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An Integrated Approach for Achieving Multirobot
Task Formations
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Abstract—In this paper, a problem, called the initial forma-
tion problem, within the multirobot task allocation domain is ad-
dressed. This problem consists in deciding which robot should go
to each of the positions of the formation in order to minimize an
objective. Two different distributed algorithms that solve this prob-
lem are explained. The second algorithm presents a novel approach
that uses cost means to model the cost distribution and improves
the performance of the task allocation algorithm. Also, we present
an approach that integrates distributed task allocation algorithms
with a behavior-based architecture to control formations of robot
teams. Finally, simulations and real experiments are used to an-
alyze the formation behavior and provide performance metrics
associated with implementation in realistic scenarios.

Index Terms—Auctions, market-based coordination, multirobot
teams, task allocation.

I. INTRODUCTION

IN RECENT studies, it has been shown that mobile sensor
networks can enable effective achievement of a variety of

Earth-monitoring applications, especially those that require spa-
tially distributed recording of environmental parameters [21]. In
most of these applications, individual sensors are tasked to col-
lect information about their neighboring sensors using peer-to-
peer communication. Unfortunately, as the size of the network
increases, bandwidth limitations and the absence of feasible
communication channels severely limits the possibility of con-
veying and using global information. As such, the utilization of
decentralized techniques for forming new sensor topologies and
configurations is a highly desired quality of mobile sensor net-
works. Establishment of these sensor configurations involves
determining how to allocate sensor positions to mobile sen-
sor agents in order to achieve a desired topology—a similar
research objective that is found when focusing on the task al-
location problem with teams of robots. This problem can also
be applied to intelligent environments [15], where distributed
intelligent sensors have to be coordinated in order to perform a
common objective.
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In the last few years, different approaches have been used to
solve the task allocation problem: centralized [2], [3], [30], hy-
brid [4], [10], and distributed. The distributed approach, consid-
ered ideal for teams of robots or mobile sensors, has characteris-
tics that fit most applications: high fault tolerance, fast response
for dynamic changes in the environment, and low computa-
tional complexity. Basically, two main distributed approaches
have been studied in depth in order to solve the problem for in-
dependent loosely coupled tasks: behavior-based [20], [29] and
market-based [4], [6], [23]. However, only does not require di-
rect communication between robots is not required only in [20].
The rest of the algorithms fall within the domain of what we
call time-distributed algorithms, which means that robots make
decisions based on interagent communications transmitted at
different time instances. This type of algorithm is more fault-
tolerant than a centralized approach, and can obtain more effi-
cient solutions than a completely distributed approach. So far,
the approach that receives more attention has been the market-
based approach, which uses negotiations to allocate the different
positions, since it offers a good compromise between commu-
nication requirements and the quality of the solution.

A special case of task allocation is the initial formation prob-
lem [7] in which each robot can only be allocated to one task.
In order to illustrate the differences between both problems,
we can think about the general task allocation problem as a
multiple traveling salesman problem (TSP) [13] and the initial
formation problem can be viewed as a classical job assignment
problem [11] where robots are the workers and tasks are the
jobs to be executed by those workers.

Different approaches can be used to solve the initial forma-
tion problem. This problem has typically been solved optimally
using centralized solutions such as the Hungarian method [11].
However, this kind of solution assumes that all the information is
available and has all the disadvantages related to centralized sys-
tems: low fault tolerance and slow response to dynamic changes
in the environment. Other approaches, such as [1], use a paral-
lel algorithm based on auctions to obtain the optimal solution
for the assignment problem. Nevertheless, a parallel algorithm
needs to have updated information transmitted between all the
nodes. From a robotics perspective, this approach does not lead
to any advantages in fault tolerance or response from changes in
the environment, since it only improves the time complexity of
the algorithm. Different distributed approaches have also been
developed recently, but the tasks have to be communicated to
all the robots at the beginning. A distributed heuristic with local
communication is explained in [31], while in [32], the agents are
controlled by hybrid models using distributed potential fields.
Both approaches fail to return a highly efficient solution since
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more than one robot can execute the same task. In [24], a solver
of the TSP is used to decide which robot should execute which
task. However, this approach first solves a much more difficult
problem to obtain a solution to the assignment problem.

In this research, we have decided to use a market-based ap-
proach for addressing the initial formation problem [27]. The
main reason is that we are interested in not only obtaining a fea-
sible solution, but also an efficient one. As was said before, this
approach offers a good compromise between communication
requirements and the quality of the solution. It is an interme-
diate solution between centralized, where all the information is
available, and distributed, where only local information is ac-
cessible, while obtaining solutions close to the optimum and
offering a good level of fault tolerance and reaction to changes
in the environment.

The main contribution of this study is the utilization of cost
means in a market-based approach to improve the efficiency of
the task allocation algorithm. Furthermore, we compare the per-
formance of two different task allocation algorithms integrated
in a complete robot system and study the effects of the other
modules, such as the path planner module, on the task allocation
efficiency.

This paper is organized as follows. In the next section, a basic
market-based algorithm (BS) that solves the initial formation
problem will be explained. Moreover, different modifications
of the BS algorithm that improve its results will be addressed.
In Section III, the integration of the task allocation algorithms
within a complete robot architecture is explained. This archi-
tecture is used for both simulations and real experiments. Next,
simulation results will be presented and discussed in Section IV,
showing the advantages and disadvantages of each algorithm.
Also, the task allocation algorithms have been integrated in a
complete robotic architecture and we will study how this in-
tegration affects the algorithm performances. These algorithms
have been implemented on a team of physical robots and the
results from several experiments will be explained in Section V.
Finally, conclusions are provided in Section VI.

II. MARKET-BASED ALGORITHMS FOR THE INITIAL

FORMATION PROBLEM

The initial formation problem becomes really important
within the field of formation control [8], [14], where using local
information and control laws, the distributed algorithm is able
to drive a given formation error to zero. As it is stated in [9],
these algorithms require a first step that assigns the robots to
the formation positions while taking into account their initial
positions, i.e., answer the question who goes where?

We have decided to use a market-based approach to solve
this problem (see Fig. 1). In this context, a more formal
definition of the initial formation problem can be stated as
follows:

Given a number of tasks, {T1 , T2 , . . . , TN }, a team of robots
{R1 , R2 , . . . , RM }, a function C(Ti, Rj ) that specifies the cost
of executing task Ti by robot Rj , find the assignment that allo-
cates one task per robot and minimizes the global cost defined
as

∑M
j=1 C(Ti, Rj ), where task i is assigned to robot j.

Fig. 1. Task allocation process using a market-based approach that solves
the initial formation problem. Two roles are played dynamically by robots:
auctioneer and bidders. The auctioneer is the agent in charge of announcing the
tasks and selecting the best bid from all the received bids.

Next, two different distributed task allocation algorithms that
solve the initial formation problem will be explained.

A. BS: Basic Market-Based Algorithm

In the basic algorithm, positions associated with an initial
robot formation are recast as biddable tasks in a formation auc-
tion. To determine position assignment, a robot agent (auction-
eer) dynamically plays the role of announcing the tasks and
selecting the lowest cost bid from all the received bids during
the auction. All other robots dynamically play the role of bidder
in which each robot bids for tasks and, subsequently, keeps the
task with the lowest cost. If during the auction process, a robot
bidder wins a new task that has a lower cost than the one already
won, it would sell the old task to the robot with the best bid but
worse than its own bid. The best bid worse than the robot’s bid
is selected in order to avoid infinite loops in the negotiation.
This scenario could happen when two robots have the best bids
for at least three tasks as shown in Fig. 2. Upon termination
of the auction, each robot will have an assigned position in the
formation.

Since robots minimize their own costs instead of the global
cost, there are situations when this algorithm does not obtain
satisfactory results. This usually happens when a robot has to
take a task that is the worst one for its own interest, as can be
seen in Fig. 3. In this example, the global cost obtained with
the market-based algorithm is 66.67% greater than the optimal
allocation.

B. RTMA: Robot and Task Mean Allocation Algorithm

In order to solve the initial formation problem, the task allo-
cation algorithm has to solve two main problems.

1) If I won more than one task, how do I determine which
one to keep?

2) How do I calculate the bid for a certain task?
In the BS algorithm, bids are the distance between the robot

position and the tasks (we are only considering waypoint tasks)
and if one robot wins more than one task, it keeps the one that
is closest to itself, i.e., the one with the lowest cost or best bid.
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Fig. 2. (a) Initial position of the robots and the tasks. (b) Messages exchanged
among the different agents and how an infinite loop appears in the negotiation
protocol when auctioneers always allocate the task to the robot with the best bid
without considering their own bid.

Fig. 3. Difference in cost between the optimal allocation and the one obtained
with the basic market-based algorithm.

Therefore, if our objective is to improve the BS algorithm, one or
both of these aspects must change. Moreover, the new algorithm
must keep the advantages of the market-based approach: fault
tolerance, linear increment in number of messages with respect
to number of robots, and high adaptation to changes in the
environment using reallocations.

First, we try to choose in a more clever way the task that
must be kept when a robot wins more than one task. This is
accomplished using additional knowledge available to the sys-
tem. Instead of keeping the task with the smallest distance to
the robot, the task with highest difference between the distance

to the robot and the mean of its distance to all the robots will be
selected. In other words, suppose that there are a finite number
of robots NR and robot Rk has won tasks Ti and Tj . In this
case, robot Rk will keep task Ti if and only if

NR∑

r=1

D(Rr , Ti)
NR

− D(Rk , Ti) >

NR∑

r=1

D(Rr , Tj )
NR

− D(Rk , Tj )

where D(Rk , Ti) is the distance between robot Rk and task
Ti . The reason behind this idea is to make the robot willing to
choose the task that is best for the team, not just for itself. So,
robots will more probably win tasks that have a high cost for the
rest of the robots and a low one for themselves. In this way, we
make the algorithm less selfish and make robots try to minimize
the global cost and not just their own costs.

The question that arises now is how to calculate the mean of
the distances for a certain task. During the normal operation of
the algorithm, the auctioneer receives bids from all functioning
robots in order to allocate the task to the best robot. At this
moment, the auctioneer knows all the distances between every
robot and the current task. Thus, the mean is calculated by the
auctioneer and transmitted to the robot within the message that
informs the robot that has won the task. The major difference
with the BS algorithm is that the robot must remember the mean
associated with the won task. Furthermore, the robot is able to
compare their means to different tasks because it remembers the
mean of the task already won and the mean of the new allocated
task is sent by the auctioneer as it was explained previously.

Also, we must change the way that costs are calculated. In
the original algorithm the cost function used to calculate the bid
for a certain task is the distance between the robot and the task.
However, in this improved algorithm, the cost function will be
the difference between the distance of the robot and the task
minus the mean of the distances between that robot and all the
tasks, i.e.,

C(Ri, Tj ) = D(Ri, Tj ) −
NT∑

t=1

D(Ri, Tt)
NT

(1)

where C(Ri, Tj ) is the cost function for robot Ri and task Tj

and the total number of tasks is NT . The idea is to decrease
substantially the cost of a task when it is close to a robot and
the rest of the tasks are far away from the same robot. But if all
the tasks have similar costs, the cost reduction will be smaller.
Therefore when bids are received by the auctioneer, the tasks
from robots that are in the first situation will be favored with
respect to the tasks from robots that are in the second situation.
Also, if a task is far away from a robot and the rest are close to
the robot, the cost of the task will be kept almost the same.

The only drawback to this improvement is that robots must
know the different tasks at the beginning in order to calculate the
mean of the distances. However, the extra resources needed for
the algorithm are almost the same as that for the BS algorithm
since robots only have to memorize the mean calculated at the
beginning and implement one basic cost function operation.
The RTMA algorithm implements both improvements as can be
seen in Algorithm 1. Also, in Fig. 4, it can be observed that the
messages are exchanged between the robots in the negotiation
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Fig. 4. Messages interchanged in the negotiation process using the RTMA
algorithm for the scenario showed in Fig. 3. The final allocation is better than
the one obtained with the BS algorithm.

process using the RTMA algorithm for the initial positions and
tasks represented in Fig. 3.

Finally, in our algorithms, there is no requirement to have
only one auction active at a single instance of time. These auc-
tions can be started in parallel, and therefore, there is no need

Fig. 5. Scheme that shows the integration of a task allocation algorithm in a
complete system ready to be used in a real-world application. The path planning
algorithm is used to calculate the cost of the tasks and as an input for the path
follower algorithm that is combined with obstacle avoidance using the DAMN
architecture.

to have any synchronization method between robots to decide
who is the auctioneer (such as a token algorithm). This type of
mechanism is usually needed in task allocation algorithms that
use local plans to calculate marginal costs as bids for solving the
general task allocation algorithm [4]. In these algorithms, task
bids depend on multiple auctions (not just the current auction).
In the initial formation problem, only one task is allocated per
robot. Thus, task costs only depend on one auction.

III. IMPLEMENTATION OF MULTIROBOT SYSTEMS

A multirobot architecture has been used to test the decen-
tralized algorithms presented in this paper. This architecture is
designed for heterogeneous robots [28] and divided into three
layers. The highest layer is independent from the type of robot
and is the one aware of the existence of other robots. Thus, the
task allocation algorithm is implemented in this layer and can be
used, without modification, in both simulations and real robots.
Moreover, the communication among robots is based on IP, so it
can also be used as an interprocess communication method for
simulations. The other two layers are used to execute the dif-
ferent tasks allocated to the robot and make easier the creation
of new algorithms by using a modular and component-based
architecture.

We have integrated our task allocation algorithms in a com-
plete system ready to be used in real-world applications. As can
be seen in Fig. 5, in each robot, the task allocation algorithm has
been integrated with a path planner algorithm and the execution
of the tasks are within a behavior architecture that combines the
path following algorithm with obstacle avoidance.

Two of the most popular path planning algorithms have been
implemented: A∗ algorithm [17] and Rapidly exploring ran-
dom trees (RRTs) [12]. These allow the system to integrate
map-based information in the task allocation scenarios. The first
algorithm is based on a heuristic estimator to find the optimal so-
lution faster than general search algorithms such as breadth-first
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or depth-first search. Even so, for robotic applications, the A∗ al-
gorithm still requires a significant amount of processing power,
specially for large state spaces with constraints. RRTs is also
a search algorithm that has a random nature and the quality of
the solution cannot be determined a priori, but it is faster than
A∗. This algorithm works like a search tree that starts from an
initial state and is expanded by performing incremental motions
toward the direction of random points. The main difference be-
tween this algorithm and a random walk is that the latter suffers
from a bias toward places already visited, while RRTs works
in the opposite manner by being biased toward places not yet
visited. Specifically, we have used the biased version of RRTs
with a probability equal to 0.05.

For navigation, we have selected the distributed architecture
for mobile navigation (DAMN) architecture [22] to combine the
obstacle avoidance and path follower algorithms. This architec-
ture was designed to combine different behaviors, specially, for
mobile robots in unknown and dynamic environments, which
fits our demonstration scenario. Each of the behaviors votes for
a set of possible actuator values satisfying its objectives. Then,
an arbiter combines those votes and generates actions that reflect
the behaviors objectives and priorities. Regarding the behaviors,
a laser scanner was used as the sensor for the obstacle avoidance
and the Pure Pursuit algorithm [18] has been used as the path
follower. The Pure Pursuit algorithm geometrically determines
the curvature that will drive the vehicle to a chosen path point
defined as one lookahead distance from the current position of
the robot.

IV. SIMULATED EXPERIMENTS

First, we simulated our distributed task allocation algorithms
in scenarios without obstacles where the task cost is calculated
as the Euclidean distance. Next, we integrated the task alloca-
tion algorithms within a robot architecture that couples the task
allocation algorithm with navigation modules. The effect that
the different modules, specially the path planner module, causes
to the task allocation efficiency was studied.

A. Ideal Simulations

Both algorithms have been tested using initial positions of the
robots and formations calculated at random in a virtual world
of 1000 × 1000 m2 without obstacles. The simulations have
been accomplished using a variety of scenarios in which the
number of robots and tasks ranged from 2 up to 20, and for
every case, 100 simulations were run. These results are shown
in Fig. 6, where errors in percentage in comparison with the
optimal solution are presented. The optimal solution has been
calculated using the Hungarian method [11]. It can be observed
that the RTMA algorithm performs much better than the BS
algorithm. Both algorithms obtain efficient results up to eight
robots and tasks, where the largest error is less than 10%. For
more than eight robots, only the RTMA algorithm obtained
efficient results, with a maximum error of 5.98% in the case of
20 robots. As can be seen in Fig. 6, the error with respect to the
optimal solution seems to be bounded by a linear function based
on the number of robots and tasks for all algorithms. However,

Fig. 6. Mean error in percentage in comparison with the optimal solution for
both types of algorithms and calculating the initial positions of the robots and
the points of the formations at random over 100 simulations.

Fig. 7. Maximum errors in percentage in comparison with the optimal solu-
tion in 100 simulations for both types of algorithms and calculating the initial
positions of the robots and the points of the formations at random.

the RTMA algorithm is the one with lowest slope. It is also
important to point out that for two robots and tasks the RTMA
algorithm always obtains the optimal solution.

The results of Fig. 6 only show statistically how good the
algorithm is based on the mean. However, it could be the case
that an algorithm could have good results on average but there
are some situations where its results have large errors. Therefore,
another important parameter to consider is the maximum error
with respect to the optimal solution over all the simulations.
In Fig. 7, the maximal errors in percentage are shown. The BS
algorithm is still worse than the RTMA algorithm. It can be
observed that the mean of the maximum errors considering all
the cases is 14.91% for the RTMA algorithm and 33.77% for the
BS algorithm, which is greater than the mean error observed in
Fig. 6. This means that these algorithms do not have a constant
behavior and, for a specific situation, results could be worse
than the average.

All the results presented have been calculated using random
position of the robots and random points of the formations
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Fig. 8. Types of formations used in the simulations. (Left) Initial positions
of the robots and the formations calculated at random. (Right) Most of the
formation points and the initial positions of the robots calculated at random in
the small box and the others calculated outside the big box and calculated also
at random.

Fig. 9. Mean error in percentage in comparison with the optimal solution for
the different types of algorithms and calculating the inital positions of the robots
and the points of the formations as it is described in the right part of the Fig. 8
over 100 simulations.

uniformly distributed. However, the quality of the solution for
some of the algorithms depends on the type of formations. In
Fig. 8, there are two types of formations: the one on the left
is calculated entirely at random and is the one used so far, the
other formation on the right has a structure formed by two boxes.
Most of the points and robots of the formation are in the small
box, and the others outside the big box. As can be seen in Fig. 9,
the RTMA algorithm obtains again the best results and they
are similar to the results showed in Fig. 6. However, the BS
algorithm behaves differently and obtains worse results than the
ones obtained with the other type of formation, specially for
low number of robots and tasks. Therefore, it could be said that
the BS algorithm is less robust to changes in the nature of the
formation, i.e., the results in comparison with the optimal solu-
tion are different and this difference only depends on the type
of random distribution used to calculate the points and positions
of the robots.

B. Realistic Simulations

After the integration of the task allocation algorithm within a
robot architecture, the effect that individual robot errors cause
to the task allocation efficiency is studied. There are different
sources of errors: localization, path planning, etc. In this study,
we concentrate our efforts to study the effect of the path planner

Fig. 10. Snapshot of the simulator Player/Gazebo. (Top) Aerial view of the
environment with obstacles. (Bottom) Close view of the 3-D model of our test
platform.

module on the bidding process. Other sources of errors and their
influences on the task allocation will be considered for future
work.

First, global costs obtained with the two path planners (A∗ and
RRTs) are compared. Second, it is studied for each of the task
allocation algorithms (BS and RTMA), whether the difference
between global costs using both path planners is equivalent.
Finally, we are interested in the effect that obstacle density
has on the performance of our task allocation algorithms and
whether differences depend on the path planner algorithm.

The Player/Gazebo [5] software has been used to simulate the
environment and the robots. We focus on a monitoring appli-
cation, where robots have to navigate toward some specific lo-
cations and take environmental measurements. As will be seen
in Section V, we used the iRobot Create platform to test our
algorithms. For that reason, we created a 3-D model of those
robots to be used in the simulator (see Fig. 10).

We made a classification based on the percentage of nonnav-
igable terrain (in this case obstacles): high navigable terrains
(less than 15% of nonnavigable terrrain), medium navigable
terrain (between 15% and 30% of nonnavigable terrain), and
low navigable terrain (more than 30% of nonnavigable terrain).
For our simulations, we have used three different scenarios, all
of them with a 75 × 75 m2 area, to test our complete robotic sys-
tem for this type of application. The first scenario (see Fig. 11)
has 5% of nonnavigable terrain. The second scenario has 20%
of nonnavigable terrain (see Fig. 12), and the last scenario has
40% of nonnavigable terrain (see Fig. 13). Also, Figs. 12 and



182 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 14, NO. 2, APRIL 2009

Fig. 11. Scenario with 5% of nonnavigable terrain. The obstacles are increased
virtually to the size of the robot, so they do not navigate too close to them. This
reduce the probability of a collision due to noises and inaccuracies in the sensors
and the map.

Fig. 12. Scenario with 20% of nonnavigable terrain. The paths show the
solution of one of the random missions obtained using the BS task allocation
with the A∗ path planner.

13 show the solution obtained using our algorithms and the path
followed by the robots using the A∗ and RRTs algorithms, re-
spectively. It can be observed directly how the A∗ obtains the
optimal path while the RRTs has a lower rate of finding a path
close to the optimal one. This fact will have a large impact on
the performance of the task allocation algorithms, as will be
commented next. Also, it is interesting to observe that in Fig. 12
one robot is forced to navigate to the furthest task for itself due
to the outcome from the BS algorithm.

Due to the complexity of these simulations, only 20 simula-
tions have been run per case, where the position of the robots
and tasks has been calculated at random (avoiding the areas
considered obstacles in the world). We suppose that robots have
access to an occupancy map of the environment. We first ran our
simulations using the A∗ for path planning. The results obtained
from these simulations are showed in Table I, where each cell
represents the mean of the global cost over 20 missions, i.e.,
the sum of the distance traveled by all the robots. It can be seen

Fig. 13. Scenario with 40% of nonnavigable terrain. The paths show the
solution of one of the random missions obtained using the RTMA task allocation
with the RRTs path planner.

TABLE I
RESULTS COMPUTED FOR FORMATIONS WITH DIFFERENT NUMBER

OF ROBOTS, TASKS, AND OBSTACLES OVER 20 SIMULATIONS PER

CASE USING THE A∗ ALGORITHM

that the RTMA algorithm still obtains better results than the BS
algorithm when it is integrated in a complete robotic system.
Also, the results obtained with the complete system are equiv-
alent, in comparison with the optimal solution, to the results
obtained in the previous section (see Fig. 6). The improvements
obtained with RTMA, in comparison with the BS algorithm, are
of the same order of magnitude and both algorithms obtain sim-
ilar results in all the scenarios. Therefore, the integration of our
task allocation algorithms in a complete robotic system, with
the A∗ planner, does not affect the task allocation algorithms
performance.

The same random missions, for each scenario, have been used
for the optimal solution and the two task allocation algorithms.
The optimal solution has been calculated using the A∗ algorithm
with the Hungarian method [11], i.e., all the different optimal
paths between every robot and task have been calculated using
the A∗ algorithm, then the distances of all these paths have
been used as the values of the cost matrix that represents the
task allocation problem as a job assignment problem. Finally,
the Hungarian method has been applied to that cost matrix to
calculate the optimal assignment.
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TABLE II
RESULTS COMPUTED FOR FORMATIONS WITH DIFFERENT NUMBER

OF ROBOTS, TASKS AND OBSTACLES OVER 20 SIMULATIONS PER CASE

USING THE RRTS ALGORITHM

Next, we tested our task allocation algorithms with the RRTs
instead of the A∗ algorithm. The results are shown in Table II.
First, it can be observed that these results are worse than using
the A∗ algorithm. This makes sense since the RRTs algorithm
does not ensure any kind of efficiency of the solution. Also,
when RRTs are used, the differences between both algorithms
decrease and there is even one case, where the BS algorithm
performs a little bit better than the RTMA algorithm.

In summary, it has been shown that the performance of the task
allocation algorithms is better with the A∗ algorithm rather than
RRTs. The percentage on nonnavigable terrain in the scenario
seems to not affect the performance of the system since similar
results have been obtained for the three different scenarios. Also,
the use of RRTs reduces the advantages obtained with a more
complex algorithm, such as the RTMA algorithm, and make the
results of both algorithms very similar.

We propose the use of the RTMA algorithm only when the
application permits the use of the A∗ path planner. However,
in applications where the A∗ algorithm is too slow, such as
scenarios with high-dimensional state spaces with constraints,
we propose the use of the BS algorithm since the use of a
nonoptimal path planner (for example RRTs) is needed.

V. REAL-WORLD EXPERIMENTS

In this section, the distributed task allocation algorithms, inte-
grated within the explained robot architecture, are implemented
in real robots. Numerous experiments have been run using the
team of robots. Results from experiments with and without ob-
stacles are commented.

A. Description of the Testbed

We used a team of six mobile robots in order to test our
task allocation algorithms. Each of these robots is based on
the iRobot Create platform (see Fig. 14). This platform is ideal
for the robotics research community due to its low price and
open communication protocol with access to all its sensors and
actuators. However, this platform is only suitable for indoor or
flat terrain outdoor experiments.

Fig. 14. Robot used in the experiments. iRobot Create upgraded with micro
linux computer, wireless communication and GPS.

We have added to the platform a micro linux computer, the
Connex 400XM processor from Gumstix. This motherboard
contains a 400 MHz ARM processor, two serial ports compatible
with TTL levels, and bluetooth capabilities. Additionally, two
more boards were used: a Robostix board was added to have
easy access to the serial ports and power supply pins, and a
Wifistix board that provides wireless 802.11b/g capabilities to
the linux computer. The Robostix board also includes an Atmel
ATMega 128 RISC microcontroller, providing both SPI and
I2C serial ports, general purpose IO pins, PWM outputs, and an
ADC unit. These characteristics enable the Robostix to function
as an ideal board to implement low-level controllers or to be
used as an interface between the robot sensors and the linux
computer. In this particular case, all these interfaces were not
used since a unique serial port was used for the communication
with the robot. Nevertheless, these characteristics will be used
in the future with the integration of new sensors to the platform.
The three boards create a compact, cheap, and small embedded
computer suitable for applications that involve small robots. The
iRobot battery was used to power the embedded computer. A
dc/dc converter was used to stabilize the voltage of the iRobot
battery and bring it down to the required level.

With respect to the sensors, a global positioning system (GPS)
with a bluetooth interface was added to each robot as the main
localization sensor. The GPS is an off-the-shelf product de-
signed for cell phones and personal digital assistants (PDAs)
with meter precision. The only problem with this GPS was that
it gave us some trouble dealing with bluetooth interference be-
tween the different GPS. Since the quality of the GPS is not good
enough [19], we used a Kalman filter [25] to combine the local
odometry and the GPS measurements to obtain a decent global
localization. The local odometry was obtained from the wheel
encoders using the open communication protocol. The last sen-
sors are the three front contact sensors that come with the iRobot
platform (see Fig. 14). The actuators are the electric motors that
move the wheels in a differential drive configuration. Informa-
tion between the robots is exchanged over the bidirectional wifi
link using standard user datagram protocol (UDP) sockets.
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Fig. 15. Scheme that shows the integration of the micro linux computer with
the robot platform and its sensors. It also depicts the relation between the
different modules that implement the robot controller.

We have used the same multirobot architecture [16] that
we implemented in the simulations to easily integrate robot
modules with high-level algorithms such as our task allocation
algorithms. This fact combined with the implementation of a
player driver [5] to control the iRobot platform enabled us to use
the same software both in simulation (using Player/Gazebo) and
real experiments. After the allocation process has concluded, the
high-level algorithm passes a path to the robot controller. The
relation between the task allocation and path planner modules
is the same as shown in Fig. 5. In this case, the robot controller
is composed of two behaviors: obstacle detection and path fol-
lower. Both behaviors are combined using a DAMN architecture
as explained in Section IV. The first behavior is used to move the
robot backward when one of the contact sensors is activated. The
second behavior uses the Pure Pursuit algorithm [18] to follow
the received path. The votes from both behaviors are combined
by an arbiter that communicates the desired speed and turn rate
to the player driver (see Fig. 15). Then, the player driver commu-
nicates these values (as left and right wheel speeds) to the iRobot
platform by means of the serial port and using the open com-
munication interface. This player driver also reads the NMEA
data units from the GPS and the sensor values transmitted by the
iRobot platform, and transforms them to the data structures used
in the Player project. These data structures are combined in the
Kalman filter module to obtain an estimated global position that

Fig. 16. Team of robots running one of the experiments in an arena of
10 × 10 m2 .

Fig. 17. Results from the experiments in an arena of 10 × 10 m2 (mean of
the global cost). The BS and RTMA algorithms have been tested with two, four,
and six real robots, obtaining results similar to the simulated ones.

is used by the Path Follower module. One of the main advan-
tages in using software from the Player project with commercial
robots was that the development time was reduced significantly
since the low-level communication with sensors and actuators
was already implemented in the open-source project.

B. Results From Experiments

First, experiments with different number of robots but without
obstacles have been performed. Specifically, four experiments
have been run with two robots, six with four robots, and eight
with six robots. In total, 18 experiments have been run with
each of the two algorithms. All these experiments have been
performed in a 10 × 10 m2 arena (see Fig. 16) where the posi-
tions of the robots and tasks have been calculated at random.

The main objective of these experiments is to show that our
simulation results are still valid even when we use real robots,
with all the noise and imperfections. The results from the ex-
periments are shown in Fig. 17. It can be seen that these results
follow the same trend as the simulation results where the RTMA
algorithm obtains better results than the BS algorithm and the
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Fig. 18. Team of robots running one of the experiments in an arena of
15 × 23 m2 with obstacles. Visual interface used to follow the experiments.

Fig. 19. Results from the experiments in an arena of 15 × 23 m2 with ob-
stacles (mean of the global cost). The BS and RTMA algorithms have been
tested with two, four, and six real robots integrated in a complete robotic system
including the A∗ algorithm as path planner.

difference between both of them increases with the number of
robots and tasks.

On the other hand, experiments with obstacles have been
performed. The same testbed was used but with an area of
15 × 23 m2 (see Fig. 18). Since the best results are obtained with
the A∗ algorithm, only experiments with this path planner were
performed. Different number of robots were considered. Again,
four experiments have been run with two robots, six with four
robots, and eight with six robots. In total, 18 experiments have
been run with each of the two algorithms. All these experiments
have been performed in the described arena, where the positions
of the robots and tasks have been calculated at random avoiding
the areas with obstacles.

The results from the experiments are shown in Fig. 19. It can
be seen that these results obtain similar results to the ones ob-
tained in simulation, where obstacles were considered. It can be
observed how the difference between both algorithms increases
with the number of robots, and again, the RTMA algorithm ob-
tains better results than the BS algorithm. Finally, some videos
of the experiments can be viewed from [26].

VI. CONCLUSION

The initial formation problem has been stated and two dif-
ferent algorithms that solve this problem in a distributed way
have been explained. Two different types of formation have been
used. In the first one, the error in comparison with the optimal
solution seems to increase in a linear way with the number of
robots and tasks. In the second one, the error is kept slightly
constant. Also, in this second type of formation, the BS algo-
rithm obtains much worse results than with the first type of
formation. Therefore, the RTMA algorithm is considered more
robust to the type of formation since its performance remains
similar. This is possible due to the novel use of cost means to
improve the efficiency of the task allocation algorithm.

Simulations in a realistic environment have been presented
where the task allocation algorithm has been integrated with a
path planning algorithm and the execution of the tasks is within a
behavior architecture that combines a path following algorithm
with obstacle avoidance. When the path planner algorithm A∗

is used, it has been proven that the improvements applied in the
RTMA algorithm still obtain better results than the BS algo-
rithm in a complete robotic system that considers most of the
problems that are faced in a real application. However, when the
path planner algorithm used is RRTs, the differences between
both algorithms decreases. Therefore, we have shown that it is
important to evaluate the performance of the task allocation al-
gorithms considering the whole robotic system since a part of it
(the path planner in our case) can affect the performance of the
task allocation algorithm.

Finally, we have run experiments that show our results are
still valid even when we use real robots, with all the noise and
imperfections typical of real experiments.
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