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Abstract

Solving the SLAM (simultaneous localization and mapping) prob-
lemis one way to enable a robot to explore, map, and navigatein a
previously unknown environment. Smoothing approaches have been
investigated as a viable alternative to extended Kalman filter (EKF)-
based solutions to the problem. In particular, approaches have been
looked at that factorize either the associated information matrix or
the measurement Jacobian into square root form. Such techniques
have several significant advantages over the EKF: they are faster
yet exact; they can be used in either batch or incremental mode;
are better equipped to deal with non-linear process and measure-
ment models, and yield the entire robot trajectory, at lower cost
for a large class of SLAM problems. In addition, in an indirect but
dramatic way, column ordering heuristics automaticallyexploit the
locality inherent in the geographic nature of the SLAM problem.
Thispaper presentsthe theory underlying these methods, along with
an interpretation of factorization in terms of the graphical model
associated with the SLAM problem. Both simulation results and ac-
tual SLAM experiments in large-scale environments are presented
that underscore the potential of these methods as an alternative to
EKF-based approaches.

KEY WORDS—mobile robots, SLAM, graphical models

1. Introduction

Square Root SAM:
Simultaneous

L ocalization and
Mapping via Square
Root I nformation
Smoothing

gate previously unknown environments. In addition, in many
applications the map of the environment itself is the artifact
of interest, e.g., in urban reconstruction, search-and-rescue
operations, battlefield reconnaissance etc. As such, it is one
of the core competencies of autonomous robots (Thrun et al.
2005).

We will primarily be concerned with landmark-based
SLAM, for which the earliest and most popular methods
are based on the extended Kalman filter (EKF) (Smith et al.
1987, 1990; Moutarlier and Chatila 1989a, 1989b; Ayache and
Faugeras 1989; Leonard and Durrant-Whyte 1992, Leonard
et al. 1992). The EKF recursively estimates a Gaussian den-
sity over the current pose of the robot and the position of all
landmarks (the map). However, it is well known that the com-
putational complexity of the EKF becomes intractable fairly
quickly, and hence much effort has been focused on modify-
ing and extending the filtering approach to cope with larger-
scale environments (Newman 1999; Deans and Hebert 2000;
Dissanayake et al. 2001; Castellanos et al. 1999; Julier and
Uhlman 2001b; Leonard and Feder 2001; Guivant and Nebot
2001; Paskin 2003; Leonard and Newman 2003; Bosse et al.
2003; Thrun et al. 2004; Guivant et al 2004; Tardos et al.
2002; Williams et al. 2002; Rodriguez-Losada et al. 2004).
However, filtering itself has been shown to be inconsistent
when applied to the inherently non-linear SLAM problem
(Julier and Uhlman 2001a), i.e., even the average taken over a

The pr0b|em of simultaneous localization and mappin@rge number of eXperimentS diverges from the true solution.
(SLAM) (Smith and Cheeseman 1987; Leonard et al. 1992fince this is mainly due to linearization choices that cannot
Thrun 2003) has received considerable attention in mobie undone in a filtering framework, there has recently been
robotics as it is one way to enable a robot to explore and na\ﬁonsmerable interest in the smoothing version of the SLAM
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problem.

1.1. Smoothing and Mapping or SAM

A smoothing approach to SLAM involves not just the most
current robot location, but the entire robot trajectory up to the
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current time. A number of authors considered the problem of  used to immediately obtain the optimal robot trajectory
smoothing the robot trajectory only (Chatila and Laumond and map.

1985; Lu and Milios 1997a, 1997b; Gutmann and Konolige

2000; Konolige 2004, Eustice et al. 2005), which is particu- Factoring the information matrix is known in the sequen-
larly suited to sensors such as laser rangefinders that easié} estimation literature as square root information filtering
yield pairwise constraints between nearby robot poses. Mof8RIF), and was developed in 1969 for use in JPL's Mariner
generally, one can consider thigl SLAM problem (Thrun 10 missions to Venus (as recounted in Bierman 1977). The
et al. 2005), i.e., the problem of optimally estimating the endse of square roots of either the covariance or information
tire set of sensor poses along with the parameters of all featuraatrix results in more accurate and stable algorithms, and,
in the environment. In fact, this problem has a long historguoting Maybeck (1979) “a number of practitioners have ar-
in surveying (Golub and Plemmons 1980), photogrammetgued, with considerable logic, that square root filters should
(Brown 1976; Granshaw 1980; Slama 1980; Cooper and Rodlways be adopted in preference to the standard Kalman filter
son 1996), where it is known as “bundle adjustment”, antecursion”. Maybeck briefly discusses the SRIF in a chapter
computer vision (Faugeras 1993; Szeliski and Kang 1998n square root filtering, and it and other square root type al-
1994; Triggs et al. 2000; Hartley and Zisserman 2000), whegmrithms are the subject of a book (Bierman 1977). However,
it is referred to as “structure from motion”. Over the last fiveas far as this can be judged by the small number of references
years in particular there has been a flurry of work in whicin the literature, the SRIF and the square root information
these ideas were applied in the context of SLAM (Deans arsthoother (SRIS) are not often used.

Hebert 2000; Duckett et al. 2000, 2002; Howard et al. 2001;

Frese and Duckett 2003; Frese et al. 2005; Folkesson a .

Christensen 2004; Folkesson et al. 2005; Frese 2004, Zo%gi_s.%arseLmear Algebra, Graph Theory, and Sparse

Thrun et al 2005).

In this paper we show how smoothing can be a very fagthe key to performance is to capitalize on the large body of
alternative to filtering-based methods, and that in many casggrk in sparse linear algebra and fully exploit the sparseness
keeping the trajectory around helps rather than hurts perfgsf the matrices associated with the smoothing SLAM prob-
mance. In particular, the optimization problem associated witem. The most dramatic improvement in performance comes
full SLAM can be concisely stated in terms of sparse linegfom choosing a goodariable ordering when factorizing a
algebra, which is traditionally concerned with the solution ofnatrix. To understand this fact better, one needs to examine
large least-squares problems (Golub and Van Loan 1996).te close relationship between SLAM-like problems, linear
this framework, we investigate factorizing either the informaa|gebra, and graph theory. Graph theory has been central to
tion matrixZ or the measurement Jacobidmnto square root sparse linear algebra for more than 30 years (George et al.
form, as applied to the problem of simultanesumothing  1993). For example, while most often used as a “black box”
and mapping (SAM). Because they are based on matrix squaigigorithm, QR factorization is in fact an elegant computation
roots, we will refer to this family of approachessasiareroot  on a graph. This is a recurring theme: the state of the art in
SAM, or +/SAM for short, first introduced in Dellaert (2005). |inear algebra is a blend of numerical methods and advanced
We propose thay/ SAM is a fundamentally better approach tograph theory, sharing many characteristics with inference al-
the problem of SLAM than the EKF, based on the realizatiogorithms typically found in the graphical models literature
that: (Cowell et al. 1999). In particular, the graph-theoretic algo-

rithm underlying the solution of sparse least-squaresiis
* in contrast to the extended Kalman filter covarianceble elimination, in which each variable (such as a robot pose
or information matrix, whictboth become fully dense or a landmark position) is expressed in terms of other vari-
over time (Paskin 2003; Thrun et al. 2004), the inforables. The order in which the variables are eliminated has a
mation matrixZ associated with smoothing is and stays$arge impact on the running time of matrix factorization al-
sparse; gorithms such as QR and Cholesky factorization. Finding an
optimal ordering is an NP-complete problem, but there are
* in typical mapping scenarios (i.e., not repeatedlgeveral ordering heuristics and approximate algorithms that
traversing a small environment) this mattixor, al- perform well on general problems (Amestoy et al. 1996; Heg-
ternatively, the measurement Jacobianare much gernes and Matstoms 1996) and are built into programs like
more compact representations of the map covarianb&ATLAB (Matstoms 1994).
structure; While general-purpose ordering methods drastically im-
prove performance, yet another order-of-magnitude improve-
* 7 or A, both sparse, can be factorized efficiently usment can be obtained by exploiting the specific graphical
ing sparse Cholesky or QR factorization, respectivelgtructure of the SLAM problem when ordering the variables.
yielding a square root information matrikthat can be Looking at SLAM interms of graphs has arich history in itself
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(Brooks 1985; Tang and Lee 1992; Golfarelliet al 1998, 200Ihodel corresponding to this network is
and has led to several novel and exciting developments in the N .

ast few years (Murphy 1999; Montemerlo et al. 2002; Frese
gnd Ducli/ett 20(03; Iga)s/kin 20083; Folkesson and Christensenl (%> L» 2) = P(xo) 1—[ Pxilxig, u;) H Pzilxi, 1)
2004; Frese et al. 2005; Thrun et al. 2004, 2005; Folkesson = = 1)
etal. 2005). Below we more closely examine the tight connec-
tion between the graphical model view and the sparse lineghere P (x,) is a prior on the initial stateP (x;|x;_1, u;) is
algebra formulation of SLAM. It is well known that the in- the motion model, parameterized by a control input, and
formation matrixZ is associated with the undirected graphp (z|x, 1) is thelandmark measurement model. The above as-
connecting robot poses and landmarks (see, e.g., Thrun et@dimes a uniform prior over the landmaik$ urthermore, it
2004). Less readily appreciated is the fact that the measuggssumes that the data-association problem has been solved,
ment Jacobian is the matrix of thefactor graph associated j.e., that the indices and j, corresponding to each measure-
with SLAM. In addition, the square root information matrixmentz, are known.
R, the result of factorizing eithef or A, is essentially in  Asis standard in the SLAM literature (Smith et al. 1990;
correspondence with a junction tree, known from inferenceeonard et al. 1992; Castellanos et al 1999; Dissanayake et al.
in graphical models (Cowell et al. 1999) and also recently001), we assume Gaussian process and measurement models
applied in SLAM (Paskin 2003). Exploiting domain knowl-(Maybeck 1979), defined by
edge to obtain good orderings is also a trend in linear algebra

(Davis and Stanley 2004), and we believe that even more ef- X = filxi_, u) +w;, &

ficient algorithms can be developed by viewing the problem 1

as one of computation on a graph. P(x;|xi 1, 1) eXp—EIIf,-(xifl, u) — x; ”i,- (2)
wheref;(.) is a process model, and is normally distributed

2. SLAM and its Graphs zero-mean process noise with covariance matrixand

SLAM refers to the problem of localizing a robot while si- %= (s L) o &

multaneously mapping its environment, illustrated by the ex- 1

ample of Figure 1. In this section we introduce the SLAM P(ailxi . 1) oc exp— I (xi. 1) — 2l 3)

problem, the notation we use, and show how the three main

graphical model representations known in the literature eagtheres,(.) is a measurement equation, andis normally
yield a unique view of the SLAM problem that emphasizes distributed zero-mean measurement noise with covariapce
certain aspect of the problem. Later in the paper the connetbove|e||2 £ ¢ 5 eis defined as the squared Mahalanobis
tion is made between these graphs and their (sparse) mattistance given a covariance matiix The equations above
equivalents. Below we assume familiarity with EKF-baseehodel the robot’s behavior in response to control input, and
approaches to SLAM (Smith et al. 1990; Leonard et al. 199%s sensors, respectively.

Castellanos et al. 1999; Dissanayake et al. 2001). We do not

re-derive the extended Kalman filter. Rather, in Section 3wep g AM asa Factor Graph

immediately take a smoothing approach, in which both the
map and the robot trajectory are recovered. While belief nets are a very natural representation to think

about the generative aspect of the SLAM probldattor

graphs have a much tighter connection with the underlying
21. SLAM As a Belief Net optimization problem. As the measurementi Figure 1 are

known (evidence, in graphical model parlance), we are free
Following the trend set by FastSLAM and others (Murphyo eliminate them as variables. Instead we consider them as
1999; Montemerlo et al 2002; Paskin 2003; Frese and DucRarameters of the joint probability factors over totual un-
ett 2003; Folkesson and Christensen 2004; Thrun et al. 200Bhowns. This naturally leads to the well known factor graph
we formulate the problem by referring tobalief net repre- representation, a class of bipartite graphical models that can be
sentation. A belief net is a directed acyclic graph that encodased to represent such factored densities (Kschischang et al.
the conditional independence structure of a set of variableéZ)01). In a factor graph there are nodes for unknowns and
where each variable only directly depends on its predecessarxles for the probability factors defined on them, and the
in the graph. The model we adopt is shown in the top left afraph structure expresses which unknowns are involved in
Figure 1. Here we denote the state of the robot at'théme  each factor. The factor graphs for the examples from Figure 1
step byx;, with i € 0..M, a landmark by;, with j € 1..N, are shown in Figure 2. As can be seen, there are factor nodes
and ameasurement by, withk € 1..K. The joint probability for both landmark measuremenjisand odometry links;.
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x X x X

Fig. 1. Bayesian belief network of a small SLAM problem (top left) and a more complex synthetic environment. The synthetic
environment contains 24 landmarks with a simulated robot taking 422 bearing & range measurements along a trajectory of 95
poses. The objective of SLAM is to localize the robot while simultaneously building a map of the environment. In addition
to this, Full SLAM seeks to recover the entire robot trajectory. In the Bayesian belief network representation, theoftate

the robot is governed by a Markov chain, on top, while the environment of the robot is represented at the bottom by a set of
landmarkd. The measurements in the middle layer, are governed both by the state of the robot and the parameters of the
landmark measured.

Fig. 2. Factor graph representation of the Full SLAM problem for both the simple example and the synthetic environment in
Figure 1. The unknown poses and landmarks correspond to the circular and square variable nodes, respectively, while each
measurement corresponds to a factor node (filled black circles).
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In the SLAM problem we (typically) consider only single which leads us via (2) and (3) to the following non-linear
and pairwise cliques, leading to the following factor grapteast-squares problem:
expression for the joint density over a set of unknowns
©* = argmin
P@) o [Jei@) [T v6.,6) 4
i {i.jhi<j M K
Typically the potentialg, (6;) encode a prior or a single mea- Z i eimg i) — x; ”i + Z s Ceig 1) — Zk”§:k (5)
surement constraint at an unknown € ®, whereas the i=t k=t
pairwise potentialg;; (6;, 6;) relate to measurements or con-Regarding the prio (x,), we will assume that, is given
straints that involve the relationship between two unknowngnd hence it is treated as a constant below. This considerably
6; ande; . Note that the second productis over pairwise cliquesimplifies the equations in the rest of this document. This is
{i, j}, counted once. The equivalence between equations (#hat is often done in practice: the origin of the coordinate
and (4) can be readily established by taking system is arbitrary, and we can then just as welkfiat the
So(e) o Pxo) ggglljr;n The e.xp.osmpn is easily adapted to the case where this
ption is invalid.
In practice one always considers a linearized version of

Vi1 (Xio1, X;) o P(xi]xi-1, u;) problem (5). If the process modefsand measurement equa-
tions i, are non-linear and a good linearization point is not
Wi Kis 1) o< P(zelxi,, 1) available, non-linear optimization methods such as Gauss—
Newton iterations or the Levenberg—Marquardt algorithm will
23 SLAM asa Markov Random Field solve a succession of linear approximations to (5) in order to

approach the minimum (Dennis and Schnabel 1983). This
Finally, a third way to express the SLAM problem in termss similar to the extended Kalman filter approach to SLAM
of graphical models is vidarkov random fields, in which  as pioneered by Smith et al. (1987, 1990) and Leonard and
the factor nodes themselves are eliminated. The graph of Barrant-Whyte (1991), but allows for iterating multiple times
MRF is undirected and does not have factor nodes: its agy convergence while controlling in which region one is will-
jacency structure indicates which variables are linked byigag to trust the linear assumption (hence, these methods are
common factor (measurement or constraint). At this level @fften called region-trust methods).
abstraction, the form (4) corresponds exactly to the expres- We now linearize all terms in the non-linear least-squares
sion for a pairwise Markov random field (Yedidia et al 2000)objective function (5). In what follows, we will assume that
hence MRFs and factor graphs are equivalent representati@fier a good linearization point is available or that we are
here. The MRFs for the examples from Figure 1 are showgorking on one iteration of a non-linear optimization method.
in Figure 4. Note that it looks very similar to Figure 2, butin either case, we can linearize the process terms in (5) as
an MRF is a fundamentally different structure from the factofollows:
graph (undirected vs. bipartite).

Jilxic, w) —x = {fi(x,-o,l» u;) + F','iil(sxi—l} - {X,-O + 5)61'}

3. SAM asa L east Squares Problem = {F x4 —6x;) — a, (6)

While the previous section was concerned with modeling, wehere F/ ! is the Jacobian of;(.) at the linearization point
now discuss inference, i.e., obtaining an optimal estimate fgf ., defined by

the set of unknowns given all measurements available to us.

We are concerned witemoothing rather than filtering, i.e., pi-1 A 0fiCxig, wi)
we would like to recover the maximum a posteriori (MAP) ' 0x;_q X0
estimate for the entire trajecto® = {x;} and the mag. =

A . . .
{1;}, given the measuremenss = {z,} and control inputs anda; = x — fi(x’,. u;) is the odometry prediction error

U = {u;}. Letus collectall unknowns il andL in the vector (note that, here is given and hence_const_an_t). The linearized
measurement terms in (5) are obtained similarly,

= (X, L). Under the assumptions made above, we obtain

_th_e maximum a posteriori (MAP) esumgte by maximizing the he(xi 1) — 2 & {hk(x,i» l?k) + HSx, + Jk/k(;ljk} _z

joint probability P (X, L, Z) from Equation 1, . ,

N = {H}ox;, + Jj*81,} — (7)

®" =argmax P(X,L|Z) = argmax P(X, L, Z)
© © whereH* andJ/* are respectively the Jacobiangf.) with

respect to a change ij and/; , evaluated at the linearization

Ji?

= argmin —logP(X, L, Z)
[S]
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Fig. 3. The undirected Markov random fields associated with the SLAM problems from Figure 1.

point (xl.(i , lj?k): Finally, after collecting the Jacobian matrices into a matrix
A, andthe vectorg andc, into aright-hand side (RHS) vector
H}* 2 M J 4 M b, we obtain the following standard least-squares problem,
axik 9,19 aljk «0.19) .
T R 8" = argmin ||AS — b||3 9)
8

andc, = z, — i (xp, l.‘,?k) is the measurement prediction error.

Using the linearized process and measurement models {#yich is our starting point belowd can grow to be very large,
and (7), respectively, (5) results in but is quite sparse, as illustrated in Figure 4Zlfd;, andd,

are the dimensions of the state, landmarks, and measurements,
A'ssizeis(Nd, + Kd.) x (Nd, + Md,). In addition,A has a

M
* H i—1 i 4112 i .
= argmin {Z 1F70%im0 + G — aill, typical block structure, e.g., witht = 3, N = 2, andk = 4:

i=1

Gt a

K 1 1
kg, Jksr 2 F} G? a

+ ; | H 8x;, + J8L, Ck”):k} (8) 2 Ff G2 ai

. . A= H} Ji , b= c

i.e., we obtain dinear least-squares problem éthat needs Hll ! J2 Cl

to be solved efficiently. To avoid treatidg; in a special way, 2 H2 J1 2 Cz

we introduce the matriG! = —1,,, , with d the dimension s H3 ® J2 :

of x;. - ¢ ‘- L

By a simple change of variables we can drop the covarianédove the top half describes the robot motion, and the bot-
matricesA; and X, from this point forward. Withz-*2the tom half the measurements. A mixture of landmarks and/or
matrix square root of. we can rewrite the Mahalanobis normmeasurements of different types (and dimensions) is easily
as follows, accommodated.

lel} £ "= = (Z772) (£7%e) = |27 . .
4. A Linear Algebra Per spective

i.e., we can always eliminatg; from (8) by pre-multiplying

F/~', G!, anda; in each term withh; 72, and similarly for the  In this section we briefly review Cholesky and QR factoriza-

measurement covariance matricés For scalar measure-  tion and their application to the full rank linear least-squares

ments this simply means dividing each term by the measure-  (LS) problem in (9). This material is well known and is given

ment standard deviation. Below we assume that this has beemrimarily for review and to contrast the linear algebra algo-

done and drop the Mahalanobis notation. rithms with the graph-theoretic view of the next section. The
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Fig. 4. (a) The measurement Jacohiaassociated with the problem in Figure 1, which has®+ 2 x 24 = 333 unknowns.

The number of rows, 1126, is equal to the number of (scalar) measurements. (b) (top) the informatiah gatrixd ; (middle)
its upper triangular Cholesky triangle (bottom) an alternative factarnd R obtained with a better variable ordering (colamd
from Dauvis et al. 2004).
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exposition closely follows Golub and Van Loan (1996), whickelements below the diagonal are zeroed out by multiplying

can be consulted for a more in-depth treatment. on the left with aHouseholder reflection matrix H;. After n
For a full-rankm x n matrix A, withm > n, the unique LS iterationsA is completely factorized:

solution to (9) can be found by solving thermal equations:

H,.H,HA= Q™A = [ R } (12)

ATAS* = ATb (10) 0

This is normally done by Cholesky factorization of inéor- The orthogonal matri_>Q is not usually forme_d: instead, the
mation matrix Z, defined and factorized as follows: transformed RH®)" b is computed by appendirgas an extra
column toA. Because th@ factor is orthogonal, we have:

Z=2ATA=R'R (11) 2
1A8 — bl = | Q" A — Q" ||, = RS — dl; + llell3
The Cholesky triangle R is an upper-triangulat x n ma- y )
Clearly, |le||; will be the least-squares residual, and the LS

trix* and is computed usinGholesky factorization, a variant lutions® be obtained by solving th
of LU factorization for symmetric positive definite matricesS° utiond™ can be obtained by solving the square system

For dense matrices Cholesky factorization requifg8 flops. RS = d (13)
After this, §* can be found by solving
. via back-substitution. The cost of QR is dominated by the cost
first R"y = A"b and thenRs" =y of the Householder reflections, which i§2— n/3)n?.
Comparing QR with Cholesky factorization, we see that
th algorithms require (mn?) operations whem: > n,
but that QR-factorization is a factor of 2 slower. While these
numbers are valid for dense matrices only, we have seen that
in practice LDL and Cholesky factorizatidar outperform
QR factorization on sparse problems as well, and not just by
a constant factor.

by back-substitution. The entire algorithm, including computy
ing half of the symmetricA” A, requires(im + n/3)n? flops.
For the example of Figure 1, bafhand its Cholesky trian-
gle R are shown alongsidé in Figure 4. Note the very typical
block structure of when the columns o are ordered in the
standard way (Triggs et al. 2000), e.g., traject&rsirst and
then mapL (to which we refer below as thE L ordering):

7| AxAx Iu 5. A Graphical Model Per spective
| I, ATA,
5.1. Matrices < Graphs

A qT ;
Hte:e I}X(L - dAX Ar ; ncoﬂetshth((aj.correlallu;n bketweenbrob dof:rom the exposition above it can now be readily appreciated
Zideosnal and mapr, an € diagonal blocks are banty . the measurement Jacobidris the matrix of thefactor

; o . . raph associated with SLAM. We can understand this state-
A variant of Cholesky factorization which avoids Comput-g ap ! Wi u |

. tsis LDL factorizati hich ; | ment at two levels. First, every block ef corresponds to
INg Square roots s actorization, which computes aloWef, o term in the least-squares criterion (8), either a landmark
triangular matrixL and a diagonal matri® such that

measurement or an odometry constraint, and every block-
T—R'R=LDLT row corresponds to one factor in the factor graph. Within

each block-row, the sparsity pattern indicates which unknown

An alternative to Cholesky factorization that is bothPoses and/or landmarks are connected to the factor. Hence,

more accurate and numerically stable is to proceed via QHeblock-structure of A corresponds exactly to the adjacency
factorizationwithout computing the information matrix. In-  matrix of the factor graph associated with SAM.

stead, we compute the QR-factorizatiootself along with Second, atthe scalar level, every rdnin A (see Figure 4)
its corresponding RHS: corresponds to a scalar teti;s — b;||2 in the sparse matrix
least-squares criterion (9) , as
T A R Ty, _ d
QA—[ o| 2%=|. 148 = bIZ =Y 148 = byl

Here Q is anm x m orthogonal matrix, ana is the upper-
triangular Cholesky triangle. The preferred method for fa
torizing a dense matriA is to computeR column by column,
proceeding from left to right. For each columyall non-zero

CI:lence, this definesfinely structured factor graph, via

1 1
P(®) o exp—5 [|A8 — bll; = [ Texp—5 14,6 — byl

1. Some treatments, including Golub and Van Loan (1996), define tr]e_ . . . . .
Cholesky triangle as the lower-triangular mattix = R7, but the other It IS important to realize, that in this finer view, the block-

convention is more convenient here. structure of the SLAM problem is discarded, and that it is
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this graph that is examined by general purpose linear algebraOnce the chordal graph (Ris obtained, one can ob-
methods. By working with the block-structure instead, we wiltain theelimination tree of R, defined as a depth-first span-
be able to do better. ning tree of the chordal graph after elimination, and which
As noted before in Thrun et al. (2004) and by others, this useful in illustrating the flow of computation during the
information matrixZ = AT A is the matrix of the Markov back-substitution phase. To illustrate this, Figure 6 shows the
random field associated with the SLAM problem. Agaah, chordal graph obtained by using the well known heuristic
the block-level the sparsity pattern of A” A isexactly thead-  of first eliminating landmarks (Triggs et al. 2000), and then
jacency matrix of the associated MRF. The objective func- poses (which we will call thé X ordering). The correspond-
tion in Equation 5 corresponds to a pairwise Markov randoting elimination tree is shown in Figure 7. The root of the tree
field (MRF) (Winkler 1995; Yedidia et al. 2000) through thecorresponds to the last varialdleto be eliminated, which is
Hammersley—Clifford theorem (Winkler 1995), and the nodethe first to be computed in back-substitution (Equation 13).
in the MRF correspond to the robot states and the landmark3omputation then proceeds down the tree, and while this is
Links represent either odometry or landmark measurementgpically done in reverse column order, variables in disjoint
In Paskin (2003) and Thrun et al. (2004) the MRF grapbubtrees may be computed in any order; see Dellaert et al.
view is taken to expose the correlation structure inherent in tli2005) for a more detailed discussion. In fact, if one is only
filtering version of SLAM. It is shown there that inevitably, interested in certain variables, there is no need to compute any
when marginalizing out the past trajectoxy.,,_,, the infor-  of the subtrees that do not contain them.
mation matrix becomes completely dense. Hence, the em-However, the analysis does not stop there. The grapgh of
phasis in these approaches is to selectively remove links has a clique-structure which can be completely encapsulated
reduce the computational cost of the filter, with great succesn.a rooted tree data-structure callediguetree (Pothen and
In contrast, in this paper we consider the MRF associated wiun 1992; Blair et al. 1993), also known as jhection tree
the smoothing information matrixZ, which doesiot become in the Al literature (Cowell et al 1999). As an example, the

dense, as past states are never marginalized out. clique-tree for the. X -ordering on the problem of Figure 1 is
shown in Figure 8. The correspondence is almost one-to-one:
5.2. Factorization < Variable Elimination every R corresponds to exactly one clique tree, and vice versa,

The one question left is what graph the square root infoFﬂOdU'O column re-orderings within cliques. The Clique treeis
mation matrixR Corresponds to? Remember thHatis the also the basis for multifrontal QR methods (Matstoms 1994),
result of factorizing eithef or A as in Section 4. Cholesky Which we have also evaluated in our simulations below. In
or QR factorization are most often used as “black box” amultifrontal QR factorization, computation progresses in this
gorithms, but in fact they are similar to much more recentlifee from the leaves to the root to factorize a sparse matrix,
developed methods for inference in graphical models (Covnd then from the root to the leaves to perform a backward
ell et al. 1999). It will be seen below th& is essentially in substitution step. A complete treatment of the relationship
correspondence with a junction tree, known from inference €tween square root information matrices and clique trees is
graphical models and also recently applied in SLAM (Paskieyond the scope of the current paper, but in other work we
2003). have used the clique-tree structure in novel algorithms for
Both factorization methods, QR and Cholesky (or LDL)distributed inference (Dellaert et al. 2005).
are based on the variable elimination algorithm (Blair and
Peyton 1993; Qowell et al. _19_99). The _difference betweega Improving Performance < Reducing Fill-in
these methods is that QR eliminates variable nodes from the
factor graph and obtaind = QR, while Cholesky or LDL The single most important factor to good performanceisthe
start from the MRF and hence obtatf A = R”R. Both order in which variables are eliminated. Different variable
methodseliminate one variable at a time, starting with, orderings can yield dramatically more or Id8kin, defined
corresponding to the leftmost column of eitheror Z. The as the amount of edges added into the graph during factor-
result of the elimination is tha, is now expressed as a linearization. As each edge added corresponds to a non-zero in the
combination of all other unknowrss. ;, with the coefficients Cholesky triangler, the cost of computing botR and back-
residing in the corresponding roR; of R. In the process, substitution is heavily dependent on how much fill-in occurs.
however, new dependencies are introduced between all vadinfortunately, finding an optimal ordering is NP-complete.
ables connected #), which causes edges to be added tothe = Discovering algorithms that approximate the optimal ordering
graph. The next variable is then treated in a similar way, untiis an active area of research in sparse linear algebra. A popu-
all variables have been eliminated. This is exactly the prdar method for medium-sized problemsadamd (Amestoy
cess of moralization and triangulation familiar from graphicaét al. 1996), which works on the columnsAfAnother pop-
model inference. The result of eliminating all variables is a didlar method, based on graph theory and often used to speed
rected, triangulated (chordal) graph, shown for our example up finite element methods, is generalized nested dissection
Figure 5. (Lipton and Tarjan 1979a, 1979b).
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A/

Fig. 5. The triangulated graph for a good ordering (colamd, as in Figure 4). Thigliieaed graph, where each edge
corresponds to a non-zero in the Cholesky triamgléNote that we have dropped the arrows in the simulation example for
simplicity.

Fig. 6. The triangulated graph corresponding to the well known heuristic of first eliminating landmarks, and then poses
(LX ordering).
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0203020
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Fig. 7. The elimination tree for theX ordering of Figure 6, showing how the state and landmarks estimates will be computed
via back-substitution: the root is computed first—here the first pose on the left—and proceeds down the Markov chain to the
right. Landmarks can be computed as soon as the pose they are connected to has been computed.

[ 144 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 X7 x6 x5 x4 x3 x2 x1 x0 ]

[137 x22 x21]

110 x25 x24 x23 ]

Q[ 130 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 ]

146 x52 X51 x50 x49 x48 47 x46 x45 x44 x43 |

[ 129 x57 x56 x55 x54 x53 |

[ 132 x61 x60 x59 x58 ]

[ 145 x73 x72 x71 x70 x69 X68 X67 x66 X65 x64 x63 x62 |

Fig. 8. The clique-tree corresponding to th& ordering, i.e., Figures 6 and 7. For simplicity, the larger graph only shows the
frontal variables of each clique (those that do not also appear in cliques below that node). It can be seen that the root consists
of the small piece of trajectory from the root to where the first landmark “subtree” branches off.
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Given that an optimal ordering is out of reach in genAlgorigthm 1. Batch./SAM
eral, heuristics or domain-knowledge can do much better than , .
general-purpose algorithms. A simple idea is to use a stan- 1+ Build the measurement Jacobiarand the RHS as
dard method such aslamd, but have it work on the sparsity explained in Section 3.
pattern of the blocks instead of passing it the original mea-
surement Jacobiad. In other words we treat a collection of
scalar variables such as thendy position and orientatioa 3. Solves: = argmin, ||Ap5p — b||§ using either the

as a single variable and create a smaller graph which encap-  Cholesky or QR factorization method from Section 4.
sulates the constraints between these blocks rather than the

individual variables. Not only is it cheaper to cellamd on 4. Recover the optimal solution By<- §,,, with r = p~.

this smaller graph, it also leads to a substantially improved

ordering. As we mentioned above, the block-structure is real In tests we have obtained the best performance with sparse

knowledge about the SLAM problem and is not accessible {DL factorization (Davis 2004), which, as mentioned above,

colamd or any other approximate ordering algorithm. Whilés a variant on Cholesky factorization that compufes=

the effect on the performance of colamd is negligible, we haveD L", with D a diagonal matrix and. a lower-triangular

found that making it work on the SLAM MRF instead of onmatrix with ones on the diagonal.

the sparse matrig directly can yield improvements of 2to  The same algorithm applies in the non-linear case, but is

sometimes 100-fold, with 15 being a good rule of thumb. simply called multiple times by the non-linear optimizer. Note
Note that there are cases in which any ordering will resulhat the ordering has to be computed only once, however.

in the same large fill-in. The worst-case scenario is a fully

connected bipartiteMRF: every landmark is seen from ev-¢ 2. | inear | ncremental v/SAM

ery location. In that case, eliminating any variable will com-

pletely connect all variables on the other side, and after thét & robotic mapping context, an incremental version of the

the structure of the clique tree is completely known: if a pos@bove algorithm is of interest. The treatment below holds for

was chosen first, the root will be the entire map, and all pos€§her the linear case, or when a good linearization point is

will be computed once the map is known. Vice versa, if available.

landmark is chosen, the trajectory will be the clique tree root It is well known that factorizations can be updated incre-

clique, and computation will proceed via an (expensive) tranentally. One possibility is to use a rank 1 Cholesky update, a

jectory optimization, followed by (very cheap) computatiorstandard algorithm that computes the fagtocorresponding

of landmarks. Interestingly, these two cases form the bads

of the standard partitioned inverse, or “Schur complement”,

which is well known in structure from motion applications

(Triggs et al. 2000; Hartley and Zisserman 2000) and alsgheres” is a new row of the measurement Jacobiacorre-
used in GraphSLAM (Thrun et al. 2005). sponding to new measurements that come in at any given time
However, the worst-case scenario outlined above is an &tep. However, these algorithms are typically implemented
ceptional case in robotics: sensors have limited range and #e dense matrices only, and it is imperative that we use a
occluded by walls, objects, buildings, etc. This is especiallyparse storage scheme for optimal performance. While sparse
true in large-scale mapping applications, and it essentialiyholesky updates exist (Davis and Hager 1996), they are rel-
means that the MRF will in general be sparsely connectegively complicated to implement. A second possibility, easy

2. Find a good column ordering, and reordeti, < A.

T =7 +aa"

even though it is one large connected component. to implement and suited to sparse matrices, is to use a series
of Givens rotations (Golub and Van Loan 1996) to eliminate
6. Square Root SAM the non-zeros in the new measurement rows one by one.

In this section we take everything we know from above an%tA third possibility, which we have adopted for the simu-

. ——— ) ions below, is to update the mattixand simply use a full
state ”"‘?e simpl SAM variants depending on WhethertheyCholesky (or LDL) factorization. While this seems expen-
operate in batch or incremental mode, and on whether n

linearities are involved or not o£|§/e, we have found that with good orderings the dominant
' cost is no longer the factorization but rather the updating of
6.1. Batch +/SAM 7. For example, the experimental results in Section 8 show

i ] ] ) that the sparse multiplication to obtain the Hessian is about
A batch-version ofsquare root information smoothing and  fjye times as expensive as the factorization at the end of the

mapping is straightforward and a completely standard way ofyn A more detailed discussion of asymptotic bounds can be
solving a large, sparse least-squares problem: found in Krauthausen et al. (2006). A comparison with the
2. Bipartite is here used to indicate the partition of variables into poses afaivens scheme above would be of interest, but we have not
landmarks, not in the factor graph sense. done so yet.
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Importantly, because the entire measurement history is ir - :
plicitin Z, one does not need to factorize at every time-step. e Eamer ¥ |
principle, we can wait until the very end and then compute tt | f fered |
entire trajectory and map. At any time during an experimen i 3 pae | e B o i e ¥
however, the map and/or trajectory can be computed by a sii ! bt et fhed | _
ple factorization and back-substitution, e.g., for visualizatio . =Fh—=3 =il
and/or path planning purposes. : : ! 1]

6.3. Non-linear Incremental +/SAM e i St sl

If in an incremental setting the SLAM problem is non-linea bk 1ol Jied f Luad | |

and a linearization point is available, then the linear incre

mental solution above applies. Whether this is the case ve

much depends on the sensors and prior knowledge availaFig. 9. A synthetic Manhattan world with 500 landmarks
to the robot. For example, in indoor mobile robots there i@ots on square city blocks) along with a 1000-step random
often no good absolute orientation sensor, which means wgeet walk trajectory (lines between blocks with a dot for
have to linearize around the current guess for the orientatiogach step), corresponding to 14000 measurements taken. The
This is exactly why EKFs have problems in larger-scale envineasurements (gray dots) do not line up exactly with the
ronments, as these potentially wrong linearization points afendmarks due to simulated noise.

“baked into” the information matrix when past robot poses
are eliminated from the MRF.

A significant advantage of the smoothing approach is the
fact that we never commit to a given linearization, as no vari-
ables are ever eliminated from the graph. There are two dif-
ferent ways to re-linearize: In certain scenarios, like closing « mfgr: multifrontal QR factorization (Matstoms 1994)
of a large loop along the complete trajectory, it is cheaper to
re-linearize all variables. Essentially this means that we have * ar: MATLAB built-in QR factorization
to call the batch version above each time. On the upside, aur

experimental results will show that even this seemingly eihg retsrl]JIts are sumr?arlzed in Figure 10. We have found that,
pensive algorithm is quite practical on large problems whetdg'der these circumstances,

an EKF approach is intractable. The alternative way is favor- 1. The freely available sparse LDL implementation

able when only a smaller number of variables is affected by by Davis (2004) outperforms MATLAB's built-in
the change in the linearization point. In this case downdating Cholesky factorization by a factor of 30%.

and updating techniques (Triggs et al. 2000) can be applied to

temporarily remove these variables from the factor, followed 2. In MATLAB, the built-in Cholesky outperforms QR
by adding them in again using the new linearization point. We factorization by a large factor.

plan to evaluate this approach in future work.

« chol: MATLAB built-in Cholesky factorization

3. Multifrontal QR factorization is better than MATLAB's
QR, but still slower than either Cholesky or LDL.

7. Smulation Results L ,
4. While this is not apparent from the table, using a

7.1. Batch vSAM good column ordering isnuch more important than
the choice of factorization algorithm: QR factorization

We have experimented at length with different implementa-  with a good ordering will outperform LDL or Cholesky

tions of Cholesky, LDL, and QR factorization to establish with a bad ordering.

which performed best. All simulations were done in MAT-

LAB on a 2 GHz Pentium 4 workstation running Linux. Ex- ~ The latter opens up a considerable opportunity for original

periments were run in synthetic environments like the on@search in the domain of SLAM, as we found that injecting

shown in Figure 9, with 180 to 2000 landmarks, for trajectoeven a small amount of domain knowledge into that process

ries of length 200, 500, and 1000. Each experiment was riyfelds immediate benefits. To illustrate this, we show simula-

10 times for five different methods: tion results for a length 1000 random walk in a 500-landmark
environment, corresponding to Figure 9. Battand R are
« none: no factorization performed shown in Figure 11 for the standard (and detrimentdl)or-

dering with states and landmarks ordered consecutively. The
« |Idl: Davis’ (2004) sparse LDL factorization dramatic reduction in fill-in that occurs when using a good
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M N none [e]] chol mfqr qr
200 180 0.031 0.062 0.092 0.868 1.685
500 0.034 0.062 0.094 1.19 1.256

1280 0.036 0.068 0.102 1.502 121

2000 0.037 0.07 0.104 1.543 1.329

500 180 0.055 0.176 0.247 2.785 11.92
500 0.062 0.177 0.271 3.559 8.43

1280 0.068 0.175 0.272 5.143 6.348

2000 0.07 0.181 0.279 5.548 6.908

1000 180 0.104 0.401 0.523 10.297 42.986

500 0.109 0.738 0.945 12.112 77.849
1280 0.124 0.522 0.746 14.151 35.719
2000 0.126 0.437 0.657 15.914 25.611

Fig. 10. Averaged simulation results over 10 trials, in seconds, for environments with various number of landraarks
simulations with trajectory length® . The methods are discussed in more detail in the textnbhe method corresponds to
doing no factorization and measures the overhead.

500
1000 | ~-

1500 | J

2000 | =S

2500 | x
3000 |

3500 |

w Ao

L AT} wa? S l ' .
i) 10ee 20000 3000 i 1000 2000 a0on
nz = BO9EE nz = 216652

Fig. 11. Original information matrig and its Cholesky triangle. Note the dense fill-in on the right, linking the entire trajectory
to all landmarks. The number of non-zeros is indicatea hy
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re-ordering is illustrated by Figure 12, where we useldmd  overall trajectory length of about 190. The unknown poses
(Amestoy et al. 1996). Finally, when we use the block-orientedlere modeled as having six degrees of freedom (DOF), three
ordering heuristic discussed in Section 5.2, the fill-in dropganslational and three rotational. Even though 3DOF seems
by another factor of 2, significantly increasing computationaufficient for a planar indoor office environment, it turns out

efficiency. that 6DOF with a prior on pitch, roll and height is necessary,
since any small bump in the floor has a clearly visible effect
7.2. Incremental +/SAM on the images. The standard deviations@mdy are Q02m

and ong (yaw) 002 rad. The priors org, 6 (pitch) andy

We also compared the performance of an incremental vgfoll) are all 0 with standard deviationsad m and Q02 rad
sion of /SAM, described in Section 6, with a standard EKRespectively. The camera rig was calibrated in advance.
implementation by Simulating 500 time StepS ina SynthetiC The +/SAM approach was able to Comfortabiy deal with
environment with 2000 landmarks. The results are shown {fjs large problem well within the real-time constraints of the
Figure 14. The factorization af was done using sparse LDL application. Our approach was to invoke the batéBAM
(Davis 2004), while for the column ordering we usgthamd  a|gorithm after every three joint images taken by the robot.
(Amestoy etal. 1996), a versionadlamd for symmetric pos-  |n each of these invocations, the problem was repeatedly re-
itive definite matrices. linearized and factorized to yield an optimal update. Again we

Smoothingevery time step becomes cheaper than the EKRysed sparse LDL as the main factorization algorithm. More
when the number of landmarkg reaches 600. At the end, importantiy, for Ordering the variables we usasdlamd com-
with N = 1,100, each factorization took about 0.6 s, and thgined with the block-structured ordering heuristic. The latter
slope is nearly linear over time. In contrast, the computationg|one yielded a 15-fold improvement in the execution time of
requirements of the EKF increase quadratically withand | pL with respect tocolamd by itself.
by the end each update of the EKF took over a second. Processing the entire sequence took a total of 11 minutes

As implementation independent measures, we have algfd 10 seconds on a 2 GHz Pentium-M based laptop, and
plotted N?, as well as the number of non-zeres in the  the final result can be seen in Figure 16. The correspondence
Cholesky triangleR. The behavior of the latter is exactly op-matching yielded in 17780 measurements on a total of 4383
posite to that of the EKF: when new, unexplored terrain ignknown 3D points, taken from 260 different robot locations.
encountered, there is almost no correlation between new f8athe final step, the measurement mattixiad 36,337 rows
tures and the past trajectory and/or map, and the numbergfd 14,709 columns, with about 350¥6n-zero entries.
non-zeros per column Stays almost constant. In contrast, theThe relevant timing results are shown in Figure 17. The
EKF's computation is not affected when re-entering prevignexpected result is thahe factorization, because of the
ously visited areas—closing the loop—whereas that is exacijgod variable ordering, is now but a minor cost in the whole

whenR fill-in occurs. optimization. Instead, the largest cost is now evaluating the
measurement Jacobian(linearizing the measurement equa-
8. Experimental Results tions), which was done a total of 453 times. Its computational

demands over time are shown in the panel at the top. Next in
We have evaluated the non-linear incremental version #Re is the computation of the information mattix= A" A,
\/SA_M on a very Cha”enging, |arge-sca|e Vision-bageghown by “hessian” in the bottom panel. This is done exactly
SLAM pr0b|em' in which a mobile robot equipped with eightaS many times as LDL itself, i.e., a total of 734 times. By the
cameras traversed an indoor office environment. This is prognd of the sequence, this sparse multiplication (yielding—by
ably the most challenging data-set we have ever worked witfien—a 15Kx 15K matrix) takes about 0.6 s. In contrast,
both because of the amount of data that needed to be ddagtorizing the resulting information matriktakes just0.1s.
with, as well as the logistical and calibration issues that plague Clearly, further improvement must come from avoiding
multi-camera rigs. In addition, dealing with visual features i§nearization of the entire set of measurement equations,
complex and prone to failure. and hence keeping large parts of these expensive operations

In this case, the measurements are features extracted fré@fstant.

eight cameras mounted on top of an iRobot ATRV-Mini plat-
form, as shown in Figure 15. They are matched between sug- Djscyssion
cessive frames using RANSAC based on a trifocal camera
arrangement. The data were taken in an office environmelme square root information Smoothing approaches we pre-

with a bounding box of about 3@ by 50 m for the robot  sented in the current paper have several significant advantages
trajectory, and the landmarks sought are a set of unknown 39er the EKF:

points. The measurements consisted of the odometry provided
by the robot, as well as 260 joint images taken with vari-  They are much faster than EKF-based SLAM on large-
able distances of up tor? between successive views, and an scale problems.
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o
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000 | 3
1500

0 1000 2000 3000

nz = 256347
Fig. 12. Information matrixZ after reordering, and its Cholesky triangle. Reordering of columns (unknowns) does not affect
the sparseness @f but the number of hon-zeros Rhas dropped from approximately 2.8 million to about 250 thousand.

0 1000 2000 3000 0 1000 2000 3000
nz = BO9BE nz = 132108

Fig. 13. By doing the reordering while taking into account the special block-structure of the SLAM problem, the non-zero
count can be reduced even further, to about 130K, a reduction by a factor of 20 with respect to the Rrigiuesubstantially
less than the 500K entries in the filtering covariance matrix.
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(c) Average time per call, in seconds for the EKF (circles) and LDL factorization (asterisks)

Fig. 14. Timing results for incremental SAM in a simulated environment with 2000 landmarks, similar to the one in Figure 9,
but 10 blocks on the side. As the number of landmarks seen increases, the EKF becomes quadratically slower. Note that the
number of non-zerosz increases faster when large loops are encountered arcar200 andi = 350.

Fig. 15. Custom made camera rig, mounted on top of an ATRV-Mini mobile robot. Eight Fire-Wire cameras are distributed
equally along a circle and connected to an on-board laptop.
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Fig. 16. Projected trajectory and map after applying incremefi@A\M using visual input and odometry only. Each robot

pose is shown as an outline of the ATRV-Mini platform. The recovered 3D structure is represented by points. For comparison
the manually aligned building map is shown in gray. Given that no loop-closing occurred and considering the large scale of
the environment and the incremental nature of the reconstruction method, this result is of very high-quality. Note that features
also occur along the ceiling, and that some features outside the building outline are caused by reflections.
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Fig. 17. Timing results for incremental SAM on the sequence from Figure 16. (a) Cost of forming the Jacolian
(linearization). (b) Surprisingly, the cost for LDL factorization is ntess than forming the Hessian or information matfix
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« They are exact, in contrast to approximate methods tbrecovers the entire trajectory and is exact, and even the
deal with the EKF shortcomings. sub-optimal incremental scheme we evaluated behaves much

L ) better than the EKF as the size of the environment grows.
* They can be used in either batch or incremental modg, addition, our experiments with real robot data offer proof

« If desired, they yield thentire smoothed robot trajec- that the possibility of re-linearizing the entire trajectory at
tory. each time-step makagSAM cope well with noisy measure-

ments governed by non-linear measurement equations. Incon-
» They are much better equipped to deal with non-linedrast, non-optimal linearization cannot be recovered from in
process and measurement models than the EKF.  an EKF, which inevitabljhas to summarize it in a quadratic
(Gaussian) approximation.

Incremental implementations of the proposed method are
of great interest for real-time applications. We are currently
exploring Givens rotations as a means of incrementally updat-
ing the factor. Downdating could also allow selective changes
- Because we smooth the entire trajectory, computation@f variables affected by re-linearization. Finally, our ongoing

Comp|exity grows without bound over time, as C|ear|9NOl’k indicates that an efficient retrieval of the marginal co-
illustrated in Figure 17. In many typical mapping scevariances is possible based on the square root factor. This is
narios, however, the computational and storage dénportant for data association, an aspect of the SLAM prob-
mands of the EKF information or covariance matrix willlem that we have ignored in the present work.

grow much faster still (in the same example, it would

involve storing and manipulatingdense 15K x 15K
matrix).

< They automatically exploit locality by means of vari-
able ordering heuristics.

However, there is also a price to pay:
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