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Abslracl - Semantic mapping aims to create maps that in
clude meaningful features, both to robots nnd humans. We 
prescnt :10 extens ion to our feature based mapping technique 
that includes information about the locations of horizontl.lJ 
surfaces such as tables, shelves, or counters in the map. The 
surfaces a rc detected in 3D point clouds, the locations of which 
arc optimized by our SLAM algorithm. The resulting scans 
of surfaces :lrc then analyzed to segment them into distinct 
surfaces, which may include measurements of a single surface 
across multiple scans. Preliminary rl'Sults arc presented in the 
form of a feature based map augmented with a sct of 3D 
point clouds in a consistent global map frame that represent 
all detected surfaces within the mapped area. 

I. INTRODU CT ION 

The goal of semantic mapping is to create maps that 
include mcaning, both to robots and humans. Maps that 
include semantic information make it easier fo r robots and 
humans to communicate and reason about goal s. 

Service robots and mobile manipulutors opemti ng in in
door environments can benefit from maps that include 3D 
surfaces. For example, one of the most commonly di scussed 
tasks for mobile man ipulators is the Object retrieval task. 
For thi s type of task, the use r makes a request of the robot 
similar to "Get the coffee mug from the kitchen". The robot 
might know wh ich part of its map corresponds to "kitchen", 
or at least a single poin t that is in the area call ed "kitchen" , 
but thi s still doesn' t restrict the search space as much as we 
might like. Household objects tend to be found on hori zontal 
surfaces such as tables , counters, and shelves. A map that 
includes the location of all s llch surfaces could fac ili tate 
searches for household objects. In thi s paper, we present an 
extension to our SLAM system that allows the pos itions and 
ex tent of sllch surfaces to be included in maps. 

We employ a feature-based mapping technique in which 
the robot bu ilds and uses maps based on semanti call y me'lIl 
ingful features in the environment. In previous work, we 
have demonstrated the usc of wall features (linear features 
detected in 20 laser scans) , as well as door signs detected in 
inwges using a learned class ifier. In cont ras t to popular grid
based mapping techniques, wc believe that a feature based 
approach is better suited for semant ic mapping because the 
landmarks used represent actual physical objects (or part s of 
objects). 

The rem'linder of the paper is structu red as follows: we 
provide an overview of related works in Section II. In Section 
III , we describe our feature based mapping system, and our 
extension to the mapper that allows it to map surfaces such 
as tables and she lves in Section IV. Preliminary mapp ing 
resuits are presented in Section V. Finall y. conclusions and 
future work are described in Section VI. 

11. R ELATED W ORK 

In {22], Rusu el.(ll. performed plunc segmentation on close 
range 3D point clouds to find horizontal surfaces in the scene, 
segmented out objec ts on these surfaces. and built models of 
them. Multiple planes were be extfilc ted, cach of which could 
support several tab letop objects. Rusll el.(li. also investigated 
semantic labeling of planar surfaces in indoor environments 
in 123J. The plane ex traction approach we use is based upon 
Rusu's work. This paper demonstrated that poi nt clouds can 
be used very effectively to lind planar surfaces as well as 
objects in the contex t of close mnge scenes. In our approach, 
we investigate thi s type o f approach fo r large r scale scenes 
that include mult iple point clouds taken from different poses 
by coupli ng it with Ollr SLAM system. 

Our work is also related to other p<lpers concern ing the 
topic of semantic mapping. One key resuit in thi s area is Mo
zos etal.'s work [20] on determining semant ic labe ls in grid 
based maps. This approach was successful at prov iding labe ls 
such as room, corridor, and doorway for cell s in grid based 
maps. In contrast. ollr approach to semantic mapping builds 
a feature based map that includes semanticall y mean ingfu l 
landmarks sllch as walls and tables instead of provid ing a 
set of labels to di screte grid ce ll s. 

Seman tic labeling of poin ts in 3D poin t cloud based maps 
has also been investigated by Nlichter el .(li. in t 19] and 
[181. These papers used an iterati ve Closest Point (ICP)(21 
based approach to SLAM to bu ild point cloud based maps. 
The result ing maps were then semantica ll y interpreted by 
labe ling either indi vidual points or ex tmctcd planes wi th 
labe ls sud as nuur, wa ll , cei ling. ur J uur. This appruad was 
successfull y applied to both indoor an outdoor environments. 

The idea of using horizonta l surfaces as landmarks has 
been investigated prev iously by Donsung and Nevatia [161 · 
This work presented a method for detecting the relati ve pose 
of horizon!ul surfaces such as tables or desks by lIsing an 
edge-based computer vision approach. Surfaces could bc 
recognized in images and local ized with respect to the robot's 
curren t pose, but were not integmted into largc scale maps. 

The Simultaneous Locali zation and Mapping (SLAM) 
problem has seen a lot of development over the past 2S years. 
Smi th and Cheeseman proposed the firs t cons ist!.! nt sol ut ion 
to the SLAM problem in f24 1 by expand ing the Ex tended 
Kalman Filter (E KF) to include the landmark positions in 
thc state vector and covariance matrix. A complete rev iew 
of the earl y developments on the SLAM problem can be 
round in [7] and a summary o f modern developments can be 
found in [ I ]. 

Many modem SLAM implementations now maintain the 



entire robot trajectory to keep landmark poses uncorrel ated 
since they arc conditionally independent g iven the robot 's 
pose . Folkesson and Christensen deve loped GraphSLAM 19] 
which used a nonlinear optimization eng ine to solve for 
robot trajectories and landmark positions. GraphSLAM tech
niques suc h as Square Root Smoothing and Mapping (SAM) 
devc loped by Dcllacrt [5]. use sparse linear algebra and 
optimization tcchniques to improve efficiency. Th is technique 
solves <I measuremcnt m<llrix through sparse QR factoriza
tion. It was improved to enable incremental online operation 
in [ 14 1. [151. We usc Ihe GTSAM li brary which Dcl laer1 has 
developed as ,10 imple mentation of these techniques. 

III. MAPPI NG 

An overview of our SLAM system is given in thi s section. 
including the features used by our mapper. A more complete 
description of the mapper and its c;'lpabilities is g iven in 
our prev ious work [25J. A system diagram of our mapping 
system ;.md its componen ts is shown in Figure I. Our system 
makes use of Willow Garage's Robot Operating Syste m 
(ROS )[2 1] for interprocess communication. modularity. and 
its many useful opcn source tools and components. 

Fig. I. A d iagrdm rcprcscllling our mapping systcm. 

A. Fe(l/ures 

Our syste m makes use of several types of features fo r · 
localization and mapping. including wa ll s ex tri.lcted from 
2D laser sc;.ms. as well as images of door signs extracted 
frum camera images by a learnetl d assi li cr. We will brid ly 
desc ribe these feature types here as they are both of interest 
for semantic mapping. These fe;.llures arc used by our SLAM 
system to produce a map and localize the robot. 

J) ulser-line-extractor: The wall ! line features used by 
our mapper are ex tracted from 2D laser scans. Examples of 
such line features can be seen as the thick red lines shown 
in Figure 7. These features are extracted using a technique 
based on RANdom SAmple Consensus (RANSAC) 18J. as 
described in Nguyen et.a/. ·s paper comparing methods for 
detecting lines in 2D range sc;.ms [ 17]. Pairs of points are 
uniforml y selected from the laser scan. and all co ll inear 
po ints from the scan arc lilted to thi s linc. If there arc a 

surlicient number of illliers. this is cons idered a va lid wall! 
line measurement. The process is performed iterativel y. and 
all lines with surli cicnt support from points arc used by our 
SLAM system. This type of feature is p;'lrticul arly useful 
because wall s te nd to stay in the same place over time. 
unlike furniture or other objects that might be observed in 
the robot 's e nvironme nt. 

2) Door-sign-detector: Another type of feature that our 
mapper can make use of is measurements of door signs 
detected in Cilmera images. Door signs are useful to humans 
who are navigating indoor e nvironments. and can serve 
as lundmarks for robots as we ll. While door signs were 
not available in the data set used for the mapping results 
presented in this p'lper. we provide thi s description due to 
their re levance for creating maps that include semanticall y 
meaningful fea tures . 

Our door sign detection i.lpproac h uses the Histogram 
of Oriented Gradients (HOG) feat ures of Dalal [3] for 
recognition. Hand- labeled example images were selected and 
scaled to a uniform size. HOG features were then extracted 
fro lll this reg ion .md presented to a Support Vector Machine 
(SVM) classifier ror training. To detect these ill images. 
a spectral residual saliency approach described in [ 131 is 
lI sed to detec t candidate sign regions. These arc then sca led 
to a un iform size. and presented to the previous ly trained 
SVM for class ilication. If classi li ed as a door sign. it is lI sed 
as a measuremen t by the mapper. The ac tual measurement 
used consists of a pixel localion in the image corresponding 
to the sign reg ion's centroid. along wi th the image patch 
corresponding to the detected region and the tex t string read 
fro lll the sign using optica l Ch;.If;lcter recognition . 

8. Mapping 

Our SLAM system uses the GTSAM library deve loped by 
Dell aert [6 ]. GTSAM approuches the graph SLAM problem 
by using a fac to r graph that relates landmarks to robot 
poses through facto rs. The factors are nonlinear measure
ments produced by measuring variolls features of the types 
described above. The gmph is optimized by converting thi s 
factor graph into a chordal Bayes Net. for whic h we use 
the elimination algorithm. To do th is efficientl y. it is cruc ial 
to select a good eliminat ion ordering. which is done lI sing 
the COLAMD approximate minimum degree heu ri stic [4]. 
The vi.l ri ables (pose and landmark fea tures) are iterative ly 
expressed in terms of the other variables related to them via 
factors. making use of the elimination order. 

GTSAM makes it easy to add new fac tor types fo r new 
reature rc presen t.ltions. The only compone nts needed for <l 

new factor type in the GTSAM framework arc a meaSllre
ment function and its de rivati ves. The me;'lsurement runction 
gives the difference between the sensor measurement and 
the expec ted va lue computed from the re lative position of 
the landmark from the robot. We have bui lt an interface to 
the GTSAM library which uses the Measurement space (M
space) fea ture representation from Folkesson el. al. [11].[ 101. 
and [ 12]. The M-space represen tation allows for complex 
landmark types such as wall s with shared endpoin ts. 



The measurement funct ion for M-space walls consis ts of 
terms for e rror in di stance and angle. 71:=:: (¢, p). In addition 
to thi s measurement function, we have specified it s deriva
tives in terms of the free variab les. The M-space feature 
representation uses the Chain mle to simplify the express ion 
of these Jacob ians into smaller bu ilding blocks which can be 
shared between mult iple measuremen t func tions. A detai led 
explanat ion of th is implementation can be found in [25]. 

IV. S URFACE MAPPtNG 

In thi s section , we describe our approach for segmenting 
surfaces frolll 3D point clouds, as we ll as our approach for 
including these in a map and determin ing their posit ions in 
a global map coordinate frame. 

A. Plane Segmemarioll Approach 

Our technique involves taking 3D scans of the area to be 
mapped, which yie ld 3D point clouds. We then process these 
poinl clouds in order to segment out any horizontal surfaces 
sllch as tables that are present with in each poin t cloud. To do 
Ihis. we usc the we ll known RA Ndom SAmple Consensus 
(RANSAC) method for mode l fitting [RI. In our cuse, we are 
fitt ing planes to the fu ll point cloud to determine the hlrgest 
plane presen t in each cloud. 

We usc :m iterat ive RANSAC to find planes in (he scene. 
returning the plane with the most inliers frolll the point 
cloud. For the purposes of this work , only planes Ihm are 
rough ly horizontal (as determined by their surface normal) 
arc considered. If the plane we have found is not horizontal, 
we relllove all inliers for thi s plane from our point cloud. 
and then perform RAN SAC aga in to find the next largest 
plane. Once we huve found a horizontu l plane. we perrorm 
d ustcring on thl! in liers to find contiguous n.:gions or points 
within our plane, di scarding clusters that are too small. This 
clustering step serves two purposes: 10 remove individuu l 
points or small dusters of poin ts that fit 10 the plane but 
aren ' t part of a large cont iguous surrace, and to separate 
multiple surfaces that are coplanar but are in difrerent loca
tions. sll ch as two tab letops at the same height. Each cluster 
with a sufficient number of points (a thresho ld or 500 was 
used ror thi s work ) is saved and will be used for mapping 
purposes. Finally. the inliers to the plane are removed, and 
we iterute aga in. The process tenllinates when no plane with 
a sufficient number or points can be found. The resulting set 
or detected surrace point clouds is then sent to the mapper. 

For much of our point cloud process ing, we use the 
Point Cloud Library (PCL) developed by Rusu and others at 
Willow Garage. which includes a variety of tools for working 
wi th 3D point cloud data including RANSAC plane fitting, 
outlier removal , and eucl idean clustering methods. PCL is 
an open source li brary with ROS integrat ion, and is free ly 
avai lable from the ROS website. 

B. SlIrface Mapping Approach 

Our SLAM system, as described in Sect ion III . adds mea
surements of reatu res as we move through the environmen t. 
In addition to coll ect ing odometry and 2D laser scans while 

driving the robot th rough an environment to co ll ec t dnw ror 
mapping, we periodically stop the robot' s movement and 
take 3D scans of the environmen t using our til ti ng laser 
scanner. Our extension in this work is to make maps that 
include tables detected rrom these point clouds by using 
the RANSAC based technique described in the prev ious 
subsec tion . To do th is, our mapper needs to add a pose to the 
SLAM graph when a tab le point cloud has been generated . 
Measurements of li nes de tected in the 2D lase r scan are 
used to build a map or the surround ing walls (und any other 
linear structures thai may be nearby) wh ile keeping the robot 
locali zed throughout the process. When the mapper receives 
a horizon tal surrace poin t cloud from our table ex tracti on. 
it will add a pose to Ihe graph , and store the point cloud 
attached to thi s pose. As we continue to navigate th rough 
the environment, these poses and the surrace point clouds 
allached to them will be continually updated us we rece ive 
more data. 

Because we are solving the / III1-SLAM problem. the robot's 
whole trajectory is optimized. not just the most recen t pose 
as in a filtering (EKF or particle filte r) based approach. Note 
thai using a full-S LAM approach as opposed to a filtl!ring 
based approach provides signifkant benefit to this tcchniquc. 
We rely on the ab ility to opt imize past poses 10 correct the 
locations of the robot where point clouds were collected 
throughout our trajectory. In contrast. if we were simply 
to put our po int clouds into the map fmllle usi ng our best 
estimate at the time as a filter approach WOUld, there would 
be significant error if we were ever poorly loca li zed. with no 
means to correct this us we rece ive new inrormation. 

To bui ld a map of the t~lble locations based on point clouds. 
we begin by moving nil po int clouds into the map frame. 
Each point cloud was stored along with a pose in the graph. 
and thi s pose has been optimized as the robot cont inued to 
move around and co llec ted more measurements. By the end 
or the trajectory, the pose has been optimized using landmark 
measurements along the whole Lrajectory. We then move the 
points in the point cloud from thi s optimized pose into the 
map rrame so that we cun visualize and compare them to the 
other surraces in a consistent global coordinate rrame. 

Next , we check for ove rl ap between detected surfaces in 
order to handle surfaces that were detected in point clouds 
from mult iple locations. All point clouds have been moved 
to the map frame, so we just check ir there are any surfaces 
that include points within a given di stance of e<lch other. An 
appropriate value for this threshold depends on the particular 
environment and sensor used. but fo r the maps shown here. a 
threshold or Scm was used. If two surface measurements are 
within thi s distanee. their po int clouds are merged, and we 
consider it 10 be just one surrace that was measured multiple 
times. Examples where thi s has occurred include the kit chen 
table, shown in Figure 7 in cyan, as well as Ihe long counter
like table in the kitchen area , shown in Figure 2 in green. 

Once the surfaces are in the cOlllmon map frame, we 
have our end result: a set of poi nl clouds representing all 
surfaces detected wi thin the cOlllmon coordinate system used 
by our loca li zation system. The map could then be used to 



Fig. 2. Surf'lces segmented in the kitchen area of the Robocup@Home 
20 10 .lre ll.1. TIle L-shapcd counter-li ke table is shown in green . and its cloud 
WllS merged from point clouds taken in multiple locations. The "stO\'ctnp" 
is shown in purple. which was an a planar surf'lce several centimeters above 
the table. A photo of this area can be seen in Figure 4. 

determi ne in which areas the robot shou ld look for objects 
within its ma p. While usnge of thi s type of map fo r mobi le 
manipu lation tasks is beyond the scope of thi s paper. we do 
intend to explore th is in future work. 

V. R ESULTS 

In thi s section. we provide nn overview of our robot 
platform. desc ribe our d<ltn co llection process and the area 
we mapped. and give preliminary mapping result s. 

A. Robot Platform 

The robot platform used in th is work consists of a 
ScgW:.ly RMP-200 moh ile h:.lse. which hilS heen modified 
to be staticnll y stab le. It is equ ipped with a SICK LMS-
29 1 for loca li ziltion. mapping. and obstacle avoidance. 3D 
point cloud information is co ll ected using a tilt ing laser 
scanner. which consists of a Directed Percept ion 0 -46-70 
Pan-Ti lt Un it and a Hokuyo UTM-30LX scanning laser range 
fimkr. Computat ion is pl: rformed on nn onboard Mal.: Mini 
computer. 

Whi le not used in thi s work. the robot is also equipped 
with a Schunk PG-70 gripper wi th custom fingers att ached 
to a verticu ll y moving line:.lr :.lctU:.ltor. which allows the robot 
to grasp objects on tab lctop surfaces. 

B. Data Collection 

Our algori thm wus tested on data co llected in the 
Robocup@ Home 20 10 venue, The robot was manuall y 
dri ven through the arena while logging all odometry and 
sensor data. We periodicall y stopped the robot and trigge red 
a 3D laser scan. which uses the tilt ing laser scanner to co llect 
3D point clouds which were a lso logged for our omine 
mapping process. 

The 3D scans were taken from many locations th roughout 
the venue. bu t not all are'ls were scanned with the same 
amount of detai l. The poses were not di stri buted even ly 
throughout the area. so due to the fact that the di stancc 
between neighboring points increases with the di stnnce from 
the scanner. some areas have quite dense coverage while 
other areas hilve very sparse coverage. 

Fi g. 3. A phOlO of the robot plalfonn osed in lhis work . 

Fig. 4. A photo of the arena at Robocup @l-lome 2010. where our dataset 
for this work was collected. The kitchen table. "~tnvc" area. and gencr;11 
layout arc visible here. 

C. Results 

To lest our algorithm. we ran our mapper onl ine on the 
logged data from the Robocup @Hollle 2010 arena. as seen 
in Figure 4 and Figure 5. We then performed a qual itative 
ana lys is of the resulting map. Many surfaces were success
full y detected and mapped th roughou t the environment. as 
can be seen in Figure 7. The surfaces mapped include several 
tab les, n set of she lves, the flat surface of a sofa 's scat, the 
fl at su rface of a stove, and a small ledge. A diagram showing 
the room's layout is given in Figure 6. for comparison wi th 
the lIlap resulting from our a lgorithm. A perspec tive view of 
the resulting map is also provided. shown in Figure 8. 



Fig. S. Another photo of the arena at Robocup@Home 20 10. This shows 
the TV area. 
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Fig. 6. A d iagram showi ng the (lom plan of the mapped arc:l . 

Scvcra l planar surfaccs prescnt in thc space were not 
dctccted by our <l lgori th m. including one set of shelves. <:IS 
well as the table labeled "sideboard" in the fl oor plan shown 
in Figure 6. In order to <:Ivoid false positives. we requircd a 
minimum of 500 point s on thc surfacc. and that c~lch point 
W<lS within no morc than 10cm from the nex. t nearest copl;mar 
point. While thcsc relatively strict constraints did avoid fal sc 
positives. Ihey <:Ilso mean Ihat surfaces with relat ively few 
points such as surfaces that were only scunned from far away 
wi ll not be detected. Additionally. surfaces with many objec ts 
on them have few planar inliers . because the objects occlude 
the surface of the plane. It should also be noted that we do 
not search for surfaces lower th<ln the minimum height our 
robot is capab le of manipu lating at. so surf;'lces very ne;'lr the 
grou nd such as the she lves thnt arc on ly a few centimeters 
above the Ooor will not be detected. 

It is also ev ident in the resulting map that there arc some 
misalignments between scans of some surfaces that were 
detected in multiple point clouds. ind icut ing a relut ive error 
between the poses in the graph from which the point clouds 
were taken. Specifi ca ll y. the ye llow-green kitchen counter 
surface has a small misa lignment between the two sc;.ms it 
was detected in. as can be seen in Figure 7. The dining table. 
shown in cyull in Figurc 7 also has a similar misalignmcnt. 

As future work . we in tend to investigate the use of ICP on 
these scans to inform our mapping and locali zation results 
wi th the hope that thi s wi II reduce some of thi s error. 

Fig. 7. An on hograllhit· I)rtljection of the linal table map. Su rfaces are 
shown as distinctly colored point clouds. 2D linear stmctu res used by our 
SLAM system are also .~hown as thick red li nes. 

Fig. 8. A 3d perspecti ve view of the result ing map. 

V I. CONCLUS IONS & F UTU RE W ORK 

We have presented a method for segmentation of planar 
surfaces from point clouds and in particular conside red 
hori zontal surfaces for integration into mil pping. In domesti c 
settings. the presence of large horizontal surfaces typicil ll y 
represents tab les. shelves. counters, and fl oors. The labeled 
surfaces are added to the 10cali Zilti on and mapping system 
to enab le generation of globally consistent semantic maps. 
Through track ing of surfaces over the robot trajec tory it 
is poss ible to fuse multip le views of surfaces into consis· 
tent representations. Mapping and scene segmentation were 
reponed using the RoboCup @l-iome setup from Singapore 
2010. 

The current system docs not leverage the segmented 
regions as high. levcl features in map estim iltion. There is a 
clear need to utili ze thi s information as pari of future work. 
The fu sion of multi · view d:.ua to generate increased accuracy 



can also be improved. Through use of Ie? it is expected 
that curren t diffe rences across views can be reconc iled into 
surfaces with higher accuracy. Finally there is an interest to 
consider how the segmented surfaces can be leveraged for 
planning and mobile manipulation tasks. 

V II. ACKNOWLEDGMENTS 

This work was made poss ible through the ARL MAST 
eTA projec t 104953, the Boeing corporation, and the KO
RUS project. We would also like to thank the rev iewers for 
their helpful comments. 

REFER ENCES 

II/ T. Bai ley and H. Durrant-Whyte. Simultaneous localisation and 
mapping (SLAM): Pan II state of the art. Robotics (lml AIt/OII1(1/iol1 

M(lga:ine. Scptemocr 2006. 
12] PJ. Besl and N.D. McKay. A method for regi ~tration of 3·D shapes. 

IEEE TrwlSlIl:liolZs 0/1 plmnn analysis Will machine ill/elligellct'. pages 
239- 256. 1992. 

[3[ N. Dalal and 13. Triggs. Wstograms of oriented gradients for human 
detection. I£EE Compl//n Sodely Conferellce 011 COInl1lfler Visiol! 
ami I'mlern Recognition. page 866. 2005. 

141 TA D,,',. l .R. Gil"'". S. 1. L''''mo". ,"d E.G . Ng. Algori thm 
836: COlAMD. a column approximate minimum degree ordering 
algorithm. ACM 'liWIJ(I(:liolls 0/1 MalhemaliclIl SO//II'(lr!' (TOtHS). 
2004. 

151 F. Dellaen. Square root SAM: Simult;meous localization and mapping 
via square root infomlat ion smoothing. In Robo/ics: Scil'lIce {l1If1 

S)'J1(!m.~. pages 24-31. Cambridge. MA, June 2005. 
[61 F. Dellaen and M. Kaess. Sqmlre root SAM: Simultaneous localization 

and mapping via square root infomlation smoothing. III/('rllluiOlwl 
Journal of Robo/ics Re.warch. 25(12):1181-1204. 2006. 

\71 H. Durrant.Whyte and T. Bailey. Simultant. .. 'Ous localisation and 
mapping (SLAM ): Pan I the essential algorithms. Rob(}til.".~ {lnd 
Au/o/lw/ioll Magll :ille. June 2006. 

[81 M.A. Fi schler and R.e. Bolles. Random sample consensus: A 
paradigm for model filling with 3pplic3tion .~ to imoge analy.~is and 
automated canogtaphy. COlllm. ACM. 24:381-395. 1981. 

[9[ J. Fol kesson and H. Christensen . Graphical SLAM - a self-correcting 
map. In/emll/iOllal Conferellce on Rol)()lics (lml AWomarioll. pages 
1894-1900. April 2004. 

[10] J. Folkesson. P. Jensfeh. and H. Christensen. Vision SLAM in the 
measurement subspace. Ill/erll{uimwi Con/cre/lce 011 Robmics lind 
Autolllation. pages 30-35. 2005. 

]111 J. Folkesson. P. Jens feh. and H.1. Christensen. Graphical SLAM lLsing 
vision and the measurement subspace. In 11111 Con! 011 Imdfigell/ 
Robo/ics lIIltl Systems (IROS). pages 3383- 3390. Edmundton. Canada, 
August 2005 . 

\121 1. Folkesson. P. Jensfeh. :lIld H.I. Chri~t ensen. The M-space feature 
representation for SLAM. fEEE Tmn.mc/iolls 011 Robo/ics. 23(5): 106-
11 5. 2007. 

[1 31 X. Hou and L. Zhang. Saliency detection: A spectral residual 
appro.1ch. CVPR.2007. 

[141 M. Kaess. A. Ranganathan. and F. Del1aen . FaM incremental square 
root infonlmtion smoothing. In Imema/ion Join/ COII/erclIl."1! 0/1 

Artifil"iaf IIl/('fligl!lI("('. 2007. 
115] M. Kaess. A. Ranganathan. and F. Dellacn. iSAM: Increment:d 

smoothing and mapping. IEEE Tm/IJ{/clioll.f 011 Robotics, 2008. 
1161 Dongsung Kim .. and Ramakallt Nevatia. A method for recognition 

and localization of generic objects for indoor navigation. Image wul 
V,SiOlI Compll/illg. 16:729-743. 1994. 

[ 171 V. Nguyen. A. Martinelli. N. Tomati s. and R. Siegwart. A comp;lrison 
of line extr.lction algorithms u .~ing 2D laser rangefinder for indoor 
mobile robotics. fmenU/tionof COllfi.'flmce ml Imcffigem Robms (111(1 
Systems. 2005. 

11 8] A. Nilehter and 1. Hertzberg. Towards scmantic maps for mobile 
robots. Ro/Jo/ics lIIui All/flllOlllOliS SyslI'm.~ . 56(11):915- 926. 200S. 

\19] A. Niichter. O. Wulf. K. Lingemann. J. Hcnzberg, B. Wagner. and 
H. Surmann. 3d mapping with semantic knowledge. RoboClip 2005: 
Robot SOCCI" \\0rld CIII' IX. pages 335- 346. 2006. 

120J 6scar Man incz Moms. Rudolph Tricocl. P<ltric Jen.~ re1t. Axel 
RoHmann, and Wolfram Burgard. Supervised semalllic labeling of 
pbees using in formation extracted from scnsor data. Rolml. AWOl!. 
SYS1 .. 55(5):391-402. 2007. 

\21] Morgan Quigley, Ken Conley. Brian Gerkey. Josh Fausl. Tully 13 . 
Foote. Jeremy Lcibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open· 
source robot operating .~ystem. In lel"lwliona/ COl1fi'rellCt' 011 Rolwlies 
WI(I Alllomatioll. 2009. 

122] R.B. Rusu . N. Blodow. Z.e. Manon. and M. Ucctz. Close-range 
Scene Segmentation and ReeQnstniction of 3D Poi nt Cloud Maps for 
Mobile Manipul;tl ion in Human Environments. In Procl'I"(ling.f o/lhl' 
IEEElRSJ IllIernllfiO/wl COII/NCIILC 011 1I1II'IIi~el!/ Robol.f (/I/{I Systems 
(lROS). SI. /..fit/is. MO. USA . 2<X>9. 

\23] R.B. Rusu. Z.C. Manon. N. Blodow. A. Holzb:leh. and M. Bectz. 
Model-based and lcamed semantic object 130cling in 3D point cloud 
maps of kitchen environments. In Pn)(:eedillg.~ of /11l' IEEEJRSJ 
11IIl'r/IlI/iOlwl Conference 011 Ime/fiRl'''/ R()lmlJ IIlId Sys/l'ms (IROS). 
St. WI/is. MO. USA. 2009. 

\241 R. Smith and P. Cht:cscman. On the representat ion and esti mation 
of spatial unccnainty. 11111'1"1I(//iOlwl JOIll"lwl of Roboti('J Resl'lIn·h. 
5(4):56-68. Winter 1987. 

1251 A. J. B. Trevor. J. G. Rogers III. e. Nieto-Granda. and H.I. Chris
tensen. Applying domain knowledge 10 SLAM u:.ing vinual me;ISllTC
metlls. 11I11'/"II(I/;0II(1f Cml/en'IIl'e 011 Robotics lIlI(l AlilOmmioll. 2010. 


