
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

ABSTRACT

Most current approaches of parallel simulation focus on
building new parallel simulation engines that require the
development of new models and software. An alternate,
emerging approach is to extend sequential simulators to
execute on parallel computers. We describe a methodology
for realizing parallel simulations in this manner. This work
is specifically concerned with parallelization of commer-
cial simulators where source code for some or all of the se-
quential simulator is not available. We describe our experi-
ences in applying this methodology to realize a parallel
version of the OPNET simulator for modeling computer
networks. We show significant speedup can be readily ob-
tained for some OPNET models if proper partitioning
strategies are applied and the simulation attributes are
tuned appropriately. However, we observe that substantial
modifications to other OPNET models are needed to
achieve efficient parallel execution because of their exten-
sive use of global variables and “zero lookahead events”.

1 INTRODUCTION

Simulation is often the method of choice in addressing
many network research problems. This is because it is of-
ten too costly and time-consuming to create physical net-
works requiring a large number of network nodes. For ex-
ample, to study the impact of varying RED algorithm
parameters in the Internet (Christiansen et al. 2000), it
would be impractical to deploy the algorithm throughout
the Internet. Analytic modeling may be used in some cases,
but the complexity and scale of modern networks often ne-
cessitate the use of simplifying and unrealistic assump-
tions, e.g. Poisson traffic models. Furthermore, it is hard to
capture the dynamic nature of a network with a mathemati-
cal model. Simulation is often a critical step before deploy-
ing real networks.

The increasing scale, speed and complexity of modern
networks have dramatically increased the time and re-

source requirements of network simulations. In one of our
experiments, the simulation of one minute of the operation
of a 200-node network model required the processing of
more than 4,600,000 events and 16 minutes of CPU time.
High-speed gigabit networks carry much more traffic, re-
sulting in a proportional increase in the number of events
the simulator must process. The increasing complexity of
protocol stacks in communication end systems further ag-
gravates this problem.

Parallel simulation, i.e. distributing the execution of
the simulation over multiple computers, provides one ap-
proach to addressing this problem. There are already sev-
eral research efforts in building parallel network simula-
tors. Bagrodia et al. developed GloMoSim (Global Mobile
System Simulation) for parallel simulation of wireless
networks (Zeng et al. 1998). Cowie et al. addressed a scal-
able, parallel discrete event simulator capable of modeling
the Internet (Cowie et al. 1999). That work was based on a
previous effort by Perumalla et al. who created TeD
(Perumalla et al. 1998), which is capable of creating multi-
threaded network simulations. Nicol et al. described IDES,
a java based distributed simulation engine (Nicol et al.
1998). Ferenci et al. federated parallel optimistic simula-
tors for network simulation (Ferenci et al. 2000). Unger et
al. developed a conservative parallel network simulator in
the TeleSim project (Unger 1993).

Despite these efforts, most network simulations today
are performed using sequential simulators such as OPNET
or ns. One important reason is that transitioning to a new
simulator, especially a parallel simulator is often difficult,
requiring one to abandon familiar software environments,
models, and tools. Often, one must abandon previous in-
vestments in sequential simulators and master a new, un-
familiar simulation language.

One approach to solve this problem is to parallelize
existing sequential simulators by decomposing the system
being modeled into subsystems, instantiating a separate
simulator for each subsystem on a different processor, and
adding extensions to exchange data and synchronize the

EXPERIENCES PARALLELIZING A COMMERCIAL NETWORK SIMULATOR

Hao Wu
Richard M. Fujimoto

George Riley

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280, U.S.A.

1353

Wu, Fujimoto, and Riley

separate instantiations. For example, Riley et al. designed
and implemented Parallel/Distributed ns pdns, which al-
lows a single ns simulation to be distributed on a cluster of
workstations (Riley et al. 1999). A similar effort is re-
ported in (Jones et al. 2000). Nicol et al. described an ap-
proach in (Nicol et al. 1996) allowing the modeler to de-
velop sub-models with an existing sequential simulation
modeling tool, using the full expressive power of the tool.
A set of modeling language extensions permit automati-
cally synchronized communications between sub-models.

These approaches require access to the underlying
simulation executive to implement extensions that are nec-
essary to ensure proper synchronization of the parallel
simulator. Here, we explore parallelization of commercial
simulators where arbitrary changes to the underlying simu-
lation engine are not possible. Specifically, we assume the
source code of the simulation engine is not available. Our
approach does require the simulation engine to support a
small set of capabilities. Our work is closer in spirit to that
of Strabburger concerning application of HLA to commer-
cial applications (Strabburger 2000).

An important goal of this approach is to minimize
changes to the original sequential simulator. This will fa-
cilitate model and software reuse, which is a central objec-
tive of the approach. But this constrains the inter-federate
synchronization to be conservative.

Here, we use terminology used by the High Level Ar-
chitecture (HLA) (Defense Modeling and Simulation Of-
fice 2000). HLA is a framework intended to facilitate the
interoperability and reuse of simulation models. In HLA, a
parallel/distributed simulation is called a federation, and
each individual simulator is referred to as a federate. The
software providing communication and synchronization
services to federates is referred to as the runtime infrastruc-
ture (RTI).

The remainder of this paper is organized as follows. In
section 2, we introduce our methodology, associated prob-
lems, and solution approaches. Section 3 describes our ex-
periences in applying this approach to the OPNET simulator
and presents performance measurements of a prototype im-
plementation. In section 4, we discuss our conclusions.

2 APPROACH TO PARALLELIZATION

2.1 Simulator Assumptions

We make the following assumptions:

• Here, we are only concerned with discrete event

simulations utilizing an event-driven style of exe-
cution. We assume links and nodes of the model
are represented with link objects and node objects,

respectively. Data flow is represented by trans-
mission of time-stamped events. Many network
simulators, e.g., ns (McCanne et al. 1997) and
OPNET (Chang 1999) are structured this way.

• We assume new user-defined object models can
be defined and added to the simulator. This pro-
vides a means to add communication and syn-
chronization software to the sequential simulator.

• We assume the pending event list data structure is
accessible to user-defined model code. We do not
require source code for the sequential simulator
executive, e.g., the central event processing loop.

• An important optimization utilized in our meth-
odology involves a construct called ghost object.
Utilization of ghost objects requires access to the
simulation model code, though access to the simu-
lator executive is still not required.

2.2 Parallel Network Simulation Architecture

Figure 1 shows our overall architecture for the parallel
network simulation. Each federate is a sequential simulator
modeling a subnetwork. Communication and synchroniza-
tion services are provided by the RTI. Every federate man-
ages its local components (a subset of the entire network
model). A proxy model is added as an extension to the
simulation model on each federate, defining an interface
between the sequential simulator and RTI.

Figure 1: Parallel Network Simulation Architecture

To illustrate our approach, we will use the simple net-
work model depicted in Figure 2. This model consists of 4
end hosts (H0-H3) and 4 routers (R0-R3). The four hosts
are both “UDP source” and “UDP sink” nodes. There is
traffic from each host to every other host. Let us assume
we partition this model into 2 sub-models and simulate
each on separate federates called A and B respectively.

Model Reposi-
tory

Simulator
A

Proxy

RTI

Simulator
B

Proxy

Simulator
C

Proxy

1354

Wu, Fujimoto, and Riley

Figure 2: Sample Network Model

In the remaining part of this section, we illustrate the
general methodology for parallel simulation, followed by
issues concerning the construction of such a parallel simu-
lator:

• Data flow across federates
• Time & Event management
• Optimizations.

2.3 Methodology

Our general methodology follows from issues addressed by
Riley et al. in (Riley et al. 1999):

1. Partition the network model into sub-models, one

per processor. Each sub-model represents a sub-
net. The union of all the subnets forms the origi-
nal network model. The partitioning strategy has
an important effect on the overall performance.
As we will see later, an optimal partitioning must
trade off among several factors: load balance,
connectivity, lookahead and event locality. The
partitioning strategy is beyond the scope of this
paper. Interested readers can refer to (for instance)
(Zeng et al. 1998).

2. Map a sub-model to a sequential simulator on
each processor. Create the sub-model in its
mapped simulator. Those components not existing
in local sub-model can be initiated as ghost ob-
jects if needed, which will be addressed in section
2.6.

3. Anywhere a sub-model interacts with a model
element that is instantiated on another processor
an interaction with a proxy model is defined. The
proxy model is responsible for implementing in-
teractions with entities instantiated on other proc-
essors.

4. Apply optimizations to improve performance. For
example, one can modify the model to reduce
memory requirements.

Figure 3: Sub-model in Federate A

Figure 3 shows the architecture of the sub-model in

Federate A after applying our approach.

2.4 Data Flows Across Federates

A network model includes node objects that are intercon-
nected using link objects. A link object is associated with
endpoint node objects that are connected to it. Once we
partition the network model into sub-models, the links that
cross a partition boundary are broken and lose their end-
points in other sub-models. In order to conserve memory,
node objects not existing in local sub-models may not be
created locally (see step 2 above), making it impossible to
reference these non-existing node objects as end points.
We also need to ensure that data traffic can flow across the
partition boundary.

To address these problems, we define a proxy model
in every sub-model. The proxy model is constructed using
the model construction methods provided by the sequential
simulator so the proxy appears within the simulator to be
no different than any other model element. However, the
proxy model is linked with RTI libraries to make use of the
services provided by the RTI. The functions implemented
by the proxy model include:

1. Utilize RTI services to realize simulation time ad-

vances and event synchronization. This will be
discussed in section 2.5.

2. Provide the endpoints for all the broken links, and
transfer events between federates using RTI ser-
vices.

Further, in our implementation message format trans-

formations are performed by the proxy. Packets destined
outside the local sub-model are transformed from their na-
tive format representation internal to the sequential simula-
tor, to a common message format used by the proxy. Cor-
respondingly, messages from other federates are
transformed into the native format by the proxy as well.
While not strictly necessary for federating a simulation
package with itself, this capability is important when fed-
erating different network simulation packages.

202.0.1.1 202.0.1.2

202.0.2.1

202.0.3.2 202.0.3.1

202.0.4.1 202.0.4.2
192.0.2.2

192.0.1.2

192.0.2.1

192.0.3.1

192.0.4.1 192.0.4.2

192.0.1.1

192.0.3.2

H0

H1

R0 H2

H3 R1

R2

R3

Federate A Federate B

202.0.2.2

202.0.1.1
202.0.1.2

202.0.2.1
202.0.2.2

192.0.2.11

192.0.1.11

192.0.2.1

192.0.3.1
192.0.4.1 192.0.4.11

192.0.1.1

192.0.3.11

H0

H1

R0

R1

Federate A

Proxy

1355

Wu, Fujimoto, and Riley

In our design a modular approach is used where the
proxy model is decomposed into two parts. One is a proto-
col independent component called the gen_proxy and the
second is a set of protocol dependent components called
the pro_proxy. The protocol independent functions that are
implemented in gen_proxy include event and time man-
agement. Every network protocol that is modeled has one
pro_proxy in the proxy model to process protocol packets.
For example, IP is associated with the ip_proxy compo-
nent. All the broken links carrying the same kind of proto-
col packets will be connected to their unique pro_proxy.

Every broken link is mapped to a data channel in the
proxy model. Riley et al. introduce the concept of rlink in
(Riley et al. 1999) for this purpose. Here, data channels
provide a similar function as rlink. A channel is unidirec-
tional or bi-directional depending on the link that it is
modeling.

In our implementation channels are implemented using
the HLA declaration management services. A publishing
class represents an outgoing data flow while a subscribing
class represents an incoming data flow. A bi-directional
channel is implemented with a publishing and a subscrib-
ing class on each side while a unidirectional channel is im-
plemented with a publishing class on the sending side and
a subscribing class on the receiving side. We use the ad-
dresses of the endpoints as the names of the publishing
classes, since they are unique within the entire network
model and are easily associated with links. In the sample
network of Figure 2, for the link between R0 and R3, the
publishing class names are 192.0.1.1 on Federate A and
192.0.1.2 on Federate B. Federate A subscribes to class
192.0.1.2 while federate B subscribes to class 192.0.1.1. A
bi-directional channel is constructed across federates
through RTI.

The next step is to instruct all the node objects adja-
cent to the proxy model to route data traffic destined for
other sub-models to the proxy model. In the case of IP traf-
fic, this can be realized by modifying the routing table. For
example, in Figure 3, R0 is instructed to route all the pack-
ets destined to address 202.0.3.* to next hop 192.0.1.11,
instead of the nonexistent 192.0.1.2. Then the proxy model
can be responsible for forwarding packets across federates
through data channels.

2.5 Simulation Time and Event Management

The proxy model interfaces the simulator (federate) to the
RTI’s time management services. The proxy must syn-
chronize local simulation time of each simulator with that
of others.

In sequential discrete event simulation, unprocessed
events are stored in an event queue and processed in time
stamp order. In parallel simulation, a federate cannot
autonomously advance its local simulation time because
this might result in receiving an event in its past, i.e., the

time stamp of an incoming message may be smaller than
the local time of the federate. Every federate has to process
events, both those generated locally and those generated by
other federates, in time stamp order. This is the well-
known synchronization problem. When conservative syn-
chronization is used, each federate must wait until it can be
sure that no events will arrive in its past. A global consen-
sus protocol can be used to compute the lower bound on
time stamp (LBTS) of messages the federate may later re-
ceive. Events with time stamp less than LBTS are called
safe events because they can be safely processed without
concern that a smaller time-stamped event might later ar-
rive. No federate can safely advance its local simulation
time beyond its current LBTS value. This will guarantee no
event will later arrive in the federate’s past. With this ap-
proach, each federate repeatedly cycles through “phases”
of (1) processing safe simulation events, and (2) waiting
for its LBTS value to advance so that more safe events can
be identified. LBTS computations and the protocol for ad-
vancing simulation time are implemented by the time man-
agement services of the RTI.

Here, because we are dealing with an existing sequen-
tial simulation executive that cannot be modified, each
federate can only process events stored in its local event
queue. A mechanism is required to allow a sequential
simulator to process externally generated events. For this
purpose we define a checking algorithm that executes
within the proxy model. The proxy model schedules check-
ing events that are inserted into the simulator’s local event
queue so that the sequential simulator will process these
checking events in the same manner as any other local
event. Each checking event results in the execution of the
proxy model. The proxy model will, in turn, receive and
process external events and identify safe events in the local
event queue. As stated earlier, one assumption made for
this algorithm is that we have the access to the event
queue. This is a reasonable assumption since the simula-
tion application should be able to schedule, cancel and
search for events. The following steps describe the check-
ing algorithm:

1. Step through the local event queue from the cur-

rent event forward to identify all the events with
time stamp less than the current LBTS value. If
any such events are found, go on to step 2, other-
wise go to step 3.

2. The events with time stamp less than LBTS found
in step 1 can be safely processed. Then schedule
the next checking event at the time stamp of the
last safe event identified with the lowest priority.
This means checking events will be processed last
among all the events with the same time stamp.
The algorithm terminates at this point.

3. Invoke the HLA NextEventRequest service to re-
quest advancing simulation time to the time stamp

1356

Wu, Fujimoto, and Riley

t of the next event in the local event queue. This is
necessary to identify any pending external events
that exist preceding the next internal event. If no
pending external events exist before t, go on to
step 4, otherwise go to step 5.

4. The simulation time will be advanced to t. Then
schedule the next checking event at time stamp t
with lowest priority. The algorithm terminates at
this point.

5. If there are any unprocessed external events with
time stamp less than t, (let the earliest such event
e1 have time stamp t1), the RTI will advance the
federate’s local simulation time to t1 and issue a
Time Advance Grant. Event e1 will be delivered to
the federate and can be processed. The time stamp
of the next internal event may or may not be t be-
cause the processing of e1 may or may not gener-
ate new local events with time stamp less than t.
Go back to step 3 and repeat step 3-5 again.

In step 3 above, the RTI will typically initiate or par-

ticipate a new LBTS computation since the requested time
stamp advance is beyond the current LBTS value. The
events in the local event queue between two checking
events can be processed safely and all events will be proc-
essed in time stamp order.

With this method, the sequential simulator can ensure
all the local events are processed in time stamp order. The
RTI guarantees all external events are delivered to the fed-
erate in time stamp order. Using our algorithm, a local
event is identified to be safe for processing only after all
external events preceding this local event have been deliv-
ered and processed during the processing of a checking
event. Thus, all local and external events are processed in
time stamp order.

2.6 Performance Related Issues

In this section, we discuss two issues that have a signifi-
cant impact on performance: lookahead and shared infor-
mation among sub-models.

Lookahead is a concept used to improve performance
in parallel/distributed simulations. If a federate’s looka-
head is L, then it guarantees it will only generate messages
at least L units of simulation time into the future. A larger
lookahead allows more parallelism. In parallel network
simulation, lookahead is defined as the minimum of the
packet delivery delays in all the links of a sub-model that
cross boundaries of the partition. The packet delivery delay
is the sum of transmission delay and propagation delay.
Usually, propagation delay is an attribute of the link object
while transmission delay is data packet size divided by link
data rate. In order to improve the lookahead capability, we
delegate the delay computation of all broken link objects to
the proxy model. In place of the normal delay computation,

these link objects attach only the relevant information,
such as propagation delay and link data rate, to the packet.
When the proxy model (actually in gen_proxy) receives the
packet, it can compute the actual delay and thus predict the
simulation time at which the packet arrival occurs on the
receiving side of the link. The federate can declare the
minimum of all the delay values as its lookahead. This can
be computed prior to the execution of the federation.

There are some cases where one federate may need
model information beyond its own sub-model. For exam-
ple, some simulators (e.g., ns) may need to compute rout-
ing information during the execution of the federation.
This requires the entire network topology to be defined and
shortest path routes to be computed on each federate. An-
other case is a mobile device needing to know whether it is
within the power range of a base-station, which may not be
in the local sub-model. If so, it needs to subscribe to the
data sent by the base-station. These cases require the dupli-
cation of the network model in different processors, and
may require a large amount of memory. We introduce the
concept of a ghost object, which is a reduced state version
of the object consuming little space. A ghost object in-
cludes a subset of real object attributes. These attributes
can be updated dynamically by the federate responsible for
simulating the object through the HLA declaration man-
agement services or data distribution management services.
The drawback of this approach is that such updates usually
result in zero lookahead interactions, which may severely
degrade performance. Detailed analysis of the nature of
each such attribute is needed to determine whether we can
exploit some lookahead capabilities in this case. For exam-
ple, the attributes of a link can be updated with some delay
because a remote node cannot know the link state changes
immediately in real network operations.

3 CASE STUDY: BUILDING A PARALLEL
OPNET SIMULATION

We have implemented our approach by building a parallel
OPNET simulation. We compare the performance of the
parallel OPNET simulation with the sequential simulation.

3.1 OPNET Overview

OPNET is a commercial network simulator marketed by
OPNET, Inc. First developed at MIT, OPNET was intro-
duced as a commercial network simulator in 1987. OPNET
comes with four major components:

1. An event-driven simulation engine. The simula-

tion executive manages an event queue and proc-
esses events in time stamp order.

2. A set of application interfaces which are imple-
mented as C libraries. Users can create custom
simulation models by utilizing these interfaces.

1357

Wu, Fujimoto, and Riley

3. Graphical tools and commands. Graphical tools
provide a drag-and-drop style of programming.

4. A large library of network protocol models cover-
ing many standards and equipment models from
major equipment suppliers.

3.2 Implementation

The Federated Simulations Development Kit (FDK) soft-
ware package developed at Georgia Tech was used for this
work (Fujimoto et al. 2000). Specifically, we used FDK’s
Basic RTI (BRTI), which provides event and time man-
agement services.

In our parallel OPNET simulation, the proxy model is
implemented as a gen_proxy node model and a set of pro-
tocol dependent pro_proxy node models. When the
OPNET package is updated, the pro_proxy may need to be
updated (depending on the changes made to OPNET), but
changes to gen_proxy should be minimal. The behavior of
a link object in OPNET is defined by a series of consecu-
tively executed procedures called pipeline stage proce-
dures, e.g., computing propagation delay. We modified the
pipeline stage procedures of broken links to delegate the
delay computation to the proxy model. Instead of comput-
ing delay, the pipeline stage procedures we implemented
store relevant information, such as link delay and data rate,
in Transceiver Pipeline Data Attributes (TDAs) of the
packet and return the delay as zero. The proxy model is re-
sponsible for computing the real delay value and predicting
the arrival events accordingly.

One major problem we encountered in building the
parallel OPNET simulation has to do with OPNET’s use of
global state information. Specifically, sequential simula-
tion models in OPNET assume the existence of certain
global data structures. For example, every IP process
model registers its address information in global tables
shared by all the IP models during initialization. When the
IP model of one node is going to send a packet to another
node, it will first check whether the address of the destina-
tion node is valid by a lookup in these global tables. Our
current approach to solve this problem is to utilize the
ghost objects (as discussed earlier) to initialize these global
data structures. This ensures each federate has consistent
global state information. This global state information must
be static, i.e., it cannot be modified during the execution.
The drawback of this approach (in addition to not support-
ing modifiable state) is detailed analysis of the model code
is required to determine what initialization functions must
be kept in every ghost object.

Another problem has to do with OPNET’s communi-
cation mechanisms. Packet-based communications are not
the only means of communication in OPNET. Several
types of interrupts, e.g., self, remote or multicast interrupts,
allow one module to schedule events to any module of the
entire model, which makes the prediction of events very

hard. For example, some OPNET application models util-
ize remote interrupts to simplify service start and end
simulations. Naively converting such interrupts into inter-
actions across the RTI usually results in zero lookahead.
Thus detailed analysis of the model code is required to be
able to predict non-packet-based communications so as to
improve the lookahead capability.

Global state, zero lookahead interactions, and pointer
data structures lead to dependencies between elements of
the simulation that are hard to identify, making paralleliza-
tion difficult and/or time consuming. Such problems have
been observed by others, e.g., see (Bagrodia 1996). Be-
cause of these problems, at present, only a few simple pro-
tocol models (e.g., UDP and IP) in OPNET have been par-
allelized in our current implementation.

3.3 Performance

We constructed two sets of experiments, each simulating
three minutes of network operation to evaluate the perform-
ance of the prototype system. In the first set, we simulated a
network model called a “regular traffic model”. It consists
of eight subnets, each of which contains eight hosts and one
router. Each host is both a data source and sink. It sends and
receives data to and from all other subnets. The data sinks
are chosen uniformly. The inter arrival time of traffic gener-
ated by each host is exponentially distributed. In the second
set of experiments we simulated a network model called the
“added traffic model”. On the base of the “regular traffic
model”, we added sixteen internal hosts to every subnet,
which only transmit data within the local subnet. The paral-
lel simulation was executed on a set of eight Sun Ultra Sparc
1 Model 170 systems, each with 64MB main memory and a
167Mhz Sparc CPU. The Ultra Sparcs are connected by a
100Mb Ethernet. Each subnet is mapped into a Sun system.
As the baseline, the entire network model is also simulated
in a single system.

Several variations of simulation parameters were used
in the experiments. First, the mean inter arrival time of
generated packets, which determines the density of events
(number of events within a fixed sized window of simula-
tion time), was varied from 1s to 0.05s. Second, the propa-
gation delay ranged from 0 to 1s. This is an important pa-
rameter because it determines the lookahead between
federates as previously discussed. We varied the propaga-
tion delay to allow for different lookahead values.

The results for the “regular traffic model” are shown
in Figure 4. Figure 5 shows the results for the “added traf-
fic model”. The X-axis is the inter arrival time of generated
packets. The Y-axis is the speedup factor. Speedup is de-
fined as the execution time taken by baseline sequential
simulation divided by the execution time of the parallel
simulation, which is executed on 8 simulators in our ex-
periments. The different lines correspond to different
propagation delays.

1358

Wu, Fujimoto, and Riley

0
0.5
1

1.5
2

2.5
3

3.5
4

1 0.5 0.2 0.1 0.05

Inter Arrival Arg
(second)

O
ve

rr
al

l S
pe

ed
up

oms
propagation
delay

20ms
propagation
delay

100ms
propagation
delay

1s
propagation
delay

Figure 4: Overall Speedup Factors, Regular Traffic

0
1
2
3
4
5
6
7

1 0.5 0.2 0.1 0.05

Inter Arrival Arg
(second)

O
ve

rr
al

l S
pe

ed
up

oms
propagation
delay

20ms
propagation
delay

100ms
propagation
delay

1s
propagation
delay

Figure 5: Overall Speedup Factors, Added Traffic

Computation and communication overheads in the

parallel execution arise from several sources: LBTS com-
putations, message transmissions over the network, and ex-
tra computations to process checking events. The perform-
ance results reflect these overheads. First, increased
lookahead values do speed up the parallel simulation. This
is expected, and can be attributed to a reduced number of
LBTS computations. When the propagation delay reaches
1s, fewer than 300 LBTS computations are performed.
Second, while fixing the propagation delay we get better
performance by reducing the inter arrival time. Reducing
inter arrival time means the event density increases. This in
turn increases the amount of simulation computations that
can be performed between LBTS computations, resulting
in improved speedup. On the other hand, increasing the
event density also increases the number of message trans-
missions between federates. Since performance improves
with increased message density, we conclude that LBTS
computations are much more expensive. Third, by compar-
ing Figure 4 and Figure 5, we note that we observe better
performance when the proportion of local events is in-

creased. This is not surprising, since the parallel simulation
overheads are amortized among local events.

The performance results are summarized below:

1. Performance improves as lookahead increases.

The lookahead should be as large as possible. In
the context of network models, lookahead repre-
sents the smallest amount of simulation time re-
quired for a packet to be transmitted from one
federate to another. To increase the lookahead, we
need to either partition the network model at links
with low bandwidth, or increase the distance be-
tween the subnets mapped to federates.

2. Increasing event density (i.e., message traffic)
helps to amortize the cost of parallel simulation
overheads, and results in better performance.

3. Improving traffic locality leads to reduced costs
related to transmission of messages between fed-
erates, results in better performance.

4 CONCLUSIONS

We have presented an approach to build a parallel network
simulation using existing commercial event-driven simula-
tors where only limited access to the sequential simulation
code is provided. This method is relatively straightforward
to implement if the original simulator does not make ex-
tensive use of global state variables and packet-based
communications are the major means of communication.
Most of the modifications to the sequential simulator are
implemented in a proxy model that interfaces the simulator
to the RTI. This approach allows federation of heterogene-
ous simulators, although this aspect has not yet been im-
plemented in the prototype. Our prototype using the
OPNET simulation package yielded reasonable speedup
for parallel simulations with good lookahead. But issues
such as global state and zero lookahead interactions make
parallelization much more difficult for more complex pro-
tocol models such as TCP.

Recently, an HLA module has been introduced in
OPNET 7. This provides a similar architecture to that used
for our parallel simulation, but utilizes native support
within the OPNET simulation engine. The current release
doesn’t provide distributed network models but requires
users to develop their own distributed version of models.
By contrast, our approach focuses on reuse of currently
available models.

REFERENCES

Bagrodia, R. L. 1996. Perils and Pitfalls of Parallel Dis-
crete-Event Simulation. In Proceedings of the 1996
Winter Simulation Conference.

Chang, X. 1999. Network simulations with OPNET. Pro-
ceedings of the 1999 Winter Simulation Conference.

1359

Wu, Fujimoto, and Riley

Christiansen, M., K. Jeffay, D. Ott and F. D. Smith. 2000.

Tuning RED for Web Traffic. ACM SIGCOMM,
Stockholm, Sweden.

Cowie, J. H., D. M. Nicol, A. T. Ogielski. 1999. Modeling
the Global Internet. Computing in Science and Engi-
neering.

Defense Modeling and Simulation Office. 2000. High
Level Architecture. http://hla.dmso.mil.

Ferenci, S., K. Perumalla, R. M. Fujimoto. 2000. An Ap-
proach to Federating Parallel Simulators. 14th Work-
shop on Parallel and Distributed Simulation.

Fujimoto, R. M., T. McLean, K. Perumalla, I. Tacic. 2000.
Design of High-performance RTI software. In pro-
ceedings of Distributed Simulations and Real-time
Applications.

Jones, K. G. and S. R. Das. 2000. Parallel execution of a
sequential network simulator. In Proceedings of 2000
Winter Simulation Conference.

McCanne, S. and S. Floyd. 1997. The {LBNL} Network
Simulator.

Nicol, D. and P. Heidelberger. 1996. Parallel Execution for
Serial Simulators. ACM Transactions on Modeling
and Computer Simulation 45(6): 210-242.

Nicol, D., M. Johnson, A. S. Yoshimura, M. E. Goldsby.
1998. IDES: A Java-based Distributed Simulation En-
gine. International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems.

Perumalla, K., A. Ogielski, R. Fujimoto. 1998. TeD - A
Language for Modeling Telecommunications Net-
works. Performance Evaluation Review 25(4).

Riley, G., R. M. Fujimoto, M. H. Ammar. 1999. A Generic
Framework for Parallelization of Network Simula-
tions. Seventh International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecom-
munication Systems.

Strabburger, S. 2000. Distributed Simulation Based on the
High Level Architecture in Civilian Application Do-
mains. Ph.D. thesis.

Unger, B. 1993. The Telecom Framework: a Simulation
Environment for Telecommunications. In Proceedings
of 1993 Winter Simulation Conference.

Zeng, X., R. Bagrodia, M. Gerla. 1998. GloMoSim: A Li-
brary for Parallel Simulation of Large-Scale Wireless
Networks. Workshop on Parallel and Distributed
Simulation.

AUTHOR BIOGRAPHIES

HAO WU is Ph.D. student with the College of Computing
at the Georgia Institute of Technology. He received his
M.S. from Beijing University of Posts & Telecom in 1997
(Computer Engineering). He received his B.S. from Bei-
jing University of Posts & Telecom in 1994 (Electrical En-
gineering). His current research interests include large

scale distributed and parallel simulations and emulations,
network simulations, distributed computing and real-time
systems. His email address is <wh@cc.gatech.edu>.

RICHARD M. FUJIMOTO is a professor with the Col-
lege of Computing at the Georgia Institute of Technology.
He received the Ph.D. and M.S. degrees from the Univer-
sity of California (Berkeley) in 1980 and 1983 (Computer
Science and Electrical Engineering) and B.S. degrees from
the University of Illinois (Urbana) in 1977 and 1978
(Computer Science and Computer Engineering). He has
been an active researcher in the parallel and distributed
simulation community since 1985 and has published nu-
merous papers on this subject. He has given several tutori-
als on parallel and distributed simulation at leading confer-
ences. He has coauthored a book on parallel processing and
recently completed a second on parallel and distributed
simulation. He served as the technical lead in defining the
time management services for the DoD High Level Archi-
tecture (HLA). Fujimoto is an area editor for ACM Trans-
actions on Modeling and Computer Simulation. He also
served as chair of the steering committee for the Workshop
on Parallel and Distributed Simulation, (PADS) from 1990
to 1998 as well as the conference committee for the Simu-
lation Interoperability workshop (1996-97).

GEORGE RILEY received his Ph.D. from the Georgia
Tech College of Computing in August 2001, and is presently
an Assistant Professor at Georgia Tech College of Engineer-
ing, School of Electrical and Computer Engineering. His re-
search interests are in large scale distributed simulations,
computer networks, and distributed computing.

1360

