
KNOWLEDGE-BASED ARCHITECTURE FOR
INTEGRATED CONDITION BASED

MAINTENANCE OF ENGINEERING SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Abhinav Saxena

In partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in Electrical and Computer Engineering

Georgia Institute of Technology

August, 2007

Copyright © Abhinav Saxena 2007

KNOWLEDGE-BASED ARCHITECTURE FOR
INTEGRATED CONDITION BASED

MAINTENANCE OF ENGINEERING SYSTEMS

Approved By

Dr. George Vachtsevanos
School of Electrical and Computer Engineering
Georgia Institute of Technology

 Dr. Aldo A. Ferri
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer Engineering
Georgia Institute of Technology

 Dr. Ayanna Howard
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Ashraf Saad*
School of Computing
Armstrong Atlantic State University
*Formerly with the Georgia Institute of Technology

Date Approved: May 04, 2007

To my parents

Madhu Saxena

And

Kailash Chandra Saxena

iv

Acknowledgement

I extend my sincere gratitude and appreciation to many people who made this research

possible. Special thanks are due to my advisor Dr. George Vachtsevanos for his continual

guidance, willing advice and encouragement. I would also like to thank Dr. Magnus

Egerstedt, Dr. Ashraf Saad, Dr. Aldo Ferri, and Dr. Ayanna Howard for being a member

on my thesis committee, their wishful support, and constructive feedback whenever I

needed it.

Many thanks go to the members of Intelligent Control Systems Lab who have been a

continual support throughout this research. I would like to acknowledge Dr. Biqing Wu,

Dr. Liang Tang, Dr. George Georgoulas and Dr. Bin Zhang for their guidance. Special

thanks go to Marcos Orchard and Romano Patrick with whom I have been involved in

technical discussions from time to time. I would also like to acknowledge other members

of the lab who made it a wonderful experience in the lab.

I would also like to acknowledge with much appreciation the crucial roles played by Dr.

Irtaza Barlas, Dr. J.L. Dorrity and Dr. Antonio Ginart from Impact Technologies Inc. and

Mr. Gary O’Niel from Georgia Tech Research Institute (GTRI) for providing me research

data and their technical inputs.

And last but not the least my friends deserve my gratitude and appreciation for they are

responsible for an invaluable learning experience at Georgia Tech. Special thanks go to

Manas Bajaj and Lalit Bohra their continual support and valuable friendship.

v

Table of Contents

ACKNOWLEDGEMENT ... IV

LIST OF TABLES .. VIII

LIST OF FIGURES ... IX

LIST OF ABBREVIATIONS... XIII

SUMMARY ...XV

CHAPTER 1 CONDITION BASED MAINTENANCE OF ENGINEERING SYSTEMS1
1.1 RESEARCH CONTEXT ..2

1.1.1 The Problem ..2
1.1.2 Research Proposition ...4

1.2 SIGNIFICANCE OF THE RESEARCH ...5
1.2.1 Integrating Knowledge into CBM: A Decision Support System...7

1.3 THESIS ORGANIZATION...10

CHAPTER 2 KNOWLEDGE-BASED INTEGRATED CBM ARCHITECTURE14
2.1 CHAPTER OVERVIEW ..15
2.2 CURRENT STATE-OF-THE-ART ..15
2.3 KEY DRIVERS FOR CBM ENHANCEMENTS..17
2.4 AN APPROACH TO KNOWLEDGE INTEGRATION INTO CBM...19

2.4.1 Diagnostic Knowledge Management...21
2.4.2 Self-Evolving Maintenance Knowledgebase...23
2.4.3 A Decision Support System Based on Higher Level Reasoning ...24

CHAPTER 3 KNOWLEDGE ENGINEERING..26
3.1 CHAPTER OVERVIEW ..27
3.2 INTRODUCTION ...27
3.3 KNOWLEDGE ACQUISITION ...31

3.3.1 Diagnostic Data Collection..32
3.3.2 Experience Accumulation..34
3.3.3 A Systematic Approach to Knowledge Acquisition ..35

vi

3.4 KNOWLEDGE CODIFICATION...52
3.4.1 Process of Codification..53
3.4.2 Knowledge Model ...55
3.4.3 Representation Language ..57

3.5 CASE STUDIES...59
3.5.1 Case: Sludge Dewatering Centrifuges ...60

3.6 CONCLUSIONS...67

CHAPTER 4 DYNAMIC CASE-BASED REASONING ...68
4.1 CHAPTER OVERVIEW ..69
4.2 WHY CBR AS KNOWLEDGE MODEL FOR CBM?...69
4.3 CASE BASED REASONING – AN ENABLING TECHNOLOGY ..71

4.3.1 CBR Implementation Issues ..74
4.3.2 The Issue of Uncertainty in CBR...77
4.3.3 CBR in Industrial Practice – State-of-the-Art..78
4.3.4 Shortcomings of the Conventional CBR ...80

4.4 DYNAMIC CASE-BASED REASONING ..81
4.4.1 The DCBR Lifecycle ...81
4.4.2 Three Dynamic Components of DCBR...84

4.5 DCBR APPLICATION TO FLEET VEHICLES ..87
4.5.1 The Dynamic Case ..89
4.5.2 The Other Two Dynamic Components..93

4.6 EVALUATING DCBR PERFORMANCE ..93
4.7 CONCLUSIONS...94

CHAPTER 5 INDUSTRIAL LANGUAGE PROCESSING ..95
5.1 CHAPTER OVERVIEW ..96
5.2 MOTIVATION...96
5.3 CURRENT STATE-OF-THE-ART ..97
5.4 THE CONCEPT OF STANDARDIZED LANGUAGE..99

5.4.1 Standardized Languages in Industrial Domain..99
5.4.2 Description of Standardized Language for CBM ..101

5.5 MEANING AMBIGUITY REDUCTION...103
5.6 INFORMATION EXTRACTION (IE) ..104

5.6.1 Parsing Fault Symptoms..105
5.6.2 Data Sanitization ...106

5.7 DATA REPRESENTATION ...108
5.8 SIMILARITY CALCULATIONS ...110

vii

5.8.1 Similarity Concept for Triad Structure ..111
5.9 CASE STUDIES...113

5.9.1 Automotive Maintenance ..113
5.9.2 Sludge Dewatering Centrifuge ..114
5.9.3 Discussion ...117

5.10 EVALUATING ILP PERFORMANCE ...117
5.11 CONCLUSIONS...119

CHAPTER 6 KNOWLEDGE MANAGEMENT SYSTEM...120
6.1 CHAPTER OVERVIEW ..121
6.2 INTRODUCTION ...121
6.3 ATTRIBUTES OF INTELLIGENCE IN A KNOWLEDGEBASE ..122

6.3.1 Dynamic Structure...123
6.3.2 Self-Evaluation..127
6.3.3 Learning...128
6.3.4 Self-Maintenance...146
6.3.5 Autonomous Behavior...146

6.4 SIMULATION RESULTS AND DISCUSSION...147
6.5 THE KNOWLEDGE MANAGEMENT INTERFACE ..153
6.6 EVALUATING KB PERFORMANCE ...158
6.7 CONCLUSIONS...158

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ..159
7.1 CONCLUDING REMARKS ...160
7.2 SUMMARY OF CONTRIBUTIONS ...162
7.3 SUGGESTED FUTURE WORK..163

7.3.1 Guaranteeing Overall System Soundness ..164
7.3.2 DCBR Extension to Prognosis ..165
7.3.3 Improving ILP ...165
7.3.4 Performance Metrics ...166

APPENDIX A KNOWLEDGE, INFORMATION, AND DATA ..167

APPENDIX B FMECA FOR MONOPROPELLANT PROPULSION SYSTEM (MPS)169

APPENDIX C NOTIONS OF SIMILARITY ...175

REFERENCES..179

viii

List of Tables

Table 3.1 Different types of inference methods. .. 57

Table 3.2 FMECA chart for the separator unit... 65

Table 3.3 List of sensors on the separator unit... 66

Table 4.1 Types-of-cases classification. .. 75

Table 5.1 The standard language template for CBM of automotive and centrifuge cases.
... 102

Table 5.2 Examples to show standardized language translation of symptoms from
automotive and centrifuge cases. .. 103

Table 5.3 Three conceptual relations capture most scenarios in industrial descriptions of
failures... 108

Table 5.4 Most commonly used similarity composition functions. 111

Table 5.5 Similarity calculation for triads-based semantic networks. 112

Table C.1 Generic similarity measures that can be composed to create custom similarity
metrics... 177

ix

List of Figures

Figure 1.1 A real world example to show significance of the research. 6

Figure 1.2 Transition from expert dependent legacy systems to knowledge based
autonomous decision support systems for CBM. ... 9

Figure 1.3 Thesis Organization.. 12

Figure 2.1 Paradigm shift in industrial maintenance. .. 18

Figure 2.2 CBM+: A maintenance centric approach to CBM adapted from [13]. 19

Figure 2.3 Knowledge integrated CBM+ architecture... 20

Figure 2.4 Key drivers and corresponding research goals: an overview. 21

Figure 2.5 System-of-systems hierarchy.. 22

Figure 3.1 Knowledge Engineering: Task planning and execution adapted from [15]. .. 29

Figure 3.2 Main tasks involved in Knowledge Engineering (KE)................................... 30

Figure 3.3 Sources of information for knowledge acquisition... 31

Figure 3.4 Types of data to be collected for building diagnostic knowledgebase. 32

Figure 3.5 Experience is accumulated as historical records and cause-effect associations.
... 34

Figure 3.6 A stepwise approach to FMECA study for CBM systems. 40

Figure 3.7 System analysis steps for FMECA study. .. 41

Figure 3.8 Hierarchical tree diagram to show structural decomposition of a system [19].
... 42

Figure 3.9 Structural block diagram to show structural interrelationship between
different components. ... 43

Figure 3.10 Functional block diagram adds input condition and sensor information along
with the function of the component. ... 43

Figure 3.11 Functional block diagram of the system... 44

x

Figure 3.12 A generic FMECA worksheet with most relevant columns. (Adapted from
various sources) .. 45

Figure 3.13 (a) A four category classification. (b) An alternative frequency of failure
classification. .. 46

Figure 3.14 An example of severity classification [1]. .. 47

Figure 3.15 An example of detectability ranking method [19].. 49

Figure 3.16 Risk matrix to assess risk ranking. ... 50

Figure 3.17 Topography of knowledge types. ... 53

Figure 3.18 The system - sludge dewatering centrifuge. ... 60

Figure 3.19 Separator of the sludge dewatering centrifuge. .. 61

Figure 3.20 Structural decomposition of the separator. ... 62

Figure 3.21 Structural block diagram of the separator... 63

Figure 3.22 Functional block diagram of the separator. .. 63

Figure 4.1 The CBR Cycle, adapted from [27].. 72

Figure 4.2 Lifecycle of a DCBR system. ... 81

Figure 4.3 Creating and updating a dynamic case using a statistic vector. Descriptive
features can be converted to numerical values using techniques like fuzzification. 83

Figure 4.4 High level schematic of Dynamic Case Based Reasoning highlighting its
dynamic components. ... 86

Figure 4.5 Integrated reasoning architecture for fault diagnosis in industrial
environments... 88

Figure 4.6 Generic dynamic case structure. Symptoms are stored as semantic networks.
... 90

Figure 4.7 Components of a dynamic case expressed as relations and weighted
connections. .. 91

Figure 4.8 Example case from automobiles domain.. 92

Figure 5.1 An illustration of resolving the paraphrase problem. 104

Figure 5.2 TreeTagger output. ... 106

xi

Figure 5.3 A triad consists of two phrases (p1 and p2) and a relation (r). 109

Figure 5.4 A semantic network (type-II triad) consists of one or more type-I triads. ... 109

Figure 5.5 Semantic net pictorials of symptoms from automotive data. 114

Figure 5.6 Semantic networks for six different descriptions using the three relations
described above... 115

Figure 5.7 Semantic networks for some descriptions from centrifuge data................... 116

Figure 5.8 Semantic net pictorials of symptoms from centrifuge data. 116

Figure 6.1 A generalized basic unit of the knowledgebase connected with weighted
associations and feedback rewards. .. 124

Figure 6.2 Pictorial representation of the dynamic structure of the knowledgebase. 126

Figure 6.3 State space representation of a diagnostic process. 129

Figure 6.4 Three modes of HITL integration in a Decision Support System. 135

Figure 6.5 A successful hypothesis and at least one successful diagnostic test............. 140

Figure 6.6 The unsuccessful hypothesis case... 141

Figure 6.7 A successful hypothesis but lower confidence due to poor quality data. 141

Figure 6.8 A flowchart showing the complete decision support process with learning. 143

Figure 6.9 Comparing Q-Learning performance with frequency based learning for
symptom sa. ... 149

Figure 6.10 Comparing Q-Learning performance with frequency based learning for
symptom sb.. 150

Figure 6.11 Comparing Q-Learning performance with frequency based learning in
scenario 2. ... 152

Figure 6.12 Interface to enter structural model of the system. 154

Figure 6.13 Interface to add or modify an object into the knowledgebase. 155

Figure 6.14 SemanticNet visualization module. .. 157

Figure 6.15 Module to monitor weights between various entities of the knowledgebase.
... 157

xii

Figure A.1 Schematic showing information hierarchy [15] and a parallel functional
hierarchy [73] for a system-of-systems architecture... 167

Figure B.1 Monopropellant Propulsion System (MPS) [75]. .. 170

Figure B.2 Structural decomposition of the MPS. ... 171

Figure B.3 Structural block diagram of the MPS... 172

Figure B.4 Functional block diagram of the MPS. .. 173

Figure B.5 Failure probabilities associated with critical components of the MPS. 174

Figure C.1 Concept of utility is defined as a relevance between the new problem and
solution of some old problem (case) [77]. .. 176

xiii

List of Abbreviations

AI: Artificial Intelligence

AR: Analogical Reasoning

CBM: Condition Based Maintenance

CBR: Case-Based Reasoning

DCBR: Dynamic Case-Based Reasoning

DKMS: Diagnostic Knowledge Management System

DSS: Decision Support System

FMEA: Failure Mode and Effect Analysis

FMECA: Failure Mode Effects and Criticality Analysis

HITL: Human-In-The-Loop

ILP: Industrial Language Processing

IR: Information Retrieval

KBS: Knowledge-Based System

KE: Knowledge Engineering

KMS: Knowledge Management System

xiv

LRU: Line Replaceable Unit

MDP: Markov Decision Process

ML: Machine Learning

MPS: Monopropellant Propulsion System

MTTR: Mean Time To Repair

MTBF: Mean Time Between Failures

NLP: Natural Language Processing

PHM: Prognostic Health Management

RL: Reinforcement Learning

RPN: Risk Priority Number

SoS: System-of-Systems

TCBR: Textual Case Based Reasoning

xv

Summary

A paradigm shift is emerging in system reliability and maintainability. The military and

industrial sectors are moving away from the traditional breakdown and scheduled

maintenance to adopt concepts referred to as Condition Based Maintenance (CBM) and

Prognostic Health Management (PHM). In addition to signal processing and subsequent

diagnostic and prognostic algorithms these new technologies require storage of large

volumes of both quantitative and qualitative information to carry out maintenance tasks

effectively. From the volumes of data that can be obtained today, information extraction

has been a challenging task and organizing this information, so that it can be considered

useful knowledge, is yet another level of abstraction. This not only requires research and

development in advanced technologies but also the means to store, organize and access

this knowledge in a timely and efficient fashion. Knowledge-based expert systems have

been recently shown to possess capabilities to manage vast amounts of knowledge, but an

intelligent systems approach calls for attributes like self-evaluation (feedback), self-

evolution (learning) and self-organization (maintenance) to build truly autonomous

systems for CBM. Furthermore, an intelligent reasoner is required that can make

judicious use of this knowledge and provide a substantial support in the decision making

process.

This research presents an integrated knowledge-based approach to diagnostic reasoning

for CBM of engineering systems. A two level diagnosis scheme has been conceptualized

in which first a fault is hypothesized using the observational symptoms from the system

and then a more specific diagnostic test is carried out using only the relevant sensor

xvi

measurements to confirm the hypothesis. Utilizing the qualitative (textual) information

obtained from these systems in combination with quantitative (sensory) information

reduces the computational burden by carrying out a more informed testing. An Industrial

Language Processing (ILP) technique has been developed for processing textual

information from industrial systems. Compared to other automated methods that are

computationally expensive, this technique manipulates standardized language messages

by taking advantage of their semi-structured nature and domain limited vocabulary in a

tractable manner.

A Dynamic Case-based reasoning (DCBR) framework provides a hybrid platform for

diagnostic reasoning and an integration mechanism for the operational infrastructure of

an autonomous Decision Support System (DSS) for CBM. This integration involves data

gathering, information extraction procedures, and real-time reasoning frameworks to

facilitate the strategies and maintenance of critical systems. As a step further towards

autonomy, DCBR builds on a self-evolving knowledgebase that learns from its

performance feedback and reorganizes itself to deal with non-stationary environments. A

unique Human-in-the-Loop Learning (HITLL) approach has been adopted to incorporate

human feedback in the traditional Reinforcement Learning (RL) algorithm.

Main contributions of this research are:

1. Knowledge integrated CBM process model for automated diagnostic Decision

Support System.

2. A self-evolving Knowledgebase (KB) that learns from its performance over time

and a structured approach to acquire and modify knowledge to populate this KB.

xvii

3. A dynamic case-based reasoning platform for simultaneously utilizing qualitative

and quantitative information to carry out diagnosis with less computational

burden.

4. An Industrial Language Processing (ILP) technique to process industrial text,

while retaining its domain specific information for effective diagnosis.

1

Chapter 1

Condition Based Maintenance of Engineering

Systems

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

2

1.1 Research Context

Productivity is the key element of growth in demand for any complex dynamical system

such as aircraft, power plant, or an automobile. Increased productivity can be achieved

through increased availability, but all systems are subject to failure modes that tend to

reduce uptime. Issues of reliability and maintainability have taken center stage over the

past years and new paradigms are emerging in order to extend the useful lifetime of

critical systems and make them available when needed. Condition-Based Maintenance

(CBM) is the technology that strives to identify incipient faults before they become

critical, which enables more accurate planning for preventive maintenance. This research

aims at enhancing the capabilities of CBM through integration of knowledge-based

techniques to automate the experience accumulation and reasoning tasks for maintenance

operations.

1.1.1 The Problem

Currently there is a very limited acceptance of on-line or fully automated CBM systems

in the industry, which may be attributed to several reasons. The maturity level within

complex technical systems may be too low or various diagnostic techniques might exist

at a very abstract level, ranging from the maintainer's experience to advanced detection

algorithms. Further, in the absence of a unified architecture it becomes a very time-

consuming and expensive investment to organize all the experts' knowledge in a coherent

fashion before any positive effects are realized. CBM technologies so far have focused on

individual components or subsystems of these complex systems and a lot of diagnostic

knowledge has been developed in an ad hoc fashion. To be able to make better decisions,

3

while keeping in mind the overall performance of a system, it is desirable to devise an

integration mechanism for the operational infrastructure of a complete system. Diagnostic

knowledge related to different components must be organized under a common

framework so that it can be accessed whenever required and be reused for other

components in appropriate situations. It is also desirable to have intelligent control

algorithms that close the control loop, via active feedback, for improvement through

adaptation and learning.

The need for an integrated system encompassing intelligent process operation stems from

the growing complexity of current systems, as well as from the traditional expense,

available computational resources, time constraints, and limited availability of human

experts. The number of health-monitoring sensors has been increasing day by day, which

consequentially requires a large amount of data processing. In several cases either a very

simple processing is carried out or data analysis is not exhaustive. Similarly, often a lot of

descriptive information is available from the operator observations or the maintenance

logs. This information is text-based in most situations and is used by the experts for

reference purposes only. Most of the current text processing techniques are very

computationally expensive. Thus, given the limited processing capabilities and available

time, a choice is usually made between the qualitative and quantitative information. In

most cases only numerical data is processed and very few systems make use of textual

information in automated ways.

4

1.1.2 Research Proposition

This research is motivated by the fact that textual information carries important pointers

for fault diagnosis and helps in localizing the fault before explicit diagnostic tests need to

be carried out. These descriptions help experts recall a similar looking situation from the

past that was associated with a known fault and corresponding diagnostic tests. Thus, the

maintainers do not consider an exhaustive set of diagnostic tests but just the most

probable ones. Further, careful observation shows that industrial text in general is semi-

structured and hence can be processed with relative ease and much less computational

effort. Also, as the industry realizes the importance of standardized languages for

communication and data interoperability, the use of simplified language is being

promoted. This motivates an investigation in the direction of automatic text processing

for semi-structured texts. Therefore, an attempt has been made to incorporate automatic

text processing in addition to numerical data processing for improved diagnosis without

increasing the computational intensity too much. This allows an integration of qualitative

and quantitative information in two ways. First, the diagnostic process is carried out

based on textual and numerical data on a common platform. Second, qualitative textual

information is translated to numerical measures through methods like fuzzification

techniques.

In addition to including textual data in the process, a significant focus is on developing an

evolving knowledgebase that can store the useful experience knowledge and learn from

new situations in an autonomous fashion. The unique aspect of learning involves

integration of human-in-the-loop by incorporating human feedback reward to accelerate

5

the learning activity. Supported by text processing capabilities in addition to numerical

algorithms and an intelligent knowledgebase as its backbone, a reasoning system is the

final piece that will result in a knowledge integrated decision support system for CBM.

1.2 Significance of the Research

This thesis is expected to set the framework for widely applicable software for the

decision support operations of both military and commercial applications. Specifically,

the maintainers of large-scale systems will benefit from an autonomous and self-evolving

knowledgebase that incorporates information from both observational sources and

physical measurements. This will provide not only a means to carry out a more informed

testing to achieve better confidence, but also a reduced computational burden by avoiding

unnecessary data processing from irrelevant sensors.

Potential applications include autonomous CBM for large-scale systems such as airframe

subsystems, shipboard systems, gas turbines, HVAC, UAVs, automobiles, and other

industrial systems. A particular interest in this research is from the Department-of-

Defense (DoD). DoD’s new programs like Joint Strike Fighter (JSF) and Advanced

Amphibious Assault Vehicles (AAAV) plan for automated CBM/PHM technologies,

while other programs seek tools that aid in the reasoning component of the redesign of

current systems. Similarly, there is a great interest from the industry to increase their

thrust toward after-market services. Aircraft companies like Pratt & Whitney and GE are

pushing for real-time remote diagnostic systems for the CBM of their engines and gas

turbines. As shown in Figure 1.1, consider the example of a gas turbine operator at a

remote location any where in the world who monitors the machine and observes some

6

symptoms of abnormal behaviors, e.g., vibrations, rising temperature, oil on floor, etc.

and calls GE’s Technical Response Center in Atlanta to linguistically describe the

problem (no readings or measurements are available). GE experts need to infer from their

knowledgebase what the problem could be and then recommend an appropriate action.

Currently there is heavy involvement of experts in this troubleshooting process. Experts

infer the symptoms and use their knowledgebase to come up with likely causes of the

abnormal behavior. Based on their personal experience they suggest maintenance actions.

There is a need to automate this process by combining text-based initial diagnosis and

previous experience to propose appropriate repair actions.

Fielded Systems

“GE launched its Technical Response CenterSM in 1996 to speed up and improve
engine maintenance. By monitoring engines in flight from the ground via satellite
and other systems, GE engineers like Chris Henlein (seated) and Dave Brandel
can diagnose potential engine problems, plan for maintenance or overhaul, and
resolve problems more quickly than ever before. In addition to improving safety
and reliability, real-time remote monitoring and diagnostics can lower operating
costs for airlines by reducing delays and cancellations.”
source: www.gepower.com

An Example

Maintenance Expert Fielded Systems
Sensor

Measurements
Sensor

Measurements

Figure 1.1 A real world example to show significance of the research.

For such capabilities it is important to develop a system that collects and interprets the

information from remote locations and reasons without explicit human expertise as far as

possible. Thus, the human experience must be systematically stored in a knowledgebase

7

and a reasoning framework must be designed to carry out decision support for CBM

autonomously.

1.2.1 Integrating Knowledge into CBM: A Decision Support System

During the lifetime of a machine, maintainers and experts seek and gather information

that can help making decisions about everything from operation, support and

maintenance to performance. The main goal of integrating knowledge into the CBM

cycle is to automate this process of learning through computer systems and help decision

makers by saving time and effort on remembering all experiences and retrieving relevant

information. Even though AI strives to achieve complete autonomy and possibly replace

human from the control loop, with the current state of the art this goal seems quite far

fetched. Furthermore, while controlling mission critical systems a significant control is

given to humans since in most of the cases convergence and optimality of AI systems can

not be formally guaranteed. The only source of trust in these systems is through

observation of their consistently good performance and improvement over time. In

theory, after a significant learning over time, such systems can closely match human

capabilities, given the learning model is fairly appropriate and all possible scenarios have

taken place. Such assumptions are extremely optimistic and of little or no practical

significance. Therefore, the best we can do in this scenario is to develop a Decision

Support System (DSS) that aims to simplify human tasks by reducing the complexity of

the problems or making the solution search faster and more relevant. These DSSs interact

with humans and learn from their feedback to improve their performance. The human on

the other hand interprets the DSS’s recommendations and takes appropriate action. In an

8

ideal case, learning should lead to positive improvement in DSS’s performance which in

turn should result in user’s increased trust in DSS’s recommendations.

9

Decision Maker

Maintainer

System

ActionOutcome

Legacy CBM Systems:
Decentralized

Knowledgebase

RetrievalDocumentation Decision Makers

Maintainer

System

ActionOutcome

Centralized
Technical Support

RecommendationFeedback

Knowledgebase

RetrievalDocumentation

Decision Monitors

Maintainer

System

ActionOutcome

Autonomous CBM
System

Recommendation

Fe
ed

ba
ck

Knowledge based
Autonomous CBM System

Recommendation

Decision Makers

Maintainer

System

ActionOutcome

Decision Support
System

Fe
ed

ba
ck

Knowledge based
Decision Support System

RetrievalDocumentation

Figure 1.2 Transition from expert dependent legacy systems to knowledge based autonomous decision support systems for CBM.

.

10

1.3 Thesis Organization

This thesis addresses various concepts that are used in building a knowledgebase and

subsequently using it to perform reasoning tasks. The overall organization and

connections between various chapters has been shown in Figure 1.3. After a brief

introduction to Knowledge-based systems, Chapter 1 continues with highlighting their

significance in the field of CBM. Various applications and current research programs

have been cited that are relevant to the core theme of this thesis.

Chapter 2 outlines the scope of this thesis. There are many frontiers that can be achieved

to build a truly autonomous and intelligent maintenance system. Improvements can be

made at the lowest level of data processing in diagnostic algorithms, at a middle level of

knowledge storage and retrieval algorithms, or at the highest level of reasoning. This

thesis mainly deals with improvements at higher levels where a customized framework

has been developed to provide specifics for knowledge-based approach for decision

support systems as applicable to engineering systems. The conceptual development of the

integrated CBM has been briefly outlined and contrasted with conventional CBM

practices.

The two main aspects, while building a Knowledge-based system, are Knowledge

Engineering and Knowledge Management. Knowledge Engineering, as introduced in

Chapter 3, allows systematic acquisition and codification of knowledge into machine

readable format. An approach specific to knowledge engineering for CBM

knowledgebase has been identified and presented. This approach re-structures already

11

existing knowledge representation formats and connects them for systematic acquisition

using various tools commonly employed in the industry. Finally, two example cases have

been presented to show the application of this approach for knowledge engineering in

CBM domain.

After information has been collected and transformed into useful knowledge it must be

codified using a suitable representation language and a knowledge model. The knowledge

model assumes the task of carrying out reasoning based on current facts from the system

and its own experience from previous situations. This thesis builds on a Dynamic Case-

Based Reasoning (DCBR) approach to develop a knowledge model. In Chapter 4, the

dynamic component has been introduced in multiple stages of the conventional Case-

Base Reasoning (CBR) to build a DCBR architecture. This architecture has been further

instantiated with an example for industrial systems that can be applied to fleet vehicles.

12

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

Figure 1.3 Thesis Organization.

13

To carry out computations, as required by the knowledge model, a suitable knowledge

representation language must be adopted. Knowledge representation for numerical

information is relatively simpler to codify, however the codification of qualitative

knowledge is not as straight forward. Chapter 5 introduces a novel Industrial Language

Processing (ILP) technique that can process simplified-english sentences into well

defined knowledge structures for easier manipulation during reasoning tasks. The

effectiveness of the approach has been shown with the help of results from processing

dataset from automobile maintenance domain.

Moving from conceptual development to implementation details, this thesis dives into the

issue of intelligent knowledgebase and knowledge management in Chapter 6. The core

of this thesis lies in an evolving knowledgebase that exhibits various attributes of

intelligence. These attributes have been shown with the help of various examples that

build upon the data used for this research. These examples have been supported with

corresponding simulation results that show the effectiveness of the overall system in

carrying out decision support for maintenance tasks. Apart from the backbone of

intelligent knowledgebase, a transparent and easy to use user interface is required for

trustworthy decision support systems. Therefore, a knowledge management system has

been developed, in Matlab environment, which allows users to store data, access data,

and observe the learning activity in the knowledgebase.

Finally, Chapter 7 concludes the thesis by highlighting various contributions of this

research and discussing the scope of future work.

14

Chapter 2

Knowledge-based Integrated CBM Architecture

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

15

2.1 Chapter Overview

This chapter broadly outlines the scope of this thesis. First, it provides the motivation for

enhancing CBM systems by highlighting the current practices and pointing out their

shortcomings. Then, it delves into a conceptual development of knowledge integrated

CBM process by defining its main components. This leads into the definition of

objectives and goals of this thesis to define the overall scope. Improvements in CBM can

be made at the lowest level of data processing and diagnostic algorithms, at the middle

level of knowledge storage and retrieval algorithms, or at the highest level of reasoning.

This thesis mainly deals with improvements at the higher level of reasoning for which a

customized framework has been developed to provide specifics for a knowledge-based

approach to decision support systems in an engineering environment.

Contribution: Conceptual integration of knowledge into the CBM process

2.2 Current State-of-the-Art

Until recently, the concept of CBM has been primarily fault diagnosis, which involves

fault detection, identification, and isolation [1]. Several methods have been cited in the

literature, which assume automation in fault detection through continuous system

monitoring and sensor data analysis. The basic philosophy behind most of these systems

is to compare the baseline data from continuously monitored run-time data and expect to

observe significant differences, indicating the presence of an incipient failure. Some of

the practical examples of such systems include Engine Monitoring Systems (EMS) in

aircraft, Health Usage and Monitoring Systems (HUMS), and Rocket Engine Monitoring

16

for Space Shuttle Main Engines (SSME) all use vibration data analysis for health

monitoring as mentioned in a review paper by [2]. These systems have been rather

limited in their scopes and have had a relatively narrow focus on a specific component or

subsystem of the whole system. Further, there has been little communication for

knowledge sharing and reuse for similar components employed in different locations. The

inherent disadvantage of this approach is its limited coverage to preselected known

failure modes only. Any new failure modes would require experts’ attention to carry out

full-scale analysis and develop corresponding diagnostic methods.

A major shift in philosophy was observed with the introduction of expert systems in the

CBM community. Systems like model-based diagnosis and rule-based diagnosis focused

on combining health monitoring for various fault modes under one umbrella and provided

a comprehensive unit. However, the basic premise revolved around data analysis only as

far as industrial systems were concerned. Later, AI-based systems like Case-Based

Reasoning (CBR), Model-Based Reasoning (MBR), and Probabilistic Belief Networks

(PBN) were also used to encompass the attributes of learning and adaptation. This

significantly improved the state of the art over previous systems. However, most of these

systems use only the quantitative information available from the sensors to automate the

diagnosis task, and almost no or very little use of the qualitative information is made [3-

5]. On the other hand some of these systems only considered the qualitative textual

information and ignored any sensor measurements [6, 7].

Thus little or no effort was made to use both the textual and numerical information at the

same time. The non-availability of computationally affordable Natural Language

17

Processing (NLP) techniques and the difficulty in building a common platform to process

heterogeneous data have hindered the use of such a hybrid system. The integration of

tasks through an intelligent knowledge-based system architecture would lead to improved

system availability and reliability by increasing interaction via information sharing and

coordination for timely preventive maintenance [8].

2.3 Key Drivers for CBM Enhancements

A Paradigm Shift - A paradigm shift is emerging in system reliability and

maintainability (Figure 2.1). The military and industrial sectors are moving away from

the traditional "breakdown and scheduled maintenance" philosophy and adopting

concepts referred to as Condition-Based Maintenance (CBM) and Prognostic Health

Maintenance (PHM). The emphasis is on providing maintenance services to increase

reliability and uptime rather than developing entirely new systems. This requires constant

condition monitoring and assessment of system health before catastrophic failures

actually occur.

DOD Vision for CBM+ - The Big Picture: Furthermore, a newer philosophy of CBM+

was rolled out by the Department of Defense (DoD) in which logistics information was

integrated with CBM/PHM systems to carry out timely maintenance. It introduced

concepts like capabilities for remote sensing and analysis, portable maintenance aids, and

equipment health and usage systems installed on multiple platforms [9-11].

18

Maintenance

Preventive
Maintenance

Corrective
Maintenance

Condition Based
Maintenance

Predetermined
Maintenance

Continuous or
on RequestScheduledImmediateDeferred

Decrease in Failure Rates and System Downtime

Run-to-Failure Maintenance Fix it before it breaks Run through remaining
useful lifetime

MaintenanceMaintenance

Preventive
Maintenance
Preventive

Maintenance
Corrective

Maintenance
Corrective

Maintenance

Condition Based
Maintenance

Condition Based
Maintenance

Predetermined
Maintenance

Predetermined
Maintenance

Continuous or
on Request

Continuous or
on RequestScheduledScheduledImmediateImmediateDeferredDeferred

Decrease in Failure Rates and System Downtime

Run-to-Failure Maintenance Fix it before it breaks Run through remaining
useful lifetime

Figure 2.1 Paradigm shift in industrial maintenance.

Increased system complexity and the need for near real-time decision-making capabilities

require extensive automation for maintenance tasks. Over the years a lot of analytical,

operational, and structural knowledge has been generated in an ad hoc manner, which

must be properly organized in a modular fashion so it can be shared and reused for

similar components of a system. As shown in Figure 2.2, in maintenance operations

several factors such as logistics, maintenance schedules, and Mean-Time-To-Repair

(MTTR) should also be included in addition to actual data processing and decision-

making algorithms for a successful and timely CBM [12]. Along with several data

management techniques that have been developed in recent years, it is equally important

that a robust integration mechanism be devised that integrates the tasks of data

acquisition, information extraction, knowledge organization, and reasoning. The goal is

to build an automatic diagnostic framework for a complete system by using the maximum

available information without any duplication as far as possible.

19

Maintenance and
Information systems

Maintenance History
configuration control

Maintenance
Portable

Maintenance
Aids

Embedded
Sensors

Integrated
Data Bus

On-Board
Diagnostics &
Prognostics

Tech
Support

Wholesale
Logistics

Interactive
Training

3D Directed
Maintenance

Data
Transfer

Troubleshooting
and Repair

Anticipatory
Material

Command
& Control

Linked to Vehicles

Production
Control

Full Asset Visibility

Maintenance
Data AnalysisPreventive

Maintenance Condition Monitoring
Reliability Analysis

Predictive
Maintenance

Integrated
Logistics

Information

Figure 2.2 CBM+: A maintenance centric approach to CBM adapted from [13].

2.4 An Approach to Knowledge Integration into CBM

The main objective of this research is to develop a knowledge-integrated architecture for

diagnostic reasoning and knowledge management for the CBM of engineering systems.

Figure 2.3 shows the modified architecture of the CBM+ by integrating an intelligent

knowledgebase into it. This knowledgebase supports a reasoning system that narrows the

choices for the required diagnostic-data processing algorithms and helps in decision

making based on past experiences stored in the knowledgebase. Another important aspect

of this knowledge-based architecture is experience accumulation and reuse across

multiple systems in a fleet. Various modules required to accomplish such a system are

described next.

20

Maintenance and
Information systems

Maintenance History
Configuration Control

Maintenance
Portable

Maintenance
Aids

Embedded
Sensors

Integrated
Data Bus

On-Board
Diagnostics &
Prognostics

Tech
Support

Wholesale
Logistics

Interactive
Training

3D Directed
Maintenance

Operational
Data Transfer

Troubleshooting
and Repair

Anticipatory
Material

Command
& Control

Linked to Vehicles

Maintenance
Data AnalysisPreventive

Maintenance Condition Monitoring
Reliability Analysis

Predictive
Maintenance

Integrated
Logistics

information

Structural
Data

Knowledge
Engineering

Decision
Support
Systems

Knowledge
Reuse

Selective Data Processing

User Interface

Reasoning System

Knowledge Base

Knowledge Management System

Feedback

Figure 2.3 Knowledge integrated CBM+ architecture.

Figure 2.4 defines the research goals driven by the desired attributes in a knowledge-

integrated CBM system. This research specifically promotes the use of experience-

derived knowledge, accumulated over time, in an intelligent fashion that will help in

automating the maintenance tasks as well as act as a decision support system by

maintaining the corporate knowledge for later reuse. This system will have the

capabilities to learn from feedback and adapt itself to changing environments. To

accomplish these attributes, three key modules must be developed:

1) A knowledge management system for storing and accessing the knowledge

2) A knowledgebase with the attribute of intelligence, and

21

3) A reasoning system to assess the current system state and propose suitable

solutions

As depicted in this figure, these three modules form the main pillars for the knowledge-

based architecture. These modules are briefly discussed in the sequel.

Knowledge Integrated
Architecture for CBM
of Industrial Systems

System-of-Systems
Architecture

LRU to Asset Level

Hybrid Architecture

Textual and Numerical
Data Processing

O
bj

ec
tiv

e
D

es
ire

d
A

ttr
ib

ut
es

Diagnostic Knowledge
Management System

(DKMS)

Store–Organize–Access

Dynamic Case-
Based Reasoner

(DCBR)

Decision Support

Self -Evolving and
Self -Organizing

Knowledge-base

Knowledge

Autonomous and
Self -Adapting

Learning via Feedback

Industrial Language
Processing (ILP)

Qualitative Information
processing capability

R
es

ea
rc

h
G

oa
ls

Figure 2.4 Key drivers and corresponding research goals: an overview.

2.4.1 Diagnostic Knowledge Management

Reusing existing systems in a dependable fashion without the need for extensive re-

engineering is a key problem currently faced by industry. In response to this problem the

corresponding desired attribute is a unified System-of-Systems (SoS) architecture for the

22

diagnostic health management of a complex system. A system, as referred to herein, can

consist of several subsystems that may themselves consist of other subsystems or

components, as depicted in Figure 2.5.

Main Transmission GearboxOil Cooler

Components of IGB

System (Asset)

Intermediate Gearbox (IGB)Oil Cooler

System of systems (Fleet)

C
om

po
ne

nt
 L

ev
el

Su
bs

ys
te

m
 L

ev
el

S
ys

te
m

 L
ev

el

Main Transmission GearboxOil Cooler

Components of IGB

System (Asset)

Intermediate Gearbox (IGB)Oil Cooler

System of systems (Fleet)

Main Transmission GearboxOil Cooler

Components of IGB

System (Asset)

Intermediate Gearbox (IGB)Oil Cooler

System of systems (Fleet)

C
om

po
ne

nt
 L

ev
el

Su
bs

ys
te

m
 L

ev
el

S
ys

te
m

 L
ev

el

Figure 2.5 System-of-systems hierarchy.

The components of an SoS are generally existing systems, consisting of hardware and

software, each potentially equipped with separate health management and maintenance

techniques. Since these techniques are employed independently of individual subsystems,

an SoS diagnostic architecture is not just a large complex distributed system, but rather

one whose modules:

23

- fulfill valid purposes in their own right and continue to operate to fulfill those

purposes if disassembled from the overall system, and

- are managed (at least in part) for their own purposes rather than the purposes of

the whole.

However, well-coordinated information sharing and regular interaction among

subsystems can improve system availability and reliability. This requires an integration of

tasks through an intelligent system architecture for preventive maintenance.

This integration of knowledge from different subsystems imposes two requirements:

1) Since this knowledge cannot be abstracted to a fixed formal structure, there must

be a hybrid knowledgebase that can accommodate knowledge in different forms.

2) A knowledge management system must exist that acts as an interface for

knowledge transaction in the sharing and reuse of varied knowledge types,

Driven by these requirements, one of the goals of this research is to develop a Diagnostic

Knowledge Management System (DKMS) that helps store, organize, and access the

diagnostic techniques including signal processing, feature extraction, and fault

classification methods. This module acts as an interface between various modules of the

proposed architecture along with a user interface to provide the capability to examine,

modify, and utilize this knowledge externally.

2.4.2 Self-Evolving Maintenance Knowledgebase

The next goal of this research is to develop a knowledgebase for CBM techniques that

can accommodate knowledge in different forms (descriptions, data, algorithms, tests,

24

models, etc.). A significant amount of structural, operational, and analytical knowledge

has been developed over the years while these systems were built, tested, and maintained.

Typically, components or subsystems of a large system are studied individually before

relevant analytical techniques are developed. Even though these subsystems may be

different, several constituent components share various structural and operational

similarities. There is a need to organize this knowledge in such a manner that it can be

easily shared and reused for similar components of a large system. Rather than re-

developing this knowledge, minor adaptations should be able to save time and effort of

the analysts. Thus an easily accessible knowledgebase containing these techniques must

be created. Further, there must be a learning component in the knowledgebase that helps

improve the performance over time. This process of self-evolution involves monitoring

activities and their results to make internal adjustments for the next epoch [12].

Therefore, another goal of this research is to develop a self-evolving knowledgebase that

learns from its diagnostic performance assessed through external feedback and

reorganizes itself based on the temporal recency of the usage of its constituent knowledge

capsules in order to adjust to the changing environment of the fielded systems.

2.4.3 A Decision Support System Based on Higher Level Reasoning

The third goal of this research is to develop a higher-level reasoning paradigm to

effectively utilize the knowledge contained in the knowledgebase. An alternative

approach to computationally intensive classical modeling techniques is to reuse higher-

level information acquired from previous experience for new but recurring situations.

This approach automates the troubleshooting process to a large extent by providing a

25

quicker decision support system using an extensive knowledgebase and reduced

computations. Further, it must be realized that from the majority of these systems

information is available in two different forms, qualitative (textual) and quantitative

(numerical). In most cases only numerical information is used for diagnostic purposes

even though qualitative observations can be very useful in localizing the fault. This is

primarily because most text processing techniques from the AI domain are not

computationally tractable. However, the semi-structured nature of industrial texts can

help alleviate this problem.

Therefore, another goal of this research is to develop a method to utilize qualitative

(textual) information available from the systems along with the conventional sensory

(quantitative) measurements. This qualitative information facilitates a higher-level

reasoning for localizing the faults, thereby shrinking the search space and consequently

reducing the computational burden from exhaustively analyzing numerical data. The use

of simplified language has been assumed in the industrial texts. Simplified language uses

reduced grammar and a minimal number of words to express a situation [14]. The

concept of simplified language is explained in detail in later sections. Finally, to carry out

the reasoning tasks using knowledge from the knowledgebase and data from the system, a

formal reasoning framework must be developed. Thus the corresponding goal is to

develop a framework for diagnosis based on Case-Based Reasoning (CBR). This

facilitates a hybrid reasoning system that can accommodate knowledge in multiple forms

and that can perform higher-level reasoning. Conventional CBR has been expanded to

DCBR that generates strategies for accessing relevant knowledge and to carry out

diagnostic reasoning based on past experiences.

26

Chapter 3

Knowledge Engineering

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

27

3.1 Chapter Overview

A basic step to build a knowledgebase is to collect information that will constitute the

knowledge. This chapter describes an introduction to knowledge engineering concepts

that allow systematic acquisition and codification of knowledge into a machine readable

format. Further, a knowledge engineering approach, specific to the CBM knowledgebase,

has been identified and presented. This approach structures already existing knowledge

representation formats and connects them for systematic acquisition using various tools

commonly employed in the industry. Finally, an example case has been presented to

show the application of this approach for knowledge engineering in the CBM domain.

Contribution: A structured approach to acquire and modify knowledge to populate the

knowledgebase.

3.2 Introduction

Before a knowledgebase can be built, information must be gathered and modified in a

structured manner so that it can be stored in a coherent format for easy storage and

access. This task is formally accomplished through Knowledge Engineering (KE). KE is

the technique of collecting, consolidating, structuring, and transforming relevant

information into a computer-comprehensible format, to prepare the basic building

material for intelligent systems: Expert Systems, Knowledge-based Decision Support

Systems, Expert Database Systems, etc. Different systems generate data in different

forms and the information is extracted in different ways depending on the task at hand. In

other words, KE is an attempt to imitate the socio-cognitive process where knowledge is

28

produced by human beings. It structures information according to our understanding of

how human reasoning and logic work. Since 1980s, Knowledge Engineers have compiled

a set of principles and guidelines based on various experiences they gained in developing

knowledge-based Systems. Figure 3.1 shows various steps involved in KE. KE involves

two main tasks namely Knowledge Acquisition and Knowledge Codification. In this

thesis, we have further subdivided these tasks into specific activities suitable for CBM, as

shown in Figure 3.2.

Codification: While building a knowledgebase, the most important factor to consider is

whether the knowledge is codifiable, i.e. can it be codified in a manner so that there is no

significant information loss on decoding it and the process cost is justifiable. A detailed

discussion on codifiability is presented in Section 3.4.

Acquisition: Once the knowledge is declared codifiable, information must be acquired

from the system. There are different forms of knowledge, and hence an appropriate

approach is required for acquisition. There is no general methodology that can be used

for all types of tasks. However, various categories have been defined and the task at hand

should be first categorized into one or more of these categories and then the

corresponding guidelines should be used with necessary adaptations. Similarly, there are

different types of experts and expertise, and hence different ways of representing

knowledge, which can aid acquisition, validation, and re-use of knowledge. Various

methods have been devised that must be used to increase the efficiency of the acquisition

process. In some cases the acquisition process can also be guided by the task objectives

(goal-oriented acquisition).

29

Planning Knowledge Definition Knowledge Design

Requirements

What?
How?

Source
Identification
and Selection

Acquisition
Analysis and
Extraction

Definition Detailed
Design

Knowledge Verification

Tests and
Evaluations

Changes and
Revisions

Knowledge Representation

Detailed Control Structure

Internal Fact Structure

Preliminary User Interface

Initial Test Plan

Design Structure

Implementation Strategy

Detailed User Interface

Detailed Test Plan

Acquisition Strategy

Knowledge Element Identification

Knowledge Classification System

Requirements Specifications

Knowledge Baseline

Work Plan Knowledge Review

Preliminary
Data Review

Knowledge System
Design Review

Test Readiness
Review

Figure 3.1 Knowledge Engineering: Task planning and execution adapted from [15].

30

Knowledge
Engineering

Knowledge
Acquisition

Knowledge
Codification

Diagnostic
Data

Experience Representation
Language

Knowledge
Model

Vocabulary Grammar Concepts ReasonerStructural
Data

Operational
Data

Baseline
Data

Runtime Data

Records Associations

Dictionary Thesaurus

Figure 3.2 Main tasks involved in Knowledge Engineering (KE).

31

There are different levels of knowledge abstractions, namely noise, data, information,

knowledge and wisdom. A brief discussion of these abstractions is provided in Appendix

A. Keeping this hierarchy in mind, a knowledgebase should not be confused with a

database. Unlike databases, a knowledgebase also contains attached semantics about how

various data are related and provide useful information when brought together in different

orders and combinations.

3.3 Knowledge Acquisition

For knowledge-based diagnosis of industrial systems two types of information must be

gathered to create useful knowledge - Diagnostic Data and Experience (Figure 3.3).

Knowledge
Acquisition

Diagnostic
Data

Experience

Figure 3.3 Sources of information for knowledge acquisition.

Useful knowledge refers to the abstraction of information structured in a way such that

inferences about the health of a system can be drawn in a consistent manner. It should be

possible to:

- structure, organize, and store information for easy and timely access,

- add more information as time passes by,

32

- extend the current knowledgebase to include more types of information, and

- reason about situations in a transparent and intuitive manner.

These two sources for knowledge acquisition have been further classified into their

respective categories and are discussed next.

3.3.1 Diagnostic Data Collection

Data represent the facts about the system that can be gathered by examining it.

Diagnostic data can be further divided into two types (see Figure 3.4):

Diagnostic
Data

Structural
Data

Operational
Data

Baseline
Data

Runtime
Data

Figure 3.4 Types of data to be collected for building diagnostic knowledgebase.

Structural Data: Different component parts of the system are identified and their

specific structural organization is stored as its structural model. Information about the

location of each component and its relative proximity to other neighboring components is

crucial in predicting how a local failure in one component may propagate though the

entire system. Knowledge about the component interconnections is also important since

the type of connectivity may sometimes restrict certain degrees of freedom of some

33

component and hence affect its operational modes. Structural data mainly consist of the

types of components, sensors, their locations, dependencies and interconnections, etc.

Structural data are usually collected at the beginning while studying the system. In most

cases, once collected, there are not many modifications to this dataset unless a part of the

system changes. However, in the beginning, only a reduced dataset may be obtained from

the system for quick deployment, and then additional data may be added to this database

as time passes and more detailed information is desired.

Operational Data: Unlike structural data, operational data are more dynamic and are

collected while the system is in operation. This data mainly consist of sensor

measurements and operator observations. The characteristics of operational data may

change over time due to changes in the environment or changes in the system itself (due

to wear and tear in the system, or component replacement). For diagnostic purposes,

operational data are further subdivided into two parts - Baseline Operational Data and

Runtime Operational Data (see Figure 3.4). For a healthy system, both baseline and

runtime operational data should be similar in a statistical sense. Some minor drifts may

occur between the two due to changes in system characteristics over time. In such cases,

fresh baseline data should be collected for recalibration. Any significant deviation

between baseline and runtime data within unexpectedly low time spans indicates the

possibility of a failure. With further analysis of runtime data, tasks of fault detection,

isolation, and identification are carried out.

Operational data can also be analyzed to extract some higher level information about the

system. For instance, statistical distribution of various faults, frequency of faults, and

34

fault characteristics can be deduced from data collected over a long period of time. These

data represent a collective summary of the behavior of a system or a fleet of similar

systems over a long period of time.

3.3.2 Experience Accumulation

Experience represents the knowledge deduced from data/information collected over a

period of time from one system or a fleet of similar systems. Experience can be

accumulated in two forms - records of operational data and cause-effect associations

explaining the behavior of the system (Figure 3.5).

Experience

Records Associations

Figure 3.5 Experience is accumulated as historical records and cause-effect associations.

Eventually, experience tells about how to use data to perform reasoning tasks. This

information is either gathered from the experts or it is learned over time. For instance,

How to interpret a fault symptom and what diagnosis to perform? In computational terms,

it can be viewed as connections between various data entries and their corresponding

weights that offer support while computing a decision metric.

Experience accumulation includes methods for identifying, collecting, documenting,

packaging, storing, generalizing, reusing, tailoring, and evaluating the experience [16].

An important attribute of the experience accumulation is its temporal dependence. First,

35

the records should be prepared and accumulated over a long period of time before a

statistically meaningful set of experiences can be constructed. Next, various data mining

and machine learning techniques can be used to consolidate these records and extract

useful knowledge from it. Therefore, learning is another attribute that must be included in

experience accumulation. Case-based reasoning has been a useful tool for accomplishing

the task of experience accumulation [17]. It has an added advantage of facilitating the

reuse of this experience in an automated fashion. This thesis uses CBR as the learning

backbone of the maintenance knowledgebase. A detailed discussion on CBR is included

in Chapter 4.

3.3.3 A Systematic Approach to Knowledge Acquisition

For both kinds of knowledge acquisition a very methodical approach has been developed

over the years, which systematically studies the system and identifies what information

must be collected to carry out health maintenance tasks. Initially, Failure Modes and

Effects Analysis (FMEA) was designed to improve the reliability of the system. FMEA is

a methodology for analyzing potential reliability problems early in the development cycle

where it is easier to take actions to overcome these issues, thereby enhancing reliability

throughout design. FMEA is used to identify potential failure modes, determine their

effect on the operation of the product, and identify actions to mitigate the failures. A

crucial step in FMEA is anticipating what might go wrong with the system. Although,

anticipating every failure mode is not possible, an effort must be made to formulate as

extensive a list of potential failure modes as possible. Later, FMEA was enhanced by

including criticality analysis to rank various failures in order of their frequency of

36

occurrence and severity to prioritize the maintenance attention in the case of multiple

simultaneous failures. The next section discusses this approach in detail with a systematic

description of the steps that must be carried out to collect, organize, and acquire relevant

information.

3.3.3.1 Failure Modes and Effects Criticality Analysis

FMECA is one of the earliest methods for failure analysis, developed by the US military

in 1949. The main goal of a Failure Modes and Effects Criticality Analysis (FMECA)

study is to relate failures to their root causes. Towards this goal, it addresses issues of

identifying failure modes, their severity, frequency of occurrence, and testability. It also

identifies fault symptoms that are suggestive of the system’s behavior under fault

conditions and the sensors required to monitor and track the system’s fault symptomatic

behaviors [1]. Ideally, FMECA must be performed during the initial and conceptual

design phases of the system development to make sure that all possible failure modes

have been considered and the corresponding failure mitigation strategies have been

implemented. If successfully implemented, this would avoid costly re-engineering at a

later date.

Advanced FMECA studies may recommend algorithms to extract optimum fault features

or condition indicators, detect and isolate incipient failures and predict the remaining

useful life of critical components [1]. FMECA studies aim to provide the designer with

tools and procedures that will lead to a systematic and thorough framework for design.

One can identify two approaches to FMECA:

37

Bottom up approach to FMECA: As discussed in Chapter 1, a systems approach leads

to a very comprehensive coverage with respect to failure modes associated with different

components in a system. Each component on the lowest level can be studied one-by-one

and then the study is carried out at subsystem level and so on. This approach is

exhaustive and hence the analysis is “complete” since all components are studied. This is

suitable for cases where the system is already in operation and a post implementation

analysis is required to improve its performance and reliability. FMECA for maintenance

tasks lies in this category. However, instead of studying each and every component in a

system, a more intelligent choice can be made by only studying those components that

are more susceptible to failures and hence more critical. A detailed discussion is given in

the next section.

Top down approach to FMECA: During an early design phase of a system, before a

definite structure has been decided, a detailed function oriented study is carried out to

ensure that all functions have been considered and appropriately included in the plan.

There, it is important to know how a given system may fail in carrying out these

functions. Functional failures with significant effects are considered with higher priority

in the analysis and hence this study is more selective. The top down analysis will not

necessarily be complete as less important areas are left out from the analysis.

Alternatively, the top-down approach may be used on an existing system to focus only on

the problem areas.

38

In the published literature there are several categories of FMECA studies that can be

employed at various stages of an industrial system. A broad classification of different

FMECAs is:

- System - focuses on system level functions.

- Design - focuses on components and subsystems individually.

- Process - focuses on manufacturing and assembly processes.

- Service - focuses on service functions like maintenance operations.

- Software - focuses on software functions for automation processes.

3.3.3.2 FMECA for CBM

CBM lies under the Service category of FMECA, where systems are already in operation

and adequate information must be acquired to carry out effective maintenance tasks. For

CBM, FMECA generates the template for diagnostic algorithms. The FMECA

framework may be integrated into existing Supervisory Control and Data Acquisition

(SCADA) or other appropriate data management and control centers to provide the

operator with a convenient access to information regarding failure events and their root

causes [1]. FMECA studies require the contribution of domain experts, reliability

engineers, monitoring and instrumentation specialists as well as input from designers

charged with the responsibility to develop a diagnostic and prognostic reasoner. Enabling

technologies for FMECA design begin with simple spreadsheet type tables accompanied

39

by explanation modules to more sophisticated tools such as rule-based expert systems,

decision trees, and Petri nets, among others. Some of the main benefits of FMECA are:

- Early identification of potential failure modes to employ preventive actions.

- Identifies product/process deficiencies and prioritizes corrective actions.

- Captures engineering/organization knowledge

o Documents risk and actions taken to reduce risk

- Provides focus for improved testing and development.

- Minimizes late changes and associated costs.

- Improves product/process reliability and quality.

- Increases customer satisfaction and confidence in automated maintenance.

FMECA is an enhancement of the FMEA methodology in which a criticality analysis is

performed. Criticality analysis involves assigning a frequency to each failure mode and a

severity to each failure effect. Criticality is a function of the severity of the effect and the

frequency with which it is expected to occur. The purpose of this analysis is to rank each

potential failure mode identified in the FMEA study according to the combined influence

of severity classification and its probability of occurrence. Severity categorizes the failure

mode according to its ultimate consequence. Figure 3.6 shows a stepwise approach to

FMECA for CBM.

40

Background Study

System Analysis

Failure Analysis

Review & Feedback

Corrections

FMECA

Figure 3.6 A stepwise approach to FMECA study for CBM systems.

STEP 0 - Background Study: Before starting the actual FMECA analysis, the

background study identifies two important issues. First, it defines the system to be

analyzed. The system definition includes:

a) Scope of analysis: decide on what parts and components of the system will be

included in the study.

b) Functionality: decide which system functions will be included in the analysis. List

of selected functions will depend on mission objectives for the system.

c) Operational modes: decide which operational modes will be included. Different

operational modes have different priorities depending on mission requirements

and environmental conditions.

Second, it identifies the sources for information collection. Information and data exist in

variety of forms. All documents including system engineering drawings, schematics,

specifications, component lists, functional descriptions, design documents, reliability

data, maintenance manuals, maintenance logs, etc. should be collected. In addition,

41

interviews should be conducted with operations and maintenance personnel, process

experts, designers, and component manufacturers to acquire as much information as

possible. Interaction with component manufacturers can often provide valuable

information based on feedback they get from a variety of customers who use their

products. Once all this information is collected, the next step is to study the system.

STEP 1 - System Analysis: the system level analysis can be carried out at two levels –

Structural and Functional. Given a system, a system model is first created as a pictorial

representation, which shows the interconnections between the physical components. Such

models are usually available as schematic descriptions or block diagrams of the system

from the technical documentations like maintenance manuals. Using this structural

model, structural decomposition of the system is carried out to identify all critical

components of the system. Then a list of priority components is prepared. Next a

structural body diagram is created using this list of priority components followed by a

functional block diagram or functional model of the system. This approach is depicted in

Figure 3.7.

System

Structural Model

Structural
Decomposition

Structural Block
Diagram

Functional Block
Diagram

Select Priority
Components

Extract Interconnections

Database

System

Structural Model

Structural
Decomposition

Structural Block
Diagram

Functional Block
Diagram

Select Priority
Components

Extract Interconnections

Database

Figure 3.7 System analysis steps for FMECA study.

42

First, a structural analysis is carried out. The system is divided into smaller units or

sections that are usually considered based on functional descriptions. The level of detail

depends on the objectives of the study. The system is divided into subsystems and

components to create a hierarchical tree diagram to show the structural decomposition of

the system. This yields an exhaustive list of components from which more critical

components must be identified and selected for further analysis (Figure 3.8). Information

about the location of each component and its relative proximity to other neighboring

components is crucial in predicting how a local failure in one component may propagate

through the entire system [18]. This analysis starts with identifying structural links

between various components of the system by creating a structural block diagram that

includes, preferably; only the selected components (see Figure 3.9).

Figure 3.8 Hierarchical tree diagram to show structural decomposition of a system [19].

43

Component
1.1.1

Component
1.1.2

Component
1.1.3

Component
2.1.2

Component
2.1.1

Component
2.1.3

Component
2.2.1

More Components

More
Components

More
Components

S
ub

sy
st

em
 1

S
ub

sy
st

em
 2 Su

bs
ys

te
m

 2
.1

Su
bs

ys
te

m
 2

.2

Component
1.1.1

Component
1.1.2

Component
1.1.3

Component
2.1.2

Component
2.1.1

Component
2.1.3

Component
2.2.1

More Components

More
Components

More
Components

S
ub

sy
st

em
 1

S
ub

sy
st

em
 2 Su

bs
ys

te
m

 2
.1

Su
bs

ys
te

m
 2

.2

Figure 3.9 Structural block diagram to show structural interrelationship between different components.

Next, a functional study may be conducted to add finer details to the analysis. The

functional model of the system is constructed by traversing the partially connected graph

represented by the structural block diagram and including the corresponding function for

each component from the database (Figure 3.10).

Component

Structural block diagram Functional block diagram

Condition Function

Component

Sensor

Outgoing Link

Incoming Link

Outgoing Link

Incoming Link

Component

Structural block diagram Functional block diagram

Condition Function

ComponentComponent

SensorSensor

Outgoing Link

Incoming Link

Outgoing Link

Incoming Link

Figure 3.10 Functional block diagram adds input condition and sensor information along with the function
of the component.

44

This model allows explaining the exhibited behavior of the system in terms of the

functions performed by each component. Any anomaly in the system response can be

reasoned about and expressed in terms of faulty operational mode(s) of one or more

components. In addition to the structural information about the system, this analysis also

generates a list of all sensors employed near the critical components. This information is

particularly helpful in selecting the sensors when numerical data analysis must be carried

out to confirm the presence of a fault. For illustration, the functional model for the above

structural model can be derived by adding extra details to its structural block diagram as

shown in Figure 3.11.

1.1.1

Function 2.1.1

Function 1.1.1

Function 2.1.2

Function 1.1.2 Function 1.1.3

Function 2.1.3

Function 2.2.1

1.1.2

1.1.3

2.1.1

2.1.2

2.2.1

2.1.3

Input 2.2.1

Input 2.1.2

Input 2.1.1

Input 1.1.1

Input 1.1.2

Input 1.1.3

Input 2.1.3

Sensor

Sensor

Sensor

Sensor

1.1.11.1.1

Function 2.1.1

Function 1.1.1

Function 2.1.2

Function 1.1.2 Function 1.1.3

Function 2.1.3

Function 2.2.1

1.1.21.1.2

1.1.31.1.3

2.1.12.1.1

2.1.22.1.2

2.2.12.2.1

2.1.32.1.3

Input 2.2.1

Input 2.1.2

Input 2.1.1

Input 1.1.1

Input 1.1.2

Input 1.1.3

Input 2.1.3

SensorSensor

SensorSensor

SensorSensor

SensorSensor

Figure 3.11 Functional block diagram of the system.

45

This analysis could grow very complex given the increased complexity of industrial

systems. Therefore, it is advisable to carry out system analysis at as high level in the

system hierarchy as possible. Later, if a finer resolution is desired for some particular

subsystem or component in particular, they can be further expanded to include lower

levels. This top down approach saves on effort and money compared to a complete

analysis, which may not be even required.

STEP 2 - Failure Analysis: The next step is the core of FMECA study and identifies the

critical failure modes that a system can be subjected to. It is extremely crucial to

understand the physics of failure mechanisms for a good CBM/PHM system design.

However, in several cases, a statistical account of frequency of occurrence from historical

data provides valuable information for reasoning through expert systems. A systematic

collection of data and algorithms for consistent inferences is extremely important in

designing automated maintenance systems. The most common approach followed for

such tasks is to prepare FMECA worksheets that consist of several columns describing

the necessary details about each failure (Figure 3.12).

Figure 3.12 A generic FMECA worksheet with most relevant columns. (Adapted from various sources)

46

These worksheets are a valuable resource and must be, therefore, carefully prepared from

the point of view of building a knowledgebase. Apart from the description columns, the

core columns that represent the FMECA philosophy are failure rate and severity ranking.

In some cases additional columns, like detectability, and replaceability are added to get

more specific information.

Frequency - For frequency of occurrence different classifications can be used. Figure

3.13 shows two such possible classifications.

LikelyProbable

Occurrence

OccasionalUnlikely
Category 4

Greater than 1000

Category 3

from 100 to 1000
Category 2

from 10 to 100

Category 1

less than 10

(a)

(b)
RemoteVery Unlikely Occasional Probable Frequent

LikelyProbable

Occurrence

OccasionalUnlikely
Category 4

Greater than 1000

Category 3

from 100 to 1000
Category 2

from 10 to 100

Category 1

less than 10

LikelyProbable

Occurrence

OccasionalUnlikely
Category 4

Greater than 1000

Category 3

from 100 to 1000
Category 2

from 10 to 100

Category 1

less than 10

(a)

(b)
RemoteVery Unlikely Occasional Probable Frequent

(b)
RemoteVery Unlikely Occasional Probable Frequent

Figure 3.13 (a) A four category classification. (b) An alternative frequency of failure classification.

First, a four category classification distinguished on the basis of Mean Time Between

Failures (MTBF) ranges has been shown. As an example, for a particular failure mode,

based on a MTBF of 10,000 hours, the four categories may encompass the ranges shown

in Figure 3.13(a). The probability of a fault occurrence may be based on a classification

category number from 1 to 4 (or possibly more divisions) with 1 being the lowest

47

probability to occur. Separation of the four classes is determined on a log power scale.

The classification number is derived based on failure occurrence for the particular event

standardized to a specific time period and broken down into likely, probable, occasional,

and unlikely. In another example, as shown in Figure 3.13(b), a five category

classification shows frequency of failure per year.

Severity – The next column is severity that categorizes a failure mode according to its

ultimate consequence. The severity of a failure mode is assigned based on its worst

possible consequence considered on the overall system. Several factors can be included

to assess severity, but the most important ones are appropriate system operation, fault

propagation, quality delivery, and operation safety. There can be different ways to

classify severity as appropriate, for example a possible class breakdown may be as shown

in Figure 3.14.

Catastrophic Critical

Severity

Marginal Minor
Rank 10

a failure that results
in death, significant
injury, or total loss
of equipment

Rank 6-9

a failure that may
cause severe injury,
equipment damage,
and termination

Rank 3-5

a failure that may
cause minor
injury, equipment
damage, or
degradation of
system
performance

Rank 1-2

a failure that does not
cause injury or
equipment damage,
but may result in
equipment failure if left
unattended, down
time, or unscheduled
maintenance/repair

Figure 3.14 An example of severity classification [1].

48

Detectability - detectability or testability represents the ranking of failures based on the

likelihood that the failure will be detected using the current configuration of the CBM

system. Those failure modes that can not be observed are excluded from the candidate

failure mode set. If the excluded failure mode is critical, additional sensing capabilities

may be required otherwise no immediate action is needed. Assessing detectability may

not be easy, as failures with low detectability may not show up until failure postmortem

is carried out, and then a detailed analysis must be carried out to rank the detectability

with the existing infrastructure. For instance, this parameter may consider two factors.

One is related to ‘how detectable the symptoms that a failure produces are’. Common

symptoms are noise, vibration, or some other specific operational behavior, that can be

associated to this type of the problem. The second factor is related to the time window

available before the breakdown actually occurs. An easily detected failure with a long

warning period should be given a higher ranking and an undetected failure or a detected

one with imminent failure should be ranked low on detectability scale. The main

implications of detectability include conditions with multiple simultaneous failures or

failures under high noise environments where a more critical failure may go undetected.

Better signal preprocessing and de-noising techniques are employed to improve the

detectability of the failures. Once such rankings are generated they can be included in the

criticality analysis by preferential weighting methods. For instance, a critical failure with

a low detectability may be given a higher priority than a non-critical failure with high

detectability. Based on the situation at hand and available detectability assessment

capability a suitable ranking method may be coined as illustrated in Figure 3.15.

49

Very High High

Detectabilty

Moderate Low
Rank 1-2

Very high
probability that
the defect will be
detected

Rank 3-4

High probability
that the defect will
be detected

Rank 5-7

Moderate
probability that
the defect will be
detected

Rank 8-9

Low probability
that the defect
will be detected

Very Low

Rank 10

Very low (or zero)
probability that
the defect will be
detected

Very High High

Detectabilty

Moderate Low
Rank 1-2

Very high
probability that
the defect will be
detected

Rank 3-4

High probability
that the defect will
be detected

Rank 5-7

Moderate
probability that
the defect will be
detected

Rank 8-9

Low probability
that the defect
will be detected

Very Low

Rank 10

Very low (or zero)
probability that
the defect will be
detected

Figure 3.15 An example of detectability ranking method [19].

Similarly, latter columns in the FMECA worksheets can include possible actions to

correct faults, and other remarks or information not yet covered in other columns.

STEP 3 – Risk Ranking and Review: once the system analysis is complete, overall

metrics are computed to assess the overall risk before assigning priorities to different

failure modes. Two of the most common methods used for this purpose are:

- Risk Matrix, and

- Risk Priority Number (RPN).

Risk matrix is plotted between two factors, namely the frequency of occurrence and the

severity of the failure, as shown in Figure 3.16. More sophisticated measures or metrics

can be designed to include more factors. One of the most commonly used measures is

Risk Priority Number (RPN). There is no fixed definition of RPN; rather it is defined

based on expert opinions. The simplest of RPN is a product of the ranks of the severity

(s), Frequency of occurrence (o), and detectability (d). This definition of RPN requires all

rankings to be done on a comparable scale, e.g. 1-10. Lower RPN indicates lower risk

50

from that fault. Other definitions of RPN can be used as suggested by the experts, e.g.

assigning different weights to different parameters.

High Risk

Low Risk

Medium
Risk

High Risk

Low Risk

Medium
Risk

Figure 3.16 Risk matrix to assess risk ranking.

After assessing the RPN, a review team should decide if the system is acceptable and

how it can be improved to reduce the risk, by either improving the parameters, like

detectability using additional sensors, and/or better detection algorithms, or by making

the system more robust by correcting the major sources of these failures thereby reducing

the frequency or the severity of the faults.

STEP 4 – Feedback and Corrections: Once the FMECA study has been conducted, the

knowledge-based system can be built and deployed for use in the field. It is extremely

important to keep monitoring the performance of the deployed system and measure any

inefficiencies and inaccuracies during its operation. These deficiencies may arise due to

two main reasons:

51

- Some critical failure modes went unnoticed or were not considered as critical

enough while FMECA was being conducted. Such failures must be included in

the study whenever discovered.

- Change in the external environment or the system itself results in new failure

modes that should be accounted for and included in the FMECA study.

Therefore, a continuous feedback is required to identify any such deficiencies that should

be corrected as soon as possible. In general an FMECA document is a running document

that should be continuously updated.

FMECA is a very structured and reliable method for evaluating systems and at the same

time it is very easy to understand and learn. It breaks down the complex systems into

smaller modules and makes the analysis much simpler by varying the focus on different

modules in order of their criticality. However, the whole process can still be very time

consuming and tedious and therefore, it is important to make use of any existing

information available from the manufacturers, operators or the domain experts. Also this

study is not particularly suitable for simultaneous multiple failures and more specialized

techniques need to be used to extend the basic FMECA methodology.

After acquiring the required information, the next important step is to codify this

information in a form that can be accessed and reused for reasoning tasks. The next

section discusses codification of knowledge.

52

3.4 Knowledge Codification

A very important concept in implementing an automated reasoning system is the

Codifiability of the knowledge. Codifiability is the ability to make tacit knowledge

explicit using formal written documents [20]. Knowledge codification involves turning

knowledge, or parts of it, into messages that can be processed as information [21].

Thereafter, the codified knowledge exists in the form of codes or messages expressed in

symbols. For these symbolic representations to be useful in a general sense, both the

representational rules (grammar) and the notation (vocabulary) must be stable, and to

some extent, standardized. A consensus must be established between the codifiers and the

interpreters of the codified knowledge, regarding its meaning, without ambiguities.

Further, the codified knowledge must be easier to distribute, store and recall, since these

activities are all valuable, and an efficient coding of the knowledge should lower the

costs of all of them. The codification should be done in a form/structure that eventually

builds a knowledgebase to support decision making.

In theory, all knowledge may be codifiable but in practice it may not be possible to do so

(Figure 3.17). Codifying knowledge involves effort in terms of labor, time and material,

and hence there is a cost associated with doing so. If this cost is not justified, when

compared to the benefits drawn out of it, is considered prohibitive for the codification

process. Thus, whether a piece of knowledge is codified will depend on the relative costs

and benefits of doing so at each level of the process. Of course, the evaluation of the

relative costs and benefits can change over time and with circumstances. On the other

hand, not all knowledge is codifiable. Tacit knowledge (e.g., human expertise) is

53

identified and converted to a form that can be represented explicitly such that it can be

shared and transferred without ambiguity. This explicit knowledge is organized,

categorized, indexed, and accessed for automated use through expert systems.

Knowledge

Codified Not Codified

Articulable,
but expensive

Unarticulable,
only Tacit

Figure 3.17 Topography of knowledge types.

There are several codification tools that are usually employed for a systematic knowledge

codification. Some of the common tools include knowledge maps, decision tables,

decision trees, frames, production rules, case based reasoning, and knowledge-based

agents. Whereas, these tools use different forms, the main goal remains the same, and the

choice of such tools depends on the situation and ease of molding the knowledge into a

form suitable to any particular tool.

3.4.1 Process of Codification

To effectively practice knowledge engineering, a knowledge engineer requires

knowledge in two main areas to carry out codification: Knowledge Representation and

Knowledge Modeling [22, 23]. The main task of codification is to create messages, in a

transferable form, that represent the tacit knowledge about the operation of the system

54

and explain its behavior. But in order to create messages, a basic infrastructure of a

suitable representational language is required in which these messages can be “written”

and “read”. However, a language that is suitable in a particular context presupposes a

model of the phenomenon. Therefore, in creating a knowledge-based expert system, first

a model of the process should be created. This model is not the structural or operational

model of the system; instead it is the model of the task at hand that needs to be performed

by the knowledge-based system. Thus, for CBM systems it entails a detailed description

of how a failure manifests itself in the system and in what form it becomes observable,

e.g., through sensor measurements or in the form of peculiar symptoms that can be

observed by the operators. In general there are two main aspects of the codification

process:

- creating a model of the knowledge to be codified, and

- creating a representational coding language to express the model.

Once these aspects have been resolved the final task is to convert the knowledge into the

coding language, which may not be trivial in all cases and must be handled

systematically. The codification process can not be considered a simple transfer or

translation operation as this aspect of creation of models and languages greatly influences

the whole process. This process of creation defines a transformation at a fundamental

level to describe how the knowledge is organized. Depending on the accuracy and fidelity

of this transformation the codified knowledgebase may not entirely cover the entirety of

the tacit knowledge that exists in the form of experts’ experience. Therefore, constant

55

reviews and revisions need to be carried out by experts before an acceptable codification

scheme can be adopted.

3.4.2 Knowledge Model

Knowledge Model refers to the framework that must be adopted to describe how the

information collected from a system can be used to explain the system behavior and

reason in unknown complex situations. Knowledge modeling is often considered as the

first step in developing Knowledge-Based Systems (KBS). The aim of this process is to

understand the types of data structures and relationships within which knowledge can be

held, and reasoned with. The automation of usage and creation of knowledge can be

considered as imitation of expertise in solving a specific class of problems. The choice of

a correct knowledge model is very important for an effective knowledge-based reasoning

system. Although there is no stable generic recipe to come up with the most appropriate

knowledge model, some guidelines can be helpful. A knowledge model can be

considered as a specialized case of specification requirement that satisfies all observed

characteristics of a system phenomenon. A knowledge model mainly requires two

components – concepts and a reasoning methodology.

Concept: A concept is an abstraction, typically associated with a corresponding

representation in a description language, which denotes all members of a category,

interactions, phenomena, and relationships between them. Concepts are derived by

grouping multiple objects by virtue of their similarities and omitting the differences

between them. In order to define a concept, a description language must be conceived. A

knowledge specification is constructed first using a semi-formal language. As will be

56

discussed later, defining a specification language itself assumes a knowledge model and

hence a final formal language can not be specified from the very beginning. Once a crude

model is specified in this semi-formal language, the language can be refined further

before the knowledge model can be improved. This is an iterative procedure which

results in refined concepts at a suitable level of abstraction [24].

Concepts can be represented in various forms (data-structures) that have been developed

by artificial intelligence researchers e.g., semantic networks, frames, cases, decision

diagrams, logic diagrams, etc., just to name a few. The choice of a suitable data-structure

depends on the model of ‘how experts reason in similar situations’.

Reasoner: A reasoner is the inference engine that makes use of data-structures describing

the concepts, to manipulate them while performing reasoning tasks and suggest solutions

to a problem. It makes inferences by deciding which rules are satisfied by facts or

objects, prioritizes the satisfied rules, and executes the rules in order of decreasing

priority [15]. As shown in Table 3.1, there are several different kinds of inferences and a

choice of “which one to use” should be made depending on the application and format of

the data available.

57

Table 3.1 Different types of inference methods.

Inference Type Method

Deduction Conclusions follow from their premises using logical reasoning

Induction Reasoning from a specific case to general case

Intuition Can not be explained, however possibly by unconsciously recognizing an
underlying pattern

Heuristics Rule of thumb based on experience

Generate and Test Trial and error method, often used for quick search

Abduction Reasoning back from a true conclusion to premises that may have caused that
conclusion

Default In absence of any specific knowledge, some default knowledge is assumed

Auto-epistemic Self-knowledge

Non-monotonic Previous conclusions may prove incorrect when more information is available

Analogy Reasoning based on similarities to another situation

3.4.3 Representation Language

The primary aim of a knowledgebase is to store knowledge so that programs can process

it and achieve the verisimilitude of human intelligence. AI researchers have borrowed

representation theories from cognitive science to create representation languages. There

are representation techniques such as frames, rules, and semantic networks which have

originated from theories of human information processing and each of them makes use of

different representation languages. Since knowledge is used to achieve intelligent

behavior, the fundamental goal of knowledge representation is to represent knowledge in

a manner that facilitates inferencing, i.e., drawing conclusions from knowledge. In order

58

to manipulate and carry out inferencing, a representation language must be expressed (in

written or spoken form) and should be allowed to be manipulated in a predefined

consistent manner. A representation language mainly consists of two components –

vocabulary and grammar. Vocabulary is a complete set of words that must be used to

describe “any” situation related to the system. It consists of nouns that represent the

names of various parts and/or processes in the system and verbs describing actions or

activities taking place in the system. A complete list of such nouns and verbs generates a

dictionary. A dictionary is a reference document that must be used while codifying and

de-codifying messages in order to reduce ambiguity and loss of data during

communication. It is desired to keep the vocabulary as small as possible but at the same

time as complete as possible. Therefore, suitable abstractions of these words can be

extracted and grouped under a common name to generate a thesaurus. A thesaurus

contains synonym terms to establish relationship between texts with different words but

similar meanings. Thus a dictionary would only contain these abstractions along with a

pointer to the thesaurus. If a particular word is not available in the dictionary, the

thesaurus is referenced and the corresponding abstraction is used for codification. Using

these abstractions leads to some loss of information in the codification process but at the

same time saves a significant amount of processing time in building and searching a

relatively large vocabulary. Thus a balance should be established in deciding the level of

abstraction and the resolution of the codification.

In addition to the vocabulary, a set of rules is needed to manipulate and interpret the

combination of words before a meaningful and unambiguous context can be understood

from it. Such a set of rules generates grammar for the language. Grammar restricts the

59

manner in which the vocabulary can be used to impart an unambiguous contextual

meaning to a sentence consisting of words in a particular order. Formal grammars are

codifications of usage that are developed by observation. Just like a dictionary, grammar

is also needed while codifying as well as de-codifying knowledge.

The concepts of knowledge acquisition discussed above will be illustrated with the help

of two case studies. The emphasis here is on acquiring knowledge through FMECA

study.

3.5 Case Studies

In order to illustrate and validate the theory presented in this thesis, different case studies

will be used. These cases have been taken from different engineering domains to show

the applicability of the generic approach. Data were partially available in most of these

cases and hence these cases have been suitably selected to show different concepts

wherever they are applicable.

For the illustration purposes, the knowledge acquisition concepts discussed in this chapter

are demonstrated via two selected cases:

- CBM of Sludge Dewatering Centrifuges

- Monopropellant Propulsion System (included in Appendix B)

The knowledge acquisition approach is illustrated employing these cases in the following

discussion.

60

3.5.1 Case: Sludge Dewatering Centrifuges

As described earlier, FMECA studies were conducted to acquire relevant data from the

centrifuge system. The various steps of analysis are presented next.

The System: Sludge Dewatering Centrifuge: the system can be divided into two main

parts – Separator and Auxiliary systems. (Figure 3.18)

STEP 0 - Background Study

a) Scope of Analysis: for the purpose of this study only the primary drive in the

separator was chosen to be analyzed because the most critical and frequent

failures were in the drive bearing, which is a part of the primary drive.

Separator
Auxiliary
Systems

Solids
Discharge

Wastewater
Pumping

Polymers
(reactive)

Oil
LubricationInvertersMain Body Secondary

Drive Primary Drive

Centrifuge System

Figure 3.18 The system - sludge dewatering centrifuge.

b) Functionality: all components of the primary drive were included in the study.

c) Operational modes: the ‘normal operational’ mode was chosen to analyze the

system.

61

STEP 1 - System Analysis

First, the separator unit (Figure 3.19) was divided into its constituent subsystems and

components.

13 Solids discharge
14 Bowl
15 Distributor
16 Scroll
17 Separation chamber
18 Housing
19 Regulating ring
20 Feed
23 Scroll bearing
24 Feed tube
25 Discharge clarified

liquid

1 Drive Motor
2 Clutch
3 Clutch Housing
4 Drive bearing
5 Bowl drive
6 Scroll drive
7 Secondary gear
8 Variable speed drive
9 Secondary motor
10 Bowl bearing
11 Primary gear
12 Scroll Bearing

13 Solids discharge
14 Bowl
15 Distributor
16 Scroll
17 Separation chamber
18 Housing
19 Regulating ring
20 Feed
23 Scroll bearing
24 Feed tube
25 Discharge clarified

liquid

1 Drive Motor
2 Clutch
3 Clutch Housing
4 Drive bearing
5 Bowl drive
6 Scroll drive
7 Secondary gear
8 Variable speed drive
9 Secondary motor
10 Bowl bearing
11 Primary gear
12 Scroll Bearing

Figure 3.19 Separator of the sludge dewatering centrifuge.

Various parts were labeled with numbers and a structural decomposition tree was built

(Figure 3.20).

62

Primary Drive

Main Motor Drive

Shaft

Bearing

Winding

Secondary Drive

Pulley

Shaft

Bearing
Seals

Scroll Drive

Secondary Gear

Secondary MotorVariable DriveBowl Drive

Bowl Bearing
Primary Gear

Bowl

Scroll Bearing 1 Scroll Bearing 2

Scroll

Separator

Main Body

Shaft

Bearing

Winding

Pulley

Shaft

System of Systems

Component

System

Rotor

Subsystem

Coupling
Belt

Rotor

Belt
Coupling

Figure 3.20 Structural decomposition of the separator.

The depth of the structural decomposition tree depends on the level of detail with which

the analysis needs to be carried out. In this example we divided the system into four

levels as shown in the figure. As mentioned earlier, only the primary drive was

considered for analysis. A list of relevant components was compiled and a structural

block diagram was prepared only with these components (Figure 3.21). Now each

component included in the hierarchy is labeled with a hierarchical label number that

identifies its parent system. This nomenclature helps in organizing the components in the

knowledgebase.

63

1.1.1
Winding

1.1.4
Bearing Seal

1.1.5
Shaft

1.2.4
Belt

S
ub

sy
st

em
 1

: P
rim

ar
y

D
riv

e
1.1 Main Motor

1.2 Drive

1.1.2
Rotor

1.1.3
Bearing

1.2.2
Coupling

1.2.1
Shaft

1.2.3
Pulley

Figure 3.21 Structural block diagram of the separator.

Produce Rotating
EMF

Rotate Rotor to
Produce Torque

Rotate Bearing to
Transfer Torque

Transfer Torque
to Input Shaft

Hold Bearing
Tight on Shaft

Torque

Engage Input &
Output Shafts

Transfer Torque
to Belt

Transfer Torque
to Output Pulley

Torque

Torque

emf

Torque

Winding

Rotor

Shaft

ClutchPulley

Belt

Bearing
Seal

Torque

Voltage

Engage
On/Off

Figure 3.22 Functional block diagram of the separator.

64

STEP 2 - Failure Analysis:

Table 3.2 shows various failure modes associated with different components of the

separator unit of the centrifuge. Data regarding various failure modes and their frequency,

etc., were obtained through experts’ interviews and maintenance logs and reports

available from the facility. These failure modes were rated on a scale of 1-4 for

frequency, severity, testability, and replaceability. In this case, these ratings were

obtained as subjective evaluations of the operators in the facility. Furthermore, the system

was divided into four distinct monitoring zones namely - main body, main motor,

secondary motor, pulleys, and belts. Out of several sensors installed on the system, 10

relevant sensors were chosen to collect data and were mapped onto the separator unit as

shown in Figure 3-25. A list of these sensors is given in Table 3.3.

10

9

6

2 3
4

1
5

7

8

Zone 1
Main Body

Zone 2
Main Motor

Zone 3
Secondary Motor

Zone 4
Pulleys & Belts

Figure 3.25 Sensor locations on the separator unit.
(Courtesy: Intelligent Automation Systems Inc., Atlanta)

65

Table 3.2 FMECA chart for the separator unit (Courtesy: Intelligent Automation Systems Inc., Atlanta).

Evaluation
System Sub

System Parts Failure Mode Primary Cause Symptoms
F S T R I

Recommended
Action

Axle loose Vibration and
improper mounted

Noise and
vibration Fan

Blocked External
Obstruction High current

1 3 3 2 9 Replacement

Drive shaft
and rotor

Wear
Bend Misalignment Noise and

vibration 1 4 2 2 16 Replace the
motor

Blistering
Crack Bearing
Wear

Overheat
Lack of lubrication
Wear and tear
Induce current

Noise and
vibration
High temperature

2 4 3 3 32 Replacement
Main
Motor

Winding

Loss of
insulation
Short circuit
Mechanical
contact

Overheat
High dived
humidity

High current
High temperature 1 3 2 2 9 Rewinding

Bearing
Blistering
Cracks
Rae defects

Overheat
Lack of lubrication
Wear and tear
Induce current
Misalignment

Noise and
vibration 4 4 3 2 64 Replacement

Seal Crack
Ware

Overheat
Wear and tear
High pressure

Noise
Oil Leaked 4 4 3 4 32 Replacement

Drive shaft Bend Wear and tear
Misalignment

Noise and
vibration 1 4 2 2 16 Replace the

Motor

Pulley Bend
Unbalance

Misalignment
Wear and tear Vibrations 1 3 2 1 24 Replacement

Main
Drive

Drive

Belt Crack
Break Wear and tear Noise and

vibration 2 1 2 4 2 Regularly inspect
and clean

66

Table 3.3 List of sensors on the separator unit. (Courtesy: Intelligent Automation Systems Inc., Atlanta)

Sensor
No. Type Acquisition

Speed Description Band-
Width CC Notes Location

1 Current T=100 s
0.01Hz

Current measurement
(Ammeter) (Main Motor) 1kHz Digital PLC Zone 2

2 Temperature T=100 s
0.01Hz

 Temp. Measurement
 Temp. Feeler (PT100) 0.1Hhz Digital PLC Zone 1

3 Temperature T=100 s
0.01Hz

Temp. Measurement
 Temp. Feeler (PT100) 0.1Hhz Digital PLC Zone 1

4 Flow T=100 s
0.01Hz Throughput measurement 0.1Hhz Digital PLC Zone 1

5 Torque T=100 s
0.01Hz Computed 0.1Hhz PLC Zone 2

6 Vibration T = 004s
5 KHz

Vibration monitor
Accelerometer - Main Body 0.1 Hhz Zone 1

7 Temperature T=100 s
0.01Hz

External RTC Added
(Main motor) 0.1Hhz Analog

0-20 mA
Added to
PLC

Zone 4

8 Temperature T=100 s
0.01Hz

External RTC Added
(Drive bearing housing) 0.1Hhz Analog

0-20 mA
Added to
PLC

Zone 4

9 Vibration T = 001s
10 KHz

Accelerometer – Drive
Bearing Housing 0.1 Hhz Zone 2

10 Vibration T = 001s
10 KHz

Accelerometer – Secondary
Motor 0.1 Hhz Zone 10

67

Once these data have been collected, the knowledgebase can be populated.

STEP 3 – Risk Ranking and Review:

To assign priorities to various failure modes, a composite risk index (I) was designed

shown in equation (3.1). In this case the risk ranking considered the two the most critical

factors namely the frequency (F) and the severity (S) of the failure modes. Other similar

measures can also be designed if desired.

I = F*S2. (3.1)

The final step of feedback and correction is not very relevant from the knowledge

acquisition point of view and hence the corresponding discussion is not included here.

3.6 Conclusions

This chapter presented the knowledge engineering aspect of building a knowledgebase

for the CBM systems. Building on the theory presented in this chapter, we have shown

how common practices in the industry can be combined in a structured manner to gather

data for the knowledgebase. Finally, an example case has been presented showing the

application of such an approach.

68

Chapter 4

Dynamic Case-Based Reasoning

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

69

4.1 Chapter Overview

The next step after information acquisition and its transformation into useful knowledge

is to codify it using a suitable representation language and a knowledge model. As

discussed in Chapter 3, a knowledge model assumes the task of carrying out reasoning

based on current facts from the system and its own experience from previous situations.

This thesis builds on a Dynamic Case-Based Reasoning (DCBR) approach to accomplish

the knowledge model. The Chapter starts with a brief description of conventional Case-

Based Reasoning (CBR). Key components of CBR relevant to knowledge-based CBM

have been discussed where further improvements are desired. Further, the DCBR

philosophy has been described by introducing the dynamic components at multiple stages

of the conventional CBR. This process model has been further instantiated with an

example for industrial systems that can be applied to fleet vehicles.

Contribution: A Dynamic Case-Based Reasoning framework for CBM knowledge

model.

4.2 Why CBR as Knowledge Model for CBM?

Tracking the central theme of this thesis to integrate knowledge into the CBM process, a

knowledgebase must be built to store relevant maintenance experience. This

knowledgebase should contain not only the structural and operational data from the

system but also the experience in the form of associations between different problem

situations and their corresponding remedies. These associations must be learned and

modified over time as more experience is accumulated. Further, there must be a provision

70

to appropriately use this knowledge in an automated manner. As previously discussed in

Chapter 2, for this knowledge integration, a knowledge model is required that poses the

following two main requirements:

Reasoner: To make use of knowledge contained in the knowledgebase an inference

engine is required, which, based on its inference methods/rules, suggests a solution in a

given situation. Several reasoning mechanisms have been used in the literature, e.g., logic

based reasoning, model based reasoning, probabilistic or Bayesian reasoning, etc. The

choice of a reasoning method is largely governed by the problem domain and the kind of

data available from the system. In the CBM domain, the data are available in both,

qualitative and quantitative forms and previous experience is very important in carrying

out effective maintenance tasks. Keeping this in mind this research makes use of Case-

Based Reasoning (CBR) as the main enabling technology to build and use the

maintenance knowledgebase.

Concepts: From the coding point of view, the form and structure of the data must be

defined. This mainly depends on the reasoner and the software design. Therefore

concepts define the data structures suitable for a reasoning mechanism; these concepts

represent meaningful knowledge capsules relevant to the problem domain. For

maintenance tasks, CBR allows one to define concepts in the form of cases that represent

past experiences. The concept of conventional cases has been extended to dynamic cases

to incorporate the hybrid nature of case contents.

A detailed discussion on CBR and its current usage in the industry has is in the following

sections.

71

4.3 Case Based Reasoning – An Enabling Technology

Mechanical systems in industrial environments are very complex and extremely difficult

to model. Moreover, the increasing demand for efficiency and continuous uptime requires

a quick and robust solution to commonly occurring problems in such environments. In

most cases, first, it is next to impossible to establish precise and accurate models for these

systems and even if they can be modeled, it is prohibitively expensive to solve them in

real time to produce a solution. An alternative approach for this task is not to solve these

problems every time from scratch but to recall the solutions from past experience instead,

if such experience exists, of course. This approach is based on the premise that problems

recur in nature. Thus, if in the past a successful solution was generated for a similar

problem at least once, it is not required to explicitly search for a solution over the entire

search space again. The previous solution is likely to be in the proximity of the required

solution for the current problem and hence the search space is considerably pruned.

Therefore, the solutions can be derived by drawing an analogy to a previous situation and

this forms the basis of Analogical Reasoning (AR).

Analogical Reasoning is an AI technique which emulates the process of human reasoning

by remembering [25]. It tries to recall the already known situations which are similar to

the situation at hand and draws analogies to come up with an acceptable solution. A wide

spectrum of AR problems can be defined where, at one end the analogies are drawn

within the same domain and, at the other, analogies are drawn between different domains.

The main difference between the two reasoning extremes is the mapping or matching of

components in the two systems that play similar roles even if their domains are not the

72

same. The hard problem in AR is to decide what to transfer and what not to transfer

between the two domains in terms of knowledge. This is an active area of research and no

concrete solutions are yet available. However, by constraining within a single domain or

very closely related domains the problem can be considerably relaxed. This relaxed form

of AR is Case-Based Reasoning (CBR), which solves problems by adapting successful

solutions that were used for similar problems in the past [26]. The history of CBR can be

traced back to about the year 1977. However, due to technical limitations of limited

computing power it was only a topic of academic interest until the late 1980s and early

1990s before it became popular in industrial applications.

The classical and most widely adopted model of CBR was described as a cyclical process

comprising the four Rs (Retrieve, Reuse, Revise, and Retain) [27] as shown in Figure 4.1.

REUSE

Case BaseCase Base

Retrieved Retrieved
CasesCases

Proposed Proposed
solutionsolution

Confirmed Confirmed
solutionsolution

New CaseNew Case
(Problem)

Learned Learned
casecase

Domain Domain
KnowledgeKnowledge

RETRIEVE

REVISE

RETAIN

REUSE

Case BaseCase Base

Retrieved Retrieved
CasesCases

Proposed Proposed
solutionsolution

Confirmed Confirmed
solutionsolution

New CaseNew Case
(Problem)

Learned Learned
casecase

Domain Domain
KnowledgeKnowledge

RETRIEVE

REVISE

RETAIN

REUSE

Case BaseCase BaseCase BaseCase Base

Retrieved Retrieved
CasesCases

Retrieved Retrieved
CasesCases

Proposed Proposed
solutionsolution

Proposed Proposed
solutionsolution

Confirmed Confirmed
solutionsolution

Confirmed Confirmed
solutionsolution

New CaseNew Case
(Problem)
New CaseNew Case
(Problem)

Learned Learned
casecase

Learned Learned
casecase

Domain Domain
KnowledgeKnowledge

RETRIEVE

REVISE

RETAIN

Figure 4.1 The CBR Cycle, adapted from [27].

73

These four fundamental steps are:

- RETRIEVE the most similar case(s),

- REUSE the case(s) to attempt to solve the problem,

- REVISE the proposed solution if necessary, and

- RETAIN the new solution as part of a new case.

A new problem (query) is matched against cases in the existing case-base and one or

more similar cases are retrieved. A solution suggested by the matching cases is then

reused and tested for success. Unless the retrieved case is a close match, the solution

needs to be revised producing a new case that may be retained for later reference.

Currently, this cycle rarely occurs without human intervention and most CBR systems are

mainly used as case retrieval and reuse systems [28]. Case revision (i.e., adaptation) is

often carried out manually by the managers of the case base. AI systems are not yet

completely autonomous with current state-of-the-art; however, they have proven to be

very successful as Decision Support Systems (DSS). Several applications are discussed in

the following sections where appropriate machine learning techniques for data mining are

employed by CBR to propose and approximate solution and make it much simpler for the

users to come up with a good solution.

74

4.3.1 CBR Implementation Issues

CBR requires a specific structure in which the domain knowledge should be codified.

However, the format and content of this structure can vary according to the problem

domain. A brief description of how these processes can be carried out is included below.

4.3.1.1 Case Representation

A case is a contextualized piece of knowledge representing an experience. It contains the

past lesson, i.e., the content of the case and the context in which the lesson can be used

[29]. Typically a case comprises:

- the problem that describes the state of the system when the case occurred,

- the solution which states the derived solution to that problem, and/or

- the outcome which describes the state of the system after the case occurred.

In other cases, additional case components have been suggested to further enhance the

CBR structure. A notion of maintainable cases has been suggested in [30] for which he

includes an administrative part in the case called administrativa. Irrespective of what

other case components may be defined for improved capabilities, the basic philosophy

revolves mainly around the problem and the solution parts.

In its simplest form, cases can be represented as vector of attribute-value pairs

characterizing the problem and solution respectively. Further, based on the nature of case

contents, cases can be classified in different forms as summarized in Table 4.1.

75

Table 4.1 Types-of-cases classification.

Classification
Criteria Classification Definition Ref.

Rule-based
cases

It is predetermined at the design time which attributes are
part of the Problem and which are a part of the solution.

Distinction
between
Problem and
solution parts of
the case

Constraint-
based cases

It is determined only at run time which attributes are part of
the Problem and which are a part of the solution

[31]

Homogeneous
cases

The set of attributes in a case remains fixed. For example,
real estate domain

Homogeneity of
cases

Heterogeneous
cases

It is difficult to know full set of attributes. New attributes
may be learnt with time. Therefore cases in a case base may
contain some non-common attributes. E.g., patient data in a
hospital

[28]

Episodic cases Cases are records of events. E.g., equipment fault logs,
patient files etc.

Source of cases

Prototypical
cases

Cases are designed by experts as examples of events. E.g.
symptoms of failures acquired using field tests

[28]

Simple cases Have fixed structure, cover specific situations clearly and
interpreted in a well defined way while ready for reuse.

Structure,
coverage and
interpretations Complex cases Defined by complex layouts, topologies or structures

difficult to define with attribute-value pairs, may need
several partial cases to cover a situation and may be
interpreted in different way for different situations.

[32]

Discrete time
cases

Cases represented by a snapshot of events. All values are
recorded at a particular time instant to measure the state of
the system

Time period
over which
cases carry
information Continuous

cases
Cases are represented by continuous time events or a series
of discrete events. It is important where current state
depends on past temporal states

[33]

Static cases Case contents remain fixed over a period of time. With
significant difference in attribute values a new case is
instantiated.

Evolution of
case contents

Dynamic cases Case contents keep changing or evolving as new experience
accumulates. i.e., a case contains statistical account of
values rather than fixed values.

[34-
36]

Pure cases Case attributes are all of similar type, e.g., numerical,
textual, graphical, etc.

Type of case
contents

Hybrid cases Case attributes can be of mixed types

[35]

Cases can be represented in a variety of forms using the full range of AI representational

formalisms including frames, objects, predicates, semantic nets and rules. The choice of a

76

particular formalism is largely governed by the case content. There is a lack of consensus

within the CBR community as to exactly what information should be in a case [28].

However, [29] suggests two pragmatic measures that can be taken into account while

deciding what should be represented in cases: the functionality and the ease of acquisition

of the information represented in the case. Practically, there is a trade off between how

much information should be included in the cases and memory requirements, and a

balance should be established based on the application domain and requirements.

4.3.1.2 Similarity Metrics for Case Comparisons

Under the core CBR assumption, that similar problems have similar solutions, the

usefulness of stored cases is evaluated by comparing their respective problem situation to

the problem description in the query case (target case). The query case is not just an

informal description of the problem at hand, but a formalized version complying with a

case representation language, already specified for the problem domain at hand. In most

situations the query cases are expected to be incomplete and vague in the beginning. The

type of similarity metric used may be different depending on the nature of various case

attributes. In some cases, where the attribute’s structure is more complex and requires

special considerations, several types of similarity notions may be combined to form a

composite similarity metric. In most situations, cases are represented as attribute vectors:

a = [a1,a2,…ak]. In these situations, first a local similarity is computed between each

component and then composed into a global similarity by taking a weighted sum of all

components. In addition to these notions for similarity, other notions of utility and

77

acceptance have been introduced for case comparisons. A detailed discussion on

similarity metrics is included in Chapter 5.

4.3.2 The Issue of Uncertainty in CBR

Traditional information systems simply convert data into information and rarely address

uncertainty because their inputs and outputs are not expected to be flexible and all the

flexibility is expected from humans. However, systems especially the ones that

manipulate knowledge explicitly are expected to be flexible as they try to emulate human

level intelligence.

[37, 38] define three broad categories of uncertainty:

- Incompleteness occurs when there are missing values for elements.

- Imprecision occurs when a value of an element is given but not with necessary

precision.

- Uncertainty occurs when a given statement might be wrong.

Uncertainty arises due to the fuzziness or randomness in the inputs which then propagates

to the decision making. Attempts to minimize this uncertainty are made in [38].

A four-container concept was given by [31] to define the sources of uncertainty in

knowledge and information in CBR systems. These four knowledge containers are:

78

- Vocabulary: it includes the definition and descriptions of elements, entities,

attributes, strategies, conditions etc., which generates imprecision depending on

the level of abstraction chosen to represent the case.

- Similarity Measure: it includes indexing, similarity functions, aggregation of

similarity functions, and selection. Several methods to learn similarity measures,

feature weights, and indexing are also included in this container. [39] discuss how

distance measure as a notion of similarity leads to uncertainty in CBR systems.

- Case-Base: it contains the organizational structure of cases (flat, hierarchical or

networks), case-base maintenance methods, case contents (complete and

incomplete cases), etc. An insufficient case base that does not cover all

prospective problems is yet another source of uncertainty. Methods to learn new

cases also add to the uncertainty.

- Solution Transformation: it includes the methods used for the reuse and revise

steps in CBR. One source of uncertainty may arise when there are more than one

candidate solutions and a method for solution composition is required. A new

problem that is more specific than the stored cases leads to imprecision. And an

insufficiently designed adaptation leads to ignorance.

4.3.3 CBR in Industrial Practice – State-of-the-Art

In most situations health information is obtained from monitoring sensors and

automatically generated activity logs. But most of the systems use only the quantitative

information available from sensors to automate the diagnosis task and almost none or

79

very little use of the qualitative information is made. For instance, a CBR system for fault

diagnosis in industrial robots has been described in [40] using a case base consisting of

acoustic signals acting as fault signatures. But this approach largely depends on signal

processing of the data and can be aptly applied only where good sensors and features

have been identified for fairly accurate fault detection and identification. Another attempt

focused on diagnosis of electronic ballast on the airplanes for developing an aircraft

maintenance system [3]. Several numerical features were included and genetic algorithms

were employed to assign weights to those features for similarity calculations. But any

available qualitative information was again ignored. GE has been using CBR for

monitoring and diagnostics in a variety of systems including medical equipment (ELSI),

locomotives (ICARUS), and heavy-duty gas turbines [4, 5]. But none of these systems

have yet considered both numerical and textual data together. A diagnostic system for

aircraft fleet maintenance was developed using failure and warning messages generated

by on-board aircraft diagnostic routines [7]. This approach considered only formatted text

messages for which a trigram-matching technique was utilized to retrieve similar cases.

This approach works well only if the text structure is fixed and word ordering does not

dictate the meaning of the phrase. Similarly, a partial matching technique, based on key

words and constraint-nets, was used to retrieve similar cases from the case-base [6]. This

process also focused only on textual information and no numerical analysis was carried

out.

80

4.3.4 Shortcomings of the Conventional CBR

Case-based reasoning (CBR) is an approach to problem solving based in retrieval and

adaptation of cases, or episodic descriptions of problems and their associated solutions

[17, 27, 29]. As discussed earlier CBR cycle typically involves four REs namely Retrieve,

Reuse, Revise and Retain as described in [41]. CBR is a knowledge representation and

manipulation technique that recalls solutions to past problems that are likely candidates

for solutions to new problems. It is not uncommon for several cases to be retrieved at any

one time. The retrieved cases must be ranked in order of their relevance to the current

case. Six “filters” have been used for case ranking: goal-directedness, salient features,

specificity, frequency of recall, recency, and ease of adaptation [29]. In practice, both the

implementation and inclusion of each of these steps and the knowledge representation

used for cases varies widely. For example, case retrieval has been implemented using

nearest neighbor algorithms, decision trees, or connectionist associative memories; case

representations range from free-text documents to data base records to semantic networks

[17]. However, in almost all cases the content of a case is predetermined and remains

fixed while that case resides in the active case library. Moreover, since CBR has been

applied mostly in specialized domains, the adaptation algorithms are more or less fixed

and any adjustments due to changes in the environment are carried out through scheduled

case-base maintenance operations. In fact adaptation in most commercial decision

support systems is bypassed by suggesting an approximate solution obtained from the

closest matching case without any modifications.

81

4.4 Dynamic Case-Based Reasoning

A dynamic case-based reasoning system strives to improve on the above shortcomings of

the simple CBR systems. Several variations in the structure of CBR have been

implemented, based on specific requirements, as the use of CBR is being explored for

more applications. In [36] authors describe a system where time-tagged indexes and

dynamic composite features make the CBR system dynamic. In another approach cases

are extracted and expanded dynamically based on context and the facts specified in

advance [42]. Although the basic steps in DCBR cycles essentially remain the same, they

can be internally modified to incorporate a dynamic component to increase autonomy of

these systems.

4.4.1 The DCBR Lifecycle

Lifecycle of a DCBR system can be divided into three major phases, shown in Figure 4.2.

Time

D
C

BR
 P

ha
se

s

Initialization

Enrichment

Maintenance

Time

D
C

BR
 P

ha
se

s

Initialization

Enrichment

Maintenance

Figure 4.2 Lifecycle of a DCBR system.

Initialization Phase: This phase includes designing a general representation of the

information, choosing appropriate features for indexing and a mode of interaction

82

between the application and the actual system. This phase includes initial installation of

the DCBR system using a “seed” case base to provide a baseline for the application. This

initial case base is sparsely populated with cases that have been encountered most

frequently and constitutes the prior knowledge available to the DCBR system. It may not

cover the entire range of problems because they have either not been encountered so far

or have been forgotten from the past. This knowledge is made available through current

experts of the system or maintenance logs.

Enrichment Phase: The initial case base is used and refined through the validation and

storage steps performed concurrently throughout the user base. This involves populating

the case library with newer cases as they are encountered. This is an ongoing process

throughout the life of a DCBR system, and remains relatively more active until a valid

case base covering a large portion of the application area is complete. This phase tends to

fill the gaps, between various possible scenarios, that were created during initialization.

Every time a problem case is presented (assuming a fault has been detected), it can either

be grouped with one of the old cases based on its similarity or considered a new case. If a

new case is detected, the case library is simply updated by including this case. But if it

matches an existing case with some predefined degree of confidence, the statistic-vector

of the corresponding representative case is updated. This approach mainly works if the

case contents are either numerical in nature or can be otherwise transformed into

numerical entities. All similar cases are grouped and, instead of storing multiple cases, a

statistical distribution of each is kept in a dynamic case. A dynamic case thus represents

an n-dimensional cluster where n is the number of different components in the case. A

new dynamic case is generated when including a new case increases the variance of the

83

cluster above a preset limit. Using statistical inferencing techniques, like hypothesis

testing, this statistic-vector can be used for:

- Fault Detection: to decide if the fault is present or not, and

- Fault Identification and Isolation: to decide which fault(s) is (are) present.

This may indicate the presence of several faults and hence more than one matching cases

(some with a different degree of severity, while others with different fault

characteristics). Cases can be ranked according to the preferences like the ones

enunciated by [29]. Figure 4.3 provides a simple illustration of a dynamic case with a

statistic vector.

Case 1
:

5. Temp = 74

Case 2
:

5. Temp = 74

Case 3
:

5. Temp = 74

Case 14
:

5. Temp = 74

Case 15
:

5. Temp = 74

Case 24
:

5. Temp = 74

Dynamic Case 1 updated: 041405
Cases: 24

:

5. Temp = 77.3 ± 3.6

6. Pressure = medium

Dynamic Case 1 updated: 080305
Cases: 25

:

5. Temp = 77.8 ± 3.61

Case 25
:

5. Temp = 78

Figure 4.3 Creating and updating a dynamic case using a statistic vector. Descriptive features can be
converted to numerical values using techniques like fuzzification.

84

The advantage of such a technique is that the similarity metric is not calculated based on

one representative case, which may or may not be the best representative for the

corresponding problem, instead it is based on a distribution of all similar cases

encountered in the past without explicitly storing all of them. Hence a suitable statistic

vector replaces the description of case, making it “dynamic”.

Case Base Maintenance Phase: This is a relatively less frequent process but continues

throughout the life of the system to cope with the non-stationarity of the environment.

This phase is expected to commence after the active enrichment phase is completed.

Based on past successes and failures, a performance assessment can be carried out for

various parameters that are being monitored. Weights can be assigned to cases and their

constituent components to express their relevance in solving a particular fault. Some

sensors can be tagged as redundant and others as more important or the need for

alternative sensors or sensor placement can be inferred. Once the required changes have

been incorporated, the case structure is likely to change and the old case structure can be

modified such that the useful part of the old cases can still be used and the redundant part

is discarded. This can also include time stamping and archiving of very old cases which

have not been used for a long time and have less chance of appearing again because

either the system has changed or they are covered by some newer cases.

4.4.2 Three Dynamic Components of DCBR

Figure 4.4 illustrates a high level schematic of DCBR that has been extended over the

classical CBR cycle adopted in [27]. DCBR is “dynamic” by three means as compared to

the conventional CBR.

85

Dynamic Case Library: As in conventional CBR the case library is dynamic by virtue of

its evolution for almost as long as newer cases are encountered. Beyond that, the case

library is not just a static collection of old cases but an entire knowledgebase that

continuously learns from external feedback. Attributes of self-evaluation and self-

organization directly define a dynamic case library.

Dynamic Case: The cases are dynamic as they continuously evolve over time. As more

similar cases are encountered they are grouped based on their spatial locations and

compressed into a dynamic case by creating the statistic-vector illustrated earlier in

Section 4.4.1. Thus a case is a statistical representation of a group of closely matching

situations rather than one situation per case.

Dynamic Reasoning: The reasoning is dynamically performed based on what part of the

information (case component) included in the cases is given more importance for making

inferences and hence producing an appropriate solution scheme. Several adaptation

schemes and similarity metrics can be dynamically chosen based on what was more

successful in the past for similar situations. A specific example for diagnosis of fleet

vehicles is described in the next section.

86

REVISE

Is
new case very
similar to old

cases?

Retrieved
Cases

Dynamic Case Base

Updated
Dynamic Cases

Fine-tuned Solution

Update
Cases

Ranking
Methods
Ranking
Methods

Similarity
Metrics

Similarity
Metrics

Similarity
Aggregation

Ranked
Cases
Ranked
Cases

Adaptation
Schemes

Adaptation
Schemes

Revised Solution

Confirmed Solution

REUSE

R
ET

AI
N

RETRIEVE

REUSE

Proposed Solution

Update

Replace
Updated Cases

Add New Case

New Case

Periodic
Maintenance

Yes

No

Dynamic CBR Architecture
1 Dynamic Case Base
2 Dynamic Case
3 Dynamic Adaptation

22

33

11

Adapted
Solution

Figure 4.4 High level schematic of Dynamic Case Based Reasoning highlighting its dynamic components.

87

4.5 DCBR Application to Fleet Vehicles

An integrated architecture has been developed for CBM of fleet vehicles using the above

mentioned DCBR concepts [34]. DCBR offers a good promise for diagnostic and

decision support systems by emulating the human reasoning process one step further. It

narrows down the problem search space by dividing the diagnosis tasks into smaller

steps. In most cases, industry uses a two-step procedure. First, the operators suspect the

problem by observing unusual symptoms or the error logs from the system. Maintenance

experts try to come up with possible explanations for those symptoms. Then using known

analytical techniques relevant diagnostic tests are run to confirm the problem. After a

problem has been diagnosed correctly experts use their experience to plan and execute

the repair task. Our diagnostic system follows a similar approach. It refines an

asynchronous stream of symptom and repair actions along with sensor information into a

compound case structure to organize the relevant information into the case memory, as

shown in the schematic in Figure 4.5.

88

Initial Diagnosis

System

Prognostic
modules

RUL

Maintenance
Logistics

Sensors
Feature

Extraction
Diagnosis

Module

Failure
Assessment

+
Explanation

Final Diagnosis

Assessment
Evaluation

Assessment
Revision

S
el

ec
t

Se
ns

or
s

S
el

ec
t

Fe
at

ur
es

S
el

ec
t

D
ia

gn
os

tic

M
od

ul
es

Knowledge
Base

CBR
Engine

Feedback

Update
Statistic

Information
Extraction

Observations
(Textual Data)

Initial Diagnosis

System

Prognostic
modules

RUL

Maintenance
Logistics

Prognostic
modules

Prognostic
modules

RUL

Maintenance
Logistics

RULRULRUL

Maintenance
Logistics

Maintenance
Logistics

Sensors
Feature

Extraction
Diagnosis

Module

Failure
Assessment

+
Explanation

Final DiagnosisSensors
Feature

Extraction
Diagnosis

Module

Failure
Assessment

+
Explanation

Final Diagnosis

Assessment
Evaluation

Assessment
Revision

Assessment
Evaluation

Assessment
Revision

S
el

ec
t

Se
ns

or
s

S
el

ec
t

Fe
at

ur
es

S
el

ec
t

D
ia

gn
os

tic

M
od

ul
es

S
el

ec
t

Se
ns

or
s

S
el

ec
t

Fe
at

ur
es

S
el

ec
t

D
ia

gn
os

tic

M
od

ul
es

Knowledge
Base

CBR
Engine

Knowledge
Base

CBR
Engine

Feedback

Update
Statistic

Feedback

Update
Statistic

Information
Extraction

Observations
(Textual Data)

Information
Extraction

Observations
(Textual Data)

Figure 4.5 Integrated reasoning architecture for fault diagnosis in industrial environments.

Qualitative information (textual descriptions) is used as the initial query. These

descriptions are converted into semantic networks (see Chapter 5), which preserve the

meaning of the text and at the same time convert the text into a defined structure for

easier analysis [43]. The case-base is searched based on these semantic networks and

relevant hypotheses are generated. These hypotheses are ranked based on past experience

and the most probable hypothesis is tested first by automatically activating the relevant

data acquisition and diagnostic modules. If the hypothesis is confirmed to be true its

solution is suggested for the current situation and its success rate is updated. Otherwise

the next probable hypothesis is tested and the corresponding success rates are updated.

The procedure is repeated until a useful solution is obtained or a new case is generated

and stored in the case base. For new cases approximate solutions are suggested based on

89

closest matching cases. They are further revised based on feedbacks until a satisfactory

solution has been found.

4.5.1 The Dynamic Case

A list of all the sensors employed in the system and their target components is usually

available from the manufacturers or the operators and is acquired under the process of

knowledge acquisition. Similarly a list of diagnostic features from the sensor data to

diagnose known fault modes can be compiled. Relative importance of features and their

underlying philosophy can also be included in such a list. The relative importance of

features may not always be available, especially in the case of new situations. In such

situations these weights are learnt using the corresponding success/failure rates.

Knowledge of this kind can be added to the list as it is generated in due course. All this

information can be organized into a dynamic case structure as shown in Figure 4.6. This

case structure is dynamic by virtue of two attributes:

- Case components are loaded step by step as the hypotheses are generated.

Therefore, there is no fixed case structure with a fixed set of attribute-value pairs.

- Case components can have multiple values ranked with the corresponding weights

unlike one-to-one attribute value pairs in conventional cases.

90

Case Structure
.ID Case_ID

.Component Component_Name

.Location Component_Location

.Symptom S_ID Symptom Weight Sementic_net Hypotheses
1 s1 Ws1 SemNet1 h1, h2
2 s2 Ws2 SemNet2 h1
3 s3 Ws3 SemNet3 h2

.Hypothesis H_ID Hypothesis Weight Diagnosis
1 h1 Wh1 d1
2 h2 Wh2 d2, d3

.Diagnosis D_ID (Sensor,Feature) pairs Weight Solution
1 d1:{(S1,F1),(S1,F2)} Wd1 r1
2 d2:{(S1,F2),(S1,F3)} Wd2 r2
3 d3:{(S5,F1)} Wd3 r3

.Repair R_ID Repair Weight
1 r1 Wr1
2 r2 Wr2
3 r3 Wr3

.Version Last_Update Case_Quality Success Failure Condition
mm:dd:yy W nS nF C1,C2,C3

Figure 4.6 Generic dynamic case structure. Symptoms are stored as semantic networks.

Figure 4.7 shows a graphical version of the dynamic case. The static component consists

of relational entities that are used to retrieve matching cases. The dynamic component of

the case is connection weights that keep changing with time. These weights help

accumulate evidence for incoming node from the outgoing nodes. These cases are hybrid

cases as they can contain different types of components such as semantic nets, numerical

data, text data, and Meta data such as ranking weights. Primary case indexes are CaseID,

Component and Component Location.

91

Static Case ComponentStatic Case Component

Dynamic Case ComponentDynamic Case Component

Case(i)Case(i)

Hypothesis_2_1 Hypothesis_2_2 Hypothesis_2_mHypothesis_2_1 Hypothesis_2_2 Hypothesis_2_m

wt wt wtwtwt wtwt wtwt

Appropriate sensor data
and diagnostic routines

accessed from the system

Appropriate sensor data
and diagnostic routines

accessed from the system

S_i, F_kS_1, F_1

+

wt wt wt

Diagnosis_k

S_2, F_3 S_i, F_kS_i, F_kS_1, F_1S_1, F_1

++

wtwt wtwt wtwt

Diagnosis_kDiagnosis_k

S_2, F_3S_2, F_3

Condition

Wind_SpeedWind_Speed

Load (%)Load (%)

Last_UpdateLast_UpdateQuality

n_Failuren_Failure

n_Successn_Success

VersionVersion

IDID

HAS
HAS

Symptom_n

HAS

Symptom_2

Symptom_1

HASHAS
HASHAS

Symptom_n

HASHAS

Symptom_2

Symptom_1

Repair_3Repair_2Repair_1 Repair_iRepair_4

wtwt wt

Repair_3Repair_3Repair_2Repair_2Repair_1Repair_1 Repair_iRepair_iRepair_4Repair_4

wtwtwtwt wtwt

IDID

Component

Location

Diagnosis_kDiagnosis_3Diagnosis_2Diagnosis_1

wt wt

Diagnosis_kDiagnosis_kDiagnosis_3Diagnosis_3Diagnosis_2Diagnosis_2Diagnosis_1Diagnosis_1

wtwt wtwt

HASHAS

HASHAS

HASHAS HASHAS

HASHAS

HASHAS

HASHAS HASHAS

Figure 4.7 Components of a dynamic case expressed as relations and weighted connections.

92

p
.ID B10
.Component Bearing
.Location Main_Transmission
.Symptom S_ID Symptom Wt Sementic_net Hypotheses

1 Noisy in neutral
with engine running

0.57 SemNet1 h1, h2, h3
2 Vibration 0.43 SemNet2 h1, h2, h4

.Hypothesis H_ID Hypothesis Wt Diagnosis
1 Primary Gear worn 0.65 d1
2 Primary Bearing worn 0.15 d2, d4
3 Clutch Release Bearing worn 0.10 d3, d4
4 Lack of oil 0.10 d5

.Diagnosis D_ID (Sensor,Feature) pairs Wt Solution
1 d1:{(S3,F1),(S3,F4)} 0.75 r1, r3
2 d2:{(S1,F15),(S1,F8)} 0.80 r2, r3
3 d3:{(S2,F15),(S2,F8)} 0.80 r3
4 d3:{(S1,F13),(S4,F13)} 0.6 r3

.Repair R_ID Repair Wt
1 Change Primary Gear 0.25
2 Change Primary Bearing 0.25
3 Replenish oil 0.25
4 Change Clutch Release Bearing 0.25

.Version Last_Update Case_Quality Succ Fail Conditions
03:16:05 0.8 8 2 Full Load Windy

Figure 4.8 Example case from automobiles domain.

Figure 4.8 shows an example case from the dataset being used in this study. Based on the

query-semantic-network, relevant cases matching these primary indexes are retrieved and

a set of possible hypotheses is generated. Since each symptom may be associated with

multiple hypotheses, a list of hypotheses is generated at the initial diagnosis step. Two

approaches can be taken at this point to prioritize hypothesis testing. Diagnosis can either

be performed based on a set-covering algorithm to find a solution that explains most of

the hypotheses [44] or different hypotheses can be tested one by one in order of

decreasing success rates. The important point to note here is that, although a generic case

structure is used, most of the actual contents are dynamically loaded depending on the

situation at hand.

93

4.5.2 The Other Two Dynamic Components

The other two dynamic components suggested in the DCBR scheme are:

- Dynamic Case Base: Dynamic case base has been conceptualized as an intelligent

knowledgebase with five attributes of intelligence. A detailed discussion on this

knowledgebase is presented in Chapter 6. This knowledgebase keeps evolving

with time and hence whenever it is referenced as a case library, results also

change with time making the whole reasoning process dynamic.

- Dynamic Adaptation: Similarity metrics, similarity ranking methods and

adaptation schemes all can be chosen from the knowledgebase dynamically. To

limit the scope of this thesis, this issue has not been addressed in detail but some

ideas for future work are proposed in Chapter 7. However, a suitable similarity

metric has been developed for the semantic net matching for the textual data and a

detailed discussion is included in Chapter 5.

4.6 Evaluating DCBR Performance

In the DCBR framework presented in this thesis, the matching activity mainly takes place

at the triad level. Once the matching triads are retrieved, only those hypotheses are

fetched that are connected to these triads through significant weights. Therefore, the issue

of performance, in retrieving relevant cases, arises from the triad level. We covered this

issue in the ILP performance evaluation section in the next chapter.

94

The DCBR framework searches for solutions in a reduced search space. Unlike

conventional CBR, where search is carried out by matching several case attributes,

DCBR performs a contextual matching by matching the symptoms (triads) directly.

Therefore, the DCBR performance can be measured by keeping two factors in mind; total

solution search time and the quality of the solutions generated.

If a conventional CBR system is available for comparison, the time needed in searching

for a “useful” solution can be compared with the corresponding time taken by a DCBR

system. In the first case, the total time will comprise of time taken in matching the

attributes against all cases present in the case base, retrieving the relevant cases and

ranking them to suggest a course of action. For DCBR, the total time comprises of time

taken to match and retrieve relevant triads and prepare a list of connected hypotheses.

Further, the effectiveness of the solution can be measured by the success rate of the

suggested solutions. It should consider two factors; one, the success rate of the solution

suggested as the top candidate and two, the overall success if a successful solution is

found at all after trying various options one by one in the order of preference.

4.7 Conclusions

In this chapter we have developed the concept of dynamic case-based reasoning. Pointing

out shortcomings of the conventional CBR systems, three possible improvements have

been suggested to build a DCBR based process model. With the help of an example from

the automotive maintenance domain some of these concepts have been instantiated for

better understanding. Lastly, few notions for the performance evaluation of the DCBR

system have been suggested.

95

Chapter 5

Industrial Language Processing

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

96

5.1 Chapter Overview

This chapter discusses one of the major contributions of this thesis, namely the Industrial

Language Processing (ILP) technique. First, other relevant techniques have been

discussed with their limitations to motivate the development of ILP. Then, the ILP

technique has been explained in detail followed by the corresponding similarity

calculation methods for matching and retrieval purposes. The chapter concludes with

some results on the effectiveness of this technique on the automotive data and the

centrifuge data followed by an analytical discussion on the results.

Contribution: Industrial Language Processing technique to integrate textual information

with numerical information in the DCBR framework and maintenance knowledgebase.

5.2 Motivation

A large amount of machine condition information is obtained in terms of operator

observations expressed as textual descriptions, which are rarely used in automation of the

health maintenance process. These symptoms carry important information about the

system, which may not always be evident from sensory measurements. An important

aspect of the proposed architecture is to take advantage of the information embedded in

descriptive data while making diagnostic decisions. In most cases operator observations

of fault symptoms are the first indicators of the system malfunction. These observations

are conveyed or documented as fault descriptions and observed symptoms. To automate

the decision making based on these symptoms, the maintenance system should be capable

of processing these descriptions in a coherent and unambiguous fashion. At the same time

97

it is desirable to keep the computation time to a minimum without losing much

information that is embedded in these descriptions. This requires a text processing

methodology that is capable of carrying out these tasks.

This Chapter presents an Industrial Language Processing methodology that can be

adapted for any industrial environment if the following two assumptions are satisfied:

1) Use of pre-defined standardized language to express these observations.

2) Availability of expert evaluation during the initial phase of rule generation.

Keeping these requirements in mind, this methodology can be adapted to meet a desired

level of accuracy and computational overhead. The processed data is then stored in the

maintenance knowledgebase for later reuse.

5.3 Current State-of-the-Art

Several Information Retrieval (IR) methods have been used for textual data, which

primarily depend on the statistical account of occurrence of words and do not consider

the semantic relationships between them. This results in several problems like meaning

ambiguity and paraphrase expressions (different expressions for the same meaning). An

alternative approach of n-gram matching [45] has been used to retrieve relevant

documents, but this approach also does not permit any integration of additional

knowledge like domain specific thesauri or glossaries. The use of Textual CBR (TCBR)

has been proposed in [46] to explicitly allow the integration of semantic knowledge using

some Natural Language Processing (NLP) and to establish an indexing vocabulary.

98

Careful analysis of the domain is carried out to devise similarity measures that extend

beyond statistical term weighting. NLP techniques like parts-of-speech tagging are used

to tag the words in the texts and extract the basic linguistic structures. TCBR is typically

built for specific domains to address the ambiguity problem. In another attempt, a feature

vector is used to index text documents and two approaches have been proposed to reduce

its size; feature selection with boosting and feature generalization with association rules

[41]. Feature selection helps in identifying discriminatory features while the feature

generalization captures semantic relationships. But this method still does not express a

semantic relationship explicitly. Use of graphs-based methods for TCBR has been

described in [47]. Graphs offer several advantages over conventional feature vector based

methods. They can create rich representations of descriptions. The structure and word

order can be retained to capture relationships between two elements and any number of

elements can be added or deleted at will. So far, the TCBR has been mainly considered as

a tool for an independent domain of books, web documents, reports, documentations and

manuals, etc. Elaborate methods have been developed which try to accommodate the

complex structure and enormity of the language vocabulary and grammar [48].

In this research we identified that with the increased usage of standardized languages in

industrial domains, one does not need such extensive text processing methods and a

simpler technique customized to the maintenance process would be more appropriate

instead. This led to the development of the ILP technique, the details of which are

included in the following sections.

99

5.4 The Concept of Standardized Language

Unlike traditional practices, the use of standardized or controlled language is being

promoted in industrial environments for improved efficiency, accuracy, and data

interoperability [41, 49]. The objective of a standardized language is to improve the

consistency, readability, translatability, and retrievability of information [50].

Considering the industry initiative to standardize communication protocols and use of a

simplified language, an explicit advantage can be derived that can help reduce the

complexity in processing the textual data. A structured syntax and a fixed domain

vocabulary reduce the task of NLP significantly and offer several advantages over using

non-standardized language in industrial environments. This not only helps reduce

communication errors by avoiding ambiguities but also simplifies electronic textual data

management and technology transfer between manufacturers, users, and maintainers.

5.4.1 Standardized Languages in Industrial Domain

Using a domain-limited vocabulary and a well-defined documentation format makes

technical language globally interpretable and reduces multicultural linguistic barriers. For

instance, formal communication within the aviation maintenance domain is defined and

regulated [14]. A hierarchy of written correspondence is defined in the Federal Aviation

Regulations (FARs), which includes airworthiness directives (ADs), notices to airmen

(NOTAMs), maintenance manuals, work cards, and other types of information, that are

routinely passed among manufacturers, regulators, and maintenance organizations. The

international aviation maintenance community has adopted a restricted and highly

structured subset of the English language, namely ATA-100 and AECMA Simplified

100

English, to improve communication [49]. For instance, AECMA Simplified English

limits the length of instructional sentences to no more than 20 words. It forbids the

omission of articles in noun phrases, and requires that sequential steps be expressed in

separate sentences.

Similar to the aviation industry, the importance of standardized technical documentation

is gaining importance in the manufacturing and automotive industries. Efforts are being

made to enhance the ability to update support documents during the life cycle of a system

as it is maintained, modified, or resold, to form a valuable archive of knowledge

concerning safe and reliable operation of the system. By now, hundreds of companies

have turned to standardized languages as a means of improving readability or facilitating

translation to other languages. Originally the Caterpillar Tractor Company (USA) created

the Caterpillar Fundamental English (CFE) in the 1960s. Perhaps the best known recent

controlled language is AECMA Simplified English [51], which is unique in that it has

been adopted by the entire aerospace industry. The standard was developed to facilitate

the use of maintenance manuals by non-native speakers of English. Aerospace

manufacturers are required to write aircraft maintenance documentation in Simplified

English. Some other well-known standardized languages are Smart's Plain English

Program (PEP), White's International Language for Serving and Maintenance (ILSAM),

Perkins Approved Clear English (PACE), and COGRAM. (See [52], which refers to

some of these systems). Many standardized languages are considered proprietary by the

companies that developed them. However, these languages are now converging to a

common set through various standards. For example, ASD-STE100 (ASD Simplified

101

Technical English) has been prepared in accordance with Aerospace and Defense

Industries Association of Europe (ASD) [53].

5.4.2 Description of Standardized Language for CBM

As mentioned in the preceding section, several industrial standardized languages have

been developed. Different industries have adopted different standards based on their

specific requirements of task and usage domain. For instance, standards required for

maintenance in the aviation industry may not be the same as standards required for

process automation in an automobile assembly plant. Therefore, these standards define

translation rules at an abstract level and the exact instantiation of these rules are

conveniently left to the specific usage. Keeping these rules in mind, a specific format of

symptom descriptions was adopted for this research. The same format was applied to

both automobile and centrifuge cases to obtain reasonable results as described next.

The Standard Language Template: After studying a large number of fault descriptions,

four main constituent phrases were identified in a typical symptom. These phrases are

connected by propositions or connecting words. For the purpose of standardization these

phrases were ordered in a specific manner as shown in Table 5.1.

For a fault symptom to be descriptive enough it should contain at least the component and

the condition phrases. The other two phrases are optional because they either add more

detail or help in localizing the fault if there is ambiguity between several similar

components in different locations. For this research we manually translated the original

symptoms into this standard template. In actual industrial practice, owing to the large size

102

of datasets, automatic translators are used that parse natural language sentences and re-

order them in the template format.

Table 5.1 The standard language template for CBM of automotive and centrifuge cases.

Constituent
Phrase Component Location Condition Operating

Mode

Required Y N Y N

Example 1 engine does no start when gear is neutral

Example 2 lubricant in transmission is leaking

Since this translation was carried out manually, parsing was still required in the next step

of Information Retrieval; otherwise the terms in these descriptions can be tagged at the

same time to avoid parsing at a later stage. Some of the results of these translations are

shown in Table 5.2.

It can be noticed that in many cases a standardized language sentence may not be

grammatically correct but it is able to convey the same meaning, as in the original

sentence, without any ambiguity.

103

Table 5.2 Examples to show standardized language translation of symptoms from automotive and
centrifuge cases.

Original Symptom Symptom in Standardized Language

Examples from automotive case: component - transmission

Transmission will not downshift (kickdown)
with accelerator fully depressed

Transmission | | does | no downshift | when |
accelerator fully depressed

Transmission noisy in neutral with engine
running

Transmission | | is | noisy in neutral | when | engine is
running

Transmission does not drive in forward or
reverse gear

Transmission | | has | no drive | if | gear is forward

Transmission | | has | no drive | if | gear is reverse

Transmission lubricant leaked Lubricant | in | transmission | is | leaking | |

Transmission slipped Transmission | | slips | |

Problems in gear selection Transmission | | has | problems in gear selection | |

Examples from centrifuge case

Oil leaking from shaft seal ring behind main
bearing on drive end

Shaft seal ring | behind | main bearing on drive end |
has | oil leak | |

Movement in small flat belt pulley on rotating
assembly Small flat belt pulley | on | rotating assembly | moves | |

Liquid side bowl has high pitch whine Bowl | on | liquid side | has | high pitch whine | |

Loud noise from main motor drive Drive | on | main motor | has | loud noise | |

5.5 Meaning Ambiguity Reduction

As mentioned earlier, natural language processing suffers from two inherent problems,

namely the meaning ambiguity and paraphrase expressions (different expressions for the

same meaning). Use of a domain-limited vocabulary reduces these problems to a large

extent. Use of textual case-based reasoning (TCBR) has been suggested to address these

104

problems since it is typically built for specific domains [46]. Explicit use of a thesaurus

can replace all synonyms to a preferred word before matching two expressions (Figure

5.1). This reduces the problems due to paraphrase expressions.

Black fumes observed
from rear panel

Smoke observed from
rear panel

Black smoke observed
from rear panel

Smoke observed from
rear panel

Thesaurus

Smoke: noun
Smoke
Fume

Figure 5.1 An illustration of resolving the paraphrase problem.

Further to resolve the ambiguity issue, a reduced domain vocabulary can be established to

fix the meaning of ambiguous words. For example, in mechanical domain, bearing is a

component, i.e., a noun and not the present participle of the verb to bear. Therefore,

while words like bearing in the industrial text are not expected to be used for their other

meanings, they will be interpreted only for their fixed domain specific meanings even if

they are used otherwise.

5.6 Information Extraction (IE)

To process a natural language sentence, the tokens of the language must be first isolated

and identified. For NLP, lexical processing operates at the single word level and involves

identifying words and determining their grammatical classes or parts-of-speech before a

higher level language analysis can take place [54]. A shallow-NLP technique, which tags

each word with its probable class such as a noun, verb, etc., and identifies the

105

corresponding word stem, has been suggested in [46]. This method is both efficient and

robust as compared to other complex NLP techniques. Our IE technique follows a similar

approach and is presented next.

5.6.1 Parsing Fault Symptoms

A PC based demo version of TreeTagger tool [55], developed at the Institute of Natural

Language Processing (IMS) at Stuttgart University, has been used. As compared to other

commercial programs, this version had some limitations that were, nevertheless, not

considered critical for the goal of this research. This version did not allow modifications

in the associated dictionary that could have been useful in reshaping this dictionary to suit

industrial domain and reduce ambiguity. For instance, words like gear and bearing can

be annotated with ‘noun’ referring to mechanical components only, thereby removing the

annotation ‘verb’ altogether. Furthermore, we could not add new words to include

domain specific technical vocabulary. The complete version also provides the

probabilities associated with a word, if there are more than one possibility for the

corresponding tag. This capability was also not available in the demo version, which

could have been helpful in ambiguity reduction. However, an explicit effort to achieve

these tasks was out of the scope of this thesis.

The output of the TreeTagger program is three columns, the first one containing the

original word as it appears in the sentence, the second one contains the tag abbreviation

(e.g., NNP for proper noun, VB for verb, etc.), and the last column contains the stem of

the word (e.g., 'run' for 'running' and 'be' for 'have'). Figure 5.2 shows a snapshot of the

output file from TreeTagger.

106

Figure 5.2 TreeTagger output.

5.6.2 Data Sanitization

After all words are tagged, a set of syntactic rules are employed to extract relationships

between different words in the sentence and discard redundant words. In all, three types

of rules were employed.

Rule Set I - The first set of rules is more of a preprocessing step that combines multiple

words, if they together define one object or a single situation. For instance, two

consecutive nouns are combined because they, most likely, describe a single object.

E.g., Transmission fluid has burnt smell Transmission_fluid has burnt smell

Here, the words transmission and fluid are combined to represent transmission fluid. This

helps in distinguishing between different situations involving transmission, transmission

fluid and break fluid which are different contexts involving the same words. However,

this method does not entirely disregard the partial similarity between such situations. This

partial similarity does provide some information about the location of the fault and may

107

be useful in providing an alternative hypothesis if the best matching hypothesis has been

confirmed negative. Negations like no or not are combined with the corresponding verbs.

E.g., Engine does not start Engine does not_start

This takes care of negation, which is extremely important for a CBR system [56]. For

instance, here the word start would not perfectly match to not_start appearing in a

different situation.

Rule Set II - The second set of rules links different words based on their parts-of-speech

category and word order.

E.g., Transmission will not downshift with accelerator fully depressed.

In this sentence, at the first level downshift should be associated with transmission and

depressed with accelerator. And these two pairs should be further linked with each other

at the next level in the manner (transmission will not downshift) – when – (accelerator is

fully depressed).

Rule Set III - The third set of rules involves sentences containing conjunctions (and, or,

/). It creates multiple associations of an object to accommodate all descriptions connected

via these conjunctions.

E.g., Horn inoperative or unsatisfactory in operation (Horn is inoperative), (Horn is

unsatisfactory in operation)

Here, the same object horn is associated to two different conditions and a match to any of

these two is likely to involve similar or related diagnosis. Although in some standardized

108

languages use of conjunctions is not allowed, this rule was still added to suit the available

data set.

5.7 Data Representation

After the information extraction process, it is important to represent this information in a

suitable format without losing the meaning of the text, which allows easy and fast

similarity calculation. Semantic networks were selected for textual data representation in

this research. This is a graph-based technique that organizes all the words in a sentence in

a tree like structure which has some special properties to retain word order or the

meaning of the text. The syntactic rules, described above, divide a sentence into smaller

segments that independently define a relevant concept. It was found that three basic

relations could be defined that explained most of the relationships between the kinds of

concepts commonly occurring in this type of data. These relations are shown in Table

5.3.

Table 5.3 Three conceptual relations capture most scenarios in industrial descriptions of failures.

A--IN--B → A in_condition B or A when B
Here A is typically a noun or a triad and B is mostly a triad
e.g. Transmission fluid has burnt smell translates into
(Transmission_fluid) --IN-- (smell --IS-- burn)

A--IS--B → A has_property B or A is_type B
Here A is typically a noun or a triad and B is an adjective
e.g. Transmission fluid has burnt smell translates into
(Transmission_fluid) --IN-- (smell --IS-- burn)

A--AT--B → A in_state B or A exhibits_state B
Here A is typically a noun or a triad and B is a verb
e.g. Transmission slips translates into
(Transmission) --AT-- (slip)

109

These concepts can be represented by a data structure called a triad. A triad τ is a three-

tuple consisting of two phrases p1, p2 and a relationship r between them (Figure 5.3).

P1 P2

 r

Figure 5.3 A triad consists of two phrases (p1 and p2) and a relation (r).

A phrase can be a noun, adjective, verb or a triad itself. The set of relations, R, is a finite

set of three relations as described above. These triads can be combined to create the

corresponding semantic networks (Figure 5.4).

SLIPTRANSMISSION

AT

Transmission slips

Type-I triad

NO DRIVETRANSMISSION

AT

REVERSE GEAR

IS

IN

Transmission has no drive in reverse gear

Type-II triad

Figure 5.4 A semantic network (type-II triad) consists of one or more type-I triads.

110

Two types of triads were defined. Both phrases in a Type-I triads are single words and do

not involve triads. Type-II triads on the other hand may consist of one or more Type-I

triads. This makes the semantic networks a binary tree with words occurring only at the

leaves and the rest of the nodes as relations. To improve uniformity across different usage

of the same words, only word stems are used in forming the triads.

5.8 Similarity Calculations

Similarity calculation plays a key role in defining the quality of retrieval of matching

cases and hence the quality of solution suggested by the expert system. In the following

section some general notions of similarity applicable in the CBR domain have been

presented followed by the similarity measure defined for the triad structure.

Traditionally, similarity metrics have been described based on the objective notions of

similarity and distance. Definition of a similarity metric depends on the structure of cases

and in many cases multiple metrics may be defined to cover different aspects. A list of

commonly used similarity metrics has been included in Appendix C. This list can be used

as a general template to generate customized metrics. Once appropriate similarity metrics

have been chosen, they must be composed to form a composite similarity measure. A

composite similarity measure can be defined as:

)),(,)),,((
])...,,,[],,...,,([),(

2122111

222211121121

nnn

nn

aasimaasimsim
aaaaaasimaasim

Kφ=
=

 (5.1)

where, the function ℜ→ℜ n:φ combines feature similarity functions ℜ→× iii WWsim :

as shown above.

111

The most common composition function is the weighted average of feature similarities.

This average can be algebraic or geometric as shown in Table 5.4.

Table 5.4 Most commonly used similarity composition functions.

Expression Similarity Function

n

simg
sim

n

i ii∑=
⋅

= 1 Algebraic weighted composite similarity

n

simg
sim

n

i ii∑=
⋅

= 1
2

 Geometric weighted composite similarity

5.8.1 Similarity Concept for Triad Structure

For the purpose of retrieving the matching cases a similarity metric needs to be

established between the query case (or target case) and the source cases in the case-base.

There are three matching strategies: nearest neighbor, inductive or knowledge guided,

and a combination of them [57]. In the nearest neighbor approach, a case is selected

based on the degree of match for every feature of the input case with the features of the

retrieved case. This can be tedious for large case bases. On the other hand, only a few key

features are assessed in the inductive approach. Therefore, a hybrid of the nearest

neighbor and inductive approaches is both precise and fast [6]. This research uses

semantic networks to retrieve the cases from the case-base. Similarity assessment is done

based on matching the triads constituting these semantic networks. First the lowest level

of triads is matched.

112

Example: the input semantic net: (Transmission—IS—Noisy)—IN—(Gear—IS—

Neutral) consists of three triads:

τ1: (Transmission—IS—Noisy)

τ2: (Gear—IS—Neutral)

τ3: (τ1—IN— τ2)

All semantic nets that contain similar type-I triads (e.g., τ1 or τ2 in this case) or the same

terminal words will be retrieved first. Similarity of triads is computed based on how

closely the three constituents match.

With the semantic net (Transmission—AT—No_Drive)—IN—(Gear—IS—Neutral) the

above query semantic net will be matched in a manner as shown in Table 5.5.

Table 5.5 Similarity calculation for triads-based semantic networks.

τ INPUT Query RETRIEVED Case SimVal

τ1 (Transmission—IS—Noisy) (Transmission—AT—No_Drive) (1*0.5 + 0*0.2 + 0*0.3) = 0.5

τ2 (Gear—IS—Neutral) (Gear—IS—Neutral) (1*0.5 + 1*0.2 + 1*0.3) = 1

τ3
(Transmission—IS—Noisy)—
IN—(Gear—IS—Neutral)

(Transmission—AT—
No_Drive)—IN—(Gear—IS—
Neutral)

(0.5*0.4 + 1*0.2 + 1*0.4) =
0.8

For triads with links AT or IS the weights associated with p1, p2 and r are 0.5, 0.3, 0.2

respectively acknowledging the fact that component (p1) matching is more important than

its exact condition as far as localizing the fault is concerned. Fault identification may

113

require more accurate condition matching but here the emphasis is on fault localization

and identification, is left to further diagnosis using dedicated diagnostic algorithms. For

triads containing links IN the weights associated with p1, p2 and r are 0.4, 0.4, and 0.2

respectively as both p1 and p2 convey equally important information here. These weights

can be assigned through expert experience or learned from the data. Several approaches

have been implemented for feature-weighting algorithms that can be used to learn these

weights [4, 5].

Even though similarity calculation is a subgraph isomorphism problem in graph theory,

that is NP-complete [58], a smaller size of semantic networks from standardized language

makes this problem insignificant to a large extent. The effectiveness of this approach has

been shown in the next section with the help of a dataset acquired from the automotive

troubleshooting domain.

5.9 Case Studies

5.9.1 Automotive Maintenance

For the purpose of evaluation of this technique, a simple data set was acquired from an

automotive troubleshooting database, which lists several symptoms and their possible

diagnoses and repairs [59]. Very short descriptions have been listed using common

vehicle terminology as a car mechanic would use. As mentioned earlier, these

descriptions were manually translated to standardized language. For example, all

sentences were converted to active voice. Use of conjunctions and determiners was

maximally reduced. Very long and complex sentences were broken into smaller ones.

114

Since a domain-limited customized vocabulary could not be incorporated in TreeTagger,

the use of ambiguous words was reduced. Our data size being fairly small these

modifications were carried out manually. But it is expected that with the promotion of

usage of standardized language this step may not be required and in the absence of use of

standardized language customized translators may be used. Some typical descriptions

were processed by our programs. The pictorials of these semantic networks are shown in

Figure 5.5 and the corresponding semantic networks are included in Figure 5.6.

any_gear

engine not_start

IN

AT

park
engine start

INAT

gear other

IS

IN

transmission
shift_roughly

AT

problem

transmission
not_downshift

AT

accelerator
fully_depress

AT

IN

engine run

AT

transmission noisy

AT

gear_selection

IS

neutral

IN

IN

Transmission

IN

any_gear

engine not_start

IN

AT

park
engine start

INAT

gear other

IS

IN

transmission
shift_roughly

AT

problem

transmission
not_downshift

AT

accelerator
fully_depress

AT

IN

engine run

AT

transmission noisy

AT

gear_selection

IS

neutral

IN

IN

Transmission

IN

Figure 5.5 Semantic net pictorials of symptoms from automotive data.

5.9.2 Sludge Dewatering Centrifuge

The rule set developed using the automotive data was also applied to the centrifuge data

and reasonable results were obtained as shown in Figure 5.7 and Figure 5.8.

115

engine does not start in any gear
sNet(1) = ((engine -<AT>- not_start) -<IN>- any_gear)

engine started in gear other than Park
sNet(2) = (((engine -<AT>- start) -<IN>- ((gear -<IS>- other) -<IN>- park)

transmission shifted roughly
sNet(3) = (transmission -<AT>- shift_roughly)

transmission has problems in gear selection
sNet(4) = (transmission -<IN>-(problem -<IN>- gear_selection))

transmission does not downshift when accelerator is fully depressed
sNet(5) = ((transmission -<AT>- not_downshift) -<IN>- (accelerator -<AT>- fully_depress))

transmission is noisy in neutral with engine running
sNet(6) = (((transmission -<IS>- noisy) -<IN>- neutral) -<IN>- (engine -<AT>- run))

Figure 5.6 Semantic networks for six different descriptions using the three relations described above.

116

shaft sealing ring behind main bearing on drive end has oil leak
sNet(1) = ((seal_ring -<IN>- (bearing -<IS>- main)) -<IN>- drive_end)

-<IN>- (oil -<AT>- leak)

small flat belt pulley on rotating assembly has movement
sNet(2) = ((flat_belt_pulley -<IN>- movement)-<IN>-(assembly -<AT>-

rotate))

decanter has oil leak
sNet(3) = (decanter -<IN>- (oil -<AT>- leak))

bowl on liquidside has high pitch whine
sNet(4) = (liquidside_bowl -<IN>- (whine_pitch -<IS>- high))

main motor drive has loud noise
sNet(5) = ((motor_drive -<IS>- main) -<IN>- (noise -<IS>- loud))

Figure 5.7 Semantic networks for some descriptions from centrifuge data.

bearing

AT

oil leak

Seal_ring

main

Drive_end

IS

IN

IN

IN

movement
flat_belt_pulley

assembly rotate

ATIN

IN

AT

oil

decanter

leak

IN

liquidside_bowl

whine_pitch high

IN

IS

noiseMotor_drive main

IN

IS

loud

IS

Figure 5.8 Semantic net pictorials of symptoms from centrifuge data.

117

5.9.3 Discussion

As shown above, the new ILP technique can process short text descriptions quite

effectively as long as these descriptions are in a standardized language. For this research

we used a set of 15-20 rules for information extraction. This resulted in a reasonable

performance in the sense that most of the symptoms were processed satisfactorily when

evaluated manually. It was realized that combining the noun words may not always be

the best idea as they result in new nouns and a perfect matching will not be achieved

when the original nouns are encountered. This issue can be resolved by introducing

another relation to combine such words into a triad. However, to limit the scope of ILP

development this was not carried out. Moreover, in more than 90% of the cases the

current form of ILP satisfied most requirements.

5.10 Evaluating ILP Performance

Usually, the main issue related to any text processing methodology is the trade-off

between its computational time and fidelity of information extraction. A high fidelity

information extraction (IE) algorithm increases the computational burden. Therefore, the

level of detail must be decided in advance, which in turn determines the number of IE

rules that are applied. More rules can handle a wider variety of sentence structures but at

the same time increase the processing time whenever a symptom arrives. In our case,

however, we take advantage of two unique characteristics that occur in the problem

domain and make these issues less critical. One, the symptoms are expressed in

standardized language that makes them short and fairly structured. Thus exponential

complexity arising due to graph structures does not worsen things to a great extent when

118

compared to linear search techniques. Second, most of the processing, in our application,

does not require real-time solution generation and it is acceptable to wait a little longer as

long as a correct solution is generated. Therefore, a greater emphasis is on correctness

(relevance) of the solution rather than speeds provided they do not take longer than

acceptable limits. To evaluate correctness of the generated solutions, the two most widely

used performance criteria are precision and recall. Traditionally, these metrics are

defined as follows:

retrievedcandidatestotal
retrievedcandidatesrelevant

P
#

#
= (5.2)

memoryincandidatesrelevant
retrievedcandidatesrelevant

R
#
#

= (5.3)

The recall metric assumes prior knowledge about the number of relevant candidates in

the memory. This needs a subjective opinion of experts to determine and is often not

available. Furthermore, in the CBM domain the recall metric must be slightly modified

owing to different requirements. In this scenario, it is not required to retrieve several

relevant candidates but just one suffices if it leads to a correct solution. Thus, in the

modified definition, recall is equal to 1 if at least one relevant candidate is retrieved for a

symptom and equal to 0 otherwise. And then to assess the performance over a set of

symptoms the corresponding recall values can be averaged from all symptoms.

The number of candidates, that are retrieved, actually depends on the preset threshold for

similarity values. This threshold must be set with experience. In the initial phase more

options must be retrieved as the system has not yet completely learned the correct

119

weights and is still in the exploration phase. Later this threshold can be stricter to retrieve

only the best candidates and improve the precision. In a typical precision-recall curve, it

is observed that improvement in one results in degradation in another. In CBM domain,

as argued earlier, a high precision is preferred over high recall. A combined metric such

as F-measure can be used using weighted averages as shown below:

+ℜ∈
+×
××+

= α
α
α

α ;
)(

)1(
recallprecision
recallprecisionF (5.4)

F-measure is harmonic mean of recall and precision metrics. These weights can be biased

towards any of these two metrics by modifying the parameter α. A commonly used metric

for CBM type applications is F0.5 measure that weighs precision twice as much as recall.

5.11 Conclusions

With the help of two examples we have shown that short and semi-structured technical

textual descriptions can be abstracted using three simple relations that form the basis for

semantic networks. These structures not only provide means of representing textual

descriptions in a structured manner but also preserve the semantic meaning of the

sentence. These semantic networks are stored in the knowledgebase. For each symptom

linked to a hypothesis, its corresponding triads are also linked to that hypothesis.

Therefore, once a query symptom is presented, hypotheses linked to its constituent triads

are retrieved and help in the initial phase of diagnosis. They form a part of cases in the

DCBR system. This helps in retrieving short text based cases to generate an initial

hypothesis thereby considerably reducing the search space for further diagnosis.

120

Chapter 6

Knowledge Management System

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 3 Knowledge Engineering

Knowledge Acquisition Knowledge
Codification

Experience

Ch. 6 Knowledge Management

I/O Interface Knowledgebase

Structure Learning

Ch 1. Introduction

Condition Based
Maintenance (CBM) of
Engineering Systems

Ch 2. Motivation

Knowledge Based Integrated
CBM Architecture

Ch 5. ILPCh 5. ILP

Representation
Language

Grammar

Knowledge
Model

Concepts

Ch 4. DCBR

Reasoner Vocabulary

Diagnostic
Data

121

6.1 Chapter Overview

In this chapter we discuss the attributes of an intelligent and evolving knowledgebase.

Maintaining the core theme of this thesis to integrate knowledge with CBM, it is

important to describe a maintenance knowledgebase and how its integration offers to

enhance CBM. Although five different attributes have been enumerated, the emphasis has

been on the learning capability of the knowledgebase. With the help of some examples it

has been shown how the learning algorithm can accommodate the changes in the

environment. Apart from the backbone of intelligent knowledgebase, a transparent and

easy to use user interface is required for trustworthy decision support systems. Users

should be able to visually access the processing carried out by the system. Therefore, a

knowledge management system has been developed in the Matlab environment, which

allows users to enter data, access data, and observe data manipulation and learning that

take place in the knowledgebase over time.

Contribution: A knowledge management system with an evolving knowledgebase as

backbone for consolidating CBM knowledge.

6.2 Introduction

The key goal of this research is to develop a knowledgebase for CBM techniques that can

accommodate knowledge in different forms (descriptions, data, algorithms, tests, models,

etc.). A lot of structural, operational, and analytical knowledge has been developed over

the years while these systems were built, tested, and maintained. Typically, components

or subsystems of a large system are studied individually before relevant analytical

122

techniques are developed. Even though these subsystems may be different, several

constituting components share various structural and operational similarities. There is a

need to organize this knowledge in such a manner that it can be easily shared and reused

for similar components of a large system. Rather than re-developing this knowledge,

minor adaptations should be able to save time and effort of the analysts. Thus, an easily

accessible knowledgebase of these techniques must be created. A knowledgebase is a

special kind of database for knowledge management. It facilitates computerized

collection, organization and retrieval of useful information or knowledge.

To achieve an increased level of autonomy it is equally important for a knowledgebase to

show attributes of intelligence. It should be able to adapt according to changing

environments and provide suitable solutions. As compared to a database, a

knowledgebase also has a capability to improve the search results using the attached

semantics to the data it contains. No formal definition of intelligent knowledgebase yet

exists in the literature and different researchers have argued in favor of different

attributes. In the next section we will discuss five attributes that we think are the most

important ones to create an evolving knowledgebase. Some ideas regarding how these

can be incorporated into a CBM knowledgebase have also been presented.

6.3 Attributes of Intelligence in a Knowledgebase

Attributes of intelligence have been debated in the AI domain for a long time where

concepts like autonomy, intelligent agents, reactivity, temporal continuity and goal

directedness take a center stage [60, 61]. With the presence of intelligence, a

knowledgebase is expected to suggest solutions to given problems based on user

123

feedback, and is capable of learning from experience. With the attribute of learning it has

an inherent characteristic of human beings to adapt its behavior to changing environments

and improve its performance [62]. In response to a US Navy’s solicitation for Small

Business Innovative Research (SBIR) on self-evolving maintenance knowledgebase, the

authors proposed four attributes of intelligence, namely; adaptation and learning, self-

organization, conflict detection and resolution, and fault-tolerance in a system called

Case-based Temporal Reasoner (CaTeR) [63]. In another application a CBR database

was created to build a self-evolving maintenance and operations reasoner (SEMOR) [64].

The concept of self evolution in itself has been argued as an attribute of intelligence,

which possibly includes self-evaluation, learning, self-organization and autonomous

behavior [12]. Systems that can monitor their own activities and results to improve their

performance are considered self-evolving and generate a dynamic knowledgebase that

track certain activities to achieve their design goals [65].

From all these references it is clear that there are certain common characteristics that

must be exhibited by a system to show intelligence. For the knowledgebase in this

research we have mainly considered five attributes that will fulfill the overall goal of a

more informed and automated decision support for CBM of engineering systems. These

attributes have been outlined in the following discussion.

6.3.1 Dynamic Structure

The knowledgebase is characterized by semantics attached to the stored data about how

various data are related and provide useful information when brought together in different

orders and combinations. In this research we connect various data entities with weighted

124

associations as depicted in Figure 6.1. Further, a feedback reward is propagated

backwards to reassess these weights.

level i level i+1

wentity
x

entity
y

x,y

ryx

Figure 6.1 A generalized basic unit of the knowledgebase connected with weighted associations and
feedback rewards.

At any point of time more entity levels or more entities within a level can be added. The

initialization of weights varies depending on the type of association between the entity

levels. There are two categories of associations between the various entities.

1) Dynamic Associations (α): the degree of association and appropriateness must be

learned in an evolving environment. Weight initialization may be random or

uniform across all connections. Weights must be learnt from data through some

learning algorithms to emulate experience. Feedback is crucial for this learning.

For instance, associations between triads and hypotheses must be learnt from data.

A triad can be a part of various symptoms and hence may be connected to

multiple hypotheses through different weights. Thus, an association between a

triad and a hypothesis can be a consequence of several symptoms pointing to the

same hypothesis. In some cases weights may be available from experts’

experience and may only be modified or fine-tuned over a period of time. For

example, associations between hypotheses and diagnostic tests must be initially

125

assigned using an expert’s experience. These weights may change with time as

data suggests.

2) Static Associations (β): degree of association is deterministic and is available in

advance. Weights are determined through offline analysis during experimentation

and testing phase and once identified; they are assigned to the system. For

example, evidences from multiple pairs of sensors and features can be fused

through weighted averages. These weights are determined during the initial

analysis when the diagnostic algorithms are being developed. There is no dynamic

learning involved as such; however, these weights may be manually modified

when needed.

In this research we have used various entities like: triads, hypotheses, diagnoses and

repairs. They can be pictorially depicted as in Figure 6.2.

Symptoms are received as external input. These symptoms may be weighted (ω) by the

user to specify which symptom is more prominent or which symptom looks dangerous.

Each symptom is decomposed into its constituent triads. Each triad is connected (α-

association) to a set of hypotheses. All these hypotheses are collected and ranked based

on the total degree of support from the triads, which is calculated using symptom weights

ω and association weights α. For the highest ranked hypothesis a list of diagnostic tests is

collected. The chosen diagnostics is performed using a weighted combination of sensor-

feature pairs. If a diagnosis is successful, the corresponding repair action is suggested.

126

],1[Nn∈

Sn

],1[Mm∈

tm

],1[Pp∈

hp

],1[Ll∈

dl

],1[Xx∈(s)xfy
],1[Yy∈

m,pα p,lα

l,xy
β

nω

Σ
xy

External Input Knowledge Base

Symptom Triad Hypothesis Diagnostics

Sensor, Feature

],1[Kk ∈

R k
l,kα

Repair

System Output

Repair action taken
and feedback is
returned

],1[Nn∈

Sn

],1[Mm∈

tm

],1[Pp∈

hp

],1[Ll∈

dl

],1[Xx∈(s)xfy
],1[Yy∈

m,pα p,lα

l,xy
β

nω

Σ
xy
Σ
xy

External Input Knowledge Base

Symptom Triad Hypothesis Diagnostics

Sensor, Feature

],1[Kk ∈

R k
l,kα

Repair

System Output

Repair action taken
and feedback is
returned

Figure 6.2 Pictorial representation of the dynamic structure of the knowledgebase.

127

In this manner the knowledgebase is capable of containing both structural and operational

data. The knowledge is preserved in the form of associations between these data entities

6.3.2 Self-Evaluation

Self-evaluation is an intermediate task that the knowledgebase performs to support

learning and self-maintenance activities on a continuous basis. Based on the feedback

from the next level, the knowledgebase should keep track of its successes and failures at

each level. This account of performance can be utilized in two ways.

1) Short Term Evaluation: At each level, if a decision results in a failure, it is

desirable to evaluate if the failure occurred due to a wrong decision at the current

level or due to a wrong decision at a previous level. Consequently, the weights

must be modified at the corresponding erroneous level, and not always at the

current level. Therefore, in case of a failure, the system waits until all options

have been exhausted before propagating a penalty to the previous level. If a

successful option is found at the current level then a penalty is issued for the

unsuccessful options at the current level itself. In this manner a self-evaluative

process determines the correct location of wrong decision making.

2) Long Term Evaluation: If system realizes at any point of time that a particular

entity always results in a negative outcome and hence its weight has dropped

below certain level, then that association is a likely candidate to be removed from

the knowledgebase. This action will be performed whenever the self-maintenance

operation is scheduled next. For instance, a group of sensor-feature pairs may no

128

longer be effective and the diagnostic result always returns a low-confidence

outcome, then either these pairs can be removed from the knowledgebase or a flag

be thrown for the experts to re-evaluate the corresponding test.

6.3.3 Learning

Learning is the most critical attribute of intelligence and an evolving knowledgebase. The

system should learn from experience about how the environment behaves and should

create a model of this environment. The next time a query arrives it should use this model

to predict the most probable state of the environment. Further, if the environment

changes, system should be able to recognize the changing behavior and adapt to new

behavior of the environment. In the literature three broad approaches to learning can be

found depending on the task at hand. These approaches are briefly mentioned below.

Supervised Learning: Under supervised learning the agent is provided with a target or a

purely instructive feedback, i.e., the environment tells the learner about what exactly its

output should be. The agent then compares its response with the target and adjusts its

internal memory in such a way that it produces a more appropriate response the next time

it receives the same input. The instructive feedback in this case is independent of the

action taken by the agent and always tells about the correct action it should have taken.

Thus, supervised learning is learning through several examples provided by an external

knowledgeable supervisor.

Unsupervised Learning: This is the other extreme for learning where the agent does not

receive any feedback from the environment. The agent instead has to abstract the input

129

information into clusters or categories or by using a reduced set of dimensions so that

when a familiar situation is encountered, an output is generated based on that category of

situations and is likely to cover slightly different problems as well. Unsupervised learning

is based on similarities and differences in the input patterns.

Reinforcement Learning: This lies somewhere in the middle of the supervised and

unsupervised learning techniques, however it is closer to supervised learning. In this

technique the agent receives an evaluative feedback about the appropriateness of its

response. Purely evaluative feedback indicates how good the action taken is, but not

whether it is the best or the worst action possible. The evaluative feedback completely

depends on which action was taken, unlike instructive feedback [66].

6.3.3.1 Learning in the Knowledgebase

The Model: The initial diagnosis component of our knowledge-based CBM architecture

can be modeled as a finite Markov Decision Process (MDP) (Figure 6.3) i.e.

- There is a finite set of distinct symptoms indicating the failure in the system. This

constitutes the failure-unknown state.

Failure
Known
Failure
Known

hsuccesshsuccess

Failure
Unknown

Failure
Unknown

hfailureh failure

Figure 6.3 State space representation of a diagnostic process.

130

- There is a finite set of hypotheses that can be proposed to explain these symptoms

in the initial phase. These hypotheses are tightly coupled to their respective

diagnostic tests or actions that the knowledgebase suggests to perform to confirm

a hypothesis in the final diagnosis phase. Therefore, there is a finite set of choices

(actions) that can be taken while at failure-unknown state.

- If by choosing a hypothesis and carrying out the corresponding diagnostic tests a

fault is clearly identified, the system moves to failure-known state. If the test fails

to identify the fault, system comes back to failure-unknown state.

The one step dynamics of this finite MDP are completely defined by the set of states and

hypotheses together with the probability of the next state, given the current state and a

chosen hypothesis. These transition probabilities are given as:

},|'{ 1' hhssssprP ttt
h

ss ==== + (6.1)

Similarly, given a state s and hypothesis h together with the next state st+1, the expected

value of next reward (success or failure) can be expressed as:

}',,|{ 11' sshhssrER tttt
h
ss ==== ++ (6.2)

Here, the goal is to learn these probabilities from the environment (data) such that the

expected value of rewards is maximized over a long period of time.

The Learning: A finite MDP presents a natural choice for a reinforcement learning

approach. In reinforcement learning, an action-value is associated with each action.

These action-values are modified every time the corresponding action is taken and a

131

feedback is received in the form of reward from the environment. These action-values

can be considered as weights, like in other machine learning algorithms, that can be used

to make a decision about the action selection the subsequent time. The action-selection

policies can vary depending on the nature of the problem. A brief discussion on action-

selection policies follows in the latter paragraphs.

There are three main algorithms for reinforcement learning namely, Monte Carlo (MC)

methods, Dynamic Programming (DP) and Temporal-Difference (TD) learning, each

having their own strengths and weaknesses. DP methods are well developed

mathematically but require a complete and accurate model of the environment. MC

methods are conceptually simple and don’t require a model but are not suited for step-by-

step incremental computation. TD methods do not require a model and are completely

incremental, but are more complex to analyze. In particular, a Temporal Difference (TD)

method for reinforcement learning is most suitable for these kinds of problems [66].

Q-Learning: The most popular TD algorithm for reinforcement learning is the Q-

learning algorithm [67]. In this algorithm the learned action-value function, Q, directly

approximates the optimal value, Q*, irrespective of the action selection policy. Detailed

proofs of optimality and convergence of Q-learning have been developed in they

literature [66]. In brief, one step Q-Learning is defined by

)],(max),([),()1(),(tt
h

tttt
old

tt
new hsQhsrhsQhsQ γαα ++−← (6.3)

132

parameterdiscount theis:
and, 10 s.t.parameter rate learning theis:

 statein hypothesis toingcorrespond test diagnosticout carryingafter recieved reward theis:
function value-action learned theis :

 state in the assumed hypothesis failureany for where

γ
αα ≤≤

tt

tt

shr
Q

sh

 For this research, Q values are used as learnt preference weights to choose from various

options. Reward r is obtained from the maintainer in predefined quantized values as

discussed in the next section. This forms an important step in integrating human-in-the

loop. The discount parameter γ is a measure of how much attention we pay to possible

rewards we might get in the future. Since there are only two states in our scenario and

there are no actions associated with failure known state there is no expected reward from

that state. Therefore, the discount parameter has little or no significance in this case. The

learning rate parameter α is however very crucial in determining the time this system

takes in adapting to changing environments. A large value of α leads to oscillations in the

Q-values due to random nature of failure occurrences as it gives a higher weight to

current event over the past history. A smaller value, on the other hand, leads to slow

learning by expressing more trust in past experience over current events. Therefore, a

balance must be established for desirable performance.

Hypothesis-Selection Policy: This is the scheme adopted to make a decision about which

hypothesis to select among the various available options. The main goal is to maximize

the total rewards accumulated over a long term. The most common approach is the

greedy policy π*(s) where the hypothesis with the highest action-value is always selected:

),(maxarg)(* tt
h

hsQs
t

=π (6.4)

133

This is also called as exploitation approach where current knowledge is exploited to make

a decision. The other approach is that of exploration where one of the non-greedy

hypotheses is chosen. This allows exploring other options that may fare better than the

current best one. A simple approach is to behave greedily most of the time, but, every

once in a while with a small probability ε, choose a hypothesis randomly, uniformly and,

independently of its action-value. These methods are called near-greedy or ε-greedy

selection policies. In the initial phase of learning it is desirable to include an exploratory

approach and then switch to exploitation later on.

For a decision support system however, it may never be desirable to choose a completely

irrelevant hypothesis. A simple ε-greedy approach chooses uniformly from all hypotheses

ranging from the worst appearing ones to next-to-best options. To take care of this

drawback, a softmax selection procedure is employed, in which selection probabilities are

a graded function of action-values and hence a better option has a higher probability of

being chosen. There can be several grading functions but the most commonly used

softmax method uses Gibbs or Boltzmann distribution [66] where the probability of

selecting a hypothesis ht out of all H possible hypotheses is given by

∑
=

= H

b

bQ

hQ

t
t

tt

e

ehP

1

/)(

/)(

)(
τ

τ

 (6.5)

Where, τ is a positive parameter called temperature. A high temperature forces nearly

equal probabilities for all hypotheses, and a lower temperature causes more gradation

based on action-value Qt(h).

134

6.3.3.2 Human-in-the-Loop Learning (HITLL)

Machine Learning (ML) is one of the key tools in developing autonomous intelligent

systems. While designing such learning environments it is critical to collect, codify and

present an exhaustive set of experiential knowledge to the system during the training

phase, which poses several challenges. First, it is almost next to impossible to hard-code

all information even if we assume that such knowledge is available in the form of human

experience and can be somehow articulated and codified. Furthermore, other practical

problems, such as long training time requirements and non-scaling state representations,

make it even more difficult for real-life implementations. In such environments,

introduction of human teachers in the learning loop can make this task relatively simpler

and tractable. Several Reinforcement Learning (RL) applications have been developed

with an interactive human teacher specifically in the field of mobile robotics [68-70].

While RL is not traditionally designed for interactive supervisory input from a human

teacher, several works in both robot and software agents have adapted it for human input

by letting a human trainer control the reward signal [69, 71]. They show that human-

given reward is compatible with the traditional reward signal and can significantly

accelerate the learning activity. Therefore, we adopt a Human-in-the-loop-learning

(HITLL) framework where not only the experts are kept in the loop for continuous

performance monitoring, but also the system learning activity is accelerated.

6.3.3.3 Integrating Human in CBM Knowledgebase

In the framework adopted in this thesis the human element is integrated into the system in

three modes. In each mode the specific role played by the human is different yet

135

important to achieve the over all goal of a successful Decision Support System (DSS).

These three modes are described as follows (Figure 1):

Expert Designer

Interpreter & GuideTeacher (maintainer)

Decision
Support
System

Figure 6.4 Three modes of HITL integration in a Decision Support System.

1) Expert Designer: Typically while implementing a system, a model and set of

features are developed, trained on some training data and evaluated on some

development data. Then the model and features are augmented/changed, retrained

and retested on the development data. These iterations are carried out by expert

designers of the system until they are satisfied with the developmental results.

This is "human in the loop" because in each iteration we're using our human

knowledge to add some additional features that will hopefully correct for errors

on the development data. In building a CBM knowledgebase development of

various diagnostic algorithms like feature calculation, classifier implementation,

and preference weight assignments for information fusion falls under this

136

category of human involvement. In most cases this is offline analysis carried out

in the design phase.

2) Interpreter and Guide: As discussed earlier, the main goal of knowledge

integration into the CBM cycle is to build a DSS. Through its attributes of self-

evolution the knowledge based system is expected to learn experts’ experience to

the extent that knowledge can be successfully articulated and codified. To address

the rest of the situations, where this knowledge can not be possibly imparted to

the system, presence of a human expert is deemed necessary to avoid any

incorrect decisions as far as possible. Therefore, human plays an important role as

the interpreter of the suggestions generated by the DSS. It helps the decision

maker by narrowing down the choices based on past scenarios, but the actual

decision making still stays at the discretion of the user of the DSS.

Another role that can be possibly played by human in this capacity is to guide the

learning activity through anticipatory guidance rewards [69]. This activity is

similar to populating the knowledgebase during initialization phase when

different preference weights are hardcoded based on expert opinions. The similar

process can be formally carried out in the real-time when experts know the correct

solution to the current problem and guide the DSS to the corresponding

suggestion through anticipatory guidance rewards.

3) Teacher (maintainer): The third role played by a human is that of a teacher that

provides feedback on system’s performance and guides the reinforcement

learning. This task is performed by maintainers of the system who actually act

upon the suggestions from the DSS and evaluate if the action taken was

137

successful or not. A challenging problem in such Human-in-the-loop (HITL)

systems is that the evaluation of the system performance is inherently subjective

or is based on judgments made by maintenance experts with criteria formed from

their experience, which they are unable (or unwilling) to articulate. In this thesis

we have devised a way in which the user’s feedback is quantized in a standard

manner and is interpreted by the system in a consistent manner over a period of

time. The user is given a predetermined set of choices to express feedback, which

are interpreted based on a reward structure designed in advance. Two kinds of

reward structures are suggested. Some rewards are simply +1 or -1 representing

success or failure of an action. These rewards are sparse and are fairly simple to

formulate. In other cases a dense reward structure is used where the reward is

proportional to the quality of action performed [72]. We illustrate these concepts

in the following sections.

In many cases these distinct roles may be played by the same pool of people at different

stages of a DSS lifecycle even though respective integration mechanisms are fairly

different.

6.3.3.4 Learning Process

For the initial diagnosis scenario, consisting of symptoms and hypotheses, there are only

two states as shown in Figure 6.3. Having received some symptoms, the system knows

that there is an anomaly in the system, which could be a failure in good probability. But

the system has not yet identified the failure. By proposing the most probable hypothesis

for the failure it will try to maximize the probability of success in isolating and

138

identifying the correct fault mode. The complete learning process can be described in the

following steps and is shown in Figure 6.8.

- At any discrete time step t the system receives a failure symptom st. It

decomposes the symptom into its constituent triads to generate a list of possible

hypotheses. These hypotheses are ranked based on the weights associated with

them.

- One of the hypotheses is chosen according to the action-selection policy

employed. This hypothesis (ht) is assumed to be the main cause for the observed

symptoms and is selected to execute the diagnostic tests associated with it.

- The human feedback is obtained in the form of the usefulness of the actions

performed through a reinforcement r(st, ht) and the next state st+1. The next state

could be the failure-unknown state or failure-known state depending on the

success of the choice made. The reinforcement is formalized as a number, larger

for beneficial and smaller for detrimental choices, respectively.

Algorithm: Q-Learning with HITL Feedback Rewards:
st = current state, st+1 =next state, ht = current selection of hypothesis, r = feedback human reward
1: while learning do

2: ht = select hypothesis according to policy π*(s) from options weighted by Q[s,h]

3: carry out diagnostic tests corresponding to ht and transition to st+1

 (allow small delay to receive human reward)

4: obtain reward r

5: update Q-values according to:

)],(max),([),()1(),(1 hsQhsrhsQhsQ t
h

tttt
old

tt
new

+++−← γαα

6: end while

139

Reward Structure: As depicted in Figure 6.8, the learning activity takes place at three

locations, i.e. weights between triads-hypotheses, hypotheses-diagnoses and, diagnoses-

repairs. The nature of all three instances is different and hence the reward structure is

different as well.

Rewards for triad-hypothesis (t-h) associations: Initially, during the pure learning

phase each constituent triad of a symptom will have an equal association with the

corresponding hypothesis. Later, if any of these triads appears as part of another

symptom explained by a different hypothesis, its association with the new hypothesis will

grow and with the previous hypothesis will diminish. Thus, over a period of time

associations between symptoms and hypotheses will transform into associations between

triads and hypotheses. This will help in suggesting solutions where an entirely new

symptom is observed, which consists of already existing triads in the knowledgebase. For

this situation a simple sparse reward structure is suitable where a reward of +1 is

awarded to a successful hypothesis and -1 for a failed hypothesis.

Rewards for hypothesis-diagnosis (h-d) associations: In this case not only the success

and failure of a diagnostic tests matters, but also its effectiveness. For instance, if a

diagnostic test confirms a fault or no-fault condition with a higher confidence than

another test it must receive a higher reward. This method implements a dense reward

structure, where the reward is a function of the confidence measure calculated in

identifying a failure.

To accomplish this, a two step procedure was adopted.

140

Step 1: A preset threshold (T0) for the desired confidence level is chosen. Each diagnostic

test is tested to achieve T0. A test that declares a no-fault condition is considered a failed

test and included in the failed tests list. If, at least one test declares a fault condition with

the preset confidence level the hypothesis is confirmed as true and is rewarded with a

positive reward. At the same time all the failed tests are updated with a negative reward

and the successful test is updated with a positive reward (Figure 6.5). Otherwise, if all

tests fail to cross the desired threshold step 2 is applied.

T
0

T
1

T
2

T
minC

on
fi

de
nc

e T
hr

es
ho

ld
s (

%
)

d1 d2

d3

d4

d5 Not Tested

+ reward

- reward

+ reward to h

- reward

Figure 6.5 A successful hypothesis and at least one successful diagnostic test.

Step 2: There can be two reasons why all tests failed to confirm the presence of the fault.

1) An incorrect hypothesis was chosen at the previous level.

2) The data is too noisy to achieve the desired confidence level in fault detection.

In the first case, a negative reward is sent to the incorrect hypothesis without updating the

weights of the diagnostic tests (Figure 6.6).

141

T
0

T
1

T
2

T
minC

on
fi

de
nc

e T
hr

es
ho

ld
s (

%
)

d1 d2 d3 d4 d5

- reward to h

Failed Test

Figure 6.6 The unsuccessful hypothesis case.

However in the second case, another chance must be given to the hypothesis. Therefore a

preset minimum allowable confidence threshold (Tmin) is chosen and all tests are carried

out against it. If none of the tests still cross the threshold the hypothesis is declared false

and updated with a negative reward. If one or more tests clear the threshold Tmin, they are

further ranked based on the maximum threshold levels they can clear. The rewards to

these successful candidates are proportional to the confidence levels they achieve. Thus a

better test gets a higher reward. And the corresponding hypothesis is updated with a

positive reward (Figure 6.7).

T
0

T
1

T
2

T
minC

on
fi

de
nc

e T
hr

es
ho

ld
s (

%
)

d1

d2

d3

d4

d5

+ reward to h

- reward

+ reward

+ reward

+ reward

Figure 6.7 A successful hypothesis but lower confidence due to poor quality data.

142

In the example illustrated below, the rewards are proportional to the success of each test,

i.e., for the successful tests the rewards structure follows an order r2 > r3 = r4 > r5.

Rewards for diagnosis-repair (d-R) associations: Once a diagnostic test confirms the

presence or absence of a suspected fault a reward is issued accordingly to update the

weights for the corresponding hypothesis and the test. If a hypothesis is successful, it is

assumed that the fault has been identified. Now, the weights on repair actions are

completely independent of the success at the previous level. If a repair action fails to fix

the diagnosed problem, its outcome does not propagate back to the hypothesis or

diagnosis level. Hence, only the weights on repair actions are affected. The rewards

structure can be either +1 or -1 for success and failure, respectively, or if the operator

feedback can be obtained about the effectiveness of the repair action, a reward can be a

number directly proportional to its degree of effectiveness. If none of the available repair

actions are effective then an expert’s advice must be taken because the system has not

seen such a situation before and hence can not help in decision making in this case.

Again, it must be noted that this is a decision support system and therefore the presence

of a human expert is expected to make decisions in situations where DSS fails to provide

any conclusive suggestion.

143

Perform top ranked
diagnosis among

untried ones

Detection
Confidence

>Tmax

More
options

left

More
options

left

N

N

Y

Carry out top
ranked untried
repair action

Repair
Feedback

+

Repair
Feedback

+

STOP

Y

N

Y

N

More
options

left

More
options

left

Y N

Choose top ranked
hypothesis among

untried ones

Keep track of
unsuccessful
hypotheses

STARTSTART

Decompose
query symptoms

into triads

Collect all associated
hypotheses and rank

them

Collect all associated
diagnoses and rank

them

More
options

left

More
options

left

NY

Keep track of
unsuccessful

diagnoses

Cannot suggest a
repair action -

seek expert advice

Cannot generate a
hypothesis - seek

expert advice

Update h-d
diagnoses

weights

Update t-h
hypotheses

weights

Keep track of
unsuccessful
repair actions

Update d-R
repair

weights

To classify a diagnostic test as
success or failure, a confidence
measure is calculated for the
diagnostic outcome. If this
confidence level is below a preset
threshold the test is considered
ineffective.

If all options are classified as
ineffective, re-evaluation is carried
out with lower thresholds. If failure is
now detected, each diagnosis is
updated with a weight proportional
to its maximum confidence level.

If all options are still ineffective, a
negative reward is propagated to
decrease the weight of chosen
hypothesis.

If a fault is detected with desired
confidence level a positive reward is
issued for both, the current
diagnosis and the hypothesis.

If no_fault is detected with the
desired confidence level then a
positive reward is issued to the
diagnosis but a negative reward is
issued to the hypothesis.

In situations where a fault has been
identified but none of the repair
actions seem suitable, experts’
advice must be taken

In situations where none of the
hypotheses suggested by the
knowledge-base explains the
symptoms correctly, expert’s advice
must be taken.

The user has a choice to assign
priority to various symptoms if
multiple symptoms are received.
These priority weights further
percolate to modify the ranking of all
the hypotheses associated with the
constituent triads.

The diagnostic process starts when
a query symptom is received as a
user input.

The weights are not updated until all
options have been exhausted. If all
options have been exhausted with
negative outcomes then most likely
the choice made at the previous
level was incorrect and a negative
reward is propagated back.

Re-evaluate
Diagnoses

Performance

Failure
Detected
Failure

Detected

Y

Figure 6.8 A flowchart showing the complete decision support process with learning.

144

6.3.3.5 Learning Scenarios

In general, several scenarios about how the environment behaves can occur in practice.

For this research two main scenarios were considered to show a proof of concept about

how learning can be adapted to different scenarios involving HITL. These scenarios are

briefly described below.

Scenario 1

In the first scenario, it is assumed that a symptom can be explained by several hypotheses

(fault modes). However, in the current environment the relative distribution of occurrence

of these fault modes is different. These faults occur in a random order with a probability

reflecting their relative frequencies. The learning activity should result in a higher weight

for a fault mode (hypothesis) that occurs more frequently than less frequent fault modes.

Later as the environment changes this distribution may also change and the learning

activity should reflect this change. An important consideration in judging the

effectiveness of a learning scheme is the response time in which these changes are

reflected in the decision making process while making a selection for the most probable

hypothesis.

Example: Unusual vibrations occurring in the centrifuge result from main motor bearing

defect in 75% of cases, faulty primary gear in 20% of cases, and other drive faults in the

rest 5% of cases. Thus, whenever unusual vibrations are observed the system should

check for main motor bearing defects with a higher priority than carrying out diagnostic

tests for faulty gear defects or other drive defects.

145

Scenario 2

In the second scenario, it is assumed that although a symptom can be explained by

different fault modes that are equally frequent, the changes in system behavior are

reflected with a different degree of severity from this symptom. Hence, a particular

hypothesis has varying degrees of support from different symptoms. A symptom with a

higher degree of support for a particular fault mode should have a higher weight on its

association with that hypothesis. Now, if at some point of time a new failure mode occurs

in the system which has an even stronger characteristic of unusual vibration, the learning

scheme should reflect this change in the weights associated with different hypotheses.

Example: An unusual vibration in centrifuge is a stronger characteristic of a main motor

bearing defect than a primary gear defect. But a shrieking sound is a stronger

characteristic of primary gear defect than a bearing defect. Both defects are equally likely

to occur statistically. Thus the vibration symptom should have a stronger association with

bearing defect than the gear defect. Later, if a shaft misalignment problem results in more

prominent unusual vibrations then the decision support system should suggest solutions

accordingly.

Other scenarios may also occur and the Q-learning scheme can easily be adapted in a

manner suitable to those scenarios. Some simulation results exhibiting learning in both

scenarios have been included in the results section.

146

6.3.4 Self-Maintenance

Self-maintenance refers to reorganization of the knowledgebase. Each data entity is

labeled with a time stamp indicating the time of its most recent use. At the time of

scheduled self-maintenance all the entities that have not been used in a long time (limit

preset by the user) may be shifted to a passive memory. At any point of time, the list of

options is generated only from the active memory contents. Once all options have been

exhausted, more options may be looked up from the passive memory. In case more

options are found in the passive memory they may be tried and if successful can be

brought back to the active memory before a negative reward is propagated to the previous

level. Similarly the entities whose weights drop below a minimum threshold may also be

shifted to the passive memory. They may be recalled and tried only if all other options

have been exhausted.

The passive memory can be configured in First-In-First-Out (FIFO) manner such that

once it gets full the oldest entries are flushed out first to make room for new entrants. In

this manner the knowledgebase always contains the most relevant data and does not grow

in an uncontrolled manner.

6.3.5 Autonomous Behavior

All the activities described above are carried out in an autonomous fashion. In some

cases, where expert assistance may be required, a flag is thrown to indicate such

condition. Mainly, if activities like self-evaluation, learning and self-maintenance can be

carried out in an autonomous fashion the system can be regarded as autonomous.

147

However, it is important to have access to various modules to manually monitor the

activities and evaluate the performance. The knowledge management system, described

in the next sections, is a transparent means to access the knowledgebase for expert’s

inspection and modification.

6.4 Simulation Results and Discussion

Two different experimental simulations were designed to show learning in the different

scenarios discussed above.

Scenario 1

Initially there are two symptoms sa and sb each with its respective set of hypotheses Ha

and Hb, where Ha = {h1, h2, h3} and Hb = {h4, h5} with their respective initial probabilities

of occurrence pa = [0.05, 0.9, 0.05] and pb = [0.3, 0.7]. After about 400 episodes the

environment changes and the change is reflected in the changed probability distribution

pa’ = [0.75, 0.2, 0.05] and pb’ = [0.5, 0.5]. The following simulation results show that

these changes are effectively reflected in the learning algorithm. The response to this

changes by Q-learning has been compared with the simple frequency based learning

scheme. To compare the results with frequency based weights, all Q-values have been

normalized to a number between 0 and 1. Both symptoms are independent of each other

and occur randomly with equal probability. The results have been averaged over 20

experiments. The reward structure here is +1 if a correct hypothesis is chosen and -1 if an

incorrect hypothesis is chosen.

148

Results from scenario 1 have been compiled in Figure 6.9 and Figure 6.10. The first row

in each figure shows the Q-learning performance and the second row shows frequency

based learning. The first column plots in each figure represent simulations for a stationary

environment where no significant change was observed as time passed by. The second

row shows when the probability distribution of different faults changed drastically after

400th episode.

As can be seen from these figures, for stationary environments frequency based method

exactly replicates the probability of occurrence. However, for non-stationary case the

learning of new probabilities is extremely slow, whereas Q-learning quickly adapts to the

new environment. This rate of adaptation can be changed by changing the learning rate

parameter α.

149

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

5%

90%

5%

75%

20%

5%

5%

90%

5%

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

5%

90%

5%

75%

20%

5%

5%

90%

5%

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

5%

90%

5%

75%

20%

5%

5%

90%

5%

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

(a) (b)

(c)
(d)

Figure 6.9 Comparing Q-Learning performance with frequency based learning for symptom sa.

150

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h4

h5

70%

30%
50%

50%

70%

30%

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h4

h5

0 100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h4

h5

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h4

h5

(a) (b)

(c) (d)

Figure 6.10 Comparing Q-Learning performance with frequency based learning for symptom sb

151

Scenario 2

A symptom s is explained by a set of hypotheses H = {h1, h2}. Both h1, h2 have equal

probabilities of occurrence but h1 is detected with a maximum confidence of 0.80 than h5,

which is detected with a maximum confidence of only 0.75. This means that s is a

stronger characteristic of h1. After about 400 episodes a new hypothesis (h3) is added to

the system for which s is a very strong symptom and results in detection confidence of

0.95. The learning of Q-values reflects these changes as shown in the following results.

The results have been averaged over 20 simulations, and each of the three failure modes

were simulated to occur with an equal probability.

A similar trend in performance is observed in scenario 2 as well. Since all three faults are

equally likely their weights are close to each other (i.e. converge to 0.5 for two and 0.33

for three hypotheses). However, the hypothesis that is more convincingly explained by

this symptom has a slightly higher weight in Q-learning case. For the frequency based

method this information about sensitivity is not included at all. Further, Figure 6.11

shows that as soon as a better faring diagnostic test is included in the knowledgebase its

Q-value improves sharply and very quickly it becomes the favorite test to be carried out.

In the frequency based method, first, the learning is extremely slow and next it will never

learn the preferences. Frequency based methods are extremely simple and intuitive but

they are not capable of handling non-stationary environments.

152

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Episode

Q
-V

al
ue

Reinforcement Learning - alpha = 0.05, gamma = 0.01

h1

h2
h3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

W
ei

gh
t

Frequency Based Learning

h1

h2
h3

Figure 6.11 Comparing Q-Learning performance with frequency based learning in scenario 2.

153

6.5 The Knowledge Management Interface

As much as it is important to design and structure a knowledgebase it is equally

important to provide means to store and access the data into the knowledgebase. At the

same time it is desirable to have an interface that allows experts to peek into the

reasoning process at different stages for monitoring from time to time of the workings of

an autonomous system. Another aspect of such an interface is to let experts carry out any

modifications in the knowledge at anytime they consider appropriate.

In this research few basic interface modules have been designed to visually show the

dynamics of the knowledgebase. These modules have been briefly described and shown

below.

Data Entry Module

First, a structural model of the system must be entered into the knowledgebase. This

allows defining the system-of-systems hierarchy and also provides the list of all

components in the system (see Figure 6.12).

154

Figure 6.12 Interface to enter structural model of the system.

It also provides the connections between various components and their respective

subsystems that are often important in localizing the faults. Once the system has been

entered, it can be stored in the knowledgebase and accessed later by loading it into the

active workspace.

The next step is to specify the attributes associated with different kinds of objects. For

instance, information regarding various components, sensors and their specifications,

feature calculating algorithms and their parameters, etc. must be added to the

knowledgebase. At the same time the interface should allow removing or modifying any

object whenever required. This was accomplished though a user interactive interface for

adding a knowledge element as shown in Figure 6.13.

155

Figure 6.13 Interface to add or modify an object into the knowledgebase.

The main attributes of this module are:

- One can add an object, e.g. a new sensor may be added to the knowledgebase.

- More fields may be added to an object, e.g. another field rangeL, specifying the

lower range of sensor sensitivity may be added.

- At any instant all details associated with the selected object are displayed.

156

- These attributes include a time stamp associated with each object, which gets

updated whenever that object is accessed last.

- Also included is location information where the data corresponding to this object

may be obtained from. E.g. in our case we use sensor data files stored in the

database.

- Finally, any object or any of its attributes may be deleted at any time. Whenever

deleting an object, a confirmation dialogue pops up to avoid deletion by mistake.

A similar interface is available for other types of objects as mentioned earlier.

Visualization Module

Visualization module mainly consists of two interfaces. One of these interfaces shows a

query symptom into its semantic network form (Figure 6.14). This allows users to

monitor the performance of the ILP algorithm. At anytime the semantic nets created by

the ILP algorithm may be compared with what experts would manually draw. This helps

in identifying trouble spots whenever an unknown structure is encountered in symptoms.

Further, a transcript of the ILP sequence of steps is printed on the command prompt to

guide the debugging process in an easy manner.

157

Figure 6.14 SemanticNet visualization module.

The next module shows the learning behavior of the knowledgebase by showing the

association weights between various entities at any point of time. Since this application is

episodic in nature, after each episode the changes in the weights between various entities

can be monitored.

Figure 6.15 Module to monitor weights between various entities of the knowledgebase.

158

6.6 Evaluating KB Performance

The knowledgebase structure developed in this thesis should be evaluated for

performance issues arising from attributes like learning, self-maintenance, and self-

evaluation. The learning rate parameter α should be adjusted such that learning in new

environments is quick but at the same time any differences arising due to noise should

not affect the outcome of the system.

To improve and optimize KB performance, a temporal recency threshold is set beyond

which the entries are moved to passive memory. This threshold should be carefully

determined taking into account the total time to fetch entries from the passive memory

and their relative frequency of being fetched from the passive memory.

6.7 Conclusions

In this chapter we have developed a framework for intelligent knowledgebase for

integration with CBM architecture for an autonomous DSS. With the help of several

examples, various attributes of intelligence were described that bring this process model

closer to autonomy. Further, a particular emphasis was put on learning mechanism and a

Q-learning scheme, incorporating human-in-the-loop experience, was adopted and was

shown to be effective in two different simulation scenarios. Last but not the least a

knowledge management interface was described with the help of few modules developed

during this research.

159

Chapter 7

Conclusions and Future Work

160

7.1 Concluding Remarks

This thesis addresses a key issue of knowledge integration in the development of

CBM/PHM technologies. In addition to signal processing and subsequent diagnostic and

prognostic algorithms these new technologies require storage of large volumes of both

quantitative and qualitative information to carry out maintenance tasks effectively. From

the volumes of data that can be obtained today, information extraction has been a

challenging task and organizing this information, so that it can be considered useful

knowledge, is yet another level of abstraction. A knowledge integrated approach provides

means to store, organize, and access this knowledge in a timely and efficient fashion.

We presented a two-level diagnosis scheme in which first a fault is hypothesized using

the observed symptoms from the system and then a more specific diagnostic test is

carried out to confirm the hypothesis. This results in a pin-pointed diagnostic data

processing with reduced computational overhead. An Industrial Language Processing

(ILP) technique has been developed for processing textual information from industrial

systems. Compared to other automated methods that are computationally expensive, this

technique manipulates standardized language messages by taking advantage of their

semi-structured nature and domain limited vocabulary.

The key assumption in this architecture is the use of standardized language in the

industrial environments. Although this has been a preferred practice in the aviation

industry, other industries are yet to embrace this concept completely. However, there is

significant evidence that efforts are being made in this direction at the organizational

161

level. Although, ideally a common standard specific to an industry would be preferred, a

competitive attitude and high overhead is currently resulting into an individualistic effort

from different organizations. However, the approach presented in this thesis is quite

generic and can be easily adapted to specific cases.

Further, an intelligent reasoner is required that can make judicious use of this knowledge

and provide a substantial support in the decision making process. A Dynamic Case-based

reasoning (DCBR) framework has been used as a hybrid platform for diagnostic

reasoning and an integration mechanism for the operational infrastructure of an

autonomous CBM system. This integration involves data gathering, information

extraction procedures, real-time reasoning frameworks and decision-support systems to

facilitate the strategies and maintenance of critical systems. A structured approach to data

acquisition and information extraction is outlined that makes use of already existing

various industrial practices. This knowledge is stored in a self-evolving knowledgebase

that learns from its performance feedback and reorganizes itself to deal with non-

stationary environments. Attributes of learning, feedback, self-evaluation, self-

maintenance and autonomous behavior are discussed and instantiated with the help of

some example scenarios. We have used Q-learning using external human feedback as the

main learning algorithm for experience accumulation. However, other learning methods

may be adopted depending on the structure of the knowledgebase and the problem

scenarios.

Despite logical arguments regarding the effectiveness of the two-level diagnosis approach

and the evolving knowledgebase, a theoretical evaluation is required to clearly show the

162

advantages and disadvantages of the suggested architecture. For this purpose it is

obviously desired to use commonly used performance measures in these domains.

However, due to some fundamental differences in the nature of the problem, owing to the

application domain and the absence of adequate data to compare or benchmark with other

techniques, customized methods were devised to carry out these evaluations.

These differences arise form the fact that in most cases one requires an experts’

subjective assessment in defining the quality of the suggested solution while evaluating

performance measures like accuracy and precision. Further, these systems are episodic in

nature and any performance evaluation requires external feedback available at the end of

the episode. Moreover, several episodes over a long period of time are needed to make

any conclusions, unlike continuous time algorithms. Therefore, we have modified some

of the conventionally used performance measures and defined new ones wherever

appropriate.

In concluding this research we note that integrating knowledge into the CBM architecture

is a significant step towards achieving an autonomous DSS in the maintenance process.

The learning in such DSS, however, involves human-in-the-loop to receive feedback

from the domain experts and learn from their experiences. Adopting this approach in the

industrial environments not only the processes can be improved but also the corporate

knowledge can be retained as an electronic expert for later reuse.

7.2 Summary of Contributions

Main contributions of this research are:

163

- Knowledge integrated CBM process model for automated diagnostic Decision

Support System.

o A Knowledge Management System (KMS) for easy storage, access and

manipulation of knowledge for later reuse.

- Self-evolving Knowledgebase (KB) that learns from its performance over time

and a structured approach to acquire and modify knowledge to populate this KB.

o A Q-learning algorithm with human-in-the-loop feedback to learn from

the experience of domain experts.

- Dynamic case-based reasoning platform for simultaneously utilizing textual and

numerical information to carry out diagnosis with less computational burden.

o Two level diagnostic framework

- Industrial Language Processing (ILP) technique to process industrial text, while

retaining its domain specific information for effective diagnosis.

o Information extraction technique for standardized language sentences.

o Similarity evaluation methods for semantic networks in ILP for matching

and retrieval purposes.

7.3 Suggested Future Work

In this thesis we have presented a Decision Support System for CBM. This system

integrates various modules in a unique fashion to overcome practical problems of

164

computational tractability and interfacing between qualitative data, quantitative data, and

human feedback. In absence of real industrial data these modules were independently

developed and tested in an isolated manner. From a systems point of view, performance

of the complete system should be assessed as a whole. This performance assessment was

not addressed in this research. However, a platform has been set for such experiments and

analyses. Here we suggest some important research directions that should be further

pursued to guarantee desired performance.

7.3.1 Guaranteeing Overall System Soundness

HITL based learning systems invariably encounter time delays while they wait for human

feedback. Such time delays should be modeled in the dynamics of the system to

guarantee reasonable performance. In some cases feedback reward may not be used,

immediately after it is available, until the correct location of the decision making node is

identified. In case of failures, only that specific node should be penalized where the

incorrect decision was made and in case of success, all nodes must be rewarded where

correct decisions were made. Furthermore, different steps in the diagnostic process take

different processing times and therefore provisions should be made to incorporate time

delays arising from such situations. Such study was not carried out in this research and

therefore, it is desired to carry out a formal study on how to model such time delays to

guarantee the best performance.

This thesis presents a closed loop system, where incorporating the external feedback

forms a crucial part of the learning activity. This in turn raises the convergence and

stability issues. Design parameters like learning rate and time delays should be carefully

165

chosen to guarantee convergence and stability even in highly random and noisy

environment.

7.3.2 DCBR Extension to Prognosis

The DCBR framework described in this thesis can be expanded for prognosis task with

little efforts. The most straight forward expansion is based on the fact that already

existing prognostic algorithms can be integrated in a similar fashion as diagnostic

algorithms to get activated once the fault has been localized. Fault is first identified by

diagnostic routines followed by activating the corresponding prognostic routines.

The case structure itself can also be used as a higher level prognostic platform. A time

history of the situations can be included as a part of the case. Such a history can be

implemented as Traces. Traces not only keep track of current state of the system but also

the evolution of the state in the recent past. Similarly, the time-tagged indexes as

described in [34-36] can be used for generating trends. These trends can be used to make

subsequent prognosis.

7.3.3 Improving ILP

As described in Chapter 5, for improved performance more IE rules can be included in

the rules list. These rules must be generated once a larger set of standardized sentences is

available and more abstract rules covering a number of sentences can be identified.

Similarly, more relations may be defined in addition to the three relations used in this

thesis. Further, a specialized domain limited vocabulary can be incorporated by using

166

customized dictionaries and thesauri. All these enhancements are purely subjective and

can be made as the need is felt.

7.3.4 Performance Metrics

We have suggested some generic performance metrics for individual modules in

respective chapters. Depending on the specific application custom performance metrics

can be designed to ensure that the system meets desired specifications. These metrics

should be used to further refine the respective modules. Similarly, some performance

metrics should also be designed to evaluate the over all system. Further research can be

carried out on generating confidence bounds around the solutions generated by the DSS.

Such confidence bounds should incorporate the uncertainties arising due to

environmental noise, incorrect or incomplete data, unknown failure modes, simultaneous

multiple failures, variability in human perception of the situation, etc.

167

Appendix A

Knowledge, Information, and Data

The term information is generically used to refer to all manner of descriptions or

representations from raw signals on the one hand to knowledge and understanding on the

other. It is important to recognize that information can be categorized in five different

classes based on the usefulness that can be derived from it. One must understand the

differences between these classes because they are of different value in decision making

and maintenance.

Increasing
Intelligence

Organization
Level

Coordination
Level

Execution
Level Noise

Data

Information

Knowledge

Wisdom

Process Data

Regulatory Control

Monitoring and Diagnosis

Supervisory Control

Planning

Scheduling

Figure A.1 Schematic showing information hierarchy [15] and a parallel functional hierarchy [73] for a
system-of-systems architecture.

As shown in Figure A.1, the information can be categorized in a hierarchical fashion,

which at different stages of the hierarchy supports decisions at various operational levels.

Noise, which lies at the bottom of the information hierarchy, mainly consists of any

unwanted data and no useful information is expected out of it. Data [15, 23] are symbols

168

that represent information for processing purposes, based on implicit or explicit

interpretation rules. In general, data lacks semantics. Information is data with formal and

explicit semantics. Information can be communicated between two or more partners [15].

Semantics is a key aspect of information because the partners need to have a unique and

unambiguous understanding of every piece of information. Knowledge [23] extends

beyond the notion of information by also including relationships between pieces of

information. In an engineering context, knowledge includes taxonomies, rules, and

constraints and is also considered as value-added information for decision making.

Wisdom [12, 15, 74] is the development of “grasp” of the overall situation with the ability

to predict and project in the given domain. The ability to make use of knowledge and

exhibit wisdom has been mainly attributed to human beings.

169

Appendix B

FMECA for Monopropellant Propulsion System

(MPS)

The System: Monopropellant propulsion system (MPS): consists of Electrical and

Mechanical modules.

The MPS uses hydrogen peroxide (H2O2) that passes over a catalyst and decomposes into

oxygen, water, and heat, creating an expanding gas that produces the required thrust. The

system consists of a reservoir tank of inert gas that feeds through an isolation valve IV1

to a pressure regulator RG. The pressure regulator senses the pressure downstream and

opens or closes a valve to maintain the pressure at a given set point. Separating the inert

gas from the propellant is a bladder that collapses as the propellant is depleted. The

propellant is forced through a feed line to the thruster isolation valve IV2 and then to the

thrust chamber isolation Valve IV3. For the thruster to fire, the system must first be

armed, by opening the IV1 and IV2. After the system is armed, a command opens the

IV3 and allows H2O2 to enter the thrust chamber. As the propellant passes over the

catalyst, it decomposes producing oxygen, water vapor and heat. The mixture of hot

expanding gases is allowed to escape through the thruster nozzle, which in turn creates

the thrust. The relief valves RV1-4 are available to dump inert gas/propellant overboard

should an overpressure condition occur in any corresponding part of the system.

170

For this study only the mechanical module was considered.

Electrical Module Mechanical Module

Figure B.1 Monopropellant Propulsion System (MPS) [75].

STEP 0 - Background Study

Scope of analysis: for this study only mechanical module of the MPS was chosen.

Functionality: all components of the mechanical module were included in the study.

Operational modes: the ‘thrust’ operational mode was chosen to analyze the system.

STEP 1 - System Analysis

171

Figure B.2 shows the structural decomposition of the complete MPS. The selected

components were used to prepare the structural block diagram (Figure B.3).

Electrical System

Arming Circuit Firing Circuit

Arming
Switch S1

Arming
Relay K1

Mechanical System

Firing
Switch S2

Firing
Relay K4

Inert Gas Module

IV1

Combustion ModuleInterface ModuleSafety Circuit

Cut-of f
Switch S6

Firing Protection
Relay K2

Heater

RV1
Tank

Monopropellant Propulsion System

IV2

RV4

Thrust
Chamber

RG1

RV2

System of Systems

Component

System

Arming
Relay K3

Subsystem

Firing
Relay K5

Timing
Relay K6

IV3RV3
PT

RV: Relief Valve

IV: Isolation Valve

RG: Pressure Regulator

PT: Pressurization Tank

Figure B.2 Structural decomposition of the MPS.

172

2.1.1
Heater

2.1.2 Inert
Gas Tank

2.1.3
RV1

2.2.1
Propellant

Tank

2.3.2 Thrust
Chamber

S
ub

sy
st

em
 2

: M
ec

ha
ni

ca
l S

ys
te

m

2.1 Inert Gas Module

2.3 Combustion Module

2.2 Interface Module

2.1.4
IV1

2.1.5
RG1

2.2.3
RV3

2.2.2
RV2

2.2.4
IV2

2.3.1
IV3

2.3.3
RV4

Figure B.3 Structural block diagram of the MPS.

This structural block diagram was further transformed into the functional block diagram

as shown in Figure B.4. This functional block diagrams not only provides the structural

information about the system but also the sensor locations and the functionality of

various components. This is crucial information for populating the knowledgebase.

173

Generate Heat

Release Gas

Allow Pressurization of
Inert Gas

Regulate Pressure at
Set Point

Hold Inert Gas in
Outer Chamber

Equate Pressure across
Chambers

Supply Propellant at
set Pressure

Covert Mass Flow to Thrust by
Catalytic Reaction

Release Gas

Allow Propellant Flow into
Thrust Chamber

Thrust ChamberThrust Chamber

heaterheater

TK
Pressurization Tank TK

TK
Pressurization Tank TK

TK
Pressurization Tank TK

Pressure Regulator RGPressure Regulator RG

Isolation Valve IV3Isolation Valve IV3

Propellant Tank
+ Bladder PT1

Propellant Tank
+ Bladder PT1

Release Gas

Relief Valve RV1Relief Valve RV1

Relief Valve RV2Relief Valve RV2

Relief Valve RV3Relief Valve RV3

Heat

Pressure &
Mass Flow

Pressure &
Mass Flow

Pressure

Pressure

Mass Flow

Mass Flow

Mass
Flow

Mass
Flow

Mass
Flow

Mass
Flow

Mass
Flow

Mass
Flow

Thrust

ON/OFF

Set Point

ON/OFF

ON/OFF

ON/OFF

ON/OFF

Allow Propellant Flow into
Isolated Valve IV3

ON/OFF

Isolation Valve IV2Isolation Valve IV2

Mass Flow

Mass Flow

Allow Gas Flow into
Regulator RG

ON/OFF

Isolation Valve IV1Isolation Valve IV1

Release Gas

Relief Valve RV4Relief Valve RV4

Mass
Flow

Mass
Flow

ON/OFF

Figure B.4 Functional block diagram of the MPS.

STEP 2 - Failure Analysis:

The information regarding failures in this system was very limited. Only the failure

probabilities associated with some failures were available, as shown in Figure B.5. Two

more columns were added to rank these failures based on severity and frequency. This

174

example shows that exhaustive data is not always available. But partial data is good

enough to populate the knowledgebase at the beginning. More information can be added

whenever it becomes available.

211 x 10-5Regulator failure 2Regulator

432 x 10-4Regulator Failure 1Regulator

342 x 10-3Stuck_ONIsolation Valves

4

2

1

Frequency (1-4)

45 x 10-3Stuck_OFFRelief Valves

23 x 10-5Stuck_OFFHeater

23 x 10-6Stuck_ONHeater

Severity (1-4)Failure probabilityFailure modeComponent

211 x 10-5Regulator failure 2Regulator

432 x 10-4Regulator Failure 1Regulator

342 x 10-3Stuck_ONIsolation Valves

4

2

1

Frequency (1-4)

45 x 10-3Stuck_OFFRelief Valves

23 x 10-5Stuck_OFFHeater

23 x 10-6Stuck_ONHeater

Severity (1-4)Failure probabilityFailure modeComponent

Figure B.5 Failure probabilities associated with critical components of the MPS.

STEP 3 – Risk Ranking:

A simple risk ranking metric can be defined as I = F.S2. However, more combinations of

these parameters can be employed.

In this example we have shown how a generic FMECA approach can be used to acquire

information for knowledge acquisition for the maintenance knowledgebase.

175

Appendix C

Notions of Similarity

The concept of similarity is represents the notion of inexact matching and can be

considered as the dual of distance concept. In general the basic similarity metric can be

expressed as sim(a1,a2), where the following properties are satisfied.

measurescedisoftermsininequalityTriangleaadaadaadiv
Similarityaasimaasimiii

itselfofneighborisentityEachaasimii
ionNormalizataasimi

tan),(),(),()(
),(),()(

1),()(
1),(0)(

111111

1221

11

21

⇒+≤
⇒=

⇒=
⇒≤≤

Generally distance d(a1,a2) is inversely proportional to similarity sim(a1,a2), for example

as shown below

),(1
1),(

21
21 aadist

aasim
+

= (7.1)

However, in real life systems such objective notions do not suffice and a fair amount of

flexibility is required while dealing with uncertainties arising due to discontinuity and

non-linearity in the data. A concept of acceptance has been introduced in [76] that tries to

quantify the subjective notion of usability of a source case. Therefore, even if the

traditional similarity metrics suggest close similarities, a source case may not be as useful

depending on the context.

176

Further, a notion of utility has been introduced as an extension to the traditional similarity

metrics in [77]. In contrast to a similarity measure, where the distance is calculated

between the query problem and the problem part of a case, utility-measure directly

assesses relevance between the query problem and the solution part of the past cases (see

Figure C.1). This approach aims at improving the effectiveness of problem solving

however, stands on a crucial assumption that the knowledge about the utility of cases for

particular problem solutions is known. While case knowledge is often already available

in the form of existing or easily collectable data-sets, the knowledge about the utility of

cases for new problem situations is usually not available in such an explicit form. It must

be acquired by consulting a domain expert who possesses implicit knowledge about the

underlying utility function. Further, the acquired knowledge has to be formalized into

similarity representation structures. This knowledge engineering task is a difficult and

time consuming procedure, rendering this approach limited to academic purposes only.

Solution

Problem

Case Base

New Solution

New Problem
Similarity

Adaptation

utility

Solution

Problem

Case Base

New Solution

New Problem
Similarity

Adaptation

utility

Figure C.1 Concept of utility is defined as a relevance between the new problem and solution of some old
problem (case) [77].

Another alternative has been suggested in [78] where the concept of utility need not be

established explicitly but is inherent in top-down approach of learning similarity function.

177

In this approach, exact utility need not be known but a relative assessment is considered

between various candidate cases. This knowledge is not considered complete for

assessing similarity but is used only to improve the regular bottom-up approach of

similarity calculation.

The most common approach taken is to use simple similarity functions to express

closeness on various dimensions and then compose them into one compound metric

through weighted averages. Table C.1 lists a number of generic similarity functions that

can be used in different situations and later combined into a composite similarity measure

as explained in Chapter 5.

Table C.1 Generic similarity measures that can be composed to create custom similarity metrics.

Similarity Function Expression

Equality Test
⎩
⎨
⎧ =

=
otherwise

aaif
aasim

0
1

),(21
21

Symmetric ordinal similarity
1||

|),(),(|1),(21
21 −

−
−=

list
listaposlistaposaasim

Symmetric set similarity ||
||1),(

21

21
21 aa

aaaasim
∪
∩

−=

Symmetric similarity of numbers with lower bound lowerboundaa
aaaasim

−
−

−=
),max(

||1),(
21

21
21

Symmetric similarity of numbers with upper bound),min(
||1),(

21

21
21 aaupperbound

aaaasim
−
−

−=

Symmetric similarity of numbers in an interval lowerboundupperbound
aaaasim

−
−

−=
||1),(21

21

Asymmetric ordinal similarity

⎪⎩

⎪
⎨
⎧

∆−

>∆
=

−
−

−=

−
−

−=∆

otherwisepos

ppifpos
aasim

list
pp

list
listaposlistapospos

3
1

21
3

1

21

21

21

1
),(

1||
||1

1||
|),(),(|1

178

Similarity Function Expression

Asymmetric set similarity ||
||),(

1

21
21 a

aaaasim ∩
=

Asymmetric similarity of numbers with lower bound

⎪⎩

⎪
⎨
⎧

∆−

>∆
=

−
−

=∆

otherwisea

aaifa
aasim

lowerboundaa
aaa

3
1

21
3

1

21

21

21

1
),(

),max(
||

Asymmetric similarity of numbers with upper bound

⎪⎩

⎪
⎨
⎧

∆−

>∆
=

−
−

=∆

otherwisea

aaifa
aasim

aaupperbound
aaa

3
1

21
3

1

21

21

21

1
),(

),min(
||

Asymmetric similarity of numbers in an interval

⎪
⎪
⎩

⎪⎪
⎨

⎧

∆−

>∆
=

−

−
=∆

otherwisea

aaifa
aasim

lowerboundupperbound

aa
a

3
1

1

21
3

1

)2,1(

|21|

Algebraic average similarity
n

sim
sim

n

i i∑== 1

Geometric average similarity
n

n
i isim

sim
∑ == 1

2

179

References

[1] Vachtsevanos, G., F.L. Lewis, M. Roemer, A. Hess, and B. Wu (2006), Intelligent Fault
Diagnosis and Prognosis for Engineering Systems: Wiley (September 29, 2006). (Pages
456).

[2] Tumer, I.Y. and A. Bajwa (1999), A Survey of Aircraft Engine Health Monitoring
Systems. in 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los
Angeles, CA: AIAA-99-2528.

[3] Chiu, C., N.-H. Chiu, and C.-I. Hsu (2004), Intelligent Aircraft Maintenance Support
System Using Genetic Algorithms and Case-Based Reasoning. International Journal of
Advanced Manufacturing Technology. 24(5-6): p. 440-446.

[4] Devaney, M. and B. Cheetham (2005), Case-Based Reasoning for Gas Turbine
Diagnostics. in 18th International FLAIRS Conference Clearwater, FL.

[5] Varma, A. and N. Roddy (1999), ICARUS: Design and Deployment of a Case-Based
Reasoning System for Locomotive Diagnostics. Engineering Applications of Artificial
Intelligence. 12: p. 681-690.

[6] Lee, S.G. and Y.C. Ng (2006), Case-Based Reasoning for On-Line Product Fault
Diagnosis. International Journal of Advanced Manufacturing Technology. 27(7-8): p.
833-840.

[7] Lehane, M., F. Dubé, M. Halasz, R. Orchard, R. Wylie, and M. Zaluski (1998),
Integrated Diagnostic System (IDS) for Aircraft Fleet Maintenance. in AAAI '98
Workshop: Case-based Reasoning Integrations. Madison, Wisconsin, USA. p. 91-95.

[8] Power, Y. and P.A. Bahri (2005), Integration Techniques in Intelligent Operational
Management : A Review. Knowledge-Based Systems. 18: p. 89-97.

[9] Gaines, J. and P.J. Sisa (2005), Machinery Health Monitoring – Sense & Respond
Logistics. Maintenance Technology January 28, 2007 [cited; Available from:
http://www.mt-online.com/articles/1205equipmentreliability.cfm.

[10] DoD (2003), Condition Based Maintenance Plus (CBM+). [cited 2007 Jan 28]; Fact
Sheet - US Air Force]. Available from: http://www.af.mil/shared/media/document/AFD-
060831-040.pdf.

[11] DoD (2006), U.S. Army CBM+ Roadmap, Revised Draft 3, DCS Logistics,G-4,
Headquarters, Department of the Army.

[12] Barlas, I., A. Ginart, and J.L. Dorrity (2005), Self-Evolution in Knowledge Bases. in IEEE
Autotestcon. Orlando, FL. p. 325-331.

[13] O'Niel, G. (2004), CBM+, Georgia Tech Research Institute: Atlanta.

180

[14] Drury, C.G. and J. Ma (2003), Language Errors in Aviation Maintenance. Year 1 Interim
Report for Federal Aviation Administration, State University of New York Buffalo

[15] Giarratano, J. and G. Riley (1998), Expert Systems. 3rd ed: PWS Publishing Company.
(Pages 856).

[16] Nick, M. and K.-D. Althoff (2001), Engineering Experience Based Maintenance
Knowledge. IESE-Report,018.01/E, Fraunhofer IESE

[17] Allen, P.A. (1994), Case-Based Reasoning: Business Applications, Knowledge
Engineering Systems. Communications of the ACM. 37(3): p. 40-42.

[18] Saha, B. and G. Vachtsevanos (2006), A Novel Model-Based Reasoning Approach to
System Fault Diagnosis. in 10th WSEAS International Conference on SYSTEMS.

[19] Rausand, M. and A. Høyland (2004), System Reliability Theory: Models, Statistical
Methods, and Applications. 2nd ed: Wiley-Interscience; 2 edition. (Pages 664).

[20] Balconi, M. (2002), Tacitness, Codification of Technological Knowledge and the
Organisation of Industry. Research Policy. 31(3): p. 357-379.

[21] Cowan, R. (2001), Expert Systems: Aspects of and Limitations to the Codifiability of
Knowledge. Research Policy. 30: p. 1355 - 1372.

[22] Motta, E. (1999), Reusable Components for Knowledge Modeling, in Frontiers in
Artificial Intelligence and Applications, IOS Press.

[23] Wilson, D. and P. Schenck (1994), Information Modeling: The EXPRESS Way: Oxford
University Press.

[24] Schreiber, A.T., J.M. Akkermans, A.A. Anjewierden, R. De Hoog, W. Van De Velde,
and B.J. Wielinga (1998), Engineering of Knowledge: The CommonKADS Methodology.
version 0.5 ed: University of Amsterdam.

[25] Gentner, D. and A.B. Markman (1997), Reasoning and Learning by Analogy:
Introduction. American Psychologist, 52: p. 45-56.

[26] Schank , R.C. and C.K. Reisbeck (1989), ed. Inside Case-Based Reasoning. 1st ed.,
Lawrence Erlbaum Associates: Hillsdale, New Jersey.

[27] Aamodt, A. and E. Plaza (1994), Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. AI- Communications 7(1): p. 39-59.

[28] Watson, I. and F. Marir (2004), Case-Based Reasoning: A Review. in 7th European
Conference, ECCBR. Berlin Heidelberg: Springer-Verlag. p. 361-374.

[29] Kolodner, J.L. (1993), Case-Based Reasoning, San Mateo, CA: Morgan Kaufmann
Publishers, Inc (Pages 612).

[30] Roth-Berghofer, T.R. (2003), Knowledge Maintenance of Case-Based Reasoning Systems
- The SIAM Methodology, University of Kaiserslautern, Germany. p. 240.

181

[31] Richter, M.M. (1997), Generalized Planning and Information Retrieval. Artificial
Intelligence - Knowledge-Based Systems, University of Kaiserslautern

[32] Gebhardt, F., A. Voss, W. Grather, and B. Schmdt-Belz (1997), Reasoning With Complex
Cases. The Kluwer International Series In Engineering and Computer Science, Boston:
Kluwer Academic Publishers. (Pages 250).

[33] Miquel, S.-M., C. Ulises, M. Montse, C. Joaquim, R.-R. Ignasi, M.-A. Hector, and R.
Francesco (2005), An Approach for Temporal Case-Based Reasoning: Episode-Based
Reasoning. in ICCBR : International Conference on Case-Based Reasoning Chicago, IL:
Springer, Berlin p. 465-476.

[34] Saxena, A., B. Wu, and G. Vachtsevanos (2005), Integrated Diagnosis and Prognosis
Architecture for Fleet Vehicles Using Dynamic Case Based Reasoning. in IEEE
Autotestcon. Orlando, FL. p. 96-104.

[35] Saxena, A., B. Wu, and G. Vachtsevanos (2006), A Hybrid Reasoning Architecture for
Fleet Vehicle Maintenance. IEEE Instrumentation and Measurement Magazine, 9(4): p.
29-36.

[36] Xia, Q. and M. Rao (1999), Dynamic Case-Based Reasoning for Process Operation
Support Systems. Engineering Applications of Artificial Intelligence. 12(3): p. 343-361.

[37] Bonissone, P. and R. Tong (1985), Editorial: Reasoning with Uncertainty in Expert
Systems. International Journal of Man-Machine Studies. 22: p. 241-250.

[38] Weber, R. (2006), Fuzzy Set Theory and Uncertainty in Case-Based Reasoning.
International Journal of Engineering Intelligent Systems. 14(3): p. 121-136.

[39] Burkhard, H.-d. and M.M. Richter (2001), ed. On the Notion of Similarity in Case Based
Reasoning and Fuzzy Logic. Springer-Verlag: London.

[40] Olsson, E., P. Funk, and M. Bengtsson (2004), Fault Diagnosis of Industrial Robots
Using Acoustic Signals and Case-Based Reasoning. in European Conference on Case-
Based Reasoning ECCBR: Berlin Heidelberg Springer-Verlag. p. 686-701.

[41] Nirmalie, W., I. Koychev, and S. Massie (2004), Feature Selection and Generalization
for Retrieval of Textual Cases. 1st ed. Advances in Case-Based Reasoning - LNAI, ed. P.
Funk, C. Gonzalez, and A. Pedro. Vol. 3155, Berlin Heidelberg: Springer-Verlag. (Pages
822).

[42] Mostek, T.A., K.D. Forbus, and C. Meverden (2000), Dynamic Case Creation and
Expansion for Analogical Reasoning. in Seventeenth National Conference on Artificial
Intelligence (AAAI). p. 323-329.

[43] Winston, P.H. (1993), Artificial Intelligence. 3rd ed: Addison-Wesley Publishing Co.
(Pages 691).

[44] Stefik, M. (1995), Introduction to Knowledge Systems. 1st ed, San Francisco, CA:
Morgan Kaufmann Publishers (Pages 896).

182

[45] Manning, C.D. and H. Schütze (1999), Foundations of Statistical Natural Language
Processing. 1st ed: MIT Press. (Pages 620).

[46] Lenz, M., A. Hubner, and M. Kinze (1998), Textual CBR, in Case-Based Reasoning
Technology: From Foundations to Applications, M. Lenz, et al., Editors, Springer Verlag.

[47] Cunningham, C.M., R. Weber, J.M. Proctor, C. Fowler, and M. Murphy (2004), ed.
Investigating Graphs in Textual Case-Based Reasoning. 1st ed. Advances in Case-Based
Reasoning - LNAI, ed. P. Funk, C. González, and P. A. Vol. 3155, Springer-Verlag:
Berlin Heidelberg.

[48] Schenkar, A., M. Last, H. Bunke, and A. Kandel (2003), Clustering of Web Documents
Using a Graph Model, in Web Document Analysis: Challenges and Opportunities, A.
Antonacopoulos and J. Hu, Editors. p. 1-16.

[49] Greenough, R. e-Smart – Electronic Support of Manufacturing Technology Work
Package Report, Cranfield University, UK

[50] Wojcik, R.H. and J.E. Hoard (1996), Survey of the State of the Art in Human Language
Technology, in Controlled Languages in Industry, R.A. Cole, et al., Editors.

[51] Unwalla, M. (2004), AECMA Simplified English. The AECMA SE Guide [cited
02/02/2007]; Available from: http://www.simplifiedenglish-
aecma.org/Simplified_English.htm.

[52] Adriaens, m.G. and D. Schreuers (1992), From COGRAM to ALCOGRAM: Toward a
controlled English grammar checker. in 14th International Conference on Computational
Linguistics. Nantes, France. p. 595-601. .

[53] ASD-Stan (2006), ASD-STE100 Simplified Technical English, Retrieved 05/10/07.from:
http://www.asd-stan.org/

[54] Smeaton, A.F. (1992), Progress in the Application of Natural Language Processing to
Information Retrieval Tasks. The Computer Journal(3).

[55] Schmidt, H. (1994), Probabilistic Part-of-Speech Tagging Using Decision Trees. in
International Conference on New Methods in Language Processing. Manchester UK. p.
44-49.

[56] Ashley, K. (1999), Progress in Text-Based Case-Based Reasoning. in 3rd International
Conference on Case-Based-Reasoning. Seeon, Germany.

[57] Liu, L.F., Z.Q. Mi, Z. Zhang, and B.Z. Liu (1998), Research on Case Organization and
Retrieval of Case and Rule Based Reasoning Approaches for Electric Power Engineering
Design. in International Conference in Power Systems Technology. Beijing, China p.
1082-1085.

[58] Garey, M.R. and D.S. Johnson (1979), Computers and Intractability: A Guide to the
Theory of NP-Completeness, New York: W.H. Freeman and Company. (Pages 340).

183

[59] Peugeot (2005), Vehicle Fault Finding. [cited February, 2007]; Available from:
http://peugeot.mainspot.net/fault_find/index.shtml.

[60] Wooldridge, M. and R.N. Jennings (1995), Agent Theories and Architectures, and
Languages: A Survey, in Intelligent Agents, M. Wooldridge and R.N. Jennings, Editors,
Springer-Verlag: Berlin. p. 1-22.

[61] Maes, P. (1995), Artificial Life Meets Entertainment: Life Like Autonomous Agents.
Communications of the ACM. 38(11): p. 108-114.

[62] Konar, A. (2000), ed. Artificial Intelligence and Soft computing: Behavioral and
Cognitive Modeling of the Human Brain. CRC Press.

[63] Barlas, I. (2004), Case-Based Temporal Reasoner. Self-Evolving Maintenance
Knowledge Bases: Navy SBIR FY2004.1,Navy SBIR FY2004.1, Intelligent Automation
Systems,Inc.

[64] Tang, L., G.J. Kacprzynski, J.R. Bock, and M. Begin (2006), An Intelligent Agent-Based
Self-evolving Maintenance and Operations Reasoning System. in IEEE Aerospace
Conference. p. 12.

[65] Sugiyama, S. (1994), Self Evolving Knowledge Base. in IEEE Systems, Man and,
Cybernetics. San Diego, CA, USA. p. 1978-1983.

[66] Sutton, R.S. and A.G. Barto (1998), Reinforcement Learning: An Introduction
Cambridge, Massachusetts: The MIT Press. (Pages 322).

[67] Watkins, C.C.H. and P. Dayan (1992), Q-Learning. Machine Learning. 8: p. 279-292.

[68] Isbell, C., C. Shelton, M. Kearns, S. Singh, and P. Stone (2001), Cobot: A Social
Reinforcement Learning Agent. in 5th International Conference on Autonomous Agents.

[69] Thomaz, A.L. and C. Breazeal. (2006), Reinforcement Learning with Human Teachers:
Evidence of Feedback and Guidance with Implications for Learning Performance. in
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI).

[70] Kaplan, F., P.-Y. Oudeyer, E. Kubinyi, and A. Miklosi (2002), Robotic Clicker Training,.
Robotics and Autonomous Systems. 38(3-4): p. 197-206.

[71] Thomaz, A.L., G. Hoffman, and C. Breazeal (2006), Reinforcement Learning with
Human Teachers: Understanding How People Want to Teach Robots. in Proceedings of
the 15th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). Univ. of Hertfordshire, Hatfield, UK. p. 352-357.

[72] Smart, W. and L. Kaelbling (2002), Effective Reinforcement Learning for Mobile Robots.
in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA
'02). p. 3404 - 3410.

[73] Reklaitis, R.G.V. and L.B. Koppel (1995), Role and Prospects for Intelligent Systems in
Integrated Process Operations. in International Conference on Intelligent Systems in
Process Engineering. p. 71-84.

184

[74] Ackoff, R.L. (1989), From Data to Wisdom. Journal of Applied Systems Analysis. 16.

[75] Vesely, W., M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III, and R. J. (2002), Fault
Tree Handbook with Aerospace Applications. version 1.1, NASA Office of Safety and
Mission Assurance

[76] Burkhard, H.-D. (1998), Extending Some Concepts of CBR - Foundations of Case
Retrieval Nets, in Case-Based Reasoning Technology, From Foundations to Applications,
M. Lenz, Editor, Springer-Verlag: London, UK. p. 17-50.

[77] Bergmann, R., M.M. Richter, S. Schmitt, A. Stahl, and I. Vollrath (2001), Utility-
Oriented Matching: A New Research Direction for Case-Based Reasoning. in German
Workshop on Case Based Reasoning, GWCBR. Baden-Baden Germany: Shaker-Verlag.
p. 264-274.

[78] Stahl, A. (2002), Defining Similarity Measures: Top-Down vs. Bottom-Up. in 6th
European Conference on Case-Based Reasoning (ECCBR): Springer. p. 406-420.

