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1 Introduction

The purpose of this document is to establish a technical framework to control Krang in its stable balancing
state. We will first discuss related work in inverted pendulum-like systems to get acquianted with the
literature. Next, we will present a simple inverted pendulum model, analyze the dynamics and simulate
it. We will evaluate the effect of different control gains in state feedback control and analyze the
effect of noise in output feedback control. Lastly, we will study the effect of modeling errors in mass
measurements.

2 Related Work

One of the first detailed work on a balancing robot is by Ha et al [2] where they approach the modeling
problem directly from the Lagrangian mechanics. Although their formalization skips quite a few steps,
the paper is ideal for trajectory control.

Another example of a two-wheeled balancing robot is the robot JOE [1]. The authors present a
detailed explanation of their pole placement approach in the linearized system. The interesting points
of the paper are (1) the decoupling of the motions around the vertical and lateral axes and (2) the effect
of backlash on estimating body velocity from encoders.

Salerno et al. introduce Quasimoro, a quasiholonomic balancing robot in [5] and [4]. The most
important difference between Quasimoro and JOE is the nonlinear control approach adopted. Also,
the papers outline a detailed explanation of holonomic/nonholonomic systems and geometric/kinematic
constraints, concepts that can be important in analyzing Krang. Note that this work apparently led to
balancing wheelchair applications [3].

3 Simple Modeling

Imagine an actuated wheel with a rod on top of it and we would like to balance the rod. For the time
being, we are going to ignore position control and just focus on stable balancing. Let x be the position
of the wheel, and ẍ be the acceleration āA of point A common to both the wheel and the rod. Let θ be
the angle of the rod from the positive vertical axis. Let M and m be the masses of the wheel and the
rod respectively and let l be the distance of the center of mass B of the rod from the point of rotation
A on the wheel. We now define two frames of references: Frame XY Z is the world frame of reference
fixed in the world and frame xyz is fixed on the rod with origin at the rotation point A. This is shown
in Figure 1.

We refer to the unit vectors along XY Z as I, J and K and the unit vectors along xyz as i, j and k.
The following relationships hold:

i = cosθI− sinθJ (1)

j = sinθI + cosθJ (2)

I = cosθi + sinθj (3)

J = −sinθi + cosθj (4)
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Figure 1: Simple wheeled pendulum model

3.1 Kinematics

The angular velocity and angular acceleration of the rod can be written as:

ω̄B/A = −θ̇k (5)

ᾱB/A = −θ̈k (6)

The resultant acceleration of point B in frame XY Z can be written as the sum of acceleration of
point A and the tangential and centrifugal acceleration of point B with respect to point A:

āB = āA + (ᾱB/A × r̄B/A) + (ω̄B/A × (ω̄B/A × r̄B/A))

āB = ẍI + (−θ̈k× lj) + (−θ̇k× (−θ̇k× lj))

āB = ẍI + l θ̈i + (−θ̇k× l θ̇i)

āB = ẍI + l θ̈i− l θ̇2 j (7)

Using equations (1-4) we can write the acceleration purely in one frame of reference. In frame xyz,
we have:

āB = (ẍcosθ + l θ̈)i + (ẍ sinθ − l θ̇2 )j (8)

In frame XY Z, we have:

āB = (ẍ+ l θ̈cosθ − l θ̇2 sinθ)I + (−l θ̈sinθ − l θ̇2 cosθ)J (9)

3.2 Dynamics

To analyze the dynamics of the system, we are going to use a free-body diagram approach as shown in
Figure 2. The idea is to model all the substantial forces acting on the two objects and determine their
relationship. The wheel is being driven by a motor fixed on the rod. The wheel has the driving torque
τ , the friction torque τf , the forces Rx and Ry that are the reactions to the constraint forces acting on
the rod, a rolling friction between the wheel and ground fG prevents the wheel from slipping, the weight
of the wheel Mg and the normal N from the ground. For the rod, we have the weight of the rod mg,
the unknown constraint forces Rx and Ry, and the external force Fext acting along x-axis at B. Note
also that the rod is going to experience the equal and opposite torques τ and τf being applied on the
wheel. Also, I, Iw and Im denote the inertia of the rod, wheel and motor respectively. The gear ratio of
the motor is η.

The goal is to determine the state equations in terms of the known quatities. For this, we apply
Newton-Euler equations on the wheel and the rod. Evaluating torque equation on the wheel-motor
system about Z-axis, and noting that three torques −τ , τf and fGr are acting on it, while the rotational

acceleration of the wheel is − ẍr and that of the motor is −( ẍr − θ̈), we have
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Figure 2: Free-body diagram

K.(
∑

M̄A) = Izzαz

−τ + τf + fGr = −Iw
ẍ

r
− η2Im(

ẍ

r
− θ̈) (10)

Applying Newton’s equation
∑
F̄ = mā along X-axis on the wheel, i.e. taking the dot-product of the

vector equation with unit vector I, we get

I.(
∑

F̄A = MāA)

fG −Rx = Mẍ

fG = Mẍ+Rx (11)

Applying Newton’s equation on the rod along X-axis, we get

I.(
∑

F̄B = māB)

I.(RxI + Fexti) = mẍ+mlθ̈cosθ −mlθ̇2sinθ

Rx + Fextcosθ = mẍ+mlθ̈cosθ −mlθ̇2sinθ

Rx = mẍ+mlθ̈cosθ −mlθ̇2sinθ − Fextcosθ (12)

Substituting Rx from equation 12 in 11 and then the resulting fG from equation 11 in 10, and using
τ = Kfu we get

−τ + τf + (Mẍ+mẍ+mlθ̈cosθ −mlθ̇2sinθ − Fextcosθ)r = −Iw
ẍ

r
− η2Im(

ẍ

r
− θ̈)

[(m+M)r + Iw/r + η2Im/r]ẍ+ (mrlcosθ − η2Im)θ̈ = Kfu− τf + Fextrcosθ +mrlθ̇2sinθ (13)

where u is the current supplied to the wheel-motors of the wheel and is our control input and Kf is the
conversion factor that converts this current to the actual force τ applied on the wheel.

Secondly, we evaluate the torques on the rod-motor system about z-axis at point B:

k.(
∑

M̄B) = Izzαz

τ − τf + k.(r̄A/B ×RxI + r̄A/B ×RyJ) = −Iθ̈ + η2Im(ẍ/r − θ̈)
τ − τf + k.[(−lj)×Rx(cosθi + sinθj) + (−lj)×Ry(−sinθi + cosθj)] = −Iθ̈ + η2Im(ẍ/r − θ̈)

τ − τf +Rxlcosθ −Rylsinθ = −Iθ̈ + η2Im(ẍ/r − θ̈) (14)
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Now, applying Newton-Euler equations along the x-axis on the rod gives:

i.(
∑

F̄B = māB)

i.(RxI +RyJ−mgJ + Fexti) = mẍcosθ +mlθ̈

Rxcosθ −Rysinθ +mgsinθ + Fext = mẍcosθ +mlθ̈

Rxcosθ −Rysinθ = −Fext −mgsinθ +mẍcosθ +mlθ̈ (15)

The left-hand side of this equation appears in equation 14. Upon substitution, we get

τ − τf + (−Fext −mgsinθ +mẍcosθ +mlθ̈)l = −Iθ̈ + η2Im(ẍ/r − θ̈)
(mlcosθ − η2Im/r)ẍ+ (ml2 + I + η2Im)θ̈ = −Kfu+ τf + Fextl +mglsinθ (16)

Equations 13 and 16 give the description of the dynamics of the system in terms of the known
parameters. These will be utilized in the later sections for linearization, state-space equations and
simulation. Now, we assign the variables as follows: (1) x1 = θ, (2) x2 = θ̇, (3) x3 = x and (4) x4 = ẋ,
and rewrite the equations in the state-space form:

ẋ1 = x2 (17)

ẋ3 = x4 (18)[
ẋ2

ẋ4

]
=

1

∆

[
[(m+M)r + Iw/r + η2Im/r] −(mlcosx1 − η2Im/r)
−(mrlcosx1 − η2Im) (ml2 + I + η2Im)

] [
−Kfu+ τf + Fextl +mglsinx1

Kfu− τf + Fextrcosx1 +mrlx2
2sinx1

]
(19)

where, ∆ = [(m+M)r + Iw/r + η2Im/r](ml
2 + I + η2Im)− r(mlcosx1 − η2Im/r)

2

3.2.1 Friction term τf

We make an assumption on the friction term that it comprises of three components: the static coulomb
friction, the kinetic columb friction and the linear viscous friction.

τf = ηf (u, x) + bx4

where bx4 represents the linear viscous friction due to air resistance and is linearly dependent on the
speed of the wheel x4 = ẋ. And ηf represents the coulomb friction. This friction term is a nonlinear
function of the states x and the control input u. When the system is moving (i.e. |x4| > 0) this firction
is equal to kinetic coulomb friction µk(m+M)gr sign(x4), where µk is the co-efficient of friction in the
gear box. This friction changes direction depending on the sign of the wheel speed x4. When the the
wheel is not moving i.e. when x4 = ẋ4 = 0 then equation 13 gives

ηf |x4=ẋ4=0 = Kfu− (mrlcosθ − η2Im)θ̈ + Fextrcosθ +mrlθ̇2sinθ

ηf |x4=ẋ4=0 = Kfu− (mrlcosx1 − η2Im)ẋ2 + Fextrcosx1 +mrlx2
2sinx1 (20)

ẋ2 can be determined in terms of other states by substituting ẍ = 0 in equation 16. We get,

θ̈|x4=ẋ4=0 =
−Kfu+ τf + Fextl +mglsinθ

ml2 + I + η2Im

ẋ2|x4=ẋ4=0 =
−Kfu+ τf + Fextl +mglsinx1

ml2 + I + η2Im
(21)

Substituting this in equation 20, we get

ηf |x4=ẋ4=0 =
(ml2 + I + η2Im)(Kfu+ Fextrcosx1 +mrlx2

2sinx1) + (mrlcosx1 − η2Im)(−Kfu+ Fextl +mglsinx1)

ml2 + I + 2η2Im −mrlcosx1

= Γ(u, x)(say)

(22)

Equation 22 gives the expression the coulomb friction when the robot is not moving. The robot starts
moving when the right hand side of this equation exceeds µs(m+M)g.

η(u, x) =

 µk(m+M)gr sign(x4) : |x4| > 0
Γ(u, x) : x4 = 0 and |Γ(u, x)| < µs(m+M)g
µs(m+M)gr sign(Γ(u, k)) : x4 = 0 and |Γ(u, x)| > µs(m+M)g

(23)
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3.3 Linearization and the state-space form

Given the dynamics equations, we want to linearize the system and put it in the state-space form to use
LQR technique in order to determine the feedback control gains. If we linearize around θ = 0 and use
the infinitesmally small difference φ as the new variable, we would approximate the nonlinear functions
cos(θ) and sin(θ) as follows: cos(θ) ≈ 1 and sin(θ) ≈ φ. Also, we do not take into account the force
Fext when linearizing the system because Fext is only modeled as an unknown disturbance to the system
when simulating the system. For the friction term τf only the linear component bẋ is substituted. So,
the linearized equations turn out to be:

(ml2 + I + η2Im)φ̈+ (ml − η2Im/r)ẍ = −Kfu+ bẋ+mglφ (24)

(mrl − η2Im)φ̈+ [(m+M)r + Iw/r + η2Im/r]ẍ = Kfu− bẋ (25)

To make the final expression compact, let’s define the coefficients of the states occuring on the left-
hand sides of the above equations: A = ml2 + I + η2Im, B = ml − η2Im/r, C = mrl − η2Im and
D = (m+M)r + Iw/r + η2Im/r. And let E = AD −BC. The resulting state-space form is as follows:


φ̇

φ̈
ẋ
ẍ

 =
1

AD −BC




0 1 0 0
Dmgl/E 0 0 (B +D)b/E

0 0 0 1
−Cmgl/E 0 0 −(A+ C)b/E



φ

φ̇
x
ẋ

+


0

−(B +D)/E
0

(A+ C)/E

Kfu


4 Simulation

For simulating the inverted pendulum on the wheel whose equations are derived above, we encoded the
equations 17 to 19 in an M-file named invPendulumOnCartFext.m listed below:

1 function xdot = invPendulumOnCartFext(t,x)
2 global m b g M l I TorquePerAmp u Fext Iw Im eta r
3 Fext=0; u =0;
4 % x=[phi phidot x xdot]
5 del=((m+M)*r+Iw/r+etaˆ2*Im/r)*(m*lˆ2+I+etaˆ2*Im)−r*(m*l*cos(x(1))−etaˆ2*Im/r)ˆ2;
6 xdot(1) = x(2);
7 xdot(2) = (1/del)*(((m+M)*r+Iw/r+etaˆ2*Im/r)*(−TorquePerAmp*u+b*x(4)+...
8 Fext*l+m*g*l*sin(x(1)))−(m*l*cos(x(1))−etaˆ2*Im/r)*(TorquePerAmp*u...
9 −b*x(4)+Fext*r*cos(x(1))+m*r*l*x(2)ˆ2*sin(x(1))));

10 xdot(3) = x(4);
11 xdot(4) = (1/del)*(−(m*r*l*cos(x(1))−etaˆ2*Im)*(−TorquePerAmp*u+b*x(4)+...
12 Fext*l+m*g*l*sin(x(1)))+(m*lˆ2+I+etaˆ2*Im)*(TorquePerAmp*u−b*x(4)+...
13 Fext*r*cos(x(1))+m*r*l*x(2)ˆ2*sin(x(1))));
14 xdot = xdot';

This code accepts the current state and based on the present values determines the gradients of the
state. This function can now be solved using a solver such as ode45 in MATLAB. We used the following
code to simulate the system:
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1 global m b g M l I u Fext TorquePerAmp Iw Im eta r
2

3 % Constants
4 M = 9.32; % Mass of the cart (the two wheels) [kg]
5 m = 135.18; % Mass of the pendulum (the rest of the robot) [kg]
6 b = 0.8; % Co−efficient of friction for the cart (taken from a web site)
7 I = 30 ; % mass moment of inertia (approximation)
8 g = 9.8;
9 l = 0.25; % Length to pendulum Center of Mass

10 % (Our center of mass whose mean value is empirically found out
11 % to be 0.25 m)
12 TorquePerAmp = 2 * 0.85; % No. of Wheels = 2
13 % TorquePerAmp = 0.85 Nm/A
14 r = 10 * 0.0254; % Wheel radius = 10 in
15 Iw = 4.66*(0.8*r)ˆ2; % wheelmass * (0.8*wheel radius)ˆ2
16 Im = 1.6e−4; % rotor inerita [this rating is for BLY343S−48V−3200, with
17 % rotor inertia = 0.02266 oz−in−sec2.
18 % The motor we have is BLY343D−24V−2000, with no specs.
19 eta = 15; % Gear Ratio
20

21 % Simulate
22 tf=19; dt=0.005; t=0;
23 x0 = [0; 0.1; 0; 0];
24 X=[]; T=[]; U = [];
25 u=0;
26 [T,X] = ode45('invPendulumOnCartFext',[0,tf],x0);
27

28 figure(1); subplot(221); plot(T,X(:,1)*180/pi);
29 title('phi'); xlabel('time (sec)'); ylabel('phi (degrees)'); grid on;
30 figure(1); subplot(222); plot(T,X(:,2)*180/pi);
31 title('phidot'); xlabel('time (sec)'); ylabel('phidot (deg/sec)'); grid on;
32 figure(1); subplot(223); plot(T,X(:,3));
33 title('x'); xlabel('time (sec)'); ylabel('x (m)'); grid on;
34 figure(1); subplot(224); plot(T,X(:,4));
35 title('xdot'); xlabel('time (sec)'); ylabel('xdot (m/s)'); grid on;
36

37

38 if(1)
39 axis speed gain=0.1; axis center=0; plot memory=20; plot step=2;
40 figure(2);
41 clf;
42 for j = 1 : plot step : size(X,1)
43 for c=1:plot memory
44 k=j−plot step*(plot memory−c);
45 if(k>0)
46 color=(1−exp(−(plot memory−c)/(plot memory/5)))*[0.8 0.8 0.8];
47 linewidth = 1+4*(exp(−(plot memory−c)/(plot memory/5)));
48 plot([X(k,3);X(k,3)+3*l*sin(X(k,1))],[0; 3*l * cos(X(k,1))] ...
49 , '−', 'Color',color,'linewidth', linewidth); hold on;
50 plot(X(k,3),0,'o','MarkerSize',5,'Color',color,'linewidth', linewidth);
51 set(gca, 'fontsize', 20); hold on;
52 end
53 end
54 axis err=X(j,3)−axis center;
55 axis speed=axis speed gain*axis err;
56 axis center=axis center+axis speed;
57 axis([axis center−1.5 axis center+1.5, −1 1]);
58 str=sprintf('time=%.3f sec',T(j));
59 text(axis center+0.05,0.85,str, 'fontsize', 24);
60 grid on;
61 pause;
62 clf;
63 end
64 end

In the above two code listings, the term TorquePerAmp is used in place of Kf in the foregoing equations.
All the following simulation results will be generatd by small variations in the above code listings. The
specific change will be mentioned as required.
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4.1 Uncontrolled System

When the system defined by state equations of the nonlinear system is simulated setting u and Fext to

zero and initial state to xt=0 =
[

0 0.1 0 0
]T

, we observe the behavior depicted in Figures 3 and 4

Figure 3: Plots of the states of the uncontrolled system

Figure 4: Snapshots of the simulation of the inverted pendulum on wheel at different time instances.
The darkest line represents the most current state each snapshot, while the grey lines represents previous
positions

This is, in a sense, verification of the derived equations and the implementation in MATLAB. That’s
because, in the real world, we expect the system to oscillate between the extremities depicted in the
figures. This is because the pendulum in the absence of control input u and external force Fext should
oscillate. Other interesting phenomena observed is the fact that as the pendulum oscillates the wheel
also oscillates. This happens as a result of the radial component of the weight of the pendulum. The
tangential component of the weight is moving the rod while the radial component if moving the wheel.
As the time proceeds we also notice that the wheel center position is shifted to a positive direction. This
is because as the system is losing energy due to ground friction the amount of energy left in the system
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in every next half cycle is smaller than the previous. So the displacement caused by the first half cycle
is dominating the resultant direction of displacement.

4.2 Response Of Controlled System to varying Impulsive Forces

We now close the loop using gains derived by applying LQR on the linearized model of the system.

The gains calculated using LQR are K =
[
−225.8715 −70.5301 −1.0000 −7.8310

]T
and the loop

is closed by setting u = −K(x − xref ) where xref =
[

0 0 0 0
]T

. Since we are not interested
in controlling the position x of the system, we keep its control gain equal to zero hence the control

gain vector becomes K =
[
−225.8715 −70.5301 0 −7.8310

]T
. We keep the initial condition of the

system to zero but we apply an impulsive force such that Fext = Fimpulse for t < 0.1sec anf then Fext = 0
for t > 0.1sec. Figures 5 and 6 show the resultant behavior of the system. The following observations
are made:

Figure 5: Plots of the states of the controlled system subjected to varying impulsive forces

1. The closed loop system is stable

2. As Fext is increased, the settling time of the system remains unchanged and is about 10 seconds.

3. Since the three states φ, φ̇, and ẋ are the only controlled states they all returned back to zero
after the system has settled while tbe position has changed to a non-zeor value signifying that the
system undergoes a resultant displacement in the direction of the impulsive force.
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Figure 6: Snapshots of the simulation of the controlled system different time instances after it’s been
subjected to an impulsive force

4. As the magnitude of the force Fimpulse is increased we observe a proportional increase in the peak
values of the states

Point number 2 above however is a bit unrealistic. In general when we kick our robot, we observe
that it undergoes larger displacements and the settling time usually increases with the increase of force
in the kick. This shows that there is a discrepancy in our modeling of the system. This discrepancy is
visible when we look at the plot of the control input u. We see that the motor current keeps increasing
with increaing force. And reaches as high as 100A for the case when Fext = 9000N . This however is
not possible for the real system we are trying to control. The upper limit on the value of motor current
is 50A. Thus we next show the response of the same system in the presence of saturation limit on u.
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4.3 Effect of Saturation limits on Control Input u

We now move on to introduce the saturation limit on the control input u to the system. So −50A < u <
50A is the limit on the values of u at all times. The resulting plots are shown in 7. We observe that as
the force impulse increases to 9000N we have increase in the settling time of the system. Also, since the
value of u is now limited we see the peak values of the state reaching to higher levels beyond the ones
we saw earlier in the absence of the saturation limit on u.

Figure 7: Plots of the states of the controlled system with saturation limits on the control input u,
subjected to varying impulsive forces
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4.4 Effect of Discretization of Control Input u

Another aspect of the real world that we didn’t introduce in our is the effect of discretization of the
control input u. Even though our real systen is a continuous system, the feedback control of the system
is taking place inside a computer in an iterative fashion. The time of each iteration is the interval
between successive updates of the control input u. This time is currently 2ms but it can change based
on the updates in the alogorithms and so forth. We want to know how this discretization of u affects
the performance of the system. So we plot the responses of the system in Figure 8 for time intervals Ts
ranging from 2 ms to 500 sec. We note that upto 50ms the response of the system (to an impuslive force
of 2000N) closely matches the response of the actual system. From 50 ms to 200 ms we begin to see a
rise in the overshoots and peaks of the system. Increasing the interval beyond 200 ms causes instability
and the system blows up.

Figure 8: Plot of the response of the system when the control input is discrete with time intervals Ts
ranging from 2 ms to 500ms
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4.5 Effect of changing Control Gains

4.5.1 Changing KP

Now we want to determine the sensitivity of our system to the values of the control gains. We refer
to the first two elements of our control gain vector K as KP and KD. For the purpose of finding the
effect of changing KP , we keep KD fixed at the opitmum value returned by LQR (134) and we use
Fimpulse = 2000N to test the system. We make the following observations about the effect of changing
the gain values KP from 250 to 650.

Figure 9: Plots of the states of the controlled system with differing values of the control gains KP

Using smaller KP (250) causes:

1. a higher settling time (about 15 seconds)

2. oscillations in phi (one and a half cycle until settling)

3. displacement of one meter

4. motor current peaks at 30A, oershoots to -5A before stabilizing

Increasing KP upto the optimum 400 corresponds to

1. decreasing settling time (best achieved is 6 seconds)
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2. oscillation go away

3. resulting displacement remains the same

4. motor current peak remains the same, overshoot decreases to -1A

Increasing KP more (upto 650) has following effects:

1. Settling time further decreases (goes as low as 2 seconds)

2. Oscillations go away.

3. resulting displaement decreases by just a bit

4. Motor current starts peaking more (goes as high as 33A), and overshoot in both phi and motor
current increase to -3Nm.

4.5.2 Changing KD

Now we study the effect of changing the second gain in our control gain vector KD. We keep the value
of KP fixed to its optimum -400 and we fix Fimpulse to 2000N. We then change KD from -14 to -374 in
step of -30.

Figure 10: Plots of the states of the controlled system with differing values of the control gains KP
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The follwoing is what we observe: As we change KD we note that the settling time of the system
remains unchanged to 6 seconds. Also, the resultant displacement of the wheel remains unchanged to
0.8m.

The system is unstable when KD is small. As we increase KD the system repsonse is pretty sensitive
in terms of the oscillations. As we move closer to the LQR optimum -134 the oscillations are minimized.
We also observe that the peak current is reducing as we increase the gain in the below-optimum range.

As we reach the optimum -134, we observe that there is still some overshoot in the current and the
states φ and φ̇. The oscillations however are gone.

Increasing KD beyond the optimum removes all overshoots in φ, φ̇ and u, which is actually very
good. But one thing that is not good is the value of motor current peaks. The current starts peaking
more from the optimum 30A to as high as 50A when the value of KD is increased from the optimum.

4.6 Effect of changing I and l on Control Gains

This study is done to see how much the gain values on φ and φ̇ depend on the inertia value of the system
I and the center of mass of the system l. We note that the values of the optimum gains decrease with
increase in the inertia of the system I and increases with the increase in the distance of the Center of
Mass of the system. The value of KP remains between 360 and 460. The value of KD however varies
alot with changing I and l. It goes from 50 (for high I and low l) to 380 (for low I and high l). This
indicates it is important to have a good idea of the parameters I and l on the real system. And as the
robot moves we should be able to change the values of the gains to adjust to the changing dynamics of
the system.

Figure 11: Mesh plots of the gains KP and KD as a function of the inertia I and COM distance l
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4.7 Region Of Attraction

Given the parameters we have defined for our system we want to figure out the region of attraction
(ROA) of our system. More specifically, we want to find out what is the initial value of the angle φ from
which the system can recover its equilibrium. For this purpose we try running the simulation at different
initial values of the state variable φ and observe at what value the system goes unstable. It turns out
that the system is able to recover its equilibrium until 21.8 degrees. As the initial value is increased
further, the system goes unstable (Figure 12).

Figure 12: The response of the system when the initial value of φ is 11.2 and 11.3 degrees away from the
equilibrium. We see that at 11.3 degrees the system blows up

The problem with this angle however is that it takes about 32.5 meters of back-travelling by the
wheel to get back to the equilibrium. This is impracticable because the wheel may have obstacles along
its path. We don’t want the distance to be traveled beyond a maximum of 7 meters. Table 1 shows how
the displacement of x in the steady state is affected by the initial value of the angle φ0.

We can easily imagine that our system, given the assumed system dynamics can not be expected to
rise from its initial position unless the COM is within 8-9 degrees from the vertical line above the point
of contact of the wheel on ground.

This, however, may be different in Krang where the area of contact of the wheels from the ground is
more than just a single point. It is a rectangular region. So this initial value may be more relaxed for
starting Krang from initial position.
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φ0 (degrees) xt→∞ (meters)
1.000 5.481
2.000 5.631
3.000 5.762
4.000 5.957
5.000 6.186
6.000 6.289
7.000 6.466
8.000 6.697
9.000 6.791
10.000 6.972
11.000 7.010
12.000 7.356
13.000 7.296
14.000 7.975
15.000 8.354
16.000 8.855
17.000 9.383
18.000 9.955
19.000 11.040
20.000 12.447
21.000 14.520

Table 1: The relationship of the initial state of φ and the amount of displacement of the wheel before
stability

4.8 Effect of Modeling Errors

We now study the effect of modelling error on the control input u. We are interested in four particular
parameters mass of the rod m, inertia of the rod I, distance l of the center of mass and finally and the
estimation of the parameter φ. Even though φ is a state variable, we treat the error in the estimation of
φ as a modeling error because it is a result of estimation of the coordinates of the center of mass of the
robot based on the mass model of the robot.
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4.8.1 Effect of modeling error in m

We find the effect of modeling error of mass m by choosing to find the system gains based on the incorrect
masses that range from 20% to 180% of the actual mass of the system and see the effect of on the system
response. The plots of the states and the control input are shown in Figur 4.8.1. We don’t see a major
change in the bahvior of the system except for when the mass is modelled too small as compared to the
actual mass. In general smaller mass estimation leads to higher peaks, more overshoots, higher resultant
displacements on the state variables and motor current and higher settling times. On the converse larger
mass estimations are associated with opposite effects on the state variables. But the effect on the motor
current u is the same i.e. higher peaks, overshoots and settling times. But, the differences in the behavior
are very small and canbe neglected.

Figure 13: The behavior of the system when control gains are based on modeled mass mmodel that ranges
from 20% to 180% of the actual mass m
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4.8.2 Effect of modeling error in I

We adopt the same methodology as adopted in the previous subsection. Control gains of the system are
derived from modeled inertia parameter Imodel that is not equal to the actual inertia I of the system.
The response of the system for 10 different values of Imodel ranging from 20% of the actual inertia to
180% is shown in Figure 14. The response of the system doesn’t change much except when Imodel is very
small in which case we see oscillations in the state veriables as well as the control input. For the rest of
the values, however, we see very little change in the response of the system.

Figure 14: The behavior of the system when control gains are based on modeled mass Imodel that ranges
from 20% to 180% of the actual mass I
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4.8.3 Effect of modeling error in l

We adopt the same methodology as adopted in the previous subsection. Control gains of the system are
derived from modeled COM distance parameter lmodel that is not equal to the actual COM distance l of
the system. The response of the system for 10 different values of lmodel ranging from 20% of the actual
COM distance to 180% is shown in Figure 15. The response of the system doesn’t change much except
when lmodel is very small, in which case, we see smaller peaks and overshoots in the state variables but
at the cost of very high values of the motor current values. For the rest of the values, however, we see
very little change in the response of the system.

Figure 15: The behavior of the system when control gains are based on modeled mass lmodel that ranges
from 20% to 180% of the actual mass l
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4.8.4 Effect of modeling error in Center Of Mass (resulting in error in φ)

Studying the effect of modeling error in φ is very important. In the real system of Krang, φ represents
the angle from the vertical of the line connecting the estimated COM of Krang to the wheel axis. So φ is
estimated in each iteration based on the current positions of all the joints and the masses and center of
masses of all the links connecting the joints. Clearly, there are a number of variables on the accuracy of
which depends the accuracy of the estimation of φ. And thus, the theoretical assumption that we have
measured the state φ is just that — a theoretical assumption. In general, at best we get a φ̂ which is 0.5
degrees away from the system’s actual φ. This φ̂ is what we will then use to calculate the state error for
feedback control.

u = −K(x̂− xref ) (26)

x̂ =


φ̂
ˆ̇
φ
x̂
ˆ̇x

 =


φ

φ̇
x
ẋ

+


φ̃
˜̇
φ
x̃
˜̇x

 (27)

Figure 16: The behavior of the system that results from an incorrect estimation of the Center of Mass
of the system resulting in an error in the angle φ. The responses are shown for the case when the system
start from equilibrium position in the absence any external force but an incorrect estimate φ̂ = φ + φ̃
with φ̃ ranging from 0.5 to 5 degrees
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For now, we assume
˜̇
φ = x̃ = ˜̇x = 0 i.e. the error in measurement of all the states except the state φ

zero.
The response of the system based on this error in the modeling is shown in Figure 16. We choose 15

different errors φ̃ from 0 to 5 degrees. We don’t apply any external impulsive force and start the at zero
initial condition. We observe the following:

1. The system initially tries to bring φ̂ to zero by making φ equal to the negative of the error φ̃.

2. Since this is an unstable position φ̇ increases because of the torques acting on the system due to
the pendulum’s weight. In order to bring that to zero motor current u shoots up and enevtually
the system turns back to its actual equilibrium position φ = 0.

3. Since φ = 0 means φ̂ = φ̃, the components of u due to this error remains non-zero and is compen-
sated by a steady-state non-zero ẋ, resulting in a small steady state u

4. The steady state values of ẋ and u are proportional to the error φ̃. By onservation ẋt=∞ = −0.8φ̃
and ut=∞ = −1.01φ̃ where φ̃ is in degrees.

If we introduce position control, the observation is shown in Figure 17. Here, a similar set of obser-
vations is made except that the error term of φ is compensated not by a steady state ẋ but a steady
state x and steady-state u is ten times smaller and only results due to a very small steady-state error in
φ. So φt=∞ = −0.0076φ̃, ut=∞ = −0.02φ̃ and xt=∞ = −7φ̃ and when φ̃ is in degrees.
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Figure 17: The behavior of the system with position control, that results from an incorrect estimation
of the Center of Mass of the system resulting in an error in the angle φ. The responses are shown for the
case when the system starts from equilibrium position in the absence any external force but an incorrect
estimate φ̂ = φ+ φ̃ with φ̃ ranging from 0.5 to 5 degrees.

4.9 Effect of Noise in State Measurement

When a noise of 2 degrees is introduced in the measurement of φ (see Figure 18), we see that the system
stays stable. But in the absence of position control, we see that the act of stabilizing the system forces
the position of the wheel x to keep changing. We also observe that noise in φ causes the control input u
to change randomly. As a result the whole system undergoes random oscillations, as can be observed in
the plots of φ̇ and ẋ but the system stays stable.
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Figure 18: Response of the controlled system in the presence of noise in the measurement of φ
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Increasing the simulation time further (from 30 sec to 60 sec) (Figure 19) reveals that x doesn’t just
keep moving in the positive direction but the movements in x are random in nature. And x pretty much
oscillates around the zero position as time goes on. Increasing the noise to 5 degrees still keeps the
system stable. It only leads to a larger wandering of x.

Figure 19: Response of the controlled system in the presence of noise in the measurement of φ with
simulation time increased to 60 sec to see whether x stabilizes but it doesn’t
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Similar behaviors are observed even when force is increased to 3000N (Figure 20). Just that the initial
displacement of x is large in the positive direction (i.e. the direction of the force) before the wandering
behavior starts.

Figure 20: Fimpulse increased to 3000N to see the whether the system with measurement noise stays
stable even in the presence of high impulsive force
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Increasing the noise too high can lead the system to go unstable. (Figure 21) At noise level equaling
20 degrees, we see the that system blows up.

Figure 21: Response of the controlled system in the presence of high noise in the measurement of φ. The
system blows up.
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4.9.1 Effect of Filtering the Noise in State Measurement

We saw the effect of noise in the measurement of φ. We observed that it results in a wandering behavior
in the position x and oscillations in other controlled variables as well as the control input u. In the real
system (i.e. Krang) we have used Kalman filtering to filter out correct signal from the noisy one. For
the purpose of this study, we modeled the discrete nature of the control, as is present in the real system
and we set the sampling time Ts = 2ms. We used φ and φ̇ as the state veriables, as well as the output
variables. The matrices used for the purpose of Kalman filter are as under:

A =

[
1 Ts
0 1

]
, B =

[
0
0

]
, C =

[
1 0
0 1

]
, R =

[
1 0
0 1

]
, Q =

[
1e− 3 0

0 1e− 3

]
(28)

where A, B and C define the state-space model for the measured quantities R is the observation noise
covariance and Q is the process noise covariance.

We start the system with zero initial state and apply a 500N of impulsive force in the beginning.
The reponse is shown in 22. We see that the disturbances in the state variables are much smaller. The
wandering behavior of x is much more stabilized. And the disturbance in the motor current u is also
minimized.

Figure 22: When the noise in the measurement in filtered, the response of the system is improved.
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