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Summary 

The main objective of our research is to design practical low-density parity-check 

(LDPC) codes which provide a wide range of code rates in a rate-compatible fashion.  To 

this end, we first propose a rate-compatible puncturing algorithm for LDPC codes at short 

block lengths (up to several thousand symbols).  The proposed algorithm is based on the 

claim that a punctured LDPC code with a smaller level of recoverability has better 

performance.  The proposed algorithm is verified by comparing performance of 

intentionally punctured LDPC codes (using the proposed algorithm) with randomly 

punctured LDPC codes.  The intentionally punctured LDPC codes show better bit error 

rate (BER) performances at practically short block lengths.  From simulations, in the case 

of the regular code with block length of 1024, the intentionally punctured LDPC code has 

3dB better Eb/No performance than that of the randomly punctured one for a BER of 10-5 

at code rate 0.8.  In case of irregular LDPC codes, the performance improvements of the 

intentionally punctured LDPC codes are 1.25dB over randomly punctured LDPC codes at 

code rate 0.8 for a BER of 10-5. 

Even though the proposed puncturing algorithm shows excellent performance, several 

problems are still remained for our research objective.  First, how to design an LDPC 

code of which structure is well suited for the puncturing algorithm.  Second, how to 

provide a wide range of rates since there is a puncturing limitation with the proposed 

puncturing algorithm.  To attack these problems, we propose a new class of LDPC codes 

in which the proposed puncturing algorithm concept is imbedded.  We call this class of 

codes efficiently-encodable rate-compatible (E2RC) codes, which has several strong 



 xii

points.  First, the codes can be efficiently encoded.  We present low-complexity encoder 

implementation with shift-register circuits.  In addition, we show that a simple erasure 

decoder can also be used for the linear-time encoding of these codes.  Thus, we can share 

a message-passing decoder for both encoding and decoding in transceiver systems that 

require an encoder/decoder pair.  Second, we show that the non-systematic parts of the 

parity-check matrix are cycle-free, which ensures good code characteristics.  From 

simulations, the performance of the E2RC codes (mother codes) is as good as that of 

extended irregular repeat-accumulate (eIRA) codes and other irregular LDPC codes.  

Finally, the E2RC codes having a systematic rate-compatible puncturing structure show 

better puncturing performance than other irregular LDPC codes and eIRA codes in all 

ranges of code rates.  From simulations, the puncturing of the E2RC codes outperforms 

2.8dB of Eb/No than random puncturing of irregular LDPC codes at a BER of 10-5 with 

code rate 0.8.  Even the best effort intentional puncturing algorithm is applied to the 

irregular LDPC codes and eIRA codes, E2RC codes show 1.2dB and 1.1dB better than 

irregular LDPC codes and eIRA codes, respectively, at a BER of 10-5 with code rate of 

0.9. 

The throughput performance of incremental redundancy (IR) hybrid automatic repeat 

request (HARQ) systems highly depends on the performance of high-rate codes.  Since 

the E2RC codes show excellent puncturing performance in all ranges of code rates, 

especially at high puncturing rate, we apply them to IR-HARQ systems.  From 

simulations we observe that E2RC codes outperform eIRA codes and general irregular 

LDPC codes by 2dB and 2.2dB, respectively, at the throughput of 0.8. 
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CHAPTER I : 

 

INTRODUCTION 

Low-density parity-check (LDPC) codes by Gallager [1] had been forgotten for several 

decades in spite of their excellent properties, since the implementation of these codes 

seemed to be impossible at that time.  These codes were rediscovered in the middle of the 

1990s [2] and were shown to achieve Shannon limit within 0.0045dB [3].  LDPC codes 

are now considered good candidates for the next-generation forward error correction 

(FEC) technique in high throughput wireless and recording applications.  Their excellent 

performance and iterative decoder make them appropriate for technologies such as DVB-

S2, IEEE 802.16e [4], and IEEE 802.11n [5], [6]. 

While semiconductor technology has progressed to an extent where the 

implementation of LDPC codes has become possible, many practical issues still remain.  

First and foremost, there is a need to reduce complexity without sacrificing performance.  

Second, for applications such as wireless LANs, the system throughput depends upon the 

channel conditions and hence the code needs to have the ability to operate at different 

rates.  Third, while the LDPC decoder can operate in linear time, it may be hard to 

perform low-complexity encoding of these codes.  In particular, the class of irregular 

LDPC codes introduced by Richardson et al. [7] may have high memory and processing 

requirements, especially at short block lengths.  While the encoding time can be reduced 

substantially using the techniques presented in [8] at long block lengths, their techniques 

may be hard to apply at short block lengths.  The other option is to resort quasi-cyclic 
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(QC) LDPC or algebraic constructions that can be encoded by shift registers [9].  

Irregular repeat-accumulate (IRA) codes were introduced by Jin et al. [10].  These 

codes have a linear-time encoder and their performance is almost as good as irregular 

LDPC codes.  This class of codes was extended, called extended IRA (eIRA) codes, by 

Yang et al. [11], where they demonstrated high-rate codes with very low error floors. 

A popular technique for achieving rate adaptation in a system is through the use of 

rate-compatible puncturing.  A rate-compatible punctured code (RCPC) is suitable for 

applying to incremental redundancy (IR) hybrid automatic repeat request (HARQ) 

systems, since the parity bit set of a higher rate code is a subset of the parity bit set of a 

lower rate code [12].  The RCPC scheme has another advantage in that it has the same 

encoder and decoder while operating at different rates.  The number of parity bits that the 

transmitter sends depends on the rate requirement.  At the decoder end, parity bits that are 

not transmitted are treated as erasures.  Thus, puncturing provides a low-complexity 

solution to the rate-adaptation problem. 

Motivated by these observations, this dissertation first proposes the puncturing 

algorithm for LDPC codes with short block lengths.  Based on the puncturing algorithm, 

a new class of codes is proposed that can be efficiently encoded as well as can be 

punctured in a rate-compatible fashion.  The proposed LDPC codes will be shown to 

have a linear-time encoder and have good performance under puncturing for a wide range 

of rates.  Finally, we verify that the proposed codes show good throughput performance 

when they are applied to IR-HARQ systems over time-varying channels. 

This dissertation is organized as follows: 

In Chapter 1, a brief outline of the dissertation and organization of each chapter are 
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described.  Chapter 2 introduces fundamentals of channel coding, LDPC codes and their 

iterative decoding algorithm, and efficient encoding methods of LDPC codes.  Chapter 2 

also presents IRA codes which have most popular structure, i.e., bi-diagonal structure, in 

the international standards recently.  Chapter 3 covers the proposed puncturing algorithm 

which finds the best puncturing locations for a given parity-check matrix.  The proposed 

puncturing algorithm consist of two steps, that is, grouping and sorting.  These two-step 

puncturing algorithm is verified through the simulations.  Based on the proposed 

puncturing algorithm, Chapter 4 introduces design of a new class of codes, called E2RC 

codes.  The code construction algorithm and efficient encoding structure with a simple 

shift-register circuit are dealt with in this chapter.  In the simulations, we compare the 

puncturing performance of E2RC codes with that of other irregular LDPC codes including 

eIRA codes.  The proposed E2RC codes are applied to IR-HARQ systems in Chapter 5.  

In this chapter, we verify that the proposed E2RC codes have better throughput 

performance than other LDPC codes from the simulations.  Finally, in Chapter 6, 

summary of our contributions and future work are discussed. 
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CHAPTER II : 

 

BACKGROUND 

Channel coding is an essential technique to cope with errors occurring in channels of 

communication systems and storage systems.  Channel coding has flourished in two 

branches.  Channel errors can be corrected with forward error correction (FEC) codes.  

On the other hand, a receiver may request retransmission of the previous data if it fails to 

recover them, which is called automatic repeat request (ARQ).  FEC codes can be 

classified into block codes, such as cyclic codes and LDPC codes, and tree codes, such as 

convolutional codes and Turbo codes.  In this chapter, we briefly explain the block codes 

where LDPC codes are specified. 

Let us consider linear block codes over the binary field { }( )2 0,1 , ,F + × .  Let 2
NF  be 

the N-dimensional vector space over 2F .  Then, an (N, K) linear block code C  is defined 

as K-dimensional subspace of 2
NF , where K is a data word length and N is a codeword 

length.  Since C  is a subspace of dimension K, there are K linearly independent vectors 

0 1 -1Kg , g , , g  which span C .  Let [ ]0 1 1, , , Km m m −=m  be the data word and 

[ ]0 1 1, , , Nc c c −=c  be the corresponding codeword in the code C .  The mapping →m c  

is thus naturally written as 0 0 1 1 1 1K Km m m − −= + + +c g g g .  This relationship can be 

represented in the matrix form G=c m , where G  is a K N×  matrix; 
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0

1

1K

G

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

g
g

g

. 

We call the matrix G  the generator matrix for C .  In fact, C  is the row space of G .  

The encoding process can be viewed as an injective mapping that maps vectors from the 

K -dimensional vector space into vectors from the N -dimensional vector space.  The 

ratio 

KR
N

=  

is called code rate. 

On the other hand, the null space C⊥  of C  has dimension N K−  and is spanned by 

N K−  linearly independent vectors 0 1 1, , , N K− −h h h .  Since each i C⊥∈h , we should 

have for any C∈c  that 

0,T
i i⋅ = ∀h c . 

This relationship can be represented in the matrix form as TH ⋅ =c 0 , where the matrix H 

is the so-called parity-check matrix defined as 

0

1

1N K

H

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

h
h

h

. 

A low-density parity-check code is so called because the parity-check matrix H has a 

low density of 1s.  We address the details of LDPC codes in the following chapter. 
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2.1 LOW-DENSITY PARITY-CHECK CODES 

Every LDPC code is uniquely specified by its parity-check matrix H or, equivalently, by 

means of the Tanner graph [13], as illustrated in Figure 2.1.  The Tanner graph consists of 

two types of nodes: variable nodes and check nodes, which are connected by edges.  

Since there can be no direct connection between any two nodes of the same type, the 

Tanner graph is said to be bipartite.  Consider an LDPC code defined by its 

corresponding Tanner graph.  Each variable node, depicted by a circle, represents one bit 

of a codeword, and every check node, depicted by a square, represents one parity-check 

equation. 

 

H =

a b c d e f g

1 0 1 0 1 0 1
1 1 0 0 0 1 0
0 1 1 1 0 0 1
0 0 0 1 1 1 1

a b c d e f g

A

B

C

D

A B C D

 

Figure 2.1 A parity-check matrix and its Tanner graph; Thick lines in the graph implies cycle 4. 

 

Since we are considering N codeword length and K data word length, the Tanner graph 

contains N variable nodes and M check nodes, where M N K= − .  Let us denote the 

parity-check matrix ( )
1 ,1i j i M j N

H h
≤ ≤ ≤ ≤

= .  Then, the i-th check node is connected to the j-

th variable node if and only if 1i jh = .  For example, 1 in column f and row D in the 

parity-check matrix in Figure 2.1 corresponds to an edge connection between variable 
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node f and check node D in the Tanner graph.  If there are d edges emanating from a node, 

variable or check node, we say that node has degree d.  In Figure 2.1, variable node f has 

degree 2 and check node D has degree 4.  Tanner graphs can also serve as a nice 

visualization tool for a variety of issues concerning LDPC codes. 

 

Definition 2.1:  A cycle of length l  in a Tanner graph is a path comprised of l  edges 

that begins and ends at the same node, whereby every edge has been traversed only once. 

 

The length of a cycle is the number of edges in that path.  Usually, LDPC codes contain 

many cycles of different lengths in their Tanner graph. 

 

Definition 2.2:  The girth in a Tanner graph is the minimum cycle length of the graph. 

 

The girth has a great importance for the code’s performance.  Since Tanner graphs are 

bipartite, the smallest girth has length 4, as shown by the thick line in Figure 2.1.  

However, it is desirable to avoid short cycles in designing LDPC codes since such cycles 

can cause poor performance. 

An ensemble of LDPC codes is defined by two generating polynomials of the degree 

distributions, called a degree distribution pair, for the variable and check nodes.  That is, 

( ) 1

2

cd
i

i
i

x x −

=

= ∑λ λ , 

( ) 1

2

vd
i

i
i

x x −

=

= ∑ρ ρ , 

where λi is the fraction of edges emanating from variable nodes of degree i, ρi is the 
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fraction of edges emanating from check nodes of degree i, and dv and dc denote the 

maximum variable node and check node degrees, respectively. 

As a special case when each of ( )xλ  and ( )xρ  is monomial, an LDPC code is said to 

be regular.  In fact, an LDPC code defined with a parity-check matrix that contains the 

same number of 1s in each column (dv) and the same number of 1s in each row (dc) is 

said to be (dv, dc) regular LDPC codes.  The number of all 1s in H is equal to cMd , and 

also to vNd .  Hence, the code rate R of a regular LDPC code can be expressed as 

1

1 .v

c

N MR
N

M
N

d
d

−
=

= −

= −

 

It is shown in [1] that the regular LDPC codes with the best performance have dv = 3. 

In general cases, where the number of 1s per column or row is not constant in the 

parity-check matrix H, an LDPC code is said to be irregular.  Assume that there are N 

variable nodes and M check nodes.  Then, the number of variable nodes of degree i is 

( )

( )

vd

j=2

1

0

/
/

/ ,
x

i
v

j

i

iN i N
j

iN
dx

λ
λ

λ

λ

=

=

∑

∫

 

and the total number of edges in the Tanner graph from the variable node point is 
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( )

( )

1
2

0

1

0

.

vd
i

i

E N
x dx

N

x dx

λ

λ

λ

=

=

=

∑
∫

∫

 

Likewise, the total number of edges from check node point is 

( )
1

0

ME
x dxρ

=
∫

. 

Thus, the code rate of an irregular LDPC code can be obtained as 

( )
( )

1

0
1

0

1

1 .

MR
N

x dx

x dx

ρ

λ

= −

= − ∫
∫

 

Sometimes it is convenient to have variable and check node distributions from the node 

perspective.  That is, the fractions of variable and check nodes of each degree are 

'

2

/
/v

i
i d

jj

i
j

=

=
∑

λλ
λ

, 

'

2

/
/c

i
i d

jj

i
j

=

=
∑

ρρ
ρ

, 

where '
iλ  and '

iρ  are fractions of variable and check nodes with degree i, respectively. 

Irregular LDPC codes are more flexible in their design because of the relaxed constraints 

and have proved to perform much better then the regular LDPC codes [7]. 
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2.2 ITERATIVE DECODING ALGORITHM 

This section summarizes the iterative decoding of LDPC codes based on the belief 

propagation (BP) algorithm.  The decoding problem consists of finding the most likely 

vector x  such that 0⋅ =H x , where H is a parity-check matrix defining an LDPC code.   

We consider binary phase shift keying (BPSK) modulated input data over the additive 

white Gaussian noise (AWGN) channel.  Let N -tuple vector [ ]1, , Nx x=x  be a BPSK 

modulated codeword at the transmitter, where { }1,1ix ∈ − .  The codeword bits are 

modulated according to 

( )1

1 2 ,

ic
i

i

x

c

= −

= −
 

where ci is the i-th bit of the codeword [ ]1, , Nc c=c .  Then, the received vector at the 

receiver can be expressed as 

= +y x n , 

where [ ]1, , Ny y=y , iy R∈ , and the noise vector [ ]1, , Nn n=n  is composed of N 

independent additive noise in  chosen from zero-mean Gaussian distribution with the 

standard deviation σ  

( )
2

2

1 exp
22n
aP a
σπσ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

Much like the optimal maximum a posteriori (MAP) symbol-by-symbol decoding of 

trellis codes, we try to compute the a posteriori probability (APP) that ci equals 1, given 

the received sequence y  and the fact that c  must satisfy some constraints.  Without loss 

of generality, we focus on decoding the i-th bit of the codeword.  First, let us think about 
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the following APP ratio: 

[ ]
[ ]

Pr 0 | ,
Pr 1| ,

i i

i i

c S
c S
=
=

y
y

, 

where Si is the event that the bits in c  satisfy the dc parity-check constraints involving ci.  

If ic  is 0, the remaining (dc - 1) bits in a given parity-check equation involving ci must 

contain an even number of 1s for Si to occur.  On the other hand, if ic  is 1, each parity-

check constraint involving ci must contain an odd number of 1s.  The following Lemma 

will be helpful for further analysis. 

 

Lemma 2.1 [1]: Consider a sequence of m independent bits [ ]1, , ma a=a  with 

[ ]Pr 1i ia P= = .  The probability that a contains an even number of 1s is 

( )
1

1 1 1 2
2 2

m

i
i

P
=

+ −∏ . 

Proof: We prove this by induction.  If a sequence of m independent bits [ ]1, , ma a=a  

contains an even number of 1s, the modulo-2 sum of all bits in a , designated as Am, is 0.  

For m = 2, we can have 

[ ] [ ]

( ) ( )

( )( )

( )

2 1 2

1 2 1 2

1 2

2

1

Pr 0 Pr 0

1 1

1 1 1 2 1 2
2 2

1 1 1 2 .
2 2 i

i

A a a

PP P P

P P

P
=

= = + =

= + − −

= + − −

= + −∏

 

Assume that the equation holds for 1m L= − : 
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[ ] ( )
1

1
1

1 1Pr 0 1 2
2 2

L

L i
i

A P
−

−
=

= = + −∏ . 

Then, for m L= , we get 

[ ] [ ]

[ ]( )( )

[ ]( )( ) ( )

( )

1

1

1

1

Pr 0 Pr 0

1 1 1 2 Pr 1 1 2
2 2

1 1 1 2 1 Pr 0 1 2
2 2

1 1 1 2 .
2 2

L L L

L L

L L

L

i
i

A A a

A P

A P

P

−

−

−

=

= = + =

= + − = −

= + − − = −

= + −∏

 

■ 

From the Lemma 2.1, we are ready to get the APP ratio for ic . 

 

Theorem 2.1 [1]: Assume that the received samples in the received vector y  are 

statistically independent.  Let iS  be the event that the bits in c  satisfy the cd  parity-

check constraints involving ic .  Then, the APP ratio for ic  given y  and iS  is 

[ ]
[ ]

[ ]
[ ]

( )
{ }

( )
{ }

\

\

1 1 2 Pr 1|
Pr 0 | , Pr 0 |
Pr 1| , Pr 1|

1 1 2Pr 1|

i j

i j

kj kj
j C k R ii i i i

i i i i
kj kj

j C k R i

c y
c S c y
c S c y

c y

∈ ∈

∈ ∈

⎛ ⎞
⎡ ⎤+ − =⎜ ⎟⎣ ⎦⎜ ⎟= = ⎝ ⎠= ⋅

= = ⎛ ⎞
⎡ ⎤− − =⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

∏ ∏

∏ ∏

y
y

, 

where kjc  and kjy  are the k-th bit in the j-th parity-check equation involving ic  and the 

received sample corresponding kjc , respectively. 

Proof: By applying Bayes’ rule, we have 
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[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ]
[ ]

Pr 0 | , Pr 0 | Pr | 0, Pr
Pr 1| , Pr 1| Pr | 1, Pr

Pr 0 | Pr | 0,
.

Pr 1| Pr | 1,

i i i i i i i

i i i i i i i

i i i i

i i i i

c S c y S c S
c S c y S c S

c y S c
c y S c

= = =
= ⋅

= = =

= =
= ⋅

= =

y y
y y

y
y

 

From Lemma 2.1, the probability of an odd number of 1s in the other 1cd −  bits of the j-

th parity-check equation is 

( )
\

1 1 1 2Pr 1|
2 2

j

kj kj
k R i

c y
∈

⎡ ⎤− − =⎣ ⎦∏ . 

Since iy  is assumed to be statistically independent, the probability that all cd  parity-

check constraints are satisfied is the product of all such probabilities: 

[ ]
[ ]

( )
{ }

( )
{ }

\

\

1 1 2 Pr 1|
Pr | 0,
Pr | 1,

1 1 2Pr 1|

i j

i j

kj kj
j C k R ii i

i i
kj kj

j C k R i

c y
S c
S c

c y

∈ ∈

∈ ∈

⎛ ⎞
⎡ ⎤+ − =⎜ ⎟⎣ ⎦⎜ ⎟= ⎝ ⎠=

= ⎛ ⎞
⎡ ⎤− − =⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

∏ ∏

∏ ∏

y
y

. 

■ 

The computation of the APP ratio as given by the formula in the above Theorem 2.1 is 

complex.  Gallager instead provided an iterative algorithm that is exactly the BP based 

decoding approach nowadays.  Before we give the iterative decoding algorithm, we will 

need the following result. 

 

Lemma 2.2: Suppose i i iy x n= + , where ( )2~ 0,in σN  and [ ] [ ]Pr 1 Pr 1i ix x= + = = −  

1/ 2= , then 

[ ] 22 /

1Pr | .
1i yx

x x y
e σ−

= =
+
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Proof: 

[ ] ( ) [ ]
( )

( )

( ) ( )

( ) ( )

2 2

2 22 2

2

2 2

2 2

2

/ 2

1 / 2 1 / 2

/

/ /

1 / 1 /

2 /

| Pr
Pr |

1
2

1 1
2 2

1

1 .
1

i i
i

y x

y y

xy

y y

y x y x

yx

p y x x x x
x x y

p y

e

e e

e
e e

e e

e

σ

σ σ

σ

σ σ

σ σ

σ

− −

− − − +

−

− − +

−

= =
= =

=
+

=
+

=
+

=
+

 

■ 

With these results, we formulate an iterative decoding algorithm for LDPC codes, which 

is known as the message passing algorithm.  The information is iteratively exchanged 

between the neighboring nodes in the Tanner graph by passing messages along the edges.   

Each message can be associated to the codeword bit corresponding to the variable node 

incident to the edge carrying the message.  A message sent from either check or variable 

node along an adjacent edge should not depend on the message previously received along 

that edge. 

A message from the variable node i to the check node j in the l-th iteration, carrying the 

probability that the value of the i-th bit is k, is denoted by ( ) ( )l
i jq k .  On the other hand, a 

message from the check node j to the variable node i in the l-th iteration, carrying the 

probability that the value of the i-th bit is k, is ( ) ( )l
j ir k .  Initially, the variable nodes only 

have information about the channel output values of their corresponding bits.  Since no 
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additional information from the neighboring check nodes is available, they send the 

message along adjacent edges: 

( ) 2
(0)

2 /

10
1 i

ij y
q

e σ−
=

+
, 

( ) 2
(0)

2 /

11
1 i

ij y
q

e σ
=

+
. 

Subsequently, the messages are iteratively exchanged between check nodes and 

variable nodes.  In Figure 2.2, we see a check node connected to dc variable nodes.  In 

each iteration, the check node will receive messages from its neighboring variable nodes, 

process that information, and pass the updated message back to the neighboring variable 

nodes: 

( ) ( )( )( ) ( 1)

\

1 10 1 2 1
2 2

j

l l
ji k j

k R i

r q −

∈

= + −∏ , 

( ) ( )( )( ) ( 1)

\

1 11 1 2 1
2 2

j

l l
ji k j

k R i

r q −

∈

= − −∏ . 

 

j

1 .   .   .

rj1
(l)(k)

2 dc

q2j
(l-1)(k) q   j

(l-1)(k)dc

 

Figure 2.2 The Check node message update. 



 16

Furthermore, the message passing from the variable node is as shown in Figure 2.3.  

Similarly, each variable node collects messages from its neighboring check nodes, 

calculates the probability that its corresponding bit is 1 and sends it to the neighboring 

check nodes: 

( )
( )

( )
( )

( )( )
( )

( )
( ) (0)

\
( ) (0) ( )

\

1 1
1 1 1 1

1 1 1
i

i

l
kil

k C jij ij
l l

ij ij ki
k C j

r
q q

q q r
∈

∈

−
− −

= ⋅
∏
∏

, 

whereby the message received from the check node j  was left out, since the updated 

message has to depend solely on extrinsic information.  Then, we easily get 

( ) ( ) ( )( ) (0) ( )

\

0 0 0
i

l l
ij ij ki

k C j

q q r
∈

= ⋅ ∏ , 

( ) ( ) ( )( ) (0) ( )

\

1 1 1
i

l l
ij ij ki

k C j

q q r
∈

= ⋅ ∏ . 

 

2 .   .   .

r2i
(l)(k)

i

qi1
(0)(k)

dv

1 dv

qi1
(l)(k) r   i

(l)(k)

 

Figure 2.3 Variable node message update. 
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After receiving the check node messages, a variable node i calculates the probability, 

[ ]Pr 1| ,i ic S= y  by taking into consideration all incoming check node messages.  If 

ˆ 0H c⋅ = , where 

[ ] 11, if Pr 1| ,ˆ 2
0, otherwise,

i ic S
c

⎧ = >⎪= ⎨
⎪⎩

y
 

or if the maximum number of iterations has been reached, the algorithm stops; otherwise, 

a new iteration is started. 

This algorithm will converge to the true maximum APP with the growing number of 

iterations only if the messages are statistically independent, which is the case only if the 

graph corresponding to H is cycle-free.  However, the graphs of practical codes will 

never be completely cycle-free.  Therefore, the algorithm will give us an approximate 

solution for the APP, which fortunately still yields a remarkable performance. 

Up to this point, the decoder analysis has been treated in the probability domain.  In the 

algorithm, we can notice a substantial number of multiplications, which tend to become 

numerically unstable and are harder to implement in hardware compared to the additions.  

To simplify those equations, we introduce the following notation: 

( ) [ ]
[ ]

Pr 0 |
log

Pr 1|
i i

i
i i

c y
L c

c y
=

=
=

, 

called the log-likelihood ratio (LLR).  The probability distribution for a binary random 

variable is uniquely specified by ( )iL c .  Its sign indicates the most likely value for ic , 

while its magnitude is a measure of certainty for that decision.  Also, let us define 
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      ( ) ( )
( )
0

log
1

ji
ji

ji

r
L r

r
, 

and ( ) ( )
( )
0

log
1

ij
ij

ij

q
L q

q
. 

Then, the initialization step becomes 

( ) ( )

( )
( )

2

2

1
2 /

1
2 /

2

1
log

1

2 ,

i

i

ij i

y

y

i

L q L c

e

e

y

σ

σ

σ

−
−

−
+

=

+
=

+

=

 

where σ  denotes the standard deviation of the zero-mean white Gaussian noise.  The 

constant of proportionality 2/σ2 is called the channel reliability.  Let us consider the 

following relationship: 

0
0 1

1

1

1tanh log
2

1 2 .

p p p
p

p

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= −

 

Using this equation, we have 

( ) ( )
( )

( )

( )( )

( )

\

\

01 1tanh tanh log
2 2 1

1 2 1

1 2 1

1tanh .
2

j

j

ji
ji

ji

ji

kj
k R i

kj
k R i

r
L r

r

r

q

L q

∈

∈

⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= −

= −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏

∏

 

Thus, the check node update equation can be 
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( ) ( )1

\

12 tanh tanh .
2

j

ji kj
k R i

L r L q−

∈

⎧ ⎫⎪ ⎪⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∏  

The problem with this expression is that we are still left with a product.  We can remedy 

this by considering ( )ijL q  as sign and magnitude separately.  Let us rewrite ( )ijL q  as 

( )ij ij ijL q α β= , 

where ( )( )ij ijsign L qα  and ( )ij ijL qβ . 

Then, the previous check node update results can be rewritten as 

( )
\ \

1 1tanh tanh
2 2

j j

ji i j k j
k R i k R i

L r α β
∈ ∈

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ ∏ . 

Then, we have 

( )

( )

1

\ \

1 1

\\

\\

12 tanh tanh
2

12 tanh log log tanh
2

,

j j

jj

jj

ji kj kj
k R i k R i

kj kj
k R ik R i

kj kj
k R ik R i

L r α β

α β

α β

−

∈ ∈

− −

∈∈

∈∈

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∏ ∏

∑∏

∑∏ Φ Φ

 

where we have defined 

( ) 1 1log tanh log
2 1

x

x

ex x
e
+⎛ ⎞− =⎜ ⎟ −⎝ ⎠

Φ . 

We have shown how the updated check node message can be calculated in the log 

domain.  On the other hand, the formula for a variable node message update in the log 

domain can be easily derived as 
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( ) ( )
( )

[ ]
[ ]

( )

( )

( ) ( )

\

\

\

0
log

1

0
Pr 0 |

log log
Pr 1| 1

.

i

i

i

ij
i j

ij

ki
k C ji i

i i ki
k C j

i ki
k C j

q
L q

q

r
c y
c y r

L c L r

∈

∈

∈

=

=
= +

=

= +

∏
∏

∑

 

The first term on the right-hand side represents the contribution from the i-th channel 

output, while the second term represents messages received from the neighboring check 

nodes.  Here, all incoming check node messages are taken into account.  After each 

iteration, the decoder has to evaluate the LLR values for each variable node and check if 

all the parity-check constraints are fulfilled by verifying if ˆ 0H c⋅ = , where 

( )1, if 0,ˆ
0, otherwise.

iL c
c

⎧ <
= ⎨
⎩

 

Again, if all parity-check constraints are fulfilled or if the maximum number of iterations 

has been reached, the decoder stops; otherwise, a new iteration is started. 

 

2.3 EFFICIENT ENCODING METHOD 

In general, encoder for LDPC codes can be difficult to implement efficiently.  

Implementing an LDPC encoder with a conventional way using a generator matrix G  has 

a complexity quadratic in block length.  If the parity-check matrix H  is sparse, usually 

G  is dense, meaning that it contains a significant number of 1s and that it requires more 

XOR operators to implement.  To attack this problem, Richardson et al. propose an 

approach in [8] where they show how LDPC codes can be encoded with linear 
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complexity if H  is brought to an approximate lower triangular form.  Alternatively, 

encoding can be simplified via algebraic and combinatorial code construction methods.   

Such “structured” codes can be realized with simple encoders based on shift-register 

circuits.  This section briefly introduces the efficient encoding method in [8]. 

Suppose a given parity-check matrix H  is M N× , and the associated codeword c  

such that TH ⋅ =c 0 .  Let us denote the size of message symbols K N M= − .  The 

straightforward way of constructing an encoder for such a code is to change H  into an 

equivalent lower triangular form with Gaussian elimination, as shown in Figure 2.4. 

 

0
1

1
1

1
1

1
1

1
1

1

N

M

MK

1
1

 

Figure 2.4 Lower triangular form. 

 

Let us denote the systematic part of the codeword c as m  and the non-systematic part 

of the codeword as p  such that  ( )|=c m p .  For K  desired message symbols, M parity 
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symbols can be determined using backward substitution.  That is, 

1

, ,
1 1

K i

i i j j i j K j
j j

p H s H p
−

+
= =

= +∑ ∑ , where 0 i M≤ < . 

However, the complexity of such an encoding scheme is huge.  That is, converting the 

matrix H  into the desired form requires ( )3O N  operations, and the actual encoding 

requires ( )2O N  operations.  Richardson and Urbanke proposed the low-complexity 

encoding method, which requires ( )O N  operations [8].  We can convert the given parity-

check matrix to the form shown in Figure 2.5 by performing row and column 

permutations. 

 

01
1

1
1

1
1

N

gK

M

M-g

A B

C D E

T
M-g

g

 

Figure 2.5 Approximate lower triangular form. 

 

Suppose we bring the matrix in the form 
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A B T
H

C D E
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

where A  is ( )M g K− × , B  is ( )M g g− × , T  is ( ) ( )M g M g− × − , C  is g K× , D  is 

g g× , and E  is ( )g M g× − .  As in Figure 2.5, T  is lower triangular with 1s along the 

diagonal, and these matrices are sparse.  Let us consider the following matrix: 

1

0I
ET I−

⎛ ⎞
⎜ ⎟−⎝ ⎠

, 

and multiply this matrix to the left of H .  Then, we have 

1 1 0
A B T

ET A C ET B D− −

⎛ ⎞
⎜ ⎟− + − +⎝ ⎠

. 

Let ( )1 2, ,c m p p= , where m denotes the systematic part of a codeword c , and the parity 

part splits into two parts, namely, 1p  of length g  and 2p of length ( )M g− .  From the 

equation 0TH c⋅ = , we have the following two equations: 

( ) ( )
1 2

1 1
1

0

0.

T T T

T T

Am Bp Tp

ET A C m ET B D p− −

⎧ + + =⎪
⎨
− + + − + =⎪⎩

 

Then, we can obtain 1p  and 2p  as follows: 

( )
( )

1 1
1

1
2 1 ,

T T

T T T

p ET A C m

p T Am Bp

φ− −

−

⎧ = − − +⎪
⎨

= − +⎪⎩
 

where we define 1ET B Dφ −= − +  and assume for the moment that φ  is nonsingular.  

Rather than precomputing ( )1 1ET A Cφ− −− − +  and then multiplying with Tm , we can 

reduce the complexity more by breaking the computation into several smaller steps.  By 

doing so, we can accomplish the encoding step in complexity ( )O N . 
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2.4 IRREGULAR REPEAT ACCUMULATE CODES 

Jin et al. introduced a promising class of codes, called Irregular Repeat Accumulate 

(IRA) codes, which has several strong points [10].  First, IRA codes can be encoded in 

linear time like Turbo codes.  Second, their performance is superior to turbo codes of 

comparable complexity and as good as best-known irregular LDPC codes.  In addition, 

they have a simple structure, that is, the parity part of IRA codes has a bi-diagonal 

structure, illustrated in the Figure 2.6, and their message part adopts arbitrary permutation 

to maintain the check node degree concentrated. 

The eIRA codes by Yang et al. extended the IRA codes [11].  The eIRA codes achieve 

good performance by assigning degree-2 nodes to nonsystematic bits and ensuring that 

the degree-2 nodes do not form a cycle amongst themselves.  Furthermore, they avoid 

cycles of length-4 and make the systematic bits correspond to variable nodes of degree 

higher than two.  They ensure efficient encoding by forming the parity in the bi-diagonal 

structure like IRA codes as shown in Figure 2.6.  

 

2

1
1 1

1 1

1 1
1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 2.6 Bi-diagonal structure in IRA (or eIRA) codes. 
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Let H1 and H2 be the systematic part and nonsystematic part of the parity-check matrix 

[ ]1 2|H H H=  

of eIRA codes.  The systematic generator matrix G is given by 

[ ]|kG I P= , 

where Ik denotes an k k× identity matrix and P denotes parity part.  Since  

[ ] 1

2

1 2

|

0,

T
T

k T

T T

H
G H I P

H

H P H

⎡ ⎤
⋅ = ⋅ ⎢ ⎥

⎣ ⎦

= + ⋅ =

 

we can get 1 2
T TP H H −= ⋅ .  Then, the systematic codeword is represented by 

[ ]|kc m G m I P= ⋅ = ⋅ =  1 2| T Tm m H H −⎡ ⎤⋅ ⋅⎣ ⎦ .  We can implement a simple encoder as 

shown in Figure 2.7.  The encoding complexity can be made low if the multiplication 

with H2
-T can be implemented efficiently.  For eIRA codes, the multiplication with H2

-T 

can be implemented with a differential encoder whose transfer function is 1
1 D⊕

. 

 

H1
T

m
H2

-T

m

p

C = [ m | p ]
 

Figure 2.7 Encoder example of eIRA codes. 
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CHAPTER III : 

 

RATE-COMPATIBLE PUNCTURING ALGORITHM 

Over time-varying channels such as wireless channels, a communication system needs 

to be operated adaptively at different rates.  One possible solution to this problem is to 

use several dedicated codes for different rates.  However, this requires several different 

encoder/decoder pairs, which increases the complexity.  On the other hand, we can also 

use codeword symbol puncturing to obtain a channel coding scheme that provides a 

family of codes with different coding rates according to the channel state information 

(CSI).  In terms of complexity, this would be much more efficient than providing several 

dedicated codes for different rates since it requires only one encoder/decoder pair. 

Rate-compatible punctured codes (RCPC) were introduced by Hagenauer [12].  In 

RCPC codes, the parity bits of a higher-rate code are a subset of the parity bits of the 

lower-rate code.  This subset property is suitable for applying RCPC to incremental 

redundancy (IR) automatic repeat request (ARQ) systems. 

The rate-compatible puncturing of LDPC codes based on degree distributions was 

introduced by Ha et al. [14].  They proposed a design rule for good puncturing 

distributions with a simplified equation, called a steady-state equation.  However, this 

method assumes infinitely long block lengths, and extending this to short block lengths is 

a significant challenge.  In this thesis, we propose efficient puncturing algorithm for short 

block length (up to several thousand symbols) LDPC codes. 
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3.1 PRELIMINARY ANALYSIS 

Suppose that the Tanner graph of the mother code is denoted by ( , )G V C E= ∪ , 

where V denotes the set of variable nodes, C denotes the set of check nodes, and E 

denotes the set of edges.  Let S V⊆ be a subset of the variable nodes.  Then, the set of 

check node neighbors of S will be denoted by N(S).  Similar notation will be used to 

denote the set of variable node neighbors of a subset of the check nodes.  The set of 

unpunctured nodes is denoted by 0V ; then, the set of punctured variable nodes is denoted 

by 0\V V . 

 

Definition 3.1: [1-step recoverable node] A punctured variable node 0\p V V∈  is called 

a 1-step recoverable (1-SR) node if there exists { }( )c N p∈  such that { }( ) { } 0\N c p V⊆ . 

 

1-step recoverable nodes are so named because, in the absence of any channel errors, 

these nodes can be decoded in one step of iterative decoding.  This definition can be 

generalized to k-step recoverable (k-SR) nodes (see Figure 3.1).  Let 1V   be the set of 1-

SR nodes among the punctured variable nodes.  Similarly, let kV be the set of k-step 

recoverable nodes, which are defined as follows: 

 

Definition 3.2: [k-step recoverable node] A punctured variable node 0\p V V∈  is called 

k-step recoverable (k-SR) node if there exists { }( )c N p∈  such that { }( ) { }
1

0

\
k

i
i

N c p V
−

=

⊆∪  

and that there exists { }( ) { }\q N c p∈ , where 1kq V −∈ . 
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1-SR nodes

2-SR nodes1-SR nodes

3-SR nodes

 : unpunctured variable nodes

 : punctured variable nodes

 : check nodes  

Figure 3.1 k-SR node in the recovery tree. 

 

Note that the k-SR node will be recovered after exactly k iterations of iterative 

decoding assuming that the channel does not cause any errors.  So, a large number of 

low-SR nodes are intuitively likely to reduce the overall number of iterations, which 

results in good puncturing performance. 

Let us consider building a tree originating from a k-SR node v .  First, we link v  with 

its guaranteed surviving check node c  and subsequently link c  with all variable nodes 

from the set { }( ) { }\N c v .  In the next step, this process is repeated on every new 

punctured variable node in the tree until every branch terminates with an unpunctured 

variable node.  The resulting tree is called the recovery tree of v .  We show an example 
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of a recovery tree in Figure 3.1.  The number of unpunctured nodes in the recovery tree of 

v  will be important, so we designate it as ( )S v  and ( ) 12S v =  in Figure 3.1.  Assuming 

that v  is recovered with the message-passing decoding algorithm on the recovery tree of 

v , we define the recovery-error probability of v , ( )eP v  as follows. 

 

Definition 3.3: [Recovery-error probability ( )eP v  of a k-SR node v ] For kv V∈  and 

1k ≥ , ( )eP v  is the probability of v  being recovered with a wrong symbol in the k-th 

iteration by the message through the surviving check node from unpunctured nodes in the 

recovery tree of v . 

 

When we transmit a punctured LDPC code over a binary erasure channel (BEC) with 

an erasure probability of ζ , the probability that a variable node v  in kV  is recovered in 

its recovery tree is expressed in a recursive form as shown in the following definition 3.4. 

 

Definition 3.4:  

( ) ( ) ( )
( )

( )
0

1

1

1 , for
, 1

, for 0,
c

S v d

j k
j

v V
v

v V and k

ζ
ζ ζ

γ ζ
−

=

− ∈⎧
⎪Ψ − = ⎨ Ψ ∈ >⎪
⎩
∏

 

where 0V  and kV  are sets of unpunctured nodes and k-SR nodes, respectively, and cd  is a 

degree of the survived check node of v , jγ ’s are the neighbors of the survived check 

node except for v , and j hVγ ∈  for 0 1h k≤ ≤ − . 
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The following Theorems 3.1-3 tell that the k-SR node with a smaller ( )S v  will have a 

smaller recovery-error probability.  The recovery-error probability of a variable node 

0kv V >∈  over a BEC with ζ  can be obtained as follows. 

 

Theorem 3.1: The ( )eP v  of 0kv V >∈ over a BEC with ζ  is 

( ) ( )( )1 1 ,
2eP v v ζ= −Ψ , 

and the probability that the variable node v  is recovered over a BEC with ζ  is ( ),v ζΨ . 

Proof: We will prove this fact by induction.  For 1k = , all variable nodes in the 

recovery tree of v  are in 0V .  Thus, 

( ) ( )( )

( ) ( )( )
( )( )

11 1 1
2

1 1 1
2

1 1 , ,
2

cd
e

S v

P v

v

ζ

ζ

ζ

−= − −

= − −

= −Ψ

  

where cd  is a degree of a survived check node of v .  Now, assume that for a variable 

node j kVγ ∈ , 

( ) ( )( )

( ) ( )( )

1 1 ,
2

1 1 1 .
2

j

e j j

S

P

γ

γ γ ζ

ζ

= −Ψ

= − −

 

Then for 1kv V +∈ , 
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( ) ( )

( ) ( )

( ) ( )( )
( )( )

1

1

1

1

1 1 ,
2

1 1 1
2

1 1 1
2

1 1 , ,
2

c

dc

j
j

d

e j j
j

S

S v

P

v

γ

γ γ ζ

ζ

ζ

ζ

−

=

−

=

⎛ ⎞
= − Ψ⎜ ⎟

⎝ ⎠

⎛ ⎞∑= − −⎜ ⎟⎜ ⎟
⎝ ⎠

= − −

= −Ψ

∏

 

where cd  is a degree of the survived check node of v , jγ ’s are the neighbors of the 

survived check node except for v , and the number of unpunctured nodes in the recovery 

tree of v  is ( ) ( )
1

1

cd

j
j

S v S γ
−

=

= ∑ . 

■ 

In Theorem 3.2, we consider the recovery-error probability of a variable node 0kv V >∈  

over a binary symmetric channel (BSC) with an erasure probability of ζ . 

 

Theorem 3.2: The ( )eP v  of 0kv V >∈ over a BSC with ζ  is 

( ) ( )( )1 1 , 2
2eP v v ζ= −Ψ . 

Proof: We will prove this by induction.  A recovery-error probability of a variable node 

1v V∈  will be 
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( ) ( )( )

( ) ( )( )
( )( )

11 1 1 2
2

1 1 1 2
2

1 1 , 2 ,
2

cd
e

S v

P v

v

ζ

ζ

ζ

−= − −

= − −

= −Ψ

  

where cd  is a degree of a survived check node of v .  Now, assume that 

( ) ( )( )

( ) ( )( )

1 1 , 2
2

1 1 1 2 ,
2

j

e j j

S

P

γ

γ γ ζ

ζ

= −Ψ

= − −

 

for a variable node j kVγ ∈ .  Then for 1kv V +∈ , 

( ) ( )

( ) ( )

( ) ( )( )
( )( )

1

1

1

1

1 1 , 2
2

1 1 1 2
2

1 1 1 2
2

1 1 , 2 ,
2

c

dc

j
j

d

e j j
j

S

S v

P

v

γ

γ γ ζ

ζ

ζ

ζ

−

=

−

=

⎛ ⎞
= − Ψ⎜ ⎟

⎝ ⎠

⎛ ⎞∑= − −⎜ ⎟⎜ ⎟
⎝ ⎠

= − −

= −Ψ

∏

 

where cd  is a degree of the survived check node of v , jγ ’s are the neighbors of the 

survived check node except for v , and the number of unpunctured nodes in the recovery 

tree of v  is ( ) ( )
1

1

cd

j
j

S v S γ
−

=

= ∑ . 

■ 

To obtain the recovery-error probability over AWGN channel, we need to define the 

function ( )xφ  in [15]. 



 33

 

Definition 3.5 [15]: 

( )
( )2 / 41 1/ 4 tanh , 0

2
1, 0.

u x xux e du x
x

x

π
φ

− −⎧ − >⎪= ⎨
⎪ =⎩

∫  

 

Theorem 3.3: The recovery-error probability of a variable node kv V∈  over an AWGN 

channel with Gaussian Approximation in [15] is ( ) ( )( )/ 2e uP v Q m v= , where ( )Q ⋅  is 

the Q-function, ( ) ( )( )( )( )0

1 1 1 ,u um v v mφ φ φ−= − −Ψ  for 
0

22 /um σ=  and noise variance 

2σ . 

Proof: An updated mean of a variable node 1v V∈  will be ( )( )0

1
1 1 1

cd

umφ φ
−

− ⎛ ⎞− −⎜ ⎟
⎝ ⎠

 

( )( ) ( )

0

1 1 1
S v

umφ φ− ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

( )( )( )0

1 1 , uv mφ φ−= −Ψ .  Assume that for a variable node 

kVγ ∈ , ( )um γ ( )( )( )0

1 1 , umφ γ φ−= −Ψ .  Then, for a variable node 1kv V +∈ , 

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( )( )

0

1

1
0

0

0

1
1

1

1

1

1

1 1

1 1

1 1

1 , ,

c j

dc

j
j

d S

u u
j

S

u

S v

u

u

m v m

m

m

v m

γ

γ

φ φ

φ φ

φ φ

φ φ

−

=

−
−

=

−

−

−

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

⎛ ⎞∑⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

= −Ψ

∏

 

where, 
0um  is the mean of a log-likelihood ratio message from the channel to 
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unpunctured variable nodes, cd  is a degree of a surviving check node of v , jγ ’s are the 

neighbors of the surviving check node except for v , ( ) ( )
1

1

cd

j
j

S S vγ
−

=

=∑ , and j hVγ ∈  for 

1 h k≤ ≤ . 

■ 

 

3.2 ALGORITHM FOR FINDING PUNCTURING LOCATIONS 

In this section, we present a two-step search algorithm for finding the puncturing 

pattern and order, that is, grouping and sorting.  In the grouping step, we separate all 

variable nodes into groups 0 1, , ... , kV V V .  In the sorting step, we determine the order of 

puncturing nodes within each group. 

The recovery-error probability is a probability for k-SR node to be recovered in the k-

th iteration with a wrong message.  Based on the Theorems 3.1-3, the search algorithm 

chooses a new puncturing node with the smallest recovery-error probability out of several 

candidates.  Before describing the search algorithm, we address two definitions below. 

 

Definition 3.6:[Effective column weight] For a parity-check matrix { }, 1 ,1j k j M k N
H h

≤ ≤ ≤ ≤
= , 

let { },: 1 and 1jh Mγ
ρρ ρΛ = = ≤ ≤  be a subset of row indices R .  The effective column 

weight ( ),effcw c R  is defined as c RΛ ∩ , where ⋅  is a cardinality of a set. 

 

Definition 3.7:[Effective row weight] For a parity-check matrix { }, 1 ,1j k j M k N
H h

≤ ≤ ≤ ≤
= , 
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let { },: 1 and 1h Nρ
ρ γγ γΓ = = ≤ ≤  be a subset of column indices C .  The effective row 

weight ( ),effrw r C  is defined as r CΓ ∩ , where ⋅  is a cardinality of a set. 

 

Proposed Grouping Algorithm 

STEP 0 [Initialization] For a given M N×  parity-check matrix H , 1k = , 0R  and 1R  are 

empty sets, { }1, 2,...,R M∞ = , { },: 1,1h Nρ
ρ γγ γΓ = = ≤ ≤ ,  { },: 1,1h Mγ

ρ γρ ρΛ = = ≤ ≤ , 

0V  and 1V  are empty sets, { }1, 2,...,V N∞ = , ( ) 0S j =  for all 1 j n≤ ≤ . 

STEP 1 [Group Column Indices] Form a set ρ
∞G  such that  for each Rρ ∞∈ . 

STEP 2 [Find Candidate Rows] Make a subset of R∞  (call it Ω ) such that ω∀ ∈Ω , 

( )min
eff effrw rw ,Vω ρ ρ∞ ∞ ∞= ≤ =G G  for any Rρ ∞∈ . 

STEP 3 [Group Row Indices] Make a set γ
∞C  such that Rγ γ

∞ ∞= Λ ∩C , for all ωγ ∞∈G , 

and ω∈Ω . 

STEP 4 [Find the Best Rows] Find a subset of Ω  (call it *Ω ) such that * *ω∀ ∈Ω , 

*c ω
∞∃ ∈G  such that ( )min

eff effcw cw ,c Rγ γ∞ ∞ ∞= ≤ =C C  for any ω∈Ω  and ωγ ∞∈C . 

STEP 5 [Make a Set of Ordered Pairs] Pick a column index * *c ω
∞∈G  with min

effcw  

randomly, when there is more than one column index with min
effcw .  Then, we will have an 

ordered pair ( ) ( ) ( ){ }* * * * * *
1 1 2 2, , , , ... , ,p pc c cω ω ω=O , where *

jω ’s and *
jc ’s are row and 

column indices with min
effcw  and min

effrw , respectively, and 1 j p≤ ≤ =O . 

STEP 6 [Find the Best Pair] Pick a pair ( )* *, cω  from O  such that ( ) ( )* *
jω ω≤W W , 
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where 1 j p≤ ≤ , ( ) ( )
*

*

j

j S
ωγ

ω γ
∈Γ

= ∑W .  If there is more than one pair satisfying the 

inequality, pick one randomly. 

STEP 7 [Update] { }*
k kV V c= ∪ , { }( )* *

0 0 \V V cω
∞= ∪ G , *\V V ϖ

∞ ∞ ∞= G , { }*
k kR R ω= ∪ , 

{ }( )* *
0 0 \R R ω ω∞= ∪ C , and *\R R ϖ

∞ ∞ ∞= C , ( ) 1S γ = for * *\ cωγ ∞∈G , ( ) ( )
{ }*

*

\ *c

S c S
ωγ

γ
∈ Γ

= ∑ . 

STEP 8 [Check Stop Condition] If V∞  is an empty set, then STOP. 

STEP 9 [Decision] If R∞  is not an empty set, then go to STEP 1. 

STEP 10 [No More Undetermined Rows] ( ){ }0 eff: and rw , 0R R Vρ ρ ρ∞ ∞= ∈ > . 

STEP 11 1k k= + , and go to STEP 1. 

 

In STEP 0, ρΓ  ( γΛ ) is a set of non-zero column (row) indices in the row ρ  (column γ ), 

and 0V , 1V , and V∞  are sets of unpunctured, 1-SR, and undetermined column indices, 

respectively.  When there are no more undetermined columns, the algorithm will stop. kR  

and R∞  are sets of row indices that are surviving check nodes of k-SR nodes and 

undetermined check nodes, respectively.  If a row contains a k-SR node, the k-SR node is 

also on the other 1vd −  rows, where vd  is a degree of the k-SR node.  The indices of the 

other 1vd −  rows of all k-SR nodes are assigned to 0R , and the rows in 0R  are excluded 

from the candidate rows for a new surviving check node of a k-SR node.  In STEP 1, ρ
∞G  

will have all the column indices both in ρΓ  and V∞ .  Thus, the cardinality of ρ
∞G  is 

( )effrw ,Vρ ∞ .  In STEP 2, we look for rows in R∞  with a minimum of ( )effrw , Vρ ∞  , 
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which is simply denoted as min
effrw .  Since the size of V∞  decreases by ρ

∞G  in STEP 7, 

the rows with min
effrw  will give us more k-SR nodes.  In general, there may be more than 

one row with min
effrw .  The set Ω  contains the row indices with min

effrw .  In STEP 3, γ
∞C  

will have row indices belonging to both γΛ  and R∞ .  Similar to ω
∞G , the cardinality of 

γ
∞C  is ( )effcw , Rγ ∞ .  We look for rows in which there is at least one column with a 

minimum of ( )effcw , Rγ ∞ , which is simply denoted as min
effcw .  Again, we will have more 

k-SR nodes with min
effcw  since in STEP 7, R∞  decreases by *Cω

∞ .  In STEP 6, we make a 

set O  of ordered pairs, each of which has a row and a column of the row with min
effrw  and 

min
effcw , respectively.  The set of ordered pairs is not unique since a row may have several 

columns with min
effcw .  In this case, we randomly choose a column from them.  In terms of 

maximizing kV , each ordered pair gives us statistically the same result.  Among the 

ordered pairs, we will choose the one with the highest probability (smallest recovery 

error) to be recovered in the k-th iteration. 

As in Theorems 3.1-3, we pick up a pair with the smallest ( )S c , which is equivalently 

evaluated with a measure W  for computational efficiency.  In STEP 7, we update the 

sets with the pair chosen in STEP 6.  In STEP 9, the cardinality of R∞  is checked.  If it is 

not zero, STEP 1 will be visited again.  Otherwise, R∞  is updated in STEP 10, where R∞  

takes rows ρ ’s with non-zero ( )min
effrw , Gρ ∞  in 0R .  In STEP 11, we increase k  by 1 and 

start looking (k+1)-SR nodes. 

In the parity-check matrix, the puncturing algorithm assigns each column to a group 
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among 0 1, , ... , kV V V .  If we permute rows and columns in the parity-check matrix such 

that columns in the same group are gathered and that elements corresponding to k-SR 

nodes are formed diagonal, then the parity-check matrix can be reconstructed as shown in 

Figure 3.3. 

 

Unpunctured parities and messages

0

V1 V2 VK...

0

0...

V0

0 0 0Survived
check nodes

for V1

Survived
check nodes

for VK

 

Figure 3.2 Logical structure of a parity-check matrix. 

 

By puncturing symbols in kV , the maximum achievable code rate maxr  can be 

expressed as 

0
max

1
1 /

K

j
j

rr
V N

=

=
−∑

, 

where 0r  is the mother code rate, N  is the block length of the mother code.  For a 

sequence of designed rates, 0 1 max... Mr r r r≤ ≤ ≤ ≤ , we can compute the required number 

of punctured nodes jNp  as 
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( )0j
j

N r r
Np

r

⎢ ⎥−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

for 0 j M≤ ≤ .  We will take jNp  nodes from kV ’s in terms of minimizing performance 

loss resulting from the puncturing.  Now, we discuss the sorting step, where we determine 

the order of puncturing within each group 0 1, , ... , kV V V . 

 

Proposed Sorting Algorithm 

STEP 0 [Initialization] For a given M N×  parity-check matrix, 1j = , 1k = , cΛ  is a set 

of non-zero row indices in the column c , 0P  is an empty sets, and { }1, 2, ..., M=R . 

STEP 1 If j M> , STOP. 

STEP 2 1j j−=P P . 

STEP 3 j j jNp Npδ = − P . 

STEP 4 If jNpδ  is zero, 1j j= +  and go to STEP 1. 

STEP 5 Make a set of column indices { }1 2, , ..., pc c c , for 1 kp V≤ ≤  from kV  such that 

{ }1 2, , ...,j pc c c c∀ ∈ , ( ) ( )max
eff eff effcw , cw cw ,jc c= ≥R R , for any kc V∈ . 

STEP 6 If 1p > , we take nodes *
jc  such that { }1 2, , ..., pc c c c∀ ∈ , ( ) ( )*deg degjc c≤ .  If 

there are multiple such nodes, we pick one from them arbitrary and call it *c . 

STEP 7 { }*
j j c=P P ∪ , { }*\k kV V c= , and *\ c= ΛR R , 1j jNp Npδ δ= − . 

STEP 8 If kV  is an empty set, 1k k= + , and { }1, 2, ..., M=R . 

STEP 9 Go to STEP 4. 



 40

In the proposed sorting algorithm, jP  will have column indices that are punctured to 

achieve rate jr .  Obviously, for 0r , 0P  is an empty set in the initialization.  In the 

algorithm, it is assumed that we will design rates from 0r  to Mr , which is less than or 

equal to maxr .  Thus, in STEP 1, if j  is larger than M , the algorithm will stop.  In STEP 

2, jP  takes the column indices in 1j−P , which makes the punctured LDPC codes rate-

compatible since all the punctured nodes for 1jr −  will be punctured again for jr .  In STEP 

3, jNpδ  accounts for how many additional nodes are needed to make jP  besides the 

ones in 1j−P .  The loop between STEP 4 and STEP 9 continues until jNpδ  becomes zero.  

In STEP 5, we look for nodes with the largest number of surviving check nodes, which is 

equivalent to nodes with max
effcw . 

We compute the additional number of punctured nodes to the ones in the previous rate 

1jr − .  If we need additional nodes, the algorithm looks for nodes with a maximum 

effective column weight max
effcw , which means the node with the maximum surviving 

check nodes.  We exclude rows with k-SR nodes from R  in STEP 7.  Thus, max
effcw  counts 

only surviving check nodes of a variable node.  In STEP 6, we choose nodes with the 

smallest column degree from { }1 2, , ..., pc c c .  This selection will give us nodes with the 

smallest number of dead check nodes in { }1 2, , ..., pc c c , which is max
eff- cwcd  for the 

smallest column degree of cd .  By puncturing a node with dead check nodes, the 

punctured node not only has a reliable message from the dead check nodes but also 

makes dead check nodes to the k-SR nodes connect to the dead check nodes.  Thus, we 

look for nodes with the largest number of surviving check nodes and the smallest number 
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of dead check nodes. 

 

3.3 SIMULATION RESULTS 

The proposed algorithms are based on the claim that a puncturing distribution that will 

be recovered within the smallest number of iterations guarantees better performance.  We 

verify the claim with computer simulations, where we show that punctured LDPC codes 

with the proposed algorithms have better performances than ones with the conventional 

random puncturing in terms of bit error rate (BER) and word error rate (WER).  The BER 

and WER performances are measured after observing at least 50 erroneous code words at 

each Eb/No value to guarantee statistical confidence.  The punctured LDPC codes are also 

compared with dedicated LDPC codes that are designed at the rates of the punctured 

LDPC codes. 

First, we implement half rate mother LDPC codes with a regular structure ( ( ) 2x xλ =  

and ( ) 5x xρ = ) at block lengths of 1024 and 4096.  We deliberately avoid cycle-4 loops 

in parity-check matrices of the mother codes to get the better minimum distance property 

[16].  By puncturing the mother codes, we implement punctured LDPC codes at rate 0.5, 

0.6, 0.7, and 0.8.  The block lengths of the punctured LDPC codes and the number of 

punctured parity bits for the rates are listed in Table 3.1.  Note that the block lengths of 

the punctured LDPC codes are shorter at higher rates.  Although punctured LDPC codes 

have shorter block lengths, a received LDPC code is decoded on the Tanner graph of its 

mother code.  For fair comparisons, dedicated LDPC codes are designed at the block 

lengths of the corresponding punctured LDPC codes for the rates. 
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Table 3.1 Block lengths of punctured LDPC codes; The lengths in parentheses are the 
number of punctured symbols at the rates. 

Code rates 
Block lengths 

0.5 0.6 0.7 0.8 

1024 1024 (0) 853 (171) 731 (293) 640 (384) 

4096 4096 (0) 3413 (683) 2926 (1170) 2560 (1536)

 

 

For (3,6) regular LDPC codes with block length 1024, the puncturing group 

distributions with the proposed grouping algorithm (denoted as Intentional) and the three 

different trials (denoted as Random 1, 2, and 3) of random selections are in Table 3.2.   

The distributions with the random puncturing are implemented three times with different 

random seeds to see the performance variations with the different levels of recoverability.   

In Table 3.2, the distribution with the intentional puncturing requires 3 iterations to 

recover all the punctured parity bits, meaning that the level of recoverability is 3.   

However, the distributions with the random puncturing require 9 iterations, which results 

in higher recovery-error probabilities of the symbols in the groups with higher indices. 

 

Table 3.2 Group distributions of the intentional puncturing and the random puncturing of 
a regular LDPC code with ( ) 2x xλ =   and ( ) 5x xρ =  at a block length of 1024; The largest 
code rate is 0.8. 

 0V  1V  2V  3V  4V 5V 6V 7V 8V 9V 10V 11V  12V  13V  14V

Intentional 640 294 78 12 0 0 0 0 0 0 0 0 0 0 0 

Random 1 640 108 60 44 45 37 42 33 11 4 0 0 0 0 0 

Random 2 640 100 50 38 36 26 28 27 30 28 19 2 0 0 0 

Random 3 640 100 46 32 26 18 19 17 20 23 25 25 26 15 3 
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Eb/No [dB]
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Intentional (R = 0.6, 0.7, 0.8)
Random 2 (R = 0.6, 0.7, 0.8)

 

Figure 3.3 Comparison between the intentional (filled) and random (unfilled) puncturing of a 
regular LDPC code at block length 1024; code rates are 0.5, 0.6, 0.7 and 0.8 from the left to the 
right, the puncturing distributions are from Intentional and Random in Table 3.2 and the BERs of 
the half rate mother are represented with the diamonds. 

 

The intentionally punctured LDPC codes are compared with the randomly punctured 

ones in Figure 3.2.  In the comparison, the intentional puncturing outperforms at all the 

rates.  The performance improvement with the proposed algorithm becomes more 

distinctive at higher rates.  At rate 0.8, to achieve a BER of 10-5, the intentionally 

punctured LDPC code has 3dB better Eb/No performance than that of the randomly 

punctured one. 
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Figure 3.4 Randomly punctured LDPC codes with three different random seeds; the circles, 
squares and triangles correspond to BERs of Random 1, 2, and 3 in Table 3.2, respectively, and 
the BERs of the half rate mother code at block length 1024 are represented with the diamonds. 

 

In Figure 3.4, we compared BER performance of the randomly punctured LDPC codes 

with three different random seeds at block length 1024, where the ones with the smallest 

and largest level of recoverability (denoted as Ramdom 1 and 3 in Table 3.2, respectively) 

show the best and the worst BER performances at rate 0.8, respectively.  Thus, the 

simulation results justify our design rule which looks for selections of punctured parity 

bits with a smaller level of recoverability for the highest rate, 0.8.  However the 

performances at the intermediate rates (0.6 and 0.7) in Figure 3.4 do not seem to depend 
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on the levels of recoverability since the punctured LDPC code with the puncturing 

distribution Random 3 has better performance than the one with Random 2. 
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Figure 3.5 Randomly punctured LDPC codes at rate 0.7 with (solid lines)/without (dashed lines) 
the sorting algorithm; the filled and unfilled circles are performances of the punctured LDPC 
codes with the puncturing distributions Random 2 and 3, respectively and the mother code has a 
block length of 1024. 

 

The distributions in Table 3.2 describe levels of recoverability of the punctured LDPC 

codes at the highest rate.  Thus, better group distribution of a punctured LDPC code does 

not guarantee better performance at intermediate rates if we do not carefully choose the 

order of puncturing.  For intentional puncturing, we apply the sorting algorithm to 
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determine the order of puncturing but in the case of random puncturing, we puncture 

parities with smaller node indices first.  The performances of the randomly punctured 

LDPC codes at the intermediate rates can also be improved by applying the sorting to the 

random puncturing. 

In Figure 3.5, we compare the performances of the punctured LDPC codes with 

Random 2 and Random 3 at rate 0.7 with/without the sorting algorithm.  The sorting 

algorithm improves the Eb/No performances of the punctured LDPC codes at a BER of 

10-5 by 0.5dB for Random 2 and 0.3dB for Random 3.  After applying the sorting 

algorithm, the punctured LDPC code with Random 2 has better performance than that of 

Random 3, which means the punctured LDPC with the smaller level of recoverability at 

the highest rate has better performance. 

One more thing to be noticed in Figure 3.4 is the BER performance variations with the 

different seeds.  The required Eb/No to achieve a BER of 10-5 at rate 0.8 has a difference 

of 2.2dB between the best (Random 1) and the worst (Random 3) cases.  The random 

puncturing may delete significant amount of parity bits in a stopping set, which results in 

severe performance degradation especially at higher rates.  It is hard to know whether a 

random puncturing results in catastrophic selections of punctured parity bits without 

time-consuming computer simulations.  However, by analyzing the level of recoverability 

under the framework of the proposed grouping algorithm, we can predict the performance 

of randomly punctured LDPC codes and rule out the catastrophic selections.  Thus, the 

proposed idea is also useful for designing randomly punctured LDPC codes. 

To compare performances of a dedicated and the punctured LDPC codes, we design a 

regular LDPC code ( ( ) 2x xλ =  and ( ) 9x xρ = ) for rate 0.7 at block length 731.  The 
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block length is chosen for the block lengths of the punctured and dedicated LDPC codes 

to be the same as shown in Table 3.1.  Since dedicated LDPC codes can have smaller 

minimum distances due to shorter block lengths, it is possible that dedicated LDPC codes 

show poorer performances at high Eb/No regions. 
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Figure 3.6 BERs (filled) and WERs (unfilled) of a dedicated LDPC code, a proposed punctured 
LDPC code and a randomly punctured LDPC code with rate 0.7 from the left to the right, 
respectively; the block length of the base LDPC code is 1024. 

 

In Figure 3.6, we compare the BER and WER performances of the dedicated, 

randomly punctured and intentionally punctured LDPC codes with code rate 0.7 and 
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block length 731.  In the comparisons, the BER/WER performances are in the order of 

the dedicated, intentionally punctured, and the randomly punctured LDPC codes from the 

best to the worst.  However, at high Eb/No regions, there are crossover points in BER and 

WER curves of the dedicated and intentionally punctured LDPC codes because of the 

smaller block length of the dedicated LDPC code.  Thus, depending on a required 

BER/WER performance, intentionally punctured LDPC codes are more favorable than 

dedicated LDPC codes besides the structural advantage of the rate compatibility and the 

lower complexities of encoders and decoders. 

The performance variation of random puncturing becomes smaller as the block length 

increases.  To see the performance variation with increasing block lengths, we do the 

same simulations at a block length of 4096.  The group distributions of the intentional 

and random puncturing are listed in Table 3.3, where the levels of recoverability are 3 and 

at least 10 for intentional and random puncturing, respectively. 

 

Table 3.3 Group distributions of the intentional puncturing and the random puncturing of 
a regular LDPC code with ( ) 2x xλ =   and ( ) 5x xρ =  at a block length of 4096; The largest 
code rate is 0.8. 

 0V 1V  2V  3V 4V 5V 6V 7V 8V 9V 10V  11V  12V  13V

Intentional 2560 1155 323 58 0 0 0 0 0 0 0 0 0 0 

Random 1 2560 436 236 188 168 140 133 118 82 29 6 0 0 0 

Random 2 2560 398 227 178 128 111 102 99 103 84 69 35 2 0 

Random 3 2560 363 207 146 124 110 102 104 115 113 85 52 13 2 

 

 

We evaluate the BER performances of the three randomly punctured LDPC codes in 
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Figure 3.7, where the performance variations among the different random puncturing 

distributions are noticeably smaller.  At rate 0.8, the required Eb/No for a BER of 10-5 has 

a variation of less than 0.9dB as compared to 2.2dB in the case of block length 1024.   

The smaller performance variation can also be predicted by the group distribution in 

Table 3.3.  Thus, locations of punctured parity bits are more important at shorter block 

lengths. 
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Figure 3.7  Randomly punctured LDPC codes with three different random seeds; the circles, 
squares and triangles correspond to BERs of Random 1, 2, and 3 in Table 3.3, respectively, and 
the BERs of the half rate mother code at block length 4096 are represented with the diamonds. 

 

To see the level of recoverability with increasing block lengths, we design 10,000 
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different random puncturing distributions for the regular ( ( ) 2x xλ =  and ( ) 5x xρ = ) 

LDPC codes at the block lengths of 1024, 4096, 65536.  The levels of recoverability are 

observed by analyzing the group distributions of the puncturing distributions.   

Histograms of the levels of recoverability with the three different block lengths are 

compared in Figure 3.8, where most of time, the level of recoverability is bigger than 10.  

However, the variations of the level of recoverability become smaller at the longer block 

lengths.  In the extreme case with the block length of 65536, the variation of the level of 

recoverability is significantly smaller, where 11 and 12 account for over 99% of the 

occurrence.  Thus, we confirm that careful selections of punctured bits are more 

important at smaller block lengths from the difference perspective. 

 

 

Figure 3.8 Histograms of the levels of recoverability; results from 10,000 trials with the regular 
LDPC codes at the block lengths 1024 (unfilled), 4096 (shaded), and 65536 (filled). 
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The randomly puncture LDPC codes (Random 2 in Table 3.3) are compared with the 

intentionally punctured ones (Intentional in Table 3.3) in Figure 3.9, where at rate 0.8, to 

achieve a BER of 10-5, the intentionally punctured LDPC code requires 1.6dB smaller 

Eb/No value than that of the randomly punctured one. 
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Figure 3.9 Comparison between the intentional (filled) and random (unfilled) puncturing of a 
regular LDPC code at block length 4096; code rates are 0.5, 0.6, 0.7 and 0.8 from the left to the 
right, and the puncturing distributions are from Intentional and Random 2 in Table 3.3. 

 

The proposed algorithms can be applied to irregular LDPC codes as well as regular 

LDPC codes.  To demonstrate the performance of punctured LDPC, we design a half rate 
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irregular LDPC code as a mother code whose degree distribution pair is 

( )
( )

2 7

5 6

0.28286 0.39943 0.31771

0.6 0.4 .

x x x x

x x x

λ

ρ

= + +

= +
 

A parity-check matrix for the irregular LDPC codes at block lengths of 1024 is 

designed with the Progressive Edge Growth (PEG) algorithm [16] to get a better girth 

distribution.  The mother code is punctured either randomly or intentionally based the 

proposed algorithms.  The group distributions are listed in Table 3.4, where Random 

(Intentional) 1024 and 4096 indicates the group distributions of random (intentional) 

puncturing at block lengths of 1024 and 4096, respectively. 

 

Table 3.4 Group distributions of the intentional puncturing and the random puncturing of 
an irregular LDPC code with ( ) 2 70.28286 0.39943 0.31771x x x xλ = + +   and 

( ) 5 60.6 0.4x x xρ = +  at a block length of 1024 and 4096; The largest code rate is 0.8. 

 0V  1V  2V 3V 4V 5V 6V 7V 8V 9V  10V  11V

Intentional 1024 640 333 46 5 0 0 0 0 0 0 0 0 

Random 1024 640 77 63 41 41 48 38 26 23 15 10 2 

Intentional 4096 2560 1311 206 19 0 0 0 0 0 0 0 0 

Random 4096 2560 361 261 214 182 163 132 112 63 37 8 3 

 

 

For fair comparisons, we simulate random puncturing with three different random 

seeds, and then pick one that has middle performance among them, as we did in the 

regular case.  The performances of randomly and intentionally punctured LDPC codes at 

block lengths 1024 and 4096 are evaluated and compared in Figure 3.10 and Figure 3.11, 

respectively. 
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Again, the intentionally punctured LDPC codes outperform the randomly punctured 

LDPC codes at all rates.  At rate 0.8, for a BER of 10-5, the intentionally punctured LDPC 

codes at block lengths 1024 and 4096 have 1.25dB and 0.8dB of Eb/No improvements 

over those of the randomly punctured ones, respectively. 
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Figure 3.10 Comparison between the proposed puncturing (filled dots) and random 
puncturing (unfilled dots); the half rate irregular mother code (leftmost) has a block length of 
1024, and the punctured LDPC codes have rates of 0.6, 0.7, and 0.8 from the left to the right. 

 



 54

Eb/No [dB]

1 2 3 4

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code
Intentional
Random 2

 

Figure 3.11 Comparison between the proposed puncturing (filled dots) and random 
puncturing (unfilled dots); the half rate irregular mother block length of 4096, and the punctured 
LDPC codes have rates of 0.6, 0.7, and 0.8 from the left to the right. 

 

3.4 CONCLUSION 

We propose the grouping and sorting algorithms to design rate-compatible punctured 

LDPC codes at short block lengths.  The algorithms are based on the claim that a 

punctured LDPC code with a smaller level of recoverability has better performance.  We 

mathematically explain why the proposed algorithms provide us with better punctured 

LDPC codes by introducing the concepts of recovery tree and recovery error probability. 
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The proposed algorithms are verified by comparing performance of punctured LDPC 

codes based on the algorithm (called intentionally punctured LDPC codes) with randomly 

punctured LDPC codes.  The intentionally punctured LDPC codes show better BER 

performances at relatively small block lengths (1024 and 4096), and the performance 

improvement is more distinctive at smaller block lengths.  In our simulations, in the case 

of the regular code with block length 1024, the intentionally punctured LDPC has 3dB 

better Eb/No  performance than that of the randomly punctured one for a BER of 10-5
 at 

code rate 0.8.  For the longer block length 4096, the intentionally punctured LDPC code 

outperforms the randomly punctured LDPC code by 1.6dB at rate 0.8 for a BER of 10-5. 

That is, the improvement becomes smaller but still significant. 

More important observation is the performance variation of randomly punctured LDPC 

codes.  Especially, at small block lengths, the variation becomes unacceptable.  In our 

simulations, we observed 2.2dB performance difference between the best and the worst 

randomly punctured LDPC codes.  It is possible to puncture significant amount of parities 

in a stopping set, which results in poor performance.  In the conventional design rule of 

randomly punctured LDPC codes, the performance variation can be evaluated with time-

consuming computer simulations.  However, by analyzing group distributions of random 

puncturing distributions, we predict their BER performances in a much faster way. 

The performance variations become smaller at larger block lengths, which are verified 

by evaluating histograms of levels of recoverability at three different block lengths, 1024, 

4096, and 65536.  In the case that we have to use random puncturing, the analysis under 

the framework of the grouping algorithm gives us a good random puncturing distribution. 

We also show that the sorting algorithm can be applied for random puncturing.  A 
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random puncturing distribution tells the locations of parities to be punctured but the 

distribution does not say an order to puncture the parities.   Although performance at the 

highest code rate is determined by the level of recoverability, performances of punctured 

LDPC codes with intermediate code rates from that of the mother code to the highest 

code rate depend on the order to puncture the parities. 

Finally, we apply the proposed algorithm to irregular LDPC codes at block lengths 

1024 and 4096.  The performance improvements of the intentionally punctured LDPC 

codes are 1.25dB for block length 1024 and 0.8dB for block length 4096 over randomly 

punctured LDPC codes at code rate 0.8 for a BER of 10-5. 
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CHAPTER IV : 

 

EFFICIENTLY-ENCODABLE RATE-COMPATIBLE CODES 

The proposed puncturing algorithm in the previous section (from now on, we call this 

intentional puncturing) works for any given mother code.  However, the maximum 

puncturing rate is often limited when this algorithm is applied, so that high puncturing 

rates are difficult to achieve.  From here, we are interested in the problem of mother code 

design for high puncturing capacity and good puncturing performance.  In other words, 

we focus on a technique for code design in which the parity-check matrix of a mother 

code has a large number of variable nodes that are k-step recoverable with low values of k. 

The eIRA codes of Yang et al. achieve good performance by assigning degree-2 nodes 

to nonsystematic bits and ensuring that the degree-2 nodes do not form a cycle among 

themselves.  Furthermore, they avoid cycles of length-4 and make the systematic bits 

correspond to variable nodes of degree higher than two.  They ensure efficient encoding 

by forming the parity in the bi-diagonal structure illustrated in Figure 2.6. 

It is interesting to see whether there exist other ways of placing the degree-2 nodes so 

that the above conditions are satisfied.  We present below an example of such a placement 

in Figure 4.1.  Observe that the column degree of each node is 2 and that there does not 

exist any cycle in this matrix.  We shall see later that this construction can be generalized 

and the resulting matrices can be used to construct LDPC codes that can be efficiently 

encoded and have good puncturing performance across a wide range of rates. 
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1 0 0 0 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 1 0 1 1

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 4.1 Another cycle-free structure with weight-2 nodes. 

 

4.1 NEW CLASS OF IRREGULAR LDPC CODES 

In this work we are interested in designing rate-compatible punctured codes that 

exhibit good performance across a wide range of coding rates.  To ensure good 

performance over the different coding rates we attempt to design the mother code matrix 

to have a large number of k-SR nodes with low values of k.  From a practical perspective 

the requirement of low-complexity encoding is also important.  Like punctured RA, IRA 

and eIRA codes, these codes are designed to recover all the punctured bits when the 

channel is error-free even when they achieve the maximum puncturing rate by running 

sufficient iterations of iterative decoding.  Before describing our design algorithm, we 

define a k-SR matrix. 

Let ih  denote the columns of the parity-check matrix H , where 0 i N≤ <  .  Let ( )T i  

denote the variable node corresponding to the i-th column in the Tanner graph of H . 
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Definition 4.1: [k-SR matrix] The matrix ( )s s S
P h

∈
=  is called a k-SR matrix, if 

( ) kT s V∈  for all s S∈ , where { }0,1, , 1S N⊆ − . 
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Figure 4.2 Construction of the parity-check matrix of the proposed codes. 

 

In the proposed E2RC codes, we construct the parity-check matrix laying several k-SR 

matrices as shown in Figure 4.2.  We assign all the degree-2 nodes to the nonsystematic 
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part, and nodes having degree higher than two are elements of 0-SR matrix.  Consider the 

submatrix of 0-SR matrix formed by the high degree nodes in the nonsystematic part.  We 

denote such submatrix of 0-SR matrix as L , and the number of columns in L  as l as 

depicted in Figure 4.2(a).  Except for the 0-SR matrix, we define the number of k-SR 

matrices in the parity-check matrix H  and the column size of each k-SR matrix as 

following definitions.  In our construction the non-systematic part of the mother code 

parity-check matrix consists of k-SR matrices that can be punctured efficiently. 

 

Definition 4.2: The depth d is the number of k-SR matrices except the 0-SR matrix in a 

parity-check matrix. 

 

Definition 4.3: The function ( )kγ  is the number of columns in the k-SR matrix in a 

parity-check matrix, ( ) kk Vγ = , where 0k > . 

 

From Definition 4.3, note that the size of the k-SR matrix is M × γ(k).  As defined in 

chapter II, ( )vN i  represent the number of nodes of degree i.  Figure 4.2 (a) shows the 

case when ( )2 1vN M< − , and we will explain the design of such case at the latter part of 

this section.  Other than that, we assume that (2) 1vN M= −  throughout the thesis.  One 

can consider to design when (2) 1vN M> − , but  it is hard to find a good degree 

distributions with huge portion of degree-2 nodes.  Furthermore, we cannot guarantee 

cycle-free among the degree-2 nodes, which is an important design rule that will be 

explained later.  When (2) 1vN M= − , there will be no 0-SR nodes in the nonsystematic 
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part, i.e., 0l = .  In this case, we insert a degree-1 node in the last column of 

nonsystematic part, and assign all the variable nodes of nonsystematic part to degree-2 

nodes except the last degree-1 node as shown in Figure 4.2(b). 

 

Example 4.1: For M = 8 and (2) 7vN = , we can construct the nonsystematic part 2H  as 

2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 0 1 1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

In the matrix 2H , the first four columns form the 1-SR matrix, the next two columns 

form the 2-SR matrix, and the next one column forms the 3-SR matrix.  Thus, depth d = 3, 

γ(1) = 4, γ(2) = 2, and γ(3) = 1.  We can also regard the last degree-1 column as 4-SR 

matrix.  However, our convention in this thesis is to only consider degree-2 columns to 

calculate the depth d.  From now on, we refer to the last degree-1 column in H2 as (d+1)-

SR matrix since the connections with other k-SR matrices makes it (d+1)-SR node. 

■ 

We shall represent the position of the ones in a column belonging to a k-SR matrix by 

the powers of a polynomial in D.  Let 
1

( )
k

k
j

S jγ
=

=∑ .  Thus, kS  represents the sum of the 

size of the submatrix formed by the 1-SR, 2-SR,… and k-SR matrices.  The j-th column 

of k-SR matrix has the following sequence: 
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( )1 ( )
, 1 , where 1 , 0 ( ) 1kj S k

k jh D D k d j kγ γ−+= + ≤ ≤ ≤ ≤ −  

1
1

M
dh D −
+ = . 

In the sequence, Di represents the position of nonzero element in a column, i.e., i-th 

element of the column is nonzero, where 0 1i M≤ ≤ − .  For Example 4.1, we can notice 

that the depth can be obtained by 2 2log log 8 3d M= = =  and ( )
2k

Mkγ =  for 1 k d≤ ≤ , 

( )1 1dγ + = .  In general, M need not be a power of two.  We present the algorithm for 

constructing H2 for general M below. 

 

Proposed Code Construction Algorithm 

STEP 1 [Finding Optimal Degree Distribution] Find an optimal degree distribution for 

the desired code rate. 

STEP 2 [Parameter Setting] For a given design parameter, M (number of parity 

symbols), obtain the depth d and γ(k) as Set the size of k-SR matrix as M × γ(k). 

STEP 3 [Generating k-SR matrix] The j-th column of k-SR matrix has the following 

sequence: 

( )1 ( )

, 1

1 , 1
, 0 ( ) 1

, 1

kj S k

k j M

D D for k d
h where j k

D for k d

γ

γ
−+

−

⎧ + ≤ ≤⎪= ≤ ≤ −⎨
= +⎪⎩

. 

STEP 4 [Constructing matrix T] Construct the matrix T as follows: 

[ ]-SR matrix | -SR matrix| | -SR matrix .T 1 2 d=  

STEP 5 [Forming matrix H2] Add a degree-1 node to T and form 

[ ]2 | ( 1)-SR matrixH T d= + . 

STEP 6 [Edge Construction for H1] Construct the matrix H1 by matching the degree 
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distribution (STEP 1) as closely as possible. 

STEP 7 [Constructing matrix H] Assign H1 as systematic parts and H2 as nonsystematic 

parts: 

[ ]1 2|H H H= . 

 

In STEP 1, we first find an optimal degree distribution for the desired mother code rate, 

say RL, using the density evolution [7].  When we determine the degree distribution, the 

number of degree-2 nodes, ( )2vN , is an important factor.  The E2RC codes are designed 

so that all the degree-2 nodes in the nonsystematic part can be punctured.  This will give 

us the achievable highest puncturing rate, say RH.  Then, ( )( )2H vR K N N= − .  Thus, 

the E2RC codes can provide an ensemble of rate-compatible codes of rate RL~RH.  Since 

we now consider a design when (2) 1vN M= −  so that all the parities can be punctured, 

1.0HR = .  In STEP 2, we set the design parameters.  We try to maximize the number of 

low-SR nodes while the increasing the row degree is restrained.  In fact, we design the 

function γ(k) such that it assign the half of the parities as 1-SR nodes, and the half of the 

remaining parities as 2-SR nodes, and so on.  We can set the depth d as 2logd M= ⎡ ⎤⎢ ⎥ , and 

γ(k) as 

1

0

1( ) ( )
2

k

i
k M iγ γ

−

=

⎢ ⎥
= −⎢ ⎥
⎣ ⎦

∑   for 1 ≤ k ≤ d, 

( 1) 1dγ + = , and (0) Mγ , 

where ⋅⎡ ⎤⎢ ⎥  and ⋅⎢ ⎥⎣ ⎦ are the ceiling function and the floor function, respectively.  We observe 

that the function γ(k) has several interesting facts as follows: 
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 Fact 4.1: dS  is equal to (2)vN  in the nonsystematic part, where 2logd M= ⎡ ⎤⎢ ⎥ . 

Proof: From the definition, M should be 12 2d dM− < ≤ .  By definition, M  can be 

represented by 12 (1)M Rγ= ⋅ + , where 1R  is the remainder when M  is divided by 2, i.e., 

1R = 0, or 1.  Then, we have 

1 2

2 3

1

(1) (1) 2 (2)

(1) (2) (2) 2 (3)

(1) (2) ( 1) ( 1) 2 ( )d d

M R R

M R R

M d d R d R

γ γ γ

γ γ γ γ

γ γ γ γ γ−

− = + = ⋅ +

− − = + = ⋅ +

− − − − − = − + = ⋅ +

       (a) 

In the above equations, the remainders can be 1 2, , ..., dR R R = 0, or 1.  From (a), we can 

also have 

( ) ( )1 1 22 (1) 2 2 (2)M R R Rγ γ+ = ⋅ + = ⋅ ⋅ +  

( ) ( )2 2
1 2 2 32 2 (2) 2 2 (3)M R R R Rγ γ+ + ⋅ = ⋅ + = ⋅ ⋅ +  

… 

( )2 1 1
1 2 1 12 2 2 ( 1) 2 ( ) 2d d d d

d d dM R R R d R d Rγ γ− − −
− −+ + ⋅ + ⋅ = ⋅ − + = ⋅ + ⋅     (b) 

( )1
1 22 2 2 ( )d d

d dM R R R d Rγ−+ + ⋅ + ⋅ = ⋅ +           (c) 

From (b), LHS is greater than 12d−  from the range of M .  So, ( ) 1dγ ≥ in RHS since dR = 

0 or 1.  On the other hand, ( ) dd Rγ +  in (c) should be 1 since the sum of LHS is less than 

12d+ .  Thus, we conclude that ( )dγ  is 1 and dR  is 0.  Then, from (a), we have 

(1) (2) ( ) ( ) 1d M d Mγ γ γ γ+ + + = − = − . 

■ 
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Fact 4.2: γ(k) ≥ 1 for 1 k d≤ ≤ . 

Proof: It is obvious that (1) (2) ( )dγ γ γ≥ ≥ ≥  and ( ) 1dγ =  from the proof of Fact 

4.1. 

■ 

From the generation sequence in STEP 3, we can notice that k-SR matrix is composed 

of only degree-2 variable nodes except for the last (d+1)-SR matrix. 

 

Observation 4.1: Every column in k-SR matrix has degree two.  In particular, when 

(2) 1vN M= − , all the columns of the nonsystematic part have degree two except the last 

column which has degree one. 

 

After generating k-SR matrix, we put together k-SR matrices in the matrix T in STEP 4. 

Then in STEP 5, we construct H2 matrix, nonsystematic part of H matrix, 

[ ]2 | ( 1)-SR matrixH T d= +  by adding a degree-1 column at the end of H2.  The 

following Example 4.2 is to help understand the construction of H2 matrix of the 

proposed algorithm. 

 

Example 4.2: For 10M =  and (2) 9vN = , the depth d = 4, and γ(1) = 5, γ(2) = 2, γ(3) = 

1, γ(4) = 1. 
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2

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

■ 

In the next STEP 6, we construct edges for the matrix H1 trying to keep the degree 

distribution obtained from STEP 1.  Finally, combining H1 and H2 make the whole parity-

check matrix in STEP 7.  Note that the degree distribution of the nonsystematic part is 

already fixed by the construction algorithm (see Observation 4.1 and Corollary 4.1). 

From the above Example 4.1 and 4.2, we can observe the right degree distributions of H2. 

Except for the last row degree, we notice that the number of degree-k rows is the number 

of columns in k-SR matrix, which is exactly γ(k).  Lemma 4.1 explains the details. 

 

Lemma 4.1: In the matrix H2, any column in k-SR matrix is connected to at least one 

row of degree-k.  Furthermore, this row has exactly one connection to a column from 

each l-SR matrix, where 1 ≤ l < k ≤ d. 

Proof: Consider the jk-th column in the k-SR matrix.  Its sequence is given by 

( )1

1

( )
, 1

, where 0 ( ) 1.

k k

k

k k k k

j S k
k j

j S j S
k

h D D

D D j k

γ

γ

−

−

+

+ +

= +

= + ≤ ≤ −
 

We shall demonstrate that the first entry of , kk jh  is connected to a column in the l-SR 
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matrix for 1 l k≤ < .  First, note that 2H  is lower-triangular with ones in the diagonal.  An 

immediate consequence of this fact is that , kk jh  can only be connected to the second entry 

of , ll jh , the jl-th column in the l-SR matrix.  Suppose that the second entry of the jl-th 

column in the l-SR matrix is connected to the first entry of the jk-th column in the k-SR 

matrix.  This implies that 1l l k kj S j S −+ = + .  Clearly 1 0l k k lj j S S−= + − ≥  since k l>  

and 0 ( ) 1kj kγ≤ ≤ − .  We shall now show that 1 ( ) 1l k k lj j S S lγ−= + − ≤ − .  This means 

that for a given kj , it is possible to find a unique column lj  belonging to the l-SR matrix 

to which it is connected.  From the proof of Fact 4.1, we have ( )i iS M i Rγ= − − , where 

0iR =  or 1.  Then, we have 

( )

1 1( ) 1

1

1

( ) ( ) 1

( ) 1 1

( ) 1.

l k k l k l

k l

d l

d l

l

j j S S k S S

S S

S S

M d R M l R

l R

l

γ

γ γ

γ

γ

− −= + − ≤ − + −

= − −

≤ − −

= − − − − − −

= − − −

≤ −

 

Therefore, for a given kj , we can find a corresponding lj  in the l-SR matrix for 1 l k≤ < . 

Note that the first entry of kj  is connected to the corresponding lj .  Since the matrix is 

lower-triangular, this entry cannot have any connection with a m-SR matrix where m k> . 

Therefore this particular row has degree exactly k .  This concludes the proof. 

■ 

From Lemma 4.1, we can obtain the exact number of rows with degree-k except the last 

row.  To find out the entire row degree distributions, let’s define ζ as the row degree of 
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the last row. 

 

Observation 4.2: The row degree ζ of the last row in the matrix H2 can be obtained as 

[ ]
1

( ) 1
d

i d
i

i S Sζ γ
=

= + − +∑ . 

Proof: Let’s consider the connections of the last row with each k-SR matrix.  It is easy 

to see that if M = 2·γ(1), there is a connection between the 1-SR matrix and the last row, 

otherwise, there is no connection.  In the same way, if M = γ(1)+2·γ(2), there is a 

connection between the 2-SR matrix and the last row, and so on.  Thus, we can get ζ as 

( )( ) ( )( )

( )( )

[ ]

[ ]

-SR matrix 2-SR matrix

( )-SR matrix-SR matrix

1

1

1 2 (1) 1 (1) 2 (2)

1 (1) (2) 2 ( ) 1

( ) ( 1) 1

( ) 1 ,

1

d+1d

d

i
i

d

i d
i

M M

M d

i S M

i S S

ζ γ γ γ

γ γ γ

γ

γ

=

=

= − − + − − − +

+ − − − − − +

= + − − +

= + − +

∑

∑

 

since we have 1dS M= −  from Fact 4.1. 

■ 

From Observation 4.2, we can obtain [ ]
4

1
( ) 9 1 3i

i
i Sζ γ

=

= + − + =∑  for Example 4.2.  Since 

we know ζ, we are ready to get the whole right degree distributions for H2.  The 

following Observation 4.3 and Corollary 4.1 give the whole right degree distributions. 

 

Observation 4.3: The number of degree-k rows in the matrix H2 is ( ) ( )k kγ δ ζ+ −  for 
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1 ≤ k ≤ d, where 
1 0,

( )
0

if i
i

otherwise
δ

=⎧
= ⎨
⎩

. 

 

Corollary 4.1: The right degree distribution (node perspective) of the matrix H2 is as 

follows: 

1
1

1

ˆ( )
d

i
i

i
x xρ ρ

+
−

=

=∑ , where ( ) ( )ˆi
i i

M
γ δ ζρ + −

=  for 1 ≤ k ≤ d and 1
( )ˆd
i
M

δ ζρ +

−
= . 

Proof: First, consider the k-SR matrix when 1 ≤ k ≤ d.  From the Lemma 4.1, if we 

pick a column in the k-SR matrix, the first element of the column is included in a row of 

degree k, and the second element of the column has the row degree greater than k.  The 

number of columns in the k-SR matrix is γ(k) and each column is connected to one 

degree-k row.  Thus, the number of rows having degree k is at least γ(k) except the last 

row.  For a (d+1)-SR matrix, there is only one degree-ζ row.  From Fact 4.1, summing the 

number of rows having degree-k results in (1) (2) ( ) 1d Mγ γ γ+ + + + = .  Therefore, the 

number of rows of degree k except the last row is exactly ( )kγ . 

■ 

From Observation 4.1 and Corollary 4.1, we can determine the exact degree 

distributions for the nonsystematic parts, namely the H2 matrix.  For a desired code rate, 

we can find the optimal degree distributions for the whole code while fixing these degree 

distributions for H2.  Then, we can get the degree distributions for the H1 matrix.  For the 

systematic part, namely the H1 matrix, we choose variable nodes of higher degree greater 

than two.  Besides finding the optimal degree distributions, there are three additional 

design rules for finite-length LDPC codes proposed in [7]: 

(a) assign degree-2 variable nodes to nonsystematic bits; 
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(b) avoid short cycles involving only degree-2 variable nodes; 

(c) cycle-4 free in the code graph. 

The proposed E2RC codes meet the design rule (a) as stated above.  For design rule (b), 

we will show that there is no cycles involving only degree-2 variable nodes in Lemma 4.2 

and 4.3. 

 

Lemma 4.2: Suppose there exists a length-2s cycle in a matrix which consists of only 

weight two columns.  Consider the submatrix formed by the subset of columns that 

participates in the cycle.  Then, all the participating rows in the cycle must have degree 

two in that submatrix. 

Proof: To have a length-2s cycle, the number of columns participating in the cycle 

needs to be s and the number of rows participating in the cycle needs to be s.  Let us 

denote the submatrix formed by the columns participating in the cycle by U.  Then, the 

number of edges in U is 2s since each of the columns has degree two.  Each row 

participating in the cycle must have a degree greater than or equal to two in U since each 

row has to link at least two different columns in U.  Suppose there is a row having degree 

strictly greater than two in U.  Then, there should be a row having a degree less than two 

in U, i.e., equal to one, since the average row weight in U is two (the number of edges / 

the number of rows = 2s / s = 2), which is a contradiction.  This is because a row that has 

degree-one in U cannot participate in a cycle with the columns in U.  Thus, every 

participating row must have degree two in U. 

■ 

Armed with Lemma 4.2, we will prove that the proposed matrix H2 is cycle free. 
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Lemma 4.3: The matrix H2 constructed by the E2RC construction algorithm is cycle 

free. 

Proof: Suppose that there exist s columns v1, v2, …, vs that form a cycle of length 2s. 

We form the M s×  submatrix formed by the columns.  Let us denote this submatrix Hs. 

Suppose that column vi belongs to the ki-SR matrix in H2.  Find the minimum value of ki. 

Let us call it kmin.  Applying Lemma 4.1, we have that 
minkv  has exactly one connection to 

each l-SR matrix, where 1 ≤ l < kmin, and no connection to m-SR matrices where m > kmin, 

i.e., there is a check node connected to 
minkv  that is singly-connected in the submatrix Hs. 

Applying Lemma 4.2, we realize that a cycle cannot exist amongst the s columns. 

■ 

Since all of the nodes (except one) are degree 2 in H2, the fraction of degree-2 nodes in 

degree distributions is very high.  For a finite length code, the higher portion of degree-2 

nodes cause better threshold performance, but a big fraction of degree-2 nodes can result 

in a small minimum distance, causing a greater probability of decoding errors and higher 

error floors.  To reduce these effects, we can use methods such as those presented in [16] 

[17] [18] [19] when we construct the H1 matrix.  By doing so, the E2RC codes can meet 

the design rule (c). 

 

4.2 LOW-RATE CODE DESIGN 

Since the E2RC codes have strong point in puncturing, considering mother code design 

for low rate ( 0.5R < ) is a necessary step.  As stated earlier, all the degree-2 nodes in the 
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nonsystematic part of the parity-check matrix can be punctured in our codes.  Thus, to get 

the maximum puncturing characteristic for low rate codes, (1 R− ) portion of the nodes 

should be filled with degree-2 nodes.  However, it is hard to find a good degree 

distribution including huge portion of degree-2 nodes.  In other words, we should 

consider the code design which allow some portion of nodes in the nonsystematic part 

have degree greater than two.  This is the reason why we consider the case when 

(2) 1vN M< − .  We will briefly explain the difference of the construction algorithm for 

this case comparing with the case stated earlier.  In STEP 1, we find optimal degree 

distributions for the desired code rate as before, but the target code rate is mainly low rate. 

For STEP 2, we first determine the size of parities that are not to be punctured, which is l 

in Figure 4.2(a).  Since the E2RC codes regard all the degree-2 nodes in the 

nonsystematic part to be punctured, the size of unpunctured nodes in the nonsystematic 

part can be (2)vl M N= − .  Then, the size of the matrix L  is M l× .  We set the depth d 

as 2 2log logd M l= −⎢ ⎥⎣ ⎦ , and obtain γ(k) the same as the previous settings for 1 k d≤ < . 

However, the previous settings for γ(k)’s are designed to match (2) 1d vS N M= = − . 

When (2) 1vN M< − , we set 1( ) (2)v dd N Sγ −= −  so that they can satisfy (2)d vS N= .  To 

generate the sequence of d-SR matrix, we set 

1

0

1 ( )
2

d

i
M iδ γ

−

=

⎢ ⎥= −⎢ ⎥⎣ ⎦
∑ . 

Then, the the j-th column of k-SR matrix of STEP 3 has the following sequence: 

( )
( )

1

1

( )

,

1 , 1
, 0 ( ) 1

1 ,

k

k

j S k

k j j S

D D for k d
h where j k

D D for k d

γ

δ
γ

−

−

+

+

⎧ + ≤ <⎪= ≤ ≤ −⎨
+ =⎪⎩

. 
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We formulate T the same as in STEP 4, then we set [ ]2 |H L T=  in STEP 5, where 

variable nodes in the matrix L have degree higher than two.  Note that we do not put the 

degree-1 node in H2.  In STEP 6, we only need to construct edges for the matrix L and H1 

trying to keep the degree distribution obtained from STEP 1.  Finally in STEP 7, we 

accomplish the parity-check matrix by putting together 1H  and 2H  the same as before.  

In the case when (2) 1vN M< − , we can say that the submatrix formed by the columns of 

(2)vN  is cycle free since we generate the sequence same as before. 

For the proposed codes, rate-compatibility can be easily obtained by puncturing nodes 

of degree two from left to right in the H2 matrix.  For a desired code rate Rp obtained 

from puncturing the mother code of rate RL, the number of puncturing symbols 

( )1 L pp N R R= − , where N is the code length and L p HR R R≤ ≤ .  Equivalently, we can 

achieve any desired code rates by puncturing first p nodes from the first node in 1-SR 

matrix.  This can be a good advantage when it is applied to IR Hybrid-ARQ systems, 

which will be discussed in the next chapter. 

Another big advantage for the proposed codes (when (2) 1vN M= − ) is that even if all 

the parity bits are punctured, they can be recovered completely after (d+1) iterations 

using a erasure decoder or a LDPC decoder when the channel has no errors.  This is 

because the k-SR nodes in k-SR matrix can be recovered after k iterations with the help of 

other unpunctured nodes and lower-SR nodes.  This property can be used to encode.  The 

proposed codes not only have simple rate-compatible puncturing scheme but also an 

efficient encoding structure.  We describe the encoding structure in the following section. 
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4.3 EFFICIENT ENCODER IMPLEMENTATION 

In this work, we propose a new encoding method which can be applied to other block 

codes as well as E2RC codes.  First, we will explain the case when (2) 1vN M= − .  For 

the parity-check matrix [ ]1 2|H H H=  of an E2RC code obtained from the proposed 

construction algorithm, let a codeword [ ]|c m p= , where m is the systematic symbols, 

and p is nonsystematic symbols.  Let the systematic generator matrix G  is given by 

[ ]|kG I P= .  As we stated in the section 2.4, the systematic codeword can represented by 

[ ] 1 2| | T T
kc m G m I P m m H H −⎡ ⎤= ⋅ = ⋅ = ⋅ ⋅⎣ ⎦ .  From the construction sequence of E2RC 

codes, 2H  is the lower triangular matrix.  Let ML  be the M M×  lower triangular matrix 

of 2H .  For M  is power of 2, we have the following results by inspection: 

2

/ 2

,

M

M

H L

I O
I L

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and 

 
2

/ 2

/ 2

.

T T
M

T
M

T
M

H L

I L
O L

− −

−

−

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

We can easily check that 

/ 2 / 2
2 2

/ 2 / 2

.

T T
T T M M

T T
M M

I L L
H H

O L L

I O
O I

I

− −
−

−

⎡ ⎤+
= ⎢ ⎥⋅⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=
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Here, we can obtain ML  recursively; 

1

2

4
2

1,

1 0
,

1 1

,

L

L

I O
L

I L

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Likewise, we can get T
ML −  recursively; 

/ 2
2

/ 2

/ 4

/ 4

/ 4

/ 4

1

1

1

1
1

.

1

T
T T M

M T
M

T
M

T
M

T
M

T
M

T

T

T

I L
H L

O L

I L
I

O L

I L
O

O L

I L
I

O L
I

I
O

O
I

I
O

O
I

O
O L

I
I

O
I

I
O

O
I

I
O

O
I

O
O

−
− −

−

−

−

−

−

−

−

−

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥= ⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥⋅⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅
⎢ ⎥⋅⎢ ⎥= ⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥⋅
⎢ ⎥
⎢ ⎥⎣ ⎦
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It is possible to show that the multiplication with 2
TH −  can be implemented simply with 

a shift-register circuit.  Thus, an example of encoder is shown in Figure 4.3. 

 

1 2 M/4 M/2

t = M/2 + M/4t = M/2+M/4+? M/2d-1t = M-1

.  .  . .  .  .

t = M/2

H1
Tm

m

p

c  =  [  m  |  p  ] c: codeword,  m: message,  p: parity

.  .  .

 

Figure 4.3 An example of shift-register implementation of E2RC codes when 2dM =  case. 

 

So far, we have explained the case when M is power of 2.  To derive an efficient 

encoder for general case, we set [ ] [ ]1 2| | TTH c H H m p⋅ = ⋅  1 2 0T TH m H p= + = .  Let 

1
T Ts H m= , then we have 2 1

T T TH p H m s= = .  Let ( )2 , 1 ,i j i j M
H h

≤ ≤
= , then 

1

1 1

M i

i ij j ij j i
j j

s h p h p p
−

= =

= = +∑ ∑  since 1ijh =  for i = j and 0ijh = for i < j (since H2 is lower 

triangular) in the construction of the E2RC codes. 

11 12 1 1 1

21 22 2 2 2

31 32 3 3 3

2

1 2

M

M

M
T

M M MM M M

h h h p s
h h h p s
h h h p s

H p

h h h p s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 
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By observing the sequence for 1-SR matrix construction, we can notice that the elements 

between the two entries of the sequence and below the second entry of the sequence are 0, 

that is,  

0 ,1 (1),
1 , (1) 1 , (1)
0 , (1) 1 , (1)

ij

i i j
h i M j i

i M j i

γ
γ γ
γ γ

≤ ≤ <⎧
⎪= + ≤ ≤ = −⎨
⎪ + ≤ ≤ < −⎩

. 

Then we have  

1

(1)

, 1 (1)

, (1) 1

i
i

i
i ij j

j i

s for i
p

s h p for i M
γ

γ

γ
−

= −

≤ ≤⎧
⎪= ⎨ + + ≤ ≤⎪
⎩

∑
. 

The above results tell us that we can get pi with using previous (1)γ  pi’s, which enables 

us to implement the E2RC encoder by using (1)γ  shift registers.  The following example 

explains encoding method more detail. 

 

Example 4.3: For M=7, we can construct H2 matrix as follows: 

1 1

2 2

3 3

4 42

5 5

6 6

7 7

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 1 0 1 0
0 0 0 0 1 1 1

T

p s
p s
p s
p sH p
p s
p s
p s

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

By doing some matrix operations, we get the following equations: 1 1p s= , 2 2p s= , 

3 3p s= , 1 4 4p p s+ = , 2 5 5p p s+ = , 3 4 6 6p p p s+ + = , and 5 6 7 7p p p s+ + = .  Then, we 

can obtain ip ’s by using jp ’s, where j i< : 1 1p s= , 2 2p s= , 3 3p s= , 4 1 4p p s= + , 
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5 2 5p p s= + , 6 3 4 6p p p s= + + , and 7 5 6 7p p p s= + + .  Then, we only need ( )1 3γ =  

number of registers for the encoder in Figure 4.4.  The coefficients for multiplication in 

Figure 4.4 can be obtained from the above sliding windows of the rectangular in the 

matrix equation.  For this reason, we will refer to this encoding method as sliding window 

method.  The coefficient gi‘s are time varying according to the rectangular windows. 

Assuming that the window starts from the first row at initial time t=0, g0 will be on at 

t=3-5, g1 will be on at t=5-6, and g2 will be on at t=6. 

■ 

From the Example 4.3, we can generalize the shift-register encoder implementation of 

E2RC codes.  The encoder can be represented as division circuit as shown in Figure 4.4. 

We can represent the division circuit in Figure 4.4 as a generator polynomial as 

2 (1) 1 (1)
0 1 2 (1) 1( )g x g g x g x g x xγ γ

γ
−

−= + + + + + .  

 

R1 R2 Rγ(1)

gγ(1)−1 g1 g0

... s3 s2 s1 ... p3 p2 p1

.  .  .

.  .  .

.  .  .  

Figure 4.4 An example of shift-register implementation of E2RC codes. 

By observing the matrix H2, we can obtain the coefficients of the polynomial.  As in 

Figure 4.5, let us think about the window of size w.  As we slide down the window from 

the first row to the last row, we can get a parity-check equation one by one.  The 

coefficients in the window will change or stay between 0 and 1 for each row.  If we trace 

the time-varying coefficients, then we can implement the shift-register encoder of Figure 
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4.4.  We set the window size w as (1)γ  since the largest distance between nonzero 

elements in a row of H2 is (1)γ  from the E2RC code construction algorithm.  We can set 

the window size differently for other codes.  In the sliding window, the first entry 

corresponds to 0g , and the last entry to (1) 1gγ − . 
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Figure 4.5 Nonsystematic part of a parity-check matrix for applying sliding window encoding 
method. 

 

Let us define the time is zero when the window starts from the first row.  The initial 

( 0t = ) status of coefficients is 0.  In our code construction, note that ig  can exist only if 

(1) ( )i kγ γ= −  for 1 k d≤ ≤ .  In other words, we only have to consider d coefficients and 
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other than those are all zero.  For a such coefficient ig , it is on at time kt S= , and will last 

until the window reach the last row ( dt S= ) if there is a connection for k-SR matrix in the 

last row.  Otherwise, it will be off at the last row.  Figure 4.6 shows the timing diagram of 

coefficients. 
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Figure 4.6 Timimg diagram of coefficients of sliding window encoder. 

 

From Observation 4.2, note that there is a connection for k-SR matrix in the last row if 

( ) 1k dk S Sγ + − =  and no connection if the value is 0.  Then, the coefficients of the 

generator polynomial ( )g x  can be represented as 
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{ }
1

( (1) ( )) ( ) ( ( ) ) ( )
d

i k k d d
k

g i k u t S k S S u t Sδ γ γ δ γ
=

= − + − − + − ⋅ −∑ , 

where we define the unit step function as follows: 

1, 0
( )

0, 0 .
t

u t
t
≥⎧

= ⎨ <⎩
 

The E2RC codes have similarity with cyclic codes in the sense that they can be 

represented as a generator polynomial.  The only difference is that the coefficients of the 

generator polynomial are time-varying.  For the above Example 4.3 when M =7, 

0 ( 3) ( 6)g u t u t= − − − , 1 ( 5)g u t= − , 1 ( 6)g u t= − .  As mentioned earlier, the proposed 

sliding window encoding method can be applied any other block codes if the 

nonsystematic part of  their parity-check matrix has lower-triangular form as shown in 

Figure 4.5.  In fact, the window size can be lowered if the lower-triangular form in Figure 

4.5 has lower-triangular 0’s  in it, which can be achieved by column and row permutation 

for a given parity-check matrix. 

Another way to implement the encoder of the proposed E2RC codes is by using a 

simple iterative erasure decoder.  Recall that all the nodes in k-SR matrix can be 

recovered in k iterations with erasure decoder since they are all k-SR nodes.  For the 

proposed codes, even if all the parity bits are erased, we can obtain the exact parity bits 

within (d+1) iterations using a simple erasure decoder or general LDPC decoder of 

message-passing algorithm as long as the systematic bits are known exactly (this is the 

case at the encoder).  In a transceiver system, this can be a big advantage in terms of 

complexity.  We only need to provide an LDPC decoder for both encoding and decoding, 

and do not need any extra encoder. 

Even though we may not use the shift-register implementation of sliding-window 
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method for the encoder when (2) 1vN M< − , we can easily apply the efficient encoding 

method proposed in [8].  To match notations in [8], let the parity-check matrix H 

represent as 
A B C

H
D E F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.  Then, 
A
D
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is the systematic part of E2RC codes, 

B
L

E
⎡ ⎤

=⎢ ⎥
⎣ ⎦

, and 
C

T
F
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 is k-SR matrices.  For E2RC codes, we know the exact sequence 

of the matrix T.  Furthermore, the matrix C is a lower triangular with ones in the diagonal, 

which does not require preprocess.  These make us easy to apply the efficient encoding 

method in [8] to E2RC codes. 

 

4.4 SIMULATION RESULTS 

We consider rate-1/2 mother codes with block length of 1024.  To compare the 

puncturing performance of the E2RC codes with that of other LDPC codes, we generate 

eIRA codes and general irregular LDPC codes of which degree distributions are 

optimized in AWGN channel as those in [11] for rate-1/2 codes: 

( ) 2 6

5 6

0.30780 0.27287 0.41933

( ) 0.4 0.6 .

x x x x

x x x

λ

ρ

= + +

= +
 

For E2RC codes, however, the actual degree distributions are slightly different to 

compensate for the right degree of H2: 

( ) 2 6

5 6 7 8

9 10 11

0.00030 0.30210 0.27136 0.42625

( ) 0.41147 0.54626 0.01892 0.01064

0.00592 0.00325 0.00354 .

x x x x

x x x x x

x x x

λ

ρ

= + + +

= + + +

+ + +
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We apply the algorithm proposed in [16] [17] [18] [19] to H1 design for having the 

better girth characteristics.  We design eIRA codes of length 1026 to compare the 

performance between the proposed E2RC codes and the eIRA codes.  We also use the 

algorithm of [16] [17] [18] [19] to design the systematic part of eIRA codes.  As shown in 

Figure 4.7, the mother code performance of two codes shows almost the same over the 

AWGN channel.  However, E2RC codes outperform eIRA codes at every puncturing rate.  

In this simulation, we adopt the random puncturing strategy for puncturing eIRA codes. 
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Figure 4.7 Puncturing performance comparison between the proposed E2RC codes (filled circle) 
of length=1024 and the eIRA codes (unfilled circle) of length=1026 with random puncturing. 
Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right. 
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Next, we apply the intentional puncturing algorithm to the eIRA codes, but in this case 

we face puncturing limitations.  In fact, the intentional puncturing assigns 256 nodes as 1-

SR nodes and cannot find further k-SR nodes (k ≥ 2) if we try to maximize the number of 

1-SR nodes.  To get a high rate (R = 0.7, 0.8, 0.9) in eIRA codes, we puncture randomly 

after the puncturing limitation (256 1-SR nodes), which destroys the previous tree 

structure of 1-SR nodes, resulting in poor performance.  As shown in Figure 4.8, the 

puncturing performance of the E2RC codes is better than that of eIRA codes as the code 

rates are increased.  For a code rate of 0.9, the E2RC codes show 1.1dB of Eb/No better 

than that of eIRA codes at a BER of 10-5. 
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Figure 4.8 Puncturing performance comparison between the proposed E2RC codes (filled circle) 
of length=1024 and the eIRA codes (unfilled circle) of length=1026 with the intentional 
puncturing.  Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right. 
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To compare the puncturing performance with general irregular LDPC codes, we 

generate an irregular LDPC code having the same degree distribution as in [11].  The 

code length of this code is 1026, and we also apply the algorithm in [16] [17] [18] [19] to 

generate the code.  From the rate-1/2 mother codes, we generate punctured codes of rate 

0.6, 0.7, 0.8, and 0.9 using random puncturing and the intentional puncturing algorithm.  

For the random puncturing case as in Figure 4.9, the performance gaps are large.  For 

code rate of 0.8, the E2RC codes show 2.8dB of Eb/No better than that of the general 

irregular LDPC codes at a BER of 10-5. 
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Figure 4.9 Puncturing performance comparison between the proposed E2RC codes (filled circle) 
of length=1024 and the irregular LDPC codes (unfilled circle) of length=1026 with random 
puncturing.  Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right. 
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The intentional puncturing case is shown in Figure 4.10, the proposed E2RC codes 

show better performance in all ranges of rates over the AWGN channel.  For the rate 0.7 

case, the puncturing of proposed codes is 0.2dB better than that of the general irregular 

LDPC codes at a BER of 10-5 and for the rate of 0.9 the gain increases to 1.2dB. 
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Figure 4.10 Puncturing performance comparison between the proposed E2RC codes (filled 
circle) of length=1024 and the irregular LDPC codes (unfilled circle) of length=1026 with the 
intentional puncturing.  Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to 
right. 

 

For practical purpose, designing a low rate E2RC code and providing a wide range of 

rates by puncturing are useful.  There are other methods to lower the rates such as 
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extending and shortening.  However, these methods often increase hardware complexity 

or the performance of lower rate code has not been proved analytically good.  On the 

other hand, puncturing from the low rate mother codes has limitation, which is, general 

LDPC codes severely degrade their performance as they are punctured.  The E2RC codes 

show no such performance degradation when punctured as other LDPC codes.  For E2RC 

codes, all the degree-2 nodes in the parities can be punctured. 

As an example, we consider a rate-0.4 mother code of which degree distributions are 

optimized in AWGN channel: 

( ) 2 9

5

0.29472 0.25667 0.44861

( ) .

x x x x

x x

λ

ρ

= + +

=
 

In this case, 88.4% of the parities are degree-2 nodes and the remaining 11.6% of the 

parities are degree-3 nodes.  Thus, the structure of E2RC codes is changed from the 

original one, and the E2RC codes can achieve rate of 0.85 since all the degree-2 nodes 

can be punctured.  For rate-0.4 mother code with 2000N = , 800K = , and (2) 1061vN = , 

we have the depth d = 4, and γ(1) = 600, γ(2) = 300, γ(3) = 150, γ(4) = 11.  In addition, 

the E2RC codes can have perfect right degree concentration at degree 6.  We apply the 

PEG algorithm to generate matrix other than degree-2 parities. 

To compare the puncturing performance, the general irregular LDPC codes with the 

same degree distributions as above are generated by using the PEG algorithm.  The best-

effort intentional puncturing algorithm is applied to the general irregular LDPC codes.  

The maximum achievable rate of this general irregular LDPC code is 0.69 with 

intentional puncturing.  So, after the limit we apply random puncturing.  The puncturing 

performance comparison between E2RC codes and general irregular LDPC codes is 
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depicted in Figure 4.11 and Figure 4.12. 
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Figure 4.11 The puncturing BER performance comparison between E2RC codes (filled 
circles) and general irregular LDPC codes (unfilled circles) with intentional puncturing.  Rates 
are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left to right. 

 

In Figure 4.11 and Figure 4.12, the E2RC codes show good performance over a wide 

range of rates 0.4~0.85.  At a BER of 10-5 in Figure 4.11, the E2RC codes outperform 

1.0dB and 2.7dB of Eb/No than the general irregular LDPC codes at rate 0.8 and 0.85, 

respectively.  The same tendency can be observed in FER performance in Figure 4.12.  At 

a FER of 10-3 in Figure 4.12, the E2RC codes outperform 1.0dB and 2.8dB of Eb/No than 

the general irregular LDPC codes at rate 0.8 and 0.85, respectively. 
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Figure 4.12 The puncturing FER performance comparison between E2RC codes (filled 
circles) and general irregular LDPC codes (unfilled circles) with intentional puncturing.  Rates 
are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left to right. 

 

We also compared the puncturing performance of E2RC codes with the dedicated codes 

in Figure 4.13.  The dedicated codes for each rate are generated with the degree 

distributions obtained from ones in the mother codes of rate 0.4.  We assume that only the 

number of degree-2 nodes is reduced for higher rates.  The dedicated codes are generated 

with PEG algorithm to increase their girth characteristics.  From the simulations, the 

performance gaps between E2RC codes and the dedicated codes for each rate at BER of 

10-5 are less than 0.3dB. 
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Figure 4.13 The BER performance comparison between puncturing of E2RC codes (filled 
circles) and the dedicated LDPC codes (unfilled circles).  Rates are 0.4 (mother codes), 0.5, 0.6, 
0.7, 0.8, and 0.85 from left to right. 

 

4.5 CONCLUSIONS 

We have proposed a new class of codes, E2RC codes, which has several strong points. 

First, the codes are efficiently encodable.  We have presented shift-register 

implementation of encoder which has low-complexity.  We also showed that a simple 

erasure decoder can also be used for the linear-time encoding of these codes.  Thus, we 

can share a message-passing decoder for both encoding and decoding if it is applied to 
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the transceiver systems which require an encoder/decoder pair.  Second, we have shown 

that the nonsystematic parts of the parity-check matrix are cycle-free, which ensures good 

code characteristics.  From simulations, the performance of the E2RC codes (mother 

codes) is as good as that of eIRA codes and other irregular LDPC codes.  Third, the E2RC 

codes having systematic rate-compatible puncturing structure show better puncturing 

performance than other irregular LDPC codes and eIRA codes in all ranges of code rates. 

From simulations, the E2RC codes show better puncturing performance as code rates 

increased.  At rate of 0.8, the E2RC codes outperform over 0.8dB of Eb/No than both eIRA 

codes and general irregular LDPC codes.  Even when the best effort puncturing algorithm 

is applied to both eIRA codes and general irregular LDPC codes, the E2RC codes show 

1.5dB and 0.7dB of Eb/No than the best effort puncturing of the irregular LDPC codes and 

eIRA codes, respectively, at a BER of 10-5.  Finally, the E2RC codes can provide good 

performance over a wide range of rates when they are designed low rate.  We believe that 

these characteristics of E2RC codes are more valuable when they are applied to IR 

Hybrid-ARQ systems.  From the simulation, the E2RC codes show good performance 

over a wide range of rates 0.4~0.85. 
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CHAPTER V : 

 

RATE-COMPATIBLE LDPC CODES FOR INCREMENTAL 

REDUNDANCY HYBRID ARQ SYSTEMS 

Many wireless broadband systems require flexible and adaptive transmission 

techniques since they operate in the presence of time-varying channels.  For these 

systems, incremental redundancy hybrid automatic repeat request (IR-HARQ) schemes 

are often used, whereby parity bits are sent in an incremental fashion depending on the 

quality of the time-varying channel [20].  Careful design of an adaptive forward error 

correction (FEC) code can improve data throughput in such systems.  The incremental 

redundancy systems require the use of rate-compatible punctured codes (RCPC) [12]. 

These codes can be operated at different rates by using the same encoder-decoder pair. 

Depending on the rate requirement, an appropriate number of parity bits are sent by the 

transmitter.  The receiver decodes by treating the parity bits that are not transmitted 

(called punctured bits) as erasures.  In addition, the set of parity bits of a higher rate code 

forms a subset of the parity bits of a lower rate code.  Thus, in an IR-HARQ system if the 

receiver fails to decode at a particular rate, it only needs to request additional parity bits 

from the transmitter. 

IR-HARQ systems require good frame error rate (FER) performance, especially at high 

rate region to get good throughput performance.  Since the proposed E2RC codes show 

excellent puncturing performance at high rate region, we apply these codes to IR-HARQ 

systems. 
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5.1 INCREMENTAL REDUNDANCY HYBRID ARQ SYSTEMS 

Previous work in IR-HARQ systems includes [21], [22], where the design of an 

ensemble of FEC codes is considered.  The objective of IR-HARQ scheme is to improve 

the throughput by retransmitting the required fractional part of the parity bits rather than 

the whole information and parity bits when the previous transmission fails.  The code 

combining process of our IR-HARQ scheme follows the Chase’s rule [23], and details of 

the steps are as follows: 

 

Code Combining Process for IR-HARQ Scheme 

STEP 1: Making a frame with cyclic redundancy check (CRC) 

STEP 2: LDPC encoding 

STEP 3: Ordering and grouping the parity bits 

STEP 4: Transmit the message and/or the required parity group 

 

At the receiver end, the frame is reconstructed with the message and parity groups of 

the previous frame after receiving the parity group of the current frame.  Then, the frame 

is decoded with LDPC decoder.  We detect errors with the help of CRC detection.  If 

errors occur in the current frame, send the negative acknowledgement (NACK) signal to 

the transmitter, and the transmitter sends the next required parity group.  Otherwise, 

sends the acknowledgement (ACK) signal to the transmitter.  If the transmitter receives 

an ACK signal, it stops sending the current frame and prepares the next frame. 

An important performance measure of an IR-HARQ scheme is the throughput, which 

is defined as the ratio of the number of information bits k to the total number of bits that 

need to be transmitted for acceptance by the receiver.  The throughput, η , is given by 
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where ( )F i  is the probability of frame error at the i-th transmission, and jp  is the length 

of parity group at the j-th transmission.  In the simulation, we consider k=1024, and jp ’s 

are used as in Table 5.1. 

 

5.2 SYSTEM MODEL 

As a system model with the IR-HARQ scheme, we consider an LDPC coded Vertical 

Bell Labs Layered Space-Time (V-BLAST) system [24], [25] in time-varying multiple 

antenna environments as depicted in Figure 5.1.  The throughput and spectrum efficiency 

of this system can be improved by using LDPC codes, which are powerful capacity-

approaching codes with feasible decoding complexity. 

The original V-BLAST scheme [24] uses different channel codes at different layers.  In 

this work, we only consider the single LDPC code as a channel code, and separate the 

output in parallel for each layer.  We consider a 2 2 MIMO system, which has 2 transmit 

antennas and 2 receive antennas over a frequency flat Rayleigh fading channel.  At the 

transmitter, the source data bits are encoded with an LDPC encoder, separated into two 

substreams, and mapped onto quadrature phase shift keying (QPSK) constellation points 

for each substream. 

At the receiver side, the received signal can be expressed mathematically as 

Y = HX +W , where X and Y are complex input and output vectors, respectively, and W 

is a complex Gaussian noise with a variance 2σ .  The complex 2 2 channel matrix is H, 
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which consists of channel coefficients of MIMO frequency-flat fading channels.  At the 

receiver, perfect channel estimation is assumed, and the minimum mean square error 

(MMSE) detector is used for making a soft decision on the channel inputs.  Then, each 

received soft bit stream is multiplexed into one stream and converted into a stream of log-

likelihood ratio (LLR) values.  These are used for soft decoding of a log-domain LDPC 

decoder. 
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Figure 5.1 An LDPC coded V-BLAST MIMO system. 

 

5.3 SIMULATION RESULTS 

We consider a rate-1/2 LDPC code with code length of 2048.  For IR-HARQ systems, 

IR parity bits are assigned as in Table 5.1, which are used as subset codes of an ensemble.  

We assume that the first transmission starts from rate of 0.94.  We compare the FER and 
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throughput performance of E2RC codes with those of eIRA codes and general irregular 

LDPC codes. 

 

Table 5.1 Ensemble of LDPC codes in the IR-HARQ simulation. 

i 1 2 3 4 5 6 7 8 9 

pi 64 64 128 128 128 128 128 128 128 

rate 0.94 0.89 0.80 0.73 0.67 0.62 0.57 0.53 0.50 

 

 

When we generate eIRA codes and general LDPC codes, we try to keep the same 

degree distributions as those in [11] for rate-1/2 codes, which are optimized in additive 

white Gaussian noise (AWGN) channel: 

( ) 2 6

5 6
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For E2RC codes, however, the actual degree distributions are slightly different to 

compensate the right degree of H2. 

( ) 2 6

5 6 7 8

9 10 11 12

0.00015 0.30235 0.27132 0.42618

( ) 0.41140 0.54617 0.01892 0.01064

0.00592 0.00325 0.00178 0.00193 .
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ρ
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We apply the progressive edge growth (PEG) algorithm proposed in [16] to H1 design 

of eIRA codes and E2RC codes for having the better girth characteristics.  First, we 

compare the puncturing performance between the proposed E2RC codes and the eIRA 

codes.  We apply the intentional puncturing algorithm proposed in [26], [27] to the eIRA 
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codes, and compare the FER performance with E2RC codes (see Figure 5.2).   In this case, 

we face puncturing limitations.  In fact, the puncturing algorithm in [26], [27] assigns 512 

nodes as 1-SR nodes and cannot find any more k-SR nodes (k ≥ 2) if we try to maximize 

the number of 1-SR nodes.  To get a high rate in eIRA codes we puncture randomly after 

the puncturing limitation (512 1-SR nodes).  This destroys the previous tree structure of 

1-SR nodes resulting in poor performance.  The puncturing performance of the E2RC 

codes is better than that of eIRA codes as the code rates are increased even though we 

apply the best effort puncturing algorithm to eIRA codes. 
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Figure 5.2 Performance comparison of rate-1/2 E2RC codes (filled circle) and eIRA codes 
(unfilled circle).  The message size is 1024 bits and curves are for rate=0.5, 0.53, 0.57, 0.62, 0.67, 
0.73, 0.80, 0.89, 0.94 from left to right. 
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For throughput simulations, we consider FER of 10-3, and simulate codes over the IR-

HARQ scheme presented in section 5.2.  We present the throughput performance 

comparison between E2RC and eIRA codes in Figure 5.3.  At the throughput of 0.8 in 

Figure 5.3, the E2RC codes have 2dB gain over eIRA codes.  This is because as 

mentioned earlier the throughput performance highly depends on the high puncturing rate. 
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Figure 5.3 Throughput performance comparison of E2RC codes (filled circle) and eIRA codes 
(unfilled circle).  The message size is 1024 bits for both codes. 

 

To compare the performance with the general irregular LDPC codes, we also apply the 
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PEG algorithm in [16] to generate the code.  From a rate-1/2 mother code, we provide 

punctured codes of rate as following the Table 5.1 using the puncturing algorithm in [26], 

[27].  Through the simulation, we observe that the FER performance of E2RC codes is 

slightly worse than or equal to general LDPC codes at lower code rate (rates 0.5~0.62), 

but outperforms them at higher code rate (rates 0.67~0.94).  For this reason, the E2RC 

codes show better throughput performance than the general irregular LDPC codes as 

shown in Figure 5.4.  The E2RC codes have a gain of about 2.2dB at the throughput of 

0.8. 
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Figure 5.4 Throughput performance comparison of E2RC codes (filled circle) and general 
irregular LDPC codes (unfilled circle).  The message size is 1024 bits for both codes. 
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5.4 CONCLUSIONS 

The E2RC codes show better puncturing performance than other irregular LDPC codes 

and eIRA codes in all ranges of code rates, especially in high puncturing rate.  These 

characteristics result in good threshold performance over time-varying channel in IR-

HARQ systems.  From simulations we observe that E2RC codes outperform eIRA codes 

and the general irregular LDPC codes by 2dB and 2.2dB, respectively, at the throughput 

of 0.8. 
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CHAPTER VI : 

 

REMARKS 

6.1 CONTRIBUTIONS 

The focus of our research is designing practical rate-compatible LDPC codes which 

provide a wide range of rates.  In this dissertation, we first propose a new rate-compatible 

puncturing method for LDPC codes at short block lengths.  Based on the puncturing 

algorithm, we propose a design algorithm of rate-compatible LDPC codes, which also 

can be encoded efficiently.  We summarize our contributions below: 

1. We propose a new rate-compatible puncturing algorithm which consists of grouping 

and sorting algorithms.  By introducing the concepts of recovery tree and recovery error 

probability, we mathematically show that the proposed algorithm has better puncturing 

performance.  We also verify the better puncturing performance of the proposed 

algorithm by simulations. 

2. We provide a tool for predicting puncturing performance of a random puncturing 

distribution by analyzing group distributions and the level of recoverability. 

3. Based on the puncturing algorithm, we propose a new class of codes, called E2RC 

codes, which can be efficiently encoded as well as can be punctured in a rate-compatible 

fashion.  We provide a generalized construction algorithm of these codes.  The proposed 

E2RC codes show better puncturing performance than any other irregular LDPC codes 

over a wide range of code rates. 

4. We develop an efficient encoding method, called sliding window encoding method, 
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with simple a shift-register circuit.  Much like an encoder of cyclic codes, the sliding 

window encoder can be implemented with a division circuit.  The only difference is 

coefficients of the division circuit are time-varying. 

5. We provide a good channel coding scheme to IR-HARQ systems.  In IR-HARQ 

systems, RCPC scheme is required, and good high-rate performance is needed to improve 

throughput.  Since the proposed E2RC codes show excellent puncturing performance 

especially at high rate region, we verify by simulation that the proposed E2RC codes 

show better throughput performance in IR-HARQ systems over time-varying channels. 

 

6.2 FUTURE WORK 

We have concentrated on designing rate-compatible LDPC codes for short block length. 

For the E2RC codes to have more practical meaning, a few interesting and challenging 

topics are remained. 

1. We have proposed a construction algorithm of low-rate E2RC codes and shown their 

design example.  However, more research on low-rate code design is needed so that we 

can have a practically operating rate range.  Implementing an encoder with shift-register 

circuits for low-rate design should be developed as well. 

2. We have used degree distributions optimized only for mother codes over AWGN 

channels.  However, we can find a degree distribution which is globally optimized for a 

wide range by considering puncturing rates.  The basic assumption of E2RC codes is 

puncturing degree-2 nodes in the parity parts.  While we simulate the E2RC codes over 

the AWGN channel, the punctured nodes can be considered as transmitting over the 

mixed channel, i.e., BEC plus AWGN channel.  By applying this restriction to the density 
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evolution, we can find an optimal degree distribution for E2RC codes.  We believe that 

the optimal degree distributions will improve the overall performance of E2RC codes. 

3. QC LDPC codes have gained popularity since they have many advantages.  

Especially in integrated circuit (IC) decoder implementations, QC LDPC codes can have 

simple regular wiring and modular structure because of their cyclic symmetry.  We should 

consider QC-type E2RC codes to reduce the complexity in implementing decoder.  

Finding an optimal core matrix and parameters for QC-type E2RC codes will be a good 

topic. 
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