
The Design of Rate-Compatible Structured
Low-Density Parity-Check Codes

A Thesis
Presented to

The Academic Faculty

by

Jaehong Kim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2006

Copyright 2006 by Jaehong Kim

The Design of Rate-Compatible Structured
Low-Density Parity-Check Codes

Approved by:

Dr. Steven W. McLaughlin, Advisor
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. John R. Barry
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Ye (Geoffrey) Li
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Mark A. Clements
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Alexandra O. Boldyreva
College of Computing
Georgia Institute of Technology

Date Approved: October 25, 2006

 iii

Acknowledgements

First of all, I am grateful to my research advisor, Dr. Steven W. McLaughlin, for his

thoughtful advice. His breadth of knowledge and depth of commitment to this area of

research impressed me greatly and were critical to the completion of this project.

I also thank Dr. John R. Barry, Dr. Ye (Geoffrey) Li, Dr. Mark A. Clements, and Dr.

Alexandra O. Boldyreva for serving on my defense committee. Their insightful

comments have been valuable that made me this dissertation improved.

This work is supported by Samsung Advanced Institute of Technology and Samsung

Electronics Co., Ltd. My special thanks go to vice president Seung-yong Park for his

encouragement and support.

I would like to thank Dr. Jeongseok Ha for his help in research as well as living when I

first came to Georgia Tech. Without his initial framework, I couldn’t get much progress

in the project. I am also deeply grateful to Dr. Aditya Ramamoorthy for his valuable

comments and discussion. His great insight and experience made this research nicer.

I also thank to my colleagues, Demijan Klinc, Woonhaing Hur, Dr. Sunghwan Kim for

their contributions to this project. Thanks also go to Jinsung Park, Janghyuk Cho,

Franklin Bien, Taejoong Song, Dr. Youngsik Hur and many other Korean friends for their

friendly conversations and help.

Finally, I would like to thank to my wife, SangEun Oh, for her endless love and

sacrifice. My little kids, Sunwoo and Jiwoo, always bring me smile. I am really sorry

that I couldn’t have much time to be with them. Most of all, I thank my parents and my

parents in law for their love and support.

 iv

Table of Contents

Acknowledgements ...iii

List of Tables ... vi

List of Figures ..vii

List of Abbreviations ... x

Summary ... xi

CHAPTER I : Introduction ... 1

CHAPTER II : Background... 4

2.1 Low-Density Parity-Check Codes .. 6

2.2 Iterative Decoding Algorithm ... 10

2.3 Efficient Encoding Method... 20

2.4 Irregular Repeat Accumulate Codes ... 24

CHAPTER III : Rate-Compatible Puncturing Algorithm 26

3.1 Preliminary Analysis... 27

3.2 Algorithm For Finding Puncturing Locations... 34

3.3 Simulation Results .. 41

3.4 Conclusion .. 54

CHAPTER IV : Efficiently-Encodable Rate-Compatible Codes 57

4.1 New Class of Irregular LDPC Codes.. 58

4.2 Low-Rate Code Design... 71

 v

4.3 Efficient Encoder Implementation .. 74

4.4 Simulation Results .. 82

4.5 Conclusions... 90

CHAPTER V : Rate-Compatible LDPC Codes For Incremental

Redundancy Hybrid ARQ Systems .. 92

5.1 Incremental Redundancy Hybrid ARQ Systems... 93

5.2 System Model ... 94

5.3 Simulation Results .. 95

5.4 Conclusions... 100

CHAPTER VI : Remarks... 101

6.1 Contributions... 101

6.2 Future Work .. 102

References... 104

Vita.. 107

 vi

 List of Tables

Table 3.1 Block lengths of punctured LDPC codes; The lengths in parentheses are
the number of punctured symbols at the rates. .. 42

Table 3.2 Group distributions of the intentional puncturing and the random
puncturing of a regular LDPC code with () 2x xλ = and () 5x xρ = at a
block length of 1024; The largest code rate is 0.8. 42

Table 3.3 Group distributions of the intentional puncturing and the random
puncturing of a regular LDPC code with () 2x xλ = and () 5x xρ = at a
block length of 4096; The largest code rate is 0.8. 48

Table 3.4 Group distributions of the intentional puncturing and the random
puncturing of an irregular LDPC code with
() 2 70.28286 0.39943 0.31771x x x xλ = + + and () 5 60.6 0.4x x xρ = + at a

block length of 1024 and 4096; The largest code rate is 0.8. 52

Table 5.1 Ensemble of LDPC codes in the IR-HARQ simulation............................... 96

 vii

List of Figures

Figure 2.1 A parity-check matrix and its Tanner graph; Thick lines in the graph
implies cycle 4... 6

Figure 2.2 The Check node message update... 15

Figure 2.3 Variable node message update. .. 16

Figure 2.4 Lower triangular form. .. 21

Figure 2.5 Approximate lower triangular form... 22

Figure 2.6 Bi-diagonal structure in IRA (or eIRA) codes... 24

Figure 2.7 Encoder example of eIRA codes. .. 25

Figure 3.1 k-SR node in the recovery tree... 28

Figure 3.2 Logical structure of a parity-check matrix... 38

Figure 3.3 Comparison between the intentional (filled) and random (unfilled)
puncturing of a regular LDPC code at block length 1024; code rates are
0.5, 0.6, 0.7 and 0.8 from the left to the right, the puncturing
distributions are from Intentional and Random in Table 3.2 and the
BERs of the half rate mother are represented with the diamonds............. 43

Figure 3.4 Randomly punctured LDPC codes with three different random seeds; the
circles, squares and triangles correspond to BERs of Random 1, 2, and 3
in Table 3.2, respectively, and the BERs of the half rate mother code at
block length 1024 are represented with the diamonds.............................. 44

Figure 3.5 Randomly punctured LDPC codes at rate 0.7 with (solid lines)/without
(dashed lines) the sorting algorithm; the filled and unfilled circles are
performances of the punctured LDPC codes with the puncturing
distributions Random 2 and 3, respectively and the mother code has a
block length of 1024. .. 45

Figure 3.6 BERs (filled) and WERs (unfilled) of a dedicated LDPC code, a proposed
punctured LDPC code and a randomly punctured LDPC code with rate
0.7 from the left to the right, respectively; the block length of the base
LDPC code is 1024. .. 47

Figure 3.7 Randomly punctured LDPC codes with three different random seeds; the
circles, squares and triangles correspond to BERs of Random 1, 2, and 3
in Table 3.3, respectively, and the BERs of the half rate mother code at
block length 4096 are represented with the diamonds.............................. 49

Figure 3.8 Histograms of the levels of recoverability; results from 10,000 trials with

 viii

the regular LDPC codes at the block lengths 1024 (unfilled), 4096
(shaded), and 65536 (filled).. 50

Figure 3.9 Comparison between the intentional (filled) and random (unfilled)
puncturing of a regular LDPC code at block length 4096; code rates are
0.5, 0.6, 0.7 and 0.8 from the left to the right, and the puncturing
distributions are from Intentional and Random 2 in Table 3.3. 51

Figure 3.10 Comparison between the proposed puncturing (filled dots) and random
puncturing (unfilled dots); the half rate irregular mother code (leftmost)
has a block length of 1024, and the punctured LDPC codes have rates of
0.6, 0.7, and 0.8 from the left to the right. .. 53

Figure 3.11 Comparison between the proposed puncturing (filled dots) and random
puncturing (unfilled dots); the half rate irregular mother block length of
4096, and the punctured LDPC codes have rates of 0.6, 0.7, and 0.8
from the left to the right. ... 54

Figure 4.1 Another cycle-free structure with weight-2 nodes. 58

Figure 4.2 Construction of the parity-check matrix of the proposed codes. 59

Figure 4.3 An example of shift-register implementation of E2RC codes when
2dM = case.. 76

Figure 4.4 An example of shift-register implementation of E2RC codes. 78

Figure 4.5 Nonsystematic part of a parity-check matrix for applying sliding window
encoding method... 79

Figure 4.6 Timimg diagram of coefficients of sliding window encoder. 80

Figure 4.7 Puncturing performance comparison between the proposed E2RC codes
(filled circle) of length=1024 and the eIRA codes (unfilled circle) of
length=1026 with random puncturing. Curves are for rate=0.5 (mother
code), 0.6, 0.7, 0.8 and 0.9 from left to right. ... 83

Figure 4.8 Puncturing performance comparison between the proposed E2RC codes
(filled circle) of length=1024 and the eIRA codes (unfilled circle) of
length=1026 with the intentional puncturing. Curves are for rate=0.5
(mother code), 0.6, 0.7, 0.8 and 0.9 from left to right. 84

Figure 4.9 Puncturing performance comparison between the proposed E2RC codes
(filled circle) of length=1024 and the irregular LDPC codes (unfilled
circle) of length=1026 with random puncturing. Curves are for rate=0.5
(mother code), 0.6, 0.7, 0.8 and 0.9 from left to right. 85

Figure 4.10 Puncturing performance comparison between the proposed E2RC codes
(filled circle) of length=1024 and the irregular LDPC codes (unfilled
circle) of length=1026 with the intentional puncturing. Curves are for
rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right. 86

 ix

Figure 4.11 The puncturing BER performance comparison between E2RC codes
(filled circles) and general irregular LDPC codes (unfilled circles) with
intentional puncturing. Rates are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8,
and 0.85 from left to right. .. 88

Figure 4.12 The puncturing FER performance comparison between E2RC codes
(filled circles) and general irregular LDPC codes (unfilled circles) with
intentional puncturing. Rates are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8,
and 0.85 from left to right. .. 89

Figure 4.13 The BER performance comparison between puncturing of E2RC codes
(filled circles) and the dedicated LDPC codes (unfilled circles). Rates
are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left to right. 90

Figure 5.1 An LDPC coded V-BLAST MIMO system... 95

Figure 5.2 Performance comparison of rate-1/2 E2RC codes (filled circle) and eIRA
codes (unfilled circle). The message size is 1024 bits and curves are for
rate=0.5, 0.53, 0.57, 0.62, 0.67, 0.73, 0.80, 0.89, 0.94 from left to right.. 97

Figure 5.3 Throughput performance comparison of E2RC codes (filled circle) and
eIRA codes (unfilled circle). The message size is 1024 bits for both
codes. .. 98

Figure 5.4 Throughput performance comparison of E2RC codes (filled circle) and
general irregular LDPC codes (unfilled circle). The message size is
1024 bits for both codes.. 99

 x

List of Abbreviations

ACK Acknowledgement
APP A Posteriori Probability
ARQ Automatic Repeat reQuest
AWGN Additive White Gaussian Noise
BEC Binary Erasure Channel
BER Bit Error Rate
BP Belief Propagation
BPSK Binary Phase Shift Keying
BSC Binary Symmetric Channel
CRC Cyclic Redundancy Check
CSI Channel State Information
E2RC Efficiently-Encodable Rate-Compatible
eIRA extended IRA
FEC Forward Error Correction
FER Frame Error Rate
HARQ Hybrid Automatic Repeat reQuest
IC Integrated Circuit
IR Incremental Redundancy
IRA Irregular Repeat Accumulate
LDPC Low-Density Parity-Check
LLR Log Likelihood Ratio
MAP Maximum A Posteriori
MMSE Minimum Mean Square Error
NACK Negative Acknowledgement
PEG Progressive Edge Growth
QC Quasi-Cyclic
QPSK Quadrature Phase Shift Keying
RCPC Rate-Compatible Punctured Codes
V-BLAST Vertical Bell Labs Layered Space-Time
VLSI Very Large Scale Integration
WER Word Error Rate

 xi

Summary

The main objective of our research is to design practical low-density parity-check

(LDPC) codes which provide a wide range of code rates in a rate-compatible fashion. To

this end, we first propose a rate-compatible puncturing algorithm for LDPC codes at short

block lengths (up to several thousand symbols). The proposed algorithm is based on the

claim that a punctured LDPC code with a smaller level of recoverability has better

performance. The proposed algorithm is verified by comparing performance of

intentionally punctured LDPC codes (using the proposed algorithm) with randomly

punctured LDPC codes. The intentionally punctured LDPC codes show better bit error

rate (BER) performances at practically short block lengths. From simulations, in the case

of the regular code with block length of 1024, the intentionally punctured LDPC code has

3dB better Eb/No performance than that of the randomly punctured one for a BER of 10-5

at code rate 0.8. In case of irregular LDPC codes, the performance improvements of the

intentionally punctured LDPC codes are 1.25dB over randomly punctured LDPC codes at

code rate 0.8 for a BER of 10-5.

Even though the proposed puncturing algorithm shows excellent performance, several

problems are still remained for our research objective. First, how to design an LDPC

code of which structure is well suited for the puncturing algorithm. Second, how to

provide a wide range of rates since there is a puncturing limitation with the proposed

puncturing algorithm. To attack these problems, we propose a new class of LDPC codes

in which the proposed puncturing algorithm concept is imbedded. We call this class of

codes efficiently-encodable rate-compatible (E2RC) codes, which has several strong

 xii

points. First, the codes can be efficiently encoded. We present low-complexity encoder

implementation with shift-register circuits. In addition, we show that a simple erasure

decoder can also be used for the linear-time encoding of these codes. Thus, we can share

a message-passing decoder for both encoding and decoding in transceiver systems that

require an encoder/decoder pair. Second, we show that the non-systematic parts of the

parity-check matrix are cycle-free, which ensures good code characteristics. From

simulations, the performance of the E2RC codes (mother codes) is as good as that of

extended irregular repeat-accumulate (eIRA) codes and other irregular LDPC codes.

Finally, the E2RC codes having a systematic rate-compatible puncturing structure show

better puncturing performance than other irregular LDPC codes and eIRA codes in all

ranges of code rates. From simulations, the puncturing of the E2RC codes outperforms

2.8dB of Eb/No than random puncturing of irregular LDPC codes at a BER of 10-5 with

code rate 0.8. Even the best effort intentional puncturing algorithm is applied to the

irregular LDPC codes and eIRA codes, E2RC codes show 1.2dB and 1.1dB better than

irregular LDPC codes and eIRA codes, respectively, at a BER of 10-5 with code rate of

0.9.

The throughput performance of incremental redundancy (IR) hybrid automatic repeat

request (HARQ) systems highly depends on the performance of high-rate codes. Since

the E2RC codes show excellent puncturing performance in all ranges of code rates,

especially at high puncturing rate, we apply them to IR-HARQ systems. From

simulations we observe that E2RC codes outperform eIRA codes and general irregular

LDPC codes by 2dB and 2.2dB, respectively, at the throughput of 0.8.

 1

CHAPTER I :

INTRODUCTION

Low-density parity-check (LDPC) codes by Gallager [1] had been forgotten for several

decades in spite of their excellent properties, since the implementation of these codes

seemed to be impossible at that time. These codes were rediscovered in the middle of the

1990s [2] and were shown to achieve Shannon limit within 0.0045dB [3]. LDPC codes

are now considered good candidates for the next-generation forward error correction

(FEC) technique in high throughput wireless and recording applications. Their excellent

performance and iterative decoder make them appropriate for technologies such as DVB-

S2, IEEE 802.16e [4], and IEEE 802.11n [5], [6].

While semiconductor technology has progressed to an extent where the

implementation of LDPC codes has become possible, many practical issues still remain.

First and foremost, there is a need to reduce complexity without sacrificing performance.

Second, for applications such as wireless LANs, the system throughput depends upon the

channel conditions and hence the code needs to have the ability to operate at different

rates. Third, while the LDPC decoder can operate in linear time, it may be hard to

perform low-complexity encoding of these codes. In particular, the class of irregular

LDPC codes introduced by Richardson et al. [7] may have high memory and processing

requirements, especially at short block lengths. While the encoding time can be reduced

substantially using the techniques presented in [8] at long block lengths, their techniques

may be hard to apply at short block lengths. The other option is to resort quasi-cyclic

 2

(QC) LDPC or algebraic constructions that can be encoded by shift registers [9].

Irregular repeat-accumulate (IRA) codes were introduced by Jin et al. [10]. These

codes have a linear-time encoder and their performance is almost as good as irregular

LDPC codes. This class of codes was extended, called extended IRA (eIRA) codes, by

Yang et al. [11], where they demonstrated high-rate codes with very low error floors.

A popular technique for achieving rate adaptation in a system is through the use of

rate-compatible puncturing. A rate-compatible punctured code (RCPC) is suitable for

applying to incremental redundancy (IR) hybrid automatic repeat request (HARQ)

systems, since the parity bit set of a higher rate code is a subset of the parity bit set of a

lower rate code [12]. The RCPC scheme has another advantage in that it has the same

encoder and decoder while operating at different rates. The number of parity bits that the

transmitter sends depends on the rate requirement. At the decoder end, parity bits that are

not transmitted are treated as erasures. Thus, puncturing provides a low-complexity

solution to the rate-adaptation problem.

Motivated by these observations, this dissertation first proposes the puncturing

algorithm for LDPC codes with short block lengths. Based on the puncturing algorithm,

a new class of codes is proposed that can be efficiently encoded as well as can be

punctured in a rate-compatible fashion. The proposed LDPC codes will be shown to

have a linear-time encoder and have good performance under puncturing for a wide range

of rates. Finally, we verify that the proposed codes show good throughput performance

when they are applied to IR-HARQ systems over time-varying channels.

This dissertation is organized as follows:

In Chapter 1, a brief outline of the dissertation and organization of each chapter are

 3

described. Chapter 2 introduces fundamentals of channel coding, LDPC codes and their

iterative decoding algorithm, and efficient encoding methods of LDPC codes. Chapter 2

also presents IRA codes which have most popular structure, i.e., bi-diagonal structure, in

the international standards recently. Chapter 3 covers the proposed puncturing algorithm

which finds the best puncturing locations for a given parity-check matrix. The proposed

puncturing algorithm consist of two steps, that is, grouping and sorting. These two-step

puncturing algorithm is verified through the simulations. Based on the proposed

puncturing algorithm, Chapter 4 introduces design of a new class of codes, called E2RC

codes. The code construction algorithm and efficient encoding structure with a simple

shift-register circuit are dealt with in this chapter. In the simulations, we compare the

puncturing performance of E2RC codes with that of other irregular LDPC codes including

eIRA codes. The proposed E2RC codes are applied to IR-HARQ systems in Chapter 5.

In this chapter, we verify that the proposed E2RC codes have better throughput

performance than other LDPC codes from the simulations. Finally, in Chapter 6,

summary of our contributions and future work are discussed.

 4

CHAPTER II :

BACKGROUND

Channel coding is an essential technique to cope with errors occurring in channels of

communication systems and storage systems. Channel coding has flourished in two

branches. Channel errors can be corrected with forward error correction (FEC) codes.

On the other hand, a receiver may request retransmission of the previous data if it fails to

recover them, which is called automatic repeat request (ARQ). FEC codes can be

classified into block codes, such as cyclic codes and LDPC codes, and tree codes, such as

convolutional codes and Turbo codes. In this chapter, we briefly explain the block codes

where LDPC codes are specified.

Let us consider linear block codes over the binary field { }()2 0,1 , ,F + × . Let 2
NF be

the N-dimensional vector space over 2F . Then, an (N, K) linear block code C is defined

as K-dimensional subspace of 2
NF , where K is a data word length and N is a codeword

length. Since C is a subspace of dimension K, there are K linearly independent vectors

0 1 -1Kg , g , , g which span C . Let []0 1 1, , , Km m m −=m be the data word and

[]0 1 1, , , Nc c c −=c be the corresponding codeword in the code C . The mapping →m c

is thus naturally written as 0 0 1 1 1 1K Km m m − −= + + +c g g g . This relationship can be

represented in the matrix form G=c m , where G is a K N× matrix;

 5

0

1

1K

G

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

g
g

g

.

We call the matrix G the generator matrix for C . In fact, C is the row space of G .

The encoding process can be viewed as an injective mapping that maps vectors from the

K -dimensional vector space into vectors from the N -dimensional vector space. The

ratio

KR
N

=

is called code rate.

On the other hand, the null space C⊥ of C has dimension N K− and is spanned by

N K− linearly independent vectors 0 1 1, , , N K− −h h h . Since each i C⊥∈h , we should

have for any C∈c that

0,T
i i⋅ = ∀h c .

This relationship can be represented in the matrix form as TH ⋅ =c 0 , where the matrix H

is the so-called parity-check matrix defined as

0

1

1N K

H

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

h
h

h

.

A low-density parity-check code is so called because the parity-check matrix H has a

low density of 1s. We address the details of LDPC codes in the following chapter.

 6

2.1 LOW-DENSITY PARITY-CHECK CODES

Every LDPC code is uniquely specified by its parity-check matrix H or, equivalently, by

means of the Tanner graph [13], as illustrated in Figure 2.1. The Tanner graph consists of

two types of nodes: variable nodes and check nodes, which are connected by edges.

Since there can be no direct connection between any two nodes of the same type, the

Tanner graph is said to be bipartite. Consider an LDPC code defined by its

corresponding Tanner graph. Each variable node, depicted by a circle, represents one bit

of a codeword, and every check node, depicted by a square, represents one parity-check

equation.

H =

a b c d e f g

1 0 1 0 1 0 1
1 1 0 0 0 1 0
0 1 1 1 0 0 1
0 0 0 1 1 1 1

a b c d e f g

A

B

C

D

A B C D

Figure 2.1 A parity-check matrix and its Tanner graph; Thick lines in the graph implies cycle 4.

Since we are considering N codeword length and K data word length, the Tanner graph

contains N variable nodes and M check nodes, where M N K= − . Let us denote the

parity-check matrix ()
1 ,1i j i M j N

H h
≤ ≤ ≤ ≤

= . Then, the i-th check node is connected to the j-

th variable node if and only if 1i jh = . For example, 1 in column f and row D in the

parity-check matrix in Figure 2.1 corresponds to an edge connection between variable

 7

node f and check node D in the Tanner graph. If there are d edges emanating from a node,

variable or check node, we say that node has degree d. In Figure 2.1, variable node f has

degree 2 and check node D has degree 4. Tanner graphs can also serve as a nice

visualization tool for a variety of issues concerning LDPC codes.

Definition 2.1: A cycle of length l in a Tanner graph is a path comprised of l edges

that begins and ends at the same node, whereby every edge has been traversed only once.

The length of a cycle is the number of edges in that path. Usually, LDPC codes contain

many cycles of different lengths in their Tanner graph.

Definition 2.2: The girth in a Tanner graph is the minimum cycle length of the graph.

The girth has a great importance for the code’s performance. Since Tanner graphs are

bipartite, the smallest girth has length 4, as shown by the thick line in Figure 2.1.

However, it is desirable to avoid short cycles in designing LDPC codes since such cycles

can cause poor performance.

An ensemble of LDPC codes is defined by two generating polynomials of the degree

distributions, called a degree distribution pair, for the variable and check nodes. That is,

() 1

2

cd
i

i
i

x x −

=

= ∑λ λ ,

() 1

2

vd
i

i
i

x x −

=

= ∑ρ ρ ,

where λi is the fraction of edges emanating from variable nodes of degree i, ρi is the

 8

fraction of edges emanating from check nodes of degree i, and dv and dc denote the

maximum variable node and check node degrees, respectively.

As a special case when each of ()xλ and ()xρ is monomial, an LDPC code is said to

be regular. In fact, an LDPC code defined with a parity-check matrix that contains the

same number of 1s in each column (dv) and the same number of 1s in each row (dc) is

said to be (dv, dc) regular LDPC codes. The number of all 1s in H is equal to cMd , and

also to vNd . Hence, the code rate R of a regular LDPC code can be expressed as

1

1 .v

c

N MR
N

M
N

d
d

−
=

= −

= −

It is shown in [1] that the regular LDPC codes with the best performance have dv = 3.

In general cases, where the number of 1s per column or row is not constant in the

parity-check matrix H, an LDPC code is said to be irregular. Assume that there are N

variable nodes and M check nodes. Then, the number of variable nodes of degree i is

()

()

vd

j=2

1

0

/
/

/ ,
x

i
v

j

i

iN i N
j

iN
dx

λ
λ

λ

λ

=

=

∑

∫

and the total number of edges in the Tanner graph from the variable node point is

 9

()

()

1
2

0

1

0

.

vd
i

i

E N
x dx

N

x dx

λ

λ

λ

=

=

=

∑
∫

∫

Likewise, the total number of edges from check node point is

()
1

0

ME
x dxρ

=
∫

.

Thus, the code rate of an irregular LDPC code can be obtained as

()
()

1

0
1

0

1

1 .

MR
N

x dx

x dx

ρ

λ

= −

= − ∫
∫

Sometimes it is convenient to have variable and check node distributions from the node

perspective. That is, the fractions of variable and check nodes of each degree are

'

2

/
/v

i
i d

jj

i
j

=

=
∑

λλ
λ

,

'

2

/
/c

i
i d

jj

i
j

=

=
∑

ρρ
ρ

,

where '
iλ and '

iρ are fractions of variable and check nodes with degree i, respectively.

Irregular LDPC codes are more flexible in their design because of the relaxed constraints

and have proved to perform much better then the regular LDPC codes [7].

 10

2.2 ITERATIVE DECODING ALGORITHM

This section summarizes the iterative decoding of LDPC codes based on the belief

propagation (BP) algorithm. The decoding problem consists of finding the most likely

vector x such that 0⋅ =H x , where H is a parity-check matrix defining an LDPC code.

We consider binary phase shift keying (BPSK) modulated input data over the additive

white Gaussian noise (AWGN) channel. Let N -tuple vector []1, , Nx x=x be a BPSK

modulated codeword at the transmitter, where { }1,1ix ∈ − . The codeword bits are

modulated according to

()1

1 2 ,

ic
i

i

x

c

= −

= −

where ci is the i-th bit of the codeword []1, , Nc c=c . Then, the received vector at the

receiver can be expressed as

= +y x n ,

where []1, , Ny y=y , iy R∈ , and the noise vector []1, , Nn n=n is composed of N

independent additive noise in chosen from zero-mean Gaussian distribution with the

standard deviation σ

()
2

2

1 exp
22n
aP a
σπσ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.

Much like the optimal maximum a posteriori (MAP) symbol-by-symbol decoding of

trellis codes, we try to compute the a posteriori probability (APP) that ci equals 1, given

the received sequence y and the fact that c must satisfy some constraints. Without loss

of generality, we focus on decoding the i-th bit of the codeword. First, let us think about

 11

the following APP ratio:

[]
[]

Pr 0 | ,
Pr 1| ,

i i

i i

c S
c S
=
=

y
y

,

where Si is the event that the bits in c satisfy the dc parity-check constraints involving ci.

If ic is 0, the remaining (dc - 1) bits in a given parity-check equation involving ci must

contain an even number of 1s for Si to occur. On the other hand, if ic is 1, each parity-

check constraint involving ci must contain an odd number of 1s. The following Lemma

will be helpful for further analysis.

Lemma 2.1 [1]: Consider a sequence of m independent bits []1, , ma a=a with

[]Pr 1i ia P= = . The probability that a contains an even number of 1s is

()
1

1 1 1 2
2 2

m

i
i

P
=

+ −∏ .

Proof: We prove this by induction. If a sequence of m independent bits []1, , ma a=a

contains an even number of 1s, the modulo-2 sum of all bits in a , designated as Am, is 0.

For m = 2, we can have

[] []

() ()

()()

()

2 1 2

1 2 1 2

1 2

2

1

Pr 0 Pr 0

1 1

1 1 1 2 1 2
2 2

1 1 1 2 .
2 2 i

i

A a a

PP P P

P P

P
=

= = + =

= + − −

= + − −

= + −∏

Assume that the equation holds for 1m L= − :

 12

[] ()
1

1
1

1 1Pr 0 1 2
2 2

L

L i
i

A P
−

−
=

= = + −∏ .

Then, for m L= , we get

[] []

[]()()

[]()() ()

()

1

1

1

1

Pr 0 Pr 0

1 1 1 2 Pr 1 1 2
2 2

1 1 1 2 1 Pr 0 1 2
2 2

1 1 1 2 .
2 2

L L L

L L

L L

L

i
i

A A a

A P

A P

P

−

−

−

=

= = + =

= + − = −

= + − − = −

= + −∏

■

From the Lemma 2.1, we are ready to get the APP ratio for ic .

Theorem 2.1 [1]: Assume that the received samples in the received vector y are

statistically independent. Let iS be the event that the bits in c satisfy the cd parity-

check constraints involving ic . Then, the APP ratio for ic given y and iS is

[]
[]

[]
[]

()
{ }

()
{ }

\

\

1 1 2 Pr 1|
Pr 0 | , Pr 0 |
Pr 1| , Pr 1|

1 1 2Pr 1|

i j

i j

kj kj
j C k R ii i i i

i i i i
kj kj

j C k R i

c y
c S c y
c S c y

c y

∈ ∈

∈ ∈

⎛ ⎞
⎡ ⎤+ − =⎜ ⎟⎣ ⎦⎜ ⎟= = ⎝ ⎠= ⋅

= = ⎛ ⎞
⎡ ⎤− − =⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

∏ ∏

∏ ∏

y
y

,

where kjc and kjy are the k-th bit in the j-th parity-check equation involving ic and the

received sample corresponding kjc , respectively.

Proof: By applying Bayes’ rule, we have

 13

[]
[]

[]
[]

[] []
[] []

[]
[]

[]
[]

Pr 0 | , Pr 0 | Pr | 0, Pr
Pr 1| , Pr 1| Pr | 1, Pr

Pr 0 | Pr | 0,
.

Pr 1| Pr | 1,

i i i i i i i

i i i i i i i

i i i i

i i i i

c S c y S c S
c S c y S c S

c y S c
c y S c

= = =
= ⋅

= = =

= =
= ⋅

= =

y y
y y

y
y

From Lemma 2.1, the probability of an odd number of 1s in the other 1cd − bits of the j-

th parity-check equation is

()
\

1 1 1 2Pr 1|
2 2

j

kj kj
k R i

c y
∈

⎡ ⎤− − =⎣ ⎦∏ .

Since iy is assumed to be statistically independent, the probability that all cd parity-

check constraints are satisfied is the product of all such probabilities:

[]
[]

()
{ }

()
{ }

\

\

1 1 2 Pr 1|
Pr | 0,
Pr | 1,

1 1 2Pr 1|

i j

i j

kj kj
j C k R ii i

i i
kj kj

j C k R i

c y
S c
S c

c y

∈ ∈

∈ ∈

⎛ ⎞
⎡ ⎤+ − =⎜ ⎟⎣ ⎦⎜ ⎟= ⎝ ⎠=

= ⎛ ⎞
⎡ ⎤− − =⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

∏ ∏

∏ ∏

y
y

.

■

The computation of the APP ratio as given by the formula in the above Theorem 2.1 is

complex. Gallager instead provided an iterative algorithm that is exactly the BP based

decoding approach nowadays. Before we give the iterative decoding algorithm, we will

need the following result.

Lemma 2.2: Suppose i i iy x n= + , where ()2~ 0,in σN and [] []Pr 1 Pr 1i ix x= + = = −

1/ 2= , then

[] 22 /

1Pr | .
1i yx

x x y
e σ−

= =
+

 14

Proof:

[] () []
()

()

() ()

() ()

2 2

2 22 2

2

2 2

2 2

2

/ 2

1 / 2 1 / 2

/

/ /

1 / 1 /

2 /

| Pr
Pr |

1
2

1 1
2 2

1

1 .
1

i i
i

y x

y y

xy

y y

y x y x

yx

p y x x x x
x x y

p y

e

e e

e
e e

e e

e

σ

σ σ

σ

σ σ

σ σ

σ

− −

− − − +

−

− − +

−

= =
= =

=
+

=
+

=
+

=
+

■

With these results, we formulate an iterative decoding algorithm for LDPC codes, which

is known as the message passing algorithm. The information is iteratively exchanged

between the neighboring nodes in the Tanner graph by passing messages along the edges.

Each message can be associated to the codeword bit corresponding to the variable node

incident to the edge carrying the message. A message sent from either check or variable

node along an adjacent edge should not depend on the message previously received along

that edge.

A message from the variable node i to the check node j in the l-th iteration, carrying the

probability that the value of the i-th bit is k, is denoted by () ()l
i jq k . On the other hand, a

message from the check node j to the variable node i in the l-th iteration, carrying the

probability that the value of the i-th bit is k, is () ()l
j ir k . Initially, the variable nodes only

have information about the channel output values of their corresponding bits. Since no

 15

additional information from the neighboring check nodes is available, they send the

message along adjacent edges:

() 2
(0)

2 /

10
1 i

ij y
q

e σ−
=

+
,

() 2
(0)

2 /

11
1 i

ij y
q

e σ
=

+
.

Subsequently, the messages are iteratively exchanged between check nodes and

variable nodes. In Figure 2.2, we see a check node connected to dc variable nodes. In

each iteration, the check node will receive messages from its neighboring variable nodes,

process that information, and pass the updated message back to the neighboring variable

nodes:

() ()()() (1)

\

1 10 1 2 1
2 2

j

l l
ji k j

k R i

r q −

∈

= + −∏ ,

() ()()() (1)

\

1 11 1 2 1
2 2

j

l l
ji k j

k R i

r q −

∈

= − −∏ .

j

1 . . .

rj1
(l)(k)

2 dc

q2j
(l-1)(k) q j

(l-1)(k)dc

Figure 2.2 The Check node message update.

 16

Furthermore, the message passing from the variable node is as shown in Figure 2.3.

Similarly, each variable node collects messages from its neighboring check nodes,

calculates the probability that its corresponding bit is 1 and sends it to the neighboring

check nodes:

()
()

()
()

()()
()

()
() (0)

\
() (0) ()

\

1 1
1 1 1 1

1 1 1
i

i

l
kil

k C jij ij
l l

ij ij ki
k C j

r
q q

q q r
∈

∈

−
− −

= ⋅
∏
∏

,

whereby the message received from the check node j was left out, since the updated

message has to depend solely on extrinsic information. Then, we easily get

() () ()() (0) ()

\

0 0 0
i

l l
ij ij ki

k C j

q q r
∈

= ⋅ ∏ ,

() () ()() (0) ()

\

1 1 1
i

l l
ij ij ki

k C j

q q r
∈

= ⋅ ∏ .

2 . . .

r2i
(l)(k)

i

qi1
(0)(k)

dv

1 dv

qi1
(l)(k) r i

(l)(k)

Figure 2.3 Variable node message update.

 17

After receiving the check node messages, a variable node i calculates the probability,

[]Pr 1| ,i ic S= y by taking into consideration all incoming check node messages. If

ˆ 0H c⋅ = , where

[] 11, if Pr 1| ,ˆ 2
0, otherwise,

i ic S
c

⎧ = >⎪= ⎨
⎪⎩

y

or if the maximum number of iterations has been reached, the algorithm stops; otherwise,

a new iteration is started.

This algorithm will converge to the true maximum APP with the growing number of

iterations only if the messages are statistically independent, which is the case only if the

graph corresponding to H is cycle-free. However, the graphs of practical codes will

never be completely cycle-free. Therefore, the algorithm will give us an approximate

solution for the APP, which fortunately still yields a remarkable performance.

Up to this point, the decoder analysis has been treated in the probability domain. In the

algorithm, we can notice a substantial number of multiplications, which tend to become

numerically unstable and are harder to implement in hardware compared to the additions.

To simplify those equations, we introduce the following notation:

() []
[]

Pr 0 |
log

Pr 1|
i i

i
i i

c y
L c

c y
=

=
=

,

called the log-likelihood ratio (LLR). The probability distribution for a binary random

variable is uniquely specified by ()iL c . Its sign indicates the most likely value for ic ,

while its magnitude is a measure of certainty for that decision. Also, let us define

 18

 () ()
()
0

log
1

ji
ji

ji

r
L r

r
,

and () ()
()
0

log
1

ij
ij

ij

q
L q

q
.

Then, the initialization step becomes

() ()

()
()

2

2

1
2 /

1
2 /

2

1
log

1

2 ,

i

i

ij i

y

y

i

L q L c

e

e

y

σ

σ

σ

−
−

−
+

=

+
=

+

=

where σ denotes the standard deviation of the zero-mean white Gaussian noise. The

constant of proportionality 2/σ2 is called the channel reliability. Let us consider the

following relationship:

0
0 1

1

1

1tanh log
2

1 2 .

p p p
p

p

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= −

Using this equation, we have

() ()
()

()

()()

()

\

\

01 1tanh tanh log
2 2 1

1 2 1

1 2 1

1tanh .
2

j

j

ji
ji

ji

ji

kj
k R i

kj
k R i

r
L r

r

r

q

L q

∈

∈

⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= −

= −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏

∏

Thus, the check node update equation can be

 19

() ()1

\

12 tanh tanh .
2

j

ji kj
k R i

L r L q−

∈

⎧ ⎫⎪ ⎪⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∏

The problem with this expression is that we are still left with a product. We can remedy

this by considering ()ijL q as sign and magnitude separately. Let us rewrite ()ijL q as

()ij ij ijL q α β= ,

where ()()ij ijsign L qα and ()ij ijL qβ .

Then, the previous check node update results can be rewritten as

()
\ \

1 1tanh tanh
2 2

j j

ji i j k j
k R i k R i

L r α β
∈ ∈

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ ∏ .

Then, we have

()

()

1

\ \

1 1

\\

\\

12 tanh tanh
2

12 tanh log log tanh
2

,

j j

jj

jj

ji kj kj
k R i k R i

kj kj
k R ik R i

kj kj
k R ik R i

L r α β

α β

α β

−

∈ ∈

− −

∈∈

∈∈

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∏ ∏

∑∏

∑∏ Φ Φ

where we have defined

() 1 1log tanh log
2 1

x

x

ex x
e
+⎛ ⎞− =⎜ ⎟ −⎝ ⎠

Φ .

We have shown how the updated check node message can be calculated in the log

domain. On the other hand, the formula for a variable node message update in the log

domain can be easily derived as

 20

() ()
()

[]
[]

()

()

() ()

\

\

\

0
log

1

0
Pr 0 |

log log
Pr 1| 1

.

i

i

i

ij
i j

ij

ki
k C ji i

i i ki
k C j

i ki
k C j

q
L q

q

r
c y
c y r

L c L r

∈

∈

∈

=

=
= +

=

= +

∏
∏

∑

The first term on the right-hand side represents the contribution from the i-th channel

output, while the second term represents messages received from the neighboring check

nodes. Here, all incoming check node messages are taken into account. After each

iteration, the decoder has to evaluate the LLR values for each variable node and check if

all the parity-check constraints are fulfilled by verifying if ˆ 0H c⋅ = , where

()1, if 0,ˆ
0, otherwise.

iL c
c

⎧ <
= ⎨
⎩

Again, if all parity-check constraints are fulfilled or if the maximum number of iterations

has been reached, the decoder stops; otherwise, a new iteration is started.

2.3 EFFICIENT ENCODING METHOD

In general, encoder for LDPC codes can be difficult to implement efficiently.

Implementing an LDPC encoder with a conventional way using a generator matrix G has

a complexity quadratic in block length. If the parity-check matrix H is sparse, usually

G is dense, meaning that it contains a significant number of 1s and that it requires more

XOR operators to implement. To attack this problem, Richardson et al. propose an

approach in [8] where they show how LDPC codes can be encoded with linear

 21

complexity if H is brought to an approximate lower triangular form. Alternatively,

encoding can be simplified via algebraic and combinatorial code construction methods.

Such “structured” codes can be realized with simple encoders based on shift-register

circuits. This section briefly introduces the efficient encoding method in [8].

Suppose a given parity-check matrix H is M N× , and the associated codeword c

such that TH ⋅ =c 0 . Let us denote the size of message symbols K N M= − . The

straightforward way of constructing an encoder for such a code is to change H into an

equivalent lower triangular form with Gaussian elimination, as shown in Figure 2.4.

0
1

1
1

1
1

1
1

1
1

1

N

M

MK

1
1

Figure 2.4 Lower triangular form.

Let us denote the systematic part of the codeword c as m and the non-systematic part

of the codeword as p such that ()|=c m p . For K desired message symbols, M parity

 22

symbols can be determined using backward substitution. That is,

1

, ,
1 1

K i

i i j j i j K j
j j

p H s H p
−

+
= =

= +∑ ∑ , where 0 i M≤ < .

However, the complexity of such an encoding scheme is huge. That is, converting the

matrix H into the desired form requires ()3O N operations, and the actual encoding

requires ()2O N operations. Richardson and Urbanke proposed the low-complexity

encoding method, which requires ()O N operations [8]. We can convert the given parity-

check matrix to the form shown in Figure 2.5 by performing row and column

permutations.

01
1

1
1

1
1

N

gK

M

M-g

A B

C D E

T
M-g

g

Figure 2.5 Approximate lower triangular form.

Suppose we bring the matrix in the form

 23

A B T
H

C D E
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,

where A is ()M g K− × , B is ()M g g− × , T is () ()M g M g− × − , C is g K× , D is

g g× , and E is ()g M g× − . As in Figure 2.5, T is lower triangular with 1s along the

diagonal, and these matrices are sparse. Let us consider the following matrix:

1

0I
ET I−

⎛ ⎞
⎜ ⎟−⎝ ⎠

,

and multiply this matrix to the left of H . Then, we have

1 1 0
A B T

ET A C ET B D− −

⎛ ⎞
⎜ ⎟− + − +⎝ ⎠

.

Let ()1 2, ,c m p p= , where m denotes the systematic part of a codeword c , and the parity

part splits into two parts, namely, 1p of length g and 2p of length ()M g− . From the

equation 0TH c⋅ = , we have the following two equations:

() ()
1 2

1 1
1

0

0.

T T T

T T

Am Bp Tp

ET A C m ET B D p− −

⎧ + + =⎪
⎨
− + + − + =⎪⎩

Then, we can obtain 1p and 2p as follows:

()
()

1 1
1

1
2 1 ,

T T

T T T

p ET A C m

p T Am Bp

φ− −

−

⎧ = − − +⎪
⎨

= − +⎪⎩

where we define 1ET B Dφ −= − + and assume for the moment that φ is nonsingular.

Rather than precomputing ()1 1ET A Cφ− −− − + and then multiplying with Tm , we can

reduce the complexity more by breaking the computation into several smaller steps. By

doing so, we can accomplish the encoding step in complexity ()O N .

 24

2.4 IRREGULAR REPEAT ACCUMULATE CODES

Jin et al. introduced a promising class of codes, called Irregular Repeat Accumulate

(IRA) codes, which has several strong points [10]. First, IRA codes can be encoded in

linear time like Turbo codes. Second, their performance is superior to turbo codes of

comparable complexity and as good as best-known irregular LDPC codes. In addition,

they have a simple structure, that is, the parity part of IRA codes has a bi-diagonal

structure, illustrated in the Figure 2.6, and their message part adopts arbitrary permutation

to maintain the check node degree concentrated.

The eIRA codes by Yang et al. extended the IRA codes [11]. The eIRA codes achieve

good performance by assigning degree-2 nodes to nonsystematic bits and ensuring that

the degree-2 nodes do not form a cycle amongst themselves. Furthermore, they avoid

cycles of length-4 and make the systematic bits correspond to variable nodes of degree

higher than two. They ensure efficient encoding by forming the parity in the bi-diagonal

structure like IRA codes as shown in Figure 2.6.

2

1
1 1

1 1

1 1
1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Figure 2.6 Bi-diagonal structure in IRA (or eIRA) codes.

 25

Let H1 and H2 be the systematic part and nonsystematic part of the parity-check matrix

[]1 2|H H H=

of eIRA codes. The systematic generator matrix G is given by

[]|kG I P= ,

where Ik denotes an k k× identity matrix and P denotes parity part. Since

[] 1

2

1 2

|

0,

T
T

k T

T T

H
G H I P

H

H P H

⎡ ⎤
⋅ = ⋅ ⎢ ⎥

⎣ ⎦

= + ⋅ =

we can get 1 2
T TP H H −= ⋅ . Then, the systematic codeword is represented by

[]|kc m G m I P= ⋅ = ⋅ = 1 2| T Tm m H H −⎡ ⎤⋅ ⋅⎣ ⎦ . We can implement a simple encoder as

shown in Figure 2.7. The encoding complexity can be made low if the multiplication

with H2
-T can be implemented efficiently. For eIRA codes, the multiplication with H2

-T

can be implemented with a differential encoder whose transfer function is 1
1 D⊕

.

H1
T

m
H2

-T

m

p

C = [m | p]

Figure 2.7 Encoder example of eIRA codes.

 26

CHAPTER III :

RATE-COMPATIBLE PUNCTURING ALGORITHM

Over time-varying channels such as wireless channels, a communication system needs

to be operated adaptively at different rates. One possible solution to this problem is to

use several dedicated codes for different rates. However, this requires several different

encoder/decoder pairs, which increases the complexity. On the other hand, we can also

use codeword symbol puncturing to obtain a channel coding scheme that provides a

family of codes with different coding rates according to the channel state information

(CSI). In terms of complexity, this would be much more efficient than providing several

dedicated codes for different rates since it requires only one encoder/decoder pair.

Rate-compatible punctured codes (RCPC) were introduced by Hagenauer [12]. In

RCPC codes, the parity bits of a higher-rate code are a subset of the parity bits of the

lower-rate code. This subset property is suitable for applying RCPC to incremental

redundancy (IR) automatic repeat request (ARQ) systems.

The rate-compatible puncturing of LDPC codes based on degree distributions was

introduced by Ha et al. [14]. They proposed a design rule for good puncturing

distributions with a simplified equation, called a steady-state equation. However, this

method assumes infinitely long block lengths, and extending this to short block lengths is

a significant challenge. In this thesis, we propose efficient puncturing algorithm for short

block length (up to several thousand symbols) LDPC codes.

 27

3.1 PRELIMINARY ANALYSIS

Suppose that the Tanner graph of the mother code is denoted by (,)G V C E= ∪ ,

where V denotes the set of variable nodes, C denotes the set of check nodes, and E

denotes the set of edges. Let S V⊆ be a subset of the variable nodes. Then, the set of

check node neighbors of S will be denoted by N(S). Similar notation will be used to

denote the set of variable node neighbors of a subset of the check nodes. The set of

unpunctured nodes is denoted by 0V ; then, the set of punctured variable nodes is denoted

by 0\V V .

Definition 3.1: [1-step recoverable node] A punctured variable node 0\p V V∈ is called

a 1-step recoverable (1-SR) node if there exists { }()c N p∈ such that { }() { } 0\N c p V⊆ .

1-step recoverable nodes are so named because, in the absence of any channel errors,

these nodes can be decoded in one step of iterative decoding. This definition can be

generalized to k-step recoverable (k-SR) nodes (see Figure 3.1). Let 1V be the set of 1-

SR nodes among the punctured variable nodes. Similarly, let kV be the set of k-step

recoverable nodes, which are defined as follows:

Definition 3.2: [k-step recoverable node] A punctured variable node 0\p V V∈ is called

k-step recoverable (k-SR) node if there exists { }()c N p∈ such that { }() { }
1

0

\
k

i
i

N c p V
−

=

⊆∪

and that there exists { }() { }\q N c p∈ , where 1kq V −∈ .

 28

1-SR nodes

2-SR nodes1-SR nodes

3-SR nodes

 : unpunctured variable nodes

 : punctured variable nodes

 : check nodes

Figure 3.1 k-SR node in the recovery tree.

Note that the k-SR node will be recovered after exactly k iterations of iterative

decoding assuming that the channel does not cause any errors. So, a large number of

low-SR nodes are intuitively likely to reduce the overall number of iterations, which

results in good puncturing performance.

Let us consider building a tree originating from a k-SR node v . First, we link v with

its guaranteed surviving check node c and subsequently link c with all variable nodes

from the set { }() { }\N c v . In the next step, this process is repeated on every new

punctured variable node in the tree until every branch terminates with an unpunctured

variable node. The resulting tree is called the recovery tree of v . We show an example

 29

of a recovery tree in Figure 3.1. The number of unpunctured nodes in the recovery tree of

v will be important, so we designate it as ()S v and () 12S v = in Figure 3.1. Assuming

that v is recovered with the message-passing decoding algorithm on the recovery tree of

v , we define the recovery-error probability of v , ()eP v as follows.

Definition 3.3: [Recovery-error probability ()eP v of a k-SR node v] For kv V∈ and

1k ≥ , ()eP v is the probability of v being recovered with a wrong symbol in the k-th

iteration by the message through the surviving check node from unpunctured nodes in the

recovery tree of v .

When we transmit a punctured LDPC code over a binary erasure channel (BEC) with

an erasure probability of ζ , the probability that a variable node v in kV is recovered in

its recovery tree is expressed in a recursive form as shown in the following definition 3.4.

Definition 3.4:

() () ()
()

()
0

1

1

1 , for
, 1

, for 0,
c

S v d

j k
j

v V
v

v V and k

ζ
ζ ζ

γ ζ
−

=

− ∈⎧
⎪Ψ − = ⎨ Ψ ∈ >⎪
⎩
∏

where 0V and kV are sets of unpunctured nodes and k-SR nodes, respectively, and cd is a

degree of the survived check node of v , jγ ’s are the neighbors of the survived check

node except for v , and j hVγ ∈ for 0 1h k≤ ≤ − .

 30

The following Theorems 3.1-3 tell that the k-SR node with a smaller ()S v will have a

smaller recovery-error probability. The recovery-error probability of a variable node

0kv V >∈ over a BEC with ζ can be obtained as follows.

Theorem 3.1: The ()eP v of 0kv V >∈ over a BEC with ζ is

() ()()1 1 ,
2eP v v ζ= −Ψ ,

and the probability that the variable node v is recovered over a BEC with ζ is (),v ζΨ .

Proof: We will prove this fact by induction. For 1k = , all variable nodes in the

recovery tree of v are in 0V . Thus,

() ()()

() ()()
()()

11 1 1
2

1 1 1
2

1 1 , ,
2

cd
e

S v

P v

v

ζ

ζ

ζ

−= − −

= − −

= −Ψ

where cd is a degree of a survived check node of v . Now, assume that for a variable

node j kVγ ∈ ,

() ()()

() ()()

1 1 ,
2

1 1 1 .
2

j

e j j

S

P

γ

γ γ ζ

ζ

= −Ψ

= − −

Then for 1kv V +∈ ,

 31

() ()

() ()

() ()()
()()

1

1

1

1

1 1 ,
2

1 1 1
2

1 1 1
2

1 1 , ,
2

c

dc

j
j

d

e j j
j

S

S v

P

v

γ

γ γ ζ

ζ

ζ

ζ

−

=

−

=

⎛ ⎞
= − Ψ⎜ ⎟

⎝ ⎠

⎛ ⎞∑= − −⎜ ⎟⎜ ⎟
⎝ ⎠

= − −

= −Ψ

∏

where cd is a degree of the survived check node of v , jγ ’s are the neighbors of the

survived check node except for v , and the number of unpunctured nodes in the recovery

tree of v is () ()
1

1

cd

j
j

S v S γ
−

=

= ∑ .

■

In Theorem 3.2, we consider the recovery-error probability of a variable node 0kv V >∈

over a binary symmetric channel (BSC) with an erasure probability of ζ .

Theorem 3.2: The ()eP v of 0kv V >∈ over a BSC with ζ is

() ()()1 1 , 2
2eP v v ζ= −Ψ .

Proof: We will prove this by induction. A recovery-error probability of a variable node

1v V∈ will be

 32

() ()()

() ()()
()()

11 1 1 2
2

1 1 1 2
2

1 1 , 2 ,
2

cd
e

S v

P v

v

ζ

ζ

ζ

−= − −

= − −

= −Ψ

where cd is a degree of a survived check node of v . Now, assume that

() ()()

() ()()

1 1 , 2
2

1 1 1 2 ,
2

j

e j j

S

P

γ

γ γ ζ

ζ

= −Ψ

= − −

for a variable node j kVγ ∈ . Then for 1kv V +∈ ,

() ()

() ()

() ()()
()()

1

1

1

1

1 1 , 2
2

1 1 1 2
2

1 1 1 2
2

1 1 , 2 ,
2

c

dc

j
j

d

e j j
j

S

S v

P

v

γ

γ γ ζ

ζ

ζ

ζ

−

=

−

=

⎛ ⎞
= − Ψ⎜ ⎟

⎝ ⎠

⎛ ⎞∑= − −⎜ ⎟⎜ ⎟
⎝ ⎠

= − −

= −Ψ

∏

where cd is a degree of the survived check node of v , jγ ’s are the neighbors of the

survived check node except for v , and the number of unpunctured nodes in the recovery

tree of v is () ()
1

1

cd

j
j

S v S γ
−

=

= ∑ .

■

To obtain the recovery-error probability over AWGN channel, we need to define the

function ()xφ in [15].

 33

Definition 3.5 [15]:

()
()2 / 41 1/ 4 tanh , 0

2
1, 0.

u x xux e du x
x

x

π
φ

− −⎧ − >⎪= ⎨
⎪ =⎩

∫

Theorem 3.3: The recovery-error probability of a variable node kv V∈ over an AWGN

channel with Gaussian Approximation in [15] is () ()()/ 2e uP v Q m v= , where ()Q ⋅ is

the Q-function, () ()()()()0

1 1 1 ,u um v v mφ φ φ−= − −Ψ for
0

22 /um σ= and noise variance

2σ .

Proof: An updated mean of a variable node 1v V∈ will be ()()0

1
1 1 1

cd

umφ φ
−

− ⎛ ⎞− −⎜ ⎟
⎝ ⎠

()() ()

0

1 1 1
S v

umφ φ− ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

()()()0

1 1 , uv mφ φ−= −Ψ . Assume that for a variable node

kVγ ∈ , ()um γ ()()()0

1 1 , umφ γ φ−= −Ψ . Then, for a variable node 1kv V +∈ ,

() ()() ()

()() ()

()() ()

()()()

0

1

1
0

0

0

1
1

1

1

1

1

1 1

1 1

1 1

1 , ,

c j

dc

j
j

d S

u u
j

S

u

S v

u

u

m v m

m

m

v m

γ

γ

φ φ

φ φ

φ φ

φ φ

−

=

−
−

=

−

−

−

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

⎛ ⎞∑⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

= −Ψ

∏

where,
0um is the mean of a log-likelihood ratio message from the channel to

 34

unpunctured variable nodes, cd is a degree of a surviving check node of v , jγ ’s are the

neighbors of the surviving check node except for v , () ()
1

1

cd

j
j

S S vγ
−

=

=∑ , and j hVγ ∈ for

1 h k≤ ≤ .

■

3.2 ALGORITHM FOR FINDING PUNCTURING LOCATIONS

In this section, we present a two-step search algorithm for finding the puncturing

pattern and order, that is, grouping and sorting. In the grouping step, we separate all

variable nodes into groups 0 1, , ... , kV V V . In the sorting step, we determine the order of

puncturing nodes within each group.

The recovery-error probability is a probability for k-SR node to be recovered in the k-

th iteration with a wrong message. Based on the Theorems 3.1-3, the search algorithm

chooses a new puncturing node with the smallest recovery-error probability out of several

candidates. Before describing the search algorithm, we address two definitions below.

Definition 3.6:[Effective column weight] For a parity-check matrix { }, 1 ,1j k j M k N
H h

≤ ≤ ≤ ≤
= ,

let { },: 1 and 1jh Mγ
ρρ ρΛ = = ≤ ≤ be a subset of row indices R . The effective column

weight (),effcw c R is defined as c RΛ ∩ , where ⋅ is a cardinality of a set.

Definition 3.7:[Effective row weight] For a parity-check matrix { }, 1 ,1j k j M k N
H h

≤ ≤ ≤ ≤
= ,

 35

let { },: 1 and 1h Nρ
ρ γγ γΓ = = ≤ ≤ be a subset of column indices C . The effective row

weight (),effrw r C is defined as r CΓ ∩ , where ⋅ is a cardinality of a set.

Proposed Grouping Algorithm

STEP 0 [Initialization] For a given M N× parity-check matrix H , 1k = , 0R and 1R are

empty sets, { }1, 2,...,R M∞ = , { },: 1,1h Nρ
ρ γγ γΓ = = ≤ ≤ , { },: 1,1h Mγ

ρ γρ ρΛ = = ≤ ≤ ,

0V and 1V are empty sets, { }1, 2,...,V N∞ = , () 0S j = for all 1 j n≤ ≤ .

STEP 1 [Group Column Indices] Form a set ρ
∞G such that for each Rρ ∞∈ .

STEP 2 [Find Candidate Rows] Make a subset of R∞ (call it Ω) such that ω∀ ∈Ω ,

()min
eff effrw rw ,Vω ρ ρ∞ ∞ ∞= ≤ =G G for any Rρ ∞∈ .

STEP 3 [Group Row Indices] Make a set γ
∞C such that Rγ γ

∞ ∞= Λ ∩C , for all ωγ ∞∈G ,

and ω∈Ω .

STEP 4 [Find the Best Rows] Find a subset of Ω (call it *Ω) such that * *ω∀ ∈Ω ,

*c ω
∞∃ ∈G such that ()min

eff effcw cw ,c Rγ γ∞ ∞ ∞= ≤ =C C for any ω∈Ω and ωγ ∞∈C .

STEP 5 [Make a Set of Ordered Pairs] Pick a column index * *c ω
∞∈G with min

effcw

randomly, when there is more than one column index with min
effcw . Then, we will have an

ordered pair () () (){ }* * * * * *
1 1 2 2, , , , ... , ,p pc c cω ω ω=O , where *

jω ’s and *
jc ’s are row and

column indices with min
effcw and min

effrw , respectively, and 1 j p≤ ≤ =O .

STEP 6 [Find the Best Pair] Pick a pair ()* *, cω from O such that () ()* *
jω ω≤W W ,

 36

where 1 j p≤ ≤ , () ()
*

*

j

j S
ωγ

ω γ
∈Γ

= ∑W . If there is more than one pair satisfying the

inequality, pick one randomly.

STEP 7 [Update] { }*
k kV V c= ∪ , { }()* *

0 0 \V V cω
∞= ∪ G , *\V V ϖ

∞ ∞ ∞= G , { }*
k kR R ω= ∪ ,

{ }()* *
0 0 \R R ω ω∞= ∪ C , and *\R R ϖ

∞ ∞ ∞= C , () 1S γ = for * *\ cωγ ∞∈G , () ()
{ }*

*

\ *c

S c S
ωγ

γ
∈ Γ

= ∑ .

STEP 8 [Check Stop Condition] If V∞ is an empty set, then STOP.

STEP 9 [Decision] If R∞ is not an empty set, then go to STEP 1.

STEP 10 [No More Undetermined Rows] (){ }0 eff: and rw , 0R R Vρ ρ ρ∞ ∞= ∈ > .

STEP 11 1k k= + , and go to STEP 1.

In STEP 0, ρΓ (γΛ) is a set of non-zero column (row) indices in the row ρ (column γ),

and 0V , 1V , and V∞ are sets of unpunctured, 1-SR, and undetermined column indices,

respectively. When there are no more undetermined columns, the algorithm will stop. kR

and R∞ are sets of row indices that are surviving check nodes of k-SR nodes and

undetermined check nodes, respectively. If a row contains a k-SR node, the k-SR node is

also on the other 1vd − rows, where vd is a degree of the k-SR node. The indices of the

other 1vd − rows of all k-SR nodes are assigned to 0R , and the rows in 0R are excluded

from the candidate rows for a new surviving check node of a k-SR node. In STEP 1, ρ
∞G

will have all the column indices both in ρΓ and V∞ . Thus, the cardinality of ρ
∞G is

()effrw ,Vρ ∞ . In STEP 2, we look for rows in R∞ with a minimum of ()effrw , Vρ ∞ ,

 37

which is simply denoted as min
effrw . Since the size of V∞ decreases by ρ

∞G in STEP 7,

the rows with min
effrw will give us more k-SR nodes. In general, there may be more than

one row with min
effrw . The set Ω contains the row indices with min

effrw . In STEP 3, γ
∞C

will have row indices belonging to both γΛ and R∞ . Similar to ω
∞G , the cardinality of

γ
∞C is ()effcw , Rγ ∞ . We look for rows in which there is at least one column with a

minimum of ()effcw , Rγ ∞ , which is simply denoted as min
effcw . Again, we will have more

k-SR nodes with min
effcw since in STEP 7, R∞ decreases by *Cω

∞ . In STEP 6, we make a

set O of ordered pairs, each of which has a row and a column of the row with min
effrw and

min
effcw , respectively. The set of ordered pairs is not unique since a row may have several

columns with min
effcw . In this case, we randomly choose a column from them. In terms of

maximizing kV , each ordered pair gives us statistically the same result. Among the

ordered pairs, we will choose the one with the highest probability (smallest recovery

error) to be recovered in the k-th iteration.

As in Theorems 3.1-3, we pick up a pair with the smallest ()S c , which is equivalently

evaluated with a measure W for computational efficiency. In STEP 7, we update the

sets with the pair chosen in STEP 6. In STEP 9, the cardinality of R∞ is checked. If it is

not zero, STEP 1 will be visited again. Otherwise, R∞ is updated in STEP 10, where R∞

takes rows ρ ’s with non-zero ()min
effrw , Gρ ∞ in 0R . In STEP 11, we increase k by 1 and

start looking (k+1)-SR nodes.

In the parity-check matrix, the puncturing algorithm assigns each column to a group

 38

among 0 1, , ... , kV V V . If we permute rows and columns in the parity-check matrix such

that columns in the same group are gathered and that elements corresponding to k-SR

nodes are formed diagonal, then the parity-check matrix can be reconstructed as shown in

Figure 3.3.

Unpunctured parities and messages

0

V1 V2 VK...

0

0...

V0

0 0 0Survived
check nodes

for V1

Survived
check nodes

for VK

Figure 3.2 Logical structure of a parity-check matrix.

By puncturing symbols in kV , the maximum achievable code rate maxr can be

expressed as

0
max

1
1 /

K

j
j

rr
V N

=

=
−∑

,

where 0r is the mother code rate, N is the block length of the mother code. For a

sequence of designed rates, 0 1 max... Mr r r r≤ ≤ ≤ ≤ , we can compute the required number

of punctured nodes jNp as

 39

()0j
j

N r r
Np

r

⎢ ⎥−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

for 0 j M≤ ≤ . We will take jNp nodes from kV ’s in terms of minimizing performance

loss resulting from the puncturing. Now, we discuss the sorting step, where we determine

the order of puncturing within each group 0 1, , ... , kV V V .

Proposed Sorting Algorithm

STEP 0 [Initialization] For a given M N× parity-check matrix, 1j = , 1k = , cΛ is a set

of non-zero row indices in the column c , 0P is an empty sets, and { }1, 2, ..., M=R .

STEP 1 If j M> , STOP.

STEP 2 1j j−=P P .

STEP 3 j j jNp Npδ = − P .

STEP 4 If jNpδ is zero, 1j j= + and go to STEP 1.

STEP 5 Make a set of column indices { }1 2, , ..., pc c c , for 1 kp V≤ ≤ from kV such that

{ }1 2, , ...,j pc c c c∀ ∈ , () ()max
eff eff effcw , cw cw ,jc c= ≥R R , for any kc V∈ .

STEP 6 If 1p > , we take nodes *
jc such that { }1 2, , ..., pc c c c∀ ∈ , () ()*deg degjc c≤ . If

there are multiple such nodes, we pick one from them arbitrary and call it *c .

STEP 7 { }*
j j c=P P ∪ , { }*\k kV V c= , and *\ c= ΛR R , 1j jNp Npδ δ= − .

STEP 8 If kV is an empty set, 1k k= + , and { }1, 2, ..., M=R .

STEP 9 Go to STEP 4.

 40

In the proposed sorting algorithm, jP will have column indices that are punctured to

achieve rate jr . Obviously, for 0r , 0P is an empty set in the initialization. In the

algorithm, it is assumed that we will design rates from 0r to Mr , which is less than or

equal to maxr . Thus, in STEP 1, if j is larger than M , the algorithm will stop. In STEP

2, jP takes the column indices in 1j−P , which makes the punctured LDPC codes rate-

compatible since all the punctured nodes for 1jr − will be punctured again for jr . In STEP

3, jNpδ accounts for how many additional nodes are needed to make jP besides the

ones in 1j−P . The loop between STEP 4 and STEP 9 continues until jNpδ becomes zero.

In STEP 5, we look for nodes with the largest number of surviving check nodes, which is

equivalent to nodes with max
effcw .

We compute the additional number of punctured nodes to the ones in the previous rate

1jr − . If we need additional nodes, the algorithm looks for nodes with a maximum

effective column weight max
effcw , which means the node with the maximum surviving

check nodes. We exclude rows with k-SR nodes from R in STEP 7. Thus, max
effcw counts

only surviving check nodes of a variable node. In STEP 6, we choose nodes with the

smallest column degree from { }1 2, , ..., pc c c . This selection will give us nodes with the

smallest number of dead check nodes in { }1 2, , ..., pc c c , which is max
eff- cwcd for the

smallest column degree of cd . By puncturing a node with dead check nodes, the

punctured node not only has a reliable message from the dead check nodes but also

makes dead check nodes to the k-SR nodes connect to the dead check nodes. Thus, we

look for nodes with the largest number of surviving check nodes and the smallest number

 41

of dead check nodes.

3.3 SIMULATION RESULTS

The proposed algorithms are based on the claim that a puncturing distribution that will

be recovered within the smallest number of iterations guarantees better performance. We

verify the claim with computer simulations, where we show that punctured LDPC codes

with the proposed algorithms have better performances than ones with the conventional

random puncturing in terms of bit error rate (BER) and word error rate (WER). The BER

and WER performances are measured after observing at least 50 erroneous code words at

each Eb/No value to guarantee statistical confidence. The punctured LDPC codes are also

compared with dedicated LDPC codes that are designed at the rates of the punctured

LDPC codes.

First, we implement half rate mother LDPC codes with a regular structure (() 2x xλ =

and () 5x xρ =) at block lengths of 1024 and 4096. We deliberately avoid cycle-4 loops

in parity-check matrices of the mother codes to get the better minimum distance property

[16]. By puncturing the mother codes, we implement punctured LDPC codes at rate 0.5,

0.6, 0.7, and 0.8. The block lengths of the punctured LDPC codes and the number of

punctured parity bits for the rates are listed in Table 3.1. Note that the block lengths of

the punctured LDPC codes are shorter at higher rates. Although punctured LDPC codes

have shorter block lengths, a received LDPC code is decoded on the Tanner graph of its

mother code. For fair comparisons, dedicated LDPC codes are designed at the block

lengths of the corresponding punctured LDPC codes for the rates.

 42

Table 3.1 Block lengths of punctured LDPC codes; The lengths in parentheses are the
number of punctured symbols at the rates.

Code rates
Block lengths

0.5 0.6 0.7 0.8

1024 1024 (0) 853 (171) 731 (293) 640 (384)

4096 4096 (0) 3413 (683) 2926 (1170) 2560 (1536)

For (3,6) regular LDPC codes with block length 1024, the puncturing group

distributions with the proposed grouping algorithm (denoted as Intentional) and the three

different trials (denoted as Random 1, 2, and 3) of random selections are in Table 3.2.

The distributions with the random puncturing are implemented three times with different

random seeds to see the performance variations with the different levels of recoverability.

In Table 3.2, the distribution with the intentional puncturing requires 3 iterations to

recover all the punctured parity bits, meaning that the level of recoverability is 3.

However, the distributions with the random puncturing require 9 iterations, which results

in higher recovery-error probabilities of the symbols in the groups with higher indices.

Table 3.2 Group distributions of the intentional puncturing and the random puncturing of
a regular LDPC code with () 2x xλ = and () 5x xρ = at a block length of 1024; The largest
code rate is 0.8.

 0V 1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12V 13V 14V

Intentional 640 294 78 12 0 0 0 0 0 0 0 0 0 0 0

Random 1 640 108 60 44 45 37 42 33 11 4 0 0 0 0 0

Random 2 640 100 50 38 36 26 28 27 30 28 19 2 0 0 0

Random 3 640 100 46 32 26 18 19 17 20 23 25 25 26 15 3

 43

Eb/No [dB]

2 4 6 8

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code (R = 0.5)
Intentional (R = 0.6, 0.7, 0.8)
Random 2 (R = 0.6, 0.7, 0.8)

Figure 3.3 Comparison between the intentional (filled) and random (unfilled) puncturing of a
regular LDPC code at block length 1024; code rates are 0.5, 0.6, 0.7 and 0.8 from the left to the
right, the puncturing distributions are from Intentional and Random in Table 3.2 and the BERs of
the half rate mother are represented with the diamonds.

The intentionally punctured LDPC codes are compared with the randomly punctured

ones in Figure 3.2. In the comparison, the intentional puncturing outperforms at all the

rates. The performance improvement with the proposed algorithm becomes more

distinctive at higher rates. At rate 0.8, to achieve a BER of 10-5, the intentionally

punctured LDPC code has 3dB better Eb/No performance than that of the randomly

punctured one.

 44

Eb/No [dB]

2 4 6 8

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code (R = 0.5)
Random 1 (R = 0.6, 0.7, 0.8)
Random 2 (R = 0.6, 0.7, 0.8)
Random 3 (R = 0.6, 0.7, 0.8)

Figure 3.4 Randomly punctured LDPC codes with three different random seeds; the circles,
squares and triangles correspond to BERs of Random 1, 2, and 3 in Table 3.2, respectively, and
the BERs of the half rate mother code at block length 1024 are represented with the diamonds.

In Figure 3.4, we compared BER performance of the randomly punctured LDPC codes

with three different random seeds at block length 1024, where the ones with the smallest

and largest level of recoverability (denoted as Ramdom 1 and 3 in Table 3.2, respectively)

show the best and the worst BER performances at rate 0.8, respectively. Thus, the

simulation results justify our design rule which looks for selections of punctured parity

bits with a smaller level of recoverability for the highest rate, 0.8. However the

performances at the intermediate rates (0.6 and 0.7) in Figure 3.4 do not seem to depend

 45

on the levels of recoverability since the punctured LDPC code with the puncturing

distribution Random 3 has better performance than the one with Random 2.

Eb/No [dB]

2.5 3.0 3.5 4.0 4.5 5.0

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Random 2 (R = 0.7)
Random 3 (R = 0.7)
without sorting
with sorting

Figure 3.5 Randomly punctured LDPC codes at rate 0.7 with (solid lines)/without (dashed lines)
the sorting algorithm; the filled and unfilled circles are performances of the punctured LDPC
codes with the puncturing distributions Random 2 and 3, respectively and the mother code has a
block length of 1024.

The distributions in Table 3.2 describe levels of recoverability of the punctured LDPC

codes at the highest rate. Thus, better group distribution of a punctured LDPC code does

not guarantee better performance at intermediate rates if we do not carefully choose the

order of puncturing. For intentional puncturing, we apply the sorting algorithm to

 46

determine the order of puncturing but in the case of random puncturing, we puncture

parities with smaller node indices first. The performances of the randomly punctured

LDPC codes at the intermediate rates can also be improved by applying the sorting to the

random puncturing.

In Figure 3.5, we compare the performances of the punctured LDPC codes with

Random 2 and Random 3 at rate 0.7 with/without the sorting algorithm. The sorting

algorithm improves the Eb/No performances of the punctured LDPC codes at a BER of

10-5 by 0.5dB for Random 2 and 0.3dB for Random 3. After applying the sorting

algorithm, the punctured LDPC code with Random 2 has better performance than that of

Random 3, which means the punctured LDPC with the smaller level of recoverability at

the highest rate has better performance.

One more thing to be noticed in Figure 3.4 is the BER performance variations with the

different seeds. The required Eb/No to achieve a BER of 10-5 at rate 0.8 has a difference

of 2.2dB between the best (Random 1) and the worst (Random 3) cases. The random

puncturing may delete significant amount of parity bits in a stopping set, which results in

severe performance degradation especially at higher rates. It is hard to know whether a

random puncturing results in catastrophic selections of punctured parity bits without

time-consuming computer simulations. However, by analyzing the level of recoverability

under the framework of the proposed grouping algorithm, we can predict the performance

of randomly punctured LDPC codes and rule out the catastrophic selections. Thus, the

proposed idea is also useful for designing randomly punctured LDPC codes.

To compare performances of a dedicated and the punctured LDPC codes, we design a

regular LDPC code (() 2x xλ = and () 9x xρ =) for rate 0.7 at block length 731. The

 47

block length is chosen for the block lengths of the punctured and dedicated LDPC codes

to be the same as shown in Table 3.1. Since dedicated LDPC codes can have smaller

minimum distances due to shorter block lengths, it is possible that dedicated LDPC codes

show poorer performances at high Eb/No regions.

Eb/No [dB]

2.0 2.5 3.0 3.5 4.0 4.5 5.0

B
ER

 a
nd

 W
E

R

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Dedicated BER
Dedicated WER
Intentional BER
Intentional WER
Random 2 BER
Random 2 WER
BER
WER

Figure 3.6 BERs (filled) and WERs (unfilled) of a dedicated LDPC code, a proposed punctured
LDPC code and a randomly punctured LDPC code with rate 0.7 from the left to the right,
respectively; the block length of the base LDPC code is 1024.

In Figure 3.6, we compare the BER and WER performances of the dedicated,

randomly punctured and intentionally punctured LDPC codes with code rate 0.7 and

 48

block length 731. In the comparisons, the BER/WER performances are in the order of

the dedicated, intentionally punctured, and the randomly punctured LDPC codes from the

best to the worst. However, at high Eb/No regions, there are crossover points in BER and

WER curves of the dedicated and intentionally punctured LDPC codes because of the

smaller block length of the dedicated LDPC code. Thus, depending on a required

BER/WER performance, intentionally punctured LDPC codes are more favorable than

dedicated LDPC codes besides the structural advantage of the rate compatibility and the

lower complexities of encoders and decoders.

The performance variation of random puncturing becomes smaller as the block length

increases. To see the performance variation with increasing block lengths, we do the

same simulations at a block length of 4096. The group distributions of the intentional

and random puncturing are listed in Table 3.3, where the levels of recoverability are 3 and

at least 10 for intentional and random puncturing, respectively.

Table 3.3 Group distributions of the intentional puncturing and the random puncturing of
a regular LDPC code with () 2x xλ = and () 5x xρ = at a block length of 4096; The largest
code rate is 0.8.

 0V 1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12V 13V

Intentional 2560 1155 323 58 0 0 0 0 0 0 0 0 0 0

Random 1 2560 436 236 188 168 140 133 118 82 29 6 0 0 0

Random 2 2560 398 227 178 128 111 102 99 103 84 69 35 2 0

Random 3 2560 363 207 146 124 110 102 104 115 113 85 52 13 2

We evaluate the BER performances of the three randomly punctured LDPC codes in

 49

Figure 3.7, where the performance variations among the different random puncturing

distributions are noticeably smaller. At rate 0.8, the required Eb/No for a BER of 10-5 has

a variation of less than 0.9dB as compared to 2.2dB in the case of block length 1024.

The smaller performance variation can also be predicted by the group distribution in

Table 3.3. Thus, locations of punctured parity bits are more important at shorter block

lengths.

Eb/No [dB]

1 2 3 4 5 6

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code
Random 1
Random 2
Random 3

Figure 3.7 Randomly punctured LDPC codes with three different random seeds; the circles,
squares and triangles correspond to BERs of Random 1, 2, and 3 in Table 3.3, respectively, and
the BERs of the half rate mother code at block length 4096 are represented with the diamonds.

To see the level of recoverability with increasing block lengths, we design 10,000

 50

different random puncturing distributions for the regular (() 2x xλ = and () 5x xρ =)

LDPC codes at the block lengths of 1024, 4096, 65536. The levels of recoverability are

observed by analyzing the group distributions of the puncturing distributions.

Histograms of the levels of recoverability with the three different block lengths are

compared in Figure 3.8, where most of time, the level of recoverability is bigger than 10.

However, the variations of the level of recoverability become smaller at the longer block

lengths. In the extreme case with the block length of 65536, the variation of the level of

recoverability is significantly smaller, where 11 and 12 account for over 99% of the

occurrence. Thus, we confirm that careful selections of punctured bits are more

important at smaller block lengths from the difference perspective.

Figure 3.8 Histograms of the levels of recoverability; results from 10,000 trials with the regular
LDPC codes at the block lengths 1024 (unfilled), 4096 (shaded), and 65536 (filled).

 51

The randomly puncture LDPC codes (Random 2 in Table 3.3) are compared with the

intentionally punctured ones (Intentional in Table 3.3) in Figure 3.9, where at rate 0.8, to

achieve a BER of 10-5, the intentionally punctured LDPC code requires 1.6dB smaller

Eb/No value than that of the randomly punctured one.

Eb/No [dB]

1 2 3 4 5 6

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code (R = 0.5)
Intentional (R = 0.6,0.7,0.8)
Random 2 (R = 0.6,0.7,0.8)

Figure 3.9 Comparison between the intentional (filled) and random (unfilled) puncturing of a
regular LDPC code at block length 4096; code rates are 0.5, 0.6, 0.7 and 0.8 from the left to the
right, and the puncturing distributions are from Intentional and Random 2 in Table 3.3.

The proposed algorithms can be applied to irregular LDPC codes as well as regular

LDPC codes. To demonstrate the performance of punctured LDPC, we design a half rate

 52

irregular LDPC code as a mother code whose degree distribution pair is

()
()

2 7

5 6

0.28286 0.39943 0.31771

0.6 0.4 .

x x x x

x x x

λ

ρ

= + +

= +

A parity-check matrix for the irregular LDPC codes at block lengths of 1024 is

designed with the Progressive Edge Growth (PEG) algorithm [16] to get a better girth

distribution. The mother code is punctured either randomly or intentionally based the

proposed algorithms. The group distributions are listed in Table 3.4, where Random

(Intentional) 1024 and 4096 indicates the group distributions of random (intentional)

puncturing at block lengths of 1024 and 4096, respectively.

Table 3.4 Group distributions of the intentional puncturing and the random puncturing of
an irregular LDPC code with () 2 70.28286 0.39943 0.31771x x x xλ = + + and

() 5 60.6 0.4x x xρ = + at a block length of 1024 and 4096; The largest code rate is 0.8.

 0V 1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V

Intentional 1024 640 333 46 5 0 0 0 0 0 0 0 0

Random 1024 640 77 63 41 41 48 38 26 23 15 10 2

Intentional 4096 2560 1311 206 19 0 0 0 0 0 0 0 0

Random 4096 2560 361 261 214 182 163 132 112 63 37 8 3

For fair comparisons, we simulate random puncturing with three different random

seeds, and then pick one that has middle performance among them, as we did in the

regular case. The performances of randomly and intentionally punctured LDPC codes at

block lengths 1024 and 4096 are evaluated and compared in Figure 3.10 and Figure 3.11,

respectively.

 53

Again, the intentionally punctured LDPC codes outperform the randomly punctured

LDPC codes at all rates. At rate 0.8, for a BER of 10-5, the intentionally punctured LDPC

codes at block lengths 1024 and 4096 have 1.25dB and 0.8dB of Eb/No improvements

over those of the randomly punctured ones, respectively.

Eb/No [dB]

1 2 3 4 5 6

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code (R = 0.5)
Intentional (R = 0.6, 0.7, 0.8)
Random 2 (R = 0.6, 0.7, 0.8)

Figure 3.10 Comparison between the proposed puncturing (filled dots) and random
puncturing (unfilled dots); the half rate irregular mother code (leftmost) has a block length of
1024, and the punctured LDPC codes have rates of 0.6, 0.7, and 0.8 from the left to the right.

 54

Eb/No [dB]

1 2 3 4

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

Mother code
Intentional
Random 2

Figure 3.11 Comparison between the proposed puncturing (filled dots) and random
puncturing (unfilled dots); the half rate irregular mother block length of 4096, and the punctured
LDPC codes have rates of 0.6, 0.7, and 0.8 from the left to the right.

3.4 CONCLUSION

We propose the grouping and sorting algorithms to design rate-compatible punctured

LDPC codes at short block lengths. The algorithms are based on the claim that a

punctured LDPC code with a smaller level of recoverability has better performance. We

mathematically explain why the proposed algorithms provide us with better punctured

LDPC codes by introducing the concepts of recovery tree and recovery error probability.

 55

The proposed algorithms are verified by comparing performance of punctured LDPC

codes based on the algorithm (called intentionally punctured LDPC codes) with randomly

punctured LDPC codes. The intentionally punctured LDPC codes show better BER

performances at relatively small block lengths (1024 and 4096), and the performance

improvement is more distinctive at smaller block lengths. In our simulations, in the case

of the regular code with block length 1024, the intentionally punctured LDPC has 3dB

better Eb/No performance than that of the randomly punctured one for a BER of 10-5
 at

code rate 0.8. For the longer block length 4096, the intentionally punctured LDPC code

outperforms the randomly punctured LDPC code by 1.6dB at rate 0.8 for a BER of 10-5.

That is, the improvement becomes smaller but still significant.

More important observation is the performance variation of randomly punctured LDPC

codes. Especially, at small block lengths, the variation becomes unacceptable. In our

simulations, we observed 2.2dB performance difference between the best and the worst

randomly punctured LDPC codes. It is possible to puncture significant amount of parities

in a stopping set, which results in poor performance. In the conventional design rule of

randomly punctured LDPC codes, the performance variation can be evaluated with time-

consuming computer simulations. However, by analyzing group distributions of random

puncturing distributions, we predict their BER performances in a much faster way.

The performance variations become smaller at larger block lengths, which are verified

by evaluating histograms of levels of recoverability at three different block lengths, 1024,

4096, and 65536. In the case that we have to use random puncturing, the analysis under

the framework of the grouping algorithm gives us a good random puncturing distribution.

We also show that the sorting algorithm can be applied for random puncturing. A

 56

random puncturing distribution tells the locations of parities to be punctured but the

distribution does not say an order to puncture the parities. Although performance at the

highest code rate is determined by the level of recoverability, performances of punctured

LDPC codes with intermediate code rates from that of the mother code to the highest

code rate depend on the order to puncture the parities.

Finally, we apply the proposed algorithm to irregular LDPC codes at block lengths

1024 and 4096. The performance improvements of the intentionally punctured LDPC

codes are 1.25dB for block length 1024 and 0.8dB for block length 4096 over randomly

punctured LDPC codes at code rate 0.8 for a BER of 10-5.

 57

CHAPTER IV :

EFFICIENTLY-ENCODABLE RATE-COMPATIBLE CODES

The proposed puncturing algorithm in the previous section (from now on, we call this

intentional puncturing) works for any given mother code. However, the maximum

puncturing rate is often limited when this algorithm is applied, so that high puncturing

rates are difficult to achieve. From here, we are interested in the problem of mother code

design for high puncturing capacity and good puncturing performance. In other words,

we focus on a technique for code design in which the parity-check matrix of a mother

code has a large number of variable nodes that are k-step recoverable with low values of k.

The eIRA codes of Yang et al. achieve good performance by assigning degree-2 nodes

to nonsystematic bits and ensuring that the degree-2 nodes do not form a cycle among

themselves. Furthermore, they avoid cycles of length-4 and make the systematic bits

correspond to variable nodes of degree higher than two. They ensure efficient encoding

by forming the parity in the bi-diagonal structure illustrated in Figure 2.6.

It is interesting to see whether there exist other ways of placing the degree-2 nodes so

that the above conditions are satisfied. We present below an example of such a placement

in Figure 4.1. Observe that the column degree of each node is 2 and that there does not

exist any cycle in this matrix. We shall see later that this construction can be generalized

and the resulting matrices can be used to construct LDPC codes that can be efficiently

encoded and have good puncturing performance across a wide range of rates.

 58

1 0 0 0 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 1 0 1 1

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 4.1 Another cycle-free structure with weight-2 nodes.

4.1 NEW CLASS OF IRREGULAR LDPC CODES

In this work we are interested in designing rate-compatible punctured codes that

exhibit good performance across a wide range of coding rates. To ensure good

performance over the different coding rates we attempt to design the mother code matrix

to have a large number of k-SR nodes with low values of k. From a practical perspective

the requirement of low-complexity encoding is also important. Like punctured RA, IRA

and eIRA codes, these codes are designed to recover all the punctured bits when the

channel is error-free even when they achieve the maximum puncturing rate by running

sufficient iterations of iterative decoding. Before describing our design algorithm, we

define a k-SR matrix.

Let ih denote the columns of the parity-check matrix H , where 0 i N≤ < . Let ()T i

denote the variable node corresponding to the i-th column in the Tanner graph of H .

 59

Definition 4.1: [k-SR matrix] The matrix ()s s S
P h

∈
= is called a k-SR matrix, if

() kT s V∈ for all s S∈ , where { }0,1, , 1S N⊆ − .

Systematic Part 1-SR
matrix

2-SR
matrix

d-SR
matrix

. . .H = M

N

γ(1) γ(2) γ(d)

L

l

(a) Nv(2) < M - 1

(b) Nv(2) = M - 1

Systematic Part 1-SR
matrix

2-SR
matrix

d-SR
matrix

. . .H = M

N

γ(1) γ(2) γ(d) 0
0
.
.
.
.
.
.
.
.
.
.
.
0
1

Figure 4.2 Construction of the parity-check matrix of the proposed codes.

In the proposed E2RC codes, we construct the parity-check matrix laying several k-SR

matrices as shown in Figure 4.2. We assign all the degree-2 nodes to the nonsystematic

 60

part, and nodes having degree higher than two are elements of 0-SR matrix. Consider the

submatrix of 0-SR matrix formed by the high degree nodes in the nonsystematic part. We

denote such submatrix of 0-SR matrix as L , and the number of columns in L as l as

depicted in Figure 4.2(a). Except for the 0-SR matrix, we define the number of k-SR

matrices in the parity-check matrix H and the column size of each k-SR matrix as

following definitions. In our construction the non-systematic part of the mother code

parity-check matrix consists of k-SR matrices that can be punctured efficiently.

Definition 4.2: The depth d is the number of k-SR matrices except the 0-SR matrix in a

parity-check matrix.

Definition 4.3: The function ()kγ is the number of columns in the k-SR matrix in a

parity-check matrix, () kk Vγ = , where 0k > .

From Definition 4.3, note that the size of the k-SR matrix is M × γ(k). As defined in

chapter II, ()vN i represent the number of nodes of degree i. Figure 4.2 (a) shows the

case when ()2 1vN M< − , and we will explain the design of such case at the latter part of

this section. Other than that, we assume that (2) 1vN M= − throughout the thesis. One

can consider to design when (2) 1vN M> − , but it is hard to find a good degree

distributions with huge portion of degree-2 nodes. Furthermore, we cannot guarantee

cycle-free among the degree-2 nodes, which is an important design rule that will be

explained later. When (2) 1vN M= − , there will be no 0-SR nodes in the nonsystematic

 61

part, i.e., 0l = . In this case, we insert a degree-1 node in the last column of

nonsystematic part, and assign all the variable nodes of nonsystematic part to degree-2

nodes except the last degree-1 node as shown in Figure 4.2(b).

Example 4.1: For M = 8 and (2) 7vN = , we can construct the nonsystematic part 2H as

2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 0 1 1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

In the matrix 2H , the first four columns form the 1-SR matrix, the next two columns

form the 2-SR matrix, and the next one column forms the 3-SR matrix. Thus, depth d = 3,

γ(1) = 4, γ(2) = 2, and γ(3) = 1. We can also regard the last degree-1 column as 4-SR

matrix. However, our convention in this thesis is to only consider degree-2 columns to

calculate the depth d. From now on, we refer to the last degree-1 column in H2 as (d+1)-

SR matrix since the connections with other k-SR matrices makes it (d+1)-SR node.

■

We shall represent the position of the ones in a column belonging to a k-SR matrix by

the powers of a polynomial in D. Let
1

()
k

k
j

S jγ
=

=∑ . Thus, kS represents the sum of the

size of the submatrix formed by the 1-SR, 2-SR,… and k-SR matrices. The j-th column

of k-SR matrix has the following sequence:

 62

()1 ()
, 1 , where 1 , 0 () 1kj S k

k jh D D k d j kγ γ−+= + ≤ ≤ ≤ ≤ −

1
1

M
dh D −
+ = .

In the sequence, Di represents the position of nonzero element in a column, i.e., i-th

element of the column is nonzero, where 0 1i M≤ ≤ − . For Example 4.1, we can notice

that the depth can be obtained by 2 2log log 8 3d M= = = and ()
2k

Mkγ = for 1 k d≤ ≤ ,

()1 1dγ + = . In general, M need not be a power of two. We present the algorithm for

constructing H2 for general M below.

Proposed Code Construction Algorithm

STEP 1 [Finding Optimal Degree Distribution] Find an optimal degree distribution for

the desired code rate.

STEP 2 [Parameter Setting] For a given design parameter, M (number of parity

symbols), obtain the depth d and γ(k) as Set the size of k-SR matrix as M × γ(k).

STEP 3 [Generating k-SR matrix] The j-th column of k-SR matrix has the following

sequence:

()1 ()

, 1

1 , 1
, 0 () 1

, 1

kj S k

k j M

D D for k d
h where j k

D for k d

γ

γ
−+

−

⎧ + ≤ ≤⎪= ≤ ≤ −⎨
= +⎪⎩

.

STEP 4 [Constructing matrix T] Construct the matrix T as follows:

[]-SR matrix | -SR matrix| | -SR matrix .T 1 2 d=

STEP 5 [Forming matrix H2] Add a degree-1 node to T and form

[]2 | (1)-SR matrixH T d= + .

STEP 6 [Edge Construction for H1] Construct the matrix H1 by matching the degree

 63

distribution (STEP 1) as closely as possible.

STEP 7 [Constructing matrix H] Assign H1 as systematic parts and H2 as nonsystematic

parts:

[]1 2|H H H= .

In STEP 1, we first find an optimal degree distribution for the desired mother code rate,

say RL, using the density evolution [7]. When we determine the degree distribution, the

number of degree-2 nodes, ()2vN , is an important factor. The E2RC codes are designed

so that all the degree-2 nodes in the nonsystematic part can be punctured. This will give

us the achievable highest puncturing rate, say RH. Then, ()()2H vR K N N= − . Thus,

the E2RC codes can provide an ensemble of rate-compatible codes of rate RL~RH. Since

we now consider a design when (2) 1vN M= − so that all the parities can be punctured,

1.0HR = . In STEP 2, we set the design parameters. We try to maximize the number of

low-SR nodes while the increasing the row degree is restrained. In fact, we design the

function γ(k) such that it assign the half of the parities as 1-SR nodes, and the half of the

remaining parities as 2-SR nodes, and so on. We can set the depth d as 2logd M= ⎡ ⎤⎢ ⎥ , and

γ(k) as

1

0

1() ()
2

k

i
k M iγ γ

−

=

⎢ ⎥
= −⎢ ⎥
⎣ ⎦

∑ for 1 ≤ k ≤ d,

(1) 1dγ + = , and (0) Mγ ,

where ⋅⎡ ⎤⎢ ⎥ and ⋅⎢ ⎥⎣ ⎦ are the ceiling function and the floor function, respectively. We observe

that the function γ(k) has several interesting facts as follows:

 64

 Fact 4.1: dS is equal to (2)vN in the nonsystematic part, where 2logd M= ⎡ ⎤⎢ ⎥ .

Proof: From the definition, M should be 12 2d dM− < ≤ . By definition, M can be

represented by 12 (1)M Rγ= ⋅ + , where 1R is the remainder when M is divided by 2, i.e.,

1R = 0, or 1. Then, we have

1 2

2 3

1

(1) (1) 2 (2)

(1) (2) (2) 2 (3)

(1) (2) (1) (1) 2 ()d d

M R R

M R R

M d d R d R

γ γ γ

γ γ γ γ

γ γ γ γ γ−

− = + = ⋅ +

− − = + = ⋅ +

− − − − − = − + = ⋅ +

 (a)

In the above equations, the remainders can be 1 2, , ..., dR R R = 0, or 1. From (a), we can

also have

() ()1 1 22 (1) 2 2 (2)M R R Rγ γ+ = ⋅ + = ⋅ ⋅ +

() ()2 2
1 2 2 32 2 (2) 2 2 (3)M R R R Rγ γ+ + ⋅ = ⋅ + = ⋅ ⋅ +

…

()2 1 1
1 2 1 12 2 2 (1) 2 () 2d d d d

d d dM R R R d R d Rγ γ− − −
− −+ + ⋅ + ⋅ = ⋅ − + = ⋅ + ⋅ (b)

()1
1 22 2 2 ()d d

d dM R R R d Rγ−+ + ⋅ + ⋅ = ⋅ + (c)

From (b), LHS is greater than 12d− from the range of M . So, () 1dγ ≥ in RHS since dR =

0 or 1. On the other hand, () dd Rγ + in (c) should be 1 since the sum of LHS is less than

12d+ . Thus, we conclude that ()dγ is 1 and dR is 0. Then, from (a), we have

(1) (2) () () 1d M d Mγ γ γ γ+ + + = − = − .

■

 65

Fact 4.2: γ(k) ≥ 1 for 1 k d≤ ≤ .

Proof: It is obvious that (1) (2) ()dγ γ γ≥ ≥ ≥ and () 1dγ = from the proof of Fact

4.1.

■

From the generation sequence in STEP 3, we can notice that k-SR matrix is composed

of only degree-2 variable nodes except for the last (d+1)-SR matrix.

Observation 4.1: Every column in k-SR matrix has degree two. In particular, when

(2) 1vN M= − , all the columns of the nonsystematic part have degree two except the last

column which has degree one.

After generating k-SR matrix, we put together k-SR matrices in the matrix T in STEP 4.

Then in STEP 5, we construct H2 matrix, nonsystematic part of H matrix,

[]2 | (1)-SR matrixH T d= + by adding a degree-1 column at the end of H2. The

following Example 4.2 is to help understand the construction of H2 matrix of the

proposed algorithm.

Example 4.2: For 10M = and (2) 9vN = , the depth d = 4, and γ(1) = 5, γ(2) = 2, γ(3) =

1, γ(4) = 1.

 66

2

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 1 0 0
0 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

■

In the next STEP 6, we construct edges for the matrix H1 trying to keep the degree

distribution obtained from STEP 1. Finally, combining H1 and H2 make the whole parity-

check matrix in STEP 7. Note that the degree distribution of the nonsystematic part is

already fixed by the construction algorithm (see Observation 4.1 and Corollary 4.1).

From the above Example 4.1 and 4.2, we can observe the right degree distributions of H2.

Except for the last row degree, we notice that the number of degree-k rows is the number

of columns in k-SR matrix, which is exactly γ(k). Lemma 4.1 explains the details.

Lemma 4.1: In the matrix H2, any column in k-SR matrix is connected to at least one

row of degree-k. Furthermore, this row has exactly one connection to a column from

each l-SR matrix, where 1 ≤ l < k ≤ d.

Proof: Consider the jk-th column in the k-SR matrix. Its sequence is given by

()1

1

()
, 1

, where 0 () 1.

k k

k

k k k k

j S k
k j

j S j S
k

h D D

D D j k

γ

γ

−

−

+

+ +

= +

= + ≤ ≤ −

We shall demonstrate that the first entry of , kk jh is connected to a column in the l-SR

 67

matrix for 1 l k≤ < . First, note that 2H is lower-triangular with ones in the diagonal. An

immediate consequence of this fact is that , kk jh can only be connected to the second entry

of , ll jh , the jl-th column in the l-SR matrix. Suppose that the second entry of the jl-th

column in the l-SR matrix is connected to the first entry of the jk-th column in the k-SR

matrix. This implies that 1l l k kj S j S −+ = + . Clearly 1 0l k k lj j S S−= + − ≥ since k l>

and 0 () 1kj kγ≤ ≤ − . We shall now show that 1 () 1l k k lj j S S lγ−= + − ≤ − . This means

that for a given kj , it is possible to find a unique column lj belonging to the l-SR matrix

to which it is connected. From the proof of Fact 4.1, we have ()i iS M i Rγ= − − , where

0iR = or 1. Then, we have

()

1 1() 1

1

1

() () 1

() 1 1

() 1.

l k k l k l

k l

d l

d l

l

j j S S k S S

S S

S S

M d R M l R

l R

l

γ

γ γ

γ

γ

− −= + − ≤ − + −

= − −

≤ − −

= − − − − − −

= − − −

≤ −

Therefore, for a given kj , we can find a corresponding lj in the l-SR matrix for 1 l k≤ < .

Note that the first entry of kj is connected to the corresponding lj . Since the matrix is

lower-triangular, this entry cannot have any connection with a m-SR matrix where m k> .

Therefore this particular row has degree exactly k . This concludes the proof.

■

From Lemma 4.1, we can obtain the exact number of rows with degree-k except the last

row. To find out the entire row degree distributions, let’s define ζ as the row degree of

 68

the last row.

Observation 4.2: The row degree ζ of the last row in the matrix H2 can be obtained as

[]
1

() 1
d

i d
i

i S Sζ γ
=

= + − +∑ .

Proof: Let’s consider the connections of the last row with each k-SR matrix. It is easy

to see that if M = 2·γ(1), there is a connection between the 1-SR matrix and the last row,

otherwise, there is no connection. In the same way, if M = γ(1)+2·γ(2), there is a

connection between the 2-SR matrix and the last row, and so on. Thus, we can get ζ as

()() ()()

()()

[]

[]

-SR matrix 2-SR matrix

()-SR matrix-SR matrix

1

1

1 2 (1) 1 (1) 2 (2)

1 (1) (2) 2 () 1

() (1) 1

() 1 ,

1

d+1d

d

i
i

d

i d
i

M M

M d

i S M

i S S

ζ γ γ γ

γ γ γ

γ

γ

=

=

= − − + − − − +

+ − − − − − +

= + − − +

= + − +

∑

∑

since we have 1dS M= − from Fact 4.1.

■

From Observation 4.2, we can obtain []
4

1
() 9 1 3i

i
i Sζ γ

=

= + − + =∑ for Example 4.2. Since

we know ζ, we are ready to get the whole right degree distributions for H2. The

following Observation 4.3 and Corollary 4.1 give the whole right degree distributions.

Observation 4.3: The number of degree-k rows in the matrix H2 is () ()k kγ δ ζ+ − for

 69

1 ≤ k ≤ d, where
1 0,

()
0

if i
i

otherwise
δ

=⎧
= ⎨
⎩

.

Corollary 4.1: The right degree distribution (node perspective) of the matrix H2 is as

follows:

1
1

1

ˆ()
d

i
i

i
x xρ ρ

+
−

=

=∑ , where () ()ˆi
i i

M
γ δ ζρ + −

= for 1 ≤ k ≤ d and 1
()ˆd
i
M

δ ζρ +

−
= .

Proof: First, consider the k-SR matrix when 1 ≤ k ≤ d. From the Lemma 4.1, if we

pick a column in the k-SR matrix, the first element of the column is included in a row of

degree k, and the second element of the column has the row degree greater than k. The

number of columns in the k-SR matrix is γ(k) and each column is connected to one

degree-k row. Thus, the number of rows having degree k is at least γ(k) except the last

row. For a (d+1)-SR matrix, there is only one degree-ζ row. From Fact 4.1, summing the

number of rows having degree-k results in (1) (2) () 1d Mγ γ γ+ + + + = . Therefore, the

number of rows of degree k except the last row is exactly ()kγ .

■

From Observation 4.1 and Corollary 4.1, we can determine the exact degree

distributions for the nonsystematic parts, namely the H2 matrix. For a desired code rate,

we can find the optimal degree distributions for the whole code while fixing these degree

distributions for H2. Then, we can get the degree distributions for the H1 matrix. For the

systematic part, namely the H1 matrix, we choose variable nodes of higher degree greater

than two. Besides finding the optimal degree distributions, there are three additional

design rules for finite-length LDPC codes proposed in [7]:

(a) assign degree-2 variable nodes to nonsystematic bits;

 70

(b) avoid short cycles involving only degree-2 variable nodes;

(c) cycle-4 free in the code graph.

The proposed E2RC codes meet the design rule (a) as stated above. For design rule (b),

we will show that there is no cycles involving only degree-2 variable nodes in Lemma 4.2

and 4.3.

Lemma 4.2: Suppose there exists a length-2s cycle in a matrix which consists of only

weight two columns. Consider the submatrix formed by the subset of columns that

participates in the cycle. Then, all the participating rows in the cycle must have degree

two in that submatrix.

Proof: To have a length-2s cycle, the number of columns participating in the cycle

needs to be s and the number of rows participating in the cycle needs to be s. Let us

denote the submatrix formed by the columns participating in the cycle by U. Then, the

number of edges in U is 2s since each of the columns has degree two. Each row

participating in the cycle must have a degree greater than or equal to two in U since each

row has to link at least two different columns in U. Suppose there is a row having degree

strictly greater than two in U. Then, there should be a row having a degree less than two

in U, i.e., equal to one, since the average row weight in U is two (the number of edges /

the number of rows = 2s / s = 2), which is a contradiction. This is because a row that has

degree-one in U cannot participate in a cycle with the columns in U. Thus, every

participating row must have degree two in U.

■

Armed with Lemma 4.2, we will prove that the proposed matrix H2 is cycle free.

 71

Lemma 4.3: The matrix H2 constructed by the E2RC construction algorithm is cycle

free.

Proof: Suppose that there exist s columns v1, v2, …, vs that form a cycle of length 2s.

We form the M s× submatrix formed by the columns. Let us denote this submatrix Hs.

Suppose that column vi belongs to the ki-SR matrix in H2. Find the minimum value of ki.

Let us call it kmin. Applying Lemma 4.1, we have that
minkv has exactly one connection to

each l-SR matrix, where 1 ≤ l < kmin, and no connection to m-SR matrices where m > kmin,

i.e., there is a check node connected to
minkv that is singly-connected in the submatrix Hs.

Applying Lemma 4.2, we realize that a cycle cannot exist amongst the s columns.

■

Since all of the nodes (except one) are degree 2 in H2, the fraction of degree-2 nodes in

degree distributions is very high. For a finite length code, the higher portion of degree-2

nodes cause better threshold performance, but a big fraction of degree-2 nodes can result

in a small minimum distance, causing a greater probability of decoding errors and higher

error floors. To reduce these effects, we can use methods such as those presented in [16]

[17] [18] [19] when we construct the H1 matrix. By doing so, the E2RC codes can meet

the design rule (c).

4.2 LOW-RATE CODE DESIGN

Since the E2RC codes have strong point in puncturing, considering mother code design

for low rate (0.5R <) is a necessary step. As stated earlier, all the degree-2 nodes in the

 72

nonsystematic part of the parity-check matrix can be punctured in our codes. Thus, to get

the maximum puncturing characteristic for low rate codes, (1 R−) portion of the nodes

should be filled with degree-2 nodes. However, it is hard to find a good degree

distribution including huge portion of degree-2 nodes. In other words, we should

consider the code design which allow some portion of nodes in the nonsystematic part

have degree greater than two. This is the reason why we consider the case when

(2) 1vN M< − . We will briefly explain the difference of the construction algorithm for

this case comparing with the case stated earlier. In STEP 1, we find optimal degree

distributions for the desired code rate as before, but the target code rate is mainly low rate.

For STEP 2, we first determine the size of parities that are not to be punctured, which is l

in Figure 4.2(a). Since the E2RC codes regard all the degree-2 nodes in the

nonsystematic part to be punctured, the size of unpunctured nodes in the nonsystematic

part can be (2)vl M N= − . Then, the size of the matrix L is M l× . We set the depth d

as 2 2log logd M l= −⎢ ⎥⎣ ⎦ , and obtain γ(k) the same as the previous settings for 1 k d≤ < .

However, the previous settings for γ(k)’s are designed to match (2) 1d vS N M= = − .

When (2) 1vN M< − , we set 1() (2)v dd N Sγ −= − so that they can satisfy (2)d vS N= . To

generate the sequence of d-SR matrix, we set

1

0

1 ()
2

d

i
M iδ γ

−

=

⎢ ⎥= −⎢ ⎥⎣ ⎦
∑ .

Then, the the j-th column of k-SR matrix of STEP 3 has the following sequence:

()
()

1

1

()

,

1 , 1
, 0 () 1

1 ,

k

k

j S k

k j j S

D D for k d
h where j k

D D for k d

γ

δ
γ

−

−

+

+

⎧ + ≤ <⎪= ≤ ≤ −⎨
+ =⎪⎩

.

 73

We formulate T the same as in STEP 4, then we set []2 |H L T= in STEP 5, where

variable nodes in the matrix L have degree higher than two. Note that we do not put the

degree-1 node in H2. In STEP 6, we only need to construct edges for the matrix L and H1

trying to keep the degree distribution obtained from STEP 1. Finally in STEP 7, we

accomplish the parity-check matrix by putting together 1H and 2H the same as before.

In the case when (2) 1vN M< − , we can say that the submatrix formed by the columns of

(2)vN is cycle free since we generate the sequence same as before.

For the proposed codes, rate-compatibility can be easily obtained by puncturing nodes

of degree two from left to right in the H2 matrix. For a desired code rate Rp obtained

from puncturing the mother code of rate RL, the number of puncturing symbols

()1 L pp N R R= − , where N is the code length and L p HR R R≤ ≤ . Equivalently, we can

achieve any desired code rates by puncturing first p nodes from the first node in 1-SR

matrix. This can be a good advantage when it is applied to IR Hybrid-ARQ systems,

which will be discussed in the next chapter.

Another big advantage for the proposed codes (when (2) 1vN M= −) is that even if all

the parity bits are punctured, they can be recovered completely after (d+1) iterations

using a erasure decoder or a LDPC decoder when the channel has no errors. This is

because the k-SR nodes in k-SR matrix can be recovered after k iterations with the help of

other unpunctured nodes and lower-SR nodes. This property can be used to encode. The

proposed codes not only have simple rate-compatible puncturing scheme but also an

efficient encoding structure. We describe the encoding structure in the following section.

 74

4.3 EFFICIENT ENCODER IMPLEMENTATION

In this work, we propose a new encoding method which can be applied to other block

codes as well as E2RC codes. First, we will explain the case when (2) 1vN M= − . For

the parity-check matrix []1 2|H H H= of an E2RC code obtained from the proposed

construction algorithm, let a codeword []|c m p= , where m is the systematic symbols,

and p is nonsystematic symbols. Let the systematic generator matrix G is given by

[]|kG I P= . As we stated in the section 2.4, the systematic codeword can represented by

[] 1 2| | T T
kc m G m I P m m H H −⎡ ⎤= ⋅ = ⋅ = ⋅ ⋅⎣ ⎦ . From the construction sequence of E2RC

codes, 2H is the lower triangular matrix. Let ML be the M M× lower triangular matrix

of 2H . For M is power of 2, we have the following results by inspection:

2

/ 2

,

M

M

H L

I O
I L

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

and

2

/ 2

/ 2

.

T T
M

T
M

T
M

H L

I L
O L

− −

−

−

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

We can easily check that

/ 2 / 2
2 2

/ 2 / 2

.

T T
T T M M

T T
M M

I L L
H H

O L L

I O
O I

I

− −
−

−

⎡ ⎤+
= ⎢ ⎥⋅⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=

 75

Here, we can obtain ML recursively;

1

2

4
2

1,

1 0
,

1 1

,

L

L

I O
L

I L

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Likewise, we can get T
ML − recursively;

/ 2
2

/ 2

/ 4

/ 4

/ 4

/ 4

1

1

1

1
1

.

1

T
T T M

M T
M

T
M

T
M

T
M

T
M

T

T

T

I L
H L

O L

I L
I

O L

I L
O

O L

I L
I

O L
I

I
O

O
I

I
O

O
I

O
O L

I
I

O
I

I
O

O
I

I
O

O
I

O
O

−
− −

−

−

−

−

−

−

−

−

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥= ⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥⋅⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅
⎢ ⎥⋅⎢ ⎥= ⎢ ⎥⋅
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥⋅
⎢ ⎥
⎢ ⎥⎣ ⎦

 76

It is possible to show that the multiplication with 2
TH − can be implemented simply with

a shift-register circuit. Thus, an example of encoder is shown in Figure 4.3.

1 2 M/4 M/2

t = M/2 + M/4t = M/2+M/4+? M/2d-1t = M-1

.

t = M/2

H1
Tm

m

p

c = [m | p] c: codeword, m: message, p: parity

. . .

Figure 4.3 An example of shift-register implementation of E2RC codes when 2dM = case.

So far, we have explained the case when M is power of 2. To derive an efficient

encoder for general case, we set [] []1 2| | TTH c H H m p⋅ = ⋅ 1 2 0T TH m H p= + = . Let

1
T Ts H m= , then we have 2 1

T T TH p H m s= = . Let ()2 , 1 ,i j i j M
H h

≤ ≤
= , then

1

1 1

M i

i ij j ij j i
j j

s h p h p p
−

= =

= = +∑ ∑ since 1ijh = for i = j and 0ijh = for i < j (since H2 is lower

triangular) in the construction of the E2RC codes.

11 12 1 1 1

21 22 2 2 2

31 32 3 3 3

2

1 2

M

M

M
T

M M MM M M

h h h p s
h h h p s
h h h p s

H p

h h h p s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

 77

By observing the sequence for 1-SR matrix construction, we can notice that the elements

between the two entries of the sequence and below the second entry of the sequence are 0,

that is,

0 ,1 (1),
1 , (1) 1 , (1)
0 , (1) 1 , (1)

ij

i i j
h i M j i

i M j i

γ
γ γ
γ γ

≤ ≤ <⎧
⎪= + ≤ ≤ = −⎨
⎪ + ≤ ≤ < −⎩

.

Then we have

1

(1)

, 1 (1)

, (1) 1

i
i

i
i ij j

j i

s for i
p

s h p for i M
γ

γ

γ
−

= −

≤ ≤⎧
⎪= ⎨ + + ≤ ≤⎪
⎩

∑
.

The above results tell us that we can get pi with using previous (1)γ pi’s, which enables

us to implement the E2RC encoder by using (1)γ shift registers. The following example

explains encoding method more detail.

Example 4.3: For M=7, we can construct H2 matrix as follows:

1 1

2 2

3 3

4 42

5 5

6 6

7 7

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 1 0 1 0
0 0 0 0 1 1 1

T

p s
p s
p s
p sH p
p s
p s
p s

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⋅ = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

By doing some matrix operations, we get the following equations: 1 1p s= , 2 2p s= ,

3 3p s= , 1 4 4p p s+ = , 2 5 5p p s+ = , 3 4 6 6p p p s+ + = , and 5 6 7 7p p p s+ + = . Then, we

can obtain ip ’s by using jp ’s, where j i< : 1 1p s= , 2 2p s= , 3 3p s= , 4 1 4p p s= + ,

 78

5 2 5p p s= + , 6 3 4 6p p p s= + + , and 7 5 6 7p p p s= + + . Then, we only need ()1 3γ =

number of registers for the encoder in Figure 4.4. The coefficients for multiplication in

Figure 4.4 can be obtained from the above sliding windows of the rectangular in the

matrix equation. For this reason, we will refer to this encoding method as sliding window

method. The coefficient gi‘s are time varying according to the rectangular windows.

Assuming that the window starts from the first row at initial time t=0, g0 will be on at

t=3-5, g1 will be on at t=5-6, and g2 will be on at t=6.

■

From the Example 4.3, we can generalize the shift-register encoder implementation of

E2RC codes. The encoder can be represented as division circuit as shown in Figure 4.4.

We can represent the division circuit in Figure 4.4 as a generator polynomial as

2 (1) 1 (1)
0 1 2 (1) 1()g x g g x g x g x xγ γ

γ
−

−= + + + + + .

R1 R2 Rγ(1)

gγ(1)−1 g1 g0

... s3 s2 s1 ... p3 p2 p1

. . .

. . .

. . .

Figure 4.4 An example of shift-register implementation of E2RC codes.

By observing the matrix H2, we can obtain the coefficients of the polynomial. As in

Figure 4.5, let us think about the window of size w. As we slide down the window from

the first row to the last row, we can get a parity-check equation one by one. The

coefficients in the window will change or stay between 0 and 1 for each row. If we trace

the time-varying coefficients, then we can implement the shift-register encoder of Figure

 79

4.4. We set the window size w as (1)γ since the largest distance between nonzero

elements in a row of H2 is (1)γ from the E2RC code construction algorithm. We can set

the window size differently for other codes. In the sliding window, the first entry

corresponds to 0g , and the last entry to (1) 1gγ − .

0
0

g0 g1 ... gw-1t = 0

t = 1

t = M-1

.

.

.

time

window size = w

1

g0 g1 ... gw-1

g0 g1 ... gw-1

g0 g1 ... gw-1

1

1

1

w

.
.

.

.
.

.

Figure 4.5 Nonsystematic part of a parity-check matrix for applying sliding window encoding
method.

Let us define the time is zero when the window starts from the first row. The initial

(0t =) status of coefficients is 0. In our code construction, note that ig can exist only if

(1) ()i kγ γ= − for 1 k d≤ ≤ . In other words, we only have to consider d coefficients and

 80

other than those are all zero. For a such coefficient ig , it is on at time kt S= , and will last

until the window reach the last row (dt S=) if there is a connection for k-SR matrix in the

last row. Otherwise, it will be off at the last row. Figure 4.6 shows the timing diagram of

coefficients.

g0

g1

g2

.

.

.

gw-1

0 M-1time

0

0

0

0

1 2 3 . . .

1

1

0 1

.

.

.

.

.

.

t=S1

t=S2

t=Sd

Figure 4.6 Timimg diagram of coefficients of sliding window encoder.

From Observation 4.2, note that there is a connection for k-SR matrix in the last row if

() 1k dk S Sγ + − = and no connection if the value is 0. Then, the coefficients of the

generator polynomial ()g x can be represented as

 81

{ }
1

((1) ()) () (()) ()
d

i k k d d
k

g i k u t S k S S u t Sδ γ γ δ γ
=

= − + − − + − ⋅ −∑ ,

where we define the unit step function as follows:

1, 0
()

0, 0 .
t

u t
t
≥⎧

= ⎨ <⎩

The E2RC codes have similarity with cyclic codes in the sense that they can be

represented as a generator polynomial. The only difference is that the coefficients of the

generator polynomial are time-varying. For the above Example 4.3 when M =7,

0 (3) (6)g u t u t= − − − , 1 (5)g u t= − , 1 (6)g u t= − . As mentioned earlier, the proposed

sliding window encoding method can be applied any other block codes if the

nonsystematic part of their parity-check matrix has lower-triangular form as shown in

Figure 4.5. In fact, the window size can be lowered if the lower-triangular form in Figure

4.5 has lower-triangular 0’s in it, which can be achieved by column and row permutation

for a given parity-check matrix.

Another way to implement the encoder of the proposed E2RC codes is by using a

simple iterative erasure decoder. Recall that all the nodes in k-SR matrix can be

recovered in k iterations with erasure decoder since they are all k-SR nodes. For the

proposed codes, even if all the parity bits are erased, we can obtain the exact parity bits

within (d+1) iterations using a simple erasure decoder or general LDPC decoder of

message-passing algorithm as long as the systematic bits are known exactly (this is the

case at the encoder). In a transceiver system, this can be a big advantage in terms of

complexity. We only need to provide an LDPC decoder for both encoding and decoding,

and do not need any extra encoder.

Even though we may not use the shift-register implementation of sliding-window

 82

method for the encoder when (2) 1vN M< − , we can easily apply the efficient encoding

method proposed in [8]. To match notations in [8], let the parity-check matrix H

represent as
A B C

H
D E F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. Then,
A
D
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is the systematic part of E2RC codes,

B
L

E
⎡ ⎤

=⎢ ⎥
⎣ ⎦

, and
C

T
F
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 is k-SR matrices. For E2RC codes, we know the exact sequence

of the matrix T. Furthermore, the matrix C is a lower triangular with ones in the diagonal,

which does not require preprocess. These make us easy to apply the efficient encoding

method in [8] to E2RC codes.

4.4 SIMULATION RESULTS

We consider rate-1/2 mother codes with block length of 1024. To compare the

puncturing performance of the E2RC codes with that of other LDPC codes, we generate

eIRA codes and general irregular LDPC codes of which degree distributions are

optimized in AWGN channel as those in [11] for rate-1/2 codes:

() 2 6

5 6

0.30780 0.27287 0.41933

() 0.4 0.6 .

x x x x

x x x

λ

ρ

= + +

= +

For E2RC codes, however, the actual degree distributions are slightly different to

compensate for the right degree of H2:

() 2 6

5 6 7 8

9 10 11

0.00030 0.30210 0.27136 0.42625

() 0.41147 0.54626 0.01892 0.01064

0.00592 0.00325 0.00354 .

x x x x

x x x x x

x x x

λ

ρ

= + + +

= + + +

+ + +

 83

We apply the algorithm proposed in [16] [17] [18] [19] to H1 design for having the

better girth characteristics. We design eIRA codes of length 1026 to compare the

performance between the proposed E2RC codes and the eIRA codes. We also use the

algorithm of [16] [17] [18] [19] to design the systematic part of eIRA codes. As shown in

Figure 4.7, the mother code performance of two codes shows almost the same over the

AWGN channel. However, E2RC codes outperform eIRA codes at every puncturing rate.

In this simulation, we adopt the random puncturing strategy for puncturing eIRA codes.

Eb/No [dB]

1 2 3 4 5 6 7

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=512)
eIRA codes (K=513)

Figure 4.7 Puncturing performance comparison between the proposed E2RC codes (filled circle)
of length=1024 and the eIRA codes (unfilled circle) of length=1026 with random puncturing.
Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right.

 84

Next, we apply the intentional puncturing algorithm to the eIRA codes, but in this case

we face puncturing limitations. In fact, the intentional puncturing assigns 256 nodes as 1-

SR nodes and cannot find further k-SR nodes (k ≥ 2) if we try to maximize the number of

1-SR nodes. To get a high rate (R = 0.7, 0.8, 0.9) in eIRA codes, we puncture randomly

after the puncturing limitation (256 1-SR nodes), which destroys the previous tree

structure of 1-SR nodes, resulting in poor performance. As shown in Figure 4.8, the

puncturing performance of the E2RC codes is better than that of eIRA codes as the code

rates are increased. For a code rate of 0.9, the E2RC codes show 1.1dB of Eb/No better

than that of eIRA codes at a BER of 10-5.

Eb/No [dB]

2 4 6 8

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K = 512)
eIRA codes (K = 513)

Figure 4.8 Puncturing performance comparison between the proposed E2RC codes (filled circle)
of length=1024 and the eIRA codes (unfilled circle) of length=1026 with the intentional
puncturing. Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right.

 85

To compare the puncturing performance with general irregular LDPC codes, we

generate an irregular LDPC code having the same degree distribution as in [11]. The

code length of this code is 1026, and we also apply the algorithm in [16] [17] [18] [19] to

generate the code. From the rate-1/2 mother codes, we generate punctured codes of rate

0.6, 0.7, 0.8, and 0.9 using random puncturing and the intentional puncturing algorithm.

For the random puncturing case as in Figure 4.9, the performance gaps are large. For

code rate of 0.8, the E2RC codes show 2.8dB of Eb/No better than that of the general

irregular LDPC codes at a BER of 10-5.

Eb/No [dB]

2 4 6 8

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=512)
lrregular LDPC codes (K=513)

Figure 4.9 Puncturing performance comparison between the proposed E2RC codes (filled circle)
of length=1024 and the irregular LDPC codes (unfilled circle) of length=1026 with random
puncturing. Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to right.

 86

The intentional puncturing case is shown in Figure 4.10, the proposed E2RC codes

show better performance in all ranges of rates over the AWGN channel. For the rate 0.7

case, the puncturing of proposed codes is 0.2dB better than that of the general irregular

LDPC codes at a BER of 10-5 and for the rate of 0.9 the gain increases to 1.2dB.

Eb/No [dB]

1 2 3 4 5 6 7

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K = 512)
Irregular LDPC codes (K = 513)

Figure 4.10 Puncturing performance comparison between the proposed E2RC codes (filled
circle) of length=1024 and the irregular LDPC codes (unfilled circle) of length=1026 with the
intentional puncturing. Curves are for rate=0.5 (mother code), 0.6, 0.7, 0.8 and 0.9 from left to
right.

For practical purpose, designing a low rate E2RC code and providing a wide range of

rates by puncturing are useful. There are other methods to lower the rates such as

 87

extending and shortening. However, these methods often increase hardware complexity

or the performance of lower rate code has not been proved analytically good. On the

other hand, puncturing from the low rate mother codes has limitation, which is, general

LDPC codes severely degrade their performance as they are punctured. The E2RC codes

show no such performance degradation when punctured as other LDPC codes. For E2RC

codes, all the degree-2 nodes in the parities can be punctured.

As an example, we consider a rate-0.4 mother code of which degree distributions are

optimized in AWGN channel:

() 2 9

5

0.29472 0.25667 0.44861

() .

x x x x

x x

λ

ρ

= + +

=

In this case, 88.4% of the parities are degree-2 nodes and the remaining 11.6% of the

parities are degree-3 nodes. Thus, the structure of E2RC codes is changed from the

original one, and the E2RC codes can achieve rate of 0.85 since all the degree-2 nodes

can be punctured. For rate-0.4 mother code with 2000N = , 800K = , and (2) 1061vN = ,

we have the depth d = 4, and γ(1) = 600, γ(2) = 300, γ(3) = 150, γ(4) = 11. In addition,

the E2RC codes can have perfect right degree concentration at degree 6. We apply the

PEG algorithm to generate matrix other than degree-2 parities.

To compare the puncturing performance, the general irregular LDPC codes with the

same degree distributions as above are generated by using the PEG algorithm. The best-

effort intentional puncturing algorithm is applied to the general irregular LDPC codes.

The maximum achievable rate of this general irregular LDPC code is 0.69 with

intentional puncturing. So, after the limit we apply random puncturing. The puncturing

performance comparison between E2RC codes and general irregular LDPC codes is

 88

depicted in Figure 4.11 and Figure 4.12.

Eb/No [dB]

2 4 6 8

B
ER

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (k=800)
General irregular LDPC codes (k=800)

Figure 4.11 The puncturing BER performance comparison between E2RC codes (filled
circles) and general irregular LDPC codes (unfilled circles) with intentional puncturing. Rates
are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left to right.

In Figure 4.11 and Figure 4.12, the E2RC codes show good performance over a wide

range of rates 0.4~0.85. At a BER of 10-5 in Figure 4.11, the E2RC codes outperform

1.0dB and 2.7dB of Eb/No than the general irregular LDPC codes at rate 0.8 and 0.85,

respectively. The same tendency can be observed in FER performance in Figure 4.12. At

a FER of 10-3 in Figure 4.12, the E2RC codes outperform 1.0dB and 2.8dB of Eb/No than

the general irregular LDPC codes at rate 0.8 and 0.85, respectively.

 89

Eb/No [dB]

2 4 6 8

FE
R

10-3

10-2

10-1

E2RC code (k=800)
General irregular LDPC codes (k=800)

Figure 4.12 The puncturing FER performance comparison between E2RC codes (filled
circles) and general irregular LDPC codes (unfilled circles) with intentional puncturing. Rates
are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left to right.

We also compared the puncturing performance of E2RC codes with the dedicated codes

in Figure 4.13. The dedicated codes for each rate are generated with the degree

distributions obtained from ones in the mother codes of rate 0.4. We assume that only the

number of degree-2 nodes is reduced for higher rates. The dedicated codes are generated

with PEG algorithm to increase their girth characteristics. From the simulations, the

performance gaps between E2RC codes and the dedicated codes for each rate at BER of

10-5 are less than 0.3dB.

 90

Eb/No[dB]

1 2 3 4 5

lo
g 10

 [B
E

R
]

-6

-5

-4

-3

-2

-1

Dedicated Codes
E2RC Codes

Figure 4.13 The BER performance comparison between puncturing of E2RC codes (filled
circles) and the dedicated LDPC codes (unfilled circles). Rates are 0.4 (mother codes), 0.5, 0.6,
0.7, 0.8, and 0.85 from left to right.

4.5 CONCLUSIONS

We have proposed a new class of codes, E2RC codes, which has several strong points.

First, the codes are efficiently encodable. We have presented shift-register

implementation of encoder which has low-complexity. We also showed that a simple

erasure decoder can also be used for the linear-time encoding of these codes. Thus, we

can share a message-passing decoder for both encoding and decoding if it is applied to

 91

the transceiver systems which require an encoder/decoder pair. Second, we have shown

that the nonsystematic parts of the parity-check matrix are cycle-free, which ensures good

code characteristics. From simulations, the performance of the E2RC codes (mother

codes) is as good as that of eIRA codes and other irregular LDPC codes. Third, the E2RC

codes having systematic rate-compatible puncturing structure show better puncturing

performance than other irregular LDPC codes and eIRA codes in all ranges of code rates.

From simulations, the E2RC codes show better puncturing performance as code rates

increased. At rate of 0.8, the E2RC codes outperform over 0.8dB of Eb/No than both eIRA

codes and general irregular LDPC codes. Even when the best effort puncturing algorithm

is applied to both eIRA codes and general irregular LDPC codes, the E2RC codes show

1.5dB and 0.7dB of Eb/No than the best effort puncturing of the irregular LDPC codes and

eIRA codes, respectively, at a BER of 10-5. Finally, the E2RC codes can provide good

performance over a wide range of rates when they are designed low rate. We believe that

these characteristics of E2RC codes are more valuable when they are applied to IR

Hybrid-ARQ systems. From the simulation, the E2RC codes show good performance

over a wide range of rates 0.4~0.85.

 92

CHAPTER V :

RATE-COMPATIBLE LDPC CODES FOR INCREMENTAL

REDUNDANCY HYBRID ARQ SYSTEMS

Many wireless broadband systems require flexible and adaptive transmission

techniques since they operate in the presence of time-varying channels. For these

systems, incremental redundancy hybrid automatic repeat request (IR-HARQ) schemes

are often used, whereby parity bits are sent in an incremental fashion depending on the

quality of the time-varying channel [20]. Careful design of an adaptive forward error

correction (FEC) code can improve data throughput in such systems. The incremental

redundancy systems require the use of rate-compatible punctured codes (RCPC) [12].

These codes can be operated at different rates by using the same encoder-decoder pair.

Depending on the rate requirement, an appropriate number of parity bits are sent by the

transmitter. The receiver decodes by treating the parity bits that are not transmitted

(called punctured bits) as erasures. In addition, the set of parity bits of a higher rate code

forms a subset of the parity bits of a lower rate code. Thus, in an IR-HARQ system if the

receiver fails to decode at a particular rate, it only needs to request additional parity bits

from the transmitter.

IR-HARQ systems require good frame error rate (FER) performance, especially at high

rate region to get good throughput performance. Since the proposed E2RC codes show

excellent puncturing performance at high rate region, we apply these codes to IR-HARQ

systems.

 93

5.1 INCREMENTAL REDUNDANCY HYBRID ARQ SYSTEMS

Previous work in IR-HARQ systems includes [21], [22], where the design of an

ensemble of FEC codes is considered. The objective of IR-HARQ scheme is to improve

the throughput by retransmitting the required fractional part of the parity bits rather than

the whole information and parity bits when the previous transmission fails. The code

combining process of our IR-HARQ scheme follows the Chase’s rule [23], and details of

the steps are as follows:

Code Combining Process for IR-HARQ Scheme

STEP 1: Making a frame with cyclic redundancy check (CRC)

STEP 2: LDPC encoding

STEP 3: Ordering and grouping the parity bits

STEP 4: Transmit the message and/or the required parity group

At the receiver end, the frame is reconstructed with the message and parity groups of

the previous frame after receiving the parity group of the current frame. Then, the frame

is decoded with LDPC decoder. We detect errors with the help of CRC detection. If

errors occur in the current frame, send the negative acknowledgement (NACK) signal to

the transmitter, and the transmitter sends the next required parity group. Otherwise,

sends the acknowledgement (ACK) signal to the transmitter. If the transmitter receives

an ACK signal, it stops sending the current frame and prepares the next frame.

An important performance measure of an IR-HARQ scheme is the throughput, which

is defined as the ratio of the number of information bits k to the total number of bits that

need to be transmitted for acceptance by the receiver. The throughput, η , is given by

 94

()()() ()() ()
1

1
2 11

1 1 1
i i

j
i jj

kη
F k p F i F j k p

−∞

= ==

=
⎛ ⎞⎛ ⎞

− + + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑∏
,

where ()F i is the probability of frame error at the i-th transmission, and jp is the length

of parity group at the j-th transmission. In the simulation, we consider k=1024, and jp ’s

are used as in Table 5.1.

5.2 SYSTEM MODEL

As a system model with the IR-HARQ scheme, we consider an LDPC coded Vertical

Bell Labs Layered Space-Time (V-BLAST) system [24], [25] in time-varying multiple

antenna environments as depicted in Figure 5.1. The throughput and spectrum efficiency

of this system can be improved by using LDPC codes, which are powerful capacity-

approaching codes with feasible decoding complexity.

The original V-BLAST scheme [24] uses different channel codes at different layers. In

this work, we only consider the single LDPC code as a channel code, and separate the

output in parallel for each layer. We consider a 2 2 MIMO system, which has 2 transmit

antennas and 2 receive antennas over a frequency flat Rayleigh fading channel. At the

transmitter, the source data bits are encoded with an LDPC encoder, separated into two

substreams, and mapped onto quadrature phase shift keying (QPSK) constellation points

for each substream.

At the receiver side, the received signal can be expressed mathematically as

Y = HX +W , where X and Y are complex input and output vectors, respectively, and W

is a complex Gaussian noise with a variance 2σ . The complex 2 2 channel matrix is H,

 95

which consists of channel coefficients of MIMO frequency-flat fading channels. At the

receiver, perfect channel estimation is assumed, and the minimum mean square error

(MMSE) detector is used for making a soft decision on the channel inputs. Then, each

received soft bit stream is multiplexed into one stream and converted into a stream of log-

likelihood ratio (LLR) values. These are used for soft decoding of a log-domain LDPC

decoder.

S/P
Rate-Compatible
LDPC Encoder

Source

Fading
Channel

Detector

Symbol to
LLR

Symbol to
LLR

LDPC
Decoder

Sink

Channel
Estimator

P/S

QPSK
Mod

Pilot
insertion

QPSK
Mod

Pilot
insertion

Pilot
removal

Pilot
removal

Channel
Estimator

Detector

Figure 5.1 An LDPC coded V-BLAST MIMO system.

5.3 SIMULATION RESULTS

We consider a rate-1/2 LDPC code with code length of 2048. For IR-HARQ systems,

IR parity bits are assigned as in Table 5.1, which are used as subset codes of an ensemble.

We assume that the first transmission starts from rate of 0.94. We compare the FER and

 96

throughput performance of E2RC codes with those of eIRA codes and general irregular

LDPC codes.

Table 5.1 Ensemble of LDPC codes in the IR-HARQ simulation.

i 1 2 3 4 5 6 7 8 9

pi 64 64 128 128 128 128 128 128 128

rate 0.94 0.89 0.80 0.73 0.67 0.62 0.57 0.53 0.50

When we generate eIRA codes and general LDPC codes, we try to keep the same

degree distributions as those in [11] for rate-1/2 codes, which are optimized in additive

white Gaussian noise (AWGN) channel:

() 2 6

5 6

0.00015 0.30235 0.27132 0.42618

() 0.35555 0.64445 .

x x x x

x x x

λ

ρ

= + + +

= +

For E2RC codes, however, the actual degree distributions are slightly different to

compensate the right degree of H2.

() 2 6

5 6 7 8

9 10 11 12

0.00015 0.30235 0.27132 0.42618

() 0.41140 0.54617 0.01892 0.01064

0.00592 0.00325 0.00178 0.00193 .

x x x x

x x x x x

x x x x

λ

ρ

= + + +

= + + +

+ + + +

We apply the progressive edge growth (PEG) algorithm proposed in [16] to H1 design

of eIRA codes and E2RC codes for having the better girth characteristics. First, we

compare the puncturing performance between the proposed E2RC codes and the eIRA

codes. We apply the intentional puncturing algorithm proposed in [26], [27] to the eIRA

 97

codes, and compare the FER performance with E2RC codes (see Figure 5.2). In this case,

we face puncturing limitations. In fact, the puncturing algorithm in [26], [27] assigns 512

nodes as 1-SR nodes and cannot find any more k-SR nodes (k ≥ 2) if we try to maximize

the number of 1-SR nodes. To get a high rate in eIRA codes we puncture randomly after

the puncturing limitation (512 1-SR nodes). This destroys the previous tree structure of

1-SR nodes resulting in poor performance. The puncturing performance of the E2RC

codes is better than that of eIRA codes as the code rates are increased even though we

apply the best effort puncturing algorithm to eIRA codes.

Eb/No [dB]

5 10 15 20

Fr
am

e
E

rr
or

 R
at

e

10-3

10-2

10-1

100

E2RC codes
eIRA codes

Figure 5.2 Performance comparison of rate-1/2 E2RC codes (filled circle) and eIRA codes
(unfilled circle). The message size is 1024 bits and curves are for rate=0.5, 0.53, 0.57, 0.62, 0.67,
0.73, 0.80, 0.89, 0.94 from left to right.

 98

For throughput simulations, we consider FER of 10-3, and simulate codes over the IR-

HARQ scheme presented in section 5.2. We present the throughput performance

comparison between E2RC and eIRA codes in Figure 5.3. At the throughput of 0.8 in

Figure 5.3, the E2RC codes have 2dB gain over eIRA codes. This is because as

mentioned earlier the throughput performance highly depends on the high puncturing rate.

SNR [dB]

5 10 15 20

Th
ro

ug
hp

ut

0.0

0.2

0.4

0.6

0.8

1.0

E2RC codes
eIRA codes

Figure 5.3 Throughput performance comparison of E2RC codes (filled circle) and eIRA codes
(unfilled circle). The message size is 1024 bits for both codes.

To compare the performance with the general irregular LDPC codes, we also apply the

 99

PEG algorithm in [16] to generate the code. From a rate-1/2 mother code, we provide

punctured codes of rate as following the Table 5.1 using the puncturing algorithm in [26],

[27]. Through the simulation, we observe that the FER performance of E2RC codes is

slightly worse than or equal to general LDPC codes at lower code rate (rates 0.5~0.62),

but outperforms them at higher code rate (rates 0.67~0.94). For this reason, the E2RC

codes show better throughput performance than the general irregular LDPC codes as

shown in Figure 5.4. The E2RC codes have a gain of about 2.2dB at the throughput of

0.8.

SNR [dB]

5 10 15 20

Th
ro

ug
hp

ut

0.0

0.2

0.4

0.6

0.8

1.0

E2RC codes
general irregular LDPC codes

Figure 5.4 Throughput performance comparison of E2RC codes (filled circle) and general
irregular LDPC codes (unfilled circle). The message size is 1024 bits for both codes.

 100

5.4 CONCLUSIONS

The E2RC codes show better puncturing performance than other irregular LDPC codes

and eIRA codes in all ranges of code rates, especially in high puncturing rate. These

characteristics result in good threshold performance over time-varying channel in IR-

HARQ systems. From simulations we observe that E2RC codes outperform eIRA codes

and the general irregular LDPC codes by 2dB and 2.2dB, respectively, at the throughput

of 0.8.

 101

CHAPTER VI :

REMARKS

6.1 CONTRIBUTIONS

The focus of our research is designing practical rate-compatible LDPC codes which

provide a wide range of rates. In this dissertation, we first propose a new rate-compatible

puncturing method for LDPC codes at short block lengths. Based on the puncturing

algorithm, we propose a design algorithm of rate-compatible LDPC codes, which also

can be encoded efficiently. We summarize our contributions below:

1. We propose a new rate-compatible puncturing algorithm which consists of grouping

and sorting algorithms. By introducing the concepts of recovery tree and recovery error

probability, we mathematically show that the proposed algorithm has better puncturing

performance. We also verify the better puncturing performance of the proposed

algorithm by simulations.

2. We provide a tool for predicting puncturing performance of a random puncturing

distribution by analyzing group distributions and the level of recoverability.

3. Based on the puncturing algorithm, we propose a new class of codes, called E2RC

codes, which can be efficiently encoded as well as can be punctured in a rate-compatible

fashion. We provide a generalized construction algorithm of these codes. The proposed

E2RC codes show better puncturing performance than any other irregular LDPC codes

over a wide range of code rates.

4. We develop an efficient encoding method, called sliding window encoding method,

 102

with simple a shift-register circuit. Much like an encoder of cyclic codes, the sliding

window encoder can be implemented with a division circuit. The only difference is

coefficients of the division circuit are time-varying.

5. We provide a good channel coding scheme to IR-HARQ systems. In IR-HARQ

systems, RCPC scheme is required, and good high-rate performance is needed to improve

throughput. Since the proposed E2RC codes show excellent puncturing performance

especially at high rate region, we verify by simulation that the proposed E2RC codes

show better throughput performance in IR-HARQ systems over time-varying channels.

6.2 FUTURE WORK

We have concentrated on designing rate-compatible LDPC codes for short block length.

For the E2RC codes to have more practical meaning, a few interesting and challenging

topics are remained.

1. We have proposed a construction algorithm of low-rate E2RC codes and shown their

design example. However, more research on low-rate code design is needed so that we

can have a practically operating rate range. Implementing an encoder with shift-register

circuits for low-rate design should be developed as well.

2. We have used degree distributions optimized only for mother codes over AWGN

channels. However, we can find a degree distribution which is globally optimized for a

wide range by considering puncturing rates. The basic assumption of E2RC codes is

puncturing degree-2 nodes in the parity parts. While we simulate the E2RC codes over

the AWGN channel, the punctured nodes can be considered as transmitting over the

mixed channel, i.e., BEC plus AWGN channel. By applying this restriction to the density

 103

evolution, we can find an optimal degree distribution for E2RC codes. We believe that

the optimal degree distributions will improve the overall performance of E2RC codes.

3. QC LDPC codes have gained popularity since they have many advantages.

Especially in integrated circuit (IC) decoder implementations, QC LDPC codes can have

simple regular wiring and modular structure because of their cyclic symmetry. We should

consider QC-type E2RC codes to reduce the complexity in implementing decoder.

Finding an optimal core matrix and parameters for QC-type E2RC codes will be a good

topic.

 104

References

[1] R. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.

[2] D. Mackay, and R. Neal, “Near Shannon limit performance of low-density parity-
check codes,” Electron. Lett., vol. 32, pp. 1645-1646, Aug. 1996.

[3] S. Chung, G. Forney Jr., T. Richardson, and R. L. Urbanke, “On the design of low-
density parity-check codes within 0.0045 dB of the Shannon limit,” Electron. Lett.,
vol. 5, pp. 58-60, Feb. 2001.

[4] IEEE P802.16e/D6, February 2005.

[5] 11-04-0889-03-000n-tgnsync-proposal-technical-specification.doc.

[6] 11-04-0886-06-000n-wwise-proposal-ht-spec.doc.

[7] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity- approaching
irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp.
619-637, Feb. 2001.

[8] T. Richardson and R. Urbanke, “Efficient Encoding of Low-Density Parity-Check
Codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-656, Feb. 2001.

[9] S.Lin, L. Chen, J. Xu and I. Djurdjevic, “Near Shannon limit quasi-cyclic low-
density parity-check codes,” in Proc. 2003 IEEE GLOBECOM Conf. San Francisco,
CA, Dec. 2003.

[10] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in
Proc. 2nd. Int. Symp. Turbo Codes and Related Topics, Brest, France, pp. 1-8, Sept.
2000.

[11] M. Yang, W. E. Ryan, and Y. Li, “Design of Efficiently Encodable Moderate-Length
High-Rate Irregular LDPC Codes,” IEEE Trans. Comm., vol. 52, no. 4, pp. 564-571,
Apr. 2004.

[12] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and
their applications,” IEEE Trans. Comm., vol. 36, pp. 389-400, Apr. 1988.

[13] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.
Theory, vol. IT—27, pp. 533-547, Sep. 1981.

 105

[14] J. Ha, J. Kim, S. W. McLaughlin, “Rate-Compatible Puncturing of Low-Density
Parity-Check Codes,” IEEE Trans. Inform Theory, vol.50, no. 11, Nov. 2004.

[15] S. Chung, J. Richardson, and R. Urbanke, “Analysis of sum-product decoding of
Low-density parity-check codes using a Gaussian approximation,” IEEE Trans.
Inform. Theory, vol. IT-47, pp. 657-670, Feb. 2001.

[16] X. Hu, E. Elefitheriou, and D. M. Arnold, “Progressive edge-growth Tanner
graphs,” in Proc. IEEE GLOBECOM, San Antonio, Texas, pp. 995-1001, Nov. 2001.

[17] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Selective Avoidance of Cycles
in Irregular LDPC Code Construction,” IEEE Trans. On Comm., vol. 52, no. 8, pp.
1242-1247, 2004.

[18] A. Ramamoorthy and R. D. Wesel, “Construction of Short Block Length Irregular
Low-Density Parity-Check Codes,” in Proc. IEEE Int. Conf. on Comm., Paris, June
2004.

[19] W. Weng, A. Ramamoorthy, and R. D. Wesel, “Lowering the Error Floors of High-
Rate LDPC Codes by Graph Conditioning,” VTC 2004, Los Angeles, California.

[20] R. H. Deng and H. Zhou, “An adaptive coding scheme with code combining for
mobile radio systems,” IEEE Trans. Vehicular Tech., vol. 42, no. 4, 1993.

[21] N. Varnica, E. Soljanin, and P. Whiting, “LDPC Code Ensembles for Incremental
Redundancy Hybrid ARQ,” Proc. Int. Symp. Inform. Theory, pp. 995-999, Sept.,
2005.

[22] S. Sesia, G. Caire, and G. Vivier, “Incremental Redundancy hybrid ARQ schemes
based on low-density parity check codes,” IEEE Transactions on Communications,
vol. 52, No. 8. , pp. 1311-1321, Aug. 2004.

[23] D. Chase, “ Code Combining- A Maximum-Likelihood Decoding Approach for
Combining an Arbitrary Number of Noisy Packets,” IEEE Transactions on
Communications, vol. 1, No. 5. , pp. 385-393, May. 1985.

[24] G. J. Foschini, “Layered space-time architecture for wireless communication in a
fading environment when using multiple antennas,” Bell Lab. Tech. Journ., vol.1,
pp.41-59, 1996.

[25] J. Kim, G. L. Stuber, and Ye Li, “Robust V-BLAST MIMO-OFDM Channel
Estimation in Time-Varying Channels Using Iterative Wiener Filters,” IEEE Global
Telecommunications conference (Globecom 2005), St. Louis, 2005.

 106

[26] J. Ha, J. Kim, and S. W. McLaughlin, “Puncturing for Finite Length Low-Density
Parity-Check Codes,” in Proc. Int. Symp. Inform. Theory, Chicago, 2004.

[27] J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, "Rate-Compatible Punctured Low-
Density Parity-Check Codes with Short Block Lengths," IEEE Trans. Inform.
Theory, vol. 52, no. 2, Feb. 2006.

 107

Vita

Jaehong Kim received his B.S. and M.S. degree in electronic communication

engineering from Hanyang University, Korea, in 1995 and 1997 respectively.

Since 1997, he has been on the Technical Staff of Samsung Electronics, working on the

Very Large Scale Integration (VLSI) implementation of channel coding for wireless

channels. He is currently working toward the Ph.D. degree in electrical and computer

engineering at Georgia Institute of Technology under supervision of Dr. Steven W.

McLaughlin. His research interests include channel coding, digital communication

systems and VLSI design.

