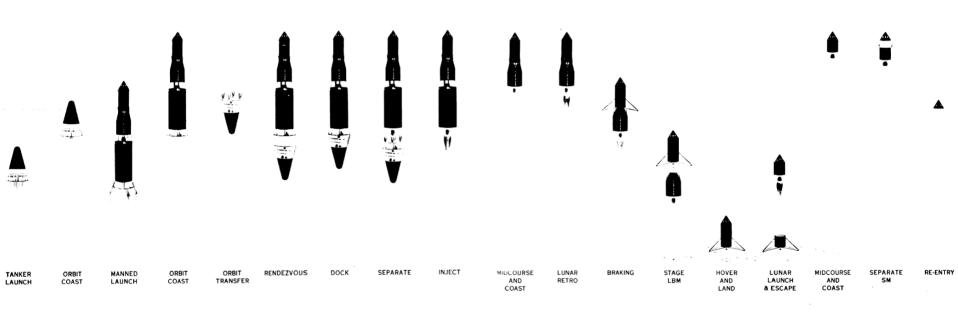
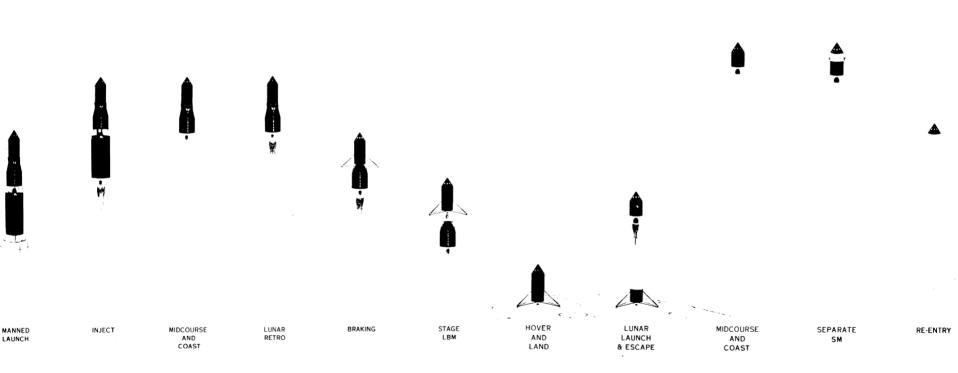

IAC-05-D2.3.05 A Lunar Architecture Design and Decision Environment

Dr. Alan Wilhite, NIA/GA Tech David Reeves, NIA/GA Tech Michael D. Scher, NIA/Univ. of MD Dr. Douglas Stanley, NIA/GA Tech

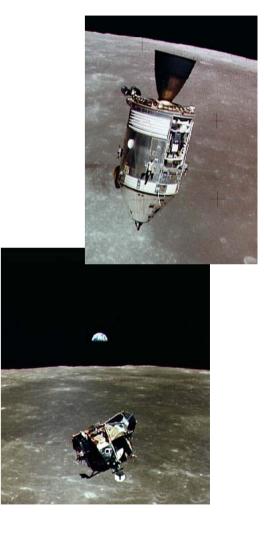

LOR Lunar Mission Mode

*From: "Manned Lunar Landing Program Mode Comparison"


EOR Lunar Mission Mode

*From: "Manned Lunar Landing Program Mode Comparison"

Nova/C-5 Lunar Mission Mode



*From: "Manned Lunar Landing Program Mode Comparison"

Analysis Approach

- The four modes used in the final 1962 decision were analyzed.
- Comparable systems/requirements were used in each mode for an "Apples to Apples" comparison.
- Storable, LOx/LH2, and LOx/CH4 propulsion systems were considered.
- Analysis included cost, mass, reliability, and mass growth sensitivity.
- Current and 1962 weightings were developed for six major FOMs
- Modern decision analysis techniques used to compare results

Modeling Tools

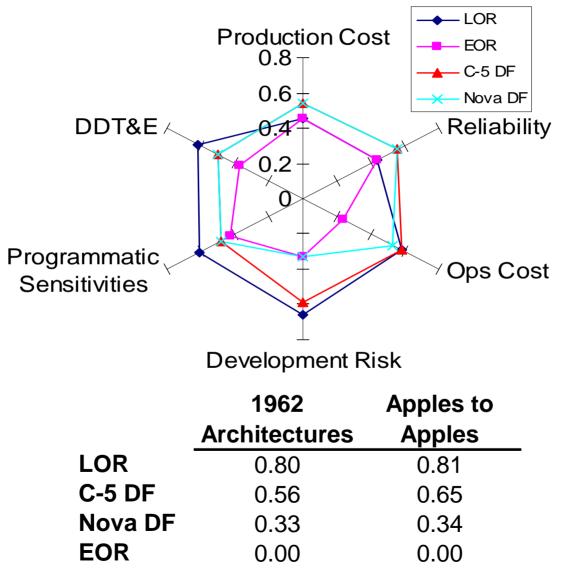
- Mass Modeling
 - Apollo Sizing and Modeling Tool (ASMT)
 - Space Propulsion Sizing Program (SPSP)
- Reliability
 - Qualitative Risk Assessment System (QRAS)
- DDT&E and Production Cost
 - NASA/Air Force Costing Model (NAFCOM)
- Operations Cost
 - Operations Cost Model (OCM)
- Multi-Attribute Decision Making (MADM)
 - Analytical Hierarchy Process (AHP)
 - Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS)

Figures of Merit (FOMs)

- DDT&E Cost Cost to design, develop, test, and evaluate all architecture systems to first mission launch.
- Production Cost Cost per mission to manufacture all required elements.
- Operations Cost All costs per mission not including production.
- Reliability Probability of any hardware failure, critical or otherwise.
- Sensitivities Sensitivity of each element of the architecture to the mass growth of other elements.
- Development Risk Probability that one or more of the elements will not be developed in the desired timeframe .

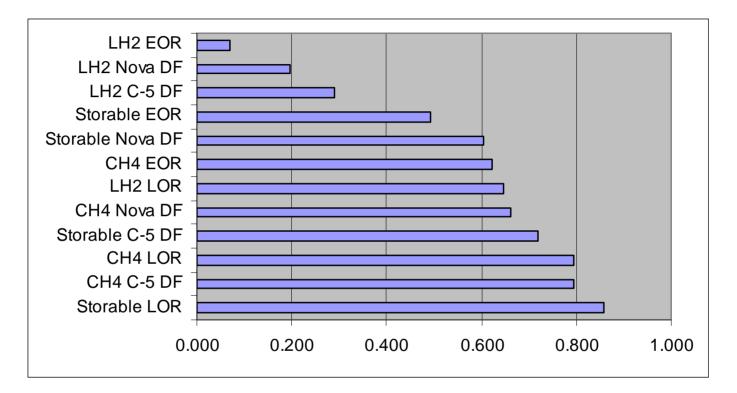
FOM Weightings (1962 vs. Modern)

- 1962 mentality:
 - Must meet end of decade programmatic deadline
 - Must be safe and reliable
 - Low development risk is desired
 - Cost is not significant

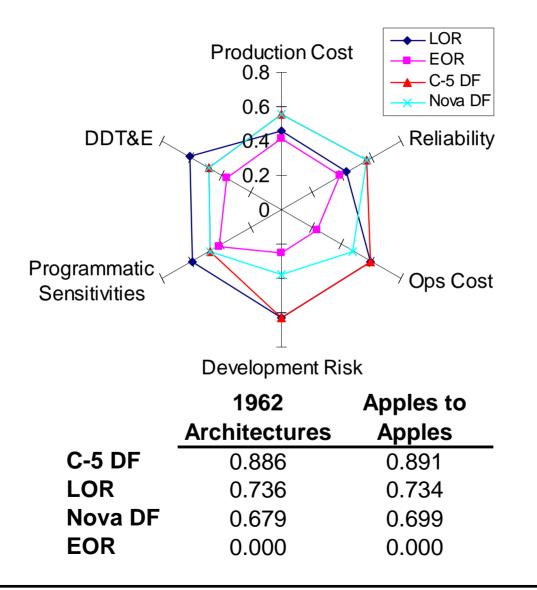

- Modern Mentality:
 - Timeline is flexible
 - Must be highly safe and reliable
 - Cost is a major driver

WeightsWeightsProduction Cost4%13%Aliability20%33%Ops Cost7%33%Development Risk20%3%Programmatic Sensitivities43%5%DDT&E4%13%	8	1962	wodern	
Reliability20%33%Ops Cost7%33%Development Risk20%3%Programmatic Sensitivities43%5%		Weights	Weights	
Ops Cost7%33%Development Risk20%3%Programmatic Sensitivities43%5%	Production Cost	4%	13%	
Development Risk20%3%Programmatic Sensitivities43%5%	Reliability	20%	33%	
Programmatic Sensitivities43%5%	Ops Cost	7%	33%	
	Development Risk	20%	3%	
DDT&E 4% 13%	Programmatic Sensitivities	43%	5%	
	DDT&E	4%	13%	

1000


1962 FOM Weighting Results

National Institute of Aerospace


Comparisons With 1962 Weightings

LOR is least expensive and least sensitive for all propellant types
C-5 and NOVA Direct modes are most reliable

•EOR ranks last across the board for all propellant types

Modern FOM Weighting Results

National Institute of Aerospace

Comparisons With Modern Weightings

LOx/LH2 EOR					
LOx/CH4 EOR					
Storable EOR	-				
LOx/LH2 LOR	-				
LOx/LH2 Nova DF	-				
LOx/LH2 C-5 DF	-				
LOx/CH4 Nova DF	-				
LOx/CH4 LOR					
Storable LOR	-				
Storable Nova DF	-				
LOx/CH4 C-5 DF	-				
Storable C-5 DF	-				
0 ()00 0.2	200 0.4	400 0.6	.00 0.8	300 1.000
0.0	JUU U.2	-00 0.4	+00 0.0	0.0	1.000

- C-5 Direct is favored for modern objectives
 - High reliability
 - Mass and sensitivity reduced by modern technology
 - Schedule and risk not as large a factor
- LOR is still close second place

Summary

- This analysis confirms that LOR was the best option in the 1960's for the Apollo objectives.
- With the modern objectives and constraints, it was found that a single launch direct method becomes more desirable.
- The EOR mode scores lowest in all cases.
- Storable and LOx/CH4 propellants were shown to be somewhat more desirable than LOx/LH2 systems.
- More detailed analysis required to confirm results.

Questions?

Special Thanks to:

•The other Authors – Michael Scher, Alan Wilhite, and Doug Stanley

•Georgia Institute of Technology

•National Institute of Aerospace

•NASA Langley Research Center

1962 Apollo Decision Matrix

Surface Time Surface Access Crew to Surface Earliest Landing Probability of Success Contracted Elements IMLEO (Ibs)

LOR	EOR	Nova DF	C-5 DF
2 days	7 days	7 days	4 days
+/- 20°	global	global	global
2	3	3	3
Jul-68	Dec-68	Feb-70	Sep-69
43%	29%	43%	40%
4	4	3	2
323,173	550,435	445,608	363,478

