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Summary 

A paradigm shift is emerging in system reliability and maintainability. The military and 

industrial sectors are moving away from the traditional breakdown and scheduled 

maintenance to adopt concepts referred to as Condition Based Maintenance (CBM) and 

Prognostic Health Management (PHM). In addition to signal processing and subsequent 

diagnostic and prognostic algorithms these new technologies require storage of large 

volumes of both quantitative and qualitative information to carry out maintenance tasks 

effectively. From the volumes of data that can be obtained today, information extraction 

has been a challenging task and organizing this information, so that it can be considered 

useful knowledge, is yet another level of abstraction. This not only requires research and 

development in advanced technologies but also the means to store, organize and access 

this knowledge in a timely and efficient fashion. Knowledge-based expert systems have 

been recently shown to possess capabilities to manage vast amounts of knowledge, but an 

intelligent systems approach calls for attributes like self-evaluation (feedback), self-

evolution (learning) and self-organization (maintenance) to build truly autonomous 

systems for CBM. Furthermore, an intelligent reasoner is required that can make 

judicious use of this knowledge and provide a substantial support in the decision making 

process. 

This research presents an integrated knowledge-based approach to diagnostic reasoning 

for CBM of engineering systems. A two level diagnosis scheme has been conceptualized 

in which first a fault is hypothesized using the observational symptoms from the system 

and then a more specific diagnostic test is carried out using only the relevant sensor 
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measurements to confirm the hypothesis. Utilizing the qualitative (textual) information 

obtained from these systems in combination with quantitative (sensory) information 

reduces the computational burden by carrying out a more informed testing. An Industrial 

Language Processing (ILP) technique has been developed for processing textual 

information from industrial systems. Compared to other automated methods that are 

computationally expensive, this technique manipulates standardized language messages 

by taking advantage of their semi-structured nature and domain limited vocabulary in a 

tractable manner.  

A Dynamic Case-based reasoning (DCBR) framework provides a hybrid platform for 

diagnostic reasoning and an integration mechanism for the operational infrastructure of 

an autonomous Decision Support System (DSS) for CBM. This integration involves data 

gathering, information extraction procedures, and real-time reasoning frameworks to 

facilitate the strategies and maintenance of critical systems. As a step further towards 

autonomy, DCBR builds on a self-evolving knowledgebase that learns from its 

performance feedback and reorganizes itself to deal with non-stationary environments. A 

unique Human-in-the-Loop Learning (HITLL) approach has been adopted to incorporate 

human feedback in the traditional Reinforcement Learning (RL) algorithm.  

Main contributions of this research are: 

1. Knowledge integrated CBM process model for automated diagnostic Decision 

Support System. 

2. A self-evolving Knowledgebase (KB) that learns from its performance over time 

and a structured approach to acquire and modify knowledge to populate this KB. 
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3. A dynamic case-based reasoning platform for simultaneously utilizing qualitative 

and quantitative information to carry out diagnosis with less computational 

burden. 

4. An Industrial Language Processing (ILP) technique to process industrial text, 

while retaining its domain specific information for effective diagnosis. 
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1.1  Research Context 

Productivity is the key element of growth in demand for any complex dynamical system 

such as aircraft, power plant, or an automobile. Increased productivity can be achieved 

through increased availability, but all systems are subject to failure modes that tend to 

reduce uptime. Issues of reliability and maintainability have taken center stage over the 

past years and new paradigms are emerging in order to extend the useful lifetime of 

critical systems and make them available when needed. Condition-Based Maintenance 

(CBM) is the technology that strives to identify incipient faults before they become 

critical, which enables more accurate planning for preventive maintenance. This research 

aims at enhancing the capabilities of CBM through integration of knowledge-based 

techniques to automate the experience accumulation and reasoning tasks for maintenance 

operations. 

1.1.1 The Problem 

Currently there is a very limited acceptance of on-line or fully automated CBM systems 

in the industry, which may be attributed to several reasons. The maturity level within 

complex technical systems may be too low or various diagnostic techniques might exist 

at a very abstract level, ranging from the maintainer's experience to advanced detection 

algorithms. Further, in the absence of a unified architecture it becomes a very time-

consuming and expensive investment to organize all the experts' knowledge in a coherent 

fashion before any positive effects are realized. CBM technologies so far have focused on 

individual components or subsystems of these complex systems and a lot of diagnostic 

knowledge has been developed in an ad hoc fashion. To be able to make better decisions, 
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while keeping in mind the overall performance of a system, it is desirable to devise an 

integration mechanism for the operational infrastructure of a complete system. Diagnostic 

knowledge related to different components must be organized under a common 

framework so that it can be accessed whenever required and be reused for other 

components in appropriate situations. It is also desirable to have intelligent control 

algorithms that close the control loop, via active feedback, for improvement through 

adaptation and learning. 

The need for an integrated system encompassing intelligent process operation stems from 

the growing complexity of current systems, as well as from the traditional expense, 

available computational resources, time constraints, and limited availability of human 

experts. The number of health-monitoring sensors has been increasing day by day, which 

consequentially requires a large amount of data processing. In several cases either a very 

simple processing is carried out or data analysis is not exhaustive. Similarly, often a lot of 

descriptive information is available from the operator observations or the maintenance 

logs. This information is text-based in most situations and is used by the experts for 

reference purposes only. Most of the current text processing techniques are very 

computationally expensive. Thus, given the limited processing capabilities and available 

time, a choice is usually made between the qualitative and quantitative information. In 

most cases only numerical data is processed and very few systems make use of textual 

information in automated ways.  
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1.1.2 Research Proposition 

This research is motivated by the fact that textual information carries important pointers 

for fault diagnosis and helps in localizing the fault before explicit diagnostic tests need to 

be carried out. These descriptions help experts recall a similar looking situation from the 

past that was associated with a known fault and corresponding diagnostic tests. Thus, the 

maintainers do not consider an exhaustive set of diagnostic tests but just the most 

probable ones. Further, careful observation shows that industrial text in general is semi-

structured and hence can be processed with relative ease and much less computational 

effort. Also, as the industry realizes the importance of standardized languages for 

communication and data interoperability, the use of simplified language is being 

promoted. This motivates an investigation in the direction of automatic text processing 

for semi-structured texts. Therefore, an attempt has been made to incorporate automatic 

text processing in addition to numerical data processing for improved diagnosis without 

increasing the computational intensity too much. This allows an integration of qualitative 

and quantitative information in two ways. First, the diagnostic process is carried out 

based on textual and numerical data on a common platform. Second, qualitative textual 

information is translated to numerical measures through methods like fuzzification 

techniques. 

In addition to including textual data in the process, a significant focus is on developing an 

evolving knowledgebase that can store the useful experience knowledge and learn from 

new situations in an autonomous fashion. The unique aspect of learning involves 

integration of human-in-the-loop by incorporating human feedback reward to accelerate 



5 

the learning activity. Supported by text processing capabilities in addition to numerical 

algorithms and an intelligent knowledgebase as its backbone, a reasoning system is the 

final piece that will result in a knowledge integrated decision support system for CBM. 

1.2 Significance of the Research 

This thesis is expected to set the framework for widely applicable software for the 

decision support operations of both military and commercial applications. Specifically, 

the maintainers of large-scale systems will benefit from an autonomous and self-evolving 

knowledgebase that incorporates information from both observational sources and 

physical measurements. This will provide not only a means to carry out a more informed 

testing to achieve better confidence, but also a reduced computational burden by avoiding 

unnecessary data processing from irrelevant sensors. 

Potential applications include autonomous CBM for large-scale systems such as airframe 

subsystems, shipboard systems, gas turbines, HVAC, UAVs, automobiles, and other 

industrial systems. A particular interest in this research is from the Department-of-

Defense (DoD). DoD’s new programs like Joint Strike Fighter (JSF) and Advanced 

Amphibious Assault Vehicles (AAAV) plan for automated CBM/PHM technologies, 

while other programs seek tools that aid in the reasoning component of the redesign of 

current systems. Similarly, there is a great interest from the industry to increase their 

thrust toward after-market services. Aircraft companies like Pratt & Whitney and GE are 

pushing for real-time remote diagnostic systems for the CBM of their engines and gas 

turbines. As shown in Figure 1.1, consider the example of a gas turbine operator at a 

remote location any where in the world who monitors the machine and observes some 
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symptoms of abnormal behaviors, e.g., vibrations, rising temperature, oil on floor, etc. 

and calls GE’s Technical Response Center in Atlanta to linguistically describe the 

problem (no readings or measurements are available). GE experts need to infer from their 

knowledgebase what the problem could be and then recommend an appropriate action. 

Currently there is heavy involvement of experts in this troubleshooting process. Experts 

infer the symptoms and use their knowledgebase to come up with likely causes of the 

abnormal behavior. Based on their personal experience they suggest maintenance actions. 

There is a need to automate this process by combining text-based initial diagnosis and 

previous experience to propose appropriate repair actions. 

Fielded Systems

“GE launched its Technical Response CenterSM in 1996 to speed up and improve 
engine maintenance. By monitoring engines in flight from the ground via satellite 
and other systems, GE engineers like Chris Henlein (seated) and Dave Brandel
can diagnose potential engine problems, plan for maintenance or overhaul, and 
resolve problems more quickly than ever before. In addition to improving safety 
and reliability, real-time remote monitoring and diagnostics can lower operating 
costs for airlines by reducing delays and cancellations.”
source: www.gepower.com

An Example

Maintenance Expert Fielded Systems
Sensor 

Measurements
Sensor 

Measurements

 

Figure 1.1 A real world example to show significance of the research. 

For such capabilities it is important to develop a system that collects and interprets the 

information from remote locations and reasons without explicit human expertise as far as 

possible. Thus, the human experience must be systematically stored in a knowledgebase 
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and a reasoning framework must be designed to carry out decision support for CBM 

autonomously. 

1.2.1 Integrating Knowledge into CBM: A Decision Support System 

During the lifetime of a machine, maintainers and experts seek and gather information 

that can help making decisions about everything from operation, support and 

maintenance to performance. The main goal of integrating knowledge into the CBM 

cycle is to automate this process of learning through computer systems and help decision 

makers by saving time and effort on remembering all experiences and retrieving relevant 

information. Even though AI strives to achieve complete autonomy and possibly replace 

human from the control loop, with the current state of the art this goal seems quite far 

fetched. Furthermore, while controlling mission critical systems a significant control is 

given to humans since in most of the cases convergence and optimality of AI systems can 

not be formally guaranteed. The only source of trust in these systems is through 

observation of their consistently good performance and improvement over time. In 

theory, after a significant learning over time, such systems can closely match human 

capabilities, given the learning model is fairly appropriate and all possible scenarios have 

taken place. Such assumptions are extremely optimistic and of little or no practical 

significance. Therefore, the best we can do in this scenario is to develop a Decision 

Support System (DSS) that aims to simplify human tasks by reducing the complexity of 

the problems or making the solution search faster and more relevant. These DSSs interact 

with humans and learn from their feedback to improve their performance. The human on 

the other hand interprets the DSS’s recommendations and takes appropriate action. In an 
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ideal case, learning should lead to positive improvement in DSS’s performance which in 

turn should result in user’s increased trust in DSS’s recommendations.  
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Figure 1.2 Transition from expert dependent legacy systems to knowledge based autonomous decision support systems for CBM. 
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1.3 Thesis Organization 

This thesis addresses various concepts that are used in building a knowledgebase and 

subsequently using it to perform reasoning tasks. The overall organization and 

connections between various chapters has been shown in Figure 1.3. After a brief 

introduction to Knowledge-based systems, Chapter 1 continues with highlighting their 

significance in the field of CBM. Various applications and current research programs 

have been cited that are relevant to the core theme of this thesis. 

Chapter 2 outlines the scope of this thesis. There are many frontiers that can be achieved 

to build a truly autonomous and intelligent maintenance system. Improvements can be 

made at the lowest level of data processing in diagnostic algorithms, at a middle level of 

knowledge storage and retrieval algorithms, or at the highest level of reasoning. This 

thesis mainly deals with improvements at higher levels where a customized framework 

has been developed to provide specifics for knowledge-based approach for decision 

support systems as applicable to engineering systems. The conceptual development of the 

integrated CBM has been briefly outlined and contrasted with conventional CBM 

practices. 

The two main aspects, while building a Knowledge-based system, are Knowledge 

Engineering and Knowledge Management. Knowledge Engineering, as introduced in 

Chapter 3, allows systematic acquisition and codification of knowledge into machine 

readable format. An approach specific to knowledge engineering for CBM 

knowledgebase has been identified and presented. This approach re-structures already 
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existing knowledge representation formats and connects them for systematic acquisition 

using various tools commonly employed in the industry. Finally, two example cases have 

been presented to show the application of this approach for knowledge engineering in 

CBM domain. 

After information has been collected and transformed into useful knowledge it must be 

codified using a suitable representation language and a knowledge model. The knowledge 

model assumes the task of carrying out reasoning based on current facts from the system 

and its own experience from previous situations. This thesis builds on a Dynamic Case-

Based Reasoning (DCBR) approach to develop a knowledge model. In Chapter 4, the 

dynamic component has been introduced in multiple stages of the conventional Case-

Base Reasoning (CBR) to build a DCBR architecture. This architecture has been further 

instantiated with an example for industrial systems that can be applied to fleet vehicles.  
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Figure 1.3 Thesis Organization. 
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To carry out computations, as required by the knowledge model, a suitable knowledge 

representation language must be adopted. Knowledge representation for numerical 

information is relatively simpler to codify, however the codification of qualitative 

knowledge is not as straight forward. Chapter 5 introduces a novel Industrial Language 

Processing (ILP) technique that can process simplified-english sentences into well 

defined knowledge structures for easier manipulation during reasoning tasks. The 

effectiveness of the approach has been shown with the help of results from processing 

dataset from automobile maintenance domain. 

Moving from conceptual development to implementation details, this thesis dives into the 

issue of intelligent knowledgebase and knowledge management in Chapter 6. The core 

of this thesis lies in an evolving knowledgebase that exhibits various attributes of 

intelligence. These attributes have been shown with the help of various examples that 

build upon the data used for this research. These examples have been supported with 

corresponding simulation results that show the effectiveness of the overall system in 

carrying out decision support for maintenance tasks. Apart from the backbone of 

intelligent knowledgebase, a transparent and easy to use user interface is required for 

trustworthy decision support systems. Therefore, a knowledge management system has 

been developed, in Matlab environment, which allows users to store data, access data, 

and observe the learning activity in the knowledgebase. 

Finally, Chapter 7 concludes the thesis by highlighting various contributions of this 

research and discussing the scope of future work.  
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2.1 Chapter Overview 

This chapter broadly outlines the scope of this thesis. First, it provides the motivation for 

enhancing CBM systems by highlighting the current practices and pointing out their 

shortcomings. Then, it delves into a conceptual development of knowledge integrated 

CBM process by defining its main components. This leads into the definition of 

objectives and goals of this thesis to define the overall scope. Improvements in CBM can 

be made at the lowest level of data processing and diagnostic algorithms, at the middle 

level of knowledge storage and retrieval algorithms, or at the highest level of reasoning. 

This thesis mainly deals with improvements at the higher level of reasoning for which a 

customized framework has been developed to provide specifics for a knowledge-based 

approach to decision support systems in an engineering environment. 

Contribution: Conceptual integration of knowledge into the CBM process 

2.2 Current State-of-the-Art 

Until recently, the concept of CBM has been primarily fault diagnosis, which involves 

fault detection, identification, and isolation [1]. Several methods have been cited in the 

literature, which assume automation in fault detection through continuous system 

monitoring and sensor data analysis. The basic philosophy behind most of these systems 

is to compare the baseline data from continuously monitored run-time data and expect to 

observe significant differences, indicating the presence of an incipient failure. Some of 

the practical examples of such systems include Engine Monitoring Systems (EMS) in 

aircraft, Health Usage and Monitoring Systems (HUMS), and Rocket Engine Monitoring 
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for Space Shuttle Main Engines (SSME) all use vibration data analysis for health 

monitoring as mentioned in a review paper by [2]. These systems have been rather 

limited in their scopes and have had a relatively narrow focus on a specific component or 

subsystem of the whole system. Further, there has been little communication for 

knowledge sharing and reuse for similar components employed in different locations. The 

inherent disadvantage of this approach is its limited coverage to preselected known 

failure modes only. Any new failure modes would require experts’ attention to carry out 

full-scale analysis and develop corresponding diagnostic methods. 

A major shift in philosophy was observed with the introduction of expert systems in the 

CBM community. Systems like model-based diagnosis and rule-based diagnosis focused 

on combining health monitoring for various fault modes under one umbrella and provided 

a comprehensive unit. However, the basic premise revolved around data analysis only as 

far as industrial systems were concerned. Later, AI-based systems like Case-Based 

Reasoning (CBR), Model-Based Reasoning (MBR), and Probabilistic Belief Networks 

(PBN) were also used to encompass the attributes of learning and adaptation. This 

significantly improved the state of the art over previous systems. However, most of these 

systems use only the quantitative information available from the sensors to automate the 

diagnosis task, and almost no or very little use of the qualitative information is made [3-

5]. On the other hand some of these systems only considered the qualitative textual 

information and ignored any sensor measurements [6, 7].  

Thus little or no effort was made to use both the textual and numerical information at the 

same time. The non-availability of computationally affordable Natural Language 
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Processing (NLP) techniques and the difficulty in building a common platform to process 

heterogeneous data have hindered the use of such a hybrid system. The integration of 

tasks through an intelligent knowledge-based system architecture would lead to improved 

system availability and reliability by increasing interaction via information sharing and 

coordination for timely preventive maintenance [8]. 

2.3 Key Drivers for CBM Enhancements 

A Paradigm Shift - A paradigm shift is emerging in system reliability and 

maintainability (Figure 2.1). The military and industrial sectors are moving away from 

the traditional "breakdown and scheduled maintenance" philosophy and adopting 

concepts referred to as Condition-Based Maintenance (CBM) and Prognostic Health 

Maintenance (PHM).  The emphasis is on providing maintenance services to increase 

reliability and uptime rather than developing entirely new systems. This requires constant 

condition monitoring and assessment of system health before catastrophic failures 

actually occur.  

DOD Vision for CBM+ - The Big Picture: Furthermore, a newer philosophy of CBM+ 

was rolled out by the Department of Defense (DoD) in which logistics information was 

integrated with CBM/PHM systems to carry out timely maintenance. It introduced 

concepts like capabilities for remote sensing and analysis, portable maintenance aids, and 

equipment health and usage systems installed on multiple platforms [9-11].  
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Figure 2.1 Paradigm shift in industrial maintenance. 

Increased system complexity and the need for near real-time decision-making capabilities 

require extensive automation for maintenance tasks. Over the years a lot of analytical, 

operational, and structural knowledge has been generated in an ad hoc manner, which 

must be properly organized in a modular fashion so it can be shared and reused for 

similar components of a system. As shown in Figure 2.2, in maintenance operations 

several factors such as logistics, maintenance schedules, and Mean-Time-To-Repair 

(MTTR) should also be included in addition to actual data processing and decision-

making algorithms for a successful and timely CBM [12]. Along with several data 

management techniques that have been developed in recent years, it is equally important 

that a robust integration mechanism be devised that integrates the tasks of data 

acquisition, information extraction, knowledge organization, and reasoning. The goal is 

to build an automatic diagnostic framework for a complete system by using the maximum 

available information without any duplication as far as possible.  
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Figure 2.2 CBM+: A maintenance centric approach to CBM adapted from [13]. 

2.4 An Approach to Knowledge Integration into CBM 

The main objective of this research is to develop a knowledge-integrated architecture for 

diagnostic reasoning and knowledge management for the CBM of engineering systems. 

Figure 2.3 shows the modified architecture of the CBM+ by integrating an intelligent 

knowledgebase into it. This knowledgebase supports a reasoning system that narrows the 

choices for the required diagnostic-data processing algorithms and helps in decision 

making based on past experiences stored in the knowledgebase. Another important aspect 

of this knowledge-based architecture is experience accumulation and reuse across 

multiple systems in a fleet. Various modules required to accomplish such a system are 

described next.  
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Figure 2.3 Knowledge integrated CBM+ architecture. 

Figure 2.4 defines the research goals driven by the desired attributes in a knowledge-

integrated CBM system. This research specifically promotes the use of experience-

derived knowledge, accumulated over time, in an intelligent fashion that will help in 

automating the maintenance tasks as well as act as a decision support system by 

maintaining the corporate knowledge for later reuse. This system will have the 

capabilities to learn from feedback and adapt itself to changing environments. To 

accomplish these attributes, three key modules must be developed: 

1) A knowledge management system for storing and accessing the knowledge 

2) A knowledgebase with the attribute of intelligence, and 
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3) A reasoning system to assess the current system state and propose suitable 

solutions 

As depicted in this figure, these three modules form the main pillars for the knowledge-

based architecture. These modules are briefly discussed in the sequel. 

Knowledge Integrated 
Architecture for CBM 
of  Industrial Systems

System-of-Systems 
Architecture

LRU to Asset Level

Hybrid Architecture

Textual and Numerical 
Data Processing 

O
bj

ec
tiv

e
D

es
ire

d 
A

ttr
ib

ut
es

Diagnostic Knowledge 
Management System 

(DKMS)

Store–Organize–Access

Dynamic Case-
Based Reasoner 

(DCBR)

Decision Support

Self -Evolving and 
Self -Organizing 

Knowledge-base 

Knowledge

Autonomous and 
Self -Adapting

Learning via Feedback

Industrial Language 
Processing (ILP)

Qualitative Information 
processing capability

R
es

ea
rc

h 
G

oa
ls

 

Figure 2.4 Key drivers and corresponding research goals: an overview. 

2.4.1 Diagnostic Knowledge Management 

Reusing existing systems in a dependable fashion without the need for extensive re-

engineering is a key problem currently faced by industry. In response to this problem the 

corresponding desired attribute is a unified System-of-Systems (SoS) architecture for the 
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diagnostic health management of a complex system. A system, as referred to herein, can 

consist of several subsystems that may themselves consist of other subsystems or 

components, as depicted in Figure 2.5.  
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Figure 2.5 System-of-systems hierarchy. 

The components of an SoS are generally existing systems, consisting of hardware and 

software, each potentially equipped with separate health management and maintenance 

techniques. Since these techniques are employed independently of individual subsystems, 

an SoS diagnostic architecture is not just a large complex distributed system, but rather 

one whose modules: 
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- fulfill valid purposes in their own right and continue to operate to fulfill those 

purposes if disassembled from the overall system, and  

- are managed (at least in part) for their own purposes rather than the purposes of 

the whole. 

However, well-coordinated information sharing and regular interaction among 

subsystems can improve system availability and reliability. This requires an integration of 

tasks through an intelligent system architecture for preventive maintenance. 

This integration of knowledge from different subsystems imposes two requirements: 

1) Since this knowledge cannot be abstracted to a fixed formal structure, there must 

be a hybrid knowledgebase that can accommodate knowledge in different forms.  

2) A knowledge management system must exist that acts as an interface for 

knowledge transaction in the sharing and reuse of varied knowledge types,   

Driven by these requirements, one of the goals of this research is to develop a Diagnostic 

Knowledge Management System (DKMS) that helps store, organize, and access the 

diagnostic techniques including signal processing, feature extraction, and fault 

classification methods. This module acts as an interface between various modules of the 

proposed architecture along with a user interface to provide the capability to examine, 

modify, and utilize this knowledge externally. 

2.4.2 Self-Evolving Maintenance Knowledgebase 

The next goal of this research is to develop a knowledgebase for CBM techniques that 

can accommodate knowledge in different forms (descriptions, data, algorithms, tests, 
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models, etc.). A significant amount of structural, operational, and analytical knowledge 

has been developed over the years while these systems were built, tested, and maintained. 

Typically, components or subsystems of a large system are studied individually before 

relevant analytical techniques are developed. Even though these subsystems may be 

different, several constituent components share various structural and operational 

similarities. There is a need to organize this knowledge in such a manner that it can be 

easily shared and reused for similar components of a large system. Rather than re-

developing this knowledge, minor adaptations should be able to save time and effort of 

the analysts. Thus an easily accessible knowledgebase containing these techniques must 

be created. Further, there must be a learning component in the knowledgebase that helps 

improve the performance over time. This process of self-evolution involves monitoring 

activities and their results to make internal adjustments for the next epoch [12]. 

Therefore, another goal of this research is to develop a self-evolving knowledgebase that 

learns from its diagnostic performance assessed through external feedback and 

reorganizes itself based on the temporal recency of the usage of its constituent knowledge 

capsules in order to adjust to the changing environment of the fielded systems. 

2.4.3 A Decision Support System Based on Higher Level Reasoning 

The third goal of this research is to develop a higher-level reasoning paradigm to 

effectively utilize the knowledge contained in the knowledgebase. An alternative 

approach to computationally intensive classical modeling techniques is to reuse higher-

level information acquired from previous experience for new but recurring situations. 

This approach automates the troubleshooting process to a large extent by providing a 
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quicker decision support system using an extensive knowledgebase and reduced 

computations. Further, it must be realized that from the majority of these systems 

information is available in two different forms, qualitative (textual) and quantitative 

(numerical). In most cases only numerical information is used for diagnostic purposes 

even though qualitative observations can be very useful in localizing the fault. This is 

primarily because most text processing techniques from the AI domain are not 

computationally tractable. However, the semi-structured nature of industrial texts can 

help alleviate this problem. 

Therefore, another goal of this research is to develop a method to utilize qualitative 

(textual) information available from the systems along with the conventional sensory 

(quantitative) measurements. This qualitative information facilitates a higher-level 

reasoning for localizing the faults, thereby shrinking the search space and consequently 

reducing the computational burden from exhaustively analyzing numerical data. The use 

of simplified language has been assumed in the industrial texts. Simplified language uses 

reduced grammar and a  minimal number of words to express a situation [14]. The 

concept of simplified language is explained in detail in later sections. Finally, to carry out 

the reasoning tasks using knowledge from the knowledgebase and data from the system, a 

formal reasoning framework must be developed. Thus the corresponding goal is to 

develop a framework for diagnosis based on Case-Based Reasoning (CBR). This 

facilitates a hybrid reasoning system that can accommodate knowledge in multiple forms 

and that can perform higher-level reasoning. Conventional CBR has been expanded to 

DCBR that generates strategies for accessing relevant knowledge and to carry out 

diagnostic reasoning based on past experiences.  
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3.1 Chapter Overview 

A basic step to build a knowledgebase is to collect information that will constitute the 

knowledge. This chapter describes an introduction to knowledge engineering concepts 

that allow systematic acquisition and codification of knowledge into a machine readable 

format. Further, a knowledge engineering approach, specific to the CBM knowledgebase, 

has been identified and presented. This approach structures already existing knowledge 

representation formats and connects them for systematic acquisition using various tools 

commonly employed in the industry. Finally, an example case has been presented to 

show the application of this approach for knowledge engineering in the CBM domain. 

Contribution: A structured approach to acquire and modify knowledge to populate the 

knowledgebase. 

3.2 Introduction 

Before a knowledgebase can be built, information must be gathered and modified in a 

structured manner so that it can be stored in a coherent format for easy storage and 

access. This task is formally accomplished through Knowledge Engineering (KE). KE is 

the technique of collecting, consolidating, structuring, and transforming relevant 

information into a computer-comprehensible format, to prepare the basic building 

material for intelligent systems: Expert Systems, Knowledge-based Decision Support 

Systems, Expert Database Systems, etc. Different systems generate data in different 

forms and the information is extracted in different ways depending on the task at hand. In 

other words, KE is an attempt to imitate the socio-cognitive process where knowledge is 
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produced by human beings. It structures information according to our understanding of 

how human reasoning and logic work. Since 1980s, Knowledge Engineers have compiled 

a set of principles and guidelines based on various experiences they gained in developing 

knowledge-based Systems. Figure 3.1 shows various steps involved in KE. KE involves 

two main tasks namely Knowledge Acquisition and Knowledge Codification. In this 

thesis, we have further subdivided these tasks into specific activities suitable for CBM, as 

shown in Figure 3.2.  

Codification: While building a knowledgebase, the most important factor to consider is 

whether the knowledge is codifiable, i.e. can it be codified in a manner so that there is no 

significant information loss on decoding it and the process cost is justifiable. A detailed 

discussion on codifiability is presented in Section 3.4. 

Acquisition: Once the knowledge is declared codifiable, information must be acquired 

from the system. There are different forms of knowledge, and hence an appropriate 

approach is required for acquisition. There is no general methodology that can be used 

for all types of tasks. However, various categories have been defined and the task at hand 

should be first categorized into one or more of these categories and then the 

corresponding guidelines should be used with necessary adaptations. Similarly, there are 

different types of experts and expertise, and hence different ways of representing 

knowledge, which can aid acquisition, validation, and re-use of knowledge. Various 

methods have been devised that must be used to increase the efficiency of the acquisition 

process. In some cases the acquisition process can also be guided by the task objectives 

(goal-oriented acquisition). 
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Figure 3.1 Knowledge Engineering: Task planning and execution adapted from [15]. 
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Figure 3.2 Main tasks involved in Knowledge Engineering (KE). 
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There are different levels of knowledge abstractions, namely noise, data, information, 

knowledge and wisdom. A brief discussion of these abstractions is  provided in Appendix 

A. Keeping this hierarchy in mind, a knowledgebase should not be confused with a 

database. Unlike databases, a knowledgebase also contains attached semantics about how 

various data are related and provide useful information when brought together in different 

orders and combinations. 

3.3 Knowledge Acquisition 

For knowledge-based diagnosis of industrial systems two types of information must be 

gathered to create useful knowledge - Diagnostic Data and Experience (Figure 3.3).  

Knowledge 
Acquisition

Diagnostic 
Data

Experience

 

Figure 3.3 Sources of information for knowledge acquisition. 

Useful knowledge refers to the abstraction of information structured in a way such that 

inferences about the health of a system can be drawn in a consistent manner. It should be 

possible to: 

- structure, organize, and store information for easy and timely access, 

- add more information as time passes by, 
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- extend the current knowledgebase to include more types of information, and 

- reason about situations in a transparent and intuitive manner. 

These two sources for knowledge acquisition have been further classified into their 

respective categories and are discussed next. 

3.3.1 Diagnostic Data Collection 

Data represent the facts about the system that can be gathered by examining it. 

Diagnostic data can be further divided into two types (see Figure 3.4): 

Diagnostic 
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Structural 
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Operational 
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Baseline 
Data

Runtime 
Data  

Figure 3.4 Types of data to be collected for building diagnostic knowledgebase. 

Structural Data: Different component parts of the system are identified and their 

specific structural organization is stored as its structural model. Information about the 

location of each component and its relative proximity to other neighboring components is 

crucial in predicting how a local failure in one component may propagate though the 

entire system. Knowledge about the component interconnections is also important since 

the type of connectivity may sometimes restrict certain degrees of freedom of some 
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component and hence affect its operational modes. Structural data mainly consist of the 

types of components, sensors, their locations, dependencies and interconnections, etc. 

Structural data are usually collected at the beginning while studying the system. In most 

cases, once collected, there are not many modifications to this dataset unless a part of the 

system changes. However, in the beginning, only a reduced dataset may be obtained from 

the system for quick deployment, and then additional data may be added to this database 

as time passes and more detailed information is desired. 

Operational Data: Unlike structural data, operational data are more dynamic and are 

collected while the system is in operation. This data mainly consist of sensor 

measurements and operator observations. The characteristics of operational data may 

change over time due to changes in the environment or changes in the system itself (due 

to wear and tear in the system, or component replacement). For diagnostic purposes, 

operational data are further subdivided into two parts - Baseline Operational Data and 

Runtime Operational Data (see Figure 3.4). For a healthy system, both baseline and 

runtime operational data should be similar in a statistical sense. Some minor drifts may 

occur between the two due to changes in system characteristics over time. In such cases, 

fresh baseline data should be collected for recalibration. Any significant deviation 

between baseline and runtime data within unexpectedly low time spans indicates the 

possibility of a failure. With further analysis of runtime data, tasks of fault detection, 

isolation, and identification are carried out.  

Operational data can also be analyzed to extract some higher level information about the 

system. For instance, statistical distribution of various faults, frequency of faults, and 
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fault characteristics can be deduced from data collected over a long period of time. These 

data represent a collective summary of the behavior of a system or a fleet of similar 

systems over a long period of time. 

3.3.2 Experience Accumulation 

Experience represents the knowledge deduced from data/information collected over a 

period of time from one system or a fleet of similar systems. Experience can be 

accumulated in two forms - records of operational data and cause-effect associations 

explaining the behavior of the system (Figure 3.5). 

Experience

Records Associations  

Figure 3.5 Experience is accumulated as historical records and cause-effect associations. 

Eventually, experience tells about how to use data to perform reasoning tasks. This 

information is either gathered from the experts or it is learned over time. For instance, 

How to interpret a fault symptom and what diagnosis to perform? In computational terms, 

it can be viewed as connections between various data entries and their corresponding 

weights that offer support while computing a decision metric.  

Experience accumulation includes methods for identifying, collecting, documenting, 

packaging, storing, generalizing, reusing, tailoring, and evaluating the experience [16]. 

An important attribute of the experience accumulation is its temporal dependence. First, 
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the records should be prepared and accumulated over a long period of time before a 

statistically meaningful set of experiences can be constructed. Next, various data mining 

and machine learning techniques can be used to consolidate these records and extract 

useful knowledge from it. Therefore, learning is another attribute that must be included in 

experience accumulation. Case-based reasoning has been a useful tool for accomplishing 

the task of experience accumulation [17]. It has an added advantage of facilitating the 

reuse of this experience in an automated fashion. This thesis uses CBR as the learning 

backbone of the maintenance knowledgebase. A detailed discussion on CBR is included 

in Chapter 4. 

3.3.3 A Systematic Approach to Knowledge Acquisition 

For both kinds of knowledge acquisition a very methodical approach has been developed 

over the years, which systematically studies the system and identifies what information 

must be collected to carry out health maintenance tasks. Initially, Failure Modes and 

Effects Analysis (FMEA) was designed to improve the reliability of the system. FMEA is 

a methodology for analyzing potential reliability problems early in the development cycle 

where it is easier to take actions to overcome these issues, thereby enhancing reliability 

throughout design. FMEA is used to identify potential failure modes, determine their 

effect on the operation of the product, and identify actions to mitigate the failures. A 

crucial step in FMEA is anticipating what might go wrong with the system. Although, 

anticipating every failure mode is not possible, an effort must be made to formulate as 

extensive a list of potential failure modes as possible. Later, FMEA was enhanced by 

including criticality analysis to rank various failures in order of their frequency of 
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occurrence and severity to prioritize the maintenance attention in the case of multiple 

simultaneous failures. The next section discusses this approach in detail with a systematic 

description of the steps that must be carried out to collect, organize, and acquire relevant 

information. 

3.3.3.1 Failure Modes and Effects Criticality Analysis 

FMECA is one of the earliest methods for failure analysis, developed by the US military 

in 1949. The main goal of a Failure Modes and Effects Criticality Analysis (FMECA) 

study is to relate failures to their root causes. Towards this goal, it addresses issues of 

identifying failure modes, their severity, frequency of occurrence, and testability. It also 

identifies fault symptoms that are suggestive of the system’s behavior under fault 

conditions and the sensors required to monitor and track the system’s fault symptomatic 

behaviors [1]. Ideally, FMECA must be performed during the initial and conceptual 

design phases of the system development to make sure that all possible failure modes 

have been considered and the corresponding failure mitigation strategies have been 

implemented. If successfully implemented, this would avoid costly re-engineering at a 

later date.  

Advanced FMECA studies may recommend algorithms to extract optimum fault features 

or condition indicators, detect and isolate incipient failures and predict the remaining 

useful life of critical components [1]. FMECA studies aim to provide the designer with 

tools and procedures that will lead to a systematic and thorough framework for design. 

One can identify two approaches to FMECA: 
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Bottom up approach to FMECA: As discussed in Chapter 1, a systems approach leads 

to a very comprehensive coverage with respect to failure modes associated with different 

components in a system. Each component on the lowest level can be studied one-by-one 

and then the study is carried out at subsystem level and so on. This approach is 

exhaustive and hence the analysis is “complete” since all components are studied. This is 

suitable for cases where the system is already in operation and a post implementation 

analysis is required to improve its performance and reliability. FMECA for maintenance 

tasks lies in this category. However, instead of studying each and every component in a 

system, a more intelligent choice can be made by only studying those components that 

are more susceptible to failures and hence more critical. A detailed discussion is given in 

the next section. 

Top down approach to FMECA: During an early design phase of a system, before a 

definite structure has been decided, a detailed function oriented study is carried out to 

ensure that all functions have been considered and appropriately included in the plan. 

There, it is important to know how a given system may fail in carrying out these 

functions. Functional failures with significant effects are considered with higher priority 

in the analysis and hence this study is more selective. The top down analysis will not 

necessarily be complete as less important areas are left out from the analysis. 

Alternatively, the top-down approach may be used on an existing system to focus only on 

the problem areas. 
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In the published literature there are several categories of FMECA studies that can be 

employed at various stages of an industrial system. A broad classification of different 

FMECAs is: 

- System - focuses on system level functions. 

- Design - focuses on components and subsystems individually. 

- Process - focuses on manufacturing and assembly processes. 

- Service - focuses on service functions like maintenance operations. 

- Software - focuses on software functions for automation processes. 

3.3.3.2 FMECA for CBM 

CBM lies under the Service category of FMECA, where systems are already in operation 

and adequate information must be acquired to carry out effective maintenance tasks. For 

CBM, FMECA generates the template for diagnostic algorithms. The FMECA 

framework may be integrated into existing Supervisory Control and Data Acquisition 

(SCADA) or other appropriate data management and control centers to provide the 

operator with a convenient access to information regarding failure events and their root 

causes [1]. FMECA studies require the contribution of domain experts, reliability 

engineers, monitoring and instrumentation specialists as well as input from designers 

charged with the responsibility to develop a diagnostic and prognostic reasoner. Enabling 

technologies for FMECA design begin with simple spreadsheet type tables accompanied 
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by explanation modules to more sophisticated tools such as rule-based expert systems, 

decision trees, and Petri nets, among others. Some of the main benefits of FMECA are: 

- Early identification of potential failure modes to employ preventive actions. 

- Identifies product/process deficiencies and prioritizes corrective actions. 

- Captures engineering/organization knowledge  

o Documents risk and actions taken to reduce risk  

- Provides focus for improved testing and development. 

- Minimizes late changes and associated costs. 

- Improves product/process reliability and quality. 

- Increases customer satisfaction and confidence in automated maintenance.  

FMECA is an enhancement of the FMEA methodology in which a criticality analysis is 

performed. Criticality analysis involves assigning a frequency to each failure mode and a 

severity to each failure effect. Criticality is a function of the severity of the effect and the 

frequency with which it is expected to occur. The purpose of this analysis is to rank each 

potential failure mode identified in the FMEA study according to the combined influence 

of severity classification and its probability of occurrence. Severity categorizes the failure 

mode according to its ultimate consequence. Figure 3.6 shows a stepwise approach to 

FMECA for CBM.  



 

40 

Background Study

System Analysis

Failure Analysis

Review & Feedback

Corrections

FMECA

 

Figure 3.6 A stepwise approach to FMECA study for CBM systems. 

STEP 0 - Background Study: Before starting the actual FMECA analysis, the 

background study identifies two important issues. First, it defines the system to be 

analyzed. The system definition includes: 

a) Scope of analysis: decide on what parts and components of the system will be 

included in the study. 

b) Functionality: decide which system functions will be included in the analysis. List 

of selected functions will depend on mission objectives for the system. 

c) Operational modes: decide which operational modes will be included. Different 

operational modes have different priorities depending on mission requirements 

and environmental conditions. 

Second, it identifies the sources for information collection. Information and data exist in 

variety of forms. All documents including system engineering drawings, schematics, 

specifications, component lists, functional descriptions, design documents, reliability 

data, maintenance manuals, maintenance logs, etc. should be collected. In addition, 
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interviews should be conducted with operations and maintenance personnel, process 

experts, designers, and component manufacturers to acquire as much information as 

possible. Interaction with component manufacturers can often provide valuable 

information based on feedback they get from a variety of customers who use their 

products. Once all this information is collected, the next step is to study the system. 

STEP 1 - System Analysis: the system level analysis can be carried out at two levels – 

Structural and Functional. Given a system, a system model is first created as a pictorial 

representation, which shows the interconnections between the physical components. Such 

models are usually available as schematic descriptions or block diagrams of the system 

from the technical documentations like maintenance manuals. Using this structural 

model, structural decomposition of the system is carried out to identify all critical 

components of the system. Then a list of priority components is prepared. Next a 

structural body diagram is created using this list of priority components followed by a 

functional block diagram or functional model of the system. This approach is depicted in 

Figure 3.7. 
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Figure 3.7 System analysis steps for FMECA study. 



 

42 

First, a structural analysis is carried out. The system is divided into smaller units or 

sections that are usually considered based on functional descriptions. The level of detail 

depends on the objectives of the study. The system is divided into subsystems and 

components to create a hierarchical tree diagram to show the structural decomposition of 

the system. This yields an exhaustive list of components from which more critical 

components must be identified and selected for further analysis (Figure 3.8). Information 

about the location of each component and its relative proximity to other neighboring 

components is crucial in predicting how a local failure in one component may propagate 

through the entire system [18]. This analysis starts with identifying structural links 

between various components of the system by creating a structural block diagram that 

includes, preferably; only the selected components (see Figure 3.9). 

 

Figure 3.8 Hierarchical tree diagram to show structural decomposition of a system [19]. 
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Figure 3.9 Structural block diagram to show structural interrelationship between different components. 

Next, a functional study may be conducted to add finer details to the analysis. The 

functional model of the system is constructed by traversing the partially connected graph 

represented by the structural block diagram and including the corresponding function for 

each component from the database (Figure 3.10).  
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Figure 3.10 Functional block diagram adds input condition and sensor information along with the function 
of the component. 
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This model allows explaining the exhibited behavior of the system in terms of the 

functions performed by each component. Any anomaly in the system response can be 

reasoned about and expressed in terms of faulty operational mode(s) of one or more 

components. In addition to the structural information about the system, this analysis also 

generates a list of all sensors employed near the critical components. This information is 

particularly helpful in selecting the sensors when numerical data analysis must be carried 

out to confirm the presence of a fault. For illustration, the functional model for the above 

structural model can be derived by adding extra details to its structural block diagram as 

shown in Figure 3.11. 
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Figure 3.11 Functional block diagram of the system. 
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This analysis could grow very complex given the increased complexity of industrial 

systems. Therefore, it is advisable to carry out system analysis at as high level in the 

system hierarchy as possible. Later, if a finer resolution is desired for some particular 

subsystem or component in particular, they can be further expanded to include lower 

levels. This top down approach saves on effort and money compared to a complete 

analysis, which may not be even required. 

STEP 2 - Failure Analysis: The next step is the core of FMECA study and identifies the 

critical failure modes that a system can be subjected to. It is extremely crucial to 

understand the physics of failure mechanisms for a good CBM/PHM system design. 

However, in several cases, a statistical account of frequency of occurrence from historical 

data provides valuable information for reasoning through expert systems. A systematic 

collection of data and algorithms for consistent inferences is extremely important in 

designing automated maintenance systems. The most common approach followed for 

such tasks is to prepare FMECA worksheets that consist of several columns describing 

the necessary details about each failure (Figure 3.12).  

 

Figure 3.12 A generic FMECA worksheet with most relevant columns. (Adapted from various sources) 



 

46 

These worksheets are a valuable resource and must be, therefore, carefully prepared from 

the point of view of building a knowledgebase. Apart from the description columns, the 

core columns that represent the FMECA philosophy are failure rate and severity ranking. 

In some cases additional columns, like detectability, and replaceability are added to get 

more specific information.  

Frequency - For frequency of occurrence different classifications can be used. Figure 

3.13 shows two such possible classifications.  

LikelyProbable

Occurrence

OccasionalUnlikely
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Category 3
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LikelyProbable

Occurrence

OccasionalUnlikely
Category 4

Greater than 1000

Category 3

from 100 to 1000
Category 2

from 10 to 100

Category 1

less than 10

LikelyProbable

Occurrence

OccasionalUnlikely
Category 4

Greater than 1000

Category 3

from 100 to 1000
Category 2

from 10 to 100

Category 1

less than 10

(a)
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Figure 3.13 (a) A four category classification. (b) An alternative frequency of failure classification. 

First, a four category classification distinguished on the basis of Mean Time Between 

Failures (MTBF) ranges has been shown. As an example, for a particular failure mode, 

based on a MTBF of 10,000 hours, the four categories may encompass the ranges shown 

in Figure 3.13(a). The probability of a fault occurrence may be based on a classification 

category number from 1 to 4 (or possibly more divisions) with 1 being the lowest 
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probability to occur. Separation of the four classes is determined on a log power scale.  

The classification number is derived based on failure occurrence for the particular event 

standardized to a specific time period and broken down into likely, probable, occasional, 

and unlikely. In another example, as shown in Figure 3.13(b), a five category 

classification shows frequency of failure per year.  

Severity – The next column is severity that categorizes a failure mode according to its 

ultimate consequence. The severity of a failure mode is assigned based on its worst 

possible consequence considered on the overall system. Several factors can be included 

to assess severity, but the most important ones are appropriate system operation, fault 

propagation, quality delivery, and operation safety. There can be different ways to 

classify severity as appropriate, for example a possible class breakdown may be as shown 

in Figure 3.14. 

Catastrophic Critical

Severity

Marginal Minor
Rank 10

a failure that results 
in death, significant 
injury, or total loss 
of equipment

Rank 6-9

a failure that may 
cause severe injury, 
equipment damage, 
and termination

Rank 3-5

a failure that may 
cause minor 
injury, equipment 
damage, or 
degradation of 
system 
performance

Rank 1-2

a failure that does not 
cause injury or 
equipment damage, 
but may result in 
equipment failure if left 
unattended, down 
time, or unscheduled 
maintenance/repair  

Figure 3.14 An example of severity classification [1]. 
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Detectability - detectability or testability represents the ranking of failures based on the 

likelihood that the failure will be detected using the current configuration of the CBM 

system. Those failure modes that can not be observed are excluded from the candidate 

failure mode set. If the excluded failure mode is critical, additional sensing capabilities 

may be required otherwise no immediate action is needed. Assessing detectability may 

not be easy, as failures with low detectability may not show up until failure postmortem 

is carried out, and then a detailed analysis must be carried out to rank the detectability 

with the existing infrastructure. For instance, this parameter may consider two factors. 

One is related to ‘how detectable the symptoms that a failure produces are’. Common 

symptoms are noise, vibration, or some other specific operational behavior, that can be 

associated to this type of the problem. The second factor is related to the time window 

available before the breakdown actually occurs. An easily detected failure with a long 

warning period should be given a higher ranking and an undetected failure or a detected 

one with imminent failure should be ranked low on detectability scale. The main 

implications of detectability include conditions with multiple simultaneous failures or 

failures under high noise environments where a more critical failure may go undetected. 

Better signal preprocessing and de-noising techniques are employed to improve the 

detectability of the failures. Once such rankings are generated they can be included in the 

criticality analysis by preferential weighting methods. For instance, a critical failure with 

a low detectability may be given a higher priority than a non-critical failure with high 

detectability. Based on the situation at hand and available detectability assessment 

capability a suitable ranking method may be coined as illustrated in Figure 3.15.  
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Figure 3.15 An example of detectability ranking method [19]. 

Similarly, latter columns in the FMECA worksheets can include possible actions to 

correct faults, and other remarks or information not yet covered in other columns.  

STEP 3 – Risk Ranking and Review: once the system analysis is complete, overall 

metrics are computed to assess the overall risk before assigning priorities to different 

failure modes. Two of the most common methods used for this purpose are: 

- Risk Matrix, and 

- Risk Priority Number (RPN). 

Risk matrix is plotted between two factors, namely the frequency of occurrence and the 

severity of the failure, as shown in Figure 3.16. More sophisticated measures or metrics 

can be designed to include more factors. One of the most commonly used measures is 

Risk Priority Number (RPN). There is no fixed definition of RPN; rather it is defined 

based on expert opinions. The simplest of RPN is a product of the ranks of the severity 

(s), Frequency of occurrence (o), and detectability (d). This definition of RPN requires all 

rankings to be done on a comparable scale, e.g. 1-10. Lower RPN indicates lower risk 
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from that fault. Other definitions of RPN can be used as suggested by the experts, e.g. 

assigning different weights to different parameters. 

High Risk

Low Risk

Medium 
Risk

High Risk

Low Risk

Medium 
Risk

 

Figure 3.16 Risk matrix to assess risk ranking. 

After assessing the RPN, a review team should decide if the system is acceptable and 

how it can be improved to reduce the risk, by either improving the parameters, like 

detectability using additional sensors, and/or better detection algorithms, or by making 

the system more robust by correcting the major sources of these failures thereby reducing 

the frequency or the severity of the faults. 

STEP 4 – Feedback and Corrections: Once the FMECA study has been conducted, the 

knowledge-based system can be built and deployed for use in the field. It is extremely 

important to keep monitoring the performance of the deployed system and measure any 

inefficiencies and inaccuracies during its operation. These deficiencies may arise due to 

two main reasons: 
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- Some critical failure modes went unnoticed or were not considered as critical 

enough while FMECA was being conducted. Such failures must be included in 

the study whenever discovered. 

- Change in the external environment or the system itself results in new failure 

modes that should be accounted for and included in the FMECA study. 

Therefore, a continuous feedback is required to identify any such deficiencies that should 

be corrected as soon as possible. In general an FMECA document is a running document 

that should be continuously updated.  

FMECA is a very structured and reliable method for evaluating systems and at the same 

time it is very easy to understand and learn. It breaks down the complex systems into 

smaller modules and makes the analysis much simpler by varying the focus on different 

modules in order of their criticality. However, the whole process can still be very time 

consuming and tedious and therefore, it is important to make use of any existing 

information available from the manufacturers, operators or the domain experts. Also this 

study is not particularly suitable for simultaneous multiple failures and more specialized 

techniques need to be used to extend the basic FMECA methodology. 

After acquiring the required information, the next important step is to codify this 

information in a form that can be accessed and reused for reasoning tasks. The next 

section discusses codification of knowledge. 
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3.4 Knowledge Codification 

A very important concept in implementing an automated reasoning system is the 

Codifiability of the knowledge. Codifiability is the ability to make tacit knowledge 

explicit using formal written documents [20]. Knowledge codification involves turning 

knowledge, or parts of it, into messages that can be processed as information [21]. 

Thereafter, the codified knowledge exists in the form of codes or messages expressed in 

symbols. For these symbolic representations to be useful in a general sense, both the 

representational rules (grammar) and the notation (vocabulary) must be stable, and to 

some extent, standardized. A consensus must be established between the codifiers and the 

interpreters of the codified knowledge, regarding its meaning, without ambiguities. 

Further, the codified knowledge must be easier to distribute, store and recall, since these 

activities are all valuable, and an efficient coding of the knowledge should lower the 

costs of all of them. The codification should be done in a form/structure that eventually 

builds a knowledgebase to support decision making. 

In theory, all knowledge may be codifiable but in practice it may not be possible to do so 

(Figure 3.17). Codifying knowledge involves effort in terms of labor, time and material, 

and hence there is a cost associated with doing so. If this cost is not justified, when 

compared to the benefits drawn out of it, is considered prohibitive for the codification 

process. Thus, whether a piece of knowledge is codified will depend on the relative costs 

and benefits of doing so at each level of the process. Of course, the evaluation of the 

relative costs and benefits can change over time and with circumstances. On the other 

hand, not all knowledge is codifiable. Tacit knowledge (e.g., human expertise) is 
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identified and converted to a form that can be represented explicitly such that it can be 

shared and transferred without ambiguity. This explicit knowledge is organized, 

categorized, indexed, and accessed for automated use through expert systems. 

Knowledge

Codified Not Codified

Articulable, 
but  expensive

Unarticulable, 
only Tacit  

Figure 3.17 Topography of knowledge types. 

There are several codification tools that are usually employed for a systematic knowledge 

codification. Some of the common tools include knowledge maps, decision tables, 

decision trees, frames, production rules, case based reasoning, and knowledge-based 

agents. Whereas, these tools use different forms, the main goal remains the same, and the 

choice of such tools depends on the situation and ease of molding the knowledge into a 

form suitable to any particular tool.  

3.4.1 Process of Codification 

To effectively practice knowledge engineering, a knowledge engineer requires 

knowledge in two main areas to carry out codification: Knowledge Representation and 

Knowledge Modeling [22, 23]. The main task of codification is to create messages, in a 

transferable form, that represent the tacit knowledge about the operation of the system 
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and explain its behavior.  But in order to create messages, a basic infrastructure of a 

suitable representational language is required in which these messages can be “written” 

and “read”. However, a language that is suitable in a particular context presupposes a 

model of the phenomenon. Therefore, in creating a knowledge-based expert system, first 

a model of the process should be created. This model is not the structural or operational 

model of the system; instead it is the model of the task at hand that needs to be performed 

by the knowledge-based system. Thus, for CBM systems it entails a detailed description 

of how a failure manifests itself in the system and in what form it becomes observable, 

e.g., through sensor measurements or in the form of peculiar symptoms that can be 

observed by the operators. In general there are two main aspects of the codification 

process: 

- creating a model of the knowledge to be codified, and 

- creating a representational coding language to express the model. 

Once these aspects have been resolved the final task is to convert the knowledge into the 

coding language, which may not be trivial in all cases and must be handled 

systematically. The codification process can not be considered a simple transfer or 

translation operation as this aspect of creation of models and languages greatly influences 

the whole process. This process of creation defines a transformation at a fundamental 

level to describe how the knowledge is organized. Depending on the accuracy and fidelity 

of this transformation the codified knowledgebase may not entirely cover the entirety of 

the tacit knowledge that exists in the form of experts’ experience. Therefore, constant 
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reviews and revisions need to be carried out by experts before an acceptable codification 

scheme can be adopted. 

3.4.2 Knowledge Model 

Knowledge Model refers to the framework that must be adopted to describe how the 

information collected from a system can be used to explain the system behavior and 

reason in unknown complex situations. Knowledge modeling is often considered as the 

first step in developing Knowledge-Based Systems (KBS). The aim of this process is to 

understand the types of data structures and relationships within which knowledge can be 

held, and reasoned with. The automation of usage and creation of knowledge can be 

considered as imitation of expertise in solving a specific class of problems. The choice of 

a correct knowledge model is very important for an effective knowledge-based reasoning 

system. Although there is no stable generic recipe to come up with the most appropriate 

knowledge model, some guidelines can be helpful. A knowledge model can be 

considered as a specialized case of specification requirement that satisfies all observed 

characteristics of a system phenomenon. A knowledge model mainly requires two 

components – concepts and a reasoning methodology.  

Concept: A concept is an abstraction, typically associated with a corresponding 

representation in a description language, which denotes all members of a category, 

interactions, phenomena, and relationships between them. Concepts are derived by 

grouping multiple objects by virtue of their similarities and omitting the differences 

between them. In order to define a concept, a description language must be conceived. A 

knowledge specification is constructed first using a semi-formal language. As will be 
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discussed later, defining a specification language itself assumes a knowledge model and 

hence a final formal language can not be specified from the very beginning. Once a crude 

model is specified in this semi-formal language, the language can be refined further 

before the knowledge model can be improved. This is an iterative procedure which 

results in refined concepts at a suitable level of abstraction [24]. 

Concepts can be represented in various forms (data-structures) that have been developed 

by artificial intelligence researchers e.g., semantic networks, frames, cases, decision 

diagrams, logic diagrams, etc., just to name a few. The choice of a suitable data-structure 

depends on the model of ‘how experts reason in similar situations’.  

Reasoner: A reasoner is the inference engine that makes use of data-structures describing 

the concepts, to manipulate them while performing reasoning tasks and suggest solutions 

to a problem. It makes inferences by deciding which rules are satisfied by facts or 

objects, prioritizes the satisfied rules, and executes the rules in order of decreasing 

priority [15].  As shown in Table 3.1, there are several different kinds of inferences and a 

choice of “which one to use” should be made depending on the application and format of 

the data available. 
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Table 3.1 Different types of inference methods. 

Inference Type Method 

Deduction Conclusions follow from their premises using logical reasoning 

Induction Reasoning from a specific case to general case 

Intuition Can not be explained, however possibly by unconsciously recognizing an 
underlying pattern 

Heuristics Rule of thumb based on experience 

Generate and Test Trial and error method, often used for quick search 

Abduction Reasoning back from a true conclusion to premises that may have caused that 
conclusion 

Default In absence of any specific knowledge, some default knowledge is assumed  

Auto-epistemic Self-knowledge 

Non-monotonic Previous conclusions may prove incorrect when more information is available 

Analogy Reasoning based on similarities to another situation 

 

3.4.3 Representation Language 

The primary aim of a knowledgebase is to store knowledge so that programs can process 

it and achieve the verisimilitude of human intelligence. AI researchers have borrowed 

representation theories from cognitive science to create representation languages. There 

are representation techniques such as frames, rules, and semantic networks which have 

originated from theories of human information processing and each of them makes use of 

different representation languages. Since knowledge is used to achieve intelligent 

behavior, the fundamental goal of knowledge representation is to represent knowledge in 

a manner that facilitates inferencing, i.e., drawing conclusions from knowledge. In order 
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to manipulate and carry out inferencing, a representation language must be expressed (in 

written or spoken form) and should be allowed to be manipulated in a predefined 

consistent manner. A representation language mainly consists of two components – 

vocabulary and grammar. Vocabulary is a complete set of words that must be used to 

describe “any” situation related to the system. It consists of nouns that represent the 

names of various parts and/or processes in the system and verbs describing actions or 

activities taking place in the system. A complete list of such nouns and verbs generates a 

dictionary. A dictionary is a reference document that must be used while codifying and 

de-codifying messages in order to reduce ambiguity and loss of data during 

communication. It is desired to keep the vocabulary as small as possible but at the same 

time as complete as possible. Therefore, suitable abstractions of these words can be 

extracted and grouped under a common name to generate a thesaurus. A thesaurus 

contains synonym terms to establish relationship between texts with different words but 

similar meanings. Thus a dictionary would only contain these abstractions along with a 

pointer to the thesaurus. If a particular word is not available in the dictionary, the 

thesaurus is referenced and the corresponding abstraction is used for codification. Using 

these abstractions leads to some loss of information in the codification process but at the 

same time saves a significant amount of processing time in building and searching a 

relatively large vocabulary. Thus a balance should be established in deciding the level of 

abstraction and the resolution of the codification. 

In addition to the vocabulary, a set of rules is needed to manipulate and interpret the 

combination of words before a meaningful and unambiguous context can be understood 

from it. Such a set of rules generates grammar for the language. Grammar restricts the 
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manner in which the vocabulary can be used to impart an unambiguous contextual 

meaning to a sentence consisting of words in a particular order. Formal grammars are 

codifications of usage that are developed by observation. Just like a dictionary, grammar 

is also needed while codifying as well as de-codifying knowledge. 

The concepts of knowledge acquisition discussed above will be illustrated with the help 

of two case studies. The emphasis here is on acquiring knowledge through FMECA 

study. 

3.5 Case Studies 

In order to illustrate and validate the theory presented in this thesis, different case studies 

will be used. These cases have been taken from different engineering domains to show 

the applicability of the generic approach. Data were partially available in most of these 

cases and hence these cases have been suitably selected to show different concepts 

wherever they are applicable.  

For the illustration purposes, the knowledge acquisition concepts discussed in this chapter 

are demonstrated via two selected cases: 

- CBM of Sludge Dewatering Centrifuges 

- Monopropellant Propulsion System (included in Appendix B) 

The knowledge acquisition approach is illustrated employing these cases in the following 

discussion. 
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3.5.1 Case: Sludge Dewatering Centrifuges 

As described earlier, FMECA studies were conducted to acquire relevant data from the 

centrifuge system. The various steps of analysis are presented next. 

The System: Sludge Dewatering Centrifuge: the system can be divided into two main 

parts – Separator and Auxiliary systems. (Figure 3.18)  

STEP 0 - Background Study 

a) Scope of Analysis: for the purpose of this study only the primary drive in the 

separator was chosen to be analyzed because the most critical and frequent 

failures were in the drive bearing, which is a part of the primary drive.  

Separator
Auxiliary 
Systems

Solids 
Discharge

Wastewater  
Pumping 

Polymers 
(reactive) 

Oil 
LubricationInvertersMain Body Secondary 

Drive Primary Drive

Centrifuge System

 

Figure 3.18 The system - sludge dewatering centrifuge. 

b) Functionality: all components of the primary drive were included in the study. 

c) Operational modes: the ‘normal operational’ mode was chosen to analyze the 

system. 
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STEP 1 - System Analysis 

First, the separator unit (Figure 3.19) was divided into its constituent subsystems and 

components.  

13 Solids discharge
14 Bowl
15 Distributor
16 Scroll
17 Separation chamber
18 Housing
19 Regulating ring
20 Feed
23 Scroll bearing
24 Feed tube
25 Discharge clarified 

liquid 

1 Drive Motor
2 Clutch
3 Clutch Housing
4 Drive bearing
5 Bowl drive
6 Scroll drive
7 Secondary gear
8 Variable speed drive
9 Secondary motor
10 Bowl bearing
11 Primary gear
12 Scroll Bearing

13 Solids discharge
14 Bowl
15 Distributor
16 Scroll
17 Separation chamber
18 Housing
19 Regulating ring
20 Feed
23 Scroll bearing
24 Feed tube
25 Discharge clarified 

liquid 

1 Drive Motor
2 Clutch
3 Clutch Housing
4 Drive bearing
5 Bowl drive
6 Scroll drive
7 Secondary gear
8 Variable speed drive
9 Secondary motor
10 Bowl bearing
11 Primary gear
12 Scroll Bearing

 

Figure 3.19 Separator of the sludge dewatering centrifuge. 

Various parts were labeled with numbers and a structural decomposition tree was built 

(Figure 3.20).  
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Figure 3.20 Structural decomposition of the separator. 

The depth of the structural decomposition tree depends on the level of detail with which 

the analysis needs to be carried out. In this example we divided the system into four 

levels as shown in the figure. As mentioned earlier, only the primary drive was 

considered for analysis. A list of relevant components was compiled and a structural 

block diagram was prepared only with these components (Figure 3.21). Now each 

component included in the hierarchy is labeled with a hierarchical label number that 

identifies its parent system. This nomenclature helps in organizing the components in the 

knowledgebase. 
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Figure 3.21 Structural block diagram of the separator. 

Produce Rotating 
EMF

Rotate Rotor to 
Produce Torque

Rotate Bearing to 
Transfer Torque

Transfer Torque 
to Input Shaft

Hold Bearing 
Tight on Shaft

Torque

Engage Input & 
Output Shafts

Transfer Torque 
to Belt

Transfer Torque 
to Output Pulley

Torque

Torque

emf

Torque

Winding

Rotor

Shaft

ClutchPulley

Belt

Bearing 
Seal

Torque

Voltage

Engage 
On/Off

 

Figure 3.22 Functional block diagram of the separator. 
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STEP 2 - Failure Analysis: 

Table 3.2 shows various failure modes associated with different components of the 

separator unit of the centrifuge. Data regarding various failure modes and their frequency, 

etc., were obtained through experts’ interviews and maintenance logs and reports 

available from the facility. These failure modes were rated on a scale of 1-4 for 

frequency, severity, testability, and replaceability. In this case, these ratings were 

obtained as subjective evaluations of the operators in the facility. Furthermore, the system 

was divided into four distinct monitoring zones namely - main body, main motor, 

secondary motor, pulleys, and belts. Out of several sensors installed on the system, 10 

relevant sensors were chosen to collect data and were mapped onto the separator unit as 

shown in Figure 3-25. A list of these sensors is given in Table 3.3.  
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Zone 1  
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Pulleys  &  Belts

 

Figure 3.25 Sensor locations on the separator unit.  
(Courtesy: Intelligent Automation Systems Inc., Atlanta) 

 



 

 

65

Table 3.2 FMECA chart for the separator unit (Courtesy: Intelligent Automation Systems Inc., Atlanta). 

Evaluation 
System Sub 

System Parts Failure Mode Primary Cause Symptoms 
F S T R I 

Recommended 
Action 

Axle loose Vibration and 
improper mounted 

Noise and 
vibration Fan  

Blocked External 
Obstruction High current 

1 3 3 2 9 Replacement 

Drive shaft 
and rotor 

Wear  
Bend Misalignment Noise and 

vibration 1 4 2 2 16 Replace the  
motor 

Blistering 
Crack Bearing  
Wear 

Overheat 
Lack of lubrication 
Wear and tear 
Induce current 

Noise and 
vibration 
High temperature 

2 4 3 3 32 Replacement 
Main 
Motor 

Winding 

Loss of 
insulation 
Short circuit 
Mechanical 
contact 

Overheat 
High dived 
humidity  

High current 
High temperature 1 3 2 2 9 Rewinding 

Bearing  
Blistering 
Cracks 
Rae defects 

Overheat 
Lack of lubrication 
Wear and tear 
Induce current 
Misalignment 

Noise and 
vibration 4 4 3 2 64 Replacement 

Seal Crack 
Ware 

Overheat 
Wear and tear 
High pressure 

Noise  
Oil Leaked 4 4 3 4 32 Replacement 

Drive shaft Bend Wear and tear 
Misalignment 

Noise and 
vibration 1 4 2 2 16 Replace the  

Motor 

Pulley Bend 
Unbalance 

Misalignment 
Wear and tear Vibrations 1 3 2 1 24 Replacement 

Main 
Drive 

Drive 

Belt Crack 
Break Wear and tear Noise and 

vibration 2 1 2 4 2 Regularly inspect 
and clean  
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Table 3.3 List of sensors on the separator unit. (Courtesy: Intelligent Automation Systems Inc., Atlanta) 

Sensor 
No. Type Acquisition 

Speed Description Band- 
Width CC Notes Location 

1 Current T=100 s 
0.01Hz 

Current measurement 
(Ammeter) (Main  Motor) 1kHz Digital PLC Zone 2 

2 Temperature T=100 s 
0.01Hz 

 Temp. Measurement  
 Temp. Feeler (PT100) 0.1Hhz Digital PLC Zone 1 

3 Temperature T=100 s 
0.01Hz 

Temp. Measurement  
 Temp. Feeler (PT100) 0.1Hhz Digital PLC Zone 1 

4 Flow T=100 s 
0.01Hz Throughput measurement  0.1Hhz Digital PLC Zone 1 

5 Torque T=100 s 
0.01Hz Computed 0.1Hhz  PLC Zone 2 

6 Vibration T = 004s 
5 KHz 

Vibration monitor 
Accelerometer - Main Body 0.1 Hhz   Zone 1 

7 Temperature T=100 s 
0.01Hz 

External RTC Added  
(Main motor) 0.1Hhz Analog 

0-20 mA 
Added to 
PLC 

Zone 4 

8 Temperature T=100 s 
0.01Hz 

External RTC Added 
(Drive bearing housing) 0.1Hhz Analog 

0-20 mA 
Added to 
PLC 

Zone 4 

9 Vibration T = 001s 
10 KHz 

Accelerometer – Drive 
Bearing Housing 0.1 Hhz   Zone 2 

10 Vibration T = 001s 
10 KHz 

Accelerometer – Secondary 
Motor 0.1 Hhz   Zone 10 
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Once these data have been collected, the knowledgebase can be populated. 

STEP 3 – Risk Ranking and Review:  

To assign priorities to various failure modes, a composite risk index (I) was designed 

shown in equation (3.1). In this case the risk ranking considered the two the most critical 

factors namely the frequency (F) and the severity (S) of the failure modes. Other similar 

measures can also be designed if desired. 

I = F*S2.     (3.1) 

The final step of feedback and correction is not very relevant from the knowledge 

acquisition point of view and hence the corresponding discussion is not included here. 

3.6 Conclusions 

This chapter presented the knowledge engineering aspect of building a knowledgebase 

for the CBM systems. Building on the theory presented in this chapter, we have shown 

how common practices in the industry can be combined in a structured manner to gather 

data for the knowledgebase. Finally, an example case has been presented showing the 

application of such an approach. 
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4.1 Chapter Overview 

The next step after information acquisition and its transformation into useful knowledge 

is to codify it using a suitable representation language and a knowledge model. As 

discussed in Chapter 3, a knowledge model assumes the task of carrying out reasoning 

based on current facts from the system and its own experience from previous situations. 

This thesis builds on a Dynamic Case-Based Reasoning (DCBR) approach to accomplish 

the knowledge model. The Chapter starts with a brief description of conventional Case-

Based Reasoning (CBR). Key components of CBR relevant to knowledge-based CBM 

have been discussed where further improvements are desired. Further, the DCBR 

philosophy has been described by introducing the dynamic components at multiple stages 

of the conventional CBR. This process model has been further instantiated with an 

example for industrial systems that can be applied to fleet vehicles.  

Contribution: A Dynamic Case-Based Reasoning framework for CBM knowledge 

model. 

4.2 Why CBR as Knowledge Model for CBM? 

Tracking the central theme of this thesis to integrate knowledge into the CBM process, a 

knowledgebase must be built to store relevant maintenance experience. This 

knowledgebase should contain not only the structural and operational data from the 

system but also the experience in the form of associations between different problem 

situations and their corresponding remedies. These associations must be learned and 

modified over time as more experience is accumulated. Further, there must be a provision 
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to appropriately use this knowledge in an automated manner. As previously discussed in 

Chapter 2, for this knowledge integration, a knowledge model is required that poses the 

following two main requirements: 

Reasoner: To make use of knowledge contained in the knowledgebase an inference 

engine is required, which, based on its inference methods/rules, suggests a solution in a 

given situation. Several reasoning mechanisms have been used in the literature, e.g., logic 

based reasoning, model based reasoning, probabilistic or Bayesian reasoning, etc. The 

choice of a reasoning method is largely governed by the problem domain and the kind of 

data available from the system. In the CBM domain, the data are available in both, 

qualitative and quantitative forms and previous experience is very important in carrying 

out effective maintenance tasks. Keeping this in mind this research makes use of Case-

Based Reasoning (CBR) as the main enabling technology to build and use the 

maintenance knowledgebase. 

Concepts: From the coding point of view, the form and structure of the data must be 

defined. This mainly depends on the reasoner and the software design. Therefore 

concepts define the data structures suitable for a reasoning mechanism; these concepts 

represent meaningful knowledge capsules relevant to the problem domain. For 

maintenance tasks, CBR allows one to define concepts in the form of cases that represent 

past experiences. The concept of conventional cases has been extended to dynamic cases 

to incorporate the hybrid nature of case contents. 

A detailed discussion on CBR and its current usage in the industry has is in the following 

sections. 
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4.3 Case Based Reasoning – An Enabling Technology 

Mechanical systems in industrial environments are very complex and extremely difficult 

to model. Moreover, the increasing demand for efficiency and continuous uptime requires 

a quick and robust solution to commonly occurring problems in such environments. In 

most cases, first, it is next to impossible to establish precise and accurate models for these 

systems and even if they can be modeled, it is prohibitively expensive to solve them in 

real time to produce a solution. An alternative approach for this task is not to solve these 

problems every time from scratch but to recall the solutions from past experience instead, 

if such experience exists, of course. This approach is based on the premise that problems 

recur in nature. Thus, if in the past a successful solution was generated for a similar 

problem at least once, it is not required to explicitly search for a solution over the entire 

search space again. The previous solution is likely to be in the proximity of the required 

solution for the current problem and hence the search space is considerably pruned. 

Therefore, the solutions can be derived by drawing an analogy to a previous situation and 

this forms the basis of Analogical Reasoning (AR). 

Analogical Reasoning is an AI technique which emulates the process of human reasoning 

by remembering [25]. It tries to recall the already known situations which are similar to 

the situation at hand and draws analogies to come up with an acceptable solution. A wide 

spectrum of AR problems can be defined where, at one end the analogies are drawn 

within the same domain and, at the other, analogies are drawn between different domains. 

The main difference between the two reasoning extremes is the mapping or matching of 

components in the two systems that play similar roles even if their domains are not the 
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same. The hard problem in AR is to decide what to transfer and what not to transfer 

between the two domains in terms of knowledge. This is an active area of research and no 

concrete solutions are yet available. However, by constraining within a single domain or 

very closely related domains the problem can be considerably relaxed. This relaxed form 

of AR is Case-Based Reasoning (CBR), which solves problems by adapting successful 

solutions that were used for similar problems in the past [26]. The history of CBR can be 

traced back to about the year 1977. However, due to technical limitations of limited 

computing power it was only a topic of academic interest until the late 1980s and early 

1990s before it became popular in industrial applications.  

The classical and most widely adopted model of CBR was described as a cyclical process 

comprising the four Rs (Retrieve, Reuse, Revise, and Retain) [27] as shown in Figure 4.1.  
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Figure 4.1 The CBR Cycle, adapted from [27]. 
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These four fundamental steps are: 

- RETRIEVE the most similar case(s), 

- REUSE the case(s) to attempt to solve the problem, 

- REVISE the proposed solution if necessary, and 

- RETAIN the new solution as part of a new case.  

A new problem (query) is matched against cases in the existing case-base and one or 

more similar cases are retrieved. A solution suggested by the matching cases is then 

reused and tested for success. Unless the retrieved case is a close match, the solution 

needs to be revised producing a new case that may be retained for later reference. 

Currently, this cycle rarely occurs without human intervention and most CBR systems are 

mainly used as case retrieval and reuse systems [28]. Case revision (i.e., adaptation) is 

often carried out manually by the managers of the case base. AI systems are not yet 

completely autonomous with current state-of-the-art; however, they have proven to be 

very successful as Decision Support Systems (DSS). Several applications are discussed in 

the following sections where appropriate machine learning techniques for data mining are 

employed by CBR to propose and approximate solution and make it much simpler for the 

users to come up with a good solution. 
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4.3.1 CBR Implementation Issues 

CBR requires a specific structure in which the domain knowledge should be codified. 

However, the format and content of this structure can vary according to the problem 

domain. A brief description of how these processes can be carried out is included below. 

4.3.1.1 Case Representation 

A case is a contextualized piece of knowledge representing an experience. It contains the 

past lesson, i.e., the content of the case and the context in which the lesson can be used 

[29]. Typically a case comprises:  

- the problem that describes the state of the system when the case occurred, 

- the solution which states the derived solution to that problem, and/or 

- the outcome which describes the state of the system after the case occurred. 

In other cases, additional case components have been suggested to further enhance the 

CBR structure. A notion of maintainable cases has been suggested in [30] for which he 

includes an administrative part in the case called administrativa. Irrespective of what 

other case components may be defined for improved capabilities, the basic philosophy 

revolves mainly around the problem and the solution parts. 

In its simplest form, cases can be represented as vector of attribute-value pairs 

characterizing the problem and solution respectively. Further, based on the nature of case 

contents, cases can be classified in different forms as summarized in Table 4.1. 
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Table 4.1 Types-of-cases classification. 

Classification 
Criteria Classification Definition Ref. 

Rule-based 
cases 

It is predetermined at the design time which attributes are 
part of the Problem and which are a part of the solution. 

Distinction 
between 
Problem and 
solution parts of 
the case 

Constraint-
based cases 

It is determined only at run time which attributes are part of 
the Problem and which are a part of the solution 

[31] 

Homogeneous 
cases 

The set of attributes in a case remains fixed. For example, 
real estate domain 

Homogeneity of 
cases 

Heterogeneous 
cases 

It is difficult to know full set of attributes. New attributes 
may be learnt with time. Therefore cases in a case base may 
contain some non-common attributes. E.g., patient data in a 
hospital 

[28] 

Episodic cases Cases are records of events. E.g., equipment fault logs, 
patient files etc. 

Source of cases 

Prototypical 
cases 

Cases are designed by experts as examples of events. E.g. 
symptoms of failures acquired using field tests 

[28] 

Simple cases Have fixed structure, cover specific situations clearly and 
interpreted in a well defined way while ready for reuse. 

Structure, 
coverage and 
interpretations Complex cases Defined by complex layouts, topologies or structures 

difficult to define with attribute-value pairs, may need 
several partial cases to cover a situation and may be 
interpreted in different way for different situations. 

[32] 

Discrete time  
cases 

Cases represented by a snapshot of events. All values are 
recorded at a particular time instant to measure the state of 
the system 

Time period 
over which 
cases carry 
information Continuous 

cases 
Cases are represented by continuous time events or a series 
of discrete events. It is important where current state 
depends on past temporal states 

[33] 

Static cases Case contents remain fixed over a period of time. With 
significant difference in attribute values a new case is 
instantiated. 

Evolution of 
case contents 

Dynamic cases Case contents keep changing or evolving as new experience 
accumulates. i.e., a case contains statistical account of 
values rather than fixed values. 

[34-
36] 

Pure cases Case attributes are all of similar type, e.g., numerical, 
textual, graphical, etc. 

Type of case 
contents 

Hybrid cases Case attributes can be of mixed types 

[35] 

Cases can be represented in a variety of forms using the full range of AI representational 

formalisms including frames, objects, predicates, semantic nets and rules. The choice of a 
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particular formalism is largely governed by the case content. There is a lack of consensus 

within the CBR community as to exactly what information should be in a case [28]. 

However, [29] suggests two pragmatic measures that can be taken  into account while 

deciding what should be represented in cases: the functionality and the ease of acquisition 

of the information represented in the case. Practically, there is a trade off between how 

much information should be included in the cases and memory requirements, and a 

balance should be established based on the application domain and requirements.  

4.3.1.2 Similarity Metrics for Case Comparisons 

Under the core CBR assumption, that similar problems have similar solutions, the 

usefulness of stored cases is evaluated by comparing their respective problem situation to 

the problem description in the query case (target case). The query case is not just an 

informal description of the problem at hand, but a formalized version complying with a 

case representation language, already specified for the problem domain at hand. In most 

situations the query cases are expected to be incomplete and vague in the beginning. The 

type of similarity metric used may be different depending on the nature of various case 

attributes. In some cases, where the attribute’s structure is more complex and requires 

special considerations, several types of similarity notions may be combined to form a 

composite similarity metric. In most situations, cases are represented as attribute vectors: 

a = [a1,a2,…ak]. In these situations, first a local similarity is computed between each 

component and then composed into a global similarity by taking a weighted sum of all 

components. In addition to these notions for similarity, other notions of utility and 
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acceptance have been introduced for case comparisons. A detailed discussion on 

similarity metrics is included in Chapter 5. 

4.3.2 The Issue of Uncertainty in CBR 

Traditional information systems simply convert data into information and rarely address 

uncertainty because their inputs and outputs are not expected to be flexible and all the 

flexibility is expected from humans. However, systems especially the ones that 

manipulate knowledge explicitly are expected to be flexible as they try to emulate human 

level intelligence.  

[37, 38] define three broad categories of uncertainty: 

- Incompleteness occurs when there are missing values for elements. 

- Imprecision occurs when a value of an element is given but not with necessary 

precision. 

- Uncertainty occurs when a given statement might be wrong. 

Uncertainty arises due to the fuzziness or randomness in the inputs which then propagates 

to the decision making. Attempts to minimize this uncertainty are made in [38].  

A four-container concept was given by [31] to define the sources of uncertainty in 

knowledge and information in CBR systems. These four knowledge containers are: 



 

78 

- Vocabulary: it includes the definition and descriptions of elements, entities, 

attributes, strategies, conditions etc., which generates imprecision depending on 

the level of abstraction chosen to represent the case. 

- Similarity Measure: it includes indexing, similarity functions, aggregation of 

similarity functions, and selection. Several methods to learn similarity measures, 

feature weights, and indexing are also included in this container. [39] discuss how 

distance measure as a notion of similarity leads to uncertainty in CBR systems. 

- Case-Base: it contains the organizational structure of cases (flat, hierarchical or 

networks), case-base maintenance methods, case contents (complete and 

incomplete cases), etc. An insufficient case base that does not cover all 

prospective problems is yet another source of uncertainty. Methods to learn new 

cases also add to the uncertainty. 

- Solution Transformation: it includes the methods used for the reuse and revise 

steps in CBR. One source of uncertainty may arise when there are more than one 

candidate solutions and a method for solution composition is required. A new 

problem that is more specific than the stored cases leads to imprecision. And an 

insufficiently designed adaptation leads to ignorance. 

4.3.3 CBR in Industrial Practice – State-of-the-Art 

In most situations health information is obtained from monitoring sensors and 

automatically generated activity logs. But most of the systems use only the quantitative 

information available from sensors to automate the diagnosis task and almost none or 
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very little use of the qualitative information is made. For instance, a CBR system for fault 

diagnosis in industrial robots has been described in [40] using a case base consisting of 

acoustic signals acting as fault signatures. But this approach largely depends on signal 

processing of the data and can be aptly applied only where good sensors and features 

have been identified for fairly accurate fault detection and identification. Another attempt 

focused on diagnosis of electronic ballast on the airplanes for developing an aircraft 

maintenance system [3]. Several numerical features were included and genetic algorithms 

were employed to assign weights to those features for similarity calculations. But any 

available qualitative information was again ignored. GE has been using CBR for 

monitoring and diagnostics in a variety of systems including medical equipment (ELSI), 

locomotives (ICARUS), and heavy-duty gas turbines [4, 5]. But none of these systems 

have yet considered both numerical and textual data together. A diagnostic system for 

aircraft fleet maintenance was developed using failure and warning messages generated 

by on-board aircraft diagnostic routines [7]. This approach considered only formatted text 

messages for which a trigram-matching technique was utilized to retrieve similar cases. 

This approach works well only if the text structure is fixed and word ordering does not 

dictate the meaning of the phrase. Similarly, a partial matching technique, based on key 

words and constraint-nets, was used to retrieve similar cases from the case-base [6]. This 

process also focused only on textual information and no numerical analysis was carried 

out.  
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4.3.4 Shortcomings of the Conventional CBR 

Case-based reasoning (CBR) is an approach to problem solving based in retrieval and 

adaptation of cases, or episodic descriptions of problems and their associated solutions 

[17, 27, 29]. As discussed earlier CBR cycle typically involves four REs namely Retrieve, 

Reuse, Revise and Retain as described in [41]. CBR is a knowledge representation and 

manipulation technique that recalls solutions to past problems that are likely candidates 

for solutions to new problems. It is not uncommon for several cases to be retrieved at any 

one time. The retrieved cases must be ranked in order of their relevance to the current 

case. Six “filters” have been used for case ranking: goal-directedness, salient features, 

specificity, frequency of recall, recency, and ease of adaptation [29]. In practice, both the 

implementation and inclusion of each of these steps and the knowledge representation 

used for cases varies widely. For example, case retrieval has been implemented using 

nearest neighbor algorithms, decision trees, or connectionist associative memories; case 

representations range from free-text documents to data base records to semantic networks 

[17]. However, in almost all cases the content of a case is predetermined and remains 

fixed while that case resides in the active case library. Moreover, since CBR has been 

applied mostly in specialized domains, the adaptation algorithms are more or less fixed 

and any adjustments due to changes in the environment are carried out through scheduled 

case-base maintenance operations. In fact adaptation in most commercial decision 

support systems is bypassed by suggesting an approximate solution obtained from the 

closest matching case without any modifications. 
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4.4 Dynamic Case-Based Reasoning 

A dynamic case-based reasoning system strives to improve on the above shortcomings of 

the simple CBR systems. Several variations in the structure of CBR have been 

implemented, based on specific requirements, as the use of CBR is being explored for 

more applications. In [36] authors describe a system where time-tagged indexes and 

dynamic composite features make the CBR system dynamic. In another approach cases 

are extracted and expanded dynamically based on context and the facts specified in 

advance [42]. Although the basic steps in DCBR cycles essentially remain the same, they 

can be internally modified to incorporate a dynamic component to increase autonomy of 

these systems.  

4.4.1 The DCBR Lifecycle 

Lifecycle of a DCBR system can be divided into three major phases, shown in Figure 4.2. 
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Figure 4.2 Lifecycle of a DCBR system. 

Initialization Phase: This phase includes designing a general representation of the 

information, choosing appropriate features for indexing and a mode of interaction 



 

82 

between the application and the actual system. This phase includes initial installation of 

the DCBR system using a “seed” case base to provide a baseline for the application. This 

initial case base is sparsely populated with cases that have been encountered most 

frequently and constitutes the prior knowledge available to the DCBR system. It may not 

cover the entire range of problems because they have either not been encountered so far 

or have been forgotten from the past. This knowledge is made available through current 

experts of the system or maintenance logs.  

Enrichment Phase: The initial case base is used and refined through the validation and 

storage steps performed concurrently throughout the user base. This involves populating 

the case library with newer cases as they are encountered. This is an ongoing process 

throughout the life of a DCBR system, and remains relatively more active until a valid 

case base covering a large portion of the application area is complete. This phase tends to 

fill the gaps, between various possible scenarios, that were created during initialization. 

Every time a problem case is presented (assuming a fault has been detected), it can either 

be grouped with one of the old cases based on its similarity or considered a new case. If a 

new case is detected, the case library is simply updated by including this case. But if it 

matches an existing case with some predefined degree of confidence, the statistic-vector 

of the corresponding representative case is updated. This approach mainly works if the 

case contents are either numerical in nature or can be otherwise transformed into 

numerical entities. All similar cases are grouped and, instead of storing multiple cases, a 

statistical distribution of each is kept in a dynamic case. A dynamic case thus represents 

an n-dimensional cluster where n is the number of different components in the case. A 

new dynamic case is generated when including a new case increases the variance of the 
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cluster above a preset limit. Using statistical inferencing techniques, like hypothesis 

testing, this statistic-vector can be used for: 

- Fault Detection: to decide if the fault is present or not, and  

- Fault Identification and Isolation: to decide which fault(s) is (are) present.  

This may indicate the presence of several faults and hence more than one matching cases 

(some with a different degree of severity, while others with different fault 

characteristics). Cases can be ranked according to the preferences like the ones 

enunciated by [29]. Figure 4.3 provides a simple illustration of a dynamic case with a 

statistic vector.  

Case 1 
: 

5. Temp = 74 

Case 2 
: 

5. Temp = 74 

Case 3 
: 

5. Temp = 74 

Case 14 
: 

5. Temp = 74 

Case 15 
: 

5. Temp = 74 

Case 24
: 

5. Temp = 74 

Dynamic Case 1 updated: 041405 
# Cases: 24 

: 

5. Temp = 77.3 ± 3.6 

6. Pressure = medium 

Dynamic Case 1 updated: 080305
# Cases: 25 

: 

5. Temp = 77.8 ± 3.61 

Case 25
: 

5. Temp = 78 

 

Figure 4.3 Creating and updating a dynamic case using a statistic vector. Descriptive features can be 
converted to numerical values using techniques like fuzzification. 
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The advantage of such a technique is that the similarity metric is not calculated based on 

one representative case, which may or may not be the best representative for the 

corresponding problem, instead it is based on a distribution of all similar cases 

encountered in the past without explicitly storing all of them. Hence a suitable statistic 

vector replaces the description of case, making it “dynamic”. 

Case Base Maintenance Phase:  This is a relatively less frequent process but continues 

throughout the life of the system to cope with the non-stationarity of the environment. 

This phase is expected to commence after the active enrichment phase is completed. 

Based on past successes and failures, a performance assessment can be carried out for 

various parameters that are being monitored. Weights can be assigned to cases and their 

constituent components to express their relevance in solving a particular fault. Some 

sensors can be tagged as redundant and others as more important or the need for 

alternative sensors or sensor placement can be inferred. Once the required changes have 

been incorporated, the case structure is likely to change and the old case structure can be 

modified such that the useful part of the old cases can still be used and the redundant part 

is discarded. This can also include time stamping and archiving of very old cases which 

have not been used for a long time and have less chance of appearing again because 

either the system has changed or they are covered by some newer cases.   

4.4.2 Three Dynamic Components of DCBR 

Figure 4.4 illustrates a high level schematic of DCBR that has been extended over the 

classical CBR cycle adopted in [27].  DCBR is “dynamic” by three means as compared to 

the conventional CBR. 
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Dynamic Case Library: As in conventional CBR the case library is dynamic by virtue of 

its evolution for almost as long as newer cases are encountered. Beyond that, the case 

library is not just a static collection of old cases but an entire knowledgebase that 

continuously learns from external feedback. Attributes of self-evaluation and self-

organization directly define a dynamic case library. 

Dynamic Case: The cases are dynamic as they continuously evolve over time. As more 

similar cases are encountered they are grouped based on their spatial locations and 

compressed into a dynamic case by creating the statistic-vector illustrated earlier in 

Section 4.4.1. Thus a case is a statistical representation of a group of closely matching 

situations rather than one situation per case. 

Dynamic Reasoning: The reasoning is dynamically performed based on what part of the 

information (case component) included in the cases is given more importance for making 

inferences and hence producing an appropriate solution scheme. Several adaptation 

schemes and similarity metrics can be dynamically chosen based on what was more 

successful in the past for similar situations. A specific example for diagnosis of fleet 

vehicles is described in the next section. 



 

86 

REVISE

Is
new case very 
similar to old 

cases?

Retrieved 
Cases

Dynamic Case Base

Updated 
Dynamic Cases

Fine-tuned Solution

Update
Cases

Ranking 
Methods
Ranking 
Methods

Similarity 
Metrics

Similarity 
Metrics

Similarity 
Aggregation

Ranked   
Cases
Ranked   
Cases

Adaptation 
Schemes

Adaptation 
Schemes

Revised Solution

Confirmed Solution

REUSE

R
ET

AI
N

RETRIEVE

REUSE

Proposed Solution

Update 

Replace
Updated Cases

Add New Case

New Case

Periodic
Maintenance

Yes

No

Dynamic CBR Architecture
1 Dynamic Case Base
2 Dynamic Case
3 Dynamic Adaptation

22

33

11

Adapted
Solution

 

Figure 4.4 High level schematic of Dynamic Case Based Reasoning highlighting its dynamic components. 
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4.5 DCBR Application to Fleet Vehicles 

An integrated architecture has been developed for CBM of fleet vehicles using the above 

mentioned DCBR concepts [34]. DCBR offers a good promise for diagnostic and 

decision support systems by emulating the human reasoning process one step further. It 

narrows down the problem search space by dividing the diagnosis tasks into smaller 

steps. In most cases, industry uses a two-step procedure. First, the operators suspect the 

problem by observing unusual symptoms or the error logs from the system. Maintenance 

experts try to come up with possible explanations for those symptoms. Then using known 

analytical techniques relevant diagnostic tests are run to confirm the problem. After a 

problem has been diagnosed correctly experts use their experience to plan and execute 

the repair task. Our diagnostic system follows a similar approach. It refines an 

asynchronous stream of symptom and repair actions along with sensor information into a 

compound case structure to organize the relevant information into the case memory, as 

shown in the schematic in Figure 4.5.  
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Figure 4.5 Integrated reasoning architecture for fault diagnosis in industrial environments. 

Qualitative information (textual descriptions) is used as the initial query. These 

descriptions are converted into semantic networks (see Chapter 5), which preserve the 

meaning of the text and at the same time convert the text into a defined structure for 

easier analysis [43]. The case-base is searched based on these semantic networks and 

relevant hypotheses are generated. These hypotheses are ranked based on past experience 

and the most probable hypothesis is tested first by automatically activating the relevant 

data acquisition and diagnostic modules. If the hypothesis is confirmed to be true its 

solution is suggested for the current situation and its success rate is updated. Otherwise 

the next probable hypothesis is tested and the corresponding success rates are updated. 

The procedure is repeated until a useful solution is obtained or a new case is generated 

and stored in the case base. For new cases approximate solutions are suggested based on 
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closest matching cases. They are further revised based on feedbacks until a satisfactory 

solution has been found.  

4.5.1 The Dynamic Case 

A list of all the sensors employed in the system and their target components is usually 

available from the manufacturers or the operators and is acquired under the process of 

knowledge acquisition. Similarly a list of diagnostic features from the sensor data to 

diagnose known fault modes can be compiled. Relative importance of features and their 

underlying philosophy can also be included in such a list. The relative importance of 

features may not always be available, especially in the case of new situations. In such 

situations these weights are learnt using the corresponding success/failure rates. 

Knowledge of this kind can be added to the list as it is generated in due course. All this 

information can be organized into a dynamic case structure as shown in Figure 4.6. This 

case structure is dynamic by virtue of two attributes: 

- Case components are loaded step by step as the hypotheses are generated. 

Therefore, there is no fixed case structure with a fixed set of attribute-value pairs. 

- Case components can have multiple values ranked with the corresponding weights 

unlike one-to-one attribute value pairs in conventional cases.  



 

90 

Case Structure                                                                                      
.ID Case_ID 

.Component Component_Name 

.Location Component_Location 

.Symptom S_ID Symptom Weight Sementic_net Hypotheses 
1 s1 Ws1 SemNet1 h1, h2 
2 s2 Ws2 SemNet2 h1 
3 s3 Ws3 SemNet3 h2 

 

.Hypothesis H_ID Hypothesis Weight Diagnosis
1 h1 Wh1 d1
2 h2 Wh2 d2, d3 

 

.Diagnosis D_ID (Sensor,Feature) pairs Weight Solution 
1 d1:{(S1,F1),(S1,F2)} Wd1 r1 
2 d2:{(S1,F2),(S1,F3)} Wd2 r2 
3 d3:{(S5,F1)} Wd3 r3 

 

.Repair R_ID Repair Weight
1 r1 Wr1 
2 r2 Wr2 
3 r3 Wr3 

 

.Version Last_Update Case_Quality Success Failure Condition 
mm:dd:yy W nS nF C1,C2,C3  

Figure 4.6 Generic dynamic case structure. Symptoms are stored as semantic networks. 

Figure 4.7 shows a graphical version of the dynamic case. The static component consists 

of relational entities that are used to retrieve matching cases. The dynamic component of 

the case is connection weights that keep changing with time. These weights help 

accumulate evidence for incoming node from the outgoing nodes. These cases are hybrid 

cases as they can contain different types of components such as semantic nets, numerical 

data, text data, and Meta data such as ranking weights. Primary case indexes are CaseID, 

Component and Component Location. 



 

 

91

Static Case ComponentStatic Case Component

Dynamic Case ComponentDynamic Case Component

Case(i)Case(i)

Hypothesis_2_1 Hypothesis_2_2 Hypothesis_2_mHypothesis_2_1 Hypothesis_2_2 Hypothesis_2_m

wt wt wtwtwt wtwt wtwt

Appropriate sensor data 
and diagnostic routines 

accessed from the system

Appropriate sensor data 
and diagnostic routines 

accessed from the system

S_i, F_kS_1, F_1

+

wt wt wt

Diagnosis_k

S_2, F_3 S_i, F_kS_i, F_kS_1, F_1S_1, F_1

++

wtwt wtwt wtwt

Diagnosis_kDiagnosis_k

S_2, F_3S_2, F_3

Condition

Wind_SpeedWind_Speed

Load (%)Load (%)

Last_UpdateLast_UpdateQuality

n_Failuren_Failure

n_Successn_Success

VersionVersion

IDID

HAS
HAS

Symptom_n

HAS

Symptom_2

Symptom_1

HASHAS
HASHAS

Symptom_n

HASHAS

Symptom_2

Symptom_1

Repair_3Repair_2Repair_1 Repair_iRepair_4

wtwt wt

Repair_3Repair_3Repair_2Repair_2Repair_1Repair_1 Repair_iRepair_iRepair_4Repair_4

wtwtwtwt wtwt

IDID

Component

Location

Diagnosis_kDiagnosis_3Diagnosis_2Diagnosis_1

wt wt

Diagnosis_kDiagnosis_kDiagnosis_3Diagnosis_3Diagnosis_2Diagnosis_2Diagnosis_1Diagnosis_1

wtwt wtwt

HASHAS

HASHAS

HASHAS HASHAS

HASHAS

HASHAS

HASHAS HASHAS

 

Figure 4.7 Components of a dynamic case expressed as relations and weighted connections. 
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p
.ID B10 
.Component Bearing 
.Location Main_Transmission 
.Symptom S_ID Symptom Wt Sementic_net Hypotheses 

1 Noisy in neutral 
with engine running

0.57 SemNet1 h1, h2, h3 
2 Vibration 0.43 SemNet2 h1, h2, h4 

 

.Hypothesis H_ID Hypothesis Wt Diagnosis 
1 Primary Gear worn 0.65 d1 
2 Primary Bearing worn 0.15 d2, d4 
3 Clutch Release Bearing worn 0.10 d3, d4 
4 Lack of oil 0.10 d5 

 

.Diagnosis D_ID (Sensor,Feature) pairs Wt Solution 
1 d1:{(S3,F1),(S3,F4)} 0.75 r1, r3 
2 d2:{(S1,F15),(S1,F8)} 0.80 r2, r3 
3 d3:{(S2,F15),(S2,F8)} 0.80 r3 
4 d3:{(S1,F13),(S4,F13)} 0.6 r3 

 

.Repair R_ID Repair Wt 
1 Change Primary Gear 0.25 
2 Change Primary Bearing 0.25 
3 Replenish oil 0.25 
4 Change Clutch Release Bearing 0.25 

 

.Version Last_Update Case_Quality Succ Fail Conditions 
03:16:05 0.8 8 2 Full Load Windy 

  

Figure 4.8 Example case from automobiles domain. 

Figure 4.8 shows an example case from the dataset being used in this study. Based on the 

query-semantic-network, relevant cases matching these primary indexes are retrieved and 

a set of possible hypotheses is generated. Since each symptom may be associated with 

multiple hypotheses, a list of hypotheses is generated at the initial diagnosis step. Two 

approaches can be taken at this point to prioritize hypothesis testing. Diagnosis can either 

be performed based on a set-covering algorithm to find a solution that explains most of 

the hypotheses [44] or different hypotheses can be tested one by one in order of 

decreasing success rates. The important point to note here is that, although a generic case 

structure is used, most of the actual contents are dynamically loaded depending on the 

situation at hand.  
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4.5.2 The Other Two Dynamic Components 

The other two dynamic components suggested in the DCBR scheme are: 

- Dynamic Case Base: Dynamic case base has been conceptualized as an intelligent 

knowledgebase with five attributes of intelligence. A detailed discussion on this 

knowledgebase is presented in Chapter 6. This knowledgebase keeps evolving 

with time and hence whenever it is referenced as a case library, results also 

change with time making the whole reasoning process dynamic. 

- Dynamic Adaptation: Similarity metrics, similarity ranking methods and 

adaptation schemes all can be chosen from the knowledgebase dynamically. To 

limit the scope of this thesis, this issue has not been addressed in detail but some 

ideas for future work are proposed in Chapter 7. However, a suitable similarity 

metric has been developed for the semantic net matching for the textual data and a 

detailed discussion is included in Chapter 5. 

4.6 Evaluating DCBR Performance 

In the DCBR framework presented in this thesis, the matching activity mainly takes place 

at the triad level. Once the matching triads are retrieved, only those hypotheses are 

fetched that are connected to these triads through significant weights. Therefore, the issue 

of performance, in retrieving relevant cases, arises from the triad level. We covered this 

issue in the ILP performance evaluation section in the next chapter. 
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The DCBR framework searches for solutions in a reduced search space. Unlike 

conventional CBR, where search is carried out by matching several case attributes, 

DCBR performs a contextual matching by matching the symptoms (triads) directly. 

Therefore, the DCBR performance can be measured by keeping two factors in mind; total 

solution search time and the quality of the solutions generated.  

If a conventional CBR system is available for comparison, the time needed in searching 

for a “useful” solution can be compared with the corresponding time taken by a DCBR 

system. In the first case, the total time will comprise of time taken in matching the 

attributes against all cases present in the case base, retrieving the relevant cases and 

ranking them to suggest a course of action. For DCBR, the total time comprises of time 

taken to match and retrieve relevant triads and prepare a list of connected hypotheses. 

Further, the effectiveness of the solution can be measured by the success rate of the 

suggested solutions. It should consider two factors; one, the success rate of the solution 

suggested as the top candidate and two, the overall success if a successful solution is 

found at all after trying various options one by one in the order of preference. 

4.7 Conclusions 

In this chapter we have developed the concept of dynamic case-based reasoning. Pointing 

out shortcomings of the conventional CBR systems, three possible improvements have 

been suggested to build a DCBR based process model. With the help of an example from 

the automotive maintenance domain some of these concepts have been instantiated for 

better understanding. Lastly, few notions for the performance evaluation of the DCBR 

system have been suggested. 
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Chapter 5  

Industrial Language Processing 
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5.1 Chapter Overview 

This chapter discusses one of the major contributions of this thesis, namely the Industrial 

Language Processing (ILP) technique. First, other relevant techniques have been 

discussed with their limitations to motivate the development of ILP. Then, the ILP 

technique has been explained in detail followed by the corresponding similarity 

calculation methods for matching and retrieval purposes. The chapter concludes with 

some results on the effectiveness of this technique on the automotive data and the 

centrifuge data followed by an analytical discussion on the results. 

Contribution: Industrial Language Processing technique to integrate textual information 

with numerical information in the DCBR framework and maintenance knowledgebase. 

5.2 Motivation 

A large amount of machine condition information is obtained in terms of operator 

observations expressed as textual descriptions, which are rarely used in automation of the 

health maintenance process. These symptoms carry important information about the 

system, which may not always be evident from sensory measurements. An important 

aspect of the proposed architecture is to take advantage of the information embedded in 

descriptive data while making diagnostic decisions. In most cases operator observations 

of fault symptoms are the first indicators of the system malfunction. These observations 

are conveyed or documented as fault descriptions and observed symptoms. To automate 

the decision making based on these symptoms, the maintenance system should be capable 

of processing these descriptions in a coherent and unambiguous fashion. At the same time 
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it is desirable to keep the computation time to a minimum without losing much 

information that is embedded in these descriptions. This requires a text processing 

methodology that is capable of carrying out these tasks.  

This Chapter presents an Industrial Language Processing methodology that can be 

adapted for any industrial environment if the following two assumptions are satisfied: 

1) Use of pre-defined standardized language to express these observations. 

2) Availability of expert evaluation during the initial phase of rule generation. 

Keeping these requirements in mind, this methodology can be adapted to meet a desired 

level of accuracy and computational overhead. The processed data is then stored in the 

maintenance knowledgebase for later reuse. 

5.3 Current State-of-the-Art 

Several Information Retrieval (IR) methods have been used for textual data, which 

primarily depend on the statistical account of occurrence of words and do not consider 

the semantic relationships between them. This results in several problems like meaning 

ambiguity and paraphrase expressions (different expressions for the same meaning). An 

alternative approach of n-gram matching [45] has been used to retrieve relevant 

documents, but this approach also does not permit any integration of additional 

knowledge like domain specific thesauri or glossaries. The use of Textual CBR (TCBR) 

has been proposed in [46] to explicitly allow the integration of semantic knowledge using 

some Natural Language Processing (NLP) and to establish an indexing vocabulary. 
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Careful analysis of the domain is carried out to devise similarity measures that extend 

beyond statistical term weighting. NLP techniques like parts-of-speech tagging are used 

to tag the words in the texts and extract the basic linguistic structures. TCBR is typically 

built for specific domains to address the ambiguity problem. In another attempt, a feature 

vector is used to index text documents and two approaches have been proposed to reduce 

its size; feature selection with boosting and feature generalization with association rules 

[41]. Feature selection helps in identifying discriminatory features while the feature 

generalization captures semantic relationships. But this method still does not express a 

semantic relationship explicitly. Use of graphs-based methods for TCBR has been 

described in [47]. Graphs offer several advantages over conventional feature vector based 

methods. They can create rich representations of descriptions. The structure and word 

order can be retained to capture relationships between two elements and any number of 

elements can be added or deleted at will. So far, the TCBR has been mainly considered as 

a tool for an independent domain of books, web documents, reports, documentations and 

manuals, etc. Elaborate methods have been developed which try to accommodate the 

complex structure and enormity of the language vocabulary and grammar [48].  

In this research we identified that with the increased usage of standardized languages in 

industrial domains, one does not need such extensive text processing methods and a 

simpler technique customized to the maintenance process would be more appropriate 

instead. This led to the development of the ILP technique, the details of which are 

included in the following sections. 
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5.4 The Concept of Standardized Language 

Unlike traditional practices, the use of standardized or controlled language is being 

promoted in industrial environments for improved efficiency, accuracy, and data 

interoperability [41, 49]. The objective of a standardized language is to improve the 

consistency, readability, translatability, and retrievability of information [50]. 

Considering the industry initiative to standardize communication protocols and use of a 

simplified language, an explicit advantage can be derived that can help reduce the 

complexity in processing the textual data. A structured syntax and a fixed domain 

vocabulary reduce the task of NLP significantly and offer several advantages over using 

non-standardized language in industrial environments. This not only helps reduce 

communication errors by avoiding ambiguities but also simplifies electronic textual data 

management and technology transfer between manufacturers, users, and maintainers.  

5.4.1 Standardized Languages in Industrial Domain 

Using a domain-limited vocabulary and a well-defined documentation format makes 

technical language globally interpretable and reduces multicultural linguistic barriers. For 

instance, formal communication within the aviation maintenance domain is defined and 

regulated [14]. A hierarchy of written correspondence is defined in the Federal Aviation 

Regulations (FARs), which includes airworthiness directives (ADs), notices to airmen 

(NOTAMs), maintenance manuals, work cards, and other types of information, that are 

routinely passed among manufacturers, regulators, and maintenance organizations. The 

international aviation maintenance community has adopted a restricted and highly 

structured subset of the English language, namely ATA-100 and AECMA Simplified 
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English, to improve communication [49]. For instance, AECMA Simplified English 

limits the length of instructional sentences to no more than 20 words. It forbids the 

omission of articles in noun phrases, and requires that sequential steps be expressed in 

separate sentences.  

Similar to the aviation industry, the importance of standardized technical documentation 

is gaining importance in the manufacturing and automotive industries. Efforts are being 

made to enhance the ability to update support documents during the life cycle of a system 

as it is maintained, modified, or resold, to form a valuable archive of knowledge 

concerning safe and reliable operation of the system. By now, hundreds of companies 

have turned to standardized languages as a means of improving readability or facilitating 

translation to other languages. Originally the Caterpillar Tractor Company (USA) created 

the Caterpillar Fundamental English (CFE) in the 1960s. Perhaps the best known recent 

controlled language is AECMA Simplified English [51], which is unique in that it has 

been adopted by the entire aerospace industry. The standard was developed to facilitate 

the use of maintenance manuals by non-native speakers of English. Aerospace 

manufacturers are required to write aircraft maintenance documentation in Simplified 

English. Some other well-known standardized languages are Smart's Plain English 

Program (PEP), White's International Language for Serving and Maintenance (ILSAM), 

Perkins Approved Clear English (PACE), and COGRAM. (See [52], which refers to 

some of these systems). Many standardized languages are considered proprietary by the 

companies that developed them. However, these languages are now converging to a 

common set through various standards. For example, ASD-STE100 (ASD Simplified 
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Technical English) has been prepared in accordance with Aerospace and Defense 

Industries Association of Europe (ASD) [53].  

5.4.2 Description of Standardized Language for CBM 

As mentioned in the preceding section, several industrial standardized languages have 

been developed. Different industries have adopted different standards based on their 

specific requirements of task and usage domain. For instance, standards required for 

maintenance in the aviation industry may not be the same as standards required for 

process automation in an automobile assembly plant. Therefore, these standards define 

translation rules at an abstract level and the exact instantiation of these rules are 

conveniently left to the specific usage. Keeping these rules in mind, a specific format of 

symptom descriptions was adopted for this research. The same format was applied to 

both automobile and centrifuge cases to obtain reasonable results as described next. 

The Standard Language Template: After studying a large number of fault descriptions, 

four main constituent phrases were identified in a typical symptom. These phrases are 

connected by propositions or connecting words. For the purpose of standardization these 

phrases were ordered in a specific manner as shown in Table 5.1. 

For a fault symptom to be descriptive enough it should contain at least the component and 

the condition phrases. The other two phrases are optional because they either add more 

detail or help in localizing the fault if there is ambiguity between several similar 

components in different locations. For this research we manually translated the original 

symptoms into this standard template. In actual industrial practice, owing to the large size 
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of datasets, automatic translators are used that parse natural language sentences and re-

order them in the template format. 

Table 5.1 The standard language template for CBM of automotive and centrifuge cases. 

Constituent 
Phrase Component  Location  Condition  Operating 

Mode 

Required Y  N  Y  N 

Example 1 engine   does no start when gear is neutral 

Example 2 lubricant in transmission is  leaking   

 

Since this translation was carried out manually, parsing was still required in the next step 

of Information Retrieval; otherwise the terms in these descriptions can be tagged at the 

same time to avoid parsing at a later stage. Some of the results of these translations are 

shown in Table 5.2.  

It can be noticed that in many cases a standardized language sentence may not be 

grammatically correct but it is able to convey the same meaning, as in the original 

sentence, without any ambiguity. 
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Table 5.2 Examples to show standardized language translation of symptoms from automotive and 
centrifuge cases. 

Original Symptom Symptom in Standardized Language 

Examples from automotive case: component - transmission 

Transmission will not downshift (kickdown) 
with accelerator fully depressed 

Transmission | | does | no downshift | when | 
accelerator fully depressed 

Transmission noisy in neutral with engine 
running 

Transmission | | is | noisy in neutral | when | engine is 
running 

Transmission does not drive in forward or 
reverse gear 

Transmission | | has | no drive | if | gear is forward 

Transmission | | has | no drive | if | gear is reverse 

Transmission lubricant leaked Lubricant | in | transmission | is | leaking | | 

Transmission slipped Transmission | | slips | | 

Problems in gear selection Transmission | | has | problems in gear selection | | 

Examples from centrifuge case 

Oil leaking from shaft seal ring behind main 
bearing on drive end 

Shaft seal ring | behind | main bearing on drive end | 
has | oil leak | | 

Movement in small flat belt pulley on rotating 
assembly Small flat belt pulley | on | rotating assembly | moves | | 

Liquid side bowl has high pitch whine Bowl | on | liquid side | has | high pitch whine | | 

Loud noise from main motor drive Drive | on | main motor | has | loud noise | | 

 

5.5 Meaning Ambiguity Reduction 

As mentioned earlier, natural language processing suffers from two inherent problems, 

namely the meaning ambiguity and paraphrase expressions (different expressions for the 

same meaning). Use of a domain-limited vocabulary reduces these problems to a large 

extent. Use of textual case-based reasoning (TCBR) has been suggested to address these 
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problems since it is typically built for specific domains [46]. Explicit use of a thesaurus 

can replace all synonyms to a preferred word before matching two expressions (Figure 

5.1). This reduces the problems due to paraphrase expressions. 

 
Black fumes observed 
from rear panel 
 
 
Smoke observed from 
rear panel 

Black smoke observed 
from rear panel 
 
 
Smoke observed from 
rear panel 

Thesaurus

Smoke: noun 
Smoke 
Fume

 

Figure 5.1 An illustration of resolving the paraphrase problem. 

Further to resolve the ambiguity issue, a reduced domain vocabulary can be established to 

fix the meaning of ambiguous words. For example, in mechanical domain, bearing is a 

component, i.e., a noun and not the present participle of the verb to bear. Therefore, 

while words like bearing in the industrial text are not expected to be used for their other 

meanings, they will be interpreted only for their fixed domain specific meanings even if 

they are used otherwise. 

5.6 Information Extraction (IE) 

To process a natural language sentence, the tokens of the language must be first isolated 

and identified. For NLP, lexical processing operates at the single word level and involves 

identifying words and determining their grammatical classes or parts-of-speech before a 

higher level language analysis can take place [54]. A shallow-NLP technique, which tags 

each word with its probable class such as a noun, verb, etc., and identifies the 



 

105 

corresponding word stem, has been suggested in [46]. This method is both efficient and 

robust as compared to other complex NLP techniques. Our IE technique follows a similar 

approach and is presented next. 

5.6.1 Parsing Fault Symptoms 

A PC based demo version of TreeTagger tool [55], developed at the Institute of Natural 

Language Processing (IMS) at Stuttgart University, has been used. As compared to other 

commercial programs, this version had some limitations that were, nevertheless, not 

considered critical for the goal of this research. This version did not allow modifications 

in the associated dictionary that could have been useful in reshaping this dictionary to suit 

industrial domain and reduce ambiguity. For instance, words like gear and bearing can 

be annotated with ‘noun’ referring to mechanical components only, thereby removing the 

annotation ‘verb’ altogether. Furthermore, we could not add new words to include 

domain specific technical vocabulary. The complete version also provides the 

probabilities associated with a word, if there are more than one possibility for the 

corresponding tag. This capability was also not available in the demo version, which 

could have been helpful in ambiguity reduction. However, an explicit effort to achieve 

these tasks was out of the scope of this thesis.  

The output of the TreeTagger program is three columns, the first one containing the 

original word as it appears in the sentence, the second one contains the tag abbreviation 

(e.g., NNP for proper noun, VB for verb, etc.), and the last column contains the stem of 

the word (e.g., 'run' for 'running' and 'be' for 'have'). Figure 5.2 shows a snapshot of the 

output file from TreeTagger.  
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Figure 5.2 TreeTagger output. 

5.6.2 Data Sanitization 

After all words are tagged, a set of syntactic rules are employed to extract relationships 

between different words in the sentence and discard redundant words. In all, three types 

of rules were employed.  

Rule Set I - The first set of rules is more of a preprocessing step that combines multiple 

words, if they together define one object or a single situation. For instance, two 

consecutive nouns are combined because they, most likely, describe a single object. 

E.g., Transmission fluid has burnt smell  Transmission_fluid has burnt smell 

Here, the words transmission and fluid are combined to represent transmission fluid. This 

helps in distinguishing between different situations involving transmission, transmission 

fluid and break fluid which are different contexts involving the same words. However, 

this method does not entirely disregard the partial similarity between such situations. This 

partial similarity does provide some information about the location of the fault and may 
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be useful in providing an alternative hypothesis if the best matching hypothesis has been 

confirmed negative. Negations like no or not are combined with the corresponding verbs. 

E.g., Engine does not start  Engine does not_start 

This takes care of negation, which is extremely important for a CBR system [56]. For 

instance, here the word start would not perfectly match to not_start appearing in a 

different situation.  

Rule Set II - The second set of rules links different words based on their parts-of-speech 

category and word order.  

E.g., Transmission will not downshift with accelerator fully depressed.  

In this sentence, at the first level downshift should be associated with transmission and 

depressed with accelerator. And these two pairs should be further linked with each other 

at the next level in the manner (transmission will not downshift) – when – (accelerator is 

fully depressed). 

Rule Set III - The third set of rules involves sentences containing conjunctions (and, or, 

/). It creates multiple associations of an object to accommodate all descriptions connected 

via these conjunctions. 

E.g., Horn inoperative or unsatisfactory in operation  (Horn is inoperative), (Horn is 

unsatisfactory in operation) 

Here, the same object horn is associated to two different conditions and a match to any of 

these two is likely to involve similar or related diagnosis. Although in some standardized 
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languages use of conjunctions is not allowed, this rule was still added to suit the available 

data set. 

5.7 Data Representation 

After the information extraction process, it is important to represent this information in a 

suitable format without losing the meaning of the text, which allows easy and fast 

similarity calculation. Semantic networks were selected for textual data representation in 

this research. This is a graph-based technique that organizes all the words in a sentence in 

a tree like structure which has some special properties to retain word order or the 

meaning of the text. The syntactic rules, described above, divide a sentence into smaller 

segments that independently define a relevant concept. It was found that three basic 

relations could be defined that explained most of the relationships between the kinds of 

concepts commonly occurring in this type of data. These relations are shown in Table 

5.3. 

Table 5.3 Three conceptual relations capture most scenarios in industrial descriptions of failures. 

 
A--IN--B →  A in_condition B or A when B 
Here A is typically a noun or a triad and B is mostly a triad 
e.g. Transmission fluid has burnt smell translates into 
(Transmission_fluid) --IN-- (smell --IS-- burn) 
 
 
A--IS--B →  A has_property B or A is_type B 
Here A is typically a noun or a triad and B is an adjective 
e.g. Transmission fluid has burnt smell translates into 
(Transmission_fluid) --IN-- (smell --IS-- burn) 
 
 
A--AT--B →  A in_state B or A exhibits_state B 
Here A is typically a noun or a triad and B is a verb 
e.g. Transmission slips translates into 
(Transmission) --AT-- (slip)  
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These concepts can be represented by a data structure called a triad. A triad τ is a three-

tuple consisting of two phrases p1, p2 and a relationship r between them (Figure 5.3).  

 

P1 P2 

 r

 

Figure 5.3 A triad consists of two phrases (p1 and p2) and a relation (r).  

A phrase can be a noun, adjective, verb or a triad itself. The set of relations, R, is a finite 

set of three relations as described above. These triads can be combined to create the 

corresponding semantic networks (Figure 5.4). 

 

SLIPTRANSMISSION

AT

Transmission slips

Type-I triad 

NO DRIVETRANSMISSION

AT

REVERSE GEAR

IS

IN

Transmission has no drive in reverse gear

Type-II triad

 

Figure 5.4 A semantic network (type-II triad) consists of one or more type-I triads.  
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Two types of triads were defined. Both phrases in a Type-I triads are single words and do 

not involve triads. Type-II triads on the other hand may consist of one or more Type-I 

triads. This makes the semantic networks a binary tree with words occurring only at the 

leaves and the rest of the nodes as relations. To improve uniformity across different usage 

of the same words, only word stems are used in forming the triads.  

5.8 Similarity Calculations 

Similarity calculation plays a key role in defining the quality of retrieval of matching 

cases and hence the quality of solution suggested by the expert system. In the following 

section some general notions of similarity applicable in the CBR domain have been 

presented followed by the similarity measure defined for the triad structure. 

Traditionally, similarity metrics have been described based on the objective notions of 

similarity and distance. Definition of a similarity metric depends on the structure of cases 

and in many cases multiple metrics may be defined to cover different aspects. A list of 

commonly used similarity metrics has been included in Appendix C. This list can be used 

as a general template to generate customized metrics. Once appropriate similarity metrics 

have been chosen, they must be composed to form a composite similarity measure. A 

composite similarity measure can be defined as: 

)),(,)),,((
])...,,,[],,...,,([),(
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   (5.1) 

where, the function ℜ→ℜ n:φ  combines feature similarity functions ℜ→× iii WWsim :  

as shown above.  
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The most common composition function is the weighted average of feature similarities. 

This average can be algebraic or geometric as shown in Table 5.4. 

Table 5.4 Most commonly used similarity composition functions. 

Expression Similarity Function 

n

simg
sim

n

i ii∑=
⋅

= 1  Algebraic weighted composite similarity 

n

simg
sim

n

i ii∑=
⋅

= 1
2

 Geometric weighted composite similarity 

 

5.8.1 Similarity Concept for Triad Structure 

For the purpose of retrieving the matching cases a similarity metric needs to be 

established between the query case (or target case) and the source cases in the case-base. 

There are three matching strategies: nearest neighbor, inductive or knowledge guided, 

and a combination of them [57]. In the nearest neighbor approach, a case is selected 

based on the degree of match for every feature of the input case with the features of the 

retrieved case. This can be tedious for large case bases. On the other hand, only a few key 

features are assessed in the inductive approach. Therefore, a hybrid of the nearest 

neighbor and inductive approaches is both precise and fast [6]. This research uses 

semantic networks to retrieve the cases from the case-base. Similarity assessment is done 

based on matching the triads constituting these semantic networks. First the lowest level 

of triads is matched. 
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Example: the input semantic net: (Transmission—IS—Noisy)—IN—(Gear—IS—

Neutral) consists of three triads: 

τ1: (Transmission—IS—Noisy) 

τ2: (Gear—IS—Neutral) 

τ3: ( τ1—IN— τ2) 

All semantic nets that contain similar type-I triads (e.g., τ1 or τ2 in this case) or the same 

terminal words will be retrieved first. Similarity of triads is computed based on how 

closely the three constituents match.  

With the semantic net (Transmission—AT—No_Drive)—IN—(Gear—IS—Neutral) the 

above query semantic net will be matched in a manner as shown in Table 5.5.  

Table 5.5 Similarity calculation for triads-based semantic networks. 

τ INPUT Query RETRIEVED Case SimVal 

τ1 (Transmission—IS—Noisy) (Transmission—AT—No_Drive) (1*0.5 + 0*0.2 + 0*0.3) = 0.5 

τ2 (Gear—IS—Neutral) (Gear—IS—Neutral) (1*0.5 + 1*0.2 + 1*0.3) = 1 

τ3 
(Transmission—IS—Noisy)—
IN—(Gear—IS—Neutral) 

(Transmission—AT—
No_Drive)—IN—(Gear—IS—
Neutral) 

(0.5*0.4 + 1*0.2 + 1*0.4) = 
0.8 

 

For triads with links AT or IS the weights associated with p1, p2 and r are 0.5, 0.3, 0.2 

respectively acknowledging the fact that component (p1) matching is more important than 

its exact condition as far as localizing the fault is concerned. Fault identification may 
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require more accurate condition matching but here the emphasis is on fault localization 

and identification, is left to further diagnosis using dedicated diagnostic algorithms. For 

triads containing links IN the weights associated with p1, p2 and r are 0.4, 0.4, and 0.2 

respectively as both p1 and p2 convey equally important information here. These weights 

can be assigned through expert experience or learned from the data. Several approaches 

have been implemented for feature-weighting algorithms that can be used to learn these 

weights [4, 5].  

Even though similarity calculation is a subgraph isomorphism problem in graph theory, 

that is NP-complete [58], a smaller size of semantic networks from standardized language 

makes this problem insignificant to a large extent. The effectiveness of this approach has 

been shown in the next section with the help of a dataset acquired from the automotive 

troubleshooting domain. 

5.9 Case Studies 

5.9.1 Automotive Maintenance 

For the purpose of evaluation of this technique, a simple data set was acquired from an 

automotive troubleshooting database, which lists several symptoms and their possible 

diagnoses and repairs [59]. Very short descriptions have been listed using common 

vehicle terminology as a car mechanic would use. As mentioned earlier, these 

descriptions were manually translated to standardized language. For example, all 

sentences were converted to active voice. Use of conjunctions and determiners was 

maximally reduced. Very long and complex sentences were broken into smaller ones. 
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Since a domain-limited customized vocabulary could not be incorporated in TreeTagger, 

the use of ambiguous words was reduced. Our data size being fairly small these 

modifications were carried out manually. But it is expected that with the promotion of 

usage of standardized language this step may not be required and in the absence of use of 

standardized language customized translators may be used. Some typical descriptions 

were processed by our programs. The pictorials of these semantic networks are shown in 

Figure 5.5 and the corresponding semantic networks are included in Figure 5.6. 
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Figure 5.5 Semantic net pictorials of symptoms from automotive data. 

5.9.2 Sludge Dewatering Centrifuge 

The rule set developed using the automotive data was also applied to the centrifuge data 

and reasonable results were obtained as shown in Figure 5.7 and Figure 5.8. 
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engine does not start in any gear 
sNet(1) = ((engine -<AT>- not_start) -<IN>- any_gear) 

  

engine started in gear other than Park   
sNet(2)  = (((engine -<AT>- start) -<IN>- ((gear -<IS>- other) -<IN>- park) 

  

transmission shifted roughly  
sNet(3)  = (transmission -<AT>- shift_roughly) 

  

transmission has problems in gear selection  
sNet(4)  = (transmission -<IN>-(problem -<IN>- gear_selection)) 

  

transmission does not downshift when accelerator is fully depressed  
sNet(5)  = ((transmission -<AT>- not_downshift) -<IN>- (accelerator -<AT>- fully_depress)) 

  

transmission is noisy in neutral with engine running  
sNet(6) = (((transmission -<IS>- noisy) -<IN>- neutral) -<IN>- (engine -<AT>- run)) 

 

Figure 5.6 Semantic networks for six different descriptions using the three relations described above. 
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shaft sealing ring behind main bearing on drive end has oil leak 
sNet(1) = ((seal_ring -<IN>- (bearing -<IS>- main)) -<IN>- drive_end)

-<IN>- (oil -<AT>- leak) 

  

small flat belt pulley on rotating assembly has movement 
sNet(2) = ((flat_belt_pulley -<IN>- movement)-<IN>-(assembly -<AT>- 

rotate)) 

  

decanter has oil leak 
sNet(3) = (decanter -<IN>- (oil -<AT>- leak)) 

  

bowl on liquidside has high pitch whine  
sNet(4) = (liquidside_bowl -<IN>- (whine_pitch -<IS>- high)) 

  

main motor drive  has loud noise 
sNet(5) = ((motor_drive -<IS>- main) -<IN>- (noise -<IS>- loud)) 

 

Figure 5.7 Semantic networks for some descriptions from centrifuge data. 
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Figure 5.8 Semantic net pictorials of symptoms from centrifuge data. 
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5.9.3 Discussion 

As shown above, the new ILP technique can process short text descriptions quite 

effectively as long as these descriptions are in a standardized language. For this research 

we used a set of 15-20 rules for information extraction. This resulted in a reasonable 

performance in the sense that most of the symptoms were processed satisfactorily when 

evaluated manually. It was realized that combining the noun words may not always be 

the best idea as they result in new nouns and a perfect matching will not be achieved 

when the original nouns are encountered. This issue can be resolved by introducing 

another relation to combine such words into a triad. However, to limit the scope of ILP 

development this was not carried out. Moreover, in more than 90% of the cases the 

current form of ILP satisfied most requirements. 

5.10 Evaluating ILP Performance 

Usually, the main issue related to any text processing methodology is the trade-off 

between its computational time and fidelity of information extraction. A high fidelity 

information extraction (IE) algorithm increases the computational burden. Therefore, the 

level of detail must be decided in advance, which in turn determines the number of IE 

rules that are applied. More rules can handle a wider variety of sentence structures but at 

the same time increase the processing time whenever a symptom arrives. In our case, 

however, we take advantage of two unique characteristics that occur in the problem 

domain and make these issues less critical. One, the symptoms are expressed in 

standardized language that makes them short and fairly structured. Thus exponential 

complexity arising due to graph structures does not worsen things to a great extent when 
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compared to linear search techniques. Second, most of the processing, in our application, 

does not require real-time solution generation and it is acceptable to wait a little longer as 

long as a correct solution is generated. Therefore, a greater emphasis is on correctness 

(relevance) of the solution rather than speeds provided they do not take longer than 

acceptable limits. To evaluate correctness of the generated solutions, the two most widely 

used performance criteria are precision and recall. Traditionally, these metrics are 

defined as follows: 

retrievedcandidatestotal
retrievedcandidatesrelevant

P
#

#
=    (5.2) 

memoryincandidatesrelevant
retrievedcandidatesrelevant

R
#
#

=    (5.3) 

The recall metric assumes prior knowledge about the number of relevant candidates in 

the memory. This needs a subjective opinion of experts to determine and is often not 

available. Furthermore, in the CBM domain the recall metric must be slightly modified 

owing to different requirements. In this scenario, it is not required to retrieve several 

relevant candidates but just one suffices if it leads to a correct solution. Thus, in the 

modified definition, recall is equal to 1 if at least one relevant candidate is retrieved for a 

symptom and equal to 0 otherwise. And then to assess the performance over a set of 

symptoms the corresponding recall values can be averaged from all symptoms. 

The number of candidates, that are retrieved, actually depends on the preset threshold for 

similarity values. This threshold must be set with experience. In the initial phase more 

options must be retrieved as the system has not yet completely learned the correct 
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weights and is still in the exploration phase. Later this threshold can be stricter to retrieve 

only the best candidates and improve the precision. In a typical precision-recall curve, it 

is observed that improvement in one results in degradation in another. In CBM domain, 

as argued earlier, a high precision is preferred over high recall. A combined metric such 

as F-measure can be used using weighted averages as shown below: 

+ℜ∈
+×
××+

= α
α
α

α ;
)(

)1(
recallprecision
recallprecisionF    (5.4) 

F-measure is harmonic mean of recall and precision metrics. These weights can be biased 

towards any of these two metrics by modifying the parameter α. A commonly used metric 

for CBM type applications is F0.5 measure that weighs precision twice as much as recall. 

5.11 Conclusions 

With the help of two examples we have shown that short and semi-structured technical 

textual descriptions can be abstracted using three simple relations that form the basis for 

semantic networks. These structures not only provide means of representing textual 

descriptions in a structured manner but also preserve the semantic meaning of the 

sentence. These semantic networks are stored in the knowledgebase. For each symptom 

linked to a hypothesis, its corresponding triads are also linked to that hypothesis. 

Therefore, once a query symptom is presented, hypotheses linked to its constituent triads 

are retrieved and help in the initial phase of diagnosis. They form a part of cases in the 

DCBR system. This helps in retrieving short text based cases to generate an initial 

hypothesis thereby considerably reducing the search space for further diagnosis. 
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6.1 Chapter Overview 

In this chapter we discuss the attributes of an intelligent and evolving knowledgebase. 

Maintaining the core theme of this thesis to integrate knowledge with CBM, it is 

important to describe a maintenance knowledgebase and how its integration offers to 

enhance CBM. Although five different attributes have been enumerated, the emphasis has 

been on the learning capability of the knowledgebase. With the help of some examples it 

has been shown how the learning algorithm can accommodate the changes in the 

environment. Apart from the backbone of intelligent knowledgebase, a transparent and 

easy to use user interface is required for trustworthy decision support systems. Users 

should be able to visually access the processing carried out by the system. Therefore, a 

knowledge management system has been developed in the Matlab environment, which 

allows users to enter data, access data, and observe data manipulation and learning that 

take place in the knowledgebase over time. 

Contribution: A knowledge management system with an evolving knowledgebase as 

backbone for consolidating CBM knowledge. 

6.2 Introduction 

The key goal of this research is to develop a knowledgebase for CBM techniques that can 

accommodate knowledge in different forms (descriptions, data, algorithms, tests, models, 

etc.). A lot of structural, operational, and analytical knowledge has been developed over 

the years while these systems were built, tested, and maintained. Typically, components 

or subsystems of a large system are studied individually before relevant analytical 
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techniques are developed. Even though these subsystems may be different, several 

constituting components share various structural and operational similarities. There is a 

need to organize this knowledge in such a manner that it can be easily shared and reused 

for similar components of a large system. Rather than re-developing this knowledge, 

minor adaptations should be able to save time and effort of the analysts. Thus, an easily 

accessible knowledgebase of these techniques must be created. A knowledgebase is a 

special kind of database for knowledge management. It facilitates computerized 

collection, organization and retrieval of useful information or knowledge.  

To achieve an increased level of autonomy it is equally important for a knowledgebase to 

show attributes of intelligence. It should be able to adapt according to changing 

environments and provide suitable solutions. As compared to a database, a 

knowledgebase also has a capability to improve the search results using the attached 

semantics to the data it contains. No formal definition of intelligent knowledgebase yet 

exists in the literature and different researchers have argued in favor of different 

attributes. In the next section we will discuss five attributes that we think are the most 

important ones to create an evolving knowledgebase. Some ideas regarding how these 

can be incorporated into a CBM knowledgebase have also been presented. 

6.3 Attributes of Intelligence in a Knowledgebase 

Attributes of intelligence have been debated in the AI domain for a long time where 

concepts like autonomy, intelligent agents, reactivity, temporal continuity and goal 

directedness take a center stage [60, 61]. With the presence of intelligence, a 

knowledgebase is expected to suggest solutions to given problems based on user 
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feedback, and is capable of learning from experience. With the attribute of learning it has 

an inherent characteristic of human beings to adapt its behavior to changing environments 

and improve its performance [62]. In response to a US Navy’s solicitation for Small 

Business Innovative Research (SBIR) on self-evolving maintenance knowledgebase, the 

authors proposed four attributes of intelligence, namely; adaptation and learning, self-

organization, conflict detection and resolution, and fault-tolerance in a system called 

Case-based Temporal Reasoner (CaTeR) [63]. In another application a CBR database 

was created to build a self-evolving maintenance and operations reasoner (SEMOR) [64]. 

The concept of self evolution in itself has been argued as an attribute of intelligence, 

which possibly includes self-evaluation, learning, self-organization and autonomous 

behavior [12]. Systems that can monitor their own activities and results to improve their 

performance are considered self-evolving and generate a dynamic knowledgebase that 

track certain activities to achieve their design goals [65]. 

From all these references it is clear that there are certain common characteristics that 

must be exhibited by a system to show intelligence. For the knowledgebase in this 

research we have mainly considered five attributes that will fulfill the overall goal of a 

more informed and automated decision support for CBM of engineering systems. These 

attributes have been outlined in the following discussion. 

6.3.1 Dynamic Structure 

The knowledgebase is characterized by semantics attached to the stored data about how 

various data are related and provide useful information when brought together in different 

orders and combinations. In this research we connect various data entities with weighted 
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associations as depicted in Figure 6.1. Further, a feedback reward is propagated 

backwards to reassess these weights. 

level i level i+1

wentity 
x

entity 
y

x,y

ryx  

Figure 6.1 A generalized basic unit of the knowledgebase connected with weighted associations and 
feedback rewards. 

At any point of time more entity levels or more entities within a level can be added. The 

initialization of weights varies depending on the type of association between the entity 

levels. There are two categories of associations between the various entities. 

1) Dynamic Associations (α): the degree of association and appropriateness must be 

learned in an evolving environment. Weight initialization may be random or 

uniform across all connections. Weights must be learnt from data through some 

learning algorithms to emulate experience. Feedback is crucial for this learning. 

For instance, associations between triads and hypotheses must be learnt from data. 

A triad can be a part of various symptoms and hence may be connected to 

multiple hypotheses through different weights. Thus, an association between a 

triad and a hypothesis can be a consequence of several symptoms pointing to the 

same hypothesis. In some cases weights may be available from experts’ 

experience and may only be modified or fine-tuned over a period of time. For 

example, associations between hypotheses and diagnostic tests must be initially 
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assigned using an expert’s experience. These weights may change with time as 

data suggests.  

2) Static Associations (β): degree of association is deterministic and is available in 

advance. Weights are determined through offline analysis during experimentation 

and testing phase and once identified; they are assigned to the system. For 

example, evidences from multiple pairs of sensors and features can be fused 

through weighted averages. These weights are determined during the initial 

analysis when the diagnostic algorithms are being developed. There is no dynamic 

learning involved as such; however, these weights may be manually modified 

when needed.  

In this research we have used various entities like: triads, hypotheses, diagnoses and 

repairs. They can be pictorially depicted as in Figure 6.2.  

Symptoms are received as external input. These symptoms may be weighted (ω) by the 

user to specify which symptom is more prominent or which symptom looks dangerous. 

Each symptom is decomposed into its constituent triads. Each triad is connected (α-

association) to a set of hypotheses. All these hypotheses are collected and ranked based 

on the total degree of support from the triads, which is calculated using symptom weights 

ω and association weights α. For the highest ranked hypothesis a list of diagnostic tests is 

collected. The chosen diagnostics is performed using a weighted combination of sensor-

feature pairs. If a diagnosis is successful, the corresponding repair action is suggested. 
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Figure 6.2 Pictorial representation of the dynamic structure of the knowledgebase. 
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In this manner the knowledgebase is capable of containing both structural and operational 

data. The knowledge is preserved in the form of associations between these data entities 

6.3.2 Self-Evaluation 

Self-evaluation is an intermediate task that the knowledgebase performs to support 

learning and self-maintenance activities on a continuous basis. Based on the feedback 

from the next level, the knowledgebase should keep track of its successes and failures at 

each level. This account of performance can be utilized in two ways. 

1) Short Term Evaluation: At each level, if a decision results in a failure, it is 

desirable to evaluate if the failure occurred due to a wrong decision at the current 

level or due to a wrong decision at a previous level. Consequently, the weights 

must be modified at the corresponding erroneous level, and not always at the 

current level. Therefore, in case of a failure, the system waits until all options 

have been exhausted before propagating a penalty to the previous level. If a 

successful option is found at the current level then a penalty is issued for the 

unsuccessful options at the current level itself. In this manner a self-evaluative 

process determines the correct location of wrong decision making. 

2) Long Term Evaluation: If system realizes at any point of time that a particular 

entity always results in a negative outcome and hence its weight has dropped 

below certain level, then that association is a likely candidate to be removed from 

the knowledgebase. This action will be performed whenever the self-maintenance 

operation is scheduled next. For instance, a group of sensor-feature pairs may no 
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longer be effective and the diagnostic result always returns a low-confidence 

outcome, then either these pairs can be removed from the knowledgebase or a flag 

be thrown for the experts to re-evaluate the corresponding test. 

6.3.3 Learning 

Learning is the most critical attribute of intelligence and an evolving knowledgebase. The 

system should learn from experience about how the environment behaves and should 

create a model of this environment. The next time a query arrives it should use this model 

to predict the most probable state of the environment. Further, if the environment 

changes, system should be able to recognize the changing behavior and adapt to new 

behavior of the environment. In the literature three broad approaches to learning can be 

found depending on the task at hand. These approaches are briefly mentioned below. 

Supervised Learning: Under supervised learning the agent is provided with a target or a 

purely instructive feedback, i.e., the environment tells the learner about what exactly its 

output should be. The agent then compares its response with the target and adjusts its 

internal memory in such a way that it produces a more appropriate response the next time 

it receives the same input. The instructive feedback in this case is independent of the 

action taken by the agent and always tells about the correct action it should have taken. 

Thus, supervised learning is learning through several examples provided by an external 

knowledgeable supervisor. 

Unsupervised Learning: This is the other extreme for learning where the agent does not 

receive any feedback from the environment. The agent instead has to abstract the input 
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information into clusters or categories or by using a reduced set of dimensions so that 

when a familiar situation is encountered, an output is generated based on that category of 

situations and is likely to cover slightly different problems as well. Unsupervised learning 

is based on similarities and differences in the input patterns. 

Reinforcement Learning: This lies somewhere in the middle of the supervised and 

unsupervised learning techniques, however it is closer to supervised learning. In this 

technique the agent receives an evaluative feedback about the appropriateness of its 

response. Purely evaluative feedback indicates how good the action taken is, but not 

whether it is the best or the worst action possible. The evaluative feedback completely 

depends on which action was taken, unlike instructive feedback [66]. 

6.3.3.1 Learning in the Knowledgebase 

The Model: The initial diagnosis component of our knowledge-based CBM architecture 

can be modeled as a finite Markov Decision Process (MDP) (Figure 6.3) i.e. 

- There is a finite set of distinct symptoms indicating the failure in the system. This 

constitutes the failure-unknown state.  

Failure 
Known
Failure 
Known

hsuccesshsuccess

Failure 
Unknown

Failure 
Unknown

hfailureh failure

 

Figure 6.3 State space representation of a diagnostic process. 
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- There is a finite set of hypotheses that can be proposed to explain these symptoms 

in the initial phase. These hypotheses are tightly coupled to their respective 

diagnostic tests or actions that the knowledgebase suggests to perform to confirm 

a hypothesis in the final diagnosis phase. Therefore, there is a finite set of choices 

(actions) that can be taken while at failure-unknown state. 

- If by choosing a hypothesis and carrying out the corresponding diagnostic tests a 

fault is clearly identified, the system moves to failure-known state. If the test fails 

to identify the fault, system comes back to failure-unknown state. 

The one step dynamics of this finite MDP are completely defined by the set of states and 

hypotheses together with the probability of the next state, given the current state and a 

chosen hypothesis. These transition probabilities are given as: 

},|'{ 1' hhssssprP ttt
h

ss ==== +     (6.1) 

Similarly, given a state s and hypothesis h together with the next state st+1, the expected 

value of next reward (success or failure) can be expressed as: 

}',,|{ 11' sshhssrER tttt
h
ss ==== ++     (6.2) 

Here, the goal is to learn these probabilities from the environment (data) such that the 

expected value of rewards is maximized over a long period of time.  

The Learning: A finite MDP presents a natural choice for a reinforcement learning 

approach. In reinforcement learning, an action-value is associated with each action. 

These action-values are modified every time the corresponding action is taken and a 
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feedback is received in the form of reward from the environment. These action-values 

can be considered as weights, like in other machine learning algorithms, that can be used 

to make a decision about the action selection the subsequent time. The action-selection 

policies can vary depending on the nature of the problem. A brief discussion on action-

selection policies follows in the latter paragraphs.  

There are three main algorithms for reinforcement learning namely, Monte Carlo (MC) 

methods, Dynamic Programming (DP) and Temporal-Difference (TD) learning, each 

having their own strengths and weaknesses. DP methods are well developed 

mathematically but require a complete and accurate model of the environment. MC 

methods are conceptually simple and don’t require a model but are not suited for step-by-

step incremental computation. TD methods do not require a model and are completely 

incremental, but are more complex to analyze. In particular, a Temporal Difference (TD) 

method for reinforcement learning is most suitable for these kinds of problems [66].  

Q-Learning: The most popular TD algorithm for reinforcement learning is the Q-

learning algorithm [67]. In this algorithm the learned action-value function, Q, directly 

approximates the optimal value, Q*, irrespective of the action selection policy. Detailed 

proofs of optimality and convergence of Q-learning have been developed in they 

literature [66]. In brief, one step Q-Learning is defined by  
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new hsQhsrhsQhsQ γαα ++−←   (6.3) 
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 For this research, Q values are used as learnt preference weights to choose from various 

options. Reward r is obtained from the maintainer in predefined quantized values as 

discussed in the next section. This forms an important step in integrating human-in-the 

loop. The discount parameter γ is a measure of how much attention we pay to possible 

rewards we might get in the future. Since there are only two states in our scenario and 

there are no actions associated with failure known state there is no expected reward from 

that state. Therefore, the discount parameter has little or no significance in this case. The 

learning rate parameter α is however very crucial in determining the time this system 

takes in adapting to changing environments. A large value of α leads to oscillations in the 

Q-values due to random nature of failure occurrences as it gives a higher weight to 

current event over the past history. A smaller value, on the other hand, leads to slow 

learning by expressing more trust in past experience over current events. Therefore, a 

balance must be established for desirable performance. 

Hypothesis-Selection Policy: This is the scheme adopted to make a decision about which 

hypothesis to select among the various available options. The main goal is to maximize 

the total rewards accumulated over a long term. The most common approach is the 

greedy policy π*(s) where the hypothesis with the highest action-value is always selected: 

),(maxarg)(* tt
h

hsQs
t

=π      (6.4) 
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This is also called as exploitation approach where current knowledge is exploited to make 

a decision. The other approach is that of exploration where one of the non-greedy 

hypotheses is chosen. This allows exploring other options that may fare better than the 

current best one. A simple approach is to behave greedily most of the time, but, every 

once in a while with a small probability ε, choose a hypothesis randomly, uniformly and, 

independently of its action-value. These methods are called near-greedy or ε-greedy 

selection policies. In the initial phase of learning it is desirable to include an exploratory 

approach and then switch to exploitation later on. 

For a decision support system however, it may never be desirable to choose a completely 

irrelevant hypothesis. A simple ε-greedy approach chooses uniformly from all hypotheses 

ranging from the worst appearing ones to next-to-best options. To take care of this 

drawback, a softmax selection procedure is employed, in which selection probabilities are 

a graded function of action-values and hence a better option has a higher probability of 

being chosen. There can be several grading functions but the most commonly used 

softmax method uses Gibbs or Boltzmann distribution [66] where the probability of 

selecting a hypothesis ht out of all H possible hypotheses is given by 

∑
=

= H

b

bQ

hQ

t
t

tt

e

ehP

1

/)(

/)(

)(
τ

τ

     (6.5) 

Where, τ is a positive parameter called temperature. A high temperature forces nearly 

equal probabilities for all hypotheses, and a lower temperature causes more gradation 

based on action-value Qt(h). 
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6.3.3.2 Human-in-the-Loop Learning (HITLL) 

Machine Learning (ML) is one of the key tools in developing autonomous intelligent 

systems. While designing such learning environments it is critical to collect, codify and 

present an exhaustive set of experiential knowledge to the system during the training 

phase, which poses several challenges. First, it is almost next to impossible to hard-code 

all information even if we assume that such knowledge is available in the form of human 

experience and can be somehow articulated and codified. Furthermore, other practical 

problems, such as long training time requirements and non-scaling state representations, 

make it even more difficult for real-life implementations. In such environments, 

introduction of human teachers in the learning loop can make this task relatively simpler 

and tractable. Several Reinforcement Learning (RL) applications have been developed 

with an interactive human teacher specifically in the field of mobile robotics [68-70]. 

While RL is not traditionally designed for interactive supervisory input from a human 

teacher, several works in both robot and software agents have adapted it for human input 

by letting a human trainer control the reward signal [69, 71]. They show that human-

given reward is compatible with the traditional reward signal and can significantly 

accelerate the learning activity. Therefore, we adopt a Human-in-the-loop-learning 

(HITLL) framework where not only the experts are kept in the loop for continuous 

performance monitoring, but also the system learning activity is accelerated. 

6.3.3.3 Integrating Human in CBM Knowledgebase 

In the framework adopted in this thesis the human element is integrated into the system in 

three modes. In each mode the specific role played by the human is different yet 
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important to achieve the over all goal of a successful Decision Support System (DSS). 

These three modes are described as follows (Figure 1): 

Expert Designer

Interpreter & GuideTeacher (maintainer)

Decision 
Support 
System

 

Figure 6.4 Three modes of HITL integration in a Decision Support System. 

1) Expert Designer: Typically while implementing a system, a model and set of 

features are developed, trained on some training data and evaluated on some 

development data. Then the model and features are augmented/changed, retrained 

and retested on the development data. These iterations are carried out by expert 

designers of the system until they are satisfied with the developmental results. 

This is "human in the loop" because in each iteration we're using our human 

knowledge to add some additional features that will hopefully correct for errors 

on the development data. In building a CBM knowledgebase development of 

various diagnostic algorithms like feature calculation, classifier implementation, 

and preference weight assignments for information fusion falls under this 
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category of human involvement. In most cases this is offline analysis carried out 

in the design phase. 

2) Interpreter and Guide: As discussed earlier, the main goal of knowledge 

integration into the CBM cycle is to build a DSS. Through its attributes of self-

evolution the knowledge based system is expected to learn experts’ experience to 

the extent that knowledge can be successfully articulated and codified. To address 

the rest of the situations, where this knowledge can not be possibly imparted to 

the system, presence of a human expert is deemed necessary to avoid any 

incorrect decisions as far as possible. Therefore, human plays an important role as 

the interpreter of the suggestions generated by the DSS. It helps the decision 

maker by narrowing down the choices based on past scenarios, but the actual 

decision making still stays at the discretion of the user of the DSS. 

Another role that can be possibly played by human in this capacity is to guide the 

learning activity through anticipatory guidance rewards [69]. This activity is 

similar to populating the knowledgebase during initialization phase when 

different preference weights are hardcoded based on expert opinions. The similar 

process can be formally carried out in the real-time when experts know the correct 

solution to the current problem and guide the DSS to the corresponding 

suggestion through anticipatory guidance rewards. 

3) Teacher (maintainer): The third role played by a human is that of a teacher that 

provides feedback on system’s performance and guides the reinforcement 

learning. This task is performed by maintainers of the system who actually act 

upon the suggestions from the DSS and evaluate if the action taken was 
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successful or not. A challenging problem in such Human-in-the-loop (HITL) 

systems is that the evaluation of the system performance is inherently subjective 

or is based on judgments made by maintenance experts with criteria formed from 

their experience, which they are unable (or unwilling) to articulate. In this thesis 

we have devised a way in which the user’s feedback is quantized in a standard 

manner and is interpreted by the system in a consistent manner over a period of 

time. The user is given a predetermined set of choices to express feedback, which 

are interpreted based on a reward structure designed in advance. Two kinds of 

reward structures are suggested. Some rewards are simply +1 or -1 representing 

success or failure of an action. These rewards are sparse and are fairly simple to 

formulate. In other cases a dense reward structure is used where the reward is 

proportional to the quality of action performed [72]. We illustrate these concepts 

in the following sections. 

In many cases these distinct roles may be played by the same pool of people at different 

stages of a DSS lifecycle even though respective integration mechanisms are fairly 

different. 

6.3.3.4 Learning Process 

For the initial diagnosis scenario, consisting of symptoms and hypotheses, there are only 

two states as shown in Figure 6.3. Having received some symptoms, the system knows 

that there is an anomaly in the system, which could be a failure in good probability. But 

the system has not yet identified the failure. By proposing the most probable hypothesis 

for the failure it will try to maximize the probability of success in isolating and 
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identifying the correct fault mode. The complete learning process can be described in the 

following steps and is shown in Figure 6.8. 

- At any discrete time step t the system receives a failure symptom st. It 

decomposes the symptom into its constituent triads to generate a list of possible 

hypotheses. These hypotheses are ranked based on the weights associated with 

them.  

- One of the hypotheses is chosen according to the action-selection policy 

employed. This hypothesis (ht) is assumed to be the main cause for the observed 

symptoms and is selected to execute the diagnostic tests associated with it. 

- The human feedback is obtained in the form of the usefulness of the actions 

performed through a reinforcement r(st, ht) and the next state st+1. The next state 

could be the failure-unknown state or failure-known state depending on the 

success of the choice made. The reinforcement is formalized as a number, larger 

for beneficial and smaller for detrimental choices, respectively.  

Algorithm: Q-Learning with HITL Feedback Rewards: 
st = current state, st+1 =next state, ht = current selection of hypothesis, r = feedback human reward 
1: while learning do 

2: ht = select hypothesis according to policy π*(s) from options weighted by Q[s,h] 

3: carry out diagnostic tests corresponding to ht and transition to st+1 

 (allow small delay to receive human reward) 

4:  obtain reward r 

5: update Q-values according to: 
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6: end while 

 



 

139 

Reward Structure: As depicted in Figure 6.8, the learning activity takes place at three 

locations, i.e. weights between triads-hypotheses, hypotheses-diagnoses and, diagnoses-

repairs. The nature of all three instances is different and hence the reward structure is 

different as well.  

Rewards for triad-hypothesis (t-h) associations: Initially, during the pure learning 

phase each constituent triad of a symptom will have an equal association with the 

corresponding hypothesis. Later, if any of these triads appears as part of another 

symptom explained by a different hypothesis, its association with the new hypothesis will 

grow and with the previous hypothesis will diminish. Thus, over a period of time 

associations between symptoms and hypotheses will transform into associations between 

triads and hypotheses. This will help in suggesting solutions where an entirely new 

symptom is observed, which consists of already existing triads in the knowledgebase. For 

this situation a simple sparse reward structure is suitable where a reward of +1 is 

awarded to a successful hypothesis and -1 for a failed hypothesis. 

Rewards for hypothesis-diagnosis (h-d) associations: In this case not only the success 

and failure of a diagnostic tests matters, but also its effectiveness. For instance, if a 

diagnostic test confirms a fault or no-fault condition with a higher confidence than 

another test it must receive a higher reward. This method implements a dense reward 

structure, where the reward is a function of the confidence measure calculated in 

identifying a failure.  

To accomplish this, a two step procedure was adopted. 
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Step 1: A preset threshold (T0) for the desired confidence level is chosen. Each diagnostic 

test is tested to achieve T0. A test that declares a no-fault condition is considered a failed 

test and included in the failed tests list. If, at least one test declares a fault condition with 

the preset confidence level the hypothesis is confirmed as true and is rewarded with a 

positive reward. At the same time all the failed tests are updated with a negative reward 

and the successful test is updated with a positive reward (Figure 6.5). Otherwise, if all 

tests fail to cross the desired threshold step 2 is applied. 
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Figure 6.5 A successful hypothesis and at least one successful diagnostic test. 

Step 2: There can be two reasons why all tests failed to confirm the presence of the fault. 

1) An incorrect hypothesis was chosen at the previous level. 

2) The data is too noisy to achieve the desired confidence level in fault detection. 

In the first case, a negative reward is sent to the incorrect hypothesis without updating the 

weights of the diagnostic tests (Figure 6.6). 
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Figure 6.6 The unsuccessful hypothesis case. 

However in the second case, another chance must be given to the hypothesis. Therefore a 

preset minimum allowable confidence threshold (Tmin) is chosen and all tests are carried 

out against it. If none of the tests still cross the threshold the hypothesis is declared false 

and updated with a negative reward. If one or more tests clear the threshold Tmin, they are 

further ranked based on the maximum threshold levels they can clear. The rewards to 

these successful candidates are proportional to the confidence levels they achieve. Thus a 

better test gets a higher reward. And the corresponding hypothesis is updated with a 

positive reward (Figure 6.7).  
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Figure 6.7 A successful hypothesis but lower confidence due to poor quality data. 
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In the example illustrated below, the rewards are proportional to the success of each test, 

i.e., for the successful tests the rewards structure follows an order r2 > r3 = r4 > r5. 

Rewards for diagnosis-repair (d-R) associations: Once a diagnostic test confirms the 

presence or absence of a suspected fault a reward is issued accordingly to update the 

weights for the corresponding hypothesis and the test. If a hypothesis is successful, it is 

assumed that the fault has been identified. Now, the weights on repair actions are 

completely independent of the success at the previous level. If a repair action fails to fix 

the diagnosed problem, its outcome does not propagate back to the hypothesis or 

diagnosis level. Hence, only the weights on repair actions are affected. The rewards 

structure can be either +1 or -1 for success and failure, respectively, or if the operator 

feedback can be obtained about the effectiveness of the repair action, a reward can be a 

number directly proportional to its degree of effectiveness. If none of the available repair 

actions are effective then an expert’s advice must be taken because the system has not 

seen such a situation before and hence can not help in decision making in this case. 

Again, it must be noted that this is a decision support system and therefore the presence 

of a human expert is expected to make decisions in situations where DSS fails to provide 

any conclusive suggestion. 
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Figure 6.8 A flowchart showing the complete decision support process with learning.
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6.3.3.5 Learning Scenarios 

In general, several scenarios about how the environment behaves can occur in practice. 

For this research two main scenarios were considered to show a proof of concept about 

how learning can be adapted to different scenarios involving HITL. These scenarios are 

briefly described below. 

Scenario 1 

In the first scenario, it is assumed that a symptom can be explained by several hypotheses 

(fault modes). However, in the current environment the relative distribution of occurrence 

of these fault modes is different. These faults occur in a random order with a probability 

reflecting their relative frequencies. The learning activity should result in a higher weight 

for a fault mode (hypothesis) that occurs more frequently than less frequent fault modes. 

Later as the environment changes this distribution may also change and the learning 

activity should reflect this change. An important consideration in judging the 

effectiveness of a learning scheme is the response time in which these changes are 

reflected in the decision making process while making a selection for the most probable 

hypothesis.  

Example: Unusual vibrations occurring in the centrifuge result from main motor bearing 

defect in 75% of cases, faulty primary gear in 20% of cases, and other drive faults in the 

rest 5% of cases. Thus, whenever unusual vibrations are observed the system should 

check for main motor bearing defects with a higher priority than carrying out diagnostic 

tests for faulty gear defects or other drive defects.  
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Scenario 2 

In the second scenario, it is assumed that although a symptom can be explained by 

different fault modes that are equally frequent, the changes in system behavior are 

reflected with a different degree of severity from this symptom. Hence, a particular 

hypothesis has varying degrees of support from different symptoms. A symptom with a 

higher degree of support for a particular fault mode should have a higher weight on its 

association with that hypothesis. Now, if at some point of time a new failure mode occurs 

in the system which has an even stronger characteristic of unusual vibration, the learning 

scheme should reflect this change in the weights associated with different hypotheses.  

Example: An unusual vibration in centrifuge is a stronger characteristic of a main motor 

bearing defect than a primary gear defect. But a shrieking sound is a stronger 

characteristic of primary gear defect than a bearing defect. Both defects are equally likely 

to occur statistically. Thus the vibration symptom should have a stronger association with 

bearing defect than the gear defect. Later, if a shaft misalignment problem results in more 

prominent unusual vibrations then the decision support system should suggest solutions 

accordingly. 

Other scenarios may also occur and the Q-learning scheme can easily be adapted in a 

manner suitable to those scenarios. Some simulation results exhibiting learning in both 

scenarios have been included in the results section. 
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6.3.4 Self-Maintenance 

Self-maintenance refers to reorganization of the knowledgebase. Each data entity is 

labeled with a time stamp indicating the time of its most recent use. At the time of 

scheduled self-maintenance all the entities that have not been used in a long time (limit 

preset by the user) may be shifted to a passive memory. At any point of time, the list of 

options is generated only from the active memory contents. Once all options have been 

exhausted, more options may be looked up from the passive memory. In case more 

options are found in the passive memory they may be tried and if successful can be 

brought back to the active memory before a negative reward is propagated to the previous 

level.  Similarly the entities whose weights drop below a minimum threshold may also be 

shifted to the passive memory. They may be recalled and tried only if all other options 

have been exhausted. 

The passive memory can be configured in First-In-First-Out (FIFO) manner such that 

once it gets full the oldest entries are flushed out first to make room for new entrants. In 

this manner the knowledgebase always contains the most relevant data and does not grow 

in an uncontrolled manner. 

6.3.5 Autonomous Behavior 

All the activities described above are carried out in an autonomous fashion. In some 

cases, where expert assistance may be required, a flag is thrown to indicate such 

condition. Mainly, if activities like self-evaluation, learning and self-maintenance can be 

carried out in an autonomous fashion the system can be regarded as autonomous. 
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However, it is important to have access to various modules to manually monitor the 

activities and evaluate the performance. The knowledge management system, described 

in the next sections, is a transparent means to access the knowledgebase for expert’s 

inspection and modification. 

6.4 Simulation Results and Discussion 

Two different experimental simulations were designed to show learning in the different 

scenarios discussed above. 

Scenario 1 

Initially there are two symptoms sa and sb each with its respective set of hypotheses Ha 

and Hb, where Ha = {h1, h2, h3} and Hb = {h4, h5} with their respective initial probabilities 

of occurrence pa = [0.05, 0.9, 0.05] and pb = [0.3, 0.7]. After about 400 episodes the 

environment changes and the change is reflected in the changed probability distribution 

pa’ = [0.75, 0.2, 0.05] and pb’ = [0.5, 0.5]. The following simulation results show that 

these changes are effectively reflected in the learning algorithm. The response to this 

changes by Q-learning has been compared with the simple frequency based learning 

scheme. To compare the results with frequency based weights, all Q-values have been 

normalized to a number between 0 and 1. Both symptoms are independent of each other 

and occur randomly with equal probability. The results have been averaged over 20 

experiments. The reward structure here is +1 if a correct hypothesis is chosen and -1 if an 

incorrect hypothesis is chosen. 
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Results from scenario 1 have been compiled in Figure 6.9 and Figure 6.10. The first row 

in each figure shows the Q-learning performance and the second row shows frequency 

based learning. The first column plots in each figure represent simulations for a stationary 

environment where no significant change was observed as time passed by. The second 

row shows when the probability distribution of different faults changed drastically after 

400th episode.  

As can be seen from these figures, for stationary environments frequency based method 

exactly replicates the probability of occurrence. However, for non-stationary case the 

learning of new probabilities is extremely slow, whereas Q-learning quickly adapts to the 

new environment. This rate of adaptation can be changed by changing the learning rate 

parameter α. 
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Figure 6.9 Comparing Q-Learning performance with frequency based learning for symptom sa. 



 

 

150

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h4

h5

70%

30%
50%

50%

70%

30%

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h4

h5

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h4

h5

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h4

h5

(a) (b)

(c) (d)

  

Figure 6.10 Comparing Q-Learning performance with frequency based learning for symptom sb 
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Scenario 2 

A symptom s is explained by a set of hypotheses H = {h1, h2}. Both h1, h2 have equal 

probabilities of occurrence but h1 is detected with a maximum confidence of 0.80 than h5, 

which is detected with a maximum confidence of only 0.75. This means that s is a 

stronger characteristic of h1. After about 400 episodes a new hypothesis (h3) is added to 

the system for which s is a very strong symptom and results in detection confidence of 

0.95. The learning of Q-values reflects these changes as shown in the following results. 

The results have been averaged over 20 simulations, and each of the three failure modes 

were simulated to occur with an equal probability.  

A similar trend in performance is observed in scenario 2 as well. Since all three faults are 

equally likely their weights are close to each other (i.e. converge to 0.5 for two and 0.33 

for three hypotheses). However, the hypothesis that is more convincingly explained by 

this symptom has a slightly higher weight in Q-learning case. For the frequency based 

method this information about sensitivity is not included at all. Further, Figure 6.11 

shows that as soon as a better faring diagnostic test is included in the knowledgebase its 

Q-value improves sharply and very quickly it becomes the favorite test to be carried out. 

In the frequency based method, first, the learning is extremely slow and next it will never 

learn the preferences. Frequency based methods are extremely simple and intuitive but 

they are not capable of handling non-stationary environments. 
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Figure 6.11 Comparing Q-Learning performance with frequency based learning in scenario 2. 



 

153 

6.5 The Knowledge Management Interface 

As much as it is important to design and structure a knowledgebase it is equally 

important to provide means to store and access the data into the knowledgebase. At the 

same time it is desirable to have an interface that allows experts to peek into the 

reasoning process at different stages for monitoring from time to time of the workings of 

an autonomous system. Another aspect of such an interface is to let experts carry out any 

modifications in the knowledge at anytime they consider appropriate. 

In this research few basic interface modules have been designed to visually show the 

dynamics of the knowledgebase. These modules have been briefly described and shown 

below. 

Data Entry Module 

First, a structural model of the system must be entered into the knowledgebase. This 

allows defining the system-of-systems hierarchy and also provides the list of all 

components in the system (see Figure 6.12). 
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Figure 6.12 Interface to enter structural model of the system. 

It also provides the connections between various components and their respective 

subsystems that are often important in localizing the faults. Once the system has been 

entered, it can be stored in the knowledgebase and accessed later by loading it into the 

active workspace. 

The next step is to specify the attributes associated with different kinds of objects. For 

instance, information regarding various components, sensors and their specifications, 

feature calculating algorithms and their parameters, etc. must be added to the 

knowledgebase. At the same time the interface should allow removing or modifying any 

object whenever required. This was accomplished though a user interactive interface for 

adding a knowledge element as shown in Figure 6.13. 
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Figure 6.13 Interface to add or modify an object into the knowledgebase. 

The main attributes of this module are: 

- One can add an object, e.g. a new sensor may be added to the knowledgebase. 

- More fields may be added to an object, e.g. another field rangeL, specifying the 

lower range of sensor sensitivity may be added. 

- At any instant all details associated with the selected object are displayed. 
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- These attributes include a time stamp associated with each object, which gets 

updated whenever that object is accessed last. 

- Also included is location information where the data corresponding to this object 

may be obtained from. E.g. in our case we use sensor data files stored in the 

database. 

- Finally, any object or any of its attributes may be deleted at any time. Whenever 

deleting an object, a confirmation dialogue pops up to avoid deletion by mistake. 

A similar interface is available for other types of objects as mentioned earlier. 

Visualization Module 

Visualization module mainly consists of two interfaces. One of these interfaces shows a 

query symptom into its semantic network form (Figure 6.14). This allows users to 

monitor the performance of the ILP algorithm. At anytime the semantic nets created by 

the ILP algorithm may be compared with what experts would manually draw. This helps 

in identifying trouble spots whenever an unknown structure is encountered in symptoms. 

Further, a transcript of the ILP sequence of steps is printed on the command prompt to 

guide the debugging process in an easy manner. 
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Figure 6.14 SemanticNet visualization module. 

The next module shows the learning behavior of the knowledgebase by showing the 

association weights between various entities at any point of time. Since this application is 

episodic in nature, after each episode the changes in the weights between various entities 

can be monitored. 

 

Figure 6.15 Module to monitor weights between various entities of the knowledgebase. 
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6.6 Evaluating KB Performance 

The knowledgebase structure developed in this thesis should be evaluated for 

performance issues arising from attributes like learning, self-maintenance, and self-

evaluation. The learning rate parameter α should be adjusted such that learning in new 

environments is quick but at the same time any differences arising due to noise should 

not affect the outcome of the system. 

To improve and optimize KB performance, a temporal recency threshold is set beyond 

which the entries are moved to passive memory. This threshold should be carefully 

determined taking into account the total time to fetch entries from the passive memory 

and their relative frequency of being fetched from the passive memory. 

6.7 Conclusions 

In this chapter we have developed a framework for intelligent knowledgebase for 

integration with CBM architecture for an autonomous DSS. With the help of several 

examples, various attributes of intelligence were described that bring this process model 

closer to autonomy. Further, a particular emphasis was put on learning mechanism and a 

Q-learning scheme, incorporating human-in-the-loop experience, was adopted and was 

shown to be effective in two different simulation scenarios. Last but not the least a 

knowledge management interface was described with the help of few modules developed 

during this research.  
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Chapter 7  

Conclusions and Future Work 



 

160 

7.1 Concluding Remarks 

This thesis addresses a key issue of knowledge integration in the development of 

CBM/PHM technologies. In addition to signal processing and subsequent diagnostic and 

prognostic algorithms these new technologies require storage of large volumes of both 

quantitative and qualitative information to carry out maintenance tasks effectively. From 

the volumes of data that can be obtained today, information extraction has been a 

challenging task and organizing this information, so that it can be considered useful 

knowledge, is yet another level of abstraction. A knowledge integrated approach provides 

means to store, organize, and access this knowledge in a timely and efficient fashion.  

We presented a two-level diagnosis scheme in which first a fault is hypothesized using 

the observed symptoms from the system and then a more specific diagnostic test is 

carried out to confirm the hypothesis. This results in a pin-pointed diagnostic data 

processing with reduced computational overhead. An Industrial Language Processing 

(ILP) technique has been developed for processing textual information from industrial 

systems. Compared to other automated methods that are computationally expensive, this 

technique manipulates standardized language messages by taking advantage of their 

semi-structured nature and domain limited vocabulary.  

The key assumption in this architecture is the use of standardized language in the 

industrial environments. Although this has been a preferred practice in the aviation 

industry, other industries are yet to embrace this concept completely. However, there is 

significant evidence that efforts are being made in this direction at the organizational 
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level. Although, ideally a common standard specific to an industry would be preferred, a 

competitive attitude and high overhead is currently resulting into an individualistic effort 

from different organizations. However, the approach presented in this thesis is quite 

generic and can be easily adapted to specific cases. 

Further, an intelligent reasoner is required that can make judicious use of this knowledge 

and provide a substantial support in the decision making process. A Dynamic Case-based 

reasoning (DCBR) framework has been used as a hybrid platform for diagnostic 

reasoning and an integration mechanism for the operational infrastructure of an 

autonomous CBM system. This integration involves data gathering, information 

extraction procedures, real-time reasoning frameworks and decision-support systems to 

facilitate the strategies and maintenance of critical systems. A structured approach to data 

acquisition and information extraction is outlined that makes use of already existing 

various industrial practices. This knowledge is stored in a self-evolving knowledgebase 

that learns from its performance feedback and reorganizes itself to deal with non-

stationary environments. Attributes of learning, feedback, self-evaluation, self-

maintenance and autonomous behavior are discussed and instantiated with the help of 

some example scenarios. We have used Q-learning using external human feedback as the 

main learning algorithm for experience accumulation. However, other learning methods 

may be adopted depending on the structure of the knowledgebase and the problem 

scenarios. 

Despite logical arguments regarding the effectiveness of the two-level diagnosis approach 

and the evolving knowledgebase, a theoretical evaluation is required to clearly show the 
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advantages and disadvantages of the suggested architecture. For this purpose it is 

obviously desired to use commonly used performance measures in these domains. 

However, due to some fundamental differences in the nature of the problem, owing to the 

application domain and the absence of adequate data to compare or benchmark with other 

techniques, customized methods were devised to carry out these evaluations. 

These differences arise form the fact that in most cases one requires an experts’ 

subjective assessment in defining the quality of the suggested solution while evaluating 

performance measures like accuracy and precision. Further, these systems are episodic in 

nature and any performance evaluation requires external feedback available at the end of 

the episode. Moreover, several episodes over a long period of time are needed to make 

any conclusions, unlike continuous time algorithms. Therefore, we have modified some 

of the conventionally used performance measures and defined new ones wherever 

appropriate. 

In concluding this research we note that integrating knowledge into the CBM architecture 

is a significant step towards achieving an autonomous DSS in the maintenance process. 

The learning in such DSS, however, involves human-in-the-loop to receive feedback 

from the domain experts and learn from their experiences. Adopting this approach in the 

industrial environments not only the processes can be improved but also the corporate 

knowledge can be retained as an electronic expert for later reuse. 

7.2 Summary of Contributions 

Main contributions of this research are: 
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- Knowledge integrated CBM process model for automated diagnostic Decision 

Support System. 

o A Knowledge Management System (KMS) for easy storage, access and 

manipulation of knowledge for later reuse. 

- Self-evolving Knowledgebase (KB) that learns from its performance over time 

and a structured approach to acquire and modify knowledge to populate this KB. 

o A Q-learning algorithm with human-in-the-loop feedback to learn from 

the experience of domain experts. 

- Dynamic case-based reasoning platform for simultaneously utilizing textual and 

numerical information to carry out diagnosis with less computational burden. 

o Two level diagnostic framework 

- Industrial Language Processing (ILP) technique to process industrial text, while 

retaining its domain specific information for effective diagnosis. 

o Information extraction technique for standardized language sentences. 

o Similarity evaluation methods for semantic networks in ILP for matching 

and retrieval purposes. 

7.3 Suggested Future Work 

In this thesis we have presented a Decision Support System for CBM. This system 

integrates various modules in a unique fashion to overcome practical problems of 
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computational tractability and interfacing between qualitative data, quantitative data, and 

human feedback. In absence of real industrial data these modules were independently 

developed and tested in an isolated manner. From a systems point of view, performance 

of the complete system should be assessed as a whole. This performance assessment was 

not addressed in this research. However, a platform has been set for such experiments and 

analyses. Here we suggest some important research directions that should be further 

pursued to guarantee desired performance. 

7.3.1 Guaranteeing Overall System Soundness 

HITL based learning systems invariably encounter time delays while they wait for human 

feedback. Such time delays should be modeled in the dynamics of the system to 

guarantee reasonable performance. In some cases feedback reward may not be used, 

immediately after it is available, until the correct location of the decision making node is 

identified. In case of failures, only that specific node should be penalized where the 

incorrect decision was made and in case of success, all nodes must be rewarded where 

correct decisions were made. Furthermore, different steps in the diagnostic process take 

different processing times and therefore provisions should be made to incorporate time 

delays arising from such situations. Such study was not carried out in this research and 

therefore, it is desired to carry out a formal study on how to model such time delays to 

guarantee the best performance. 

This thesis presents a closed loop system, where incorporating the external feedback 

forms a crucial part of the learning activity. This in turn raises the convergence and 

stability issues. Design parameters like learning rate and time delays should be carefully 
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chosen to guarantee convergence and stability even in highly random and noisy 

environment.  

7.3.2 DCBR Extension to Prognosis 

The DCBR framework described in this thesis can be expanded for prognosis task with 

little efforts. The most straight forward expansion is based on the fact that already 

existing prognostic algorithms can be integrated in a similar fashion as diagnostic 

algorithms to get activated once the fault has been localized. Fault is first identified by 

diagnostic routines followed by activating the corresponding prognostic routines.  

The case structure itself can also be used as a higher level prognostic platform. A time 

history of the situations can be included as a part of the case. Such a history can be 

implemented as Traces. Traces not only keep track of current state of the system but also 

the evolution of the state in the recent past. Similarly, the time-tagged indexes as 

described in [34-36] can be used for generating trends. These trends can be used to make 

subsequent prognosis. 

7.3.3 Improving ILP 

As described in Chapter 5, for improved performance more IE rules can be included in 

the rules list. These rules must be generated once a larger set of standardized sentences is 

available and more abstract rules covering a number of sentences can be identified. 

Similarly, more relations may be defined in addition to the three relations used in this 

thesis. Further, a specialized domain limited vocabulary can be incorporated by using 
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customized dictionaries and thesauri. All these enhancements are purely subjective and 

can be made as the need is felt. 

7.3.4 Performance Metrics 

We have suggested some generic performance metrics for individual modules in 

respective chapters. Depending on the specific application custom performance metrics 

can be designed to ensure that the system meets desired specifications. These metrics 

should be used to further refine the respective modules. Similarly, some performance 

metrics should also be designed to evaluate the over all system. Further research can be 

carried out on generating confidence bounds around the solutions generated by the DSS. 

Such confidence bounds should incorporate the uncertainties arising due to 

environmental noise, incorrect or incomplete data, unknown failure modes, simultaneous 

multiple failures, variability in human perception of the situation, etc. 
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Appendix A  

Knowledge, Information, and Data 

The term information is generically used to refer to all manner of descriptions or 

representations from raw signals on the one hand to knowledge and understanding on the 

other. It is important to recognize that information can be categorized in five different 

classes based on the usefulness that can be derived from it. One must understand the 

differences between these classes because they are of different value in decision making 

and maintenance.  
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Figure A.1 Schematic showing information hierarchy [15] and a parallel functional hierarchy [73] for a 
system-of-systems architecture. 

As shown in Figure A.1, the information can be categorized in a hierarchical fashion, 

which at different stages of the hierarchy supports decisions at various operational levels. 

Noise, which lies at the bottom of the information hierarchy, mainly consists of any 

unwanted data and no useful information is expected out of it. Data [15, 23] are symbols 
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that represent information for processing purposes, based on implicit or explicit 

interpretation rules. In general, data lacks semantics. Information is data with formal and 

explicit semantics. Information can be communicated between two or more partners [15]. 

Semantics is a key aspect of information because the partners need to have a unique and 

unambiguous understanding of every piece of information. Knowledge [23] extends 

beyond the notion of information by also including relationships between pieces of 

information. In an engineering context, knowledge includes taxonomies, rules, and 

constraints and is also considered as value-added information for decision making. 

Wisdom [12, 15, 74] is the development of “grasp” of the overall situation with the ability 

to predict and project in the given domain. The ability to make use of knowledge and 

exhibit wisdom has been mainly attributed to human beings.  
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Appendix B  

FMECA for Monopropellant Propulsion System 

(MPS) 

The System: Monopropellant propulsion system (MPS): consists of Electrical and 

Mechanical modules.  

The MPS uses hydrogen peroxide (H2O2) that passes over a catalyst and decomposes into 

oxygen, water, and heat, creating an expanding gas that produces the required thrust. The 

system consists of a reservoir tank of inert gas that feeds through an isolation valve IV1 

to a pressure regulator RG. The pressure regulator senses the pressure downstream and 

opens or closes a valve to maintain the pressure at a given set point. Separating the inert 

gas from the propellant is a bladder that collapses as the propellant is depleted. The 

propellant is forced through a feed line to the thruster isolation valve IV2 and then to the 

thrust chamber isolation Valve IV3. For the thruster to fire, the system must first be 

armed, by opening the IV1 and IV2. After the system is armed, a command opens the 

IV3 and allows H2O2 to enter the thrust chamber. As the propellant passes over the 

catalyst, it decomposes producing oxygen, water vapor and heat. The mixture of hot 

expanding gases is allowed to escape through the thruster nozzle, which in turn creates 

the thrust. The relief valves RV1-4 are available to dump inert gas/propellant overboard 

should an overpressure condition occur in any corresponding part of the system. 
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For this study only the mechanical module was considered. 

Electrical Module Mechanical Module  

Figure B.1 Monopropellant Propulsion System (MPS) [75]. 

STEP 0 - Background Study 

Scope of analysis: for this study only mechanical module of the MPS was chosen. 

Functionality: all components of the mechanical module were included in the study. 

Operational modes: the ‘thrust’ operational mode was chosen to analyze the system. 

STEP 1 - System Analysis 
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Figure B.2 shows the structural decomposition of the complete MPS. The selected 

components were used to prepare the structural block diagram (Figure B.3). 

Electrical System

Arming Circuit Firing Circuit

Arming 
Switch S1

Arming 
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Mechanical System
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Component

System
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Firing 
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Timing 
Relay K6
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RV: Relief  Valve
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RG: Pressure Regulator

PT: Pressurization Tank  

Figure B.2 Structural decomposition of the MPS. 
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Figure B.3 Structural block diagram of the MPS. 

This structural block diagram was further transformed into the functional block diagram 

as shown in Figure B.4. This functional block diagrams not only provides the structural 

information about the system but also the sensor locations and the functionality of 

various components. This is crucial information for populating the knowledgebase. 
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Figure B.4 Functional block diagram of the MPS. 

STEP 2 - Failure Analysis: 

The information regarding failures in this system was very limited. Only the failure 

probabilities associated with some failures were available, as shown in Figure B.5. Two 

more columns were added to rank these failures based on severity and frequency. This 
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example shows that exhaustive data is not always available. But partial data is good 

enough to populate the knowledgebase at the beginning. More information can be added 

whenever it becomes available. 

211 x 10-5Regulator failure 2Regulator

432 x 10-4Regulator Failure 1Regulator

342 x 10-3Stuck_ONIsolation Valves

4

2

1

Frequency (1-4)

45 x 10-3Stuck_OFFRelief Valves

23 x 10-5Stuck_OFFHeater

23 x 10-6Stuck_ONHeater

Severity (1-4)Failure probabilityFailure modeComponent

211 x 10-5Regulator failure 2Regulator

432 x 10-4Regulator Failure 1Regulator

342 x 10-3Stuck_ONIsolation Valves

4

2

1

Frequency (1-4)

45 x 10-3Stuck_OFFRelief Valves

23 x 10-5Stuck_OFFHeater

23 x 10-6Stuck_ONHeater

Severity (1-4)Failure probabilityFailure modeComponent

 

Figure B.5 Failure probabilities associated with critical components of the MPS. 

STEP 3 – Risk Ranking: 

A simple risk ranking metric can be defined as I = F.S2. However, more combinations of 

these parameters can be employed. 

In this example we have shown how a generic FMECA approach can be used to acquire 

information for knowledge acquisition for the maintenance knowledgebase. 
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Appendix C  

Notions of Similarity 

The concept of similarity is represents the notion of inexact matching and can be 

considered as the dual of distance concept. In general the basic similarity metric can be 

expressed as sim(a1,a2), where the following properties are satisfied. 

measurescedisoftermsininequalityTriangleaadaadaadiv
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Generally distance d(a1,a2)  is inversely proportional to similarity sim(a1,a2), for example 

as shown below 

),(1
1),(

21
21 aadist

aasim
+

=      (7.1) 

However, in real life systems such objective notions do not suffice and a fair amount of 

flexibility is required while dealing with uncertainties arising due to discontinuity and 

non-linearity in the data. A concept of acceptance has been introduced in [76] that tries to 

quantify the subjective notion of usability of a source case. Therefore, even if the 

traditional similarity metrics suggest close similarities, a source case may not be as useful 

depending on the context.  
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Further, a notion of utility has been introduced as an extension to the traditional similarity 

metrics in [77]. In contrast to a similarity measure, where the distance is calculated 

between the query problem and the problem part of a case, utility-measure directly 

assesses relevance between the query problem and the solution part of the past cases (see 

Figure C.1). This approach aims at improving the effectiveness of problem solving 

however, stands on a crucial assumption that the knowledge about the utility of cases for 

particular problem solutions is known. While case knowledge is often already available 

in the form of existing or easily collectable data-sets, the knowledge about the utility of 

cases for new problem situations is usually not available in such an explicit form. It must 

be acquired by consulting a domain expert who possesses implicit knowledge about the 

underlying utility function. Further, the acquired knowledge has to be formalized into 

similarity representation structures. This knowledge engineering task is a difficult and 

time consuming procedure, rendering this approach limited to academic purposes only. 

Solution

Problem

Case Base

New Solution

New Problem
Similarity

Adaptation

utility

Solution

Problem

Case Base

New Solution

New Problem
Similarity

Adaptation

utility

 

Figure C.1 Concept of utility is defined as a relevance between the new problem and solution of some old 
problem (case) [77]. 

Another alternative has been suggested in [78] where the concept of utility need not be 

established explicitly but is inherent in top-down approach of learning similarity function. 



 

177 

In this approach, exact utility need not be known but a relative assessment is considered 

between various candidate cases. This knowledge is not considered complete for 

assessing similarity but is used only to improve the regular bottom-up approach of 

similarity calculation.  

The most common approach taken is to use simple similarity functions to express 

closeness on various dimensions and then compose them into one compound metric 

through weighted averages. Table C.1 lists a number of generic similarity functions that 

can be used in different situations and later combined into a composite similarity measure 

as explained in Chapter 5. 

Table C.1 Generic similarity measures that can be composed to create custom similarity metrics. 
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Similarity Function Expression 
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