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ABSTRACT 

Most current approaches of parallel simulation focus on 
building new parallel simulation engines that require the 
development of new models and software. An alternate, 
emerging approach is to extend sequential simulators to 
execute on parallel computers. We describe a methodology 
for realizing parallel simulations in this manner.  This work 
is specifically concerned with parallelization of commer-
cial simulators where source code for some or all of the se-
quential simulator is not available. We describe our experi-
ences in applying this methodology to realize a parallel 
version of the OPNET simulator for modeling computer 
networks. We show significant speedup can be readily ob-
tained for some OPNET models if proper partitioning 
strategies are applied and the simulation attributes are 
tuned appropriately. However, we observe that substantial 
modifications to other OPNET models are needed to 
achieve efficient parallel execution because of their exten-
sive use of global variables and “zero lookahead events”. 

1 INTRODUCTION 

Simulation is often the method of choice in addressing 
many network research problems. This is because it is of-
ten too costly and time-consuming to create physical net-
works requiring a large number of network nodes. For ex-
ample, to study the impact of varying RED algorithm 
parameters in the Internet (Christiansen et al. 2000), it 
would be impractical to deploy the algorithm throughout 
the Internet. Analytic modeling may be used in some cases, 
but the complexity and scale of modern networks often ne-
cessitate the use of simplifying and unrealistic assump-
tions, e.g. Poisson traffic models. Furthermore, it is hard to 
capture the dynamic nature of a network with a mathemati-
cal model. Simulation is often a critical step before deploy-
ing real networks.  

The increasing scale, speed and complexity of modern 
networks have dramatically increased the time and re-

source requirements of network simulations. In one of our 
experiments, the simulation of one minute of the operation 
of a 200-node network model required the processing of 
more than 4,600,000 events and 16 minutes of CPU time. 
High-speed gigabit networks carry much more traffic, re-
sulting in a proportional increase in the number of events 
the simulator must process. The increasing complexity of 
protocol stacks in communication end systems further ag-
gravates this problem. 

Parallel simulation, i.e. distributing the execution of 
the simulation over multiple computers, provides one ap-
proach to addressing this problem. There are already sev-
eral research efforts in building parallel network simula-
tors. Bagrodia et al. developed GloMoSim (Global Mobile 
System Simulation) for parallel simulation of wireless 
networks (Zeng et al. 1998). Cowie et al. addressed a scal-
able, parallel discrete event simulator capable of modeling 
the Internet (Cowie et al. 1999). That work was based on a 
previous effort by Perumalla et al. who created TeD 
(Perumalla et al. 1998), which is capable of creating multi-
threaded network simulations. Nicol et al. described IDES, 
a java based distributed simulation engine (Nicol et al. 
1998). Ferenci et al. federated parallel optimistic simula-
tors for network simulation (Ferenci et al. 2000).  Unger et 
al. developed a conservative parallel network simulator in 
the TeleSim project (Unger 1993). 

Despite these efforts, most network simulations today 
are performed using sequential simulators such as OPNET 
or ns. One important reason is that transitioning to a new 
simulator, especially a parallel simulator is often difficult, 
requiring one to abandon familiar software environments, 
models, and tools. Often, one must abandon previous in-
vestments in sequential simulators and master a new, un-
familiar simulation language.  

One approach to solve this problem is to parallelize 
existing sequential simulators by decomposing the system 
being modeled into subsystems, instantiating a separate 
simulator for each subsystem on a different processor, and 
adding extensions to exchange data and synchronize the 
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separate instantiations. For example, Riley et al. designed 
and implemented Parallel/Distributed ns pdns, which al-
lows a single ns simulation to be distributed on a cluster of 
workstations (Riley et al. 1999). A similar effort is re-
ported in (Jones et al. 2000).  Nicol et al. described an ap-
proach in (Nicol et al. 1996) allowing the modeler to de-
velop sub-models with an existing sequential simulation 
modeling tool, using the full expressive power of the tool. 
A set of modeling language extensions permit automati-
cally synchronized communications between sub-models.  

These approaches require access to the underlying 
simulation executive to implement extensions that are nec-
essary to ensure proper synchronization of the parallel 
simulator. Here, we explore parallelization of commercial 
simulators where arbitrary changes to the underlying simu-
lation engine are not possible. Specifically, we assume the 
source code of the simulation engine is not available. Our 
approach does require the simulation engine to support a 
small set of capabilities.  Our work is closer in spirit to that 
of Strabburger concerning application of HLA to commer-
cial applications (Strabburger 2000). 

An important goal of this approach is to minimize 
changes to the original sequential simulator.  This will fa-
cilitate model and software reuse, which is a central objec-
tive of the approach. But this constrains the inter-federate 
synchronization to be conservative. 

Here, we use terminology used by the High Level Ar-
chitecture (HLA) (Defense Modeling and Simulation Of-
fice 2000). HLA is a framework intended to facilitate the 
interoperability and reuse of simulation models. In HLA, a 
parallel/distributed simulation is called a federation, and 
each individual simulator is referred to as a federate. The 
software providing communication and synchronization 
services to federates is referred to as the runtime infrastruc-
ture (RTI). 

The remainder of this paper is organized as follows.  In 
section 2, we introduce our methodology, associated prob-
lems, and solution approaches. Section 3 describes our ex-
periences in applying this approach to the OPNET simulator 
and presents performance measurements of a prototype im-
plementation. In section 4, we discuss our conclusions.  

2 APPROACH TO PARALLELIZATION  

2.1 Simulator Assumptions 

We make the following assumptions: 
 
• Here, we are only concerned with discrete event 

simulations utilizing an event-driven style of exe-
cution. We assume links and nodes of the model 
are represented with link objects and node objects, 

respectively. Data flow is represented by trans-
mission of time-stamped events. Many network 
simulators, e.g., ns (McCanne et al. 1997) and 
OPNET (Chang 1999) are structured this way. 

• We assume new user-defined object models can 
be defined and added to the simulator. This pro-
vides a means to add communication and syn-
chronization software to the sequential simulator. 

• We assume the pending event list data structure is 
accessible to user-defined model code.  We do not 
require source code for the sequential simulator 
executive, e.g., the central event processing loop. 

• An important optimization utilized in our meth-
odology involves a construct called ghost object.  
Utilization of ghost objects requires access to the 
simulation model code, though access to the simu-
lator executive is still not required. 

2.2 Parallel Network Simulation Architecture 

Figure 1 shows our overall architecture for the parallel 
network simulation. Each federate is a sequential simulator 
modeling a subnetwork. Communication and synchroniza-
tion services are provided by the RTI. Every federate man-
ages its local components (a subset of the entire network 
model). A proxy model is added as an extension to the 
simulation model on each federate, defining an interface 
between the sequential simulator and RTI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Parallel Network Simulation Architecture 
 

To illustrate our approach, we will use the simple net-
work model depicted in Figure 2. This model consists of 4 
end hosts (H0-H3) and 4 routers (R0-R3). The four hosts 
are both “UDP source” and “UDP sink” nodes. There is 
traffic from each host to every other host. Let us assume 
we partition this model into 2 sub-models and simulate 
each on separate federates called A and B respectively. 
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Figure 2: Sample Network Model 
 

In the remaining part of this section, we illustrate the 
general methodology for parallel simulation, followed by 
issues concerning the construction of such a parallel simu-
lator: 

 
• Data flow across federates 
• Time & Event management 
• Optimizations. 

2.3 Methodology  

Our general methodology follows from issues addressed by 
Riley et al. in (Riley et al. 1999): 

 
1. Partition the network model into sub-models, one 

per processor. Each sub-model represents a sub-
net. The union of all the subnets forms the origi-
nal network model. The partitioning strategy has 
an important effect on the overall performance. 
As we will see later, an optimal partitioning must 
trade off among several factors: load balance, 
connectivity, lookahead and event locality. The 
partitioning strategy is beyond the scope of this 
paper. Interested readers can refer to (for instance) 
(Zeng et al. 1998). 

2. Map a sub-model to a sequential simulator on 
each processor. Create the sub-model in its 
mapped simulator. Those components not existing 
in local sub-model can be initiated as ghost ob-
jects if needed, which will be addressed in section 
2.6. 

3. Anywhere a sub-model interacts with a model 
element that is instantiated on another processor 
an interaction with a proxy model is defined. The 
proxy model is responsible for implementing in-
teractions with entities instantiated on other proc-
essors. 

4. Apply optimizations to improve performance. For 
example, one can modify the model to reduce 
memory requirements.  

 

Figure 3: Sub-model in Federate A 
 
Figure 3 shows the architecture of the sub-model in 

Federate A after applying our approach. 

2.4 Data Flows Across Federates 

A network model includes node objects that are intercon-
nected using link objects. A link object is associated with 
endpoint node objects that are connected to it. Once we 
partition the network model into sub-models, the links that 
cross a partition boundary are broken and lose their end-
points in other sub-models. In order to conserve memory, 
node objects not existing in local sub-models may not be 
created locally (see step 2 above), making it impossible to 
reference these non-existing node objects as end points. 
We also need to ensure that data traffic can flow across the 
partition boundary. 

To address these problems, we define a proxy model 
in every sub-model. The proxy model is constructed using 
the model construction methods provided by the sequential 
simulator so the proxy appears within the simulator to be 
no different than any other model element. However, the 
proxy model is linked with RTI libraries to make use of the 
services provided by the RTI. The functions implemented 
by the proxy model include: 

 
1. Utilize RTI services to realize simulation time ad-

vances and event synchronization. This will be 
discussed in section 2.5. 

2. Provide the endpoints for all the broken links, and 
transfer events between federates using RTI ser-
vices. 

 
Further, in our implementation message format trans-

formations are performed by the proxy. Packets destined 
outside the local sub-model are transformed from their na-
tive format representation internal to the sequential simula-
tor, to a common message format used by the proxy. Cor-
respondingly, messages from other federates are 
transformed into the native format by the proxy as well. 
While not strictly necessary for federating a simulation 
package with itself, this capability is important when fed-
erating different network simulation packages. 
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In our design a modular approach is used where the 
proxy model is decomposed into two parts. One is a proto-
col independent component called the gen_proxy and the 
second is a set of protocol dependent components called 
the pro_proxy. The protocol independent functions that are 
implemented in gen_proxy include event and time man-
agement. Every network protocol that is modeled has one 
pro_proxy in the proxy model to process protocol packets. 
For example, IP is associated with the ip_proxy compo-
nent. All the broken links carrying the same kind of proto-
col packets will be connected to their unique pro_proxy. 

Every broken link is mapped to a data channel in the 
proxy model. Riley et al. introduce the concept of rlink in 
(Riley et al. 1999) for this purpose. Here, data channels 
provide a similar function as rlink. A channel is unidirec-
tional or bi-directional depending on the link that it is 
modeling. 

In our implementation channels are implemented using 
the HLA declaration management services. A publishing 
class represents an outgoing data flow while a subscribing 
class represents an incoming data flow. A bi-directional 
channel is implemented with a publishing and a subscrib-
ing class on each side while a unidirectional channel is im-
plemented with a publishing class on the sending side and 
a subscribing class on the receiving side. We use the ad-
dresses of the endpoints as the names of the publishing 
classes, since they are unique within the entire network 
model and are easily associated with links. In the sample 
network of Figure 2, for the link between R0 and R3, the 
publishing class names are 192.0.1.1 on Federate A and 
192.0.1.2 on Federate B. Federate A subscribes to class 
192.0.1.2 while federate B subscribes to class 192.0.1.1. A 
bi-directional channel is constructed across federates 
through RTI. 

The next step is to instruct all the node objects adja-
cent to the proxy model to route data traffic destined for 
other sub-models to the proxy model. In the case of IP traf-
fic, this can be realized by modifying the routing table. For 
example, in Figure 3, R0 is instructed to route all the pack-
ets destined to address 202.0.3.* to next hop 192.0.1.11, 
instead of the nonexistent 192.0.1.2. Then the proxy model 
can be responsible for forwarding packets across federates 
through data channels. 

2.5 Simulation Time and Event Management 

The proxy model interfaces the simulator (federate) to the 
RTI’s time management services. The proxy must syn-
chronize local simulation time of each simulator with that 
of others.  

In sequential discrete event simulation, unprocessed 
events are stored in an event queue and processed in time 
stamp order. In parallel simulation, a federate cannot 
autonomously advance its local simulation time because 
this might result in receiving an event in its past, i.e., the 

time stamp of an incoming message may be smaller than 
the local time of the federate. Every federate has to process 
events, both those generated locally and those generated by 
other federates, in time stamp order. This is the well-
known synchronization problem. When conservative syn-
chronization is used, each federate must wait until it can be 
sure that no events will arrive in its past. A global consen-
sus protocol can be used to compute the lower bound on 
time stamp (LBTS) of messages the federate may later re-
ceive. Events with time stamp less than LBTS are called 
safe events because they can be safely processed without 
concern that a smaller time-stamped event might later ar-
rive. No federate can safely advance its local simulation 
time beyond its current LBTS value. This will guarantee no 
event will later arrive in the federate’s past. With this ap-
proach, each federate repeatedly cycles through “phases” 
of (1) processing safe simulation events, and (2) waiting 
for its LBTS value to advance so that more safe events can 
be identified. LBTS computations and the protocol for ad-
vancing simulation time are implemented by the time man-
agement services of the RTI.  

Here, because we are dealing with an existing sequen-
tial simulation executive that cannot be modified, each 
federate can only process events stored in its local event 
queue. A mechanism is required to allow a sequential 
simulator to process externally generated events. For this 
purpose we define a checking algorithm that executes 
within the proxy model. The proxy model schedules check-
ing events that are inserted into the simulator’s local event 
queue so that the sequential simulator will process these 
checking events in the same manner as any other local 
event. Each checking event results in the execution of the 
proxy model. The proxy model will, in turn, receive and 
process external events and identify safe events in the local 
event queue. As stated earlier, one assumption made for 
this algorithm is that we have the access to the event 
queue. This is a reasonable assumption since the simula-
tion application should be able to schedule, cancel and 
search for events. The following steps describe the check-
ing algorithm: 

 
1. Step through the local event queue from the cur-

rent event forward to identify all the events with 
time stamp less than the current LBTS value.  If 
any such events are found, go on to step 2, other-
wise go to step 3. 

2. The events with time stamp less than LBTS found 
in step 1 can be safely processed. Then schedule 
the next checking event at the time stamp of the 
last safe event identified with the lowest priority. 
This means checking events will be processed last 
among all the events with the same time stamp. 
The algorithm terminates at this point.   

3. Invoke the HLA NextEventRequest service to re-
quest advancing simulation time to the time stamp 
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t of the next event in the local event queue. This is 
necessary to identify any pending external events 
that exist preceding the next internal event. If no 
pending external events exist before t, go on to 
step 4, otherwise go to step 5. 

4. The simulation time will be advanced to t. Then 
schedule the next checking event at time stamp t 
with lowest priority. The algorithm terminates at 
this point. 

5. If there are any unprocessed external events with 
time stamp less than t, (let the earliest such event 
e1 have time stamp t1), the RTI will advance the 
federate’s local simulation time to t1 and issue a 
Time Advance Grant. Event e1 will be delivered to 
the federate and can be processed. The time stamp 
of the next internal event may or may not be t be-
cause the processing of e1 may or may not gener-
ate new local events with time stamp less than t. 
Go back to step 3 and repeat step 3-5 again. 

 
In step 3 above, the RTI will typically initiate or par-

ticipate a new LBTS computation since the requested time 
stamp advance is beyond the current LBTS value. The 
events in the local event queue between two checking 
events can be processed safely and all events will be proc-
essed in time stamp order. 

With this method, the sequential simulator can ensure 
all the local events are processed in time stamp order. The 
RTI guarantees all external events are delivered to the fed-
erate in time stamp order. Using our algorithm, a local 
event is identified to be safe for processing only after all 
external events preceding this local event have been deliv-
ered and processed during the processing of a checking 
event. Thus, all local and external events are processed in 
time stamp order.  

2.6 Performance Related Issues 

In this section, we discuss two issues that have a signifi-
cant impact on performance: lookahead and shared infor-
mation among sub-models. 

Lookahead is a concept used to improve performance 
in parallel/distributed simulations. If a federate’s looka-
head is L, then it guarantees it will only generate messages 
at least L units of simulation time into the future. A larger 
lookahead allows more parallelism. In parallel network 
simulation, lookahead is defined as the minimum of the 
packet delivery delays in all the links of a sub-model that 
cross boundaries of the partition. The packet delivery delay 
is the sum of transmission delay and propagation delay. 
Usually, propagation delay is an attribute of the link object 
while transmission delay is data packet size divided by link 
data rate. In order to improve the lookahead capability, we 
delegate the delay computation of all broken link objects to 
the proxy model. In place of the normal delay computation, 

these link objects attach only the relevant information, 
such as propagation delay and link data rate, to the packet. 
When the proxy model (actually in gen_proxy) receives the 
packet, it can compute the actual delay and thus predict the 
simulation time at which the packet arrival occurs on the 
receiving side of the link. The federate can declare the 
minimum of all the delay values as its lookahead. This can 
be computed prior to the execution of the federation.  

There are some cases where one federate may need 
model information beyond its own sub-model. For exam-
ple, some simulators (e.g., ns) may need to compute rout-
ing information during the execution of the federation. 
This requires the entire network topology to be defined and 
shortest path routes to be computed on each federate. An-
other case is a mobile device needing to know whether it is 
within the power range of a base-station, which may not be 
in the local sub-model. If so, it needs to subscribe to the 
data sent by the base-station. These cases require the dupli-
cation of the network model in different processors, and 
may require a large amount of memory. We introduce the 
concept of a ghost object, which is a reduced state version 
of the object consuming little space. A ghost object in-
cludes a subset of real object attributes. These attributes 
can be updated dynamically by the federate responsible for 
simulating the object through the HLA declaration man-
agement services or data distribution management services.  
The drawback of this approach is that such updates usually 
result in zero lookahead interactions, which may severely 
degrade performance. Detailed analysis of the nature of 
each such attribute is needed to determine whether we can 
exploit some lookahead capabilities in this case. For exam-
ple, the attributes of a link can be updated with some delay 
because a remote node cannot know the link state changes 
immediately in real network operations. 

3 CASE STUDY: BUILDING A PARALLEL 
OPNET SIMULATION 

We have implemented our approach by building a parallel 
OPNET simulation. We compare the performance of the 
parallel OPNET simulation with the sequential simulation. 

3.1 OPNET Overview 

OPNET is a commercial network simulator marketed by 
OPNET, Inc. First developed at MIT, OPNET was intro-
duced as a commercial network simulator in 1987. OPNET 
comes with four major components: 

 
1. An event-driven simulation engine. The simula-

tion executive manages an event queue and proc-
esses events in time stamp order. 

2. A set of application interfaces which are imple-
mented as C libraries. Users can create custom 
simulation models by utilizing these interfaces. 
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3. Graphical tools and commands. Graphical tools 
provide a drag-and-drop style of programming. 

4. A large library of network protocol models cover-
ing many standards and equipment models from 
major equipment suppliers.  

3.2 Implementation 

The Federated Simulations Development Kit (FDK) soft-
ware package developed at Georgia Tech was used for this 
work (Fujimoto et al. 2000). Specifically, we used FDK’s 
Basic RTI (BRTI), which provides event and time man-
agement services. 

In our parallel OPNET simulation, the proxy model is 
implemented as a gen_proxy node model and a set of pro-
tocol dependent pro_proxy node models. When the 
OPNET package is updated, the pro_proxy may need to be 
updated (depending on the changes made to OPNET), but 
changes to gen_proxy should be minimal. The behavior of 
a link object in OPNET is defined by a series of consecu-
tively executed procedures called pipeline stage proce-
dures, e.g., computing propagation delay. We modified the 
pipeline stage procedures of broken links to delegate the 
delay computation to the proxy model. Instead of comput-
ing delay, the pipeline stage procedures we implemented 
store relevant information, such as link delay and data rate, 
in Transceiver Pipeline Data Attributes (TDAs) of the 
packet and return the delay as zero. The proxy model is re-
sponsible for computing the real delay value and predicting 
the arrival events accordingly. 

One major problem we encountered in building the 
parallel OPNET simulation has to do with OPNET’s use of 
global state information. Specifically, sequential simula-
tion models in OPNET assume the existence of certain 
global data structures. For example, every IP process 
model registers its address information in global tables 
shared by all the IP models during initialization. When the 
IP model of one node is going to send a packet to another 
node, it will first check whether the address of the destina-
tion node is valid by a lookup in these global tables. Our 
current approach to solve this problem is to utilize the 
ghost objects (as discussed earlier) to initialize these global 
data structures. This ensures each federate has consistent 
global state information. This global state information must 
be static, i.e., it cannot be modified during the execution. 
The drawback of this approach (in addition to not support-
ing modifiable state) is detailed analysis of the model code 
is required to determine what initialization functions must 
be kept in every ghost object.  

Another problem has to do with OPNET’s communi-
cation mechanisms. Packet-based communications are not 
the only means of communication in OPNET. Several 
types of interrupts, e.g., self, remote or multicast interrupts, 
allow one module to schedule events to any module of the 
entire model, which makes the prediction of events very 

hard. For example, some OPNET application models util-
ize remote interrupts to simplify service start and end 
simulations. Naively converting such interrupts into inter-
actions across the RTI   usually results in zero lookahead. 
Thus detailed analysis of the model code is required to be 
able to predict non-packet-based communications so as to 
improve the lookahead capability.    

Global state, zero lookahead interactions, and pointer 
data structures lead to dependencies between elements of 
the simulation that are hard to identify, making paralleliza-
tion difficult and/or time consuming. Such problems have 
been observed by others, e.g., see (Bagrodia 1996). Be-
cause of these problems, at present, only a few simple pro-
tocol models (e.g., UDP and IP) in OPNET have been par-
allelized in our current implementation.   

3.3 Performance 

We constructed two sets of experiments, each simulating 
three minutes of network operation to evaluate the perform-
ance of the prototype system. In the first set, we simulated a 
network model called a “regular traffic model”. It consists 
of eight subnets, each of which contains eight hosts and one 
router. Each host is both a data source and sink. It sends and 
receives data to and from all other subnets. The data sinks 
are chosen uniformly. The inter arrival time of traffic gener-
ated by each host is exponentially distributed. In the second 
set of experiments we simulated a network model called the 
“added traffic model”. On the base of the “regular traffic 
model”, we added sixteen internal hosts to every subnet, 
which only transmit data within the local subnet. The paral-
lel simulation was executed on a set of eight Sun Ultra Sparc 
1 Model 170 systems, each with 64MB main memory and a 
167Mhz Sparc CPU. The Ultra Sparcs are connected by a 
100Mb Ethernet. Each subnet is mapped into a Sun system. 
As the baseline, the entire network model is also simulated 
in a single system. 

Several variations of simulation parameters were used 
in the experiments. First, the mean inter arrival time of 
generated packets, which determines the density of events 
(number of events within a fixed sized window of simula-
tion time), was varied from 1s to 0.05s. Second, the propa-
gation delay ranged from 0 to 1s. This is an important pa-
rameter because it determines the lookahead between 
federates as previously discussed. We varied the propaga-
tion delay to allow for different lookahead values.  

The results for the “regular traffic model” are shown 
in Figure 4. Figure 5 shows the results for the “added traf-
fic model”. The X-axis is the inter arrival time of generated 
packets. The Y-axis is the speedup factor. Speedup is de-
fined as the execution time taken by baseline sequential 
simulation divided by the execution time of the parallel 
simulation, which is executed on 8 simulators in our ex-
periments. The different lines correspond to different 
propagation delays. 
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Figure 4: Overall Speedup Factors, Regular Traffic 
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Figure 5: Overall Speedup Factors, Added Traffic 

 
Computation and communication overheads in the 

parallel execution arise from several sources: LBTS com-
putations, message transmissions over the network, and ex-
tra computations to process checking events. The perform-
ance results reflect these overheads. First, increased 
lookahead values do speed up the parallel simulation. This 
is expected, and can be attributed to a reduced number of 
LBTS computations. When the propagation delay reaches 
1s, fewer than 300 LBTS computations are performed. 
Second, while fixing the propagation delay we get better 
performance by reducing the inter arrival time. Reducing 
inter arrival time means the event density increases. This in 
turn increases the amount of simulation computations that 
can be performed between LBTS computations, resulting 
in improved speedup. On the other hand, increasing the 
event density also increases the number of message trans-
missions between federates. Since performance improves 
with increased message density, we conclude that LBTS 
computations are much more expensive. Third, by compar-
ing Figure 4 and Figure 5, we note that we observe better 
performance when the proportion of local events is in-

creased. This is not surprising, since the parallel simulation 
overheads are amortized among local events. 

The performance results are summarized below: 
 
1. Performance improves as lookahead increases.  

The lookahead should be as large as possible. In 
the context of network models, lookahead repre-
sents the smallest amount of simulation time re-
quired for a packet to be transmitted from one 
federate to another. To increase the lookahead, we 
need to either partition the network model at links 
with low bandwidth, or increase the distance be-
tween the subnets mapped to federates.  

2. Increasing event density (i.e., message traffic) 
helps to amortize the cost of parallel simulation 
overheads, and results in better performance. 

3. Improving traffic locality leads to reduced costs 
related to transmission of messages between fed-
erates, results in better performance. 

4 CONCLUSIONS 

We have presented an approach to build a parallel network 
simulation using existing commercial event-driven simula-
tors where only limited access to the sequential simulation 
code is provided. This method is relatively straightforward 
to implement if the original simulator does not make ex-
tensive use of global state variables and packet-based 
communications are the major means of communication. 
Most of the modifications to the sequential simulator are 
implemented in a proxy model that interfaces the simulator 
to the RTI. This approach allows federation of heterogene-
ous simulators, although this aspect has not yet been im-
plemented in the prototype. Our prototype using the 
OPNET simulation package yielded reasonable speedup 
for parallel simulations with good lookahead. But issues 
such as global state and zero lookahead interactions make 
parallelization much more difficult for more complex pro-
tocol models such as TCP. 

Recently, an HLA module has been introduced in 
OPNET 7. This provides a similar architecture to that used 
for our parallel simulation, but utilizes native support 
within the OPNET simulation engine. The current release 
doesn’t provide distributed network models but requires 
users to develop their own distributed version of models. 
By contrast, our approach focuses on reuse of currently 
available models.  
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