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SUMMARY 

 

During the last few decades, semiconductor optoelectronic devices such as light emitting 

diodes (LEDs), laser diodes (LDs), and photodiodes (PDs) have become of a great commercial success 

with their low energy consumption, long lifetime, environmental stability and compactness.  Among 

the various candidate material systems for semiconductor optoelectronic devices in many applications, 

the Group III-nitride semiconductor system is the most promising as they have a direct- and wide-

bandgap nature, high intrinsic carrier mobility, and the capability of forming heterostructures.  With an 

increasing demand on the mass production of high-quality materials and device structures, 

metalorganic chemical vapor phase deposition (MOCVD) has been a dominant growth technology for 

both academic and industrial applications because of its versatility and scalability. 

As a result of the lack of widely available bulk GaN (or AlN) substrates, III-nitride materials 

are often grown on foreign substrates whose lattice constants and thermal expansion coefficients show 

large mismatch relative to those of the III-nitride materials.  However, the use of various foreign and 

native substrates in the epitaxial growth of the III-nitride semiconductors introduces several technical 

challenges that are generally not observed in other III-V semiconductors.  The difference in the 

thermal conductivity and the thickness of the substrates results in the different temperature at the 

growing-surface that is a critical process parameter in determining the quality, composition, and the 

growth rate of the epitaxial layer.  However, the prediction of the growing surface temperature is not 

very straightforward, because the surface temperature during the layer growth is a function of various 

parameters including the thermal conductivity of the substrate and the surface heat loss by forced 

convection that is a function of the chamber design and the flow rate of a carrier gas.  An extensive 

study by using a finite-element method (FEM) calculation predicts that the use of different substrates 

under a high carrier-gas-flow environment can cause a significant growth-surface temperature 

difference to impact on the growth results of the AlGaN or InGaN layers.  This prediction was 
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confirmed by the growth of AlN/AlGaN superlattices on bulk AlN substrates and an AlN/sapphire 

templates/substrates under the same growth conditions.  The AlGaN layers grown on different 

substrates show an aluminum composition difference of 15%, indicating that the thermal properties of 

the substrates are an important factor in determining the growing-surface temperature. 

In spite of the recent significant improvement in the emission efficiency of the Group III-

nitride semiconductor based light-emitting diodes (LEDs), there are many technical challenges to be 

addressed in order for high-brightness and high-power LEDs to be competitive in the general-lighting 

field in terms of performance and manufacturing costs.  One of the critical technical challenges for the 

LEDs to be competitive in terms of their performance and the cost is the reduction of efficiency droop.  

Among several suggested origins of the efficiency droop of III-N LEDs, the carrier spill-over theory is 

widely accepted by industry researchers as well as by academic investigators as the most convincing 

origin of the efficiency droop problem.  The insertion of a wide-bandgap AlGaN material between the 

active region and the p-type hole-injection layer as an electron-blocking layer (EBL) is the most 

common technique to reduce the carrier spill-over phenomena.  However, a typical AlGaN EBL (with 

xAl~0.2) cannot provide a sufficient electron-confinement because of the polarization effect.  Also, an 

AlGaN EBL may not be compatible with all visible LEDs because of its relatively high optimum 

growth temperature.  Therefore, we have proposed and demonstrated In0.19Al0.81N as an alternative 

high-quality EBL material for a higher electron-confinement effect with its lower growth temperature, 

wider bandgap, and lattice-matching capability to GaN. 

The performance improvement by the InAlN EBL is confirmed by growing and comparing 

various blue LED structures without an EBL, with an Al0.2Ga0.8N EBL, and with an In0.19Al0.81N EBL.  

The electroluminescence (EL) measurement results showed that the LEDs with an In0.19Al0.81N EBL 

show higher light output and much less efficiency droop than the LEDs without an EBL and the LEDs 

having a conventional Al0.2Ga0.8N EBL.  The performance enhancement of the LEDs with an 

In0.19Al0.81N EBL over the LEDs with a conventional Al0.2Ga0.8N EBL was over 30%, indicating that 



 

xv 

 

the In0.19Al0.81N EBL provides more effective electron-confinement and smaller carrier spill-over 

current. 

However, the use of an In0.19Al0.81N EBL leads to the formation of a high hole-blocking barrier 

in the valence band of the LED structure.  The deficiency of the hole concentration in the active region 

is reported to be a major origin of the efficiency droop.  Therefore, we analyzed the hole-blocking 

effect of the In0.19Al0.81N EBL by using a quantum-efficiency model.  For an analysis, the hole-

blocking effect of the In0.19Al0.81N EBL is controlled by changing the thickness of the In0.19Al0.81N 

EBL.  Blue LEDs with In0.19Al0.81N EBLs with different thicknesses were grown and fabricated for 

quantum-efficiency comparisons.  The quantum-efficiency vs. current density curves of the LEDs 

were analyzed by the “extended ABC model” to obtain the estimated spill-over current density and the 

hole density.  The proposed model explained the observation of the highest quantum efficiency of the 

LEDs with a 15 nm In0.19Al0.81N EBL as a result of low hole blocking effect of the 15 nm thick EBL.  

The observation also suggests that the hole-blocking effect is an important factor in realizing high 

light output and efficiency performance from LEDs operated at high current densities. 

To enhance the hole-injection efficiency, a strain-engineered InxAl1-xN EBL is proposed.  The 

strain-engineered InxAl1-xN EBL with indium composition higher than 19% has a reduced band 

bending because of the compensation of the overall polarization field by the piezoelectric polarization.  

As a result, the effective height of the electron-blocking barrier is maintained while the height of the 

hole-blocking barrier is decreased under a forward bias condition.  The effect of the strain-engineered 

InxAl1-xN EBL is examined by growing and measuring the LEDs with InxAl1-xN EBLs with indium 

composition from 19% to 24%.  The quantum-efficiency model was applied on the measured 

quantum-efficiency curves to analyze the hole-blocking effect of the strain-engineered InxAl1-xN EBLs.  

The analysis results showed that the strain-engineered InxAl1-xN EBL is effective in reducing the hole-

blocking barrier.  However, the light output of the LEDs with InxAl1-xN EBLs with indium 

composition higher than 19% is observed to be lower than that of the LED with an In0.19Al0.81N EBL 
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because of the lower electrical performance of the EBL grown at lower temperature.  Therefore, an 

alternative growth condition for InAlN with high indium composition is necessary to demonstrate the 

performance enhancement of the LED with a strain-engineered InxAl1-xN EBL. 

Another strategy for improving the hole-injection efficiency is the compositional grading.  The 

grading from the last InGaN QW to the In0.19Al0.81N EBL will remove the sharp spike in the valence 

band at the active region – EBL interface, significantly improving the hole-injection efficiency.  In the 

EL measurement results, the LEDs with a graded In0.19Al0.81N EBLs show higher light output than the 

LEDs with an abrupt In0.19Al0.81N EBL in spite of the greater thickness of the graded EBL.  This result 

implies the compositionally graded EBL delivers a high improvement in terms of the hole-injection 

efficiency.  However, more detailed and quantitative analysis on the effect of the compositionally 

graded In0.19Al0.81N EBL on the hole injection and the electron-blocking effect is necessary. 

Also, various EBL techniques can be combined each other for a further improvement in the 

LED performance.  The employment of multiple EBL strategies may maximize their advantages while 

minimizing the drawbacks of each technique.  Therefore, further study on the integration of the 

multiple EBL scheme is required. 
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CHAPTER 1 INTRODUCTION TO THE GROUP III-NITRIDE 

MATERIALS 

1.1 Introduction 

In the past ten years, semiconductor optoelectronic devices such as light emitting diodes 

(LEDs), laser diodes (LDs), and photodiodes (PDs) have had a great commercial success and 

dramatically improved performance.  The enhanced output power and the high operation speed of 

semiconductor optoelectronic devices operating at a wavelength of 1.55 µm enables optical fiber 

communications with a transfer rate of several terabits per second.  Short-wavelength LDs emitting at 

a blue-violet wavelength (405 nm) used with high-density optical media, such as Blu-ray discs, that 

provide high-definition movies and large-volume data storage.  Visible LEDs are actively expanding 

their application into the area of display devices.  LEDs have smaller size, higher energy efficiency, 

and longer lifetime compared to conventional light sources such as ultra-high-pressure (UHP) mercury 

lamps and cold-cathode fluorescent lamps (CCFLs).  Especially, the white light produced by either a 

white-light LED or the combination of red, green, and blue LEDs has a higher color purity than that 

produced from conventional lamp light sources.  These advantages of the visible LEDs enable energy-

efficient and compact display devices with a wider color reproduction range.  High-performance 

white-light LEDs are also expected to be used in general lighting applications in near the future, 

replacing incandescent bulbs and fluorescent lamps. 

Among the various candidate material systems for the semiconductor optoelectronic devices, 

the Group III-nitride semiconductor system is the most promising as they have a direct- and wide-

bandgap structure, intrinsic high carrier mobility, and the capability of forming heterostructures.  The 

bandgap energy of the III-nitride semiconductors can be tunable from 0.78 eV to 6.23 eV by alloying 

AlN or InN with GaN.  This range of bandgap energy covers wide wavelength from the deep 

ultraviolet (200 nm) to the infrared (1700 nm) region in addition to the entire visible spectral range.  



 

2 

 

Also, their superior thermal- and chemical-stability makes the III-nitride semiconductor-based devices 

attractive as high-voltage and high-temperature devices suitable for operating in hostile environments.  

For example, their superior radiation hardness over the narrow-bandgap semiconductors such as Si or 

GaAs allows the III-nitride semiconductors to be incorporated into the space applications. 

 

1.2 Materials Properties 

The III-nitride semiconductors have a tetrahedral atomic arrangement of.  In the tetrahedral 

structure, each atom has four nearest neighbors occupying the vertices of a tetrahedron.  GaN, AlN, or 

InN can have two alternative crystalline phases:  a wurtzite phase and a zinc-blende phase.  The 

wurtzite crystal structure consists of two interpenetrating hexagonal close packed sub-lattices, and 

each sub-lattice is shifted along the c-axis by 3/8 of its cell height.  Also, the wurtzite structure belongs 

to the P63mc space group.  This group is consists of a 6-fold screw-axis along the c-axis, a mirror 

plane parallel to the c-axis and a-axis, and a glide plane along the c-axis.  On the other hand, the zinc-

blende cubic structure belongs to the F4�3m space group that has the cubic F Bravais lattice and 

consists of a combined 4-fold inversion axis along the c-axis and 3-fold axis, and six mirror planes 

(tetrahedron symmetry).  The III-nitride semiconductors usually take the wurtzite structure that is 

thermodynamically more stable than the zinc-blende structure.  However, the zinc-blende structure has 

several advantages over the wurtzite structure, including higher carrier mobility, easier cleaving for 

LD fabrication, and higher thermal conductivity [1], and many studies on the growth and application 

of the zinc-blende III-nitride semiconductors have been reported [2].  Figure 1-1 shows the unit cells 

of the wurtzite and zinc-blende cubic structure. 
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Figure 1-1. Unit cells of the hexagonal wurtzite structure (left) and the zinc-blende 
cubic structure (right). 

 

In an ideal wurtzite structure, the ratio between c/a is 8/3 = 1.633.  However, this ratio will be 

altered by the electronegativity difference between the Group III and the Group V atoms when they 

combine each other.  As a result, the c/a ratio of AlN is 1.601, while that of GaN and InN is 1.627 and 

1.612, respectively.  These deviations and variations of the ratio are also related to the generation of a 

dipole, which results in a polarization charge.  A nitrogen atom has the strongest electronegativity 

among the Group V atoms, and it adds a strong ionic bonding component to the covalent bonding 

between the Group III atoms.  Therefore, the III-nitride semiconductors have a very tight bonding with 

a high bonding energy.  The bonding energy of InN, GaN, and AlN is 7.7 eV/atom, 8.9 eV/atom, and 

11.5 eV/atom, respectively [3].  These high bonding energies contribute to the superior thermal- and 

chemical-stability of the III-nitride semiconductors as well as to the short chemical bonding lengths as 

shown in Figure 1-2.  The chemical bonding lengths of the III-nitride semiconductors are less than 22 

nm, and they are shorter than those of most semiconductor materials.  In addition, the strong electron 

affinity of a nitrogen atom helps the charge carriers being localized in the valence band of the III-

nitride semiconductors.  These characteristics play an important role in making the III-nitride 
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semiconductors a promising candidate for electronic- and optoelectronic-devices operating under high-

power and high-temperature environments. 

 

 

Figure 1-2. Bandgap and chemical bond-length of the III-nitride semiconductors and 
various semiconductors. 

 

All III-nitride semiconductors in a wurtzite crystal structure exhibit a direct bandgap.  The 

fundamental bandgap energy of each III-nitride binary compounds  is 0.78 eV, 3.4 eV, and 6.23 eV for 

InN, GaN, and AlN, respectively.  Therefore, the bandgap energy is tunable from 6.23 eV (~200 nm, 

deep UV region) to 0.78 eV (~1700 nm, infrared region) by forming binary or ternary compounds with 

AlN or InN.  This is a big advantage of the III-nitride system over other material systems, as a very 

wide range of wavelengths can be covered solely by the III-nitride alloys and combining different 

material systems is not needed.  Figure 1-3 shows the bandgap energy of the III-nitride semiconductor 

alloys in the wurtzite structure as a function of the a-axis lattice constant. 
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Figure 1-3. Bandgap energy as a function of the lattice constant for the III-nitride 
semiconductors in the wurtzite structure. 

 

The bandgap energy of the ternary III-nitride alloy can be described by Vegard's Law with the 

alloy composition and bandgap energies of the binary alloys: 

 

 ���	
�� = ���� + 
1 − ����	 − ��
1 − �� ,     (1-1) 

 

where x is the alloy composition and b is the bowing parameter.  The bowing parameters of the AlN-

GaN and InN-GaN systems are relatively well known to be 1.4 eV and 1.0 eV, respectively [4,5].  The 

InN-AlN system, however, does not have a well determined bowing parameter.  Various values 

ranging from 3 to 5 eV have been suggested [6,7,8], but recent reports consider the bowing parameter 

of the InN-AlN system as large as 6 eV [9,10,11].  One of the technical difficulties in the growth of 

the III-nitride semiconductors is the lack of a lattice-matched substrate.  Availability of bulk GaN or 

AlN substrates is still limited by their high manufacturing costs.  Consequently, c-plane sapphire (α-

Al2O3) substrates are widely used with their readily available low-price and high thermal stability, in 
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spite of their relatively large a-axis lattice mismatch of ~14.8% over the wurtzite GaN.  In addition, 

the lattice mismatch between AlN and InN is around 13%, and InAlN is the only ternary alloy that is 

lattice matching to GaN.  Therefore, the layer strain and dislocation induced by the lattice mismatch is 

an inevitable factor that should be considered in the growth of the III-nitride semiconductors.   

As discussed earlier, the c/a ratio of the III-nitride in the wurtzite structure deviates from its 

ideal value of 3/8 due to the electronegativity difference between atoms.  The deviation leads to the 

dipole formation and the polarization generation.  Figure 1-4 shows the direction of the polarization 

field of the Ga- and N-polar AlGaN/GaN heterostructures under strained and relaxed status.  The 

Figure 1-4 also shows the formation of the two-dimensional sheet charge induced by the polarization 

field. 

 

 

Figure 1-4. Directions of the spontaneous- and piezoelectric-polarization field and 
two-dimensional sheet charge density of the Ga- and N-polar AlGaN/GaN 

heterostructures under the strained and relaxed status [12]. 
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In Figure 1-4, the polarization field is consisted with the spontaneous polarization field (Psp) 

and the piezoelectric polarization field (Ppe).  The size of the spontaneous polarization field is a 

material-specific property while the direction of the spontaneous polarization field is always aligned 

from Ga-(or other Group III atoms) face toward N- face.  The overall spontaneous polarization field at 

the heterointerface is determined by the sum of the fields of the interfacing layers. 

On the other hand, the piezoelectric polarization field of the III-nitride system originates from 

the P63mc space group that the material system belongs to.  The layer strain induced by the lattice 

mismatch between the III-nitride materials or foreign substrates is the main driving force for the 

generation of the piezoelectric polarization field.  Its direction is determined by the direction of the 

layer strain.  A tensile strain of the layer will produce a piezoelectric field with a direction antiparallel 

to the c-axis, and vice versa.  The total polarization field over the layer is equal to the sum of the 

spontaneous polarization field and the piezoelectric polarization field.  Therefore, the size and 

direction of the total polarization field are functions of the strain status and alloy composition of the 

layer. 

The refractive index of the semiconductor material is a critical optical parameter which is 

closely related to the bandgap energy of the material.  Reddy and Anjaneyulu proposed the following 

relationship between the refractive index and the bandgap energy [13]: 

 

 ���� = 36.3	.         (1-2) 

 

Because of their wide bandgap, the III-nitride semiconductors have rather small refractive 

indices from 1.8 (for AlN) to 2.9 (for InN).  For most III-nitride based optoelectronic devices operate 

in a visible wavelength region, InGaN is commonly used as an active layer material because of its 

appropriate bandgap energy.  Therefore, a cladding layer to confine and guide generated photons by a 

total reflection at the interface is often consisted with a low-refractive-index Al-containing material 



 

8 

 

which can maximize the index contrast against the active region.  Higher index contrast can be 

achieved by incorporating more aluminum content into the alloy, but higher aluminum composition 

can lead to a larger lattice mismatch and a strain-induced layer degradation which have negative 

effects on the performance of the device.  Therefore, the most commonly used cladding layer material 

is AlGaN with aluminum composition of around 30%.  Also, recent studies suggest that InAlN with xIn 

~18% that is lattice-matching to GaN is a promising candidate for the cladding layer material to 

replace AlGaN because of its high aluminum composition over 80%, lower refractive-index, and 

smaller or negligible layer strain.  Table 1-1 summarizes various physical properties of the III-nitride 

materials.  

 

Table 1-1. Physical properties of the III-nitride semiconductors [14,15]. 

Property GaN AlN InN 

Lattice constant, a [A] 3.189 3.112 3.548 

Lattice constant, c [A] 5.185 4.982 5.76 

Bandgap [eV] 3.47 6.23 0.78 

Refractive index, n 2.35 1.80 2.90 

Thermal conductivity, κ 

[W/cm K] 
1.3 2.0 0.8 

Dielectric constant, ε0 9.5 8.5 15.0 

c11 [GPa] 390 396 223 

c12 [GPa] 145 137 115 

c13 [GPa] 108 106 92 

c33 [GPa] 398 373 224 

Poisson’s Ratio ν 0.508 0.579 0.821 
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1.3 Growth of the III-Nitride Semiconductors by Metalorganic Chemical Vapor 

Deposition 

Since the initial development by Manasevit and his colleagues [16 ] in the late 1960’s, 

metalorganic chemical vapor deposition (MOCVD) has been a major growth technique for high-

quality compound semiconductors for electronic- and optoelectronic-devices over conventional growth 

techniques such as liquid-phase epitaxy (LPE) and vapor-phase epitaxy (VPE).  Although molecular-

beam epitaxy (MBE) technique is also capable of producing high-quality materials with abrupt 

interfaces, MOCVD is more suitable for a large-scale production with various material systems.  

Therefore, MOCVD is widely accepted in both academic research and industrial applications.  Since 

its development, there have been many terms developed to name this growth technique, including 

metalorganic vapor phase epitaxy (MOVPE), organometallic CVD (OMCVD), and organometallic 

VPE (OMVPE).  However, Manasevit first used the term MOCVD and it has been widely accepted. 

In a conventional CVD process, two or more materials are introduced into a chamber (usually 

in a gaseous phase) to chemically react each other and form a new material near the substrate surface.  

MOCVD adds an extra step of reaction between the precursors on this process.  A metalorganic (or 

alkyl) precursor is usually supplied as a condensed phase (liquid or solid) and a carrier gas “bubbles” 

it to transport it into the chamber.  Trimethylgallium (TMGa), triethylgallium (TEGa), 

trimethylaluminum (TMAl), and trimethylindium (TMIn) are the commonly used the Group III 

precursors in the III-nitride semiconductor epitaxy.  When NH3 is used as a Group V precursor, the 

reaction to form a III-nitride compound can be described by the following equation: 

 

 ���+��� ↔ �� + 3 ∙ �� ,       (1-3) 
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where R is an alkyl group such as methyl (CH3) or ethyl (C2H5), M is the Group III metal such as 

gallium (Ga), indium (In), or aluminum (Al).  Nitrogen is rarely used as a Group V source due to its 

extremely low dissociation rate [17].  Instead, NH3 is widely used as it has a decomposition rate of 

around 4% up to 950 oC [18].  In the MOCVD growth process, precursors and gases introduced into a 

chamber form a new material on the wafer surface via several steps, i.e., gas input, pyrolysis, diffusion, 

and surface reaction.  The by-products formed during these steps are pumped away with carrier gases.  

Figure 1-5 shows a schematic illustration of the MOCVD process in a vertical-flow system. 

 

 

Figure 1-5. Schematic illustration of the MOCVD process in a vertical-flow system. 

 

When metalorganic sources are transported into the chamber by a bubbling process, their 

molar flow rates depend on the flow rates of carrier gases, the pressure of the metalorganic source 

container (bubbler), and the equilibrium vapor pressure of the precursor.  When the vapor phase and 

the condensed phase co-exist in an equilibrium status, the equilibrium vapor pressure can be described 

by the following equation [19]: 

 

 log	!"#
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where peq(T) is an equilibrium vapor pressure of the condensed phase, T is temperature in degrees 

Kelvin, and A, B, and C are material-specific constants.  The constant C is often neglected in the 

practical use, making the relationship simpler.  Equation 1-4 shows that the equilibrium vapor pressure 

of a metalorganic source is a strong function of the temperature.  Therefore, bubblers are usually kept 

in an isothermal bath to maintain a constant temperature.  Table 1-2 summarizes the thermodynamic 

properties of the various metalorganic precursors. 

 

Table 1-2. Thermodynamic properties for the selected metalorganic precursors used in 
the MOCVD growth of the III-nitride semiconductors. 

Chemical Name Formula Formula Weight 
log p (mmHg) = B – A / T 

A B 

Trimethylgallium 
(TMGa) (CH3)3Ga 114.83 1703 8.07 

Triethylgallium 
(TEGa) (C2H5)3Ga 156.91 2162 8.083 

Trimethylaluminum 
(TMAl) (CH3)3Al 72.09 2134.83 8.224 

Trimethylindium 
(TMIn) (CH3)3In 159.93 3014 10.52 

Bis(cyclopentadienyl) 
magnesium (Cp2Mg) (C5H5)2Mg 154.49 

log p (mmHg) = B – A / T 
+ 2.18 logT 

4198 25.14 

 

 

The constant total pressure inside a bubbler is also a critical factor for the constant bubbling 

efficiency.  This is achieved by using an electronic pressure controller (EPC) controlled by a computer.  

Molar flow rate of a metalorganic source is then obtained by the following equation: 
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where P is the bubbler pressure, peq(T) is the equilibrium vapor pressure of the metalorganic source, 

FCarrierGas is the flow rate of a carrier gas in standard cubic centimeter per minute (sccm), and CSTP is 

22,406 cc/mole that is the molar volume of an ideal gas at standard temperature (298.15K) and 

pressure (760 Torr). 

Material growth in this study was performed by using Thomas Swan Scientific Equipment 6x2” 

close-coupled showerhead (CCS) reactor.  The CCS technology can provide a growth uniformity for a 

vertical rotating-disk system with a mass transport with completely and uniformly intermixed gas 

phases while minimizing the impact of growth parameters such as disk spinning rate, source flow rate, 

growth pressure and temperature on the growth results. 

 

1.4 Scope of This Work 

The III-nitride semiconductor-based optoelectronic devices have been very successful in the 

past decade because of their compact size, high energy efficiency, and long lifetime.  Especially, LEDs 

are expected to replace conventional light sources in many applications including display devices and 

general lighting in near future.  In spite of their significant improvements in the luminous performance, 

however, the initial costs of the LEDs are still not low enough for them to be competitive with 

incandescent bulbs and fluorescent lamps.  To compensate the high initial costs of the LEDs within a 

reasonable period, their light emission efficiency should be further improved.  The efficiency droop 

problem is considered as the most critical challenge preventing LEDs from achieving a higher 

emission efficiency, as it causes a substantial reduction of the emission efficiency in a high injection-

current density condition.  This work will focus on the growth of the III-nitride semiconductor based 
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LEDs by using MOCVD and the reduction of the efficiency droop of visible LEDs with a novel device 

structure.  Chapter 2 covers the principles of the essential material characterization tools which are 

used in this study.  Chapter 3 investigates the effect of various factors including the physical properties 

of the substrates and growth environments on the actual growing-surface temperature during the 

MOCVD growth process by using the in-situ temperature monitoring tools and the finite element 

method (FEM) calculation.  The results obtained in this chapter are utilized in the subsequent epitaxial 

layer growth for the better crystalline quality.  Chapter 4 discusses the development and adoption of an 

InAlN electron-blocking layer into the visible LED structures to prevent carrier spill-over which is 

considered as a major origin of the efficiency droop.  Finally, Chapter 5 summarizes results and 

describes future works to further suppress efficiency droop of the visible LEDs. 
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CHAPTER 2 MATERIAL CHARACTERIZATION 

2.1 Introduction 

The study of the semiconductor materials requires various analysis and characterization 

techniques for the growth of the high quality materials.  This chapter discusses the basic principles of 

in-situ and ex-situ characterization methods to monitor the growth process and analyze various 

properties of the semiconductor materials. 

 

2.2 In-situ Temperature Monitoring and Reflectance Measurement 

The temperature of the substrate is a very important parameter for the growth of the 

semiconductor materials using the MOCVD technique.  The temperature of the substrate creates 

significant influences on almost every physical aspects of the grown epitaxial layer, including the 

growth rate, the alloy composition, the surface roughness, and the crystalline quality.  Therefore, in-

situ monitoring of the substrate temperature and its precise control is indispensable for the growth of 

the high-quality epitaxial layers [20]. 

Conventionally, the growth temperature of the layer has been determined by using a 

thermocouple sensor that is located under the susceptor where a substrate is placed during growth.  In 

this configuration, the amount of heat transferred from the heater to the substrate is inconsistent with 

the heat conveyed to the thermocouple, and the temperature detected at the thermocouple is often 

significantly different from the actual temperature of the substrate.  The wafer temperature can be 

deduced by several tests runs and a linear interpolation of the results.  However, these predictions 

often suffer from a poor accuracy, as various growth parameters such as the material of the susceptor, 

the epitaxial layer being grown, the chamber pressure, and the flow rates of the carrier gases are also 

related with the substrate temperature.  Therefore, a pyrometer that directly measures the surface 
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temperature of the substrate through an optical method is the most appropriate tool for in-situ 

monitoring of the growth temperature. 

A pyrometer detects the temperature based on the principle that an object emits 

electromagnetic radiation proportional to its temperature.  The temperature and the radiation intensity 

of a black body at a certain wavelength can be described by Plank's Law as follows: 

 

 9:; = <
=>?@


ℏB�C
"ℏD/FG7HI 9J ,       (2-1) 

 

where Ps is the radiation intensity of the black body.  The thermal-radiation intensities of a black body 

along with the wavelength (or photon energy) at different temperatures are shown in Figure 2-1.  The 

thermal radiation is observed mainly in the region with a wavelength longer than 950 nm, and the 

power of the emitted radiation that can be obtained from the area below the curve increases with the 

increase of the temperature.  Therefore, the temperature of a black body can be inferred from the 

radiation power. 
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Figure 2-1. Thermal radiation of a black body according to Planck’s Law [21]. 

 

The estimation of the temperature of an actual substrate by using Plank's Law, however, can 

lead to a significant measurement error because of the non-ideal absorption/emission characteristics of 

a real body.  Plank's Law assumes that a body will emit all incoming thermal energy as a form of a 

radiation regardless of its electromagnetic wavelength.  This assumption is true for an ideal black body, 

but the radiation of a real body is often much less than that of a black body, as the radiation in a real 

body is attenuated by the optical properties (which are also a function of the emission wavelength) and 

the surface roughness of the real body.  The ratio between the radiation intensities of a black body and 

a real body can be described by an emissivity, as follows: 

 

 K
J, $� = ,
,6

  ,         (2-2) 
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where ε is an emissivity of the real body.  For an accurate temperature measurement, the emissivity of 

the body should be exactly determined.  However, the emissivity (and also the absorption coefficient) 

has no fixed value but changes continuously over the growth process, because it is a function of the 

alloy composition and the temperature of the material (because of the temperature dependent nature of 

the bandgap energy).  Also, the thermal radiation usually experiences multiple reflections and 

interferences at the interfaces between the epitaxial layers or between a layer and a substrate before it 

escapes from the wafer.  These constructive or destructive interferences cause a significant modulation 

on the detected radiation intensity and a false signal or a non-existing temperature change.  The 

fluctuation of the detected temperature without the proper correction process is shown in Figure 2-2 as 

a blue line. 

 

 

Figure 2-2. Results of the true temperature measurement during the heteroepitaxy 
growth [21]. 
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To measure an actual emissivity and correct these artifacts, the reflectance of the wafer should 

be measured in real-time at the same wavelength that the thermal-radiation intensity of the wafer is 

detected.  During the reflectance measurement, the wafer is illuminated with a dedicated light source, 

and the intensity of the reflected beam is measured.  According to the principle of energy conservation, 

the sum of the absorbed, reflected, and transmitted radiation should be equal to the incident light.  If 

the wafer is opaque at the incident wavelength, the transmitted radiation can be safely ignored, and the 

absorption is easily obtained from the following relationship: 

 

 M = 1 − �  ,         (2-3) 

 
where α is the absorption coefficient and R is the reflectance.  According to Kirchhoff’s Law, the 

absorption is equal to the emissivity of the body, as shown in the following equation:  

 

 M
J, $� = K
J, $� .        (2-4) 

 

Therefore, the emissivity of a wafer can be derived directly from the measured reflectance.  The 

substrate temperature after the emissivity-correction is shown in Figure 2-2 as a red line.  If the wafer 

is transparent to a significant fraction of the black-body radiation (for example, growth of a GaN layer 

on a double-polished sapphire substrate or a SiC substrate), then the transmitted radiation T in 

Equation 2-3 is not negligible.  A pyrometer will detect the radiation not only from the wafer but also 

from the underlying susceptor on which the wafer is located.  Also, the Group III-nitride 

semiconductors are usually transparent to the near-infrared (NIR) spectrum around 950 nm, resulting 

in the “reading” of the emissivity of the susceptor (with possible alteration by the substrate condition) 

instead of the emissivity of the substrates and the epitaxial materials [22].  These situations cause a 

certain amount of the deviation on the temperature reading.  To correct the deviation, the absolute 
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temperature of the susceptor (Tsuscpetor) is determined first by a melting-point measurement, eutectics, 

or a pyrometry at two different wavelengths.  Then, the temperature of the wafer is determined from 

its optical properties.  These two measurements can provide a temperature difference (∆T) between the 

susceptor and the wafer, and this information can be used to compensate the temperature detected by 

the pyrometer to provide a correct temperature of the wafer during the growth process.  There are also 

other approaches, such as the calibration of the temperature based on in-situ measured bandgap shift of 

the SiC in conjunction with a real-time emissivity-corrected pyrometry [23], the use of a near-

ultraviolet (NUV) spectrum (λ~405 nm) that is opaque to GaN materials at high temperatures [24], and 

the use of a mid-IR (MIR) wavelength range (7~8 µm) where sapphire substrates are opaque and the 

reactant gases are transparent [25]. 

On the other hand, in-situ reflectance measurement is also able to provide very useful 

information on the epitaxial growth such as thickness, growth rate, and surface morphology of the 

growing layer.  When the layer is transparent, a part of the incident beam is reflected at the growing-

surface, while the remaining part of the beam goes through the layer and reflected at the interface 

between the layer and the substrate.  These two beams will experience constructive or destructive 

interferences to cause an oscillation of the intensity signal at the detector side.  This phenomenon is 

called as Fabry-Perot oscillation, and its period is closely related with the thickness of the layer.  The 

different paths of the beams reflected at the surfaces of the epitaxial layer and at the substrate are 

shown in Figure 2-3. 
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Figure 2-3. Reflections of the incident beam at the surfaces of an epitaxial layer and at 
a substrate. 

 

For constructive or destructive interferences, the path difference (which is the thickness of the layer) 

should satisfy the following relations: 

 

 2O9 = PJ , and        (2-5) 

 2O9 = 
P + Q
<�J ,        (2-6) 

 

where n is the refractive index of the epitaxial layer, d is the thickness of the epitaxial layer, m is an 

even integer, and λ is the wavelength of the incident beam.  From these equations, the increase of the 

layer thickness during a single period of the oscillation of the reflectance can be derived as 

 

 Δ9 = 9Q − 9< = S
<�  .        (2-7) 

 

Therefore, the layer thickness and the growth rate can be calculated from the refractive index of the 

layer and the oscillation period of the reflectance signal.  A reflectance curve measured during the 
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growth of a GaN layer on a GaN/sapphire substrate is shown in Figure 2-4.  The period of the 

reflectance oscillation is 182 sec, and this corresponds to the layer thickness increase of 633 nm / 

(2×2.4) = 135 nm.  The growth rate of the GaN layer is calculated to be 135 nm / 182 sec = 0.742 

nm/sec, and the total layer thickness will be ~1500 nm if the layer is grown for 2000 sec. 

 

 

Figure 2-4. A reflectance measurement result during the growth of a GaN layer on a 
GaN/sapphire substrate. 
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Figure 2-5. Schematic configuration of the EpiTT installation on the showerhead type 
MOCVD chamber. 

 

We used LayTec’s EpiTT® system for in-situ temperature monitoring and reflectance 

measurement.  The growth temperature, the growth rate, and the thickness of the layer specified in this 

work are determined from the EpiTT® measurement results and confirmed by other post-growth 

characterization techniques including transmission electron microscopy and high-resolution X-ray 

diffraction.  A schematic configuration of the EpiTT® installation on our MOCVD system is shown in 

Figure 2-5. 

 

2.3 X-Ray Diffraction 

High-resolution X-ray diffraction (HR-XRD) is a very powerful tool for the characterization 

of the crystalline materials.  In the HR-XRD technique, an incident X-ray beam collides with a 

specimen, and the number of the scattered electrons is recorded with the angular information to obtain 

a “rocking curve”.  HR-XRD technique can determine the crystalline quality, thickness, alloy 
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composition, strain status, and the degree of relaxation of the epitaxial layer via a non-destructive 

process.  For the precise analysis of the materials, an X-ray beam with a small beam divergence is 

inevitable.  There are several techniques and designs to obtain a narrow X-ray beam, including a 

multilayer mirror, capillary optics, or a pinhole collimator.  The schematic structure of an XRD system 

with a pinhole collimator consisting of two pinholes with apertures of the same diameter d separated 

by a distance of h is shown in Figure 2-6.  F is the source size of the X-ray beam.  An anti-scattering 

pinhole is used to block the scattering of the X-ray beam at the second pinhole. 

 

 

Figure 2-6. Schematic diagram of an XRD with a pinhole collimator. 

 

The divergence of the X-ray beam in this configuration is given by the following equation: 

 

 T = <U
= VW = =X;

Y   .        (2-8) 

 

In the typical case when d is 0.2 mm and h is 150 mm, the divergence of the beam is around 550 

arcsec.  This divergence value is too large for a fine characterization of the materials, especially for the 

semiconductor materials whose peak separation between the epitaxial layer and the substrate is often 

only several hundred arcsec.  Reducing the diameter of the pinhole will make the beam divergence 

smaller, but the manufacturing of a very small pinhole with the beam divergence below several arcsec. 
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is very difficult.  Other beam collimation configurations that rely on mechanical techniques also hold 

similar problems.  Therefore, most HR-XRD systems utilize a single-crystal beam conditioner in front 

of the X-ray source to obtain a collimated and monochromated beam.  For widely used Cu Kα1 source 

(λ=1.540562 A), multiple Ge (220) crystals are commonly used as a monochromator.  Most HR-XRD 

systems equipped with a crystal beam conditioner can provide a beam with an angular resolution 

below 1 arcsec.  The monochromated beam is incident into the specimen and collected by the detector.  

A typical configuration of a HR-XRD system with a crystal beam conditioner is shown in Figure 2-7. 

 

 

Figure 2-7. A typical configuration of a HR-XRD system. 

 

As shown in Figure 2-7, a HR-XRD system has several axes which can be driven independently or 

coupled with other axis, such as ω-axis (sample rocking), φ-axis (sample rotation), ψ-axis (sample tilt), 

and θ-axis (detector rocking).  The basic principle of HR-XRD can be best explained by assuming that 

the material is consisted with parallel adjacent planes of atoms with a spacing of d, as shown in Figure 

2-8. 
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Figure 2-8. Two different traveling paths of X-ray beams in a crystal. 

 

When X-ray beams with an incident angle of θ are scattered by a crystal, the difference of the 

traveling paths between the beams reflected at the surface of the sample and reflected at the crystal 

interface (the path “A-B-C” in Figure 2-8) can be expressed as 2dsin(θ).  When this path difference 

becomes a multiple of the wavelength of the source X-ray beam, a constructive interference occurs, 

and a large signal will be detected at the detector.  This condition is described by Bragg’s Law as 

 

 OJ = 29sin
W� .        (2-9) 

 

The wavelength of the X-ray beam λ is fixed, so we can obtain the inter-planar spacing d by 

measuring the detector angle θ when a constructive interference occurs.  If the lattice constant of the 

material is known, the spacing of the planes having Miller indices of (h k l) in a cubic lattice is 

expressed as  

 

 
Q

U]F^
_ = =_X`_Xa_

Y_  .        (2-10) 
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In case of a hexagonal lattice, the inter-planar spacing is represented as 

 

 
Q

U]F^
_ = b

� c
=_X=`Xa_

Y_ d + a_
?_ .      (2-11) 

 

Therefore, once the inter-planar spacing of the layer is known by measuring the Bragg Angle, the 

lattice constant of the sample can be obtained by using above equations.  In an actual measurement, an 

X-ray beam from the fixed source is directed toward the surface of a specimen that is rotating in the ω-

axis.  The beam scattered at the specimen is collected by the detector that is rotating in the θ-axis twice 

as fast (twice more angular speed) as the specimen.  The angular positions of the specimen and the 

detector are recorded with the beam intensity.  The Bragg Angle is determined from the detector angle 

where the peak intensity appears.  This method, called as ω-2θ scan, is the basic scan method for a 

double-crystal diffraction (DCD) measurement. 

If an epitaxial layer is grown by a heteroepitaxy, the lattice constant of the epitaxial layer is 

different from that of the underlying substrate.  Under the assumptions that the substrate is thick 

enough, the lattice constant of the epitaxial layer is larger than that of the substrate, and the epitaxial 

layer is fully strained to the substrate, the lattices of the epitaxial layer will experience a tetragonal 

distortion as shown in Figure 2-9. 
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Figure 2-9. The paths of the X-ray beams inside an epitaxial layer and a substrate 
under a symmetric diffraction condition. 

 

The lattice distortion (or strain) of the epitaxial layer in a vertical direction is linearly converted into 

the relaxed lattice strain (the lattice strain before the tetragonal distortion) by using Poisson’s Ratio, as 

shown in the following equation: 

 

 Ke = Y^-Y4
Y4

= cQ-fQXfd K
g = cQ-fQXfd c

Y^
h-Y4h
Y4h

d ,     (2-12) 

 

where ν is Poisson’s Ratio.  al and as are the in-plane lattice constants of the layer and the substrate 

when they are relaxed, while a⊥
l and a

⊥
s are the vertical-direction lattice constants of the layer and the 

substrate under the tetragonal distortion, respectively.  Similarly, εr represents the lattice strain 

between the layer and the substrate when the epitaxial layer is fully relaxed, while ε⊥ represents the 

lattice strain in a vertical direction under the tetragonal distortion.  According to Equation 2-12, it is 
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clear that the measurement of the vertical-direction lattice strain will reveal the relaxed lattice strain 

and the relaxed in-plane lattice constant of the epitaxial layer.  When an X-ray beam is incident with a 

symmetric diffraction condition, e.g. an incident on the plane of (0 0 L), the substrate and the epitaxial 

layer have different Bragg conditions, because their inter-planar spacings are not identical. Their 

Bragg Angles are represented by the following equations: 

 

 J = 29;sin
W;� ,    and        (2-13) 

 J = 29asin
Wa�,         (2-14) 

 

where ds and dl are the spacings of the (0 0 L) planes in the substrate and the epitaxial layer, 

respectively.  Therefore, the intensity peaks from the substrate and the epitaxial layer will appear at the 

different detector angles of 2θs and 2θl during the ω-2θ-scan.  When the lattice constant of the 

substrate is known, the separation angle between the peaks provides the spacing of the diffraction 

planes of the epitaxial layer through the following equations: 

 

 Δ9 = S
< c

Q
ijk
l^�

− Q
ijk
l4�

d ,    and       (2-15) 

 Kg = cU^-U4
U4

d = ijk	
l4�
ijk	
l4Xml�

− 1 ,       (2-16) 

 

where ∆d is the difference between the inter-planar spacings of the epitaxial layer and the substrate, 

and ∆θ is the angular separation of the peaks.  In the symmetric scan on the (0 0 L) plane, the inter-

planar spacing dl and the vertical-direction lattice constant a⊥
l is related by the following equation: 

 

 nag = 9ao .         (2-17)	
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Therefore, once the peak-separation angle is measured, the vertical-direction lattice strain ε⊥ and the 

relaxed lattice strain εr can be obtained by using Equation 2-12, 2-16, and 2-17.  The relaxed in-plane 

lattice constant of the epitaxial layer is calculated from the lattice constant of the substrate and 

Equation 2-12.  The layer composition is calculated by applying Vegard's Law on the relaxed in-plane 

lattice constant of the epitaxial layer. 

In case of an asymmetric diffraction condition where the X-ray beam is incident on the planes 

such as (1 0 2) or (1 0 5), the Bragg Angle and the inter-planar spacing have somehow different 

relationship against the symmetric condition.  The lattices and diffraction planes of an epitaxial layer 

and a substrate in an asymmetric scan are shown in Figure 2-10. 

 

Figure 2-10. The paths of the X-ray beams inside an epitaxial layer and a substrate 
under an asymmetric diffraction condition. 
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In the asymmetric ω-2θ-scan, the separation of peaks from an epitaxial layer and a substrate includes 

the tilt angle between the reflection planes of an epitaxial layer and a substrate.  Therefore, an 

asymmetric scan is more useful than the symmetric scab in analyzing the sample with a small lattice-

constant difference between the epitaxial layer and the substrate.  Also, the asymmetric scan provides 

more detailed information about the density of the threading dislocations and defects in the epitaxial 

layer. 

Previously described procedures for measuring the lattice constant and the composition of the 

layer are based on the assumption that the epitaxial layer is fully strained to the substrate.  In many 

cases, however, the epitaxial layer is partially or fully relaxed as the layer thickness is above the 

critical thickness.  To analyze the partially relaxed layer, the “degree of relaxation” of the layer should 

be taken into account.  The lattice distortions of the epitaxial layers under the fully strained and 

partially relaxed status are shown in Figure 2-11. 

 

 

Figure 2-11. Lattice distortions of the epitaxial layers under fully strained (left) and 
partially relaxed (right) status to the substrates. 
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When a layer is partially relaxed, the relaxed lattice strain εr and the vertical-direction lattice strain ε⊥ 

do not comply with Equation 2-12, and the in-plane lattice strain under the tetragonal distortion should 

be additionally considered, as in the following equations: 

 

 Ke = cQ-fQXfd 
K
g − K∥� + K∥ ,  and       (2-18) 

 K∥ =
Y^
∥-Y4

∥

Y4
∥   ,         (2-19) 

 

where ε|| is the in-plane lattice strain, and a||
l and a||

s represent the in-plane lattice constants of the layer 

and the substrate under the tetragonal distortion, respectively.  Unlike the analysis of the fully strained 

layer, the in-plane lattice constant of the partially relaxed epitaxial layer a
||
l should be separately 

measured as it is not identical to that of the substrate.  The in-plane lattice constant of the epitaxial 

layer can be obtained by performing two consequent asymmetric scans with different incident angles.  

The incident angles of the scans are determined from the tilt angle of the diffraction plane of the 

epitaxial layer against the substrate.  On the other hand, a two-dimensional scan on the reciprocal 

space can provide more detailed information on the in-plane and vertical-direction lattice-constant 

distortion, degree of the layer relaxation, and the composition of the layer.  This technique is called 

reciprocal space mapping (RSM). 

For a better understanding of the principle of RSM, the specimen, the incident beam, and the 

scattered beam are shown on the reciprocal space in Figure 2-12.  The Qx- and Qy-axis represent the 

directions parallel and perpendicular to the sample surface, respectively.  The lattice points of the layer 

and the substrate are also shown as gray ellipses in Figure 2-12. 
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Figure 2-12. Reciprocal space representation of the ω-scan and ω-2θ-scan along with 
Ewald’s Sphere. 

 

In Figure 2-12, K0 vector represents an incident X-ray beam, and K is a vector of the scattered beam.  

The angle between the vector K0 and the surface of the specimen is labeled as ω, and the angle 

between the detector and the specimen is shown as 2θ.  The scattered vector Q at a certain reciprocal 

lattice point (qx, qy) is related with these vectors as follows: 

 

 ( = q − qr .         (2-20) 

 

Therefore, these three vectors form a triangle.  This triangle defines a sphere which is centered at the 

origin of the Q vector and intersects two other vertexes of the triangle.  This sphere is known as 

Ewald’s Sphere, and it represents the trace of the HR-XRD scan in the reciprocal space.  The 

coordinates of the reciprocal point (qx, qy) can be represented by using ω and 2θ through a simple 

geometric calculation as follows: 
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 st = <
S sinW cos
v − W� ,  and       (2-21) 

 sw = <
S sinW sin
v − W� .       (2-22) 

 

Therefore, an ω-scan that changes only the ω angle by rotating the specimen makes the triangle 

consisted with the K and K0 vector rotate around the origin of the Q vector, as shown in Figure 2-13.  

On the other hand, an ω-2θ-scan changes the angles of the specimen (ω) and the detector (2θ) at the 

same time, and the triangle shows a vertical transformation, as shown in Figure 2-14. 

 

 

Figure 2-13. Illustration of an ω-scan in the reciprocal space along with Ewald’s 
Sphere. 
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Figure 2-14. Illustration of an ω-2θ−scan in the reciprocal space along with Ewald’s 
Sphere. 

 

Therefore, one can obtain a two-dimensional map of a certain area in reciprocal space by 

repeating ω-2θ-scans at different ω values.  In case of a DCD configuration, the detector is wide open, 

and it has a very low resolution along the ω-axis; the detector integrates and records the intensity of 

the scattered beam for a wide angular range without separating closely located lattice points.  For a 

precise analysis of the reciprocal lattice points, an analyzer crystal is attached in front of the detector 

so that the detector can receive the scattered beam from a very narrow angular range.  This 

configuration is called as triple-crystal diffraction (TCD) or triple-axis diffraction (TAD), because the 

analyzer crystal enhances the angular resolution along with the ω-axis, effectively providing an 

additional axis.  The result of RSM is recorded in angular units, and it should be converted into 

reciprocal lattice units (RLUs) through Equation 2-21 and 2-22 for a numerical analysis.  A result of 

RSM on an AlGaN layer grown on an AlN/sapphire substrate and its reciprocal space representation 

are shown in Figure 2-15. 
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Figure 2-15. Angular space and reciprocal space representation of the RSM of an 
AlGaN layer grown on an AlN/sapphire substrate. 

 

In the reciprocal space representation of RSM, the peak separation along with the each axis provides 

distinct information; the peak separation in the Qy axis represents the difference of the lattice constants 

in a vertical direction, while the separation in the Qx axis indicates the difference of the in-plane lattice 

constants.  Therefore, unlike an ω-2θ-scan that provides information on the vertical-direction lattice 

constant only, RSM can determine the strain status and the composition of the layer independently and 

simultaneously.  In Figure 2-15, the AlGaN layer is partially relaxed to the underlying AlN layer, 

because the peaks from the layer and the substrate are not aligned along with the Qy axis.  Also, the 

alloy composition of the AlGaN layer is determined from the position of the peaks in the reciprocal 

space.  According to the calculation, the layer is approximately 65% relaxed, and it contains around 

47% of aluminum. 

All XRD measurement results in this work are taken using a Philips X’Pert MRD (Material 

Research Diffractometer) HR-XRD with a Cu Kα1 source and four Ge (220) crystals as a beam 

conditioner.  The X’Pert system has two separated detector optics; detector path 2 has a typical DCD 
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configuration for a rocking curve measurement, and detector path 1 is equipped with a Ge (110) 

channel-cut crystal that is aligned to the (220) reflection as an analyzer crystal for a TCD scan. 

 

2.4 Photoluminescence 

Photoluminescence (PL) is a measurement technique that is widely used in the analysis of the 

optoelectronic device structures.  This technique provides a non-destructive method to obtain 

information on the internal optical processes and the optical quality of the material [26].  When a 

material in an equilibrium state is excited by photons whose energy is larger than the bandgap of the 

material, electron-hole pairs are generated inside the material.  They return to the equilibrium state via 

a radiative or non-radiative recombination process, and the number and the wavelength of the photon 

emitted during the radiative recombination process are recorded to complete a spectral plot.  The 

spectral plot delivers information on the bandgap of the material, various mid-states and defect levels, 

and the optical quality of the layer.  The peak wavelength λ in the PL spectra is directly related with 

the bandgap energy of the layer Eg through the following equation: 

 

 �� = =?
S   ,         (2-23) 

 

where h is Planck constant.  We used an RPM2000 system from Accent Optical Technologies for PL 

measurements in this study.  A 266-nm Q-switched Nd:YAG laser is used for the material excitation.  

The incident laser light is attenuated up to 7.5× by the attenuators, delivering various laser powers 

from 0.4 mW (5 W/cm2) to 3.1 mW (38 W/cm2).  The detection range of the charge-coupled device 

(CCD) detector is from 300 nm to 1300 nm (up to 4.698 eV).  In a typical PL measurement for the 

visible-light LED structure, the excitation laser power of 1.4 mW (17 W/cm2), a grating of 600 

groves/mm, and a slit with 0.1 mm width were used. 
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2.5 Electroluminescence 

Electroluminescence (EL) is another widely used characterization method to analyze the 

optical properties of the device structure.  While the PL technique uses a laser to excite carriers, EL 

utilizes the electric current to inject carriers and to cause radiative recombination inside the material 

structure.  Therefore, the sample needs to have a complete device structure with the contact layers that 

make the injection of the current through the metal probes possible.  An external current source or a 

semiconductor parameter analyzer is commonly used to inject a constant amount of the current. 

In the electroluminescence process, excess carriers are injected from the metal contacts and 

radiatively recombine in the active region to generate photons, and the detection and data-acquiring 

process is very similar to that of the PL technique.  However, EL technique can provide the emission 

characteristics and the emission intensity of an actual device in operation in addition to the emission 

spectra.  We used Keithley Model 2400 Series Source Meter as a current source.  The photon-emission 

spectra were captured by using Ocean Optics HR2000-CG-UV-NIR spectrometer (detection range of 

200 – 1100 nm) with a composite grating and a 2048-pixel CCD Linear Image Sensor controlled by a 

LabVIEW® software. 

 

2.6 Atomic-Force Microscopy 

Atomic-force microscopy (AFM) is a very useful tool to observe the surface of the specimen 

in three-dimension and in sub-nanometer scale [27,28].  A sharp silicon tip traveling on the sample 

surface is used to physically collect information of the surface morphology of the sample.  The tip is 

attached to a flexible cantilever extending from a rigid substrate, and a piezoelectric driver and the 

feedback loop produce a raster-type scan motion while maintaining a certain distance between the tip 

and the sample surface in response to the surface morphology.  The cantilever converts the 
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morphology of the sample surface into a vertical motion, and it is then translated into the height 

information by using an optical method, most commonly, the reflection of the laser beam.  The laser 

beam is incident into the backside of the cantilever and reflected toward the detector.  The bending of 

the cantilever occurred by a contour on the sample surface causes a shift of the beam spot on the 

detector.  The controller converts this shift into the height information and completes a three-

dimensional height map by repeating this process for a certain scan area.  A schematic diagram of the 

AFM system is shown in Figure 2-16.  A scan area is consisted with multiple fast axis scans and a 

slow axis scan.  The piezoelectric driver has two drive directions, and one of them becomes a fast axis, 

while another becomes a slow axis to cover a two-dimensional scan area.  The slow axis and the fast 

axis of the piezoelectric driver are shown in Figure 2-17. 

 

 

Figure 2-16. Schematic illustration of an AFM system [28]. 
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Figure 2-17. The fast axis and the slow axis of the piezoelectric driver [28]. 

 

AFM has two measurement strategies:  contact mode and non-contact mode.  In the contact 

mode, the probe tip and the sample are in physical contact to trace the surface morphology.  In the 

non-contact mode, in the contrary, the probe tip floats several hundred angstroms above the sample 

surface, and the height profiling is done by a Van der Waals interaction.  Because the interaction force 

is very small (around 10-12 N), direct detection of the bending of the cantilever is very difficult.  

Instead, the cantilever is oscillated near its resonant frequency (typically from 100 to 500 kHz) and the 

phase- or the frequency-shift of the oscillation caused by the interaction between the tip and the 

sample is detected.  The non-contact mode scan is useful in measuring a soft specimen or a biological 

sample that contains water, because the damage on the specimen can be minimized.  The distance and 

the interaction force between the probe and the sample with the corresponding AFM measurement 

modes are shown in Figure 2-18. 
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Figure 2-18. The tip-to-sample distance and the corresponding interaction forces. 

 

The tapping mode is a recent advancement over the conventional AFM measurement modes.  

It overcomes the problems of both contact mode and non-contact mode AFM by alternately placing 

the probe tip in contact with the surface to provide a high resolution while avoiding the dragging of the 

tip across the surface and minimizing the damage on the sample surface.  The cantilever oscillates near 

its resonant frequency as in the non-contact mode, but the amplitude is much larger (50 – 200 nm), and 

the surface morphology is measured by "tapping" the tip on the sample surface.  In this study, all AFM 

observations were performed by using Veeco Dimension 3100 AFM system operating in the tapping 

mode with NSC Series 16 probes.  The NSC Series 16 probe has a cantilever length of 230 µm with a 

typical resonant frequency of 325 kHz and the force constant of 40 N/m. 

 

2.7 Transmission-Line Measurement 

Transmission-line measurement (TLM) method is a measurement technique developed to 

analyze the resistances of the semiconductor layer and the metal-semiconductor contact.  Unlike 

conventional techniques such as two-terminal measurements, contact-front resistance test or contact-
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end resistance test, TLM can provide both the sheet resistance and the contact resistivity 

simultaneously with a good accuracy through a relatively simple process.  The TLM employs a test 

pattern produced by a mesa etching and a deposition of multiple metal contact pads.  A typical TLM 

pattern is shown in Figure 2-19.  In Figure 2-19, the spacing between the metal contact pads has 

multiple values from d1 to d6.  Also, the mesa etching around the pattern ensures the confinement of 

the current flow into the area between the metal pads. 

 

 

Figure 2-19.  A typical TLM pattern showing the semiconductor mesa with metal 
contact pads. 

 

The specific contact resistance ρc and the sheet resistance Rs can be obtained by plotting the 

resistances between the two contact pads as a function of the contact-pad spacing.  An example of the 

plot of the measured resistances versus the contact spacings is shown in Figure 2-20. 
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Figure 2-20. Plot of the measured resistances along with the contact-pad spacings. 

 

In the plot shown in Figure 2-20, the sheet resistance of the semiconductor layer is calculated through 

the following equation: 

 

�; = xyz!� ∙ {,        (2-24) 

 

where Z is the height of the metal pads as shown in Figure 2-19.  On the other hand, the y-intercept of 

the linear plot in Figure 2-20 corresponds to twice the contact resistance, 2Rc.  Also, the x-intercept of 

the plot is twice the transfer length, 2LT.  The transfer length is defined as the distance from the edge 

of the metal pad to the point that the contact voltage is 1/e of its maximum value.  With these 

parameters, the specific contact resistance ρc can be calculated from the following equations: 

 

�? = �; ∙ o& , and       (2-25) 

|? = o& ∙ { ∙ o& .       (2-26) 
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2.8 DC Current-Voltage Measurement 

DC current-voltage measurement technique analyzes the electrical properties of the device 

structures or the fabricated devices by applying a voltage bias and measuring the current.  Two-port 

devices such as LEDs will produce a single current-voltage curve, while three-port devices such as 

HFETs and HBTs will have a "family" of the curves that is a set of the multiple current-voltage 

relations between two electrodes measured at different bias levels of the third electrode.  The current-

voltage measurement results provide a wide range of the device information including the series 

resistance, forward voltage, leakage current, capacitance, inductance, gain, and the transconductance.  

We used an Agilent Model 4156C semiconductor parameter analyzer connected to a personal 

computer via a General Purpose Interface Bus (GPIB) to conduct the DC current-voltage measurement.  

Interactive Characterization Software’s Metrics software is used to control the 4156C and to automate 

the measurement process. 

 

2.9 Sentaurus 

Sentaurus is a technology computer-aided design (TCAD) package which provides a wide 

range of functionalities to simulate electrical, thermal, and optical behaviors of the semiconductor 

devices.  It can describe two-dimensional or three-dimensional device structures and includes 

numerous physical models to find solutions on various problems including the carrier density, 

conduction and valence band energy, piezoelectric and spontaneous polarization field, AC and DC 

current-voltage curve, heat transfer, and optical emission.  Also, the command script based on the 

Scheme scripting language provides a high flexibility in the automation of the problem solving, result 

compilation, and data visualization.  In this work, Sentaurus is used to clarify the concept of the new 

device structures by predicting their electrical properties prior to the actual growth and fabrication.  
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The basic workflow of the Sentaurus and the corresponding software tools to be used are shown in 

Figure 2-21. 

 

 

Figure 2-21. The overall workflow and the corresponding software tools of the 
Sentaurus. 
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CHAPTER 3 MOCVD SURFACE TEMPERATURE SIMULATION 

3.1 Introduction 

Foreign substrates whose lattice constants and thermal expansion coefficients are mismatched 

to those of the Group III-nitride materials have generally been employed in the growth of epitaxial 

structures of the III-nitride materials, since the bulk growth of GaN (or AlN) crystals from a melt for 

the preparation of native substrates is extremely difficult due to a very high vapor pressure of nitrogen 

at the melting temperature of GaN.  Among many candidates of foreign substrates having the same 

crystalline symmetry of the growth surface as that of the Group III-nitride materials, sapphire (α-

Al2O3), and 4H- and 6H-silicon carbide (SiC) substrates have been popular choices due to not only the 

wide availability of high-quality materials but also their chemical and thermal stability at elevated 

temperatures for the epitaxial growth of the III-nitride semiconductors.  Sapphire substrates have been 

widely used because of their reasonable cost, despite its large lattice mismatch of 14%.  SiC substrates 

are considered a viable alternative substrate choice with a much smaller lattice constant mismatch 

(~1%) and a reduced thermal expansion coefficient mismatch [29].  SiC substrates also have an 

advantage in vertical-conducting devices and high-power devices with lower device cooling 

requirements because of their high electrical and thermal conductivities.  Silicon (Si) substrates are 

also a promising candidate for the low cost of the substrate and the integration of the III-nitride 

semiconductors with Si technology.  Recently, GaN and AlN “bulk” substrates have been developed to 

be available for the growth of a homoepitaxial structure with a low defect density and lattice- and 

thermal-matching.  However, the use of various foreign and native substrates in the growth process 

introduces several technical challenges that are generally not observed in other Group III-V 

semiconductors such as InP- and GaAs-based materials whose lattice constant, thermal-expansion 

coefficient, and thermal conductivity are similar each other.  Significantly different lattice constants 

and thermal-expansion coefficients of the substrates for the Group III-nitride materials often leads to 
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inconsistent growth results.  Furthermore, the differences in the thermal conductivity and thickness of 

different substrates result in the difference in the temperature at the growing-surface of the Group III-

nitride semiconductors that is one of the important process parameters in the epitaxial growth - the 

quality, the composition, and the growth rate of the materials are very sensitive to the growth 

temperature [30,31].  Especially, the growth of high-aluminum (Al)-containing or high-indium (In)-

containing materials requires a very precise control on the temperature of the actual growing-surface 

because of low adatom mobility of aluminum [32] and high equilibrium vapor pressure of indium [33].  

In many cases of the growth of epitaxial structures on different substrates as part of a substrate 

comparison study, the growth is carried out at the same set-point of the growth temperature (often in 

the same batch of wafers in a growth run) in an attempt to ensure the same nominal growth conditions.  

However, this attempt may lead to a significantly different actual temperature of the growing-surface 

because of the different properties of substrates.  In addition, the surface temperature for the epitaxial 

growth depends not only on the thermal conductivity of the substrate, but also on the surface heat loss 

by the forced convection that is a function of the chamber design and the flow rate of a carrier gas 

combined with precursors in the typical MOCVD.  Therefore, it is important to investigate these 

factors to estimate the actual surface temperature for the growth of high-quality and well-controlled 

Group III-nitride materials grown on different substrates with different growth conditions in various 

reactor systems.  In this chapter, we have investigated the actual surface temperature of various 

substrates and its influence on the characteristics of the resulting epitaxial films via a theoretical 

calculation and an experimental layer growth.  The effects of substrates with different thermal 

properties and thicknesses, and of the growth conditions are investigated.  In addition, the effects of 

the hydrodynamics on the surface temperatures of different substrates are also investigated.  The 

results of AlGaN epitaxial layers grown on native and sapphire substrates are also discussed as an 

experimental demonstration of the calculation results.  The temperature gradient in the vertical 
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direction from the backside to the surface of the each substrate was analyzed during the FEM 

calculations. 

 

 

3.2 The Heat Transfer Calculation Model 

The actual surface temperature of the most common substrates employed for the Group III-

nitride semiconductor growth is studied by employing the one-dimensional (1D) finite element method 

(FEM).  The schematic model used to describe the heat transfer between the susceptor and the 

substrate is shown in Figure 3-1.  The model is consisted with a susceptor that has a certain fixed 

temperature, a substrate with a certain thickness that transfers heat from the underlying susceptor to its 

surface, and a carrier gas passing the top of the substrate and the susceptor.  

 

 

Figure 3-1. Schematic illustration of the model used in the heat transfer calculation. 
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In the calculation, sapphire, SiC, Si, GaN, and AlN substrates having the same thickness were 

considered.  The temperature for the backside of each substrate (or the surface of the susceptor) was 

set to 1150 °C and 780 °C that are representative growth temperatures of AlGaN and InGaN materials, 

respectively.  Thermal conduction and radiation were considered as the major method of the heat 

transfer from the susceptor to the substrates.  The increase of a vertical thickness caused by the 

thermal expansion was ignored, since the thickness change caused by the thermal expansion is 

negligibly small (e.g., 6.1×10-8 mm for a 2 mm-thick AlN substrate at 1150 °C).  The initial 

temperature of the carrier gas entering the chamber was set to room temperature, as we assumed that 

the reactor does not have a pre-heater for the sources.  Also, as in many reactors whose volume of the 

chamber is small, the velocity of carrier gas passing the susceptor is relatively high, leaving short time 

to raise the temperature significantly from its initial temperature.  Therefore, we also assume T∞, the 

reference temperature of carrier gas passing top of the chamber, to be room temperature.  The 

calculation was performed on a cylindrical area with a diameter of 3 mm located at the center of the 

substrates.  Heat loss from the sidewall of the area was not considered, as the target area is small 

compared to the diameter of the substrates and adjacent area that has the same temperature acts as a 

thermal insulator.  Therefore, heat loss will occur only at the surface of each substrate by forced 

convection of the carrier gas.  Various thermal properties of the substrates and carrier gases we used in 

the calculations, including the thermal conductivities, specific heat capacity, and the viscosity, are 

summarized in Table 3-1 and Table 3-2. 

 

Table 3-1. Thermal properties of hydrogen and nitrogen at 300 K, 1 bar which is used 
for the theoretical calculations [34]. 

Materials 
Thermal 

conductivity, k 
(W/m·K) 

Specific heat 
capacity, cp 
(kJ/kg·K) 

Viscosity, µ 
(Pa·s) 

Fluid density, ρ 
(kg/m3) 
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(Table 3-1 continued) 

Hydrogen 0.1877 14.31 8.9×10-6 0.08 

Nitrogen 0.0261 1.041 17.9×10-6 1.125 

 

Table 3-2. Thermal properties of the substrates used for the theoretical calculations.  
The thermal conductivities of the substrates are measured at 1100 °C and the 
transmittance value was estimated with a substrate thickness of 430 µm. 

Materials 
Thermal 

conductivity, k 
(W/m·K) 

Thickness Transmittance Emissivity 

Sapphire 10.5[34] 430 µm 0.82[35] 0.02[35] 

AlN 40.0[36] 430 µm 0.76[37] 0.51[38] 

GaN 50.0[39] 430 µm 0.71[40] 0.50[41] 

SiC 47.0[42] 430 µm 0.44[43] 0.78[44] 

Si 26.0[45] 430 µm 0.54[46] 0.70[47] 

 

 

The transmittance and emissivity of the substrates are values in the wavelength of ~2 µm, because at 

1150 °C maximum radiation energy is transferred from the susceptor to the substrates through this 

wavelength region.  Other parameters required for describing the flow geometry inside the chamber 

such as the Reynolds number, Prandtl number, and convective heat transfer coefficients can be found 

in Ref. 48. 

In the FEM calculation, the heat loss at the surface of the substrates is expressed by a force 

matrix, while heat transfer is described by a stiffness matrix.  The convection heat transfer at the 

surface is the main component of the force matrix, and the conduction heat transfer inside the substrate 

and the heat loss by the convection at the end node consist the stiffness matrix.  For the heat transfer 
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by radiation, the difference between the radiative heat transferred from the susceptor and lost at the 

surface of the substrate was added to the force matrix as a heat flux.  The convective heat transfer 

coefficient, h, can be determined by the Reynolds number and the Prandtl number that reflect the 

carrier gas composition, the gas flow rate, and the design of the chamber.  The Reynolds number and 

Prandtl number can be calculated by using following equations: 

 

 ��t = }~�t
�  ,  and        (3-1) 

 :� = �?�
`  ,         (3-2) 

 

where Rex is the Reynolds number, Pr is the Prandtl number, ρ is the density of the carrier gas, u∞ is a 

uniform velocity, x is the length of the flowing ground, µ is the viscosity, cp is the specific heat 

capacity, and k is the thermal conductivity.  These numbers are related to the convective heat transfer 

coefficient by the Nusselt number: 

 

 �� = 0.664��tQ/<:�Q/� = =�
`  ,       (3-3) 

 

where D is the characteristic length.  Similar values of h will cause similar amount of heat loss from 

the surface, and the environmental difference between the growth chambers can be summarized into a 

single parameter.  The heat transferred by radiation was calculated by using Stefan-Boltzmann Law 

and Planck’s distribution with the emissivity and transmittance of each substrate. 
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3.3 The Heat Transfer Calculation Results 

The calculated transient of the surface temperature of various substrates with the change in the 

convective heat transfer coefficient, h, is shown in Figure 3-2.  The substrates were assumed to have a 

thickness of 430 µm. 

 

Figure 3-2. The dependence of the calculated growing-surface temperature of the 
substrates upon the change of the convection heat transfer coefficient h  at the AlGaN 

growth temperature (upper) and the InGaN growth temperature (lower). 

 

If the value of h is small (h<100), the surface temperature difference in the various substrates 

will be small regardless of their thermal conductivity.  However, the temperature dependence upon the 

substrate materials becomes significant with an increase in h.  The surface temperatures of the GaN or 

SiC substrates are higher than that of a sapphire substrate by ~30 °C for 1150 °C (of backside 

temperature of the substrate) and by ~20 °C for 780 °C with an h of 900.  It is clear that a substrate 

with a higher thermal conductivity will transfer more heat from the backside to the surface, resulting 

in a higher substrate surface temperature.  At the same time, the heat loss from the surface is 
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proportional to the temperature difference between the surface and the carrier gas (assumed to be at 

room temperature), and high-thermal-conductivity substrates will lose more heat at the surface.  

However, because of the relatively small substrate thickness, the difference in the conduction heat 

transfer will override the difference in the heat loss at the surface and will lead to higher surface 

temperatures in substrates of which the thermal conductivity is high.  Therefore, in most MOCVD 

reactors having h values from 150 to 700, the surface temperature of sapphire substrates is predicted to 

be lower than those of SiC, AlN, or GaN substrates by more than 10 °C at both the AlGaN and InGaN 

nominal growth temperatures.  This surface temperature difference is large enough to affect the layer 

quality and the alloy composition. 

However, the assumption we made about the thickness of substrates is not always true.  In 

many cases, the bulk substrates have various thicknesses because of their unique wafering process.  

For example, the thickness of the AlN substrate used in this experimental study is ~2 mm.  Thicker 

substrates will have a reduced heat transfer from the backside, and it will show lower surface 

temperature.  The change of the surface temperature with the different thickness of substrates from 

100 µm to 2.5 mm at selected h values is shown in Figure 3-3. 
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Figure 3-3. The dependence of the calculated growing-surface temperature of the 
substrates upon the thickness of the substrates for the selected h values at the AlGaN 

growth temperature (upper) and the InGaN growth temperature (lower). 

 

In Figure 3-3, the surface temperature tends to decrease with the thickness of the substrates 

under all h values.  Furthermore, this tendency becomes significant as the value of h increases.  This 

means that a 2 mm-thick bulk AlN substrate has similar surface temperature with that of a commonly 

used 430 µm-thick sapphire substrate under small h values (h<200), and the surface temperature of the 

thick bulk AlN substrate will be at least 10 °C lower than the that of a sapphire substrate if the h value 

is high (h>400).  This temperature discrepancy will be expanded to more than 10 °C if thicker AlN 

substrates are used in AlGaN growth. 

In addition, the surface temperatures are affected by the carrier gases.  In the case of InGaN 

growth, nitrogen (N2) is used as a carrier gas instead of hydrogen (H2) in order to avoid the etching 

effect of H2 [49].  Their different physical- and thermal-properties can change the amount of heat loss 

at the surface and the surface temperature.  Although N2 has higher fluid density and dynamic 

viscosity, its thermal conductivity and specific heat capacity is much lower than those of H2, and they 
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contribute to the smaller convection heat transfer coefficient of the reactor.  As a result, a reactor that 

has h=600 with H2 carrier gas will have h=225 when it has N2 as a carrier gas, and the surface 

temperature difference between the sapphire and the bulk GaN substrate with the same thickness will 

be 5 °C at the InGaN growth temperature of 780 °C.  Therefore, N2 carrier gas will cause a smaller 

temperature difference than H2 carrier gas.  Also, the temperature difference will become larger if a 

thicker bulk GaN substrate is used.  The calculated surface temperature of each substrate in typical 

growth conditions of AlGaN and InGaN with h of 600 (H2 carrier gas) and 225 (N2 carrier gas) are 

summarized in Table 3-3. 

 

 

Table 3-3. Summary of the surface temperatures of substrates at selected growth 
temperatures with convection heat transfer coefficient h of 600 (H2 carrier) and 225 
(N2 carrier). 

 
Thickness 

(µm) 

Substrates 

 Sapphire AlN GaN SiC Si 

AlGaN growth temperature with 

H2 carrier gas (1150 °C, h=600) 

430 1124.1 1141.9 1143.6 1143.3 1137.5 

2500 1015.6 1105.4 1114.6 1113.1 1083.3 

InGaN growth temperature with H2 

carrier gas (780 °C, h=600) 
430 762.1 774.9 775.8 775.7 772.1 

InGaN growth temperature with N2 

carrier gas (780 °C, h=225) 
430 773.4 777.9 778.3 778.3 776.8 
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3.4 The Experimental Results on the Surface Temperature 

The effect of the surface temperature on the layer growth results was experimentally 

confirmed by growing AlN/AlGaN superlattice (SL) structures simultaneously on a bulk AlN substrate 

and an AlN/sapphire template/substrate.  The AlN and AlGaN epitaxial layers were grown in a 

Thomas Swan Scientific Equipment CCS 6×2" MOCVD reactor system.  The AlN/sapphire templates 

were prepared on a (0001) sapphire substrate using a conventional two-step growth employing a low-

temperature AlN buffer layer.  The bulk AlN substrates were grown using the sublimation-

recondensation of high-purity AlN powder and then sliced into wafers [50].  The epitaxial layers were 

grown at a temperature (Tg) of 1150 °C.  Note that this temperature was measured at the surface of the 

SiC-coated graphite susceptor using a LayTec EpiTT®, and it is not necessarily the actual temperature 

of the growing-surface.  The crystalline quality and the alloy composition were investigated by HR-

XRD, and the strain status of the epitaxial layer was measured by RSM.  The thickness of the AlN 

native substrate was 2.1 mm, while that of the sapphire substrate was 430 µm.  This can serve as a 

good example that can demonstrate the effects of both thermal conductivity and thickness of different 

substrates on the surface temperature.  The separation between the showerhead and the susceptor in 

our growth chamber is ~1 cm, and the flow rate of the H2 carrier gas used during the conventional 

AlGaN growth is ~20 l/min.  Under these conditions, h is calculated to be ~600.  According to the 

previous calculation with this substrate thickness difference (also with the effect of the different 

thermal conductivity), a bulk AlN substrate is predicted to have a lower surface temperature than the 

sapphire substrate by ~10 °C.  The AlN/AlGaN SL structure was grown by the following procedure.  

First, an AlN high-temperature “buffer layer” was grown on the substrate and the template.  Then, an 

AlN/Al~0.8Ga~0.2N SL and an Al~0.8Ga~0.2N/Al~0.65Ga~0.35N SL were deposited.  Finally, ~0.5-µm-thick 

Al~0.5Ga~0.5N layers were grown on top of the SL layers.  HR-XRD ω-2θ-scan results with (002) 

diffraction on the AlN/AlGaN SL layers grown on the bulk AlN substrate and the AlN/sapphire 

template are shown in Figure 3-4. 
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Figure 3-4. HR-XRD ω-2θ-scan results for the AlN/AlGaN SL samples 
simultaneously grown on a bulk AlN substrate and an AlN/sapphire template/substrate 

at 1150 °C. 

 

The peaks from the AlN substrate and the AlN/sapphire template were located at the rightmost 

side, and four peaks from the upper layers appear subsequently on the left side.  Unlike other HR-

XRD peaks representing SL layers, the leftmost peaks from the 50% targeted AlGaN layers show a 

large position discrepancy between samples grown on different substrates.  This peak position 

difference can originate from either a strain status difference, an actual composition difference, or both 

of them.  By assuming that AlGaN layers on both substrates are fully relaxed, the aluminum 

composition of the 50% targeted AlGaN layer on the bulk AlN substrate is measured to be 15% lower 

than that of the comparable layer grown on the AlN/sapphire template.  To confirm the strain status of 

the AlGaN layers, HR-XRD RSM around the asymmetric (105) reflection was measured and shown in 

Figure 3-5. 
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Figure 3-5. HR-XRD RSM observations of AlGaN SLs on (a) a bulk AlN substrate 
(b) an AlN/sapphire substrate in the (105) diffraction. 

 

The degree of relaxation determined from the separation of the lattice vectors perpendicular 

and parallel to the surface for Al0.35Ga0.65N and Al0.5Ga0.5N layers on the bulk AlN substrate and the 

AlN/sapphire template is more than 90% for both samples.  Therefore, the strain status difference is 

not the main reason of the peak position discrepancy in the HR-XRD rocking curve, and the surface 

temperature difference predicted in the previous calculation is believed to have caused the actual 

aluminum composition difference.  As the temperature of the surface increases, the incorporation of 

gallium will be limited, resulting in higher aluminum composition on a “thin” sapphire substrate with 

a higher surface temperature than on a “thick” AlN substrate with a lower surface temperature.  

However, the 15% of the composition difference is somehow larger than that expected from the 

predicted 10 oC of the growth surface temperature difference.  This implies that the actual surface 

temperature difference could be larger than the prediction, due to various factors such as chamber 

design-specific flow dynamics or a discrepancy from the theoretical calculation model which cannot 

be fully described by parameters used in the calculation. 
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CHAPTER 4 DEVELOPMENT OF THE LIGHT-EMITTING DIODES 

WITH AN InAlN ELECTRON-BLOCKING LAYER 

4.1 Introduction 

Driven by their significant improvements in the internal and external quantum efficiencies, the 

Group III-nitride-based LEDs are expected to be employed in displays and general lighting 

applications replacing conventional incandescent and fluorescent light sources in the near future.  

However, technical and economic challenges remain to be solved for the LEDs to be competitive in 

terms of their performance characteristics and the manufacturing costs.  As mentioned above, one of 

the critical technical challenges to be addressed for high-brightness and high-power operations of the 

LEDs is a phenomenon commonly referred to as an efficiency droop that is observed as a reduction in 

the emission efficiency with the increasing injection current under the high current-density conditions.  

The consensus on this efficiency droop problem is that this problem is not a thermal issue (i.e., Joule 

heating), but a fundamental problem associated with InAlGaN materials and their heterostructures. 

However, this well-recognized problem is not completely understood.  The origin of the 

efficiency droop was previously suspected to be related to the high defect-densities in combination 

with the carrier delocalization from the localized states in the active region of the light emitters 

[ 51 , 52 ].  Recently published works have suggested several (possibly related and all partially 

contributing) causes of the efficiency droop, including Auger recombination processes [53,54,55], 

carrier spill-over [56,57], and limited hole-transport [58,59].  The Auger recombination processes 

describe the reduction of the photon-generation rate through the transfer of the electron-hole 

recombination energy toward a third carrier under a high carrier-density condition.  The limited hole-

transport theory suggests that the deficiency of the holes in the active region causes the significant 

decrease of the electron-hole pairs and the reduction of the radiative recombination.  Each theory is 

supported by several observations.  However, the carrier spill-over theory is widely accepted by the 
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industries as well as the academic fields as the most convincing origin of the efficiency droop problem, 

and most commercial devices incorporate a measure to reduce the carrier spill-over. 

The carrier spill-over describes the traverse transport of the injected carriers over the active 

region followed by their recombination outside the active region at the high carrier-density conditions.  

In most cases, electrons with mobility much higher than holes have a greater chance to be spilled over 

into the p-type layer.  The insertion of a wide-bandgap AlGaN material between the active region and 

the p-type hole-injection layer as an electron-blocking layer (EBL) has been suggested to suppress the 

escape of the electrons out of the active region [51].  However, recent studies suggest that the electron-

confinement by a typical AlGaN EBL (with xAl~0.2) is not sufficiently effective to solve the efficiency 

droop problem, especially because of the added polarization effects caused by the AlGaN [57].  In 

typical LED structures, an AlGaN EBL is located on top of a GaN barrier of the quantum-well (QW) 

active region, and the lattice mismatch between AlGaN and GaN generates a piezoelectric-polarization 

field in addition to the differential spontaneous-polarization fields.  These polarization fields pull the 

conduction band downward at the AlGaN/GaN interface.  As a result, the effective barrier height of 

the EBL is reduced, and the leakage of the carriers is not effectively suppressed [56].  The effective 

barrier height of the AlGaN EBLs can be augmented with a higher aluminum composition, and 

consequently, a wider bandgap and a larger conduction-band offset relative to GaN.  However, 

incorporation of a high aluminum mole fraction into the AlGaN layer usually degrades the layer 

crystalline quality with the generation of strain-induced defects and leads to an even larger 

piezoelectric-polarization field.  Also, an AlGaN EBL may not be compatible with all visible LEDs.  

The high optimum growth temperature of the AlGaN EBL can produce a significant thermal damage 

on the active region of the green and longer wavelength LEDs with an indium compositions of 0.2 or 

higher, degrading its luminescence characteristics [60]. 

InAlN with xIn~0.18, grown lattice-matched to GaN by MOCVD, has been used as the low-

index material component of the distributed Bragg reflectors in the vertical-cavity surface-emitting 
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lasers [61], as a barrier layer in the heterostructure field-effect transistors [62,63], and as a cladding 

layer in the edge-emitting diode lasers [64].  In0.18Al0.82N also has many attractive characteristics as an 

EBL material, including the ability to lattice-match to GaN and InxGa1-xN, a wide energy bandgap, a 

large conduction-band offset relative to GaN, and a relatively low growth temperature.  In this chapter, 

the growth of the InAlN layers by using MOCVD and their use as a lattice-matching EBL with a 

higher electron-blocking efficiency will be studied. 

 

4.1 Growth of the InAlN Layer by Using MOCVD 

The optimum growth temperatures and pressures for InN and AlN are very different.  InN is 

usually grown at a low temperature (~600 oC) and at a high pressure, while AlN is grown at a high 

temperature (~1300 oC) and at a low pressure condition.  Because of these growth condition 

differences, there are many technical issues in the growth of the InAlN layers, such as a spinodal phase 

separation and a large immiscibility gap between InN and AlN that can cause a compositional 

fluctuation of the InAlN layer [65].  Therefore, the most critical factors on the growth of InAlN are 

believed to be the growth temperature and the growth pressure.  To examine the influence of the 

growth conditions, InAlN test structures were grown under the various combinations of the growth 

temperatures and pressures.  The InAlN test structures were constructed with 100 nm-thick InAlN 

layers grown on GaN/sapphire substrates.  The layer thickness was measured by in-situ reflectance, 

and the indium composition was measured and confirmed by HR-XRD and RSM.  The indium 

compositions of the InAlN test layers under various growth conditions are shown in Figure 4-1. 
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Figure 4-1. The dependence of the indium compositions in the InAlN test layers on 
the growth temperatures and the growth pressures. 

 

As shown in Figure 4-1, the indium composition decreases with the increase of the growth temperature.  

This behavior is often observed in the growth of the InGaN layers and consistent with other reports 

about the growth of the InAlN layer [65].  The desorption of InN at the layer surface is enhanced and 

the indium alloy composition is reduced under the high growth temperature because of the much 

weaker chemical bonding of InN than that of AlN [66].  Also, the indium composition increases with 

the increase of the growth pressure under a fixed growth temperature.  This can be accounted by a 

reduced incorporation of aluminum because of a reduction of the mobility of the aluminum adatom 

under a higher growth pressure.  On the other hand, the adatom mobility is closely related to the 

surface morphology of the layer.  The transition of the surface morphology of the InAlN layers along 

with the growth conditions observed by AFM is shown in Figure 4-2.  The growth conditions are 

selected to maintain the similar indium composition in the grown InAlN layers. 
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Figure 4-2. The surface morphologies of the InAlN layers with different growth 
pressures and growth temperatures observed by AFM. 

 

In Figure 4-2, the improvement of the surface morphology with the decrease of the growth pressure 

and the increase of the growth temperature is clearly observed.  The root-mean-square (RMS) surface 

roughness obtained from the AFM observation along with the layer growth conditions are shown in 

Figure 4-3. 
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Figure 4-3. The dependence of the RMS roughness of the surface of the InAlN layers 
on the growth temperature and the growth pressure. 

 

As shown by the results in Figure 4-3, the InAlN layers grown under a low pressure of 75 Torr show 

rather rough surfaces with the RMS roughness over 3 nm.  The surface roughness dramatically 

decreases with the increase of the growth pressure, and the layers show very flat surfaces with the 

RMS roughness under 1 nm at 300 Torr.  Based on these results, we could obtain an InAlN layer with 

a flat surface morphology containing 19% of indium that is nearly lattice-matching to GaN.  The layer 

structure of the InAlN test structure and its HR-XRD ω-2θ-scan result in (004) diffraction are shown 

in Figure 4-4. 
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Figure 4-4. The structure of the InAlN test sample and its HR-XRD ω-2θ-scan result 
in (004) diffraction. 

 

Under the assumption that the layer is fully strained, the indium composition of the layer calculated 

from the separation between the peak from the GaN layer and the InAlN layer is 19%.  To confirm the 

strain status of the layer, we performed HR-XRD RSM in (105) diffraction, and the result is shown in 

Figure 4-5. 
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Figure 4-5. HR-XRD RSM observation result of the InAlN test sample in (105) 
diffraction. 

 

In the reciprocal space plot shown in Figure 4-5, reciprocal points from the GaN layer and the InAlN 

layer have very close qx coordinates.  This means that those layers have very similar in-plane lattice 

constants and they are confirmed to be in the lattice-matched status.  Therefore, the composition 

obtained from the HR-XRD ω-2θ-scan under the assumption that the layer is not relaxed is confirmed 

to be correct.  The surface morphology of the In0.19Al0.81N layer observed by AFM is shown in Figure 

4-6.  The sample has a flat surface with a well-developed step-flow morphology. 
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Figure 4-6. The surface morphology of the In0.19Al0.81N test sample observed by AFM. 

 

4.2 Band-Structure Calculation of the LEDs with an EBL 

Before the growth of the actual LED structures, we performed band-structure calculations of 

the LEDs with different EBLs by using Sentaurus software for a theoretical comparison.  The 

calculated band diagrams of the blue LED structures with In0.19Al0.81N and Al0.30Ga0.70N EBLs are 

shown in Figure 4-7.  It is worthy of noting that the Al0.30Ga0.70N EBL has more aluminum mole 

fraction than a typical EBL in the LED epitaxial structures, hence a better electron-confinement, while 

being accompanied by more material-related issues such as a higher Tg and a higher tensile strain than 

a typical AlGaN EBL. 
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Figure 4-7. Calculated band structures of the blue LEDs with an In0.19Al0.81N and an 
Al0.30Ga0.70N EBLs. 

 

The piezoelectric field within the In0.19Al0.81N EBL layer is very small, because it is nearly 

lattice-matched to GaN and the layer strain is small.  However, the difference in the spontaneous-

polarization field induces a relatively high built-in potential field parallel to the [0001] direction.  As a 

result, in combination with a large conduction-band offset, the insertion of an In0.19Al0.81N EBL layer 

provides an excellent electron confinement in the conduction band of the active region, as shown in 

Figure 4-7.  The conduction-band offset of the nearly lattice-matched In0.19Al0.81N to GaN (1.14 eV), 

calculated from the interpolation between the values of AlN (1.75 eV) [67] and InN (1.68 eV) [68], is 

much higher than that of Al0.3Ga0.7N (0.53 eV).  In the conventional AlGaN EBLs, an increase of the 

aluminum mole fraction is the only way to enhance the confinement effect on electrons.  However, it 

will also introduce a higher strain and a larger polarization field, and it is very difficult to incorporate 

an aluminum mole fraction higher than 30%.  Therefore, the InAlN EBL is expected to provide a more 

effective electron confinement without detrimental effects due to a lattice mismatch and a high growth 
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temperature.  In the band-structure diagram, the existence of a parasitic electron accumulation in the 

last QW barrier near the EBL and the potential barrier for the hole-transport at the p-GaN/p-InAlN 

EBL must also be noted.  The parasitic electron accumulation, similar to that which forms the electron 

channel in the AlGaN/GaN heterostructure field-effect transistors, may potentially result in a 

decreased quantum-efficiency (more specifically, a reduced injection efficiency) and an increased 

threshold current in the LDs.  The potential-barrier height, and the profile of the EBL and the last QW 

barrier also affect the distribution of holes in the MQW active region [69] that can result in the 

efficiency droop [70].  The parasitic electron accumulation and a non-uniform hole distribution among 

QWs can be mitigated by a tapered potential-barrier profile employing a compositional grading from 

the QW to the EBL [69] and/or a further improved magnesium doping of the EBL.  Various 

techniques to improve the hole injection efficiency in the LED structures with InAlN EBLs and their 

results will be discussed in Chapter 5. 

 

4.3 Growth and Fabrication of the LED Structures 

By using previously developed growth conditions, the In0.19Al0.81N layers were inserted into 

the standard blue LED structures as an EBL.  The blue LED which does not include an EBL and the 

LED with an Al0.2Ga0.8N EBL were also grown for the comparison purpose.  All LEDs share a very 

similar epitaxial structure.  They consist of a 3-µm-thick Si-doped n-type GaN layer with an electron 

concentration of n~5×1018 cm-3 (n-GaN:Si, 3 µm, n~5×1018 cm-3), a five-period In0.16Ga0.84N/GaN 

(2.5/11 nm) multiple QW (MQW) active region, an In0.19Al0.81N:Mg or Al0.2Ga0.8N:Mg EBL (20 nm), 

a p-GaN:Mg (100 nm, p~8×1017 cm-3) and a GaN:Mg++ (20 nm, [Mg]~1×1020 cm-3).  The schematic 

layer structure of the blue LED with an EBL is shown in Figure 4-8. 
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Figure 4-8. Schematic layer structure of the LED with an In0.19Al0.81N or an 
Al0.2Ga0.8N EBLs 

 

The growth temperature of the QWs was set to 750 oC for the emission in blue region around 

475 nm.  The In0.19Al0.81N EBL was grown at 845 °C and at a growth rate of 0.012 nm/sec for the 

optimized crystalline quality [71], while the Al0.2Ga0.8N EBL was grown at 930 °C and at 0.065 

nm/sec.  The growth conditions of the active regions of all LEDs were maintained to be same.  This 

ensures the same Auger recombination and hole-transport effects on the peak efficiency and efficiency 

droop except for minor influences of the different EBLs.  The layer structures are also examined with 

HR-XRD.  The HR-XRD ω-2θ-scan result on the LED with an In0.19Al0.81N EBL in the symmetric 

(002) diffraction is shown in Figure 4-9. 
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Figure 4-9. HR-XRD ω-2θ-scan result on the LED with an In0.19Al0.81N EBL in the 
symmetric (002) diffraction. 

 

The rocking curve shown in Figure 4-9 clearly shows the periodic satellite peaks which contain 

information on the composition and the thickness of the InGaN/GaN QWs and QBs.  According to a 

HR-XRD simulation using Philips Epitaxy software, the thickness of the QWs and QBs are estimated 

to be 2.6 nm and 11 nm, respectively.  Also, the peak from an In0.19Al0.81N EBL is expected to appear 

at the right side of the GaN layer peak.  But the peak from the In0.19Al0.81N EBL is not clearly shown, 

because it is overlapped with satellite peaks from the InGaN/GaN MQW and the thickness of the EBL 

is thin. 

The surface morphologies of as-grown LEDs with and without EBLs are shown in Figure 4-10.  

All samples show a flat surface morphology with the RMS roughness smaller than 0.4 nm, indicating 

that the insertion of an In0.19Al0.81N or Al0.2Ga0.8N layer did not cause a significant surface roughening 

or a p-layer crystalline-quality degradation.  To observe the crystalline qualities more closely, high-

resolution transmission electron microscopy (HR-TEM) was used for the LED structures.  A bright-
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field, cross-section HR-TEM image of the LED structure without an EBL on [11-20] zone axis is 

shown in Figure 4-11.  The image shows that the QWs and QBs in the MQW region have uniform 

thicknesses with abrupt interfaces.  The total thickness of the active region consisted with 5 pairs of 

QW/QB (five QWs and four QBs) is estimated as 56 nm.  This thickness is consistent with the target 

thicknesses of QW (2.5 nm) and QB (11 nm). 

 

 

Figure 4-10. The surface morphologies of the LEDs (a) without an EBL, (b) with an 
In0.19Al0.81N EBL, and (c) with an Al0.2Ga0.8N EBL observed by AFM. 
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Figure 4-11. The bright-field, cross-section HR-TEM image of the blue LED without 
an EBL on [11-20] zone axis. 

 

The bright-field, cross section HR-TEM images of the LED with an In0.19Al0.81N EBL and the 

LED with an Al0.2Ga0.8N EBL on [11-20] zone axis are shown in Figure 4-12.  The In0.19Al0.81N EBL 

shown in Figure 4.12 (a) looks brighter than other layers because of its higher aluminum composition.  

The interfaces between the In0.19Al0.81N EBL and the GaN layers show a sharp transition and flat 

morphology.  The thickness of the In0.19Al0.81N EBL measured from the HR-TEM image is around 16-

18 nm.  The Al0.2Ga0.8N EBL shown in Figure 4-12 (b) also looks brighter than the active region and 

the GaN layer, but its lower aluminum composition (target = 20% Al) makes it less bright than the 

In0.19Al0.81N EBL.  The thickness of the Al0.2Ga0.8N EBL is estimated to be around 23 nm.  Both 

In0.19Al0.81N EBL and Al0.2Ga0.8N EBL shows sharp interfaces between underlying and upper GaN 

layers with a flat interface morphology.  Also, the thickness of the QW/QB of the active regions in the 

LEDs with the EBLs is very similar to that of the LED structures without an EBL. 
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Figure 4-12. The bright-field, cross-section HR-TEM images of (a) the blue LED with 
an In0.19Al0.81N EBL, and (b) the blue LED with an Al0.2Ga0.8N EBL on the [11-20] 

zone axis. 

 

These LED structures were fabricated into devices using a standard top-emitting chip process.  

The fabrication process consists with a mesa definition produced by an inductively-coupled plasma 

reactive ion etching, a Ti/Al/Ti/Au n-Ohmic contact metallization, and a transparent NixO1-x/Au p-

Ohmic contact metallization by an electron-beam evaporation followed by a thermal annealing.  An 

optical microscope image of a fabricated LED with the 350×350 µm2 device area is shown in Figure 

4-13. 
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Figure 4-13. An optical microscope image of the fabricated blue LED with the device 
area of 350×350 µm2. 

 

4.4 Electrical Characterization of the Blue LEDs 

The electrical characteristics of the fabricated blue LEDs with and without the EBLs were 

analyzed before the emission performances of the LEDs were measured.  The electrical characteristics 

of the LED are deeply related with its overall performance.  The quantum efficiency which can be 

enhanced by reducing the efficiency droop is determined only by the ratio between the injected current 

(or the number of the injected carriers) and the number of the photons generated by the radiative 

recombination processes, and the device operation voltage is not considered.  However, the overall 

performance of the LED is evaluated by the light output generated by the unit amount of the electrical 

energy supplied, and the power consumption of the LED should be taken into account.  One of the 

more important factors determining the voltage and the power consumption is the series resistance of 

the LED.  The series resistance is defined as an additional resistance component which appears in 

series with the ideal-diode component in the equivalent circuit of an actual LED.  The series resistance 
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can be represented as a sum of the resistances of the each layer, such as the n-type and the p-type 

regions and the MQW region.  The insertion of an EBL into the LED structure may increase the series 

resistance and the device operation voltage, because (1) the thickness of the EBL adds an extra 

traveling distance for holes, and (2) lower magnesium-doping efficiency of the EBL with a high 

aluminum composition makes the EBL more resistive than the p-type GaN:Mg layer.  Worse electrical 

properties of a LED including a higher operation voltage and a larger series resistance can degrade the 

overall performance of the LED.  If a LED with an EBL achieved improved quantum efficiency at a 

cost of the increased device voltage, then the total power consumption of the LED is increased and 

most of the performance benefits brought by the enhanced quantum efficiency will be screened out.  

Therefore, the impact of the insertion of the EBLs on the electrical characteristics of the LED 

structures should be examined to evaluate the actual performance improvements of the LEDs.  

Because the blue LEDs with and without the EBLs share the same layer structure, the influences of the 

EBLs on the electrical properties can be easily isolated by comparing the measurement results. 

The electrical properties of the p-type and n-type layers of the LEDs were measured by using 

TLM method to ensure the uniformity between the samples.  The size of the metal contact pads is 200 

µm by 50 µm, and the gaps between the metal pads are 10/20/40/70/110 µm for the n-type layers and 

8/14/20/30/50 µm for the p-type layers.  An Agilent Model 4156C semiconductor parameter analyzer 

connected to a PC controlled by Interactive Characterization Software’s Metrics software was used to 

apply the voltage and measure the current flow between the two metal pads with different gaps.  The 

current larger than 100 mA was not measured because of the current compliance of the 4156C.  The 

current-voltage measurement results on the TLM patterns are shown in Figure 4-14. 
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Figure 4-14. The TLM results on the p- and n-type layers of the blue LEDs.  (a) and (b) 
the LEDs without an EBL, (c) and (d) the LEDs with an In0.19Al0.81N EBL, and (e) and 

(f) the LEDs with an Al0.2Ga0.8N EBL. 

 

In the TLM results on the n-type layers, the measured current-voltage curves show a very good linear 

behavior, indicating that the contacts between the metal pads and the semiconductor layers have good 

Ohmic characteristics.  The measurement results on the p-type layers also show a good linearity 

without a noticeable Schottky semiconductor-metal contact behavior.  The total resistances of each 

gap calculated from the current-voltage curves were plotted along with the gaps and linear fitted to 
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obtain the specific contact resistances (rc) and the sheet resistances (Rsh).    The specific contact 

resistances and the sheet resistances calculated from the slopes and the intercepts of the linear fittings 

are listed in Table 4-1.  The R-square values of the linear fittings are also listed with the results. 

 

Table 4-1. The sheet resistances and the specific contact resistances of the LEDs without and 
with EBLs obtained from the TLM results. 

Layer 
Blue LED without an EBL 

Blue LED with an 

In0.19Al0.81N EBL 

Blue LED with an 

Al0.2Ga0.8N EBL 

Rsh (Ω) rc (Ω-cm2) R
2 Rsh (Ω) rc (Ω-cm2) R

2 Rsh (Ω) rc (Ω-cm2) R
2 

n-layer 10.0 3.0E-4 0.999 9.2 5.5E-4 0.999 12.3 3.6E-4 0.999 

p-layer 84.5K 2.0E-4 0.999 95.6K 9.3E-5 0.991 95.1K 1.1E-4 0.999 

 

According to Table 4-1, the n-type layers of all LEDs have similar electrical properties.  The sheet 

resistances of the n-type layers were around 10 Ω regardless of the insertion of the EBLs.  Specific 

contact resistances between the metal contacts and the semiconductor layers were also uniform 

between the samples.  The sheet resistances and the specific contact resistances of the p-type layers 

also shows very similar values with small differences between the samples, indicating that the p-doped 

region (excluding the EBL) of each LEDs have similar electrical properties.  Therefore, any 

differences in the electrical properties which may be observed between the LED samples should be 

considered as the effect of the EBLs. 

The current-voltage curves on the fabricated LEDs with a device area of 350 µm × 350 µm2 

were measured with an on-wafer probing system and shown in Figure 4-15 (a), (c), and (e).  The 

voltage was supplied by the Agilent Model 4156C power supply and the current was measured up to 

100 mA. 
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Figure 4-15. The current-voltage measurement results and series resistance plots on 
the blue LEDs.  (a) and (b) the LEDs without an EBL, (c) and (d) the LEDs with an 

In0.19Al0.81N EBL, and (e) and (f) the LEDs with an Al0.2Ga0.8N EBL. 

 

In Figure 4-15, all LEDs show similar current-voltage behaviors with small voltage or current 

differences.  The voltages when the current reaches 20 mA were measured to be 3.9 V for the LED 

without an EBL and the LED with an In0.19Al0.81N EBL, and 4.1 V for the LED with an Al0.2Ga0.8N 

EBL.  Also, the amount of the current flow at the applied voltage of 5V was observed to be 76 mA for 

the LED without an EBL, 80 mA for the LED with an In0.19Al0.81N EBL, and 70 mA for the LED with 
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an Al0.2Ga0.8N EBL.  These results indicate that the insertion of the EBLs did not cause a significant 

extra voltage on the operation voltage of the LEDs.  The observed voltage changes are limited to 5% 

of the forward voltage of the LED without an EBL.  To obtain the extra resistance components caused 

by the EBLs, the series resistances of the LEDs were calculated from the current-voltage measurement 

results.  The current and the voltage of a diode with a series resistance Rs are described by the 

following equation: 

 

� = �; c��! c#
�4-��4�
�`& d − 1d,      (4-1) 

 

where Is is the saturation current of the diode, I is the diode current, Vs is the diode voltage, n is the 

ideality factor, k is Boltzmann constant, and T is the temperature.  Equation 4-1 shows the increase of 

the effective diode voltage by the extra voltage caused by the series resistance.  Under the condition 

that Vs is much larger than kT/q, Equation 4-1 is transformed to a linear equation between I and 

I*dV/dI through some of the arithmetic processes as follows: 

 

� U�
U� = ��; + ',       (4-2) 

 

where C is a constant.  The values of I*dV/dI obtained from the current-voltage measurement results 

of the LEDs are plotted in Figure 4-15 (b), (d), and (f) along with the current I.  The series resistances 

calculated from the slope of the each plot are also displayed.  In these results shown in Figure 4-15, 

the series resistance of the LED with an Al0.2Ga0.8N EBL is slightly higher than those of the LED 

without an EBL or the LED with an In0.19Al0.81N EBL.  The increased resistance may originate from 

the additional thickness of the EBL, the lower magnesium-doping efficiency of the Al0.2Ga0.8N EBL 

which contains high aluminum composition, or the non-uniformity in the device-fabrication process.  
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However, relatively small thickness of the EBL (20 nm) compared to the total thickness of the p-

doped region (140 nm) limits the additional resistance to less than 18% of the total series resistance.  

Therefore, the electrical properties of the LED without an EBL and the LEDs with the EBLs can be 

safely considered as comparable.  However, during the measurements and comparisons of the 

electroluminescence and quantum efficiency of the LEDs, the differences in the voltage and the series 

resistance will be considered and compensated for more accurate analysis. 

 

4.5 Device Electroluminescence Measurement Results 

The electroluminescence spectra of the LEDs measured with an on-wafer probing on the 

350×350 µm2 devices under an injection current, I, ranging from 60 mA (corresponding to a current 

density of J~49 A/cm2) to 420 mA (J~343 A/cm2) are plotted in Figure 4-16.  For the measurement, a 

Keithley Model 2430 current source was used to supply pulse-mode current with a duty cycle of 10% 

and a pulse length of 10 msec. at room temperature.  The peak emission wavelengths of LEDs without 

an EBL, with an Al0.2Ga0.8N EBL, and with an In0.19Al0.81N EBL at I=60 mA were 475 nm, 476 nm, 

and 473 nm, respectively.  Therefore, the peak emission wavelength did not change very much with 

the different EBL schemes.  Also, the LED emission peak intensity of the spectra at a given injection 

current increases in the order of:  the LEDs (1) without an EBL, (2) with an Al0.2Ga0.8N EBL, and (3) 

with an In0.19Al0.91N EBL.  The light-emission characteristics of the LEDs were estimated by 

comparing the integrated intensity change with the increasing current, as shown in Figure 4-17. 

The LED without an EBL shows an almost linear increase in the light output that is slightly 

higher than the LEDs with the EBLs in the low injection-current region of I<40 mA.  However, at 

higher injection currents, the L-I curve of the LED without an EBL shows a distinct sub-linear 

behavior and a tendency to saturate at I~75 mA.  At even higher currents of I>360 mA, an increase in 

the injection current hardly contributes to the increase of the light output, and only a small portion of 
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the injected carriers result in the radiative recombination.  The LED with an Al0.2Ga0.8N EBL shows 

lower light outputs than the LED without an EBL for low and medium injection currents (I<120 mA).  

However, with an increase of the injection current, the light output rapidly increases and surpasses the 

LED without an EBL at I~140 mA.  Moreover, higher slope of the curve is maintained at higher 

currents with a significantly reduced efficiency droop, showing ~25% higher light output at I=360 mA 

and ~40% higher at I=440 mA than the LED without an EBL.  The light output of the LED with an 

In0.19Al0.81N EBL is slightly higher than that of the LED without an EBL at I=50 mA, but it ramps up 

significantly with the increasing injection current.  As a result, it is ~110% brighter than the LED 

without an EBL and 40% brighter than the LED with an Al0.2Ga0.8N EBL at I=440 mA.  The light 

output is significantly enhanced when either an Al0.2Ga0.8N or In0.19Al0.81N layer is inserted as an EBL, 

possibly because of their improved electron-blocking effect in the high injection-current regime.  Also, 

higher light output of the LED with an In0.19Al0.81N EBL indicates a superior electron confinement 

with respect to the Al0.2Ga0.8N EBL case. 

 

 

 

Figure 4-16. Electroluminescence spectra of the LEDs (a) without an EBL, (b) with an 
Al0.2Ga0.8N EBL, and (c) with an In0.19Al0.81N EBL, with the pulse-mode injection 

current up to 420 mA. 
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Figure 4-17. Light output versus current (L-I) characteristics of the LEDs without an 
EBL, with an Al0.2Ga0.8N EBL, and with an In0.19Al0.81N EBL. 

 

To clarify the effect of the various EBLs on the efficiency droop, the quantum efficiency of 

the LEDs is calculated and plotted versus the current density in Figure 4-18.  The quantum efficiency 

is obtained by dividing the integrated EL intensity by the injection current.  After a rapid increase at 

very low injection-current densities, all the LEDs show a monotonic efficiency drop with the 

increasing current.  The efficiency droop can be defined by the ratio of drop of the efficiency from the 

peak value. 
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Figure 4-18. Quantum efficiency versus injection-current density for the LEDs 
without an EBL, with an Al0.2Ga0.8N EBL, and with an In0.19Al0.81N EBL. 

 

In Figure 4-18, the LED without an EBL shows a sharp peak efficiency at J=3 A/cm2, while the LEDs 

with an Al0.2Ga0.8N EBL and an In0.19Al0.81N EBL show peak efficiencies at J=6 A/cm2 and 11.5 

A/cm2, respectively.  Note that the peak efficiency of the LED without an EBL is higher than other 

LEDs with EBLs and also occurs at a lower current density.  The insertion of an EBL creates barriers 

not only in the conduction band, but also in the valence band that may act as a hole-blocking barrier.  

At low current densities, this barrier may limit the hole-transport into the active region and may result 

in a non-uniform hole distribution [69] leading to lower quantum efficiencies for the LEDs with an 

EBL than for the LED without an EBL.  Beyond the peak efficiency, the LED without an EBL shows 

a rapid efficiency drop with increasing injection-current density suggesting a severe carrier loss by 

carrier spill-over.  The quantum efficiency of the LED without an EBL at J=360 A/cm2 is only one-

third of its peak-efficiency value showing an efficiency droop of ~69%.  On the other hand, the LED 

with an Al0.2Ga0.8N EBL shows the lowest peak efficiency at low current densities, but the droop of 
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the efficiency with an increase of the current density is much smaller than that of the LED without an 

EBL.  As a result, its quantum efficiency exceeds that of the LED without an EBL at the current 

density higher than J=130 A/cm2, and shows a ~30% higher value at J=360 A/cm2.  The efficiency 

droop is also improved with only a ~32% efficiency drop at J=360 A/cm2 with respect to the peak 

value.  The peak efficiency of the LED with an In0.19Al0.81N EBL is located between those of the LED 

with an Al0.2Ga0.8N EBL and the LED without an EBL, and because of its smallest efficiency-drop rate, 

it shows the highest absolute efficiency and the lowest efficiency droop at high current densities.  The 

efficiency droop at J=360 A/cm2 is estimated to be ~18% compared to its peak value.  Thus, the 

In0.19Al0.81N EBL has demonstrated to provide a better electron-blocking effect than the Al0.2Ga0.8N 

EBL, and the LED with an In0.19Al0.81N EBL shows significantly improved emission intensities and 

substantially mitigated efficiency droop in the visible wavelength region than the LED with a 

conventional Al0.2Ga0.8N EBL.  However, although the efficiency droop is significantly improved by 

the insertion of the In0.19Al0.81N EBL through minimizing the carrier spill-over, the droop is not 

completely suppressed.  This may suggest that other mechanisms such as Auger recombination or 

limited hole-transport may also have some influence in the efficiency droop. 
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CHAPTER 5 THE HOLE-BLOCKING EFFECT OF THE InAlN 

ELECTRON-BLOCKING LAYER IN THE LIGHT-EMITTING DIODES 

5.1 Introduction 

As shown in Chapter 4, an In0.19Al0.81N EBL is confirmed to provide higher efficiency droop 

performance, because it is more effective in confining electrons and minimizing the carrier spill-over 

than the conventional Al0.2Ga0.8N EBL.  However, the efficiency droop of the LED is not completely 

suppressed by employing an In0.19Al0.81N EBL.  In Figure 4-15, the quantum efficiency of the LED 

with an In0.19Al0.81N EBL still shows the decrease of the emission efficiency with the increasing 

injection current.  As pointed out in Chapter 4.5, this may suggest the existence of other efficiency-

droop mechanisms that can be suppressed by additional structural improvements. 

The main strategy in the employment of the EBL is the suppression of the electron spill-over 

by creating a high electron-confinement barrier through the insertion of the wide-bandgap materials.  

Therefore, an In0.19Al0.81N EBL with wider bandgap energy has an advantage over an Al0.2Ga0.8N EBL 

in terms of the electron-confinement effect.  However, it is clear that a wider-bandgap material also 

contributes to a higher hole-blocking barrier that may prevent the efficient injection of holes into the 

active region.  The valence-band offset of the In0.19Al0.81N layer on a GaN layer is calculated to be 0.40 

eV under at equilibrium.  This value is much larger than that of the conventional Al0.2Ga0.8N EBL 

(0.11 eV), and the large valence-band offset creates a large hole-blocking barrier with a formation of a 

sharp potential spike.  Although the performance enhancement from the electron-confinement effect of 

the EBL seems to override the impact of the hole-blocking effect on the light output, an improved 

hole-injection efficiency will lead to an additional increase of the LED performance.  Moreover, the 

limited hole injection is claimed as one of the major origins of the efficiency droop by many reports 

[58,59].  Therefore, identifying the hole-blocking effect caused by the In0.19Al0.81N EBL is very 

important in suppressing the efficiency droop of the LED. 
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5.2 Hole-Blocking Effect of the InAlN EBL 

The hole-blocking effect of the In0.19Al0.81N EBL is predicted by tracing the change of the 

electronic band structure of the LED.  The band structure diagram of the blue LED structures with 

In0.19Al0.81N EBLs nearly lattice-matched to GaN is calculated under the equilibrium condition by 

Sentaurus and shown in Figure 5-1.  The thickness of the p-type GaN:Mg layers were set to around 

200 nm, and the exact thickness of the p-type layer varies with the thicknesses of the EBLs to make 

the total p-type layer thickness (the thickness of the EBL and the GaN:Mg layer) to be 220 nm.  The 

total thickness of the p-type layers is determined to maximize the light-extraction efficiency from the 

top surface of the LED device at the blue emission wavelength region.  The detail of the p-layer design 

will be discussed later. 
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Figure 5-1. Electronic band diagram of the blue LED epitaxial structures with 
In0.19Al0.81N EBLs with thicknesses of 5, 10, and 20 nm. 

 

In Figure 5-1, a high barrier for hole transport is observed in the valence band at the interface 

between the In0.19Al0.81N EBL and the active region.  This hole barrier will cause a reduced hole-

injection efficiency into the active region, and the hole deficiency leads to a lower emission 

performance of the LED.  However, the impact of the hole blocking caused by the EBL on the 

performance of the LED cannot be separated and identified easily.  An EBL with a high hole-blocking 

effect may also have a high electron-confinement effect that enhances the light output of the LED, and 

the overall performance of the LED is determined by both the hole-blocking effect and the electron-

confinement effect.  Therefore, for a quantitative evaluation of the impact of the hole blocking, a series 

of the LED structures with different amount of the hole-blocking and electron-confinement effect is 

needed to be analyzed with a proper model. 
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One parameter that controls the amount of the hole-blocking effect of the In0.19Al0.81N EBL is 

the thickness of the EBL.  In Figure 5-1, the height of the potential barrier induced by the In0.19Al0.81N 

EBL in the valence band decreases with the reduction of the EBL thickness from 20 nm to 5 nm.  In 

addition, the control of the hole-blocking effect by adjusting the EBL thickness has several advantages.  

The alloy composition of the In0.19Al0.81N EBL is fixed, and the strain status of the EBL is maintained 

to be same without inducing any extra polarization field and band bending.  Also, the magnesium 

doping efficiency that depends highly on the aluminum composition of the layer will remain 

unchanged, ensuring the electrical properties of the EBL region and the series resistance of the LEDs 

to be similar each other.  Therefore, the strategy of changing the EBL thickness to control the hole-

blocking effect can eliminate extra factors that may introduce artifacts in the analysis process. 

For a quantitative analysis on the hole-blocking and electron-confinement effect of the EBL, 

we proposed and applied a quantum-efficiency model on the measurement results of the LEDs with 

different EBL thickness.  Our model uses major recombination rate equations to describe the quantum 

efficiency of a LED analytically without depending on a computational method.  The advantage of the 

analytical model over a computational method is that the model helps understanding the underlying 

mechanism between the carrier densities and the emission performance of the LED more clearly and 

directly than the computational method.  The details on the analysis method will be discussed in 

Chapter 5.5. 

 

5.3 Growth and Fabrication of the LED Structures with Different EBL Thickness 

To evaluate the effect of the hole blocking and the electron confinement on the performance of 

the LED, blue LED structures that contain the EBLs with different thickness were grown.  The 

structure of the LEDs is maintained to be very similar, consisting of a 3-µm-thick Si-doped n-type 

GaN layer (n-GaN:Si, 3 µm, n~5×1018 cm-3), a five-period In0.15Ga0.85N/GaN (2.5/11 nm) multiple 

quantum-well (MQW) active region, a p-In0.18Al0.82N:Mg EBL, a p-GaN:Mg (p~8×1017 cm-3), and a p-
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GaN:Mg++ (20 nm, [Mg]~1×1020 cm-3) contact layer.  The thickness of the In0.19Al0.81N EBL was 

changed from 5 to 20 nm, and a LED structure without an EBL was also grown for a comparison.  The 

total layer thickness above the active region was maintained to be 240 nm by changing the thickness 

of the p-GaN:Mg layer to ensure the same light-extraction efficiency for different LED structures[72].  

The schematic layer structure of the blue LED with different EBL thickness is shown in Figure 5-2. 

 

 

Figure 5-2. Schematic structure of a blue LED with an In0.19Al0.81N EBL with different 
thickness. 

 

The surface morphologies of as-grown LEDs with different EBL thickness are observed by AFM and 

shown in Figure 5-3.  All samples show a good surface morphology with small RMS roughness below 

0.5 nm.  The insertion of the EBL did not cause any significant roughening on the sample surface 

regardless of the thickness change.  The lattice-matching capability of the In0.19Al0.81N EBL 

contributed to the flat surface morphology of the structure. 
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Figure 5-3. The surface morphology of the blue LEDs (a) without an EBL, (b) with a 
20 nm In0.19Al0.81N EBL, and (c) with a 10 nm In0.19Al0.81N EBL. 

 

These LED structures were fabricated into 350×350 µm2 devices using a similar top-emitting chip 

process described in Chapter 4.3. 

 

5.4 Device Characterization 

The electrical characterization was performed on the fabricated LEDs to examine a possible 

discrepancy in the electrical properties caused by the insertion of different EBLs.  The sheet resistance 

and the specific contact resistance of the p-type and n-type layers of the LEDs were measured by TLM.  

The standard TLM pattern is consisted with metal pads of 200 µm by 50 µm with gaps of 

10/20/40/70/110 µm for the n-type layers and 8/14/20/30/50 µm for the p-type layers.  An Agilent 

Model 4156C semiconductor parameter analyzer was used to apply the voltage and measure the 

current flow between the two metal pads with different gaps.  The specific contact resistances and the 

sheet resistances of the p-type and n-type layers of the LED structures are calculated from the current-

voltage relationship in the TLM measurements and listed in Table 5-1 with the R-square values of the 

linear fitting. 
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Table 5-1. The sheet resistances and the specific contact resistances of the p-type and n-type 
layers of the LEDs without an EBL and with In0.19Al0.81N EBLs with different thicknesses 
obtained from the TLM results. 

EBL thickness 
None 20 nm 15 nm 

Rsh (Ω/sq) rc (Ω-cm2) Rsh (Ω/sq) rc (Ω-cm2) Rsh (Ω/sq) rc (Ω-cm2) 

n-layer 5.5 1.0E-3 5.6 9.9E-4 5.9 8.6E-4 

p-layer 38.4K 2.0E-4 41.2K 2.3E-4 43.7K 1.1E-4 

 

EBL thickness 
10 nm 5 nm 

Rsh (Ω/sq) rc (Ω-cm2) Rsh (Ω/sq) rc (Ω-cm2) 

n-layer 5.4 1.4E-3 5.1 1.4E-3 

p-layer 38.9K 7.9E-4 43.8K 9.3E-5 

 

According to Table 5-1, the n-type layer and the p-dope regions of all LEDs, including the LED 

structure without an EBL, have similar electrical properties.  The insertion and the different thickness 

of the In0.19Al0.81N EBLs may increase the sheet resistance of the p-doped region.  The magnesium 

doping efficiency of the InAlN is lower than for GaN:Mg, and therefore it may have higher sheet 

resistance.  Also, the doping profile may be changed with the “slow doping” effect of magnesium and 

different thickness of the EBLs (thus different growth time before the start of the growth of the 

GaN:Mg layers).  However, the measurement results indicate that the insertion of the In0.19Al0.81N 

EBLs with different thickness did not cause any significant change in the properties of the p-doped 

region.  The current-voltage curves of the fabricated LEDs with a device area of 350 µm × 350 µm2 

were measured by an on-wafer probing and shown in Figure 5-4. 
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Figure 5-4. Current-voltage measurement results of the LEDs without an EBL and 
with In0.19Al0.81N EBLs with different thickness from 5 nm to 20 nm. 

 

In Figure 5-4, all LEDs show similar current-voltage behaviors with small voltage or current 

differences.  The forward voltages at the injection current of 20 mA were measured to be 3.7 V for the 

LED without an EBL, and 3.7 to 3.9 V for all the LEDs with In0.19Al0.81N EBLs regardless of their 

thickness.  Also, all LEDs could flow more than 100 mA of current flow under the bias of 5V (the 

current could not be measured because of the current compliance of 4156C).  These results indicate 

that the insertion of the In0.19Al0.81N EBLs did not cause a significant extra voltage on the operation 

voltage of the LEDs.  The observed voltage changes are limited to within 5% of the forward voltage of 

the LED without an EBL.  Therefore, the electrical properties of the LED without an EBL and the 

LEDs with EBLs can be safely considered as comparable. 

The electroluminescence spectra of the LEDs were measured with an on-wafer probing on the 

350×350 µm2 devices under an injection current ranging from 60 mA (corresponding to a current 
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density of J~49 A/cm2) to 420 mA (J~343 A/cm2).  The pulse-mode current with a duty cycle of 10% 

and a pulse length of 10 msec. was supplied to the devices at room temperature during the 

measurement.  The peak emission wavelengths of the LEDs appear at a very similar position of around 

475 nm (data not shown).  The light-emission characteristics of the LEDs were estimated by 

comparing the integrated EL intensity with the increasing injection current up to 460 mA, as shown in 

Figure 5-5. 

 

 

Figure 5-5. Integrated EL intensity vs. injection current density of the LEDs with 
In0.19Al0.81N EBLs with various thicknesses. 

 

In Figure 5-5, the LED without an EBL shows rather low integrated EL intensity compared to 

other LEDs with the EBLs.  The LEDs with the In0.19Al0.81N EBLs show much higher integrated EL 

intensity with a less saturation behavior at the high injection current region, confirming the electron-

confinement effect and the low carrier spill-over of the In0.19Al0.81N EBL that is observed in Chapter 4.  

The LED with a 15 nm In0.19Al0.81N EBL shows the highest EL intensity, followed by the LEDs with a 
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20 nm EBL and with a 10 nm EBL.  On the other hand, the LED with a 5 nm In0.19Al0.81N EBL shows 

lower integrated EL intensity than the LED without an EBL at low current region.  However, the LED 

with a 5 nm EBL has a smaller saturation behavior, and it surpasses the LED without an EBL at the 

high current region (> 350 mA).  To observe the effect of the EBL thickness on the luminous 

performance of the LEDs more closely, the quantum efficiency of the LEDs are plotted with the 

injection current density in Figure 5-6. 

 

 

Figure 5-6. Quantum efficiency vs. injection current density of the LEDs with 
In0.19Al0.81N EBLs with various thicknesses.  Inset shows the injection current density 

at the peak quantum efficiency appears in each LED structure. 

 

In Figure 5-6, all the LEDs show a typical quantum-efficiency behavior with an increasing 

injection current.  The quantum efficiency increases with the current density under low injection 

conditions and then decreases under high injection conditions.  However, several things need to be 

noted:  First, the LED with a 5 nm EBL shows lower quantum efficiency than the LED without an 
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EBL except for the high current-density region.  Also, the LED with a 20 nm EBL shows lower 

efficiency under high current injection than the LED with a 15 nm EBL.  If only the electron-blocking 

effect is taken into account, these results, especially for the second observation, cannot be easily 

explained, because the insertion of the EBL or the increase of its thickness was supposed to suppress 

the carrier spill-over.  In addition, the current density where the peak quantum efficiency appears has a 

clear trend with the EBL thickness, as shown in the inset of Figure 5-6.  The peak quantum efficiency 

tends to appear at higher current density with a thicker EBL.  However, the peak quantum efficiency 

of the LED with a 20 nm EBL does not follow this tendency, and it appears at a lower current density.  

The “peak” in the quantum efficiency was reported to occur at a relatively low current density 

dominated by the non-radiative recombination processes, especially the defect-related Shockley-Read-

Hall (SRH) recombination, because other higher-order recombination processes are significant at 

higher current density[73].  However, since our LED structures share the same growth condition and 

crystalline quality in the GaN buffer and MQW active region, the radiative and non-radiative 

recombination parameters are expected to be same.  Also, it was observed that the position of the peak 

efficiency is closely related with the carrier spill-over and the hole-injection efficiency[74,75,76].  The 

electrical properties of the n-type layers and the p-doped regions of the LEDs are shown to be very 

similar each other in the TLM measurement.  Therefore, different carrier dynamics induced by the 

different In0.19Al0.81N EBL structure is considered to be a more probable origin of the different peak-

efficiency positions. 

 

5.5 Modeling of the Quantum Efficiency 

For a quantitative modeling of the quantum-efficiency behavior of the LEDs, we extended the 

model, well-known as the “ABC model”, to include the carrier spill-over effect and the hole-blocking 

effect[77,78].  The “ABC model” assumes that the number of the carriers consumed via recombination 

processes is identical to the number of the carriers supplied by the current injection.  When the 
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recombination region is much thinner than the diffusion length of the carriers inside a material 

structure, the recombination processes under the steady state are mainly consisted with Shockley-

Read-Hall (SRH) non-radiative recombination, radiative recombination, and Auger non-radiative 

recombination.  The rate of the carrier recombination in each process is described by the 

recombination probability and the density of the carrier.  A typical expression of the “ABC model” is 

as follows: 

 

�O + %O< + 'O� = �/s9 ,      (5-1) 

 

where n is the excess electron density, q is the electron charge, d is the thickness of the recombination 

region (active layer in case of a LED structure), and J is the injection-current density.  The probability 

of the SRH, radiative, and Auger recombination processes are included in the equation as parameters 

of A, B, and C.  When there are no other paths of the carrier loss, the representation of the internal 

quantum efficiency of the structure is very straightforward, as follows: 

 

���� =
�*��
�1

= %O</
�O + %O< + 'O�� .     (5-2) 

 

The values of A and B can be deduced from a trap density (Nt), a capture cross-section (σ), and a 

thermal velocity (νth) of the target material [79].  Assuming Nt = 1016 cm-3, σ = 10-15 cm2, and νth = 

5×106 cm/s, the coefficient A is calculated to be 1/τnr = Ntσνth = 5×107 s-1, which is similar to other 

reports[80].  The value of the coefficient B also can be calculated with a process described in Ref. [81] 

to be G/ni
2 = 4.1×10-9 cm3 s-1 for GaN, where G is the generation rate per unit volume and ni is the 

intrinsic carrier concentration.  In case of InGaN, the coefficient B becomes around 1.2×10-10 cm3 s-1. 
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However, this model assumes that all the carriers are consumed by the recombination and do 

not consider the effect of the carrier loss via the spill-over.  The carriers lost by the spill-over can be 

included into the model by introducing the spill-over current density, as follows[81]: 

 


� − �;)�aa��"e�/s9	 = �O + %O< + 'O� + �;)�aa��"e/s� ,  and  (5-3) 

���� = %O</
�O + %O< + 'O� + �;)�aa��"e/s�� .   (5-4) 

 

In Equation 5-3 and 5-4, the amount of the spilled-over carriers are correlated with the spill-over 

current density Jspill-over by using the diffusion length of the spilled carriers, t.  An exact estimation of 

the absolute amount of the spilled-over carriers is very hard.  Instead, the spill-over current density 

was assumed to be proportional to the injection current density with the following equation: 

 

�;)�aa��"e = ��� .        (5-5) 

 

where k and b are constants controlling the amount of the spill-over current density, reflecting the 

electron-confinement capability of the material structure.  On the other hand, the hole-blocking effect 

will cause an imbalance in the number of the electrons and holes in the active region.  If the hole 

density is not comparable to that of the electrons, the rate of the radiative recombination may decrease 

even if enough number of electrons are present in the active region.   

To represent the hole deficiency caused by the EBL, the ratio between the excess electron 

density and the excess hole density (carrier-density ratio) is described by a function of the injection-

current density rather than just a constant.  Under the same height of the hole barrier caused by the 

EBL, the relative density of the excess hole will change with the total injection-current density.  

Because the portion of the holes blocked by the EBL become smaller compared to the total number of 

the injected holes, the excess hole density is expected to be much lower than the excess electron 
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density at a low current density and becomes comparable to the electron density at a high current 

density.  This behavior in the carrier-density ratio along with the injection-current density can be 

described by Fermi-Dirac distribution function.  In this case, the carrier-density ratio is set to a 

function of the excess electron density, as follows: 

 

�
∆O� = 1/
1 + exp	

� − ∆O�/��� ,     (5-6) 

 

where F and G are parameters to control the hole-blocking behavior.  The parameters F and G have 

similar characteristics to the Fermi energy and the temperature in the original Fermi-Dirac distribution 

function.  Therefore, the density of the excess holes is represented as follows: 

 

∆! = ∆O ∙ �
∆O� .        (5-7) 

 

An example of the carrier-density ratio function and the resulting hole density are shown in Figure 5-7 

along with the electron density.  In Figure 5-7 (a), the carrier-density ratio represented by the function 

f(∆n) is very small in low electron-density region, and rapidly approaches 1.0 with the increase of the 

electron density.  This curve represents the expected transient of the hole density that it will be similar 

to the electron density at a high injection-current density.  The resulting hole density behavior along 

with the electron density is shown in Figure 5-7 (b).  The curve plotted in Figure 5-7 (b) indicates that 

the imbalance between the hole density and the electron density is improved with the increase of the 

current density, and the hole density become similar to the electron density under a high injection-

current density. 
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Figure 5-7.  (a) The carrier-density ratio shown as a function of the electron density (b) 
the excess hole concentration obtained from the carrier-density ratio function 

 

Also, the rate equations of the recombination processes shown in Equation 5-1 and 5-2 are simplified 

forms under the assumption that the hole density and the electron density are same.  When the hole 

density and the electron density are not same, the rate equations should be expressed in their original 

forms that include the hole density, as follows: 

 

��~�"e = '∆!
Or + ∆O� ,           (5-8) 

���� = 2�∆!∆O/
∆! + ∆O� ,  and     (5-9) 

� = %∆!∆O .          (5-10) 

 

Based on the “extended ABC model” discussed above, the transition of the quantum-efficiency curve 

under the different electron spill-over and the hole blocking conditions is simulated for a comparison.  

The recombination coefficients A, B, and C were fixed through the calculation process, and only the 

hole-blocking parameters F/G (in Equation 5-6) and the carrier spill-over parameter k/b (in Equation 

5-5) are changed to adjust the hole density and the spill-over current density.  The change of the 

quantum-efficiency curve along with the different spill-over current density is shown in Figure 5-8. 
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Figure 5-8. The transition of the calculated quantum-efficiency curve with the 
increase of the spill-over current density. 

 

When there is no carrier spill-over, the peak quantum efficiency appears at the current density of 16.7 

A/cm2, as shown in Figure 5-8 (a).  If the carrier spill-over is increased by setting larger values of the 

parameters k and b, the position of the peak efficiency shifts toward a lower current density (Figure 5-

8 (b) and (c)).  Also, the quantum-efficiency curves show a more rapid decrease of the efficiency 

under higher carrier spill-over conditions, making the shape of the curve sharper.   The change of the 

quantum-efficiency curves caused by different values for the hole blocking effect is simulated by 

using similar process.  The quantum-efficiency curves calculated by the model with different amount 

of the hole blocking under the same carrier spill-over condition are shown in Figure 5-9. 
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Figure 5-9. The transition of the calculated quantum-efficiency curve with the 
increase of the hole-blocking effect. 

 

In Figure 5-9, the hole-blocking effect is increased (and hole-electron ratio is decreased) by changing 

the hole-density parameter F and G.  The peak efficiency initially appears at 14.3 A/cm2 under a 

relatively low hole-blocking effect (or a high hole-density condition) shifted to the lower current 

density with the increase of the hole-blocking effect (or decrease of the hole density).  Also, it is clear 

that the quantum-efficiency curve with higher hole-blocking effect shows more rapid decrease in the 

efficiency at a high current density.  These results indicate that a LED structure with a smaller spill-

over current density will reach its peak quantum efficiency at higher current density.  It is also 

predicted that a LED with a high hole-blocking effect will show a peak efficiency at a low current 

density with a large droop in the quantum-efficiency curve, even if the spill-over current of the 

structure is well suppressed. 

The spill-over current density and the hole-blocking effect of the blue LEDs with different 

EBLs were analyzed by using the “extended ABC model” described above.  The quantum-efficiency 

curves of the LEDs were numerically fitted through the quantum-efficiency model, and the fitting 

parameters were examined to estimate the spill-over current density and the hole density with respect 
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to the excess electron density.  A numerical fitting result on the LED without an EBL according to the 

proposed model is shown in Figure 5-10. 

 

 

Figure 5-10. A numerical fitting result on the quantum-efficiency curve of the LED 
without an EBL by using the proposed "extended ABC model". 

 

In Figure 5-10, the hollow squares represents the measured efficiency curve of the LED without an 

EBL, and the solid line is a fitting curve calculated by the quantum-efficiency model fed with an 

appropriate parameter sets.  The fitting curve shows a very good agreement with the measured 

efficiency curve in all current density regions.  From the numerical fitting of the efficiency curve, the 

hole-blocking parameters F/G and the spill-over parameters k/b are obtained to calculate and compare 

the amount of the spill-over current density and the ratio between the electron density and the hole 

density.  During the numerical fitting on the LEDs with different EBLs, the recombination coefficients 

of A, B, and C are fixed, because the active region of all LEDs is identical.  The transition of the spill-

over current density and the carrier-density ratio at the injection-current density of 150 A/cm2 and 300 

A/cm2 is plotted in Figure 5-11 along with the EBL thickness.  The quantum-efficiencies of the LEDs 
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with different In0.19Al0.81N EBL thicknesses at the same injection-current density is also shown in 

Figure 5-11 (b) and (d). 

 

 

Figure 5-11. Calculated spill-over current density and hole density at injection-current 
densities of (a) 150 A/cm2 and (c) 300 A/cm2.  The quantum efficiency of each LED 

structure at (b) 150 A/cm2 and (d) 300 A/cm2 are also shown. 

 

The spill-over current density and the hole density show a similar trend in Figure 5-11 (a) and (c):  

they decrease with the increase of the EBL thickness.  However, their transition does not overlap 

completely with each other.  For example, the LED with a 20 nm In0.19Al0.81N EBL has a slightly 

reduced spill-over current density but a much lower hole density (or much higher hole-blocking effect) 

than the LED with a 15 nm EBL at J = 150 A/cm2.  This prediction is consistent with the observation 
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shown in Figure 5-11 (b) that the LED with a 20 nm EBL has lower quantum efficiency than the LED 

with a 15 nm EBL at J = 150 A/cm2.  The observation that the LED with a 5 nm EBL has lower 

quantum efficiency than the LED without an EBL can be similarly explained by the calculation results 

that the LED with a 5 nm In0.19Al0.81N EBL has a slightly lower spill-over current density and a much 

lower hole density than the LED without an EBL.  Moreover, the calculation suggests that the LED 

with a 5 nm EBL has a significantly reduced spill-over current density compared to the LED without 

an EBL at the increased injection-current density of J = 300 A/cm2.  This prediction is supported by 

the similar or higher quantum efficiency of the LED with a 5 nm EBL over the LED without an EBL 

at high current-density region.  Therefore, the spill-over current density and the hole density obtained 

by the model have good agreement with the quantum-efficiency measurement results.  The highest 

efficiency of the LED with a 15 nm In0.19Al0.81N EBL throughout all current-density region, which is 

observed in the curve, can be explained by its low spill-over current and relatively high hole density 

(or relatively low hole-blocking effect). 

The multi-parameter fitting does not necessarily have a unique solution, and multiple sets of 

parameters that provide a good fitting on the quantum-efficiency curve may exist.  Therefore, we 

carefully examined various sets of fitting parameters to ensure if they yield a similar results on the 

spill-over current density and the hole density.  During the fitting process under the fixed A, B, and C 

values, all parameter sets that have a good agreement with the quantum efficiency yield a transition 

similar to the results shown in Figure 5-11 (a) and (c).  Especially, the discrepancy between the spill-

over current density and the hole density (much lower hole density and similar amount of spill-over 

current density) in the LED with a 5 nm EBL and the LED with a 20 nm EBL was predicted in all 

parameter sets.  Although the entire parameter space was not tested, it seems that the quantum-

efficiency measurement results have enough information to obtain the spill-over current density and 

the hole density along with the thickness of the In0.19Al0.81N EBLs. 
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In conclusion, the quantum-efficiency curves of the LEDs with different In0.19Al0.81N EBL 

thicknesses were analyzed by using a numerical model to obtain the electron spill-over and the hole-

blocking factors.  The “extended ABC model” could explain the highest quantum efficiency of the 

LED with a 15 nm In0.19Al0.81N EBL is originated from the high electron-confinement effect and the 

relatively low hole-blocking effect of the 15 nm-thick EBL.  The observation also suggests that the 

hole-blocking effect as well as the electron-confinement effect of the EBL should be considered to 

obtain high light output and efficiency performance from LEDs operated at high current densities. 

 

5.6 Strain-engineered InAlN EBL for High Hole-Injection Efficiency 

From the previous results with the quantum-efficiency model, it is obvious that the hole-

blocking effect of the EBL significantly modifies the emission performance of the LED.  The 

conventional EBL scheme has a strong trade-off effect between the performance improvement by the 

electron-confinement effect and the reduction of the radiative recombination by the hole-blocking 

effect.  In many cases, the performance improvement of the EBL surpasses the impact of the hole 

deficiency caused by the insertion of the EBL.  However, a new EBL structure that provides higher 

hole-injection efficiency while maintaining a high electron-confinement barrier is highly required for a 

further performance improvement of the LED. 

The strain and polarization-field manipulation capability of the InxAl1-xN layer provides a 

solution for an enhanced hole injection.  An In0.19Al0.81N layer is under the in-plane lattice-matching 

condition on a GaN layer with similar in-plane lattice constants of In0.19Al0.81N.  However, if the 

indium composition in an InxAl1-xN layer decreases below 19%, the layer experiences tensile strain, 

and the piezoelectric field will have a same direction to the spontaneous polarization field of the layer.  

On the contrary, if the indium composition of the InxAl1-xN layer increases over lattice-matching 

regime and produces the compressive strain, the piezoelectric field will compensate the spontaneous 

polarization field and reduce the band bending of the InxAl1-xN layer in the electronic band structure.  
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The strain-engineering technique in the InxAl1-xN layer has been utilized in the InAlN/GaN HFET to 

realize an enhancement-mode operation by compensating the spontaneous polarization field and 

reducing the two-dimensional electron gas density [82].  Similarly, an InxAl1-xN EBL with indium 

composition higher than 19% will have a less band bending with a smaller polarization field.  The 

simulated band structures of the blue LEDs with InxAl1-xN EBLs with different indium composition x 

from 0.19 to 0.24 are shown in Figure 5-12. 

 

 

Figure 5-12. Band structure calculations of the blue LEDs with InxAl1-xN EBLs with 
different indium composition x from 0.19 to 0.24. 

 

A higher indium composition will reduce the bandgap of the InxAl1-xN layer, thus the height of both 

the electron-blocking barrier and the hole-blocking barrier is decreased, as shown in Figure 5-12.  

However, because of the compressive strain and the reduced polarization, the effective height of the 

electron barrier at the MQW side remains almost unchanged, while the height of the hole barriers at 
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the p-type layer is greatly reduced with the increase of the indium composition.  The effect of the 

reduced polarization field is more significant when the device is operating under a forward bias 

condition.  The band structure simulations of the blue LED structures with InxAl1-xN EBLs under a 

forward bias of 3V are shown in Figure 5-13. 

 

 

Figure 5-13. Band structure calculations of the blue LEDs with InxAl1-xN EBLs with 
different indium composition x from 0.19 to 0.24 under the forward bias voltage of 3V. 

 

In Figure 5-13, the effective height of the electron-confinement barrier of the EBL is maintained to be 

similar regardless of the indium composition and reduced bandgap of the InxAl1-xN layer under the 

forward bias.  However, the height of the hole barrier decreases rapidly with the increase of the indium 

composition.  Therefore, an In0.24Al0.76N EBL will provide a high electron-confinement effect with a 

higher hole-injection efficiency.  For more detailed analysis on the hole and electron density in the 
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LED structure with a strain-engineered EBL, the excess hole density distribution under a 4V forward 

bias condition is calculated by using SiLENSe software and shown in Figure 5-14. 

 

 

Figure 5-14. Calculated hole concentration of the LEDs with InxAl1-xN EBLs with 
indium composition x from 0.19 to 0.24 under the forward bias voltage of 4V. 

 

 

In the simulation result, a high hole concentration exists at the interface between the GaN:Mg layer 

and the InxAl1-xN EBL because of a “well” in the valence band generated by the band offset between 

the EBL and the GaN:Mg layers.  In the MQW region, most of hole is located at the QW region, while 

the hole concentration at the barrier region is very low.  With the increase of the indium composition 

in the EBL, the hole concentration in the MQW region is observed to be increased.  The electron 

concentration in the MQW region is, however, almost unchanged with the indium composition in the 

EBL.  These results support the effect of the strain-engineering in the InxAl1-xN EBL in enhancing the 

hole-injection efficiency without degrading the electron-confinement effect. 
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5.6 Growth and Fabrication of the Strain-engineered InAlN EBLs 

As shown in Chapter 4, InAlN layers have many similarities with InGaN layers in terms of the 

growth conditions.  The indium composition of the InAlN layer is enhanced by lowering the growth 

temperature, as shown in Figure 4-1.  Therefore, we controlled the growth temperature to obtain 

InxAl1-xN layers with higher indium composition.  For a calibration and confirmation of the indium 

composition in the InxAl1-xN layer, 100 nm-thick InxAl1-xN test layers were grown on GaN/sapphire 

templates under different growth temperatures.  The growth pressure was 300 Torr, and the growth 

temperature was changed from 845 oC down to 800 oC.  The HR-XRD ω-2θ-scan results in (004) 

diffraction on the test samples are shown in Figure 5-15. 

 

 

Figure 5-15. HR-XRD ω-2θ-scan results of the InxAl1-xN test samples in (004) 
diffraction. 
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The peaks from the InxAl1-xN layer grown at lower temperature appear at smaller ω angle, confirming 

that the increase of the vertical lattice constant with higher indium composition.  The calculated 

indium composition of the layer grown at 800 oC is 24%, assuming that the layer is fully strained.  The 

InxAl1-xN layers grown by these conditions were employed in the standard blue LED structures as 

strain-engineered EBLs.  The blue LED samples have layer structure and growth conditions very 

similar to the samples described in Chapter 4.3 and Chapter 5.3. 

According to the previous growth results, an InxAl1-xN layer grown at lower temperature tends 

to show rough surface morphology.  The induced compressive strain of the InxAl1-xN EBLs with 

higher indium composition is also a potential origin of the surface roughening.  The surface images of 

the as-grown blue LEDs with and without strain-engineered InxAl1-xN EBLs observed by AFM are 

shown in Figure 5-16. 
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Figure 5-16. Surface morphology of the blue LEDs (a) without an EBL, (b) with an 
In0.19Al0.81N EBL, (c) with an In0.22Al0.78N EBL, and (d) with an In0.24Al0.76N EBL. 

 

The surfaces of the LEDs without and with EBLs show similar morphology and roughness regardless 

of the indium composition in the InxAl1-xN EBLs.  The relatively thin thickness (20 nm) of the InxAl1-

xN EBLs might suppress the significant roughening of the surface. 

These LED structures were fabricated into 350×350 µm2 devices by using a standard top-

emitting chip process as described in Chapter 4.3.  The fabricated devices have a very similar mesa 

definition and metal contact configurations to the device shown in Figure 4-13. 

 

5.7 Characterization of the LEDs with Strain-engineered InAlN EBLs 

The electroluminescence of the LEDs with strain-engineered InxAl1-xN EBLs was measured 

with a pulse-mode injection current up to 460 mA (J~375 A/cm2) at room temperature without any 
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forced cooling.  The measured integrated EL intensity of the LEDs were plotted in Figure 5-17 along 

with the injection current. 

 

 

Figure 5-17. Integrated EL intensities of the LEDs without an EBL and with InxAl1-xN 
EBLs with different indium composition x from 0.19 to 0.24 plotted along with the 

injection current. 

 

In Figure 5-17, the LED without an EBL shows a significant saturation of the integrated EL intensity 

at the high injection current region.  The LED shows a sub-linear increase of the integrated EL 

intensity even at low current region around I~150 mA, and the light output shows very little increase 

with the increase of the injection current at higher current region of I>350 mA.  This severe efficiency 

droop behavior is very consistent with the previous measurement results on the LEDs without an EBL 

shown in Chapter 4.5 and Chapter 5.4.  The behavior of the LED with an In0.19Al0.81N EBL is also 

similar to the previous observations.  The LED with an In0.19Al0.81N EBL shows a slightly lower light 
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output than the LED without an EBL at I<50 mA, but it shows much steeper increase in the light 

output at the high current region because of its reduced carrier spill-over.  As a result, the LED with an 

In0.19Al0.81N EBL shows around 75% higher light output than the LED without an EBL at the injection 

current of 460 mA.  On the other hand, the LED with an In0.22Al0.78N EBL and the LED with an 

In0.24Al0.76N EBL also show more linear increase of the EL intensity and 30% and 15% higher absolute 

light output than the LED without an EBL at the current of 460 mA, respectively.  However, their 

absolute light output is lower than the LED with a lattice-matching In0.19Al0.81N EBL in all current 

range, in spite of their very linear increase of the EL intensity.  Because the insertion of the strain-

engineered EBL with higher indium composition into the LED structure is expected to improve both 

absolute light output and the quantum efficiency, this measurement result is somehow surprising.  The 

low integrated EL intensity of the LEDs with strain-engineered EBLs will be discussed later. 

To extract the information on the electron-confinement effect and the hole-blocking effect, the 

quantum-efficiency curves of the LEDs are plotted in Fig 5-18. 
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Figure 5-18. Quantum-efficiency curves of the LEDs without an EBL and with InxAl1-

xN EBLs with different indium composition x from 0.19 to 0.24 plotted along with the 
injection current density. 

 

All the curves plotted in Figure 5-18 show a typical quantum-efficiency behavior with an injection 

current density.  The quantum efficiencies of the LEDs increase with the current density increase 

under low current-injection conditions to reach its peak efficiency and decrease under high injection 

conditions.  The LED without an EBL shows very high peak efficiency at a low current density (7.3 

A/cm2) but also shows a rapid decrease of the quantum efficiency at higher current densities suffering 

from a large efficiency droop.  On the other hand, the absolute peak efficiency of the LED with an 

In0.19Al0.81N EBL is lower than the LED without an EBL at a low current density.  However, the peak 

efficiency of the LED with an In0.19Al0.81N EBL appears at higher current density of 23.7 A/cm2.  Also, 

a much smaller efficiency droop of the LED leads to a much higher quantum efficiency at a high 

current density of 375 A/cm2 over the LED without an EBL.  The LEDs with an In0.22Al0.79N EBL and 
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an In0.24Al0.76N EBL show rather low quantum efficiency than the LED without an EBL at lower 

current density, as observed in the comparison of the integrated EL intensity in Figure 5-17.  However, 

their efficiency droop is very small, and their peak efficiency appears at high current densities over 

100 A/cm2.  As a result, the LEDs with an In0.22Al0.79N EBL and an In0.24Al0.76N EBL show more than 

15% higher quantum efficiency compared to the LED without an EBL. 

Because the active region and other layers of the blue LEDs were carefully maintained to be 

same during the growth process, the dramatic change in the quantum-efficiency curves might be 

originated from the different hole-injection efficiencies and electron-blocking effects of the EBLs.  To 

analyze the hole blocking and the electron confinement characteristics of the EBLs, the quantum-

efficiency model described in Chapter 5.5 is employed.  As the material growth conditions and the 

layer structure of the blue LEDs are very similar to the previous LED samples in Chapter 5.4, similar 

values are used for recombination coefficients A, B, and C.  The quantum-efficiency model with 

appropriate parameter sets provides a good fitting on the quantum-efficiency curves of the LEDs, as 

shown in Figure 5-19. 
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Figure 5-19. Numerical fitting results on the quantum-efficiency curves of the LEDs 
(a) without an EBL, (b) with an In0.19Al0.81N EBL, (c) with an In0.22Al0.78N EBL, and 

(d) with an In0.24Al0.76N EBL by using the proposed "extended ABC model". 

 

The spill-over current density and the carrier-density ratio at 150 A/cm2 are calculated from the 

numerical fitting parameters and plotted in Figure 5-20. 
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Figure 5-20. Calculated spill-over current density and hole density of the LEDs 
without an EBL and with strain-engineered InxAl1-xN EBLs at injection-current 

densities of 150 A/cm2. 

 

The calculation results in Figure 5-20 show a very consistent trend with the previous results shown in 

Figure 5-11 in Chapter 5.4.  According to the calculation, the LED without an EBL has a high spill-

over current density and a high excess hole density with the lowest electron-confinement and hole-

blocking effect.  The insertion of the EBL could reduce the high spill-over current density dramatically, 

but it also brings a high hole barrier and a low hole density, as shown in the result of the LED with an 

In0.19Al0.81N EBL.  On the other hand, the LED with an In0.22Al0.78N EBL shows a higher hole density 

than the LED with a lattice-matching In0.19Al0.81N EBL because of narrower bandgap and lower hole-

blocking barrier of the EBL.  The calculation also suggests that the reduced bandgap of an In0.22Al0.78N 

EBL increases the spill-over current, but the amount of the increase in the spill-over current is limited 

to 15% over the LED with an In0.19Al0.81N EBL.  This implies that the increased piezoelectric 

polarization and a reduced band bending can maintain the electron-confinement capability of the EBL, 

even if the bandgap of the EBL is reduced.  The LED with a strain-engineered In0.24Al0.76N EBL also 
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shows a similar trend: the hole density of the LED is higher than the LED with an In0.22Al0.78N EBL, 

but the spill-over current density is well suppressed in spite of the narrower bandgap of the 

In0.24Al0.76N EBL. 

These results are well-matched with the trend of the peak efficiency positions which appear in 

the quantum-efficiency curves of the LEDs.  When other parameters such as the recombination 

coefficients are fixed, the spill-over current density and the carrier-density ratio are two important 

factors in determining the peak position and the shape of the quantum-efficiency curve.  The 

appearance of the peak efficiency at higher current density and smaller efficiency droop in the LEDs 

with In0.22Al0.78N and  In0.24Al0.76N EBLs imply that the enhanced hole injection is more dominant than 

the decline in the electron-blocking effect.  This supports the main idea of the strain-engineered InxAl1-

xN EBL that the electron-confinement effect is maintained under a forward bias by the reduced band 

bending while the hole-blocking barrier is reduced with its low indium composition is actually 

working. 

However, the actual light output of the LEDs with the strain-engineered EBLs is lower than 

the LED with a lattice-matching In0.19Al0.81N EBL.  The EL measurement results are not consistent 

with the analysis results indicating that the LEDs with the strain-engineered EBLs have comparable 

electron-confinement effect and higher hole density.  The proposed quantum-efficiency model works 

on the transition of the measured quantum-efficiency curve along with the current density to extract 

various parameters.  Therefore, the model traces the trend of the relative values of the quantum 

efficiency at each current density, and the absolute value of the quantum efficiency is not considered 

in the analysis.  The prediction of the actual light output by using the recombination-based model is 

very difficult, as the actual performance is determined not only by the ratio between the radiative and 

non-radiative recombination processes, but also by many parameters outside the active region.  For 

example, if the electrical properties of the LEDs are not identical, then the luminous performance of 

the LEDs will be different even if the characteristics of the active region are same.  In our growth 
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conditions, the indium composition of the InxAl1-xN EBLs was increased by reducing the growth 

temperature.  However, a lower growth temperature often degrades the layer quality, and especially, 

the electrical performance of the p-type doped layers via a generation of carbon impurities that 

compensate the active magnesium dopant.  The current-voltage measurement results on the LED 

without an EBL and with InxAl1-xN EBLs are shown in Figure 5-21. 

 

 

Figure 5-21. Current-voltage measurement results of the LEDs without an EBL and 
with InxAl1-xN EBLs with different indium composition x from 0.19 to 0.24. 

 

Unlike the current-voltage measurement results of the previously studied LEDs, the results in Figure 

5-20 shows a large difference between the samples.  Especially, the LEDs with strain-engineered 

InxAl1-xN EBLs show much worse electrical properties.  The LEDs with strain-engineered EBLs show 

8% larger forward voltage at 20 mA than the LED without an EBL and the LED with a lattice-

matching In0.19Al0.81N EBL.  The current flow at higher bias shows even worse result, showing around 
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30% lower current drive at the voltage of 5V.  These results indicate that the different growth 

temperature of the InxAl1-xN EBL caused a severe degradation in the conductivity and the quality of 

the p-type region.  Therefore, a development of the growth condition to control the indium 

composition in the InxAl1-xN layer without degrading the layer quality is necessary to demonstrate the 

performance enhancement of the LED with a strain-engineered InxAl1-xN EBL. 

 

5.8 Enhanced Emission Performance of the LED with a Graded InAlN EBL 

The hole blocking of the EBL originates from a high energy barrier in the valence-band side 

formed by an EBL with a wide bandgap.  Especially, a sharp spike of the valence band at the interface 

between the EBL and the last QW barrier creates an extra height to the hole barrier.  One of the 

methods to remove this valence-band spike is the compositional grading at the interface.  The 

compositional grading technique is a commonly used technique to remove the energy band 

discontinuity in many applications where a high carrier-injection efficiency is important, including 

InGaN/GaN HBTs [83,84] and visible-wavelength laser diodes [85].  For a LED structure with an 

In0.19Al0.81N EBL, the compositional grading from the last barrier toward the EBL will achieve a 

tapered potential profile and mitigate the valence-band discontinuity.  To achieve a tapered potential 

profile for the InxAl1-xN EBLs, using InGaN last QW → InAlN EBL grading seems to be similar in 

terms of one Group III element exchange for the grading (e.g., gallium ramping down, while 

aluminum ramping up for InGaN → InAlN grading).  The compositional grading of InGaN → InAlN 

will be more controllable and technically less challenging than the grading of InGaN → AlGaN in 

case of the AlGaN EBL, since the InGaN → InAlN grading does not require a significant temperature 

ramping as opposed to the InGaN → AlGaN grading. 

Band structure simulation results of an LED structure with an abrupt In0.19Al0.81N EBL and a 

graded In0.19Al0.81N EBL are shown in Figure 5-22.  The alloy composition is graded from the last QW 

toward the In0.19Al0.81N EBL by linearly decreasing the indium composition and increasing the 



 

121 

 

aluminum composition.  The thickness of the EBL is set to 20 nm for both cases, and the thickness of 

the grading region is 10 nm. 

 

 

Figure 5-22. Calculated band structures of the blue LEDs with an abrupt In0.19Al0.81N 
EBL and a graded In0.19Al0.81N EBL at an equilibrium status. 

 

The compositional grading from the last InGaN QW to the In0.19Al0.81N EBL clearly transforms the 

sharp spike of the valence band at the interface between the EBL and the last QW into a rounded shape.  

Therefore, the effective height of the hole barrier is decreased, and the hole injection efficiency is 

expected to be enhanced.  This will lead to a higher hole concentration in the active region.  The hole 

concentration of the LED structures with an abrupt EBL and with a graded EBL under a forward bias 

of 3.5V is calculated and compared in Figure 5-23. 
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Figure 5-23. Calculated hole concentration of the LED with an abrupt In0.19Al0.81N 
EBL and the LED with a graded In0.19Al0.81N EBL under the forward bias voltage of 

3.5V. 

 

The hole concentration at the last QW is predicted to be much higher when a compositionally graded 

EBL is used.  Moreover, the calculation predicts that the LED with a graded EBL will show much 

more uniform distribution of the hole concentration in the QWs compared to the LED structure with 

an abrupt EBL.  A uniform distribution helps increasing the overall probability of the radiative 

recombination in QW, and leads to an improved emission performance of the LED. 

The effect of the graded In0.19Al0.81N EBLs was examined using the standard blue LED 

structures as an example.  LED structures with various EBL schemes, including a LED without an 

EBL, a LED with an In0.19Al0.81N EBL, and a LED with a graded In0.19Al0.81N EBL were grown under 

the same growth conditions.  In addition to these samples, an LED with a graded In0.19Al0.81N EBL 

with thinner EBL thickness was also grown to further reduce the hole-blocking barrier.  The thickness 

320 340 360 380 400
-5

-4

-3

-2

-1

0

1

2

3

 

E
n
e
rg

y
 (
e
V

)

Distance (nm)

10
-1

10
1

10
3

10
5

10
7

10
9

10
11

10
13

10
15

10
17

10
19

C
o
n
c
e
n
tr

a
ti
o
n
 (
c
m

-3
)

Bias 3.5V

Graded InAlN EBL Abrupt InAlN EBLHole concentration

QW1
QW2

QW3
QW4

QW5

EBL

p-GaN



 

123 

 

of the EBLs was maintained to be 20 nm, except for the graded thin EBL whose thickness is 10 nm.  

The thickness of the graded region was set to 10 nm for all graded EBLs.  The grown structures were 

fabricated into devices using a standard top-emitting chip process. 

The electroluminescence measurement results of the LEDs measured on the 350×350 µm2 

devices were shown in Figure 5-24.  The integrated EL intensity of the devices is plotted with the 

injection current up to 420 mA (360 A/cm2). 

 

 

Figure 5-24. Integrated EL intensities of the LEDs without an EBL, with an abrupt 
In0.19Al0.81N EBL, and with graded In0.19Al0.81N EBLs plotted along with the injection 

current density. 

 

 

In Figure 5-24, all LEDs with In0.19Al0.81N EBLs show superior emission performance compared to the 

LED without an EBL.  Especially, the LED with a graded thin In0.19Al0.81N EBL and the LED with a 
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graded In0.19Al0.81N EBL show a more linear increase of the light output than other samples at all 

current densities tested.  As a result, the LED with a graded EBL shows an around 10% improved 

luminous performance over the LED with an abrupt In0.19Al0.81N EBL at the current density of 360 

A/cm2.  The LED with a graded thin EBL also shows higher performance than the LED with an abrupt 

EBL, but its EL intensity is lower than the LED with a graded EBL, and the slope of the light output 

increase is diminishing at high current density.  Considering the thicker total thickness (the grading 

region and the EBL) of the graded EBL, and the previous results that the thicker EBL has a higher 

hole-blocking barrier, the compositional grading at the interface between the last QW and the EBL 

seems to deliver a significant enhancement in the hole-injection performance.  Also, the lower 

performance of the graded thin EBL might originate from a smaller electron-confinement because of 

the thin EBL thickness.  However, a quantitative analysis of the effect of the compositional grading on 

the hole injection and the electron-blocking effect is not performed.  The results of the enhanced 

luminous performance of the LED with a graded EBL are still preliminary, and further studies with a 

numerical analysis method are required with more samples.  Also, various EBL techniques introduced 

in Chapter 5 were examined separately but never combined with each other for further improvement of 

the LED performance.  Their technical properties are not necessarily exclusive each other and 

employing multiple EBL strategies may promote their advantages while minimizing the drawbacks of 

each method.  For example, the strain-engineered InxAl1-xN EBL with higher indium composition can 

be combined with the grading technique for a high electron-confinement effect and a very low hole-

blocking barrier.  Therefore, further research on the effect of the integration of the multiple EBL 

scheme is required. 
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CHAPTER 6 SUMMARY 

 

For past decade, the semiconductor optoelectronic devices such as light-emitting diodes 

(LEDs), laser diodes (LDs), and photodiodes (PDs) have become of a great commercial success with 

their dramatically improved performance.  Among the various candidate material systems for the 

semiconductor optoelectronic devices, the Group III-nitride semiconductor system is the most 

promising for many applications as they have direct- and wide-bandgap nature, high intrinsic carrier 

mobility, and the capability of forming heterostructures.  With an increasing demand on the mass 

production of high-quality materials and device structures, metalorganic chemical vapor phase 

deposition (MOCVD) has been a dominant growth technology for both academic and industrial 

applications because of its versatility and scalability. 

In the growth of the Group III-nitride materials, foreign substrates whose lattice constants and 

thermal expansion coefficients are mismatched to those of the Group III-nitride materials have been 

widely employed because of lack of the native substrates such as free-standing bulk GaN or AlN 

substrates.  However, the use of various foreign and native substrates in the growth process introduces 

several technical challenges that are generally not observed in other Group III-V semiconductors such 

as InP- and GaAs-based materials whose lattice constant, thermal-expansion coefficient, and thermal 

conductivity are similar each other.  Significantly different physical properties of the substrates over 

the epitaxial layers often lead to inconsistent growth results.  Especially, the different thermal 

conductivity and the thickness of the substrates result in the different growing-surface temperature of 

the epitaxial layer.  The growth temperature is a critical factor in determining most process parameters, 

such as the quality, growth rate, and the composition of the layer.  However, predicting the growing-

surface temperature is not very straightforward, because the surface temperature during the layer 

growth depends on numerous parameters, including the thermal conductivity of the substrate and the 
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surface heat loss by the forced convection.  Therefore, it is important to estimate the actual surface 

temperature for the growth of high-quality and well-controlled Group III-nitride materials on different 

substrates with different growth conditions.  We performed a finite element method (FEM) calculation 

on the commonly used substrates of sapphire, SiC, Si, bulk GaN, and bulk AlN substrates under the 

different growth temperatures and different carrier gases. 

According to the calculation results, the sapphire substrate and the bulk AlN substrate with the 

same thickness is expected to exhibit more than 10 oC difference in the growing-surface temperature 

under the typical AlGaN growth temperature of 1150 oC.  It is also predicted that the temperature 

difference will become larger when the thickness difference of the substrates increases.  The surface-

temperature difference at a typical InGaN growth temperature of 780 oC is also calculated to be around 

10 oC, although the difference is reduced when N2 is used as a carrier gas.  These results indicate that 

the use of different substrates can lead to a significant discrepancy in the layer quality and the alloy 

composition.  The influence of the different substrates on the growth results was also experimentally 

confirmed by growing AlN/AlGaN superlattice (SL) structures simultaneously on a bulk AlN substrate 

and an AlN/sapphire template/substrate.  The strain status and the composition of the layers were 

measured by reciprocal space mapping (RSM) to confirm that the layers grown on different substrates 

shows alloy composition difference of 15%. 

The Group III-nitride-based LEDs are one of the most successful and important optoelectronic 

devices.  They are expected to replace conventional light sources in displays and general lighting 

applications in near future.  One of the critical technical challenges for the LEDs to be competitive in 

terms of the performance and manufacturing cost is the efficiency droop.  Several causes were 

suggested as an origin of the efficiency droop, but the carrier spill-over theory is widely accepted by 

the industrial as well as the academic researchers as the most convincing primary origin of the 

efficiency-droop problem.  The insertion of a wide-bandgap AlGaN material between the active region 

and the p-type hole-injection layer as an electron-blocking layer (EBL) is the most common technique 
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to reduce the carrier spill-over phenomena.  However, the electron-confinement by a typical AlGaN 

EBL (with xAl~0.2) is not sufficiently effective to solve the efficiency-droop problem, especially 

because of the additional polarization effects caused by the AlGaN.  Also, an AlGaN EBL may not be 

compatible with all visible LEDs (especially for wavelengths in the green-red region) because of its 

relatively high optimum growth temperature.  Therefore, we proposed InAlN as an alternative high-

quality EBL material for a higher electron-confinement effect with its lower growth temperature, 

wider bandgap, and lattice-matching capability to GaN. 

To confirm the performance improvement by the InAlN EBL, high quality InAlN layers with 

indium composition of 19% were grown by using MOCVD to be employed in the blue LED structures.  

The electroluminescence (EL) measurement results obtained by an on-wafer probing on the 350×350 

µm2 devices showed that the LED with an In0.19Al0.81N EBL exhibits higher absolute EL intensity than 

the LED without an EBL and the LED with a conventional Al0.2Ga0.8N EBL.  In the quantum-

efficiency plot of the LEDs, the LED with an In0.19Al0.81N EBL shows the smallest efficiency droop 

and the highest absolute quantum efficiency at the current density of 360 A/cm2 compared to the LED 

with an Al0.2Ga0.8N EBL and the LED without an EBL.  The performance enhancement of the LED 

with an In0.19Al0.81N EBL over the LED without an EBL at high current density was around 100%.  

This observation indicates that the In0.19Al0.81N EBL provides more effective electron-confinement and 

smaller carrier spill-over current over the conventional Al0.2Ga0.8N EBL. 

However, the In0.19Al0.81N EBL with a wide bandgap is predicted to cause a high hole-

blocking barrier in the valence-band, and the hole-blocking barrier leads to low hole-injection 

efficiency into the active region.  The deficiency of the hole concentration in the active region is 

reported to be another major origin of the efficiency droop.  Therefore, the hole-blocking effect of the 

In0.19Al0.81N EBL is analyzed quantitatively with a quantum-efficiency model.  For an analysis, the 

hole-blocking effect of the In0.19Al0.81N EBL is controlled by changing the thickness of the In0.19Al0.81N 

EBL.  LEDs with In0.19Al0.81N EBLs with different thicknesses were grown and fabricated for a 
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quantum-efficiency comparison.  In the quantum-efficiency curves, the peak efficiency of the LEDs is 

observed to be shifted toward higher current density with the increase of the EBL thickness, except for 

the LED with a 20 nm In0.19Al0.81N EBL.  Also, the LED with a 15 nm In0.19Al0.81N EBL shows higher 

light output than the LED with a 20 nm In0.19Al0.81N EBL.  To explain this observation, the “ABC 

model” is extended to include a carrier spill-over and the limited hole transport effect.  The extended 

model is applied to the quantum-efficiency curves to obtain the amount of the carrier spill-over and the 

carrier-density ratio between the electron density and the hole density.  The model explained that the 

highest measured quantum efficiency of the LED with a 15 nm In0.19Al0.81N EBL was a result of the 

high electron-confinement effect and the relatively low hole-blocking effect of the 15 nm thick EBL.  

The observation also suggests that the hole-blocking effect as well as the electron-confinement effect 

of the EBL should be considered to obtain higher light output and efficiency performance from LEDs 

operated at high current densities. 

To reduce the hole-blocking effect and enhance the hole-injection efficiency of the EBL, a 

strain-engineered InxAl1-xN EBL is proposed.  An InxAl1-xN EBL with higher indium composition 

induces the compressive strain and the piezoelectric field that compensates the spontaneous 

polarization field and reduces the band bending.  As a result, the effective height of the electron-

blocking barrier is maintained to be same while the height of the hole-blocking barrier is decreased 

under a forward bias condition.  The reduced hole-blocking effect of the strain-engineered InxAl1-xN 

EBL is confirmed by measuring the light output of the LEDs with InxAl1-xN EBLs with different 

indium composition from 19% to 24%.  According to the analysis by using the quantum-efficiency 

model, the LEDs with strain-engineered InxAl1-xN EBLs show higher hole density than the LED with 

an In0.19Al0.81N EBL while maintaining a high electron-confinement effect and a low spill-over current 

density.  These analysis results support that the strain-engineering technique is effective in reducing 

the hole-blocking barrier of the InxAl1-xN EBL.  However, the light output of the LEDs with strain-

engineered InxAl1-xN EBLs is observed to be lower than that of the LED with a lattice-matching 
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In0.19Al0.81N EBL.  The current-voltage measurement results on the LEDs imply that the electrical 

performance of the strain-engineered InxAl1-xN EBLs is degraded because of their lower growth 

temperature.  Therefore, an alternative growth condition for the InxAl1-xN EBL with high electrical 

properties is necessary to demonstrate the performance enhancement of the LED with a strain-

engineered InxAl1-xN EBL. 

Another strategy for reducing the hole-blocking barrier and improving the hole-injection 

efficiency is the compositionally graded EBL.  The compositional grading approach has been 

employed in many device applications to remove the sharp bandgap discontinuity at a heterojunction.  

The grading from the last InGaN QW to the In0.19Al0.81N EBL will remove the sharp spike in the 

valence band at the active region - EBL interface, significantly reducing the height of the hole-

blocking barrier.  In the EL measurement results, the LEDs with graded In0.19Al0.81N EBLs show 

higher light output than the LED with an abrupt In0.19Al0.81N EBL in spite of the thicker EBL thickness.  

This result indicates that the compositional grading between the last QW and the In0.19Al0.81N EBL 

delivers a dramatic enhancement in the hole-injection efficiency.  However, the results on the 

enhanced luminous performance of the LED with a graded EBL is still preliminary, and a quantitative 

analysis on the effect of the compositionally graded In0.19Al0.81N EBL on the hole injection and the 

electron-blocking effect should be performed. 

Various EBL techniques introduced in this work can be combined each other for a further 

improvement in the LED performance.  Employment of multiple EBL strategies may promote their 

advantages while minimizing the drawbacks of each technique.  For example, the strain-engineered 

InxAl1-xN EBL with higher indium composition can be combined with the compositional grading 

technique for a high electron-confinement effect and a very low hole-blocking barrier.  Therefore, 

further researches on the effect of the integration of the multiple EBL scheme is required. 
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