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PREFACE

“Live as if you were to die tomorrow. Learn as if you were to live forever.”.

Gandhi (1869 – 1948)

“Honesty is the first chapter of the book of wisdom.”

Thomas Jefferson (1743 – 1826)

“Ignorance, the root and the stem of every evil.”

Plato (428/427 BC – 348/347 BC)
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SUMMARY

Rotorcraft optimization is a challenging problem due to its conflicting requirements

among many disciplines and highly coupled design variables that affect the overall design,

which therefore have to be considered concurrently. Also, the design process for a composite

rotor blade is often ambiguous because of its design space. Furthermore, analytical tools

that are being used do not produce acceptable results compared with flight test when it

comes to aerodynamics and aeroelasticity unless realistic models are used, which of course

leads to excessive computer time per iteration.

To comply these requirements, computationally efficient yet realistic tools for rotor-

craft analysis, such as VABS and DYMORE that decompose a three-dimensional rotor

blade analysis into a two-dimensional cross-sectional analysis and a one-dimensional beam

analysis. Also, to eliminate the human interaction between iterations, a previously VABS-

ANSYS macro was modified and automated. The automated tool shortened the computer

time needed to generate the VABS input file for each analysis from hours to seconds. MAT-

LAB was used as the wrapping tool to integrate VABS, DYMORE and the VABS-ANSYS

macro into the methodology. This methodology uses the so-called Genetic Algorithm and

gradient-based methods as optimization schemes. The baseline model is the rotor system of

Generic Georgia Tech Helicopter (GGTH), which is a three-bladed, soft-in-plane, bearing-

less rotor system. The resulting multi-level methodology is a two-level optimization, global

and local. The global-level optimizer is constructed with frequency placement and autoro-

tation index constraints, with cross-sectional stiffnesses and mass per unit length as design

variables. The local-level optimizer uses ply angles and size parameters of the structure

inside the blade as design variables and tries to achieve stiffness and mass requirements to

satisfy the global-level constraints. Previous studies showed that when stiffnesses are used

as design variables in optimization, these values act as if they are independent and produce
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infeasible design requirements that cannot be achieved by local-level optimization. To force

design variables at the global level to stay within the feasible design space of the local level,

a surrogate model was adapted into the methodology. For the surrogate model, different

“design of experiments” (DOE) methods were tested to find that DOE method which is

most suitable from the aspect of computational efficiency. The response surface method

(RSM) and Kriging were tested for the optimization problem. To construct RSM mod-

els, ModelCenter was used, and for Kriging the DACE (Design and Analysis of Computer

Experiments) toolbox in MATLAB was used.

The results show that using the surrogate model speeds up the optimization process.

Also, the Kriging model shows superior performance over RSM models. As a result, the

global-level optimizer produces requirements that the local optimizer can achieve.

xiv



CHAPTER I

INTRODUCTION

Rotorcraft optimization is a challenging problem. Not only does the problem itself have con-

flicting requirements from different disciplines, but also the methodology has to be chosen

in a very careful manner. Also, the optimization of a rotor system is inherently multidisci-

plinary and, especially for blades made of composite materials, often ambiguous because of

its design space. Regardless of these difficulties, analytical tools that are being used do not

produce acceptable results compared with flight test when it comes to aerodynamics and

aeroelasticity. This can be overcome by using more sophisticated models, which unfortu-

nately leads frequently to excessive computer time per iteration. The problems related to

rotorcraft optimization and the cautions involved in selecting methodology are discussed in

following two sections, respectively.

1.1 Problems in Rotorcraft Optimization

Rotorcraft optimization has many disciplines that need to be considered concurrently. In

other words, a manual approach that needs human intervention during the iteration process

cannot achieve the optimal design efficiently within given time and resource. Also, design

variables have strong couplings that affect more than one discipline, much of the time

without clear indication. Furthermore, this problem must address many conflicting objective

functions, such as (a) frequency placement to reduce vibration does not guarantee a reduced

vibratory hub load, (b) elastic couplings do not always lead to aeromechanical and dynamic

stability occurring at the same time, (c) using a tuning mass to avoid resonance will generate

a weight penalty, and (d) optimized performance, aerodynamics and acoustics can limit the

design space of structural optimization significantly. Regardless of these difficulties, analysis

tools that are being used do not produce acceptable results compared to experimental

data, especially for aerodynamics and aeroelasticity. This can be overcome by using more

sophisticated models, which unfortunately leads frequently to excessive computer time per

1



iteration.

1.2 Problems in Methodology Selection

The two main concepts of optimization methodology are gradient-based and non-gradient-

based. Gradient-based methods are advantageous when the design space is unimodal, when

the proper step size for the calculation of the objective function gradient can be optimized

or provided in a timely manner, and when design variables are only continuous. In contrast

to gradient-based methods, non-gradient-based methods such as the genetic algorithm (GA)

can handle any type of design variables (e.g. integer, decimal or binary), any type of design

space (e.g. convex or nonconvex). Also, this method does not require the calculation of the

gradient. However, the GA has its disadvantages, such that resolution affects the length of

string and population size that can cause significant increase in computation time. There

are advanced versions of the GA that have adopted other methodologies to overcome these

limitations, such as the response surface method, neural networks, and immune systems.

There was also other research done to modify the original GA and make it suitable for

different types of design problem, such as the K-S function, constraint handling aspects,

and multicriteria or large design problems. Furthermore, there have been other attempts

to combine the gradient-based method with the GA to take only superior characteristics

of each methods. However, no universal methodology, as such, exists. Therefore, the basic

information of design problem must be identified in advance then, design method can be

selected that can sometimes lead to repeated trial and error.

1.3 Motivation

There now exist computationally efficient tools for rotorcraft analysis, such as VABS [6,

7, 8, 9] and DYMORE [10, 11]. VABS is based on the notion that a three-dimensional

(3-D) rotor blade analysis can be split into one-dimensional (1-D) beam analysis and a two-

dimensional (2-D) cross-sectional analysis. VABS provides the cross-sectional stiffnesses

for realistic cross-sections in a relatively short time; and DYMORE can analyze a flexible

multi-body system such as a rotorcraft, using the blade properties calculated by VABS. This

splitting does not result in poor results as would be expected for an over-simplified model.
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Moreover, it requires orders of magnitude less computational effort than that demanded by

a full 3-D analysis of a realistic rotor blade. Using the hybrid method with an advanced

GA benefits in dealing with any type of design variables and design space that does not

requires high computation time to explore the design space in the optimization. Also, this

GA will provide the several promising regions with local minima, increasing the chances of

finding the global minimum. Since the method uses an integrated scheme, the methodology

is capable of capturing the couplings among disciplines. Aeromechanical stability is, for

example, strongly influenced by elastic couplings. However, in spite of the massive amount

of published research focusing on this effect, it is quite difficult to identify exactly what

this influence is. Here this influence will be identified through parametric study and the

optimization process. Finally, it is pointed out that work combining dynamical optimization

with aeromechanical optimization is scarce.

The present work is motivated by the above findings and attempts to find an optimiza-

tion methodology that is capable of being adopted into any stage of the design process,

interactive with any tools, and which can be further integrated with other disciplines such

as trajectory optimization, performance optimization, and controls. Also, to identify the

role of aeroelastic couplings and suitable optimization conditions such as design variables

and constraints, parametric studies will be performed in conjunction with sensitivity anal-

ysis. The hybrid method with an advanced GA will be used for exploration of the design

space, to attempt to find promising regions based on the objective function. An efficient

cross-sectional analysis tool such as VABS and the flexible multi-body dynamics analysis

tool DYMORE can assure the relatively accurate and efficient analysis for the process, and

using MATLAB as the wrapper provides a capability that makes the methodology flexible

and adaptable.

1.4 Organization of the work

This thesis consists of four main parts. The first part reviews the literature related to

rotorcraft blade optimization. The second part focuses on constructing a global level opti-

mization, integrating this global level optimization with a local level optimization structure
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that has been previously constructed, and shows the coupled aspects at both levels of the op-

timization. The third part consists of preliminary design studies based on the methodology.

Finally, the implementation of the Elastic Articulation (EA) rotor of the GTGH (Georgia

Tech Generic Helicopter) will be shown with consideration of aeromechanical stability.
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CHAPTER II

EARLY STUDIES

2.1 Overview

This chapter describes the general concepts in rotorcraft optimization and related liter-

ature. The literature survey is presented in four categories: the historical perspective, a

single-discipline method, a multidisciplinary (integrated) method, and non-gradient meth-

ods. After previous research related to rotorcraft optimization is examined, the motivation

for this work is stated along with the organization of this thesis.

2.2 General Concepts in Optimization

The optimization of rotorcraft starts from the general concept of a numerical optimization

problem that consists of an objective function and constraints, both of which depend on

design variables. The general form of the equations is

Minimize: F (X)

Subject to: Gj(X) ≤ 0 j = 1, 2, . . . , J

Hk(X) = 0 k = 1, 2, . . . , K (1)

where X = (x1, x2, ...xn) are independent design variables, and F (X) is the objective func-

tion. The functions Gj(X) and Hk(X) are inequality and equality constraints functions,

respectively. This simple numerical formulation was recognized by Schmit [12] for its ap-

plicability to the engineering design problem in 1960. Based on this finding, Stepniewski

et al. suggested the application to helicopters in 1970 [13]. However, the formulation was

not widely adopted by the rotorcraft industry until the early 1980’s due to the complexity

of the rotorcraft optimization problem itself, even when a simple formulation used. Design

of rotorcraft requires that several disciplines must be considered at the same time: aerody-

namics, performance, dynamics, strength, aerelasticity, and acoustics. Also, there are other

considerations that need to be accounted for, such as life-cycle cost, manufacturing, mission
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profiles, and maintainability. These aspects, which are frequently coupled with conflicting

objectives, need to be optimized throughout the design process to have a truly optimal de-

sign. Furthermore, the design space is rarely convex, the number of design variables is not

manageable with manual approaches, and analysis tools often give results that differ from

test results. In 1985, Miura [14] concluded that the best way to use optimization methods

for helicopter problems is to use the best technology available at the time.

2.3 Fundamentals of Rotorcraft Optimization

The benefits of using optimization methodology start from eliminating man-in-the-loop iter-

ations, not overlooking a potentially superior design that may not be recognized otherwise,

and integrating multidisciplinary criteria in the early design process. However, identifying

which design parameters have significant effects on the overall design or objective function

must be carried out beforehand. This section points out research that is recognized as part

of the cornerstone for rotorcraft optimization.

Vibration causes many problems in rotorcraft, such as reducing fatigue life, dynamical

instability, and discomfort of crews and passengers. Vibration has long been the salient

issue in rotorcraft design; it is not an overstatement to say that successful rotorcraft design

depends on how well vibration is treated. Pursuant to this, Blackwell [15] explored the

sensitivity of vibration to blade design with parametric studies. He used the number of

blades, the blade spanwise mass distributions, chordwise offset of sectional mass center to

aerodynamic center, blade bending stiffness, blade built-in twist, tip sweep, and camber to

show how these parameters affect helicopter vibration. The research was mainly focused

on comparing analytical parameter sensitivities with tests and other analytical results, but

it also helped to define design variables that have significant effects on vibration. From his

conclusions it was shown that blade built-in twist does not have a large impact on vibration

reduction.

2.4 Single Discipline/Criterion Optimization

As previously stated, there are multiple disciplines to be considered in rotorcraft optimiza-

tion, such as performance, dynamics, aeromechanics, structures, and acoustics. Also, there
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can be multiple objectives that need to be achieved in any single discipline. This section

reviews previous research that was focused on a single discipline or a single criterion. This

research is categorized based on its objective.

2.4.1 Vibratory Hub load/Vibration Reduction with Frequency Placement

The main source of vibration in rotorcraft is the main rotor. As a rational approach to the

problem, an optimization deals mainly with the rotor system. To this end, there are two

approaches that can be considered. The first approach aims at reducing the vibratory hub

load. Since the vibratory hub load propagates through the fuselage and causes problems

stated earlier, there were investigations focused on this aspect. The second approach tries

to place the natural frequencies of rotor within the range that does not coincide with with

1/rev and n± 1/rev at operational speed.

Pritchard et al. [16] used tuning masses to reduce the vibratory hub loads by system-

atically placing tuning masses along the blade span without adding a large mass penalty.

The mass and spanwise position of the tuning masses were the design variables. The blade

natural frequencies were limited by additional behavior constraints. Objective function and

behavior constraints were expanded in a linear Taylor series.

Anusonti-Inthra and Gandhi [17] demonstrated that optimal multicyclic variation of

blade root flap and lag stiffness can produce simultaneous reductions in vibratory hub loads.

The baseline was a four-bladed BO-105 type hingeless rotor helicopter. They used both

gradient- and non-gradient-based optimization schemes, and both of them were successful

in reducing hub vibration. Furthermore, they showed that the required stiffness variations

could be reduced by introducing a penalty on the input in the objective function used

for minimization. Multi-cyclic flap and lag stiffness variations were seen to be effective in

reducing hub vibration even when the fundamental rotor properties were changed.

Peters et al. [18] used rotor blade frequency placements for vibration reduction by using

CONMIN [19]. This research attempted to find a mass and stiffness distribution for given

desired frequencies and achieved 26% weight reduction. Taylor [20] presented a theoretical
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approach that used certain blade mode shapes instead of its natural frequencies as con-

straints. This study showed reductions in vertical hub vibration as well as blade fatigue

loading. It demonstrated that desensitizing certain blade modes to aerodynamic loading

can result in a large vibration reduction.

Yuan and Friedmann [21] also proposed a structural optimization study of a compos-

ite rotor blade with swept tip for vibration reduction. A structural optimization study

was conducted by combining the aeroelastic analyses developed in the study with an opti-

mization package (DOT) to minimize the vibratory hub loads in forward flight, subject to

frequency and aeroelastic stability constraints. Frequency placement and hover aeroelas-

tic stability constraints were placed on the design. The objective function and constraints

were expanded in a linear Taylor series expansion, and semi-analytical sensitivities were

used. The hingeless blade was modeled by beam finite elements with a single finite element

to model the swept tip. Composite blade cross-sectional properties were calculated by a

separate linear, two-dimensional cross-sectional analysis. Numerical results showed that

the flap-torsion coupling associated with tip sweep can induce aeroelastic instability due to

frequency coalescence. This instability can be removed by appropriate ply orientation of

composite materials. Optimization results show remarkable reductions in vibration levels.

The tip sweep was the most dominant design variable for the cases considered. This study

showed the presence of local minima in the design procedure.

2.4.2 Weight Reduction

Chattopadhyay and Walsh [22] described a procedure for minimum weight design of heli-

copter rotor blades with constraints on multiple coupled flap-lag natural frequencies, au-

torotational inertia and centrifugal stress. The design variables used were the box beam

cross-sectional dimensions, the magnitudes of nonstructural segment weights and the blade

taper ratio. They used a linear approximation technique involving Taylor series expansion

to the reduce analysis time. Studies were performed to assess the effects on the optimum

blades design of constraints on higher frequencies and stress. The results of the study in-

dicated that there is an increase in the blade weight and a significant change in the design
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variable distributions with an increase in the number of frequency constraints.

2.4.3 Performance Optimization

Walsh [23] performed aerodynamic performance optimization of by using the point of taper

initiation, root chord, taper ratio, and maximum twist as design variables. The objective

function was to minimize power required in hover. The constraints used are (a) required

power less than the available power, (b) section drag divergence Mach number, (c) maxi-

mum section lift coefficient, (d) trim condition for the rotor, and (e) a lower limit on the

blade tip chord. Sensitivity analyses were carried out by forward finite differences. The

optimization procedure obtained the optimal design, but it was closer to blade stall than

the baseline design. The importance for the design process of including the wake for per-

formance optimization was shown.

2.4.4 Aeroelastic Optimization

During the late 1980’s and early 1990’s there was a spurt of activity in the aeroelastic

analysis of composite helicopter rotors. A series of aeroelastic optimization studies was

carried out by Chopra and his coworkers throughout 1990’s. The early studies discussed

showed the potential of optimization methods in reducing vibration and blade weight and

improving performance and aeroelastic stability. Smith and Chopra [24] addressed this

issue by extending the earlier models to include certain nonclassical effects. They also

investigated aeroelastic stability, hub loads, and aeromechanical stability in forward flight.

Chandra and Chopra [25] presented a free-vibration analysis of a rotating, structurally-

coupled composite I-beam. A linear analysis based on Vlasov theory was developed to

obtain coupled flap-lag-torsion equations of motion for a composite I-beam with constrained

warping and transverse shear effects. Results showed that: (a) the constrained warping

influences the natural frequencies by increasing the effective torsional stiffness; (b) bending-

torsion coupling creates coupled flap-torsional modes that result in the increase of natural

frequencies; and (c) rotor angular speed increases the natural frequencies. For the beams

considered in this study, the lag mode was least influenced by rotor angular speed.
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Bir and Chopra [26] presented an improved aeroelastic formulation for advanced geome-

try blades involving variable sweep, droop, pretwist, and planform. The blade was modeled

as a series of arbitrarily oriented elastic segments, each of which consisted of one or more

beam finite elements with fuselage dynamic interaction. Results indicated that tip droop

has a larger stabilizing effect than sweep; anhedral has a destabilizing effect, especially on

the second blade lag mode; and sweepback has a destabilizing effect for higher value of

thrust. The vibratory components of the flap and lag response were hardly affected by

sweep. However, the blade torsional vibratory loads were significantly increased due to

sweep.

Ganguli and Chopra [27] performed aeroelastic and sensitivity analyses of the rotor

based on a finite element to perform optimization studies for a four-bladed, soft in-plane

composite rotor consisting of a two-cell thin-walled beam. The design variables used were

the ply angles of the laminated walls of the composite beam. The objective function was

to minimize the 4/rev hub loads, with blade frequencies and aeroelastic stability in forward

flight as constraints. Optimum design solutions show a reduction in the objective function

of about 20% due to elastic stiffnesses and an additional 13% due to composite couplings.

2.4.5 Aeromechanical Stability

Aeromechanical instability in helicopters occurs because of coupling between the rotor and

fuselage motion. Ground and air resonance are aeromechanical problems that are caused

by the interaction of rotor blade lead-lag motion with certain motions of the helicopter.

In ground resonance, the lead-lag motion of the blades reacts with the motion of the hub

parallel to the plane of rotation, which further excites the lag motion. Ground resonance in-

stability can be very violent and lead to catastrophic failure. Air resonance occurs mostly in

hingeless rotors. The large hub moments that occur when the rotor tilts can give rise to body

motion even when the helicopter is in flight, which can couple with blade lead-lag motion

and lead to air resonance. Therefore, ensuring adequate aeromechanical stability margins

is vital in the design of helicopters with soft-inplane rotors [28]. Over the years, helicopters

have been equipped with auxiliary lead-lag dampers to alleviate aeromechanical instability.
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However, associated with the use of lead-lag dampers are increased complexity, weight, cost,

drag, and maintenance requirements. Additionally, modern day elastomeric dampers are

susceptible to fatigue. The elimination of lead-lag dampers, resulting in the development of

a damperless rotor, would further simplify the hub, and reduce weight, aerodynamic drag,

and maintenance costs. However, the design of a damperless, yet aeromechanically stable,

configuration is truly a challenge, and while several concepts have shown promise, there has

been no generally accepted solution for eliminating lag dampers [29]. One concept for im-

proving rotor-body aeromechanical stability characteristics is through the use of aeroelastic

coupling. Aeroelastic coupling creates changes in the blade pitch as a result of blade flap

and lag displacements, as well as coupling between flap and lead-lag motion. The effects of

pitch-lag, pitch-flap, and flap-lag couplings on aeromechanical stability have been examined

by many researchers.

Bousman [30] performed a test for the hover case to examine the effects of structural

flap-lag and pitch-lag coupling on isolated rotor blade lead-lag stability. Flap-lag coupling

was introduced by inclining the principal axes of the blade structure up to 60 degrees. Pitch-

lag coupling was obtained either alone or in combination with flap-lag coupling through the

use of skewed flexural hinges. The principal results showed that both structural flap-lag and

pitch-lag coupling when used separately are beneficial for blade stability. Moreover, when

the couplings are combined, the lead-lag damping is significantly greater than it would be

if the individual contributions were superimposed. Pitch-flap coupling was shown to have

only a minor effect on blade lead-lag damping.

Gandhi and Hathaway [31] used optimization methods to alleviate the ground resonance

problem of soft in-plane rotors using aeroelastic-coupling parameters. The objective was to

use aeroelastic couplings to obtain a helicopter that does not need auxiliary lag dampers.

They used a rotor fuselage model with six degrees of freedom, which were cyclic flap (two

degrees of freedom), cyclic lag (two degrees of freedom), fuselage roll and pitch. For op-

timization, the pitch-flap coupling and pitch-lag coupling were used as design variables.

They concluded that the most beneficial couplings were negative pitch-lag coupling, posi-

tive pitch-flap coupling, flap flexibility outboard of pitch bearing, and lag flexibility inboard
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of pitch. Hathaway and Gandhi [32] continued their study, basically adding blade flap and

lag stiffnesses as design variables to a previous study [31]. They were motivated by the

fact that values of aeroelastic couplings that are generally stabilizing for ground resonance

may lead to rotor frequencies that are unacceptable from a handling qualities perspective.

Constraints were imposed to prevent excessive changes in the rotor frequencies. Numerical

results for a soft in-plane helicopter rotor showed that aeroelastic couplings and blade stiff-

ness properties, along with landing-gear stiffness and damping properties, could be used to

design a helicopter rotor without lag dampers. Also, a concurrent approach to optimiza-

tion where the pitch-flap and pitch-lag couplings are simultaneously considered as design

variables was superior to the sequential approach where the blade stiffness and frequency

targets were set before any attempt to incorporate aeroelastic couplings.

2.4.6 Structural Optimization with Composite Rotor Blade

Composite materials have shown their superiority over metals for many applications for

decades. Composite materials can improve fatigue strength, damage tolerance, corrosion

resistance, stiffness-weight ratio, and life-cycle costs. Also, when a rotor blade is manu-

factured with composite materials, the stiffnesses of a cross-section can be manipulated

by changing the lay-up angles and number of plies. Such a capability is referred to as

“tailorability.” Tailoring is the process of adapting the mass and stiffness characteristics

of a composite structure in an effort to improve one or more structural responses. Design

methodologies that do not take advantage of composites may overlook potential advances

in blade technology. Additional improvements can be achieved in areas such as weight,

frequency placement, and ballistic tolerance provided the blade is designed through use of

a methodology capable of exploiting the versatility of composite materials. Also, there is

variety of selection in composite materials based on its objective. Corresponding to these

advantageous characteristics of composite materials, there has been a wide range of research

carried out since the 1980’s, especially in reducing weight and manipulating aeroelastic cou-

plings.
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2.5 Multi-Criteria/Multi-Objective Methodology

After thorough research making use of a single discipline or objective, combining multiple

criteria into one process was started. In this section, three distinguishable definitions are

used: multi-objective optimization, sequential optimization, and integrated optimization.

Multi-objective optimization uses a weighted sum of objective functions as one to achieve

conflicting and/or coupled requirements. Such optimization may but does not necessarily

involve more than one discipline. Sequential optimization links more than one discipline,

dividing them into groups. Once the grouping is done based on the objective function, opti-

mization proceeds with the first group. Once it reaches an optimum, a second optimization

starts, adding constraints or more design variables. This continues until the optimization

procedure goes through however many groups are defined. This method does not have

an iterative process between phases. The third is the integrated method, distinguished by

iterative processes and concurrent changes in overall design. Previous studies related with

each topic follows.

2.5.1 Multi-objective Optimization

Davis and Weller [33], considered an automated design optimization analysis using relaively

simplistic analytical models to reduce the computer time. Modal-based optimization criteria

were defined and adopted to calculate a coupled-mode eigenvalue analysis. Problems con-

sidered were maximization of bearingless rotor structural damping, blade natural frequency

placement, minimization of hub shears, and minimization of modal vibration indices. They

showed that parameter scaling by normalization provided significant improvement in opti-

mizer performance, that frequency placement criteria alone may lead to increased vibratory

response, and that minimizing modal vibration indices was the most effective criteria con-

sidered for reducing rotor vibratory loads. Because of the existence of local minima, the

authors suggested the use of several starting points with a gradient-based method.
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2.5.2 Sequential Multi-Criteria Optimization

Nixon [34] developed structural design methodology based on two sequential procedures.

The first performs an optimization that satisfies aerodynamic, performance, strength, and

autorotation constraints for static load cases. Then, the blade is tuned to avoid resonances

at the operating rotor angular speed. Titanium single-spar, composite single-spar, and

composite multi-spar concepts were examined. The author emphasized the importance

of applying optimization to an already fairly good design. He stated that a poor design

can restrict the movement of design variables towards a good design. To avoid this, he

imposed frequency constraints after a minimum weight static design was achieved. The

results demonstrated that the composite configurations show a weight reduction compared

to the metallic one.

2.5.3 Integrated Optimization

Barwey and Peters [35] addressed the first significant step in the integrated optimization

method by combining structural optimization with dynamics. They also used a blade with

realistic cross-sections instead of a box-beam configuration. The rotor system was a soft-in-

plane hingeless rotor. The composite blade sections were analyzed using a 2-D finite element

code. The results indicate extreme sensitivity of the optimization process to the way fre-

quency constraints were formulated as well as to the starting design. The study showed the

effectiveness of simpler and more numerous versus complicated and less numerous frequency

constraints when trying to achieve the same goal.

Chattopadhyay et al. [36] used an integrated aerodynamic load/dynamic optimization

procedure to minimize blade weight a nd 4/rev vertical hub shears in forward flight. The

“Global Criteria Approach” (GCA) was used to form ulate a multi-objective optimization,

and results were compared with those obtained by using formulations based on a single

objective function. Constraints were imposed on natural frequencies, autorotational iner-

tia, and centrifugal stress. The program CAMRAD [37] was used for blade aerodynamic

and dynamic analyses, and CONMIN [19] was used for optimization. The vertical airload

distributions on the blade, before and after optimization, were compared. The total power
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required by the rotor to produce the same amount of thrust per area is also calculated

before and after optimization. Results of this study indicated that integrated optimization

can significantly reduce blade weight and vertical hub shears as well as oscillatory verti-

cal blade airload distributions and the total power required. They found that the GCA

for formulating the multi-objective function optimization was very effective. The approach

yielded a design in which the blade weight and vertical hub shears were significantly reduced

relative to the baseline design. Inspection of the vertical airload distributions for the initial

and optimum designs indicated that optimization significantly reduced the amplitude of

these loads due to reduced thrust requirement. However, the optimum rotors maintained

slightly higher values of the vertical force per unit area, indicating a more effective use of

the area. The authors used both single and multi-objective functions based on the GCA.

Constraints were imposed on blade frequency, autorotation, and stress due to centrifugal

force. Design variables included flap and lead-lag stiffness, taper ratio, and root chord.

First-order Taylor series approximations were developed for objective functions and con-

straints. Results showed that the combined minimization of vertical hub shear and weight

led to a reduction in vertical hub shears and blade weight. The optimum design also had a

lower power requirement, although power was not included in the objective function.

Chattopadhyay and Chiu [38] extended [36] by including additional design variables

such as spanwise distributions of blade bending stiffnesses, torsional stiffness, nonstructural

mass, chord, radius of gyration and blade taper ratio, and adding constraints on 3/rev

radial shear, 3/rev flapping and torsional moments, 4/rev lagging moment, blade natural

frequencies, weight, autorotational inertia, centrifugal stress and rotor thrust. Furthermore,

they enhanced the objective function for 4/rev vertical and 3/rev inplane shears by including

more components of the vibratory hub loads. The results showed that the move limit used

in the approximate analysis affects the optimum results obtained. The move limit used here

acts same as step size but has 2-D directionality.

Walsh et al. [39] combined performance and dynamics analyses with a general purpose

optimizer. The optimization procedure minimized a linear combination of power required

and vibratory hub shear. The procedure was demonstrated for two cases. The designs
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from the integrated procedure were compared with sequential procedure results that were

optimized for performance first and then for dynamics. The results showed the superiority

of integrated methods to the sequential method. After integration of aerodynamics and

dynamics, Walsh et al. [40, 41] added structural optimization into the integrated method

using multilevel decomposition. The upper level objective function was a linear combina-

tion of performance and dynamic measures. The lower level optimization was focused on

producing the stiffnesses required by the upper level. The authors found that using a lower

level optimizer to find the initial stiffnesses for upper level leads to a better solution.

Kim and Sarigul-Klijn [42, 43] developed a multidisciplinary optimization method that

strives for minimum weight and vibration, and maximum material strength of a rotor blade

with a constraint to avoid flutter. The blade was modeled as an articulated, flexible blade

with a thin-walled, multi-celled cross-section. The structural dynamic and aeroelastic anal-

ysis of the rotor blade were performed using the Rayleigh-Ritz method. They decomposed

the optimization into two levels to handle the design process more efficiently. Throughout

the optimization procedure, many local optima were found due to the high nonlinearities of

both constraints and objective functions. A different set of starting points had to be used

to achieve improved results since the methodology was gradient-based.

2.6 Non-Gradient Methods

During the last two decades of active research in rotorcraft optimization with gradient

based methods, many researchers encountered limitations of such methods. The calculation

of gradients is a major problem because the finite difference derivatives can be inaccurate

unless a proper step size is used, and a feasible design must exist to be used as a starting

point. Also, analytical derivatives require extensive changes in analysis programs. Further-

more, due to the characteristics of design variables in rotorcraft optimization, not all design

variables can be treated as continuous [44]. Finally, most design spaces in rotorcraft opti-

mization problem are nonconvex, so that local minima exist. To overcome these difficulties

that gradient-based methods have to reach the global minimum, the use of gradient-free

methods such as the Genetic Algorithm (GA) has been growing. Hajela [45, 46]reviewed
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extensively its status and the potential of non-gradient based methods. Among the many

different non-gradient base methods, the GA appeared to be the best candidate due to its

maturity level and the possibility of incorporating into it other optimization schemes such

as neural networks, fuzzy logic, and immune system. Therefore, the focus in this section

will be on using the GA in conjunction with several other methods that can be incorporated

into the GA.

2.6.1 Description of Genetic Algorithm

The GA is motivated by adaptation and natural selection in biological populations, where

genetic information stored in chromosomes as strings and population evolves over gener-

ations to adapt favorably to a static or changing environment. In Holland’s [47] original

work, the GA was characterized by bit strings of possible solutions to a given problem,

and by transformations used to vary and improve these coded solutions. The algorithm is

based on the survival of fittest, where members of the population that are deemed most

fit are selected for reproduction and given the opportunity to strengthen the chromosomal

makeup of the progeny generation. This approach is facilitated by defining a fitness function

or a measure indicating the goodness of a member of the population in a given generation.

Goldberg [48] deals with the GA in an extensive and detailed manner.

For the GA, the design variables can be in either integer or decimal form. However, the

most convenient way to handle a design variable is to convert it into a binary equivalent

that maps into a fixed length string of 0 and 1. These number are called strings that

constitute a population of designs with corresponding fitness value calculated through the

objective function. Once a chromosome-like representation of a design variable is randomly

generated, the GA simulates the genetic process through three principal steps: selection,

crossover, and mutation.

Selection: The selection process is one that biases the search toward producing more fit

members in the population and eliminating the less fit ones. One simplistic approach to

selecting members from an initial population to participate in the reproduction is to assign
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each member a probability of selection on the basis of its fitness. The fitness is a mea-

surement to indicate the performance of a particular genetic makeup to the problem. The

fitness associated with a chromosome can simply be an objective function value, or a scaled

value of the objective function. A greater fitness of a chromosome indicates better/more

viable genetic structure which offers better performance in minimizing the problem. A

new population pool of the same size as the original is created, but has a higher average

fitness value. However, no new designs are created in this process; the less fit ones are

simply eliminated and additional copies of the more fit designs are brought into the pop-

ulation. Three different tournament approaches were examined: global fitness tournament,

two-branch tournament [49], and Pareto domination tournament [50] with two fitness func-

tions for weight and power required. The global fitness tournament is a typical approach

to perform multi-objective design that utilizes a single global fitness function. To perform

the global function selection, two candidate strings were chosen without replacement, and

the one with the better global fitness measure survives which leaves only half of the pop-

ulation at the end. The two-branch tournament has same procedure as the global fitness

tournament except this allows the replacement for each fitness function. The Pareto dom-

ination tournament examines two fitness functions simultaneously. This approach selects

two strings, and their two fitness function values are compared. Total domination requires

that the surviving individual have both a lower power fitness and a lower weight fitness.

If neither string in a pair dominates the other, one is randomly selected. This compro-

mises between the aggressive selection resulting from the total domination scheme, and the

diversity maintained by the non-dominant random selection.

Crossover: The crossover process allows for an exchange of design characteristics among

members of the population pool with the intent of improving the fitness of the next gener-

ation. While there is a number of different ways in which the crossover operation can be

implemented, a widely practiced approach is the two-point crossover. In this approach, two

mating parents are selected at random; the random number generator is invoked to identify

two sites on the strings, and the strings of 0 and 1 enclosed between the chosen sites are
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swapped between the mating strings. A probability of crossover is defined to determine if

crossover should be implemented for the chosen pair of mating strings. An approach for

implementing crossover when using real number strings is described in Ref. [51]. There are

several types of crossovers, however, the initial concept is Single Point Crossover (SPC).

Though this method is simple and straightforward, it has a major weakness: SPC is the

duplication of long string segments from parents. The end effect is that the majority of the

overall string structure of children will be like the parents. In other words, the population

after the SPC will not be improved much. Due to this limitation on varying genetic struc-

ture of only a single parameter while the others remain intact, the SPC strategy cannot

efficiently combine possible schemas that are beneficial in fewer generations. Additionally,

the segments being exchanged always contain the endpoints of the strings [52]. Two com-

mon alternatives are two-point crossover and parameterized uniform crossover. With the

two-point crossover, two crossover positions are randomly determined, and the genetic ma-

terials within these two positions are exchanged. In this manner, the endpoint effect can

be eliminated, and the degree of genetic mixing is greater. These advantages manifest the

superiority of two-point crossover relative to SPC in the performance of function optimiza-

tion [53]. Parameterized uniform crossover operates the procedure at the bit level instead

of at the string level [54]. The crossover is conducted on each bit in which the exchange

occurs at the position with probability p. Values of p varying from 0.5 to 0.8 are typically

used [52].

Mutation: Mutation safeguards the genetic search process from a premature loss of valu-

able genetic information during reproduction and crossover. Mutation operates at the bit

level with relative low operation rate by randomly switching a 0 to 1 or vice versa at a

selected mutation site on the chosen string.This change occasionally modifies some genetic

patterns and creates different variable values. These modifications can be considered as

perturbations of variable values which provides chances to explore the subspace of variable

value combinations that cannot be obtained from either reproduction or crossover.
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2.6.2 Research Related to the Genetic Algorithm

Tarzanin et al. [55] investigated the use of non-gradient methods for selecting a good initial

starting design and avoiding local minima. They used the Tech-02 rotor analysis developed

at Boeing Helicopters combined with traditional gradient-based optimization. Numerical

studies were conducted for a four-bladed rotor with the objective being to increase thrust.

The results showed that the optimal blade design achieved the desired thrust while reducing

vibration levels and total blade weight. The authors also investigated workstation parallel

processing to utilize unused CPU cycles and use several workstations simultaneously to

conserve cycle time.

Akula and Ganguli [56] used the GA to solve the inverse problem of creating the rotor

blade mass and stiffness properties given the blade’s natural frequencies. A finite element

model of a rotating beam was used, and the mass and stiffness at each element was used as

design variable. The objective function minimized the difference between the frequencies

predicted by the model and the desired (or test) frequencies. Constraints were placed on the

blade total mass and inertia. It was found that the algorithm could be used to construct a

finite element model of the rotor blade from its frequencies given its total mass and inertia.

Excellent results were obtained using the first 10 frequencies, but the results became less

accurate when only the first 4 frequencies were used.

The GA showed potential in dealing with integer, discrete, and continuous variables

and in avoiding getting stuck at local minima. Also, there is no need for calculation of

gradients. However, the GA also showed poor performance when continuous variables need

high resolution, leading to high computational time and cost.

2.6.3 Enhanced Genetic Algorithm

Even the GA requires high computational cost with high-resolution chromosomes. The GA

maintains its advantageous features over gradient-based methods and other non-gradient

methods as computation power increases. In fields of computer and system science, GA’s

have been actively researched and enhanced to deal with limitations.
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GA with KS function: Kreisselmeier-Steinhauser (K-S) function is a method that com-

bines several objective and constraint functions into a single envelope function, making it a

member of the Sequential Unconstrained Minimization Techniques (SUMT) [57]. One of the

significant features of this approach is that it makes use of a single “pull” or “draw-down”

factor for the entire problem, rather than separate draw-down or weighting coefficients for

each objective and constraint. The general form of K-S function is

fKS(x) = fmax +
1
ρ

ln




nobj+ncon∑

m=1

expρ[fm(x)−fmax]


 (2)

where the draw-down factor, ρ, serves to “pull” the KS function envelope closer to the

edges of the bounded feasible design space. For the GA, it was desired to use fKS(x) as the

fitness function. The value of draw-down factor, ρ needs to be selected based on the design

problem. Crossley [58] combined the GA with K-S function. He implied the methodology

onto truss structure and rotor system design problem [59, 60]. He stated that even the

K-S function can be effectively combined with a GA for optimal design tasks that require

multiple objective functions with different types of variables. However, due to the intensity

of computation cost, it is suitable only for problems that can justify its high cost, such as

a rotorcraft optimization problem.

GA in Multi-criteria Design: In a number of MDO design problems, the statement of

the optimization problem calls for allocation of resources in a manner that satisfies multiple,

and sometimes conflicting criteria. A commonly adopted approach is to treat one of the

multiple criteria as the scalar objective function for the problem, and to formulate appro-

priate design constraints to accommodate the requirements on the other criteria. While the

apparent simplicity afforded by this approach is quite attractive,effective arguments can

be made against its use. At a philosophical level, one can always contend that there is a

natural separation of criteria and constraints in any design problem. Additionally, when

one formulates criteria as constraints, the ability to learn about the extent of the feasible

set is seriously compromised. In other words, a multiple criterion approach offers a solu-

tion in which a tradeoff pattern emerges, indicating how improvement in any one criterion
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would adversely affect another. Finally, it is also known that the treatment of criteria

as constraints does not yield the same optimal design as when solving the multi-criterion

problem. The GA approach has been adopted for this problem in some recent studies. In

Ref. [61], the ability of the GA to simultaneously discover multiple relative optima through

the sharing function approach [62] was exploited to solve multi-criteria structural design

problems. Another adaptation of the GA in multicriterion problems is available in Ref. [63].

GAs in Large-Scale Problems: The GA handles a continuous variable by treating it

as a discrete variable with the precision of representation given by the binary string length,

which suggests the longer string lengths represent higher precision. However, the resolution

of continuous variables cannot be increased indefinitely because considering a fine precision

in the representation of a design variable implies a larger number of design alternatives.

This requires a proportionately increased population size, and therefore will drastically

increase the computation time. To resolve this dilemma, gradually increasing the precision

of design variables is suggested. This method starts from relatively small population with

low resolution of design variables. Once the promising regions are identified, resolution

and population size are increased and optimization is conducted within those regions. This

method was suggested by Lin and Hajela [64], who attempted a multistage search with

directed crossover. The primary motivation behind the directed crossover strategy is to

identify a significant bit position on the string, and to constrain the crossover operation to

these bit locations. The process is initiated in the usual manner with random selection of

crossover sites on the mating strings, and with no preference allocated to any particular

site. After the crossover operation, the fitness change of each mating pair is recorded. Use

these fitness changes, a crossover gain is assigned to each bit involved in the crossover.

The crossover gains are accumulated over a few generations, and then used to perform

two-point or multipoint crossover operations. They provided one alternative way to handle

large number of population size effectively, therefore reducing the computation cost. Similar

ideas have been studied under the banner of dynamic parameter encoding [65].
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Parallel GA: The implementation of GA’s in parallel has been the subject of considerable

research. The parallel genetic algorithm (PGA) divides the population into a number of

sectors, and mating is restricted to members in a particular sector. Minimal migration of

members from one sector to another is permitted. Also, as a result of some overlap among

the sectors, information flows out to the whole population through a diffusion process.

Then, each individual may improve its fitness during its lifetime, e.g., by local hill-climbing.

After such local hill-climbing, it mates with an individual in its vicinity, with the offspring

being subjected to further hill-climbing. The child may then replace the parent, depending

on fitness value. The primary difference between PGA and GA is that the former uses

few intelligent and active members in the search as opposed to the latter, which uses more

(albeit passive) members to conduct the search. In fact, the power of the PGA stems

from a combination of the processing speed of parallel hardware and software speed on

the inherent parallelism available in the GA. The usefulness of stochastic search methods

in MDO problems is severely limited without the use of global function approximations.

Given that these methods are primarily based on the use of function information only, the

use of response surface-based approximations is a viable option. The use of these response

surfaces, however, requires that the order of the surface be first specified. Neural network-

based function approximations have also been extensively explored in this context, and are

briefly discussed in Refs. [66, 67].

GAs in Decomposition-Based Design: An alternative approach to adapting the GA

search for large scale design problems is based on partitioning the problem into an ap-

propriate number of subproblems. A reasonable approach for partitioning is one in which

balanced subsets of design variables are assigned to different subproblems, and where each

subproblem would be responsible for meeting the system-level design objectives and for

satisfying constraints most critically affected by the design variables of that subproblem.

A formal manner of partitioning the problem was presented in Ref. [68]. Crossley [60]

demonstrated the successful application of the GA to a multiobjective design problem.

He showed that the GA can identify non-dominated individuals in a multiobjective design
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space; the number and quality of these designs increase during the execution of the algo-

rithm. Three different tournament approaches, were examined: global fitness tournament,

two-branch tournament, and Pareto domination tournament with two fitness functions for

weight and power required. These fitness functions are constructed using a penalty func-

tion approach. The author concluded that the two-branch is the best approach for this

specific problem. Handling constraints in the GA was critical, as was the case for a single

objective function. This study used same design variables as Ref. [44]. As expected the

GA required a large number of function evaluations, and can provide only low or moderate

precision unless lengthy design strings are used, which would further increase the size of

the optimization problem. The author suggested to perform an initial search with the GA,

select some promising configurations, and then optimize these further using conventional

gradient-based methods, which is what is meant by a hybrid method. The GA strategy in

each subproblem works with shorter string lengths; and, hence, smaller population sizes are

required in each subproblem. The principal challenge in this approach is that the constraint

sets identified for a particular subproblem, are not completely independent of the design

variables that may have been assigned to another subproblem. One strategy that allows

for subproblem coordination is based on the simulation of a biological immune system. In

Ref. [69], Lee decomposed optimization into subproblems, with a structure in which the

subproblems optimization represents an inner loop, and the system-level optimization an

outer loop. The subproblems are identified by a neural network, which determines the re-

lationships between inputs (design variables) and outputs (objective and constraint values)

and, therefore, which groups of design variables and objective/constraints are most closely

coupled. Lee and Hajela [69] applied the GA for the rotor design problem. The authors

divided the optimization problem into a set of subproblems and followed a decomposition-

based strategy. The decomposed problems were then solved in parallel. For numerical

results, the authors considered a hingeless composite rotor blade. The objective was to

design the blade geometry and structure to minimize a weighted sum of the rotor hub shear

force and bending moments for a hingeless rotor in forward flight. Constraints were imposed

on power required in hover and in forward flight, the figure of merit, lift performance, blade
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weight, local buckling stresses in the structural box-beam section, and failure criteria for the

composite structure. The design variables were tuning mass, thickness of the blade spar,

blade twist, taper, angular speed, and ply layup angle in the vertical web of the wall. Thick-

nesses of the plies were treated as discrete variables based on keeping an integer number of

plies. Numerical results showed the effectiveness of the decomposition-based approach over

traditional strategies, with lower computer time requirements.
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CHAPTER III

INTEGRATING GLOBAL AND LOCAL OPTIMIZATION

3.1 Overview

In this chapter, the works related to constructing a global level optimization procedure and

integrating it with previous work on local level optimization are discussed. First, a short

discussion is presented on constructing a global level to develop multi-level optimization,

along with a simple example. Then, coupled aspects of global and local level optimization

are investigated using the hybrid approach. The example is optimized through a multi-

level/multi-phase optimization process. The results from optimization were reexamined by

conducting a global level optimization using the final value obtained at the local level as a

starting point.

3.2 Construction of Global Level

Multi-level optimization started from the idea to integrate the optimization of blade cross-

sectional properties into the general framework of rotorcraft optimization. The method-

ology leaves cross-sectional optimization procedure developed previously at the local level

and constructs a new level that deals with design variables that affect the overall rotor-

craft configuration. This new level is called the “global level” which is descriptive of its

characteristics.

3.2.1 Description of methodology

At the global level, the optimization process seeks a structural configuration that satisfies

global constraints, including constraints from other relevant disciplines. The global level

discipline used here concerns rotorcraft dynamics, specifically focusing on efforts to place

blade frequencies in regions that obviate resonance. DYMORE [10, 11] was selected as the

blade analysis tool because of its ability to interact with VABS [] used in the local (i.e. cross-

sectional) level optimization. The multi-level starts with an initial analysis using VABS to
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Figure 1: Schematic Flow Chart of Global Level Optimization for multi-level Methodology

provide the initial input values of DYMORE such as the cross-sectional stiffness matrix,

mass per unit length, moments of inertia. Once DYMORE runs with these values, the

natural frequencies are determined and become constraints for the global level. Throughout

the global level optimization, if such a configuration exists, the required cross-sectional

stiffnesses can be defined that need to be achieved by local level optimization. A schematic

of the global level optimization is provided in Fig. 1.

Global level

1. Design Variables: At the global level, rotor radius, taper, and rotor angular speed

are used as design variables. These three variables are determined based on outside

considerations, thus providing an interface with other disciplines; however, they also

have effects on both stiffness and mass properties as well as vibration characteristics

of the designed blade. The initial values of the design variables are provided in Table

1 with their Lower Bound (LB) and Upper Bound (UB) values. During optimization,

the upper and lower bounds of the rotor radius were set to be ±15% of initial value,

and the taper ratio was between 0.2 and 0.8 of chord. These LB and UB values are
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Table 1: Global level design values

Variable Value LB UB Units
Radius (R) 150 127.5 172.5 in

Angular speed (Ω) 59.2 25 60 rad/s
Taper Ratio (t) 0.5 0.2 0.8

set to avoid excessive and drastic changes in overall design configuration and maintain

the flexibility in structural optimization.

2. Objective Function: The objective function at the global level is to minimize the dif-

ference between target weight and the weight per iteration from optimization process.

The target weight needs to be determined from either the weight or performance dis-

cipline. Therefore, it varies throughout the design process, but the weight from the

initial analysis was used for the current optimization. Thus, the optimization problem

is posed as:

Minimize: Wi
Wt
− 1 i = 1, 2, . . . , N (3)

where Wt is the target weight that the optimization needs to achieve, and Wi is the

weight calculated from each step of iteration.

3. Constraints: Total three types of constraints are imposed. The constraints are of the

following forms.

60−AI ≤ 0 (4)

fi ≤ 0.95× Ω

1.05× Ω ≤ fi

fi ≤ 0.95× 3× Ω

1.05× 3× Ω ≤ fi

fi ≤ 0.95× 4× Ω

1.05× 4× Ω ≤ fi

fi ≤ 0.95× 5× Ω

1.05× 5× Ω ≤ fi

(5)
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Ω×R ≤ 1.05× Vtip (6)

The first constraint used is that the Auto-rotation Index (AI) must be greater than

60. This constraint pertains to the auto-rotational inertia and related factors of safety.

This value is known as a safe value for helicopters with a single rotor system [70]. The

second constraint is that all frequencies must avoid coincidence with certain integer

multiples of the rotor angular speed, namely N × Ω/rev and (N ± 1)× Ω/rev, which

for this example is 3, 4 and 5/rev along with the requirement that 1/rev that must be

avoided regardless of the number of blades. The bandwidth of the zone to be avoided

was set to be ±5% of 3, 4 and 5/rev. Also, considering that rotor radius and angular

speed affect the tip speed, another constraint was to bound the tip speed to be within

± 5% of the initial value.

3.2.2 Implementation

The analysis model defined for global level is shown in Fig. 2. This rotor is a 4-bladed

articulated rotor system. Only one blade was modeled using DYMORE and the result is

shown in Fig. 3. The design parameters are target weight, tip speed, and angular speed

and come from aerodynamic analysis. The parameter values are given in Table 2.

Figure 2: Baseline Rotor System in Global Optimization
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Figure 3: Simple DYMORE Model for Global Analysis

Table 2: Global level design parameters

Parameter Value Units
Target Weight (Wt) 104.7 lb

Tip Speed (Vtip) 740 ft/sec
Number of Blade (N) 4

3.2.3 Results

The result from global level optimization is shown in Table 3 with initial and final value of

design variables. The final value of the radius is 88% of initial value, and the angular speed

and taper ratio were determined as 25 rad/sec and 0.32, respectively. Through iteration, the

target weight was reduced by 3.7%. Since the final values satisfy the frequency constraints,

weight reduction was an additional benefit. The history of convergence for each design

variable and objective function is provided in Fig. 4; these results are non-dimensionalized

by their initial values.

Variable Initial Value Final Value
Radius (R) 150 132.49

Angular Velocity (Ω) 59.2 25
Taper Ratio (t) 0.5 0.32

Target Weight (Wt) 140.7 135.46

Table 3: Result of global level design variables
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Figure 4: Convergence History of Global Level Optimization of multi-level Methodology

3.2.4 Description of previous local level optimization

A short description of cross-sectional optimization [71, 72] is provided here. The goal

of local-level optimization is to find a specific cross-sectional layout that satisfies certain

given constraints. The single web, D-spar cross-sectional configuration is considered. The

given airfoil shape is VR-7 with chord length 20.2 in. Since the outer contour of the

cross-section is determined by aerodynamics, only the variables pertaining to the internal

lay-out of the blade are allowed to change, such as thicknesses of the three structural

elements, web location and orientation, etc. The leading-edge cap is considered to be

made of titanium to provide erosion protection. The objective function was to minimize

the distance between shear and aerodynamic centers. The design variables were the fiber

orientations, ply thickness of the D-spar, skin, and web, as well as the web location and

orientation – a total of 17 design variables and 8 behavior constraints.
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3.2.5 Conclusions for Constructing multi-level Optimization

This global level optimization was linked with the local optimization procedure developed

previously in Ref. [73]. While this procedure decouples the cross-sectional optimization from

the global-level optimization efficiently, there were several significant challenges that needed

to be overcome in order to make such decoupling useful: (a) There was no clear indication

how global and local level optimizations iterate through design process. (b) The ply angles

were set to be varied continuously, which does not occur in real designs. (c) There was

no investigation pertaining to nongradient-based optimization methods even though it was

evident that many local minima exist, preventing the optimizer from reaching the global

minimum. (d) The local optimization showed extreme sensitivity to the starting points, but

no suggestions for selecting starting points were made.

3.3 Coupled Aspects of Global and Local Optimization

In this section, the main effort is to make interactive multi-level methodology to couple

the global and local optimization processes more efficiently, and to suggest an alternative

approach to overcome the presence of local minima in the local level optimization. The

analysis tools and the base coding tool are the same as in the previous section. A slightly

modified baseline model was used for implementation, and a detailed description of this

approach is presented in the following sections.

3.3.1 Description of methodology

The global level optimization pursues the same procedure as previous methodology. How-

ever, the local level optimization needed to be modified to ensure the iterativeness between

global and local level. Also, instead of using different gradient-based method for two sepa-

rated phase [73], the GA was adopted in the local level optimization.

As shown in Fig. 5, the global level passes the required stiffness matrix to the local

level after the optimization process. The local level uses these values as constraints and

objective function values that will be varied based on the initial value of parameters at

the global level. Once the local level reaches the optimal values, if there is more than one
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Figure 5: Schematic Flow Chart of Coupled Methodology

configuration, additional criteria must be used to select a better design. Comparing the

candidate processes will be based on VABS along with additional criteria such as stress

requirements and location of the shear center. However, if the local level cannot reach an

optimal value with given requirements, the best of the final candidates will be used as a

starting point for global level optimization, and the whole process iterates.

Global level The design variables, objective function and constraints of global level are

provided here, respectively.

1. Design Variables: In contrast to the first suggested global optimization, the blade

radius and angular speed are fixed. Also, the sectional mass is no longer used as a

design variable since there will be no significant mass changes along the blade length.

Instead, the weight of the tip mass and tuning mass, the taper ratio and the location of

the taper initiation were added into design variables along with axial stiffness, torsional

stiffness, and two bending and shear stiffnesses. To prevent significant increase in

computation time of analysis in the global level, the model was simplified by locating

the tuning mass at the taper initiation point.

2. Objective Function: The objective function for the global level is to minimize the
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difference between the target weight and calculated weight that are generated for

each iteration. The objective function can be expressed as

Minimize:
∣∣Wt−Wi

Wt

∣∣ (7)

3. Constraints: Three types of constraints were imposed. The first constraint is that the

Autorotation Index (AI) must be greater than 60. This value is the minimum required

value for the single rotor case [70].

60−AI ≤ 0 (8)

The second constraint is related with the taper initiation location. The taper is to be

started between 30% and 70% of blade length.

0.3× Radius ≤ fi ≤ 0.7× Radius (9)

The last constraints set is to place frequencies in favorable regions. The 1/rev fre-

quency is must be avoided regardless number of blades. Also, other frequencies are

not to coincide with N or N±1/rev to avoid resonances that can lead to catastrophic

failure. In this methodology, high frequencies were not considered. Thus,

fi ≤ 0.8× Ω

1.2× Ω ≤ fi

fi ≤ 0.8× 3× Ω

1.2× 3× Ω ≤ fi

fi ≤ 0.8× 4× Ω

1.2× 4× Ω ≤ fi

fi ≤ 0.8× 5× Ω

1.2× 5× Ω ≤ fi

(10)

Local level: The local level uses two phases. The phase 1 is an exploratory phase of

the optimization that uses GA to find regions containing local minima and possibly the

global minimum. In GA, as generation proceeds, each population clusters around any local

minima. This phenomenon is defined as “clustering” here. To show the extreme example of
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such clustering, a simple example is provided along with the design space in Fig. 10. Sub-

figure (a) shows the 3-D design space which clearly indicates the many local minima and

(b) is the design space projected onto the surface as 2-D. By using GA, the first generation

is randomly scattered on the 2-D design space in (c), and the final generation is clustered

around local minima in sub-figure (d). This example shows that using GA to select the

starting points of gradient-based method leads to a better chance of finding the global

minimum.
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Figure 6: Example of using GA to Find Promising Regions

Starting from same idea, GA was used for local level at phase 1 to explore the design

space with limited number of generations. As the iteration goes in GA, the populations will

form clusters near any local minima. Once the clusters are formed, promising starts points

are identified. The second phase comes in when these cluster are confirmed to contain

the global minimum by running same algorithm several times and using only repeated
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candidates. The second phase uses a gradient-based method to calculate a more precise

ply-angle for optimum lay-ups.

1. Design Variables: At the local level, design variables were selected that can affect the

stiffness matrix used in calculating the objective function and constraints. A total

of seven design variables was used for this research, which are five ply-angles for the

D-spar and one ply-angle each for the skin and web.

2. Objective Function: The objective function of the local level minimizes the difference

between the stiffnesses required for the global level, and those are generated by op-

timization of the lay-up angle. VABS then produces the 6× 6 cross-sectional matrix

including couplings. However, only the torsional stiffness has a significant effect on

global optimization. The objective function is then

Minimize: |GJt−GJi|
GJt

(11)

3. Constraints:

0.95× ≤ |EAreq−EAi|
|EAreq | ≤ 1.05

0.95× ≤ |EI22req−EI22i
|

|EI22req | ≤ 1.05

0.95× ≤ |EI33req−EI33i
|

|EI33req | ≤ 1.05

0.95× ≤ |GJreq−GJi|
|GJreq | ≤ 1.05

(12)

where EAreq, EI22req , EI33req , GJreq are the stiffnesses associated with axial, flapwise

bending, chordwise bending, and torsional deformation, respectively, and are required

to satisfy global level constraints; and EAi, EI22i , EI33i , GJi are stiffnesses associated

with axial, flapwise bending, chordwise bending, and torsional deformation calculated

in the local level optimization using VABS, respectively.

Determining Population size based on Number of Design Variables The GA, as

used at the local level, is not required to find the final optimum value. Instead, GA plays

a role as a filter to find promising starting points for the gradient-based method used in

phase 2. Therefore, increasing number of populations and generations at the same time
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is not necessary. An effort was made to identify effects of the number of populations and

generations along with their relations to overall process.

Two cases were tested for such an attempt. The first case starts with number of pop-

ulation equals to 100 with 10 generations. Each generation stores the best fitness string,

and at the end there are 10 candidates. The second case starts with number of population

equals to 200 with five generations. However, it stores two best fitness per generation that

results same number of candidates at the end. Since this process was conducted to show

the trends, only four design variables were used to represent the skin, web, upper and lower

side of D-spar. These cases were ran five times each, since the initial population is random

based on the characteristics of GA. The history of best fitness based on this investigation

is in Fig. 7.
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Figure 7: History of Best Fitness with Different Population Size

The best and second best fitnesses are indicated for a population size of 200, and the

best fitness is indicated for a population size of 100. Since this investigation is focused

on determining the total population within the same computation time, the number of

generations is different. The results showed that a larger population size converges to a
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better solution in fewer generations. From the results, it was concluded that a population

size of 200 is sufficiently efficient to carry out the optimization process when the number of

variables is four.

3.3.2 Implementation

Global Level Model The multi-body model was constructed for global level analysis.

The blade used here is divided into uniform and tapered section. The tuning mass and

tip mass were added to balance the blade weight and improve the dynamic behavior. To

simplify the model, the tuning mass is located where the taper is initiated. The model

schematic is shown in Fig. 8.

Figure 8: DYMORE Model for Global Analysis

Local Level Model The baseline [73] is modeled using the NASA preliminary design

report for a composite blade retrofit for the XV-15 rotor [74]. To reduce the number of

design variables, previous cross-sectional model was simplified. Instead of using different

ply-angle lay-ups for upper and lower part of the D-spar, same sequence of ply-angles were

used. Also, the configuration was fixed to have 90◦ web and the location of the web was

set to be at the quarter chord. The ply-angle and number of lay-ups of skin and web were

kept the same. This simplification resulted in seven design variables instead of 17.
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3.3.3 Results

The results are provided separately for each level.

Global Level Results The convergence history of global level optimization is shown in

Fig. 9. The result was achieved with the initial run of VABS. The initial and final values

of design variables are provided in Table 4.
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Figure 9: History of Global Level Convergence

Local Level Results With stiffness constraints that are generated at the global level

optimization, the local level optimization was performed through two phases. Phase one

used a population size of 400 with seven design variables. After five generations, the first

generation and the final generation were compared based on the objective function value.

The Fig. 10 showed that GA started clustering around local minima after five generations.

From the fifth generation, 12 minimum values were selected for phase two. Phase two used

“fmincon” in MATLAB as the optimizer. Table 16 is provided to show the initial and final

values of objective function and ply-angles for each candidate.
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Table 4: Initial and Final Values of Design Variable for Global Level
Variable Initial Values Final Values Units

Location of Taper Initiation 45 45.22668 in.
Taper Ratio 0.6 0.78379

Weight of Tuning Mass 0.2 63.18105 lb
Weight of Tip Mass 12 74.98101 lb

Axial Stiffness 0.152776 0.152776 ×109 lb/ft2

Chordwise Bending Stiffness 0.120091 0.120091 ×109lb/ft2

Flapping Bending Stiffness 0.269611 0.269611 ×1010lb/ft2

Torsional Stiffness 0.380418 0.380418 ×108lb/ft2

Shear Stiffness 0.607106 0.607106 ×107lb/ft2

Shear Stiffness 0.134318 0.134318 ×107 lb/ft2

Table 5: Initial and Final Values of Gradient-Based Optimization for each Candidates
from GA

Candidate 1 Candidate 2 Candidate 3 Candidate 4
Initial Final Initial Final Initial Final Initial Final

Fobj 0.5407 0.0005 0.9416 0.0081 0.0733 0.0003 1.6566 0.0126
θD1 30 31.3950 30 26.7014 30 29.8619 30 31.9554
θD2 -45 -43.9453 60 70.6024 45 46.9227 45 30.0390
θD3 60 58.9395 0 -4.1863 90 88.0369 -45 -30.0000
θD4 45 45.0000 45 45.0000 45 45.0000 45 45.0000
θD5 45 45.0000 60 60.0000 45 45.0000 0 0
θskin 0 -1.0490 60 70.6003 60 61.9571 60 75.0000
θspar -45 -45.0000 -45 -45.0000 45 45.0000 0 0

Candidate 5 Candidate 6 Candidate 7 Candidate 8
Initial Final Initial Final Initial Final Initial Final

Fobj 2.6521 0.1617 0.1514 0.0289 3.4817 0.0431 0.5554 0.0195
θD1 30 32.9041 30 29.8155 30 9.5393 30 31.3966
θD2 -45 -30.0000 -45 -60.0000 60 -60.0000 45 15.0000
θD3 45 30.0000 60 -15.0000 0 -60.0000 90 40.3190
θD4 45 45.0000 45 -45.0000 45 -45.0000 45 -45.0000
θD5 45 45.0000 45 60.0000 60 90.0000 45 90.0000
θskin 30 15.0000 0 45.0000 60 45.0000 60 -60.0000
θspar 45 45.0000 -45 45.0000 -45 0 45 -45.0000

Candidate 9 Candidate 10 Candidate 11 Candidate 12
Initial Final Initial Final Initial Final Initial Final

Fobj 3.6718 0.1877 0.4248 0.0431 0.8811 0 0.4027 0.0050
θD1 30 6.4603 30 29.4408 30 32.1066 30 29.1458
θD2 45 -59.6985 -45 82.0318 0 8.2503 -45 -49.5909
θD3 -45 44.9989 45 52.9619 45 38.3761 30 25.1547
θD4 45 30.0000 45 45.0000 45 45.0000 60 60.0000
θD5 0 -45.0000 45 90.0000 45 45.0000 45 45.0000
θskin 60 30.0000 30 67.9661 30 23.3707 0 -3.7556
θspar 0 45.0000 45 45.0000 60 60.0000 -45 -45.0000
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Figure 10: Population Variation of Objective Function with Generation

After phase two, only candidate 11 achieved the minimum value without violating the

constraints. The convergence history of candidate 11 is in Fig. 11. To confirm the feasibility

of the final design, the global optimization was performed with ply-angles of candidate

11, and the global level optimization achieved the optimum value. This shows that the

optimization process found the feasible optimum value without getting stuck at the local

minima.
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Figure 12: Convergence History of Global Level Optimization with Candidate 11
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CHAPTER IV

PRELIMINARY STUDIES OF GGTH BLADE OPTIMIZATION

4.1 Overview

In this chapter, a description of the baseline model implemented in Chapter 5 and prelim-

inary studies about design methodology are provided. In the first section, short history of

baseline model is provided with design methodology that is used to develop the baseline

model. In the following sections, using the simplified global and local level analysis model,

the design space is explored. For design space exploration, Design of Experiments (DOE)

was used. After introduction of DOE, surrogate models were described and compared using

different DOE methods. The previous methodology that is suggested in Chapter 3 is then

finalized based on the findings of this chapter.

4.2 Description of Generic Georgia Tech Helicopter (GGTH)

The baseline model implemented here is the Generic Georgia Tech Helicopter (GGTH) with

a three-bladed bearingless rotor system. GGTH was developed to satisfy today’s challenging

market as a training helicopter. A training helicopter needs to offer superior performance,

high handling qualities, and safety at a price competitive with that of other helicopters

already in market. The priority of this design effort was focused on the simplification of

systems and subsystems for both the vehicle and the process by which it would be built.

Therefore, an Integrated Product and Process Development (IPPD) methodology was used

to drive the design solution. The IPPD methodology is depicted in Fig. 13.

As work on this system progressed, simplification of the rotor system became its main

focus, and thus the so-called Elastic Articulation (EA) rotor system was selected. The

first attempt to develop the EA rotor system was made in the early 1960s [75]. The main

idea was to eliminate unwanted feeback signals for the gyro control system by matching

the in-plane stiffness at the blade root to the flapwise stiffness. This led to the need for

a torsionally soft flexure that plays the roles of flap, lead-lag and feathering hinges of the
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Figure 13: Proposed Georgia Tech Evolving Rotorcraft Preliminary Design Methodology
[4]

articulated rotor system. The flexure was designed as stainless steel, and at first a single

torque tube was used [76, 75]. Starting from the original idea, the EA rotor system was

reintroduced in [75] with composite materials. The EA rotor system proved to have several

advantageous aspects compared with other types of rotor systems. The EA rotor system

reduces the number of structural parts in the hub, such as all bearings, blade dampers, and

droop stops. By locating a torque tube on each side of the flexure, the EA rotor system

provides multiple load paths that ensure safety of the system in case any part fails that does

not result in the total loss of a blade. Therefore, advantages of the EA rotor system can be

summarized as simplicity and safety. The structure of the EA rotor system is depicted in

Fig. 14.
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Figure 14: Schematic of Rotor System of GGTH
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Table 6: Range of Natural Frequencies of EA Rotor System
1st Frequency 2nd Frequency 3rd Frequency 4th Frequency

Lower Limit 8.78859 10.4836 32.8518 38.8791
Upper Limit 24.6391 28.5947 60.0747 99.7165

5th Frequency 6th Frequency 7th Frequency 8th Frequency
Lower Limit 73.2110 87.9414 117.013 178.032
Upper Limit 136.712 157.714 195.612 266.617

4.3 Design Space Exploration

A preliminary design study is performed here. Such studies provide insight in selecting

design variables and their bounds, objective functions, constraints and design space to

establish the optimization problem in next chapter. As presented in the previous chapter,

the methodology will carry two separate levels of optimization, global and local. Therefore,

design space exploration was performed at both levels. The analysis model used for DOE

here is the baseline model that has four design variables at the local level. A description of

the model is found in chapter 5.

4.3.1 Global Level

At the global level, five design parameters were selected that can most strongly affect the dy-

namic behavior of the rotor system: flapwise bending stiffness, chordwise bending stiffness,

torsional stiffness, sectional mass and tip mass. DOE was performed with these param-

eters using five-level full factorial, and the main effects were investigated. The two most

influential parameters were selected to further investigate the design space for each natural

frequency for the EA rotor blade. The original design provided the angular speed Ω = 41.14

rad/sec. Since the GGTH has a three-bladed rotor system, and only low frequency regions

will be examined to ensure avoidance of 1, 2, 3 and 4/rev resonances, only the first eight

natural frequencies needed to be considered. The results are shown in Figs. 15 – 22. Based

on DOE and design space exploration, typical ranges of each frequency can be found in

Table 6.
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(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 15: DOE and Design Space of 1st Natural Frequency

(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 16: DOE and Design Space of 2nd Natural Frequency

(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 17: DOE and Design Space of 3rd Natural Frequency

47



(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 18: DOE and Design Space of 4th Natural Frequency

(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 19: DOE and Design Space of 5th Natural Frequency

(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 20: DOE and Design Space of 6th Natural Frequency
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(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 21: DOE and Design Space of 7th Natural Frequency

(a) Pareto Plot (b) Design Space with 2 Main Effect

Figure 22: DOE and Design Space of 8th Natural Frequency
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4.3.2 Local Level

At the local level, the main effects of responses come mainly from size of flexure. Since

there will also be changes of stiffnesses based on ply angles, each case was investigated

using MATLAB. The first group of the figures (Figs. 23 – 26) have ply angles fixed at

[45◦/-45◦] with the size of the flexure varying. The second group of figures (Figs. 27 – 29)

has the flexure size fixed and varying ply angles. As is shown in these figures, the size of

flexure affects the design space more drastically and makes it more complicated.
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Figure 23: Design space of Flapwise Bending Stiffness with [45◦/-45◦] lay-up

4.4 Design of Experiments (DOE)

In the finalized methodology in Chapter 5, a surrogate model was incorporated into the

original method suggested in Chapter 3. Since DOE needs to be conducted beforehand to

construct the surrogate model, the description of DOE and its comparison is provided in

this section.

DOE was developed in 1920’s. DOE is a series of tests to observe and identify the

changes in response based on changes made to input parameters. To maximize the use
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of DOE, changes in input parameters need to be purposely selected. Four classic designs

of DOE are full factorial, Box-Behnken, Latin Hyper Cube and Central Composite. The

typical sampling of each DOE is shown in Fig. 30 [1].

(a) Three-Level Full Factorial (b) Box-Behnken

(c) Latin Hypercubic (d) Central Composite

Figure 30: Sampling of DOE

In order to construct surrogate models, DOE needs to be run with design parameters

within given range of those parameters. However, due to characteristics of each DOE

concept, selection of suitable DOE for surrogate model is to be decided based on number

of variables, time consumption to run DOE, how the design space needs to be explored and

so on. Advantages and disadvantages of each DOE concept is provided in Table 7

Full Factorial: The Full Factorial DOE is the most basic sampling method through out

the design space. The number of experiments to be run is to be decided based on the level

of design parameters. The most common levels to be used are two-level and three-level

Full Factorial DOE. The two-level Full Factorial design produces the minimum number

of experiments to be run to capture the design space for linear RSM(Response Surface

Method) and the three-level Full Factorial DOE is needed for quadratic RSM model. The
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Table 7: Advantage and Disadvantage of DOE [1]
Full-Factorial • Reduces error by considering every point

• Excessive number of cases to test

Box-Behnken • Has better convergence of analysis tools
• Extrapolation to extremes of design space is needed
• Extrapolation causes error for non-linear design space

Latin Hyper Cube • Highly accurate on interior
• Poor accuracy on edges of design space

Central Composite • Extremes of the design space considered
• Extrapolation is minimized
• Large design space can result in many uncovered design space

two-level Full Factorial design can capture the main effects of the design parameters and

the three-level Full Factorial design can capture the main effects, quadratic effects and

interactions[].

Latin Hyper Cube: McKay et al [77] suggested the strategy for generating random

sample points. To ensure portions of the vector space is represented, Latin Hyper Cube

divide the interval of each dimension into m non-overlapping intervals that has equal prob-

ability of uniform distribution. Samples are to be paired from each dimension that satisfies

orthogonality.

Central Composite Design(CCD) and Box-Behnken Design: To capture the in-

teraction and quadratic effects of the design parameters, three-level factorial designs are

needed. However, most of times, the three-level factorial design is not feasible due to the

number of design parameters that leads to unmanageable numbers of experiments to be run

or time consumption of analysis code that leads to unrealistic time span needed. In both

cases, two-level factorial design can be used alternatively. The Central Composite Design

and Box-Behnken design are most popular DOE that can be sued instead [78].

D-Optimal Design: While four classic DOE are balanced or orthogonal designs, there is

a new design called D-Optimal. The D-Optimal design is form of computer-aided designs,
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Table 8: Number of Experiments for three-level factorial
7 variables 15 variables Equation

Full Factorial 2,187 14,348,907 3n

Box-Behnken 61 · · ·
Central Composite 143 32,299 2n + 2n + 1
D-Optimal 36 144 (n+1)(n+2)

2

* For Box-Behnken design only exists for 3,4,5,6,7,9,10,11,12 and 16 input parameters.
** For Latin Hyper Cube design, number of experiments to be run is decided by user.

and it comes particularly useful when classical designs do not apply. D-optimal designs

are optimizations based method. The design starts of a set of candidate and algorithm

chooses a optila set of design runts based on the criterion, maximizing |X′X|. The detailed

information can be found in [1]. The minimum number of experiments that needs to be run

for each DOE is provided in Table 8.

4.5 Verification of Meta-Models

A meta-model can be categorized as parametric or non-parametric [79]. A parametric meta-

model assumes the approximation model to be a specific form while a non-parametric meta-

model does not have a specific form for the approximation function, instead predicting the

response of the system based on its correlated data. The linear and quadratic approximation

of RSM are used as parametric meta-model and Kriging was used as non-parametric meta-

model. Each model was created based on different DOE described above and compared

to select most efficient DOE method for the optimization problem. The mathematical

description and its comparison is in following sections.

4.5.1 Response Surface Methodology(RSM)

Response Surface Methodology (RSM) is developed to approximate the response of DOE for

slow running processes. Simple linear and quadratic approximations were used as parametric

surrogate models. The mathematical form of linear approximation is

ŷ = β0 +
k∑

i=1

βixi (13)

and a detailed approximation for three design parameters is of the form

ŷ = β0 + β1x1 + β2x2 + β3x3 (14)
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Another RSM with quadratic approximation can be expressed as

ŷ = β0 +
k∑

i=1

βiix
2
i +

∑

i

∑

j>i

βijxixj (15)

with its detailed form for typical three design parameters given as

ŷ = β0 + β1x1 + β2x2 + β3x3

β12x1x2 + β13x1x3 + β23x2x3 (16)

β11x
2
1 + β22x

2
2 + β33x

2
3

The coefficients of Eq.(13) through Eq.(17) are calculated by using least squares regression

as follows:

β =
[
X′X

]−1X′y (17)

The typical approximation of these functions can be shown as in Fig. 31. From Fig. 31,

one can observe that, for linear approximation with full factorial, a two-level DOE will

be sufficient to capture the characteristics of the approximated function. However, for a

quadratic approximation, at least a three-level DOE is needed to capture the center location

of approximated function. If a cubic model is needed, the number of designs that need to

be run will increase as the level of DOE increases. Therefore, even for RSM models, the

approximation need to be selected based on consideration of a time-consuming process that

is required to be run in order for DOE to capture the suitable approximated function.

(a) Linear Approximation (b) Quadratic Approximation

Figure 31: Approximated Form of RSM
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4.5.2 Kriging Model

Kriging was developed by geologists to predict mineral concentrations over mines [80, 81].

Since Kriging does not have any specific form of approximation function, the method simply

predicts the estimated response from a given set of data points and their correlation based

on a Gaussian Process that gives flexibility to the surrogate model over a highly non-linear

design space. The Kriging approximation is based on a relation of the form

y(x) = f(x) + Z(x) (18)

where y(x) is the unknown function of interest, f(x) is a known function of x, and Z(x)

is a Gaussian Process with mean zero, variance σ2, and non-zero covariance. The known

function f(x) can be a constant, linear or quadratic function. The calculated value for the

point at which the response is to be determined is based on the weighted sum of data from

nearby points. Kriging starts by calculating the covariance between given data sets. The

covariance matrix Z(x) can be expressed by

cov(Z(a), Z(b)) = σ2corr(a, b) (19)

where the correlation matrix is given by

R(θ, w, x) =
n∏

j=1

Rj(θ, wj ,−xj) (20)

for a Gaussian process. Here Rj(θ, dj) are the correlation functions and di = wi − xi is

exp(−θjd
2
j ) [2]. Once the covariance for each pair of data points is calculated, the Kriging

function predicts the response based on the covariances among data points involved in the

interpolation process. Since the interpolation is not based on any specific form but rather

is based on correlation between these data sets, thus ensuring that nonlinearity over design

space is captured.

The correlation function must satisfy a number of conditions, but there is nonetheless

a wide variety of possible choices. Furthermore, the Kriging model results in a different

prediction based on the selection of correlation function. Since the DACE (Design and

Analysis of Computer Experiments) tool box from MATLAB was used to construct the
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Table 9: Correlation Functions of DACE [2]
Rj(θ, dj)

EXP exp (−θj |dj |)
EXPG exp (−θj |dj |θn+1), 0 ¡ θn+1 ≤ 2
GAUSS exp (−θjd

2
j )

LIN max{0, 1− θj |dj |}
SPHERICAL 1− 1.5ξj + 0.5ξ3

j , ξj = min{1, θj |dj |}
CUBIC 1− 3ξ2

j + 2ξ3
j , ξj = min{1, θj |dj |}

SPLINE 1− 15ξ2
j + 30ξ3

j for 0 ≤ ξj ≤ 0.2,
1.25(1− ξj)3, ξj = θj |dj |
0 for ξj ≥ 1

where, Ri(d) = exp−θid
2 (21)

Kriging model, correlation functions that can be selected as options are provided in Table

9 with equations. For the Kriging model from here, a Gaussian process was used as a

correlation function.

4.5.3 Comparison of RSM and Kriging Model

In this section, the simple equation with nonlinearity is chosen to examine how well each

model capture the nonlinearity of design space with different of DOE. The test equation

includes typical quadratic RSM and Cosine functions to add nonlinearity into the actual

design space. The 2 design parameters were used to enable the visualization for comparison

purpose. DOE tested here were Latin Hyper Cube, D-Optimal and Full Factorial with

different levels. The exact equation is

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2︸ ︷︷ ︸

Typical Quadratic Form of RSM

+100× cos(x1) + 100× cos(x2)︸ ︷︷ ︸
Ransom Nonlinear Function

(22)

For the Full Factorial, three-, five- and seven-level DOE were tested that result in 9, 25

and 49 experiments; and 50 samples were used for Latin Hyper Cube DOE. The results are

shown as 3D plots in Figs. 32 – 34. Fig. 32 shows the actual design space with sampling

point and its predicted values. Fig. 33 represents the predicted function as surface plot, and

Fig. 34 indicates errors between actual function values and predicted values as a surface

plot.
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The quadratic RSM predictions do not differ much from each other based on the type of

DOE. However, Kriging showed significant differences among different selections of DOEs.

The D-Optimal DOE did not capture the nonlinearity of the actual function with RSM or

Kriging. The D-Optimal DOE shows rather poor prediction in both cases and predicted

area was almost same for both. It is suspected that since the sampling cannot cover the

whole design space due to the minimization of the sampling points, D-Optimal DOE can

skip the points that are critical to capture the nonlinearity. As for Full Factorial DOE,

it is shown that high resolution sampling is needed to have a more precise approximation.

The three-level Full Factorial approximation gave the same prediction as RSM, which did

not show any nonlinearity of actual function. As Full Factorial sampling is tested with

increased resolution, e.g. in level such as five- and seven-level DOE, the precision of the

predicted response is also increased. The Latin Hyper Cube generated satisfying results

compare with RSM. It was also determined from the results that Kriging needs an orthogo-

nal array of DOE. If the Full Factorial is to be used, at least a seven-level is recommended,

which will increase number of experiments drastically as the number of design variables

increases. However, for both Full Factorial and Latin Hyper Cube DOE, increasing number

of experiments does not always guarantee more precise prediction. Therefore, it is necessary

to set a limitation in increasing number of experiments.

The following table shows the characteristics of RSM and Kriging surrogate model along

with Neural Networks and where each model can be best fit. As is it shown, the Neural

Network is best used for large problems with even higher number of training data set which

means, predicted model is more accurate when the model fitting procedure is repeated.

Due to this characteristic of Neural Network, this surrogate model does not show much

improvement from Kriging for this specific example and the implementation model that is

used in next chapter. Therefore, Neural Network is not tested nor used as surrogate model.
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Table 10: Recommendations for surrogate model choice and use [3]

Model Choice Characteristics/Appropriate Uses
Response Surfaces • well-established and easy to use

• best suited for applications with random error
• appropriate for applications with < 10 factors

Kriging • extremely flexible but complex
• well-suited for deterministic application
• can handle applications with < 50 factors
• limited support is currently available for implementation

Neural networks • good for highly nonlinear or very large problems( 10, 000 parameters)
• best suited for deterministic applications
• high computational expense (often > 10, 000 training data point)
• best for repeated application
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Figure 32: Exact Function vs Predicted Samples

* Dot mark is the samples and mesh graph is exact function.
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Figure 33: Predicted Response
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Figure 34: Error of Predicted Function from Exact Function
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CHAPTER V

IMPLEMENTATION – GGTH BLADE OPTIMIZATION

5.1 Overview

In this chapter, issues raised in previous chapters are further explored. The methodology

introduced here is a multilevel, multiphase approach with a surrogate model. The original

methodology suggested in Chapter 3 did not show a clear indication of the communication

between global and local levels because both levels reached the optimal solution without

iteration between levels. Also, the design variables used at the global level were treated as

independent of each other even though three stiffness related design variables were highly

dependent on each other. The surrogate models were embedded in the procedure to ensure

the communication between global and local levels by enforcing the design variables at

the global level to stay in the feasible design space of the local level optimization. The

candidates for surrogate models include Kriging and linear and quadratic response surface

regression (RSM), which were investigated in Ref. [79, 82].

5.2 Methodology

The methodology in Chapter 3 was modified with alternative approach. The methodology

used here utilizes high-fidelity structural beam analysis tools in the same manner as previous

methodology: DYMORE [10, 11] and VABS[6, 7]. However, instead the so-called “geometry

generator” of the previous work, an alternative automated procedure was developed; and

the surrogate model was incorporated into the present methodology. In previous studies

[72, 73, 83], the geometry generator and other tools under development at the time of the

work were used for the local-level optimization process. These tools all had limitations.

In particular, if the geometry generator were required to be adapted for a different blade

configuration, relatively complex programming would be needed. Also, for the configuration

of the Generic Georgia Tech Helicopter (GGTH) blade, those tools were not at a sufficiently
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mature stage of development to be applied. To overcome these limitations the VABS-

ANSYS macro [84] was utilized and modified. The VABS-ANSYS macro was one of the

early ways to generate VABS input files, making use of ANSYS. However, as it was originally

developed, this method required human interaction for each area to assign a material and,

for composite materials, to assign ply angles and lamina orientation angles; see Appendix

A of Ref. [85]. This action would take a few seconds to a minute based on skill of a user,

but the whole process of specifying these parameters can take up to a day based on the

number of areas in the model. The original VABS-ANSYS macro was thus modified and

wrapped using MATLAB with ANSYS to automate this process. As a result, the entire

procedure could be done within 1.5 – 3.0 seconds, whereas it previously took up to an hour

to only generate one VABS input file per function call. The schematic of this automated

VABS-ANSYS macro procedure is provided in Fig. 35.

This automated VABS-ANSYS procedure starts from selection of an airfoil shape from

the subfunction generated in MATLAB. Each subfunction was generated to play a role as a

library of airfoil shapes. Under the airfoil shape subfunction, data points are provided [86],

along with a function that can generate necessary data points using interpolation. Once, the

outer points are generated, outer shapes are scaled down to generate skin layers as additional

contours of the airfoil. The skin thickness can be different for each layer in this procedure.

Once all the points are generated for skin layers of the airfoil, it generates the areas. The

scheme that generates areas is based on a simple FEM scheme that is used to generate

elements. This so called “connectivity vector” follows same sequence when elements are

generated with nodes in FEM. Using same scheme yields the result all the areas to have

same sequence of points and lines created; therefore, when ANSYS reads information about

each area, the last line number is set to be the reference line for ply angle for composite

material case. For this case, the fourth line numbers are stored to correspond with the area

number to be used as a reference line later. Once these data sets are constructed MATLAB

runs the program to generate the macro file used for constructing the geometry. Other

information about the airfoil, such as whether each area uses an isotropic or composite

material and which material the area is assigned to, are stored as separate data files. Once
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Figure 35: Automative procedure of VABS
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the geometry generating macro is run, the modified VABS-ANSYS macro calls each data

file to generate a VABS input file. While these macros are running, MATLAB uses a

DOS command to start ANSYS. Also, the existing VABS program was modified to be run

automatically also.

The methodology suggested in Chapter 3 was modified to make use of this new approach

and surrogate models. The previous methodology, with global and local level optimization,

ignored the high coupling between torsional, chordwise bending and flapwise bending stiff-

nesses therefore and instead treated them as dependent variables. However, these values

are highly coupled to each other, and depend on local level design variables. This limitation

resulted in producing an infeasible design to be achieved at the local level. Therefore, even

the local level optimizer had two phase that are used in the design space exploration with

GA to find the most promising candidates to be used as a starting point for the gradient-

based method at the second phase. This could result in producing an infeasible design at

each level and the levels passing information to each other in a sort of infinite loop. The cur-

rent methodology was modified to overcome this limitation by incorporating the surrogate

model constructed at the local level in order to enforce the global level design variables to

stay in a feasible region of the local level design space. Also, this method can also yield the

benefit of shorter convergence times since there a trend is established that design variables

can follow. The surrogate model is imposed as a constraint at the global level with ±15%

tolerance around predicted curve. The flow chart of new methodology is provided in Fig.

36.

This methodology will play a role as a branch of general rotorcraft preliminary de-

sign methodology which was suggested as IPPD originally and integrated in the “Model

Center” environment later on [4]. The link between general rotorcraft preliminary design

methodology and the methodology here in the “Model Center” environment has already

been demonstrated in Ref. [4] and is illustrated in Fig. 37. With this procedure, DOE was

performed to construct a surrogate model using the baseline model described in following

section.
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Figure 36: Final Methodology
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Figure 37: Structural Design and Optimization Process in IPPD
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5.3 Baseline Model

The baseline model used here is the Elastic Articulation (EA) rotor system, the rotor system

of the GGTH. The EA rotor is a soft-in-plane bearingless rotor with 10% effective flapping

hinge offset and 2◦ forward sweep.

5.3.1 EA Rotor System

(a) Configuration of the EA Rotor System (b) Schematic of DYMORE Blade Model

Figure 38: Rotor System Analysis Model

The EA rotor system is mainly comprised of rotor blades, flexure beams, hub, torque-

tube assembly, and pitch-link assembly (the configuration is depicted in Fig. 38). The flexure

beams replace all hinges and bearings of an articulated rotor by allowing flapping, feathering,

and lagging motions. Since the flexure is a cantilevered beam capable of supporting the

static weight of the blade, no droop stops nor lag dampers are required. The torque tube

assembly carries only feathering torque and is isolated from blade bending moments by the

disc flexure coupling at the outboard attachment to the blade and by a spherical pitch pivot

bearing at the inboard end.

5.3.2 Analysis Models

The optimization process relies on two complementary models: a flexible multi-body model

used for rotor dynamic behavior analysis at the global level, and a blade cross-sectional
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analysis that generates the cross-sectional stiffnesses at the local level. The description of

each model is provided next.

Rotor System Model: The rotor systems are modeled to investigate the natural fre-

quencies of the EA rotor by using the flexible multi-body analysis code, DYMORE. The

blade is modeled by beam elements. The sectional properties of the blade are accurately

computed using VABS and then inserted into the DYMORE model. The rigid body ele-

ments are used to model the shaft, hub, pitch links, and torque tubes. The torque tube

assemblies are modeled with spherical, universal, and sliding joint elements to carry only

feathering torque. The pitch links are connected to the torque tube assemblies by means of

spherical joints that allow the connected components to be at an arbitrary orientation with

respect to each other. Sliding joints with springs are attached to the pitch link to control

and measure the pitch link displacement. The prescribed displacement of the sliding joint

changes the pitch angle at the blade root. The flexures are rigidly connected to the hub

and root of the blades at each end. Each flexure is modeled with two cubic beam elements.

The sectional property of the flexure beam is computed in the flexure design section. The

blades are rigidly attached to the flexure beams with two degrees of forward sweep angles.

To change the pitch angle, torque tube assemblies are connected to the root of blades by

universal joints. Each blade is modeled with four cubic beam elements that account for the

elastic and inertial couplings arising from the use of composite materials and the forward

sweep angle. The rotor system model has three-bladed assemblies.

Cross-Sectional Model: Due to the role of the flexure beams, the dynamic characteris-

tics of the EA rotor are significantly affected by the sizing of flexure beams. Therefore, it

can be said that the appropriate sizing of flexures is the key element for a successful rotor

system. From the original design [87, 75], there are four flexure beams of square shape. To

secure enough space inside of the blade for the flexure design, a NACA0015 was selected

as baseline airfoil. Design parameters used here is provided in Table 11. As for the im-

plemented cross-sectional model, three types of cross-sections were tested and compared.

The first model starts with two layers of skin with thickness of 0.001 ft with varying ply
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angles. The flexure is comprised of four thin structural members, which were assumed to

have identical size and unidirectional ply angles. The choice of unidirectional ply angles for

the flexures is suggested by original design. The second model has the same configuration

as the first, except that each ply angle of the flexure is allowed to vary. The third model

has 2 varying ply angles for skin layers, 2 sets of identical flexure beams that are horizontal

and vertical, and two vertical beams can be located at different chordwise location. The ply

angles of flexure beams are not used as design variables based on DOE results in following

section. These results in four design variables for the first model and eight for the second

and the third. The cross-section of the first blade is shown in Figs. 44, 45 for the second

model and 46 for the third model. The surrogate models are constructed using the first

model and optimization was conducted for first and third cases.

Table 11: Design Parameters
Design Parameters Values Units

Rotor Target Weight (Wt) 26.67 [lb]
Airfoil NACA0015

Chord Length (c) 0.64 [ft]
Skin Thickness (ts) 0.001 [ft]

5.4 Surrogate Models

As discussed in Chapter 4, the Kriging model showed superior prediction capability over

RSM when there is nonlinearity in the design space. Also, the Latin Hyper Cube DOE

showed better performance compared to the Full Factorial for the Kriging model due to

its orthogonality since the first assumption in DACE toolbox for sampling sets are orthog-

onality between samples. The Latin Hyper Cube DOE does not need the larger number

of experiments as required by the Full Factorial as the number of parameters increases.

Currently, ModelCenter has a maximum of 999 runs for performing the Latin Hyper Cube

DOE. The cross-sectional model I with four parameters could perform a seven-level Full

Factorial DOE only with 2,401 experiments. However, for the second cross-sectional model

that includes two sizing parameters and six ply angle parameters, running the Full Facto-

rial DOE with at least the five-level will be excessive, resulting in 390,625 runs with only
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eight parameters. Therefore, the Latin Hyper Cube DOE was used for surrogate models.

The cross-section of the flexure with lower and upper bound of values of flexure sizes are

provided in Table 12.

Table 12: Design of Experiment(DOE) Parameters
Cross-sectional Model with 4 Design Variables

Design Parameters Lower Limit Upper Limit
Width of Flexures (wf ) 0.005 0.04
Height of Flexure (hf ) 0.005 0.04
Ply Angle of Skin (θouter, θinner) −90◦ 90◦

Cross-sectional Model with 8 Design Variables
Design Parameters Lower Limit Upper Limit
Width of Flexures (wf ) 0.005 0.04
Height of Flexure (hf ) 0.005 0.04
Ply Angle of Skin (θouter, θinner) −45◦ 45◦

Ply Angle of Flexures(θ1, θ2, θ3, θ4) −45◦ 45◦

*All the units are in ft. for size and deg. for angles

For the cross-sectional model II, since only a three-level full factorial was feasible, the

upper and lower limits of the design parameters were set to be [-45◦/45◦] instead of [-

90◦/90◦]. The main effect plots are provided in Fig. 39 for each response. From these

results, the main effects come from the size of the flexure and from the two ply angles of

the skin which results the cross-sectional model II same as cross-sectional model I. Based

on DOE, the ply-angles of flexures are fixed as 0◦ and cross-sectional model III is used for

optimization process and compared with model I. The main effects of cross-sectional model

III is in Fig. 40.

As discussed earlier in this section, the Latin Hyper Cube DOE is used to construct sur-

rogate models. Since a two-level Full Factorial DOE requires 256 experiments, the sampling

number was chosen to be 256 experiments. It is expected for RSM models to produce poor

predictions; however, these models were run only for comparison, and the main focus here is

to use a Kriging model with a more economical DOE. The predicted versus actual sampling

plot with RSM equations are as follows for each linear and quadratic model. The RSM

surrogate model uses three stiffnesses that are torsional, chordwise bending and flapwise

bending stiffness as design parameters and sectional mass as response. The linear equation
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Table 13: Statistical Information of RSM Models

Linear
Source DF SS MS F Fsig(%)

Regression 3 0.1324900E-02 0.4416332E-03 0.3572654E+03 0.0000
Residual Error 252 0.3115095E-03 0.1236149E-05

Total 255 0.1636409E-02
S 0.1111822E-02

Yavg 0.8210761E-01
CoV 1.35%
R-Sq 80.96%

R-Sq(adjusted) 80.74%
Quadratic

Source DF SS MS F Fsig(%)
Regression 9 0.1406029E-02 0.1562254E-03 0.1668174E+03 0.0000

Residual Error 246 0.2303804E-03 0.9365055E-06
Total 255 0.1636409E-02

S 0.9677321E-03
Yavg 0.8210761E-01
CoV 1.18%
R-Sq 85.92%

R-Sq(adjusted) 85.41%

is

m̂ = 0.6178372×10−1+0.9384285×10−5×GJ+0.2595299×10−5×EIc−0.5348933×10−7×EIf

(23)

and the quadratic equation is

m̂ = 0.4133069× 10−1 + 0.2711190× 10−04 ×GJ + 0.8094299× 10−05 × EIc

−.1726956× 10−06 ×EIf − .3867131× 10−08 ×GJ2 − .3909645× 10−09 ×EI2
c

+0.1475657c× 10−12 × EI2
f − .1666229× 10−08 ×GJ ∗EIc (24)

+0.3878689× 10−10 ×GJ ∗ EIf + 0.5600636× 10−12 ×EIc ∗ EIf

Statistical information for each model is provided in Table 13, and predictions are compared

for the models in Figs. 41 and 42.
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5.5 Optimization

The use of surrogate models significantly speeds up the optimization process. The main flow

of the methodology remains unchanged. First, VABS runs with initial values in order to

create input values for DYMORE. While DYMORE runs the optimization with frequency

constraints, surrogate models were used to effectively impose constraints that force the

design variables to stay in the feasible design space at the local level. This incorporation

of constraints from the local level at the global level guarantees that the global optimizer

achieves a solution that is feasible at the local level and without the need for an iterative

process at the end of both optimizations (assuming that the surrogate models are of an

adequate accuracy). The flow chart of the methodology is in Fig. 43. The described

procedure was implemented within the MATLAB environment, which was used to connect

several analysis tools. MATLAB utilizes the DOS command to run DYMORE, ANSYS

and VABS. For constructing the Kriging model, the MATLAB toolbox DACE (Design and

Analysis of Computer Experiments) was used.

5.5.1 Global level

At the global level, design variables are selected that significantly affect the dynamic behav-

ior of the rotor blade: sectional mass (m), tip mass (mt), torsional stiffness (GJ), lead-lag

stiffness (EIc) and flapping stiffness (EIf ). Design variables were non-dimensionalized, and

the objective function was chosen to minimize the weight of blade. The objective function

for minimization can be written as

F = Wb (25)

where Wb is the weight of the blade.

Several constraints were imposed at the global level. The first constraint is related to

safety considerations and stipulates that the auto-rotation index (IA) must be greater than

60. This value is an accepted safe value for a single rotor system [70]. The equation of the

constraint is

60− IA ≤ 0 (26)

Constraints were selected in order to appropriately place relevant blade frequencies in
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ranges that do not lead to resonance. Since the baseline design has a three-bladed rotor

system, the constraints were set to avoid coinciding with N × Ω/rev and (N ± 1)× Ω/rev

that are 2,3 and 4/rev for this example. Also, the first natural frequency is always to be

avoided. As a result, the constraints related with resonance avoidance are

fi − 0.95× Ω ≤ 0

1.05× Ω− fi ≤ 0

fi − 0.95× 2× Ω ≤ 0

1.05× 2× Ω− fi ≤ 0

fi − 0.95× 3× Ω ≤ 0

1.05× 3× Ω− fi ≤ 0

fi − 0.95× 4× Ω ≤ 0

1.05× 4× Ω− fi ≤ 0

(27)

Higher frequencies were not considered. Another constraint related to aeromechanical sta-

bility is imposed at the global level. From previous studies it is known that the potential for

air resonance is virtually eliminated for soft-in-plane bearingless rotors when the lead-lag

frequency is placed below 0.5/rev. However, if this frequency goes below than 0.4/rev, the

likelihood of ground resonance is greatly increased [75]. To ensure aeromechanical stability

at an early design phase, another constraint is imposed at the global level. Based on the

assumption above, the first lead-lag frequency is to be placed between 0.4/rev and 0.5/rev

so that

0.4× Ω− fL1 ≤ 0

fL1 − 0.5× Ω ≤ 0
(28)

Design parameters for the global level optimization are provided in Table 14.

Table 14: Design Parameters
Design Parameters Values Units
Hinge Offset (e) 10 %R

Number of Blades (n) 3
Angular Velocity (Ω) 41.14 [rad/sec]

Radius (R) 12.2 [ft]
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5.5.2 Local level

For the local level optimization, two different types of cross-section models were tested.

The first model assumed that the flexure has a single ply angle [0◦] and the four flexural

elements have identical dimensions. This leads to four design variables, two of which are

ply angles of the skin, plus the height and width of each flexural element. The definitions

of width and height of flexural elements are shown in Fig. 44. The second model has same

outer shape and dimension as the first. However, each flexural element is now allowed to

have different ply angles. These assumptions lead to a total of eight variables, resulting in

making the running of the five-level Full Factorial and higher impossible. The cross section

of second model is in Fig. 45. The upper and lower bounds of design variables are shown

in Table 15 for model I – model III.

Table 15: Upper and Lower Bound of Design Variables
Cross-sectional Model I

Design Variables Lower Bound Upper Bound
Height of Flexure (hf ) 0.001 0.04
Width of Flexure (wf ) 0.02 0.04

Inner and Outer Ply Angle of Skin (θinner, θouter) -90 90
Cross-sectional Model II

Height of Flexure (hf ) 0.001 0.04
Width of Flexure (wf ) 0.02 0.04

Inner and Outer Ply Angle of Skin (θinner, θouter) -90 90
Ply Angle of Flexures(θF1 , θF2 , θF3 , θF4) -90 90

Cross-sectional Model III
Height of Horizontal and Vertical Flexure (hfh

,hfv) 0.0025 0.02
Width of Horizontal and Vertical Flexure (wfh

,hwv) 0.005 0.04
Location of Vertical Flexures (d2, d4) 0.005 0.04

Inner and Outer Ply Angle of Skin (θinner, θouter) -90 90

Two cases of objective functions were considered. The first minimizes the difference

between required sectional mass (mreq) and calculated sectional mass (mi) subject to upper

and lower bound constraints on certain stiffnesses, i.e. minimize:

F =
|mreq −mi|

mreq
(29)
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subject to stiffness constraints of the form

0.95 ≤ |EIfreq − EIfi|
EIfreq

≤ 1.05

0.95 ≤ |EIcreq − EIci|
EIcreq

≤ 1.05 (30)

0.95 ≤ |GJreq −GJi|
GJreq

≤ 1.05

where EIfreq, EIcreq and GJreq are flapping, lead-lag and torsional stiffnesses required

to satisfy the global level constraints, and EIfi, EIci and GJi are flapping, lead-lag and

torsional stiffnesses calculated per iteration, respectively.

The second objective function minimizes differences between stiffnesses that are required

for global level and those generated by ply angles of each lay-up with sectional mass. Uni-

form weighting factors were implied for the objective function, i.e. minimize

F = 0.25× |mreq −mi|
mreq

+ 0.25× |EIcreq −EIci|
EIcreq

+0.25× |EIfreq − EIfi|
EIfreq

+ 0.25× |GJreq −GJi|
GJreq

(31)

5.6 Results

Results for the global and local level are provided separately in the following sections.

5.6.1 Global Level

For the global level optimization, two different initial values were used and each case were

tested with three different surrogate models. Each surrogate model was imposed as a

constraint with a bound of ±5%. The initial value and final values for each model are

provided in Table 16 for each cases. The convergence history of each case is shown in Fig.

47 and 48 for cases I and II, respectively. As shown, linear and quadratic models required

more iterations and resulted in values that were less likely to be minima. Furthermore, the

number of iterations and the final minimized values demonstrate sensitivity with respect to

the initial starting point. In contrast, the Kriging model showed relatively stable results.

The Kriging model reached the same minimized value within the same number of iterations,

so for this specific problem the Kriging model performed generally better than RSM models.
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Table 16: Initial and Final Values of Gradient-Based Optimization for each Candidates
from GA

Case I
Initial Value Final Values

RSM (Linear) RSM (Quadratic) Kriging
Torsional Stiffness (K44) 2085.832741 1042.916371 1042.916371 2259.179066
Lead-Lag Stiffness (K55) 2310.507831 3003.771998 3003.771998 3283.686723
Flapping Stiffness (K66) 1449.569175 5721.561334 5721.561334 2425.928198

Tip Mass (mt) 0.155280 0.192114 0.188452 0.201864
Sectional Mass (m) 0.084266 0.069656 0.067713 0.058127

Case II
Initial Value Final Values

RSM (Linear) RSM (Quadratic) Kriging
Torsional Stiffness (K44) 1581.810560 0790.905280 0790.905280 1886.332409
Lead-Lag Stiffness (K55) 3776.426092 3498.747703 3449.921034 3936.324118
Flapping Stiffness (K66) 5530.207852 2187.980907 2187.980907 9254.246951

Tip Mass (mt) 0.155280 0.097707 0.158303 0.201864
Sectional Mass (m) 0.081447 0.067618 0.062100 0.058127

Table 17: Final Values of Local Level Optimization
Case Final Values of Design Variables Number of Iterations

θinner θouter hf wf

Case I with Eq. (29) 0.000062 -0.000062 0.04 0.04 56
Case II with Eq. (31) 0.005556 -0.005556 0.04 0.04 42

5.6.2 Local Level

Blade Model with Four Design Variables at Local Level Next, global-level opti-

mization has been conducted with the Kriging surrogate model and two different objective

functions used in the local-level optimizer. As shown in Table 17, both cases reached the

same results. However, case II, the optimization with no constraint, showed a tendency to

converge more quickly.

Blade Model with Eight Design Variable at Local Level The cross-sectional model

III was used for local optimization here. The GA was used with results from both cases at

global level. The number of population is 200 and 5 generations were used. The results are

shown in Fig. 49 and 50.
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From results, the GA produced lower objective function value when global level case II

results were used as required values to be achieved at the local level. Therefore, only global

level case II was proceed to phase 2 at the local level. The convergence history of the phase

2 is shown in Fig. 51.

The final configuration of the blade cross-section model is in Fig. 52.

5.6.3 Verification

Using the results from optimization, the fan plot for the rotor blade is shown in Figure 53.

Therein, the frequencies are placed so that resonance can be avoided around operating rotor

angular speed. Also f2, the first lead-lag frequency is placed between 0.4/rev and 0.5/rev,

the exact value being approximately 0.41/rev.
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(a) Sectional Mass (b) Torsional Stiffness

(c) Chordwise Bending Stiffness (d) Flapwise Bending Stiffness

(e) Shear Center Location y-axis (f) Shear Center Location z-axis

Figure 39: Main Effects of Design Variables for Cross-sectional Model II
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(a) Torsional Stiffness

(b) Chordwise Bending Stiffness

(c) Flapwise Bending Stiffness

Figure 40: Main Effects of Design Variables for Cross-sectional Model III
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Figure 41: Predicted Linear RSM Model

Figure 42: Predicted Quadratic RSM Model
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Figure 43: Flow chart of methodology

Figure 44: Cross-Section of the Blade
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Figure 45: Cross-Section of the Blade

Figure 46: Cross-Section of the Blade

86



0 10 20 30 40 50 60
29

30

31

32

33

34

35

36

37

38

39

Number of Iteration

W
ei

g
h
t

o
f

B
la

d
e

 

 
RSM(Linear)
RSM(Quadratic)
Kriging

Figure 47: Convergence History of Global Level Optimization – Case I
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Figure 48: Convergence History of Global Level Optimization – Case II
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Figure 49: Local Level Phase 1 Optimization – Global Level Case I
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Figure 50: Local Level Phase 1 Optimization – Global Level Case II
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Figure 52: Final Configuration of Cross-Section Model
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In the course of carrying out the research of this dissertation, the following conclusions were

reached:

1. A multilevel optimization procedure was set up by establishing global level optimiza-

tion and integrating a previous cross-sectional optimization scheme. Since the design

space is multi-modal, exploration of the design space was needed in the local level

optimizer. To find the most promising region that contains local minima and possi-

bly the global minimum, a hybrid methodology was introduced that uses the genetic

algorithm. The sensitivity of the genetic algorithm with respect to population size

and generation number was investigated. The test problem was set to have the same

number of function calls with different population size and generation number. The

genetic algorithm tends to have better clustering with more populations and fewer

generations. The results using this methodology showed improvement compared to

previous methods based solely on gradient-based methods.

2. While the hybrid methodology shows improvement over previous methodologies that

use only one optimization scheme, communication between the global and local opti-

mizers was not clear due to its convergence to optimal solution on the first iteration.

Several case studies were performed with changed objective functions and constraints.

However, these test problems showed that global level introduces infeasible design re-

quirements to the local level optimizer. The main problem was that the global level

optimizer treats the design variables as independent, even though some of them are

highly coupled to each other such as stiffnesses. To overcome this shortcoming, surro-

gate models at the global level, which are constructed based on the local level design
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variables, are introduced into the methodology. The incorporation of surrogate mod-

els ensured that global level design variables stayed in feasible design space of local

optimizer during the optimization process. Also, convergence rate of the optimiza-

tion with surrogate models was improved. The results obtained indicate that the use

of surrogate model to account for the local-level constraints at the global level opti-

mization successfully facilitates compatibility with the constraints at the local level

throughout the optimization process.

3. An automated procedure for generating geometry and VABS input files in ANSYS

has been created that does not require an interaction with the user. The previously

developed VABS-ANSYS macro was modified so that it now handles input files in-

stead of inputs selected in a GUI environment. The procedure significantly improved

the speed of model creation. For the baseline model under consideration, the new

procedure takes 1.5 sec instead of the approximately two hours that was required

previously.

4. The use of DACE from MATLAB toolbox showed a satisfactory fidelity of the Krig-

ing model that relied on factorial Design of Experiments. However, it is important

to point out that the larger number of design variables necessitates the use of a more

economical Design of Experiments. Further investigation in determining the most

economically efficient yet reasonably accurate DOE was performed. Based on the test

problem result, the Latin Hyper Cube generated the least error between actual func-

tion and predicted function with 50 experiments for a two-design parameter problem,

which showed better performance than a seven-level Full Factorial DOE based on 49

experiments. Based on this finding, the Latin Hyper Cube DOE was considered as the

most efficient DOE for Kriging model for a higher number of design variable problems.

5. The multi-level optimization that utilizes the sophisticated yet computationally effi-

cient tools, VABS and DYMORE and the overall optimization scheme, was improved

by incorporating a surrogate model, the GA, and an automated version of the VABS-

ANSYS macro into previously developed methodology. First, incorporation of the
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surrogate model ensured that the global level optimizer would stay in the feasible

design space of the local level analysis model. Therefore, each level communicates

with an achievable design configuration. Second, using the GA in exploration of the

design space ensured the selection only of promising candidates as starting points for

gradient-based method instead of random starting points, which can lead the opti-

mizer to unacceptable values. Finally, the elimination of human intervention between

iterations by automating VABS-ANSYS macro process reduced computation time and

effort immensely. The methodology suggested here exhibits appropriate flexibility for

linkage with other design and/or optimization schemes.

6.2 Recommendations

The following recommendations for future work were reached:

1. The hybrid methodology uses a version of the genetic algorithm unaltered from the

original concept. However, there are other types of genetic algorithm that can deal

with high resolution with increased design variables in short time period. These so-

called advanced genetic algorithms can be incorporated into the present methodology

and can quite possibly improve it.

2. The surrogate models used and compared here are RSM and Kriging models. How-

ever, further investigation can be performed to incorporate the best method into

the methodology. Other surrogate models that can be used here include Multivari-

ate Adaptive Regression Splines (MARS), Radial Basis Functions (RBF), Adaptive

Weighted Least Squares (AWLS), and Neural Network (NN). Studies showed that

these surrogate models can be adapted for use in the current methodology. How-

ever, implementation will require computer coding since it is difficult to find general

versions of these code that are publicly available.

3. The analysis models can be further updated. For the global level analysis model, only

one blade from rotor system was used. Also, the local level analysis model uses only

a NACA0015 airfoil shape. Further investigation is needed for treating a full rotor
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system or a full vehicle system modeled in DYMORE, or for treating other airfoil

shapes in VABS.

4. As discussed in Chapter 5, the methodology is an extension of integrated prod-

uct/process (IPPD) methodology. Even the link between IPPD and the present

methodology provided in previous studies is not yet fully integrated. Eventual inte-

gration with IPPD is required, and how the structural optimization affects the overall

process needs to be investigated.

5. At this stage, the current methodology only has rotor dynamic and aeromechanical

stability constraints. Also, DYMORE performs a static equilibrium analysis in a

vacuum in order to generate the rotor system natural frequencies. In reality, a vehicle

trim and stability analysis should be undertaken. Therefore, further investigation is

needed in this area.

6. The methodology here deals with five and eight design variables at the global and

local levels, respectively. However, in reality, the number of design variables can be

increased significantly. To deal with an increase in the number of design variables,

parallel computing can be used for constructing surrogate model and GA function

calls. Parallel computation is based on appropriate decomposition of design variables

into combinations suitable for calculation by one processor. Once these combinations

are divided into small clusters of data sets, each cluster can be calculated on different

computers and gathered into one later for construction of the surrogate model. Also,

to reduce the computation time when GA is used for optimization, the idea of using

values calculated at the surrogate model construction stage needs to be considered.

This can be done by incorporating some relatively simple coding into the methodology

that stores the results from the surrogate model construction, and filtering through

these data so that only values of function that do not already exist in stored data are

calculated.

96



APPENDIX A

DESCRIPTION OF TOOLS

A.1 VABS(Variational Asymptotic Beam Sectional Analysis)

VABS is a tool based on the variational asymptotic beam sectional analysis that is devel-

oped using a generalized Vlasov theory for composite beams with arbitrary geometric and

material sectional properties. This tool rigorously split the geometrically-nonlinear, three-

dimensional elasticity problem into a linear, two-dimensional, cross-sectional analysis and

a nonlinear, one-dimensional, beam analysis. The developed theory is implemented into

VABS, a general-purpose, finite-element based beam cross-sectional analysis code.

A.1.1 History of VABS

VABS(Variational Asymptotic Beam Sectional Analysis) is a 2-D finite element code that

has its origin from an in-house engineering software since 1994 [88, 89]. After the original

work, the new generation of VABS was developed by adding the features such as calculating

the principal bending axes and the corresponding principal moments of inertia, calculating

the neutral axes, eliminating the point constraints, solving the rank deficient linear system

exactly and speed improvement [90, 6]. The study showed at least 20% speed improvement

compare with original version of VABS. The program name VABS first appeared in [91].

A.1.2 Description of VABS

VABS is implements the various beam theories [6, 7, 8, 9] using the finite element method-

based on the variational asymptotic method [92]. VABS can uses triangular or quadrilateral

elements with 3, 4, 5, 6 nodes or 4, 5, 6, 7, 8, 9 nodes, however, if VABS-ANSYS macro is

to be used, 3 or 4 noded triangular elements or 3 or 8 noded quadrilateral elements can be

selected. VABS generates 6× 6 cross-sectional mass matrix, 4× 4 and 6× 6 stiffness matrix

based on classical model and Timoshenko model. These beam models can be prismatic or
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initially twisted. Also, VABS results contains mass center and shear center. The element

types used in VABS are shown in Fig. 54

(a) Triangular Elements

(b) Quadrilateral Elements

Figure 54: VABS elements and corresponding integration schemes[5]

To recover 3-D stresses and strains, VABS uses Gaussian integration schemes. The red

numbers represents Gaussian points for linear elements and the green represents Gaussian

points for quadratic elements.

VABS uses a right hand system. As in Figure 55, x1 is along the beam axis and x2 and

x3 are the local Cartesian coordinates of the cross section.

Figure 55: VABS Lay-up Convention[5]

The coordinate system (x1; x2; x3) is a global system used to define the geometry, (e1;

e2; e3) used by to define the material properties, and (y1; y2; y3) is used to define the ply
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plane.
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