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Abstract

Solving the SLAM (simultaneous localization and mapping) prob-
lem is one way to enable a robot to explore, map, and navigate in a
previously unknown environment. Smoothing approaches have been
investigated as a viable alternative to extended Kalman filter (EKF)-
based solutions to the problem. In particular, approaches have been
looked at that factorize either the associated information matrix or
the measurement Jacobian into square root form. Such techniques
have several significant advantages over the EKF: they are faster
yet exact; they can be used in either batch or incremental mode;
are better equipped to deal with non-linear process and measure-
ment models; and yield the entire robot trajectory, at lower cost
for a large class of SLAM problems. In addition, in an indirect but
dramatic way, column ordering heuristics automaticallyexploit the
locality inherent in the geographic nature of the SLAM problem.
This paper presents the theory underlying these methods, along with
an interpretation of factorization in terms of the graphical model
associated with the SLAM problem. Both simulation results and ac-
tual SLAM experiments in large-scale environments are presented
that underscore the potential of these methods as an alternative to
EKF-based approaches.

KEY WORDS—mobile robots, SLAM, graphical models

1. Introduction

The problem of simultaneous localization and mapping
(SLAM) (Smith and Cheeseman 1987; Leonard et al. 1992b;
Thrun 2003) has received considerable attention in mobile
robotics as it is one way to enable a robot to explore and navi-
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gate previously unknown environments. In addition, in many
applications the map of the environment itself is the artifact
of interest, e.g., in urban reconstruction, search-and-rescue
operations, battlefield reconnaissance etc. As such, it is one
of the core competencies of autonomous robots (Thrun et al.
2005).

We will primarily be concerned with landmark-based
SLAM, for which the earliest and most popular methods
are based on the extended Kalman filter (EKF) (Smith et al.
1987, 1990; Moutarlier and Chatila 1989a, 1989b;Ayache and
Faugeras 1989; Leonard and Durrant-Whyte 1992, Leonard
et al. 1992). The EKF recursively estimates a Gaussian den-
sity over the current pose of the robot and the position of all
landmarks (the map). However, it is well known that the com-
putational complexity of the EKF becomes intractable fairly
quickly, and hence much effort has been focused on modify-
ing and extending the filtering approach to cope with larger-
scale environments (Newman 1999; Deans and Hebert 2000;
Dissanayake et al. 2001; Castellanos et al. 1999; Julier and
Uhlman 2001b; Leonard and Feder 2001; Guivant and Nebot
2001; Paskin 2003; Leonard and Newman 2003; Bosse et al.
2003; Thrun et al. 2004; Guivant et al 2004; Tardos et al.
2002; Williams et al. 2002; Rodriguez-Losada et al. 2004).
However,filtering itself has been shown to be inconsistent
when applied to the inherently non-linear SLAM problem
(Julier and Uhlman 2001a), i.e., even the average taken over a
large number of experiments diverges from the true solution.
Since this is mainly due to linearization choices that cannot
be undone in a filtering framework, there has recently been
considerable interest in the smoothing version of the SLAM
problem.

1.1. Smoothing and Mapping or SAM
A smoothing approach to SLAM involves not just the most
current robot location, but the entire robot trajectory up to the
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current time. A number of authors considered the problem of
smoothing the robot trajectory only (Chatila and Laumond
1985; Lu and Milios 1997a, 1997b; Gutmann and Konolige
2000; Konolige 2004; Eustice et al. 2005), which is particu-
larly suited to sensors such as laser rangefinders that easily
yield pairwise constraints between nearby robot poses. More
generally, one can consider thefull SLAM problem (Thrun
et al. 2005), i.e., the problem of optimally estimating the en-
tire set of sensor poses along with the parameters of all features
in the environment. In fact, this problem has a long history
in surveying (Golub and Plemmons 1980), photogrammetry
(Brown 1976; Granshaw 1980; Slama 1980; Cooper and Rob-
son 1996), where it is known as “bundle adjustment”, and
computer vision (Faugeras 1993; Szeliski and Kang 1993,
1994; Triggs et al. 2000; Hartley and Zisserman 2000), where
it is referred to as “structure from motion”. Over the last five
years in particular there has been a flurry of work in which
these ideas were applied in the context of SLAM (Deans and
Hebert 2000; Duckett et al. 2000, 2002; Howard et al. 2001;
Frese and Duckett 2003; Frese et al. 2005; Folkesson and
Christensen 2004; Folkesson et al. 2005; Frese 2004, 2005;
Thrun et al 2005).

In this paper we show how smoothing can be a very fast
alternative to filtering-based methods, and that in many cases
keeping the trajectory around helps rather than hurts perfor-
mance. In particular, the optimization problem associated with
full SLAM can be concisely stated in terms of sparse linear
algebra, which is traditionally concerned with the solution of
large least-squares problems (Golub and Van Loan 1996). In
this framework, we investigate factorizing either the informa-
tion matrixI or the measurement JacobianA into square root
form, as applied to the problem of simultaneoussmoothing
and mapping (SAM). Because they are based on matrix square
roots, we will refer to this family of approaches assquare root
SAM, or

√
SAM for short, first introduced in Dellaert (2005).

We propose that
√

SAM is a fundamentally better approach to
the problem of SLAM than the EKF, based on the realization
that:

• in contrast to the extended Kalman filter covariance
or information matrix, whichboth become fully dense
over time (Paskin 2003; Thrun et al. 2004), the infor-
mation matrixI associated with smoothing is and stays
sparse;

• in typical mapping scenarios (i.e., not repeatedly
traversing a small environment) this matrixI or, al-
ternatively, the measurement JacobianA, are much
more compact representations of the map covariance
structure;

• I or A, both sparse, can be factorized efficiently us-
ing sparse Cholesky or QR factorization, respectively,
yielding a square root information matrixR that can be

used to immediately obtain the optimal robot trajectory
and map.

Factoring the information matrix is known in the sequen-
tial estimation literature as square root information filtering
(SRIF), and was developed in 1969 for use in JPL’s Mariner
10 missions to Venus (as recounted in Bierman 1977). The
use of square roots of either the covariance or information
matrix results in more accurate and stable algorithms, and,
quoting Maybeck (1979) “a number of practitioners have ar-
gued, with considerable logic, that square root filters should
always be adopted in preference to the standard Kalman filter
recursion”. Maybeck briefly discusses the SRIF in a chapter
on square root filtering, and it and other square root type al-
gorithms are the subject of a book (Bierman 1977). However,
as far as this can be judged by the small number of references
in the literature, the SRIF and the square root information
smoother (SRIS) are not often used.

1.2. Sparse Linear Algebra, Graph Theory, and Sparse√
SAM

The key to performance is to capitalize on the large body of
work in sparse linear algebra and fully exploit the sparseness
of the matrices associated with the smoothing SLAM prob-
lem. The most dramatic improvement in performance comes
from choosing a goodvariable ordering when factorizing a
matrix. To understand this fact better, one needs to examine
the close relationship between SLAM-like problems, linear
algebra, and graph theory. Graph theory has been central to
sparse linear algebra for more than 30 years (George et al.
1993). For example, while most often used as a “black box”
algorithm, QR factorization is in fact an elegant computation
on a graph. This is a recurring theme: the state of the art in
linear algebra is a blend of numerical methods and advanced
graph theory, sharing many characteristics with inference al-
gorithms typically found in the graphical models literature
(Cowell et al. 1999). In particular, the graph-theoretic algo-
rithm underlying the solution of sparse least-squares isvari-
able elimination, in which each variable (such as a robot pose
or a landmark position) is expressed in terms of other vari-
ables. The order in which the variables are eliminated has a
large impact on the running time of matrix factorization al-
gorithms such as QR and Cholesky factorization. Finding an
optimal ordering is an NP-complete problem, but there are
several ordering heuristics and approximate algorithms that
perform well on general problems (Amestoy et al. 1996; Heg-
gernes and Matstoms 1996) and are built into programs like
MATLAB (Matstoms 1994).

While general-purpose ordering methods drastically im-
prove performance, yet another order-of-magnitude improve-
ment can be obtained by exploiting the specific graphical
structure of the SLAM problem when ordering the variables.
Looking at SLAM in terms of graphs has a rich history in itself
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(Brooks 1985; Tang and Lee 1992; Golfarelli et al 1998, 2001)
and has led to several novel and exciting developments in the
past few years (Murphy 1999; Montemerlo et al. 2002; Frese
and Duckett 2003; Paskin 2003; Folkesson and Christensen
2004; Frese et al. 2005; Thrun et al. 2004, 2005; Folkesson
et al. 2005). Below we more closely examine the tight connec-
tion between the graphical model view and the sparse linear
algebra formulation of SLAM. It is well known that the in-
formation matrixI is associated with the undirected graph
connecting robot poses and landmarks (see, e.g., Thrun et al.
2004). Less readily appreciated is the fact that the measure-
ment JacobianA is the matrix of thefactor graph associated
with SLAM. In addition, the square root information matrix
R, the result of factorizing eitherI or A, is essentially in
correspondence with a junction tree, known from inference
in graphical models (Cowell et al. 1999) and also recently
applied in SLAM (Paskin 2003). Exploiting domain knowl-
edge to obtain good orderings is also a trend in linear algebra
(Davis and Stanley 2004), and we believe that even more ef-
ficient algorithms can be developed by viewing the problem
as one of computation on a graph.

2. SLAM and its Graphs

SLAM refers to the problem of localizing a robot while si-
multaneously mapping its environment, illustrated by the ex-
ample of Figure 1. In this section we introduce the SLAM
problem, the notation we use, and show how the three main
graphical model representations known in the literature each
yield a unique view of the SLAM problem that emphasizes a
certain aspect of the problem. Later in the paper the connec-
tion is made between these graphs and their (sparse) matrix
equivalents. Below we assume familiarity with EKF-based
approaches to SLAM (Smith et al. 1990; Leonard et al. 1992;
Castellanos et al. 1999; Dissanayake et al. 2001). We do not
re-derive the extended Kalman filter. Rather, in Section 3 we
immediately take a smoothing approach, in which both the
map and the robot trajectory are recovered.

2.1. SLAM As a Belief Net

Following the trend set by FastSLAM and others (Murphy
1999; Montemerlo et al 2002; Paskin 2003; Frese and Duck-
ett 2003; Folkesson and Christensen 2004; Thrun et al. 2005),
we formulate the problem by referring to abelief net repre-
sentation. A belief net is a directed acyclic graph that encodes
the conditional independence structure of a set of variables,
where each variable only directly depends on its predecessors
in the graph. The model we adopt is shown in the top left of
Figure 1. Here we denote the state of the robot at theith time
step byxi , with i ∈ 0..M, a landmark bylj , with j ∈ 1..N,
and a measurement byzk, with k ∈ 1..K. The joint probability

model corresponding to this network is

P(X,L,Z) = P(x0)

M∏
i=1

P(xi |xi−1, ui)

K∏
k=1

P(zk|xik , ljk )
(1)

whereP(x0) is a prior on the initial state,P(xi |xi−1, ui) is
the motion model, parameterized by a control inputui , and
P(z|x, l) is thelandmark measurement model. The above as-
sumes a uniform prior over the landmarksl. Furthermore, it
assumes that the data-association problem has been solved,
i.e., that the indicesik andjk corresponding to each measure-
mentzk are known.

As is standard in the SLAM literature (Smith et al. 1990;
Leonard et al. 1992; Castellanos et al 1999; Dissanayake et al.
2001), we assume Gaussian process and measurement models
(Maybeck 1979), defined by

xi = fi(xi−1, ui)+ wi ⇔

P(xi |xi−1, ui) ∝ exp−1

2
‖fi(xi−1, ui)− xi‖2

�i
(2)

wherefi(.) is a process model, andwi is normally distributed
zero-mean process noise with covariance matrix�i , and

zk = hk(xik , ljk )+ vk ⇔

P(zk|xik , ljk ) ∝ exp−1

2
‖hk(xik , ljk )− zk‖2

�k
(3)

wherehk(.) is a measurement equation, andvk is normally
distributed zero-mean measurement noise with covariance�k.
Above‖e‖2

�

�= eT�−1e is defined as the squared Mahalanobis
distance given a covariance matrix�. The equations above
model the robot’s behavior in response to control input, and
its sensors, respectively.

2.2. SLAM as a Factor Graph

While belief nets are a very natural representation to think
about the generative aspect of the SLAM problem,factor
graphs have a much tighter connection with the underlying
optimization problem.As the measurementszk in Figure 1 are
known (evidence, in graphical model parlance), we are free
to eliminate them as variables. Instead we consider them as
parameters of the joint probability factors over theactual un-
knowns. This naturally leads to the well known factor graph
representation, a class of bipartite graphical models that can be
used to represent such factored densities (Kschischang et al.
2001). In a factor graph there are nodes for unknowns and
nodes for the probability factors defined on them, and the
graph structure expresses which unknowns are involved in
each factor. The factor graphs for the examples from Figure 1
are shown in Figure 2. As can be seen, there are factor nodes
for both landmark measurementszk and odometry linksui .

 at GEORGIA TECH LIBRARY on April 21, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1184 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2006

Fig. 1. Bayesian belief network of a small SLAM problem (top left) and a more complex synthetic environment. The synthetic
environment contains 24 landmarks with a simulated robot taking 422 bearing & range measurements along a trajectory of 95
poses. The objective of SLAM is to localize the robot while simultaneously building a map of the environment. In addition
to this,Full SLAM seeks to recover the entire robot trajectory. In the Bayesian belief network representation, the statex of
the robot is governed by a Markov chain, on top, while the environment of the robot is represented at the bottom by a set of
landmarksl. The measurementsz, in the middle layer, are governed both by the state of the robot and the parameters of the
landmark measured.

Fig. 2. Factor graph representation of the Full SLAM problem for both the simple example and the synthetic environment in
Figure 1. The unknown poses and landmarks correspond to the circular and square variable nodes, respectively, while each
measurement corresponds to a factor node (filled black circles).
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In the SLAM problem we (typically) consider only single
and pairwise cliques, leading to the following factor graph
expression for the joint density over a set of unknowns�:

P(�) ∝
∏
i

φi(θi)
∏
{i,j},i<j

ψij (θi, θj ) (4)

Typically the potentialsφi(θi) encode a prior or a single mea-
surement constraint at an unknownθi ∈ �, whereas the
pairwise potentialsψij (θi, θj ) relate to measurements or con-
straints that involve the relationship between two unknowns
θi andθj . Note that the second product is over pairwise cliques
{i, j}, counted once. The equivalence between equations (1)
and (4) can be readily established by taking

φ0(x0) ∝ P(x0)

ψ(i−1)i(xi−1, xi) ∝ P(xi |xi−1, ui)

ψikjk (xik , ljk ) ∝ P(zk|xik , ljk )

2.3. SLAM as a Markov Random Field

Finally, a third way to express the SLAM problem in terms
of graphical models is viaMarkov random fields, in which
the factor nodes themselves are eliminated. The graph of an
MRF is undirected and does not have factor nodes: its ad-
jacency structure indicates which variables are linked by a
common factor (measurement or constraint). At this level of
abstraction, the form (4) corresponds exactly to the expres-
sion for a pairwise Markov random field (Yedidia et al 2000),
hence MRFs and factor graphs are equivalent representations
here. The MRFs for the examples from Figure 1 are shown
in Figure 4. Note that it looks very similar to Figure 2, but
an MRF is a fundamentally different structure from the factor
graph (undirected vs. bipartite).

3. SAM as a Least Squares Problem

While the previous section was concerned with modeling, we
now discuss inference, i.e., obtaining an optimal estimate for
the set of unknowns given all measurements available to us.
We are concerned withsmoothing rather than filtering, i.e.,
we would like to recover the maximum a posteriori (MAP)

estimate for the entire trajectoryX
�= {xi} and the mapL

�={
lj
}
, given the measurementsZ

�= {zk} and control inputs

U
�= {ui}. Let us collect all unknowns inX andL in the vector

�
�= (X,L). Under the assumptions made above, we obtain

the maximum a posteriori (MAP) estimate by maximizing the
joint probabilityP(X,L,Z) from Equation 1,

�∗
�= argmax

�

P (X,L|Z) = argmax
�

P (X,L,Z)

= argmin
�

− logP(X,L,Z)

which leads us via (2) and (3) to the following non-linear
least-squares problem:

�∗
�= argmin

�{
M∑
i=1

‖fi(xi−1, ui)− xi‖2
�i
+

K∑
k=1

‖hk(xik , ljk )− zk‖2
�k

}
(5)

Regarding the priorP(x0), we will assume thatx0 is given
and hence it is treated as a constant below. This considerably
simplifies the equations in the rest of this document. This is
what is often done in practice: the origin of the coordinate
system is arbitrary, and we can then just as well fixx0 at the
origin. The exposition is easily adapted to the case where this
assumption is invalid.

In practice one always considers a linearized version of
problem (5). If the process modelsfi and measurement equa-
tionshk are non-linear and a good linearization point is not
available, non-linear optimization methods such as Gauss–
Newton iterations or the Levenberg–Marquardt algorithm will
solve a succession of linear approximations to (5) in order to
approach the minimum (Dennis and Schnabel 1983). This
is similar to the extended Kalman filter approach to SLAM
as pioneered by Smith et al. (1987, 1990) and Leonard and
Durrant-Whyte (1991), but allows for iterating multiple times
to convergence while controlling in which region one is will-
ing to trust the linear assumption (hence, these methods are
often called region-trust methods).

We now linearize all terms in the non-linear least-squares
objective function (5). In what follows, we will assume that
either a good linearization point is available or that we are
working on one iteration of a non-linear optimization method.
In either case, we can linearize the process terms in (5) as
follows:

fi(xi−1, ui)− xi ≈
{
fi(x

0
i−1, ui)+ F i−1

i
δxi−1

}− {
x0
i
+ δxi

}
= {

F i−1
i
δxi−1 − δxi

}− ai (6)

whereF i−1
i is the Jacobian offi(.) at the linearization point

x0
i−1, defined by

F i−1
i

�= ∂fi(xi−1, ui)

∂xi−1

∣∣∣∣
x0
i−1

andai
�= x0

i
− fi(x0

i−1, ui) is the odometry prediction error
(note thatui here is given and hence constant). The linearized
measurement terms in (5) are obtained similarly,

hk(xik , ljk )− zk ≈
{
hk(x

0
ik
, l0
jk
)+Hik

k δxik + J jkk δljk
}− zk

= {
H

ik
k δxik + J jkk δljk

}− ck (7)

whereHik
k andJ jkk are respectively the Jacobians ofhk(.)with

respect to a change inxikandljk , evaluated at the linearization
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Fig. 3. The undirected Markov random fields associated with the SLAM problems from Figure 1.

point (x0
ik
, l0
jk
):

H
ik
k

�= ∂hk(xik , ljk )

∂xik

∣∣∣∣
(x0
ik
,l0
jk
)

J
jk
k

�= ∂hk(xik , ljk )

∂ljk

∣∣∣∣
(x0
ik
,l0
jk
)

andck
�= zk−hk(x0

ik
, l0
jk
) is the measurement prediction error.

Using the linearized process and measurement models (6)
and (7), respectively, (5) results in

δ∗ = argmin
δ

{
M∑
i=1

‖F i−1
i
δxi−1 +Gi

i
δxi − ai‖2

�i

+
K∑
k=1

‖Hik
k δxik + J jkk δljk − ck‖2

�k

}
(8)

i.e., we obtain alinear least-squares problem inδ that needs
to be solved efficiently. To avoid treatingδxi in a special way,
we introduce the matrixGi

i
= −Id×d , with d the dimension

of xi .
By a simple change of variables we can drop the covariance

matrices�i and�k from this point forward. With�−1/2 the
matrix square root of� we can rewrite the Mahalanobis norm
as follows,

‖e‖2
�

�= eT�−1e = (�−T/2e)T (�−T/2e) = ∥∥�−T/2e∥∥2

2

i.e., we can always eliminate�i from (8) by pre-multiplying
F i−1
i ,Gi

i
, andai in each term with�−T/2i , and similarly for the

measurement covariance matrices�k. For scalar measure-
ments this simply means dividing each term by the measure-
ment standard deviation. Below we assume that this has been
done and drop the Mahalanobis notation.

Finally, after collecting the Jacobian matrices into a matrix
A, and the vectorsai andck into a right-hand side (RHS) vector
b, we obtain the following standard least-squares problem,

δ∗ = argmin
δ

‖Aδ − b‖2
2 (9)

which is our starting point below.A can grow to be very large,
but is quite sparse, as illustrated in Figure 4. Ifdx , dl, anddz
are the dimensions of the state, landmarks, and measurements,
A’s size is(Ndx +Kdz)× (Ndx +Mdl). In addition,A has a
typical block structure, e.g., withM = 3,N = 2, andK = 4:

A =




G1
1

F 1
2 G2

2

F 2
3 G3

3

H 1
1

H 1
2

H 2
3

H 3
4

J 1
1

J 2
2

J 1
3

J 2
4



, b =




a1

a2

a3

c1

c2

c3

c4




Above the top half describes the robot motion, and the bot-
tom half the measurements. A mixture of landmarks and/or
measurements of different types (and dimensions) is easily
accommodated.

4. A Linear Algebra Perspective

In this section we briefly review Cholesky and QR factoriza-
tion and their application to the full rank linear least-squares
(LS) problem in (9). This material is well known and is given
primarily for review and to contrast the linear algebra algo-
rithms with the graph-theoretic view of the next section. The
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Fig. 4. (a) The measurement JacobianA associated with the problem in Figure 1, which has 3×95+2×24= 333 unknowns.

The number of rows, 1126, is equal to the number of (scalar) measurements. (b) (top) the information matrixI �= ATA; (middle)
its upper triangular Cholesky triangleR; (bottom) an alternative factoramdR obtained with a better variable ordering (colamd
from Davis et al. 2004).
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exposition closely follows Golub andVan Loan (1996), which
can be consulted for a more in-depth treatment.

For a full-rankm×nmatrixA, withm ≥ n, the unique LS
solution to (9) can be found by solving thenormal equations:

ATAδ∗ = AT b (10)

This is normally done by Cholesky factorization of theinfor-
mation matrix I, defined and factorized as follows:

I �= ATA = RTR (11)

The Cholesky triangle R is an upper-triangularn × n ma-
trix1 and is computed usingCholesky factorization, a variant
of LU factorization for symmetric positive definite matrices.
For dense matrices Cholesky factorization requiresn3/3 flops.
After this,δ∗ can be found by solving

firstRT y = AT b and thenRδ∗ = y
by back-substitution. The entire algorithm, including comput-
ing half of the symmetricATA, requires(m+ n/3)n2 flops.

For the example of Figure 1, bothI and its Cholesky trian-
gleR are shown alongsideA in Figure 4. Note the very typical
block structure ofI when the columns ofA are ordered in the
standard way (Triggs et al. 2000), e.g., trajectoryX first and
then mapL (to which we refer below as theXL ordering):

I =
[
AT
X
AX IXL

IT
XL

AT
L
AL

]

HereIXL �= AT
X
AL encodes the correlation between robot

statesX and mapL, and the diagonal blocks are band-
diagonal.

A variant of Cholesky factorization which avoids comput-
ing square roots is LDL factorization, which computes a lower
triangular matrixL and a diagonal matrixD such that

I = RTR = LDLT

An alternative to Cholesky factorization that is both
more accurate and numerically stable is to proceed via QR-
factorizationwithout computing the information matrixI. In-
stead, we compute the QR-factorization ofA itself along with
its corresponding RHS:

QTA =
[
R

0

]
QT b =

[
d

e

]

HereQ is anm × m orthogonal matrix, andR is the upper-
triangular Cholesky triangle. The preferred method for fac-
torizing a dense matrixA is to computeR column by column,
proceeding from left to right. For each columnj , all non-zero

1. Some treatments, including Golub and Van Loan (1996), define the
Cholesky triangle as the lower-triangular matrixG = RT , but the other
convention is more convenient here.

elements below the diagonal are zeroed out by multiplyingA

on the left with aHouseholder reflection matrix Hj . After n
iterationsA is completely factorized:

Hn..H2H1A = QTA =
[
R

0

]
(12)

The orthogonal matrixQ is not usually formed: instead, the
transformed RHSQT b is computed by appendingb as an extra
column toA. Because theQ factor is orthogonal, we have:

‖Aδ − b‖2
2 =

∥∥QTAδ −QT b
∥∥2

2
= ‖Rδ − d‖2

2 + ‖e‖2
2

Clearly, ‖e‖2
2 will be the least-squares residual, and the LS

solutionδ∗ can be obtained by solving the square system

Rδ = d (13)

via back-substitution. The cost of QR is dominated by the cost
of the Householder reflections, which is 2(m− n/3)n2.

Comparing QR with Cholesky factorization, we see that
both algorithms requireO(mn2) operations whenm 	 n,
but that QR-factorization is a factor of 2 slower. While these
numbers are valid for dense matrices only, we have seen that
in practice LDL and Cholesky factorizationfar outperform
QR factorization on sparse problems as well, and not just by
a constant factor.

5. A Graphical Model Perspective

5.1. Matrices⇔ Graphs

From the exposition above it can now be readily appreciated
that the measurement JacobianA is the matrix of thefactor
graph associated with SLAM. We can understand this state-
ment at two levels. First, every block ofA corresponds to
one term in the least-squares criterion (8), either a landmark
measurement or an odometry constraint, and every block-
row corresponds to one factor in the factor graph. Within
each block-row, the sparsity pattern indicates which unknown
poses and/or landmarks are connected to the factor. Hence,
the block-structure ofA corresponds exactly to the adjacency
matrix of the factor graph associated with SAM.

Second, at the scalar level, every rowAi inA (see Figure 4)
corresponds to a scalar term‖Aiδ − bi‖2

2 in the sparse matrix
least-squares criterion (9) , as

‖Aδ − b‖2
2 =

∑
i

‖Aiδ − bi‖2
2

Hence, this defines afinely structured factor graph, via

P(δ) ∝ exp−1

2
‖Aδ − b‖2

2 =
∏
i

exp−1

2
‖Aiδ − bi‖2

2

It is important to realize, that in this finer view, the block-
structure of the SLAM problem is discarded, and that it is
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this graph that is examined by general purpose linear algebra
methods. By working with the block-structure instead, we will
be able to do better.

As noted before in Thrun et al. (2004) and by others, the
information matrixI = ATA is the matrix of the Markov
random field associated with the SLAM problem. Again,at
the block-level the sparsity pattern of ATA is exactly the ad-
jacency matrix of the associated MRF. The objective func-
tion in Equation 5 corresponds to a pairwise Markov random
field (MRF) (Winkler 1995; Yedidia et al. 2000) through the
Hammersley–Clifford theorem (Winkler 1995), and the nodes
in the MRF correspond to the robot states and the landmarks.
Links represent either odometry or landmark measurements.

In Paskin (2003) and Thrun et al. (2004) the MRF graph
view is taken to expose the correlation structure inherent in the
filtering version of SLAM. It is shown there that inevitably,
when marginalizing out the past trajectoryX1:M−1, the infor-
mation matrix becomes completely dense. Hence, the em-
phasis in these approaches is to selectively remove links to
reduce the computational cost of the filter, with great success.
In contrast, in this paper we consider the MRF associated with
thesmoothing information matrixI, which doesnot become
dense, as past states are never marginalized out.

5.2. Factorization⇔Variable Elimination

The one question left is what graph the square root infor-
mation matrixR corresponds to? Remember thatR is the
result of factorizing eitherI or A as in Section 4. Cholesky
or QR factorization are most often used as “black box” al-
gorithms, but in fact they are similar to much more recently
developed methods for inference in graphical models (Cow-
ell et al. 1999). It will be seen below thatR is essentially in
correspondence with a junction tree, known from inference in
graphical models and also recently applied in SLAM (Paskin
2003).

Both factorization methods, QR and Cholesky (or LDL),
are based on the variable elimination algorithm (Blair and
Peyton 1993; Cowell et al. 1999). The difference between
these methods is that QR eliminates variable nodes from the
factor graph and obtainsA = QR, while Cholesky or LDL
start from the MRF and hence obtainATA = RTR. Both
methodseliminate one variable at a time, starting withδ1,
corresponding to the leftmost column of eitherA or I. The
result of the elimination is thatδ1 is now expressed as a linear
combination of all other unknownsδj>1, with the coefficients
residing in the corresponding rowR1 of R. In the process,
however, new dependencies are introduced between all vari-
ables connected toδ1, which causes edges to be added to the
graph. The next variable is then treated in a similar way, until
all variables have been eliminated. This is exactly the pro-
cess of moralization and triangulation familiar from graphical
model inference. The result of eliminating all variables is a di-
rected, triangulated (chordal) graph, shown for our example in
Figure 5.

Once the chordal graph (R!) is obtained, one can ob-
tain theelimination tree of R, defined as a depth-first span-
ning tree of the chordal graph after elimination, and which
is useful in illustrating the flow of computation during the
back-substitution phase. To illustrate this, Figure 6 shows the
chordal graph obtained by using the well known heuristic
of first eliminating landmarks (Triggs et al. 2000), and then
poses (which we will call theLX ordering). The correspond-
ing elimination tree is shown in Figure 7. The root of the tree
corresponds to the last variableδn to be eliminated, which is
the first to be computed in back-substitution (Equation 13).
Computation then proceeds down the tree, and while this is
typically done in reverse column order, variables in disjoint
subtrees may be computed in any order; see Dellaert et al.
(2005) for a more detailed discussion. In fact, if one is only
interested in certain variables, there is no need to compute any
of the subtrees that do not contain them.

However, the analysis does not stop there. The graph ofR

has a clique-structure which can be completely encapsulated
in a rooted tree data-structure called aclique tree (Pothen and
Sun 1992; Blair et al. 1993), also known as thejunction tree
in the AI literature (Cowell et al 1999). As an example, the
clique-tree for theLX-ordering on the problem of Figure 1 is
shown in Figure 8. The correspondence is almost one-to-one:
every R corresponds to exactly one clique tree, and vice versa,
modulo column re-orderings within cliques. The clique tree is
also the basis for multifrontal QR methods (Matstoms 1994),
which we have also evaluated in our simulations below. In
multifrontal QR factorization, computation progresses in this
tree from the leaves to the root to factorize a sparse matrix,
and then from the root to the leaves to perform a backward
substitution step. A complete treatment of the relationship
between square root information matrices and clique trees is
beyond the scope of the current paper, but in other work we
have used the clique-tree structure in novel algorithms for
distributed inference (Dellaert et al. 2005).

5.3. Improving Performance⇔ Reducing Fill-in

The single most important factor to good performance is the
order in which variables are eliminated. Different variable
orderings can yield dramatically more or lessfill-in, defined
as the amount of edges added into the graph during factor-
ization. As each edge added corresponds to a non-zero in the
Cholesky triangleR, the cost of computing bothR and back-
substitution is heavily dependent on how much fill-in occurs.
Unfortunately, finding an optimal ordering is NP-complete.
Discovering algorithms that approximate the optimal ordering
is an active area of research in sparse linear algebra. A popu-
lar method for medium-sized problems iscolamd (Amestoy
et al. 1996), which works on the columns ofA. Another pop-
ular method, based on graph theory and often used to speed
up finite element methods, is generalized nested dissection
(Lipton and Tarjan 1979a, 1979b).
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Fig. 5. The triangulated graph for a good ordering (colamd, as in Figure 4). This is adirected graph, where each edge
corresponds to a non-zero in the Cholesky triangleR. Note that we have dropped the arrows in the simulation example for
simplicity.

Fig. 6. The triangulated graph corresponding to the well known heuristic of first eliminating landmarks, and then poses
(LX ordering).
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Fig. 7. The elimination tree for theLX ordering of Figure 6, showing how the state and landmarks estimates will be computed
via back-substitution: the root is computed first—here the first pose on the left—and proceeds down the Markov chain to the
right. Landmarks can be computed as soon as the pose they are connected to has been computed.

[ l1 ]

[ l4 ][ l9 ]

[ l12 ]

[ l14 ]

[ l17 ]

[ l22 ][ l25 ]

[ l31 ]

[ l36 ]

[ l38 ][ l39 ][ l41 ]

[ l44 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 ]

[ l37 x22 x21 ]

[ l10 x25 x24 x23 ]

[ l30 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 ]

[ l46 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 ]

[ l29 x57 x56 x55 x54 x53 ]

[ l32 x61 x60 x59 x58 ]

[ l45 x73 x72 x71 x70 x69 x68 x67 x66 x65 x64 x63 x62 ]

[ l33 x84 x83 x82 x81 x80 x79 x78 x77 x76 x75 x74 ]

[ l16 x86 x85 ]

[ l18 x94 x93 x92 x91 x90 x89 x88 x87 ]

Fig. 8. The clique-tree corresponding to theLX ordering, i.e., Figures 6 and 7. For simplicity, the larger graph only shows the
frontal variables of each clique (those that do not also appear in cliques below that node). It can be seen that the root consists
of the small piece of trajectory from the root to where the first landmark “subtree” branches off.
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Given that an optimal ordering is out of reach in gen-
eral, heuristics or domain-knowledge can do much better than
general-purpose algorithms. A simple idea is to use a stan-
dard method such ascolamd, but have it work on the sparsity
pattern of the blocks instead of passing it the original mea-
surement JacobianA. In other words we treat a collection of
scalar variables such as thex andy position and orientationα
as a single variable and create a smaller graph which encap-
sulates the constraints between these blocks rather than the
individual variables. Not only is it cheaper to callcolamd on
this smaller graph, it also leads to a substantially improved
ordering. As we mentioned above, the block-structure is real
knowledge about the SLAM problem and is not accessible to
colamd or any other approximate ordering algorithm. While
the effect on the performance of colamd is negligible, we have
found that making it work on the SLAM MRF instead of on
the sparse matrixI directly can yield improvements of 2 to
sometimes 100-fold, with 15 being a good rule of thumb.

Note that there are cases in which any ordering will result
in the same large fill-in. The worst-case scenario is a fully
connected bipartite2 MRF: every landmark is seen from ev-
ery location. In that case, eliminating any variable will com-
pletely connect all variables on the other side, and after that
the structure of the clique tree is completely known: if a pose
was chosen first, the root will be the entire map, and all poses
will be computed once the map is known. Vice versa, if a
landmark is chosen, the trajectory will be the clique tree root
clique, and computation will proceed via an (expensive) tra-
jectory optimization, followed by (very cheap) computation
of landmarks. Interestingly, these two cases form the basis
of the standard partitioned inverse, or “Schur complement”,
which is well known in structure from motion applications
(Triggs et al. 2000; Hartley and Zisserman 2000) and also
used in GraphSLAM (Thrun et al. 2005).

However, the worst-case scenario outlined above is an ex-
ceptional case in robotics: sensors have limited range and are
occluded by walls, objects, buildings, etc. This is especially
true in large-scale mapping applications, and it essentially
means that the MRF will in general be sparsely connected,
even though it is one large connected component.

6. Square Root SAM

In this section we take everything we know from above and
state three simple

√
SAM variants depending on whether they

operate in batch or incremental mode, and on whether non-
linearities are involved or not.

6.1. Batch
√

SAM

A batch-version ofsquare root information smoothing and
mapping is straightforward and a completely standard way of
solving a large, sparse least-squares problem:

2. Bipartite is here used to indicate the partition of variables into poses and
landmarks, not in the factor graph sense.

Algorigthm 1. Batch
√

SAM

1. Build the measurement JacobianA and the RHSb as
explained in Section 3.

2. Find a good column orderingp, and reorderAp

p← A.

3. Solve δ∗
p
= argmin δ

∥∥Apδp − b
∥∥2

2
using either the

Cholesky or QR factorization method from Section 4.

4. Recover the optimal solution byδ
r← δp, with r = p−1.

In tests we have obtained the best performance with sparse
LDL factorization (Davis 2004), which, as mentioned above,
is a variant on Cholesky factorization that computesI =
LDLT , with D a diagonal matrix andL a lower-triangular
matrix with ones on the diagonal.

The same algorithm applies in the non-linear case, but is
simply called multiple times by the non-linear optimizer. Note
that the ordering has to be computed only once, however.

6.2. Linear Incremental
√

SAM

In a robotic mapping context, an incremental version of the
above algorithm is of interest. The treatment below holds for
either the linear case, or when a good linearization point is
available.

It is well known that factorizations can be updated incre-
mentally. One possibility is to use a rank 1 Cholesky update, a
standard algorithm that computes the factorR′ corresponding
to

I ′ = I + aaT

whereaT is a new row of the measurement JacobianA, corre-
sponding to new measurements that come in at any given time
step. However, these algorithms are typically implemented
for dense matrices only, and it is imperative that we use a
sparse storage scheme for optimal performance. While sparse
Cholesky updates exist (Davis and Hager 1996), they are rel-
atively complicated to implement. A second possibility, easy
to implement and suited to sparse matrices, is to use a series
of Givens rotations (Golub and Van Loan 1996) to eliminate
the non-zeros in the new measurement rows one by one.

A third possibility, which we have adopted for the simu-
lations below, is to update the matrixI and simply use a full
Cholesky (or LDL) factorization. While this seems expen-
sive, we have found that with good orderings the dominant
cost is no longer the factorization but rather the updating of
I. For example, the experimental results in Section 8 show
that the sparse multiplication to obtain the Hessian is about
five times as expensive as the factorization at the end of the
run. A more detailed discussion of asymptotic bounds can be
found in Krauthausen et al. (2006). A comparison with the
Givens scheme above would be of interest, but we have not
done so yet.
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Importantly, because the entire measurement history is im-
plicit in I, one does not need to factorize at every time-step. In
principle, we can wait until the very end and then compute the
entire trajectory and map. At any time during an experiment,
however, the map and/or trajectory can be computed by a sim-
ple factorization and back-substitution, e.g., for visualization
and/or path planning purposes.

6.3. Non-linear Incremental
√

SAM

If in an incremental setting the SLAM problem is non-linear
and a linearization point is available, then the linear incre-
mental solution above applies. Whether this is the case very
much depends on the sensors and prior knowledge available
to the robot. For example, in indoor mobile robots there is
often no good absolute orientation sensor, which means we
have to linearize around the current guess for the orientation.
This is exactly why EKFs have problems in larger-scale envi-
ronments, as these potentially wrong linearization points are
“baked into” the information matrix when past robot poses
are eliminated from the MRF.

A significant advantage of the smoothing approach is the
fact that we never commit to a given linearization, as no vari-
ables are ever eliminated from the graph. There are two dif-
ferent ways to re-linearize: In certain scenarios, like closing
of a large loop along the complete trajectory, it is cheaper to
re-linearize all variables. Essentially this means that we have
to call the batch version above each time. On the upside, our
experimental results will show that even this seemingly ex-
pensive algorithm is quite practical on large problems where
an EKF approach is intractable. The alternative way is favor-
able when only a smaller number of variables is affected by
the change in the linearization point. In this case downdating
and updating techniques (Triggs et al. 2000) can be applied to
temporarily remove these variables from the factor, followed
by adding them in again using the new linearization point. We
plan to evaluate this approach in future work.

7. Simulation Results

7.1. Batch
√

SAM

We have experimented at length with different implementa-
tions of Cholesky, LDL, and QR factorization to establish
which performed best. All simulations were done in MAT-
LAB on a 2 GHz Pentium 4 workstation running Linux. Ex-
periments were run in synthetic environments like the one
shown in Figure 9, with 180 to 2000 landmarks, for trajecto-
ries of length 200, 500, and 1000. Each experiment was run
10 times for five different methods:

• none: no factorization performed

• ldl: Davis’ (2004) sparse LDL factorization

Fig. 9. A synthetic Manhattan world with 500 landmarks
(dots on square city blocks) along with a 1000-step random
street walk trajectory (lines between blocks with a dot for
each step), corresponding to 14000 measurements taken. The
measurements (gray dots) do not line up exactly with the
landmarks due to simulated noise.

• chol: MATLAB built-in Cholesky factorization

• mfqr: multifrontal QR factorization (Matstoms 1994)

• qr: MATLAB built-in QR factorization

The results are summarized in Figure 10. We have found that,
under these circumstances,

1. The freely available sparse LDL implementation
by Davis (2004) outperforms MATLAB’s built-in
Cholesky factorization by a factor of 30%.

2. In MATLAB, the built-in Cholesky outperforms QR
factorization by a large factor.

3. Multifrontal QR factorization is better than MATLAB’s
QR, but still slower than either Cholesky or LDL.

4. While this is not apparent from the table, using a
good column ordering ismuch more important than
the choice of factorization algorithm: QR factorization
with a good ordering will outperform LDL or Cholesky
with a bad ordering.

The latter opens up a considerable opportunity for original
research in the domain of SLAM, as we found that injecting
even a small amount of domain knowledge into that process
yields immediate benefits. To illustrate this, we show simula-
tion results for a length 1000 random walk in a 500-landmark
environment, corresponding to Figure 9. BothI andR are
shown in Figure 11 for the standard (and detrimental)XL or-
dering with states and landmarks ordered consecutively. The
dramatic reduction in fill-in that occurs when using a good
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M N none ldl chol mfqr qr
200 180 0.031 0.062 0.092 0.868 1.685

500 0.034 0.062 0.094 1.19 1.256
1280 0.036 0.068 0.102 1.502 1.21
2000 0.037 0.07 0.104 1.543 1.329

500 180 0.055 0.176 0.247 2.785 11.92
500 0.062 0.177 0.271 3.559 8.43

1280 0.068 0.175 0.272 5.143 6.348
2000 0.07 0.181 0.279 5.548 6.908

1000 180 0.104 0.401 0.523 10.297 42.986
500 0.109 0.738 0.945 12.112 77.849

1280 0.124 0.522 0.746 14.151 35.719
2000 0.126 0.437 0.657 15.914 25.611

Fig. 10. Averaged simulation results over 10 trials, in seconds, for environments with various number of landmarksN and
simulations with trajectory lengthsM. The methods are discussed in more detail in the text. Thenone method corresponds to
doing no factorization and measures the overhead.

Fig. 11. Original information matrixI and its Cholesky triangle. Note the dense fill-in on the right, linking the entire trajectory
to all landmarks. The number of non-zeros is indicated bynz.
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re-ordering is illustrated by Figure 12, where we usedcolamd
(Amestoy et al. 1996). Finally, when we use the block-oriented
ordering heuristic discussed in Section 5.2, the fill-in drops
by another factor of 2, significantly increasing computational
efficiency.

7.2. Incremental
√

SAM

We also compared the performance of an incremental ver-
sion of

√
SAM, described in Section 6, with a standard EKF

implementation by simulating 500 time steps in a synthetic
environment with 2000 landmarks. The results are shown in
Figure 14. The factorization ofI was done using sparse LDL
(Davis 2004), while for the column ordering we usedsymamd
(Amestoy et al. 1996), a version ofcolamd for symmetric pos-
itive definite matrices.

Smoothingevery time step becomes cheaper than the EKF
when the number of landmarksN reaches 600. At the end,
with N = 1,100, each factorization took about 0.6 s, and the
slope is nearly linear over time. In contrast, the computational
requirements of the EKF increase quadratically withN , and
by the end each update of the EKF took over a second.

As implementation independent measures, we have also
plottedN2, as well as the number of non-zerosnz in the
Cholesky triangleR. The behavior of the latter is exactly op-
posite to that of the EKF: when new, unexplored terrain is
encountered, there is almost no correlation between new fea-
tures and the past trajectory and/or map, and the number of
non-zeros per column stays almost constant. In contrast, the
EKF’s computation is not affected when re-entering previ-
ously visited areas—closing the loop—whereas that is exactly
whenR fill-in occurs.

8. Experimental Results

We have evaluated the non-linear incremental version of√
SAM on a very challenging, large-scale vision-based

SLAM problem, in which a mobile robot equipped with eight
cameras traversed an indoor office environment. This is prob-
ably the most challenging data-set we have ever worked with,
both because of the amount of data that needed to be dealt
with, as well as the logistical and calibration issues that plague
multi-camera rigs. In addition, dealing with visual features is
complex and prone to failure.

In this case, the measurements are features extracted from
eight cameras mounted on top of an iRobot ATRV-Mini plat-
form, as shown in Figure 15. They are matched between suc-
cessive frames using RANSAC based on a trifocal camera
arrangement. The data were taken in an office environment,
with a bounding box of about 30m by 50m for the robot
trajectory, and the landmarks sought are a set of unknown 3D
points.The measurements consisted of the odometry provided
by the robot, as well as 260 joint images taken with vari-
able distances of up to 2m between successive views, and an

overall trajectory length of about 190m. The unknown poses
were modeled as having six degrees of freedom (DOF), three
translational and three rotational. Even though 3DOF seems
sufficient for a planar indoor office environment, it turns out
that 6DOF with a prior on pitch, roll and height is necessary,
since any small bump in the floor has a clearly visible effect
on the images. The standard deviations onx andy are 0.02m
and onφ (yaw) 0.02 rad. The priors onz, θ (pitch) andψ
(roll) are all 0 with standard deviations 0.01m and 0.02 rad
respectively. The camera rig was calibrated in advance.

The
√

SAM approach was able to comfortably deal with
this large problem well within the real-time constraints of the
application. Our approach was to invoke the batch

√
SAM

algorithm after every three joint images taken by the robot.
In each of these invocations, the problem was repeatedly re-
linearized and factorized to yield an optimal update.Again we
used sparse LDL as the main factorization algorithm. More
importantly, for ordering the variables we usedcolamd com-
bined with the block-structured ordering heuristic. The latter
alone yielded a 15-fold improvement in the execution time of
LDL with respect tocolamd by itself.

Processing the entire sequence took a total of 11 minutes
and 10 seconds on a 2 GHz Pentium-M based laptop, and
the final result can be seen in Figure 16. The correspondence
matching yielded in 17780 measurements on a total of 4383
unknown 3D points, taken from 260 different robot locations.
In the final step, the measurement matrixA had 36,337 rows
and 14,709 columns, with about 350Knon-zero entries.

The relevant timing results are shown in Figure 17. The
unexpected result is thatthe factorization, because of the
good variable ordering, is now but a minor cost in the whole
optimization. Instead, the largest cost is now evaluating the
measurement JacobianA (linearizing the measurement equa-
tions), which was done a total of 453 times. Its computational
demands over time are shown in the panel at the top. Next in
line is the computation of the information matrixI = ATA,
shown by “hessian” in the bottom panel. This is done exactly
as many times as LDL itself, i.e., a total of 734 times. By the
end of the sequence, this sparse multiplication (yielding—by
then—a 15K× 15K matrix) takes about 0.6 s. In contrast,
factorizing the resulting information matrixI takes just 0.1 s.

Clearly, further improvement must come from avoiding
linearization of the entire set of measurement equations,
and hence keeping large parts of these expensive operations
constant.

9. Discussion

The square root information smoothing approaches we pre-
sented in the current paper have several significant advantages
over the EKF:

• They are much faster than EKF-based SLAM on large-
scale problems.
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Fig. 12. Information matrixI after reordering, and its Cholesky triangle. Reordering of columns (unknowns) does not affect
the sparseness ofI, but the number of non-zeros inR has dropped from approximately 2.8 million to about 250 thousand.

Fig. 13. By doing the reordering while taking into account the special block-structure of the SLAM problem, the non-zero
count can be reduced even further, to about 130K, a reduction by a factor of 20 with respect to the originalR, and substantially
less than the 500K entries in the filtering covariance matrix.
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Fig. 14. Timing results for incremental SAM in a simulated environment with 2000 landmarks, similar to the one in Figure 9,
but 10 blocks on the side. As the number of landmarks seen increases, the EKF becomes quadratically slower. Note that the
number of non-zerosnz increases faster when large loops are encountered aroundi = 200 andi = 350.

Fig. 15. Custom made camera rig, mounted on top of an ATRV-Mini mobile robot. Eight Fire-Wire cameras are distributed
equally along a circle and connected to an on-board laptop.
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Fig. 16. Projected trajectory and map after applying incremental
√

SAM using visual input and odometry only. Each robot
pose is shown as an outline of the ATRV-Mini platform. The recovered 3D structure is represented by points. For comparison
the manually aligned building map is shown in gray. Given that no loop-closing occurred and considering the large scale of
the environment and the incremental nature of the reconstruction method, this result is of very high-quality. Note that features
also occur along the ceiling, and that some features outside the building outline are caused by reflections.
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Fig. 17. Timing results for incremental
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• They are exact, in contrast to approximate methods to
deal with the EKF shortcomings.

• They can be used in either batch or incremental mode.

• If desired, they yield theentire smoothed robot trajec-
tory.

• They are much better equipped to deal with non-linear
process and measurement models than the EKF.

• They automatically exploit locality by means of vari-
able ordering heuristics.

However, there is also a price to pay:

• Because we smooth the entire trajectory, computational
complexity grows without bound over time, as clearly
illustrated in Figure 17. In many typical mapping sce-
narios, however, the computational and storage de-
mands of the EKF information or covariance matrix will
grow much faster still (in the same example, it would
involve storing and manipulating adense 15K× 15K
matrix).

• As with all information matrix approaches, it is expen-
sive to recover the joint covariance matrix governing
the unknowns. However, wecan recover their marginal
densities at a much lower cost (Golub and Plemmons
1980).

In this paper we only reported on our initial experiences with
this approach, and in particular the following work remains:

• We have not yet established any tight or amortized com-
plexity bounds that predict the algorithm’s excellent
performance on problems of a given size.

• Comparison of our approach to more recent and faster
SLAM variants, both approximate (Leonard and Feder
2001; Paskin 2003; Thrun et al. 2004) and exact (Guiv-
ant and Nebot 2001), is the object of future work.

Finally, in this paper we have primarily concentrated on
the large-scale optimization problem associated with SLAM.
Many other issues are crucial in the practice of robot map-
ping, e.g., the data-association problem, exploitation vs. ex-
ploration, and the management of very-large-scale mapping
problems. As such, the techniques presented here are meant
to complement, not replace methods that make judicious ap-
proximations in order to reduce the asymptotic complexity of
SLAM.

10. Conclusion and Future Work

In conclusion, we believe square root information smooth-
ing to be of great practical interest to the SLAM community.

It recovers the entire trajectory and is exact, and even the
sub-optimal incremental scheme we evaluated behaves much
better than the EKF as the size of the environment grows.
In addition, our experiments with real robot data offer proof
that the possibility of re-linearizing the entire trajectory at
each time-step makes

√
SAM cope well with noisy measure-

ments governed by non-linear measurement equations. In con-
trast, non-optimal linearization cannot be recovered from in
an EKF, which inevitablyhas to summarize it in a quadratic
(Gaussian) approximation.

Incremental implementations of the proposed method are
of great interest for real-time applications. We are currently
exploring Givens rotations as a means of incrementally updat-
ing the factor. Downdating could also allow selective changes
of variables affected by re-linearization. Finally, our ongoing
work indicates that an efficient retrieval of the marginal co-
variances is possible based on the square root factor. This is
important for data association, an aspect of the SLAM prob-
lem that we have ignored in the present work.
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