility of a portion of the acetylated glucomannan
observed in this investigation and in turn may be due to a lignin-glucomannan
complex. Glucomannans have important effects on pulp and paper properties (;9;,

106, 237-239) and the factors contributing to their effect such as diffusion and

adsorption properties, adhesive characteristics, and degradapion during pulping
are undoubtedly influenced by the extent of the glucomannan's combination with

lignin.




