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BRIEF OUTLINE OF RESEARCH FINDINGS

The purpose of the investigation being conducted is to develop a
technique to map the distribution of soil and rock types below the earth's
surface by means of measurements made only over the surface. The measuic-
ments required are of the surface electrical potential distribution in the
presence of local seismic shock waves propagating through the volume of
interest and generated at the surface explosively.

In carrying out this investigation a thorough survey has been made of
available data on the electrical properties of rocks and soils as a function
of type and physical conditions. The electrical properties of interest are
the conductivity and rate of change of conductivity with pressure. A
moderately wide range of data are available although most of it has been
obtained under static pressure conditions. In addition a tentative simplified
model for shock wave propagation in the earth has been established for purposes
of implementing the first surface potential calculations.

The required calculations will be based on the work ofVStevenson,* who
not only formulates the problem of calculating the surface potential field as
a function of a known three-dimensional conductivity distribution beneath the
surface but also prescribes the inversion of the calculation in which an
unknown conductivity distribution can be calculated from a large number of
surface potentials by a method of successive approximations. Professor
Stevenson's formulation of the direct problem is being programmed for numerical
solution. This program will be used with a wide varilety of assumed volume
conductivity distributions to investigate the detectability of underground
features and distributions of conductivity. There are four distinet steps in
" the process of this theoretical phase of investigation which can be identified:

(1) Direct calculation of surface potentials from volume
conductivity distributions.

(2) Inversion of 1.

(3) Direct perturbation of surface potentials resultive from
seismic perturbation of conductivities.

(k) Inversion of 3.

It is planned that the results of 1 and 2 will be incorporated in a manu~
spript to be submitted for publication in September 1969. It is also anticipated -
that a substantial part of the required perturbation predictions of 3 and 4 will
be completed to serve as a guide for selecting parameters of experiments to be

designed and performed in future work.

¥
Stevenson, A. F., "On the Theoretical Determination of Earth Resistance from
Surface Potential Measurements," Physics, Vol. 5 (April, 1934).
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ERIEF OUTLINE OF RESEARCH FINDINGS

'The_purpose of the investigétion being conducteg is to develop a remote
subsurface survey techﬁique to map the distribution of soil and rock types
below the earth's surface by means of measurements made only over the surface.
The measureménts required are of the surface electrical potentiél distributidn
in the presence df local seismic shock waves propagating throughout the volume
of interest and generated at the surface explosively.

| The technique being developed is a direct method of interpreting earth-
resistivity data by numerical manipulation of field data. The devélopment
has been based on the equation of elect;ical_conduction-derived by Stevensonl

3

and as extended in two doctorate studies by Vozoff2 and Ness” and in additional
work by Bukhari and Lennoxh. A linear approximation is developed for the equation
of conduction in a medium whereAthe resistivity is an arbitrary function of x, Yy,
and z. This is applied by assuming the earth to be subdivided into small, homo-
geneous blocks of arbitrary resistivity. Under this approximation, the surface
electrical potential is Just the sum of the effects of the Individual blocks.
The equations are lineér, and thé‘surface‘electrical potential data can be
inverted to yield block resistivifies.A During the reporting period software
has been déveloped for exploring the use of the above theory and.determining its
limitations. A @escription of the caléulations used in the software follows.

.A general physical situwation to which Sﬁevenson's potential equation

applies is shown in Figure 1. The equation for the potential érs at a polnt

Figure 1.

r on the surface of a half-earth due to a source of current IS located on the
surface at point s, for the case of the half-earth of uniform conductivity O '

except for the volume 7 is:
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where @P and Up are the poﬁential and conductivity, respectively, at a point
p in the volume .7, and é;s and @;s are the primary and secondary potential,
respectively. .

.The derivation of (1) requires the same conductivity at points r and s
vhich can be satisfied by assuming a thin surface layer of uniform conduc-
tivity. The primary potential 1s the potential for a uniform half-space,
while the secondary potential is due to the existence of the charge distri-
butions whenever current passes through the region T of nonuniform conduc-
tivity. .

Vozoff points out that in a finite number of terms there is no exact

solution to (1) and approximates oy under the integral sign by
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Three additional assumptions-are required to-arrive at a practical solution:
(1) The nomuniform subsuiface region is replaced by a model subsurface array
of small homogeneous blocks of given geometries but unknown conductiviﬁies
-embedded in a homogeneous medium. The blocks are of rectangular shape with
surfaces parallel to the planes defined by the_coordinate axes. Figﬁre 2
shows a typical block.

-(2) There is no interaction between blocks so that the effect of each block
at any.point of measurement on the surface combines linearly with the effect

of other blocks.

(3) There exists on the surface of the earth a thin layer of conductivity.
' / J
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For a single block of conductivity Oy we have now

= I_Aln oy n - ﬁsp :
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where Aln o, = 1n(o, /c ) = ln(po/p ), © represents the outward normdl of each
surface of the block 1n turn, and p denotes resistivity. The rlght -hand side of
(2) can be replaced by the sum of six similar ‘expressions for the six surfaces of
& block, each expression consisting of a resisfivity—contrast factor and a
geometric factor. ‘

Vozoff points out the behavior of'the resistivity-contrast factor
ln(p /p } is contrary to experience and suggests, based on l&boratory data
that it be replaced by f expressed as
Po ™ Py

£, = 3.6 ——pt- |
3 o B (3)
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Ness suggested averaging a similar expression to (2) with the source and
receiver positions interchanged to obtain source-receiver symmetry in the
geometric factors. This results in '

Rip n ﬁsp + Rip n - Rrp ST -
Beri T Ty II 3 55 . ' ()
R R
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where 8ori is the modified geometric factor due to the ith block for the

source at s and receiver at r.

For a subsurface made up of n blocks with resistivities Py 3 Por =ty Pps
embedded in a half-space of resistivity Py We have
n
o Ispo ‘ :
s T Y T a8 Ty . (5)

i=1

and we will have one equation for each source-receiver configuration.
It is convenient to talk ebout the solution (5) in matrix notatlon
Con31der that m measurements have been taken on the surface of the earth yielding

m equations of the form (5). In matrix notation then

GF = ¥ ' | o (6)
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where G is anm x n matrix of the geometric factors Bopi? F is a column
vector of n unknown resistivity-contrast factors and Y is a column vector
of m potentials given by

. o

Vo = 75
t Ispo

(8 - 3,) ()

- where each value of t (= 1, 2, ..., m) represents a source-receiver configuration.
The inverse problem or solution of (6) by least squares yields

F = HY
where H = (éT'é)_l @T . _

Once the geometry of the blocks 1s known and the source receiver-
configuration of the electfodes is known, then the eleménts of the G and B
matrices can be calculated and postmultiplication of H by the surface _
measurements ¥ yields the solution vector F and the unknown block resistivities.

Using the sbove described calculations, matrix coefficients have been
obtained for three usefﬁl model géometries and investigation begﬁn on the
closure properties of these models. The numerical errors in the calculations
are satisféctory when the deepest depth of the blocks is approximately equal
to the lérgest spaéing'of the surface electrodes, and when the resistivities
of the blocks are less than 25 times that of the background resistivity.

Surface electrode array geometries are being studied for both static
(resistivity mapping) and dynamic (electroseismic) measurements. The static
measurements require sampiing the potential at a minimum of n points on the
surface for characterization of n subsurface blocks, whereas the electroseismic
measurements can be made with far fewer electrodes because of the time-modulation
of the potentials. For example, for 128 subsurface blécks, one attractive static
surface array samples the potential at 18 points and yields 153 source-receiver
pairs. The“dynamic measurements for this case require only 6 recording charnels.

Preliminary calculations indicate that sﬁrface potential changes cauéed byA
seismic pressure become marginally small at a depth of zbout half that useful
for static measurements in the models considered to date. Further work is

planned to optimize surface array coordinates.



Future work planned includes éxploring the relationship of magnitude

of signals to typical instrumentation characteristics, both static and

‘dynamic (e.g., noise levels, accuracy, bandwidth) so that the best choice of

instrumentation can be made. Preliminary estimates of bandwidth fequirements

for instrumentation make laboratory experiments previously proposed inadvisable.

However, preliminary estimates of signai characteristics indicated that full-:

scale field experiments are advisable to verify and evaluate the technique.

Therefore, work will begiﬁ on the design of an experiment to be performed

"in an area which has already been surveyed by logging.
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BRIEF QUTLINE OF RESEARCH FINDINGS

The purpose of the investigation being conducted is to develop a
remote subsurface survey technique to map the distribution of soil and
rock types below the earth's surface by means of measurements made only
over the surface. The measurements required are of the surface electrical
potential distribution in the presence of local seismic shock waves propa-
gating throughout the volume of interest and generated at the surface
explosively,

The formalism outlined in the Semiannual Report dated 30 September 1969
has been used to compute the matrices required to calculate the resistivities
of a set of subsurface volumes from potential measurements made at a number
of designated surfac e points. Matrices for two specific choices of
geometry have been studied, one with 128 subsurface blocks and 18 surface
points, the other with 16 blocks and 8 surface electrodes. These cases
were used to establish the influence of procedure and choice of parameters
on the following factors: ) ~

(1) accuracy of numerical integration to obtain resistivity-
to-surface potential coefficients

(2) accuracy of obtaining the inverse matrix <

(3) effect of random instrument noise on accuracy of estlmated
resistivities as a function of depth

(4) ratio of perturbation of resistivities to corresponding
perturbation of surface potential signals

In most of the above the less complex array of the two was used in order to
minimize the cost.

In addition to the above, estimates have been made of the magnitudes of
the sources of noise which seem likely, and a comparison of these levels made
with the signals estimated from the perturbation study. From this comparison
estimates are made of the maximum useful depth that seismic-resistivity-
perturbation signals are likely to be observable. A brief summary of these
results follows.

It has been established that numerical integration of the subsurface
block surface integrals relating the resistivity of a block to a surface
potentiai can be performed with accuracy better than 1% using a rectangular
integration rule with each edge of a block being incremented in 10 parts,
provided the radial distance between the surface point and the nearest
point of the block is at least five increment units. The numerical precision
{number of significant digits of the machine) required is about 2 greater

than the desired accuracy of the result.



The accuracy of the elements of the matrix inverse (H), which is used
to obtain block resistivities from potential measurements, is such that
about 5% error is estimating conductivities a factor of 105 away from the
assumed background is incurred when the inverse matrix is calculated with
a 9-digit machine. Thus there is a loss of about 4 digits in the matrix-
inverse calculation for the smaller of the two arrays alone (16 blocks,

8 potential points). For the larger array the loss would be about six digits,
and the use of double precision is indicated for most machines for this step.
The calculation of block resistivities from surface potentials using

the H (inverse) matrix can be done realistically in single precision on most
analytic machines, including the newer desk-calculator computer types, once

the elements of the H matrix have been calculated. This conclusion about the
needs for precision and the one of the paragraph above are in contradiction

to previous claims [1], and the identification and correction of the diffi-
culty is a significant conﬁ;ibution to the feasibility of electrical survey
technology. The background and essential details of this étep in the process
are being described in a paper which is in its final stages of preparation.

Its title is "Numerical Resistivity Analysis," by C. H. Bonhaﬁ and A. B, Abeling.

The properties of the 16-block array were used to estimate the maximum
useful depth for seismic resistivity perturbation. The results for one
representative case of this system study are summarized in Table I. The depths
attainable appear to be limited by the noise background created by spon-
taneous fluctuations of resistivity. Little seems to be known about this
aspect of the problem and the estimates shown are not based on documentation
at this time.

The depths resulting for the hypothetical case chosen here are discour-
agingly small and suggest that some care in refining experiment parameters is
warranted before elaborate field experiments are attempted., Some comment is
appropriate on the entries of Table I, The pressure law is inevitably limited
to z_ , but with the addition of loss in some subsurface materials. Thus the
figure shown is perhaps somewhat optimistic. The value of the seismic impulse
is difficult to increase with the use of more explosive because of nonlinear
dissipative effects near the charge [7], so no help can be expected from brute
force., The estimate of electroseismic coefficient is probably on the low side,
so in some materials under certain moisture conditions a quite large increase

in this figure may be seen.



Instrument noise is not considered to be a problem, but rather external
sources are the important factor. Of the two external spontaneous fluctuations,
the e,m,f, source can probably be made weaker than the resistivity fluctuations,
so that the- latter deserves immediate attention. Another effect not yet
mentioned is the frequency-dependent damping caused by the conductive earth,
which may produce a noticeable loss of the transient signal of interest,
especially in highly conductive surface layer. In average cases this effect is
tolerable for the depths of the order of 100 meters.

The goal described in the last progress report of having a completed
experiment design has not been met, because the completion of the validation of
the computer programs involved was more tedious than anticipated. At this point
it seems marginal to expect a complete and workable experiment design for fielding
within the current year. The crucial factor of spontaneous resistivity fluctuation
noise will be investigated further to establish more clearly its bounds and its
effect on the expected performance. Also, additional specific geologic situations
will be examined to test the utility of perturbation survey. Complete docu-

mentation of the remaining work will be made by a technical report in which the

software which represents a significant contribution can be appropriately

published and by a paper describing the research essentials and referencing the

*

rather important and tedious detailed results,

Table I. RESISTIVITY PERTURBATION ANALYSIS
Variable or Function Value Source
Seismic pressure, p(z) p(z) = 0.1 kb [2]
X z
z = depth in meters
Electroseismic coeff. J J>10 (kb)~1 [3]
- 1dR
R dp
s e s s _ .03 .
Resistivity-potential 8 = T 3 This study
coupling, (z/AX)
Rdp _
¢ dR B¢
AX = max., surface
array diameter
-4 /AX *nax ; Assumed, to limit
max — = 1.0 .
AX error due to size of

Noise sources:

.01% of signal (A,B)

8¢ and area of array

12-bit quantization

Instrument 1.5uv Thermal noise
Atmospheric .SMv/m/Hz% [4]
Conductivity ~.1% (A) (5]
Fluctuation Noise .01% (B) (6]
Result: AX = (Case A) 30m
(Case B) 100 m
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I ;'_ BRIEF OUTLINE OF RESEARCH FINDINGS

of

The objective of the investigation being conducted is to field test the
refined direct resistivity method developed previously and to evaluate the
usefulness of seismically 1nduced variations in resistivity. During the
report perlod emphasis was placed on developlng 1nstrumentat10n appropriate
for the field operation.

Components completed to date include the follow1ng

. Cables, electrodes, and switching circuits for direct
simultaneous recording of D.C., or A.C, potentials to be °
used respectively for determining re515t1v1ty and seismic
perturbations of reS1st1v1ty.

- A.C, coupling and filtering preamplification circuit
for seismic recording system to allow up to one full day's
-monitoring of electrical noise and correlatlons with seismic

or other factors.

Weather and instrument noise problems in the high 1mpedance preampli~
fication circuit have prevented field testing the above to date, The multi-
channel recorder modification is in the design stage pending further_testing
of the preamplification circuit. |

. In addition to possibly generating a change in_resistivity, a seismic
wave within the earth may generate an electrical potential., This electrical
potential manifests itself at the surfaée prior to the arrival of the seismic
wavesAregardless of whether or mot a D.C. current is introduced into the
ground. -Martner and Sparks (1959) designate this potential as the '"electro-
seismic" effect and describe measurements relating it to the seismie distur-.
bance at the bottom of the weathering layer. The electrital potential variation
caused by the variation of earth resistivity by elastic deformation they .
designate as the "seismic-electric" effect, This ihvestigation will be directed
toward eﬁaluéting the latter. However, field methods will be deéiéned to test
for the existence of the former and mitigate its effect on the analysis of the
changes in resistivity which are seismiéally induced. _ »

An examination of some of the assumptions involved in the theory’was

carried out during the period covered by this report. The analysis revealed
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These boundary conditions are equivalent to (1) no current leaves the
ground; (2) electrical charges are conserved at the surface; and (3) the

potnetial is continuous at the surface. 1In addition, in the close vicinity

of G, the potential will approach the solution for a medium of uniform
resistivity, namely, ‘ ' v »
R | vl = 5= - SR (&) ,
RS R o T e . o oo s

where

"I = current -

TR ~ distance CP-
. e, e

If V satisfies these boundarywconditions and if the boundary conditions
are sufficient, V will be unique, To find a solution at the surface Z = 0,
divide the potential V1 into the potential due to the source alone, V; , and

the_secondary potential, Vi, such that:

v1 = U+ Y ~ , . ()

-

s . . '
If V, is written in the form
. F R

s e o : R -
vee =[] SR g S - (6)
1 S R
| Qp - - '
then Vi is a solution of Laplace's equafion everywhere except at Q and is

therefore a suitable function to usé. Vi will have the form specified in

condition (&4).

In order to obtain a valid solution in the half-space, the boundary

condition (1) at Z = O_is.satisfied by using the concept of images and exténding

s
1

3

the analysis over all space. The resulting expression for V, is

vV, (P) = (@ as + [[. QL 45 = . r o (@) + =—\ds ()
1 ”S Rap HS Rap _ f S Rep RQp '



| where R, 5, and Q are obtained by replacing Z by -2 in R, S, and Q
respectively, and c(Q) = o (Q) by symmetry about Z = 0, The form of the
equation suggests that o (Q) might be interpreted as a surface charge density
function.

' According to Gauss' law, the electric field intensity at a surface layer

of charges suffers a discontinuity of the type -

n - (E1 - Ez) = 4 10 | - f S ?"‘ji' (8)
~ where dlrepreseﬂts thé charge density on S.

Since E = - UV, Gauss' law can also be written

‘3n am | "™ T

S S

- Therefore the continuity condition (2) reQuires that

sy o
S| = s S ¢ (N

s Pa = Py

—

.3

or by substituting into this the expression for Vl’ it is found that o (Q)

must satisfy

4 py Iy 5 1 > [1 1\

c@ = 5+— &= | + [[io@ &= + — ] ds (11)
pz-p]._» 2n | dn ROQ ; S an \RQP | RQP

o ' (P on S)

The surface integral, however, is singular at Q = P. Therefore, to remove

the singularity, write the integral as

3 11 1
IIS:U(Q)'a—n:\EE;+ .ﬁ;)—P-

where S§' excludes the singular point at Q = P.

ds' - o a2

&



Therefore, when 0(Q) satisfies

Ip ‘ [ . - . .
2 193 1 d 1 1 .
T" - —— | . O +J‘.r O = |+ z— ds - (13)
2t [3dn RCQ s' 3nm R.QP RQP o
(P on s")
S - T
where A = —lf;——g
ety
The solution tb the potential problem ié ;j_"  ' . ié ,F
- Ip . S
- 1 1 1 : o
v, = + [Tols==— + =] as | : s
1 ZHRPC S RQP QP R .

P on free surface

The remaining difficulties are associated with the solution of the integral

equation for ¢(Q). Once this is found the solution for V. follows directly

1
but this process is possible only for a few simple geometrics,
I1f the integral in the equation for ¢(Q) can be assumed significantly

less than the first term, then an approximation to V1 can be given as.

. Ip, - AIp 7 f o .
1 1 1 - 1 ,
e 4m T8 @/ | PQ QP .
or . ' _ _'
Ip Alp . .
1 1 Q o
Vi *ar_ * 7 W 3 ds : (16)
“CP 2m » . »

R._R

cQ QP
at the surface., This assumption is equivalent to neglecting the effects of
curvature on surface charge distributions or the interaction of neighboring
charge distributions. '

A direct comparison with the results derlved by Vozoff (1960) show that

the resistivity contrast factor he assumed to be
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14 April 1972 7/

Dr. Finn Bronner

Army Research Office-Durham
Box CM, College Station
Durham, North Carolina 27706

Subject: Contract DA-AR0-D-31-124-71-G25 "Electroseismic Soil and Rock
Mapping" :

Dear Dr. Bronner:

This letter reports activities under the subject contract for the
period 1 October 1971 through 31 March 1972 and the status of the work
at the end of that period. A review of the data obtained indicates that
adequate experimental data are on hand to allow good characterization of
the electroseismic technique being explored. However, desired and planned
analysis of the data is not complete and documentation of the instrumen-
tation and results remains to be done.

In Table I the history of experiments is summarized; the data were
obtained jointly by Dr. L. T. Long and W. Rivers. Most of the signifi-
cant good quality data were obtained in the same location, where the
strata are described approximately by 3' clay-sand mixture over 10" stiff
clay sand over 10' clean loose sand over 2+’ kaolin over sand.

The more interesting of the results are illustrated by the attached
reproduction of seismic and electric signals, which indicate the relative
response of the electric signal to the seismic components.

Only a few of the records have been digitized and processed to date.
One set has been Fourier transformed, and the vertical seismic and electric
spectra compared. The electric spectra contain more high frequency energy,
and the seismic more low frequency energy. The relationship suggests that
the electric signal may be proportional to the derivative of the vertical
seismic velocity. Comparison of the electric spectra with spectra of
other seismic components has not been made. In reference to the attached
signatures, 1t is not yet known if the apparent 90 degree phase relation-
ship of certain parts of the electric and seismic waves is real or an
artifact of the instrumentation. Careful gain and phase measurements of
the amplifiers is one of the important remaining items to be done in
completion of the current program.



These tasks remain to be done to complete:the planned program and are
considered essential to validate the results to be reported.

1. Measurements in detail of the relative gain and phase transfer
functions of the seismic and electric amplifiers.

2. Documentation of the instrumentation used.
3. Digitization of the remaining records.

4. Analysis of the records appropriate to the parametric study being
made.

5. Formal preparation of a report of the results of the experiments.

It is planned and believed practical to complete these tasks in the
next quarter.

The funds remaining under the contract as of 1 April 1972 were in the
amount of $12.87. No increase of funding is requested for the completion
of the work.

If you have any questions concerning the above results please call
me or Dr. Tim Long. The telephone numbers are (404) 894-3501 or 894-3631
respectively.

Yours very truly,

Wayne Rivers :
Principal Research Physicist

Approved:

J. W. Dees, Chief
Special Techniques Division
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21
26

13
14

28

28

Date

Jun
Jun
Jul

Aug

Sep

Sep

Dec

Jan

Feb

71
71
71

71

71

71

71

72

72

Location
Seismic Vault
Allatoona
Allatoona
Allatoona

Allatoona

Englehard Clay Mine

Englehard Clay Mine
GIT campus
Englehard Clay Mine

Englehard Clay Mine

Englehard Clay Mine

TABLE I.

Actlvity

Attempted correlation with natural
seismic activity.

Electrical survey;
Rock drops;
Tests of instrumentation

Electrical survey.
lst explosive shot - 250'

3 shots - 250' - 300' - 350'

Demonstration

5 shots -~ 250'
Array size variation

6 shots -~ 250'
Correlation with seismic components

6 shots - 250'

Variation of azimuth angle
Comparison of topographical effect
Variation of shot depth (5',20',40')

Summary of Electroseismic Experiments

Results

Excessive power line interference.
Indicated need for amplifier redesign.

Weak response in clay/loose rock
Strong response to seismic energy
in water~saturated sandy mud.

Excessive atmospheric noise,
Indicated need for noise cancellation.

Test of noise cancellation scheme.
Very weak response to rock drops.

Electroseismic response maximum for
electrode spacing near 30', less for
larger and smaller spacings.

Strong coupling to Rayleigh  wave
weak coupling to P and shear.

Coupling stronger off end of array,
Substantial reduction when shelf be-
tween shot and array. Deeper shot
below water table strongly coupled.
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The difficulties encountered in applying these equations to physical
examples are primarily associated with the solution of the integral
equation for 0(Q). Once this is found the solution for V1 follows
directly,but a closed solution is possible only for a few simple
geometries.

If the integral in the equation for 0(Q) can be assumed to be sign-

ificantly less than the first term, then an approximation to V., can

1
be given as

Ip Alp
v, - zﬂRl + ;[@(%Rg §1_+__1_ ds + . . . (15)
cp 4 cqQ Pq  Rop
or
1 ZWRCP 2 Tr2 3

RooRap

at the surface. This assumption is equivalent to neglecting the
effects of curvature on surface charge distributions, or neglecting
the interaction of neighboring charge distributions.

A direct comparison with the results derived by Vozoff (1960)

shows that the resistivity contrast factor he assumed to be

3.6(py = py)/(py + 20,) (17)

can be derived and is

2(01 - 02)/(0l +0,) (18)

Matrix Solution

For use in numerical calculation, the right hand side of equation
(16) can be replaced by the sum of six similar integrals over the six

surfaces of each block. The expression for V will then consist of a

-8-












was unstable and no reliable answers were obtained. The singularity
was probably caused by variations in surface resistivity.

Discussion and Recommendations

In the common Wenner or Schlumberger analysis of the depth
variation of resistivity using surface potentials only three to five
depth or resistivity parameters can be determined in practice even
with the best of data. The inherent nature of the potential data is
to lose resolution with increasing depth. In addition, resistivity
is perhaps the most wildely varying and irregular of the physical con-
stants. Consequently no numerical inversion scheme can be entirely
successful unless it can utilize the error distribution in the data
to compute the maximum allowable number of independent components
(with confidence limits) in the model.

The indirect approach to analysis of resistivity data after Wenner
(1915) or Schlumberger (1920) in which observed data are compared to
pre—computed curves based on stratified resistivity distribution is
the most common applied solution technique, perhaps because it allows
flexibility in ﬁhe interpretation of questionable data and in the
choice of the model parameters. Pekeris (1940) improved on the
indirect approach by systemizing the analysis and developing an itera-
tive technique for the direct computation of layer parameters success-
ively with increased depth. Vozoff (1958) further automated the
numerical resistivity analysis for depth-varying resistivities by lin-
earizingthe equations for flat layers and utilizing a successive approxi-
mation to search for the '"best' fitting model for the data. Vozoff
(1958) was also able to compute confidence levels for the solutions.

Madden (1971) pointed out the inadequacies of one dimensional
-12-






PART II, FIELD MEASUREMENTS OF THE

ELECTROSEISMIC RESPONSE

Introduction

The most highly variable of all the physical properties of
minerals, rocks, and soils is their ability to conduct electricity.
In determining the conductivity of most rocks and scils, the effect of
chemical composition of the minerals is of small importance in relation to
the effects of other factors such as porosity, moisture content, and frac-
turing. In addition to simple conductivity, more complicated electrical
effects which encompass a very wide range of electrochemical phenomena are
observed. These include potentials at interfaces between minerals or elec-
trolytes, potentials caused by gradients in the concentration of certain

solutes, and potentials caused by motion of fluid in permeable

materials. By far the most common determining factor in the electrical
properties of all rocks and sediments in place is the conductivity of the
electrolyte which permeates the rock. Relations between resistivity

and the porosity, electrolyte saturation, and other observable attri-
butes of sediments have been studied extensively because of wide spread
use of electrical well logging methods in the oil industry.

The more specific relation between resistivity and stress which is
the object of this research, however, is complicated by the many pos-
sible effects of porosity and electrolyte properties. In general,
laboratory studies (Brace and Orange, 1968a, 1968b, Wyble, 1953, Glan-
ville 1959) show the greatest variation in resistivity with stress

change at low pressures and near the fracture stress. These two stress

regions are the most susceptible to significant pressure variation

~14-



relations with the electrolyte saturation and pore pressure. In some
cases a very significant variation in resistivity with stress occurs
in those regions.

In any measurement of the stress dependencies of resistivity in
thé field, the causative factors can not easily be separated. The net
effect or change in apparent resistivity induced by seismic excitation
for purposes of this project has been designated the "Electroseismic
response". Hopefully this will avoid confusion with definitions which
describe specific generic effects such as pilezoelectric, electroseismic
"J" ete.

For large underground nuclear tests a low-frequency electrical
transient has been observed at the instant of detonation (Zablocki,
1966). 1In the vicinity of the shot chamber the transients were so
large that quantitative measurement of resistivity changes would have
been extremely difficult. The source of potential, however, was pre-
dominantly magnetohydrodynamic in origin and similar effects have not
been observed with the small chemical explosives used in this study.
The generation of an electrical signal was observed {Martner and Sparks,
1959) at the instant a seismic wave intersected the base of the
weathered layer. However, there exists ambiguity as to whether the
electric signal was derived from a change in resistivity near the
boundary and subsequent disturbance of existing potentials, or from

some boundary-dependent mechanism which generates new potentials.
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The solution of equation (6) for resistivity perturbations could
be achieved by at least two techniques. The first technique would be
to record AV(t) at a set of electrode separations in a manner similar
to a Wenner depth sounding. The derivatives will be a function of the
electrode separation, and, if the separations are chosen carefully, they
will generate a set of linearly independent or over-determined equa-
tions from which the resistivity perturbations can be obtained. The
resistivity perturbations can then be directly compared to the
amplitudes of seismic excitation in their respective layers to obtain
a proportionality coefficient for the electroseismic response. In the
second technique ,the resistivity perturbations are assumed proportional
to the amplitude of the seismic excitation. A single electrode separa-
tion is used. The independent relations are derived from the variation
in the resistivity layers of the seismic excitation as a function of
frequency. Rayleigh waves, for example, could be used since their
depth of penetration is proportional to wave length. The solution
would give the proportionality coefficient for the electroseismic
response directly.

Instrumentation

Geometry of Electrodes: A Wenner array was used for the measure-

ment of the electroseismic response. The geometry used is shown in
Figure 1. The voltage was monitored across electrodes B and C. A
high- impedance ac-coupled circuit was used to prevent perturbation of
the ground potentials and pass only frequencies above one Hertz. A
constant voltage was maintained between electrodes E and F with a
voltage regulator with response significantly higher than 60

Hertz. The electrodes D, D' and A were placed so that their axes

-18-
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Figure 2.

Recording system developed for simultaneous recording of electrical and seismic signals.
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Schematic of pre-amplifier for measurement of electrical component of electroseismic response.
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with the distinct SH wave on the transverse seismogram. A significant
electroseismic signal was associated with the initial P-phases but the
correlation was not distinct, perhaps because of the higher frequencies
and short wavelengths involved. In general, the electroseismic signal
correlated most strongly with seismic signals with compressional com-
ponents and did not respond strongly to rotational or shear stress.

Effects of Array Size The average depth of the material sampled

is roughly proportional to the electrode spacing of a Wenner array. Con-
sequently, the voltage differences observed with close electrode spacings
are influenced most strongly by shallow materials, and the voltage diff-
erences observed with wide electrode spacings are influenced most
strongly by the deeper materials. This principle provides the basis for
thé interpretation of the Wenner depth sounding used to obtain the resis-
tivity structure for the Gordon, Georgia test site. Similarly, pertur-
bations in the resistivit§ of the material at a particular depth would

be expected to influence the voltages observed with close and wide elec-
trode spacings differently. With sufficient independent measurements

(see equation (6) and discussion) the resistivity perturbations as a
function of time in éach layer could be obtained. The effect of changing
the resistivity in the second and third layer in the model for the test
site is shown in Figure 10. The voltage differences needed to compute

the proportionality constants in equation (6) are proportional to the
change in apparent resistivity produced by a change in the resistivity

of the layer and inversely proportional to the electrode spacing. Changes
in the resistivity of the third layer in the model has significant in- -

fluence only for electrode separations greater than about 30 feet. Whereas

changes in the resistivity of the second layer have significant influence

-35-
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length of 50 ft.

Using the observed amplitudes fot the electroseismic response
in the leading portion of the Rayleigh wave ( Figure 11) and changes
in the apparent resistivity produced by changes in the resistivity
in the second and third layer (Figure 10) at electrode separations of
15, 30, and 60 feet,equation 6 was solved by the least squares method.
The results indicate a 0.06% and 0.28% change in the resistivity of
the second and third layer respectively.

Effects of Azimuth The Wenner array was oriented perpendicular

to the direction of propagation in most shots in order to sample
similar particle motion along the entire line of electrodes. Since
most shots were at a distance of 250 feet, the 90-foot Wenner spread
would deviate at most 6 feet from the wave front. However, typical
wavelengths were on the order of 50 ft for most seismic waves which
produced an electroseismic response. To investigate the effects of
azimuth three explosions were set off at 00, 45° and 90° to the line

of the electrodes (Figure 12). Unfortunately, the record for 90°
could not be compared to previous data since half of the test site,
including one of the electrode positions, was stripped to a depth
greater than 20 feet just prior to the field test. The resulting
vertical surface severely altered the character of the seismic and
electroseismic signals. The comparison of the arrivals at different
azimuths (Figure 13) shows that electroseismic response was approximately
twice as great for 0° than for 90°% and that at 45° the signal was
intermediate in amplitude. At all three azimuths the signal correlates
with the Rayleigh phase. However, at 0° and 45° the amplitudes are

greater than would be predicted by the seismic signals near the
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XPP(5)==,84 4866312700

YPO(6)=~, 29619613277
YPP(A)==,612797681300

YPr (7)12-,74506%5021700
XPP(7)= -.37qn’57n35“o

YER(8) ==, 60622577480
XPP(A)=N, 0DA

YP(Q)==1 63017 6AEE A
XPP(9)=,35165352R9TN

YP2{10)5=,2536488269Dn
Pei10)=,696894699200

YP2{11)=,241848762600
XPP(11)=,65446/3024310

Yeﬁ(lz)-.5977n‘3u6q3n
XFel12)= ,30454E60R5K 0

YrH(13)'.632u55552030
_XPP(13)30,0N0

YPP(14)=,4183300132D00
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TUXPO 1LY =Y P (18)
YPP{15)=n.0m0

APP({18)=2=,50772255750n
_YPP{16)==-,35355339n5N0

XP2(16)ZYPP(16)
YPP(1T7)==,4n2RE134 35NN

XP?{17)2=, 0422401023710
YPP(1R)Z=,3035291 738NN

XPP(1R)=,052001810210n
YPP(19)=-,223606797700

XPPr(19)==Ypn(19) "
YPel20)z0,000

XPP(2n)2,223606797710
YPP(21)=,2633269330)

XPP(21)=,037008186670
 YPPU22)2,06RK2Z6A27300

XPP(22)==.128264533500
YR (23} ==, 1575M918RANA

XPP(23)==,0A025404023NN

TAlstL,250040,2500%(1a1)

C._ . _100P TO0 "EVELOP POLF-PQLE PAIRS
K=y
_ DO _1_1=1,2
DO ' J=3,23
K=A+1 41
SXPy (KI=XPP(1)%2,000 62
 SYPI{K)ZYPR(])+2,000 A3
RXPE(K)ZXPP(J)+2,000 n
1 RYPE(KISYPP(J)+2,0N0 RS
CALL PRTIME A6
DO 60 L=1r42
WRITE(61108) rY:)
LL=L B %9
C "7 TTTINTEGRATION OVER THE YZ PLANE (XSURF) AMP THE XZ PLANE (YSURF)
Do 20 I=1.3 20
TAlz) 71
XP=i1 72
YPIXP 73
DO 20 J=1.2 T4
Ad=Jd T35
D0 20 K=1+y 76
TAK= f.2500+u 25 0% {Kal)
SUA120,0N0 08
SU 120, 000 79
DG 10 NS1019,2 20
TYXS, J40.05D0«N af
- XY=YX ~ n2
00 10 M=1:9,2 a3
7ZA 40,0250 M
T su1f1§6"1++oou (YP s YX0s Z2SXPP (L) s SYPOIL) 4 RXPP (L) ¢RYPP (L) p1) A5
10 SUAZ=SSUMZHF O (XY YP 29 SXPP (L) o SYPZ (L) ¢+ RXPP (L) +RYPP(L) s 2) R
T XSUI FUIL TrJ KIS TFMP Sy ay
YSU FLLyTod,KISTFMPeGIM2 . o R8
27 WRLTFE(60110) L'I'JIK'YSUQFHOI T JeKY P YSIIRFIL s TedrK) a9
__WRI'F(6e109) a0
o INTEGRATYON OVER THE XY PLAE (ZSURF)
DO 4o I=195_ ay
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13 wRITE(69503) 1eRHOM(TI) »RHOP(IY T

"0 18 11416
T1Z100.#SNGL ((RHOMIT ) =RHOP(T)) /RHOMITY)

Wt ITE (62504

10 19 I=1s2n
SXA1=8snGL sy (I))

SXACZGRAL(SY2 (1))
SYY1=SHALISY1(I))

SYY =SNCL(SY2(1))
RXXI=SHGL(RYL(I))

RXL2=SHAL(RY2 (1))

CRYY1=SHRL(RYL(I))

RYY; =SHNAL (RY2(I))

19 WRITE (625051 SXX1eGYYRErSXX21SYY2)RXX1»OYYL,RXX2RYY2,01 ITLI) o PHIP(

11) i HIS(I)
=7

N0 21 K=1r4
JIZ (K1) ali4]

o 2i

JFZ¥ ey
IO S BN N |

T IF (mMon(Ke2),EG,0) GO TO 42N

CRED (U= (2kx(K/242))

GO 710 21

420 RHY (J)=(2%x(K/2))

Fi(e)=3.6D0%((1,ND0=RHOM(J) 17 (1,0D0+2.NDN*RHOM(J) })
00 ~3_I=1e29

PSI(IY=0,000
DO 72 JT1rlk

T2 PSIIII=PSTI (1Y 46GNP (T, D) xFM ()

PHIC(IYSTEMP«PSI(I)

PHIT(IY=PHIP (1) ~PHIS(I)

23 T2(I)=PHIT(I)

DO 25 I=1v16
FP(1)=0.000

DO 24 J=1s2n

2% FR(IN=FP (1) +HNP (T d) *PSI(J)

25 RHUF(I)=(3,600=FP{1))/(2,ND0%FP(1)+3,600)

WRITE(6e502) L

PO 26 I=1r16
S T1=1004#SKGL { (FHOM(T)=RKOP (1)) /RHOM(I))

25 WKITC(50503) I+RHOM(TI),RHOP(T),T1

VRITE(61504)

DO 27 I=1e20

_SXX1=SN3L(sx3 (1IN
SXAE=SNSL(SY2(T)y)
SYY1=SHSL(SY1(I))

TgYyo=sNGL(sy2(1))
RYXx1=SNGL(RY1(T))

RXA:=SNGL(RX2(I})

__ RYY1=SHEL(RY1(I))

RYY?=SNGL(RY2(1))

27 WRITE(6¢505) SXX1rSYY1rSXX2rSYY2rRXY1eDYYI4RXX2/RYY2,PHIT(I) PHIP(

11)»HHISID)
00 21 L=1+4

T4=1,00040,010C0#(5=L)
JIS(L=1)%4+1

JEILxy
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