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SUMMARY 

 

Both physical circulation and biogeochemical characteristics are unique in the 

Southern Ocean (SO) region, and are fundamentally different from those of the northern 

hemisphere. Moreover, according to previous research, the oceanic response to the trend 

of the Southern Annual Mode (SAM) has profound impacts on the future oceanic uptake 

of carbon dioxide in the SO. In other words, the climate and circulation of the SO are 

strongly coupled to the overlying atmospheric variability. However, while we have 

understanding on the SO physical circulation and have the ability to predict the future 

changes of the SO climate and physical processes, the link between the SO physical 

processes, the air-sea carbon flux, and correlated climate variability remains unknown. 

Even though scientists have been studying the spatial and temporal variability of the SO 

carbon flux and the associated biogeochemical processes, the spatial patterns and the 

magnitudes of the air-sea carbon flux do not agree between models and observations. 

Therefore, in this study, we utilized a modified version of a general circulation model 

(GCM) to performed realistic simulations of the SO carbon on seasonal to interannual 

timescales, and focused on the crucial physical and biogeochemical processes that control 

the carbon flux. The spatial pattern and the seasonal cycle of the air-sea carbon dioxide 

flux is calculated, and is broadly consistent with the climatological observations. The 

variability of air-sea carbon flux is mainly controlled by the gas exchange rate and the 

partial pressure of carbon dioxide (!"#!), and the seasonal cycle of !"#! is in turn 

controlled by the compensating changes in temperature and dissolved inorganic carbon. 

We investigated the seasonal variability of dissolved inorganic carbon based on different 
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regional processes. Furthermore, we also investigated the dynamical adjustment of the 

surface carbon flux in response to the different gas exchange parameterizations, and 

conclude that parameterization has little impact on spatially integrated carbon flux. Our 

simulation well captured the SO carbon cycle variability on seasonal to interannual 

timescales, and we will improve our model by employ a better scheme of nutrient cycle, 

and consider more nutrients as well as ecological processes in our future study. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Climate and Circulation of the Southern Ocean 

 The climate and the circulation of the Southern Ocean (SO) fundamentally differ 

from those of the northern hemisphere because of variations in the land-sea distribution 

with profound implications on the climate variability and biogeochemical cycles of this 

region.  Variability of the extratropical southern hemisphere atmosphere is dominated by 

the Antarctic Oscillation (AO) (Gong and Wang, 1998,1999; Wang, 1992), which is 

characterized by an alternation between the surface pressures of the mid and high 

latitudes (Gong and Wang, 1999). The spatial structure of the Southern Ocean is mostly 

zonally symmetric, reflecting the lack of major continents in the region. The intensity of 

AO can be measured by the Antarctic Oscillation Index (AOI), defined as the difference 

between the zonal mean sea level pressure values at 45°S and 65°S. Figure 1.1 shows the 

southern hemisphere sea level pressure pattern in JJA climatology. Thompson and   

 

 
Figure 1-1: Southern Hemisphere JJA sea level pressure 

(Data from SLP Monthly long term means, NCEP/NCAR Reanalysis) 

[mb]
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Wallace (2000) defined the Southern Annular Mode (SAM), which captures the AO 

phenomenon, using the leading principal component of the 700 mb geopotential height 

south of 20°S in the atmosphere (Ciasto et al., 2008).  

 Both observational and modeling studies indicate that in recent decades the SAM 

index exhibits a positive multi-decadal trend.  A positive SAM index is characterized by 

a lower polar cap geopotential height anomaly, an anomalously strong westerly wind, and 

cooling over Antarctica with the exception of the Antarctic Peninsula area (Thompson 

and Solomon, 2002). Thompson and Solomon (2002) showed a positive trend by 

analyzing the monthly mean radiosonde, the surface temperature, total column ozone, and 

the tropospheric geopotential height. Other observational studies show a similar trend in 

the SAM index [Visbeck, 2008; Renwick, 2004; Marshall, 2003]. The positive SAM 

trend during 1957 to 2012 is shown in figure 1.2. 

 

 
Figure 1-2: Annual SAM Index and the trend (1957 - 2012) 
Data from:  http://www.nerc-bas.ac.uk/icd/gjma/sam.html 
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 Climate model simulations of the past several decades have also shown a positive 

SAM trend, in which the polar westerly wind has intensified and southward-shifted over 

the Antarctic Circumpolar Current (ACC) (Hall and Visbeck, 2002). The pattern of zonal 

wind variability has a dipole structure with an increase around 55°S and a decrease at 

about 35°S. In a positive SAM condition, at the latitude of the Drake Passage, 

equatorward Ekman transport that advects sea ice further north and induces an Ekman 

upwelling in the south of the circumpolar current increases. Gupta and England (2006) 

and Marini et al (2010) showed circulation changes under a positive SAM condition 

similar to those found by Hall and Visbeck (2002).  Gupta and England (2006) further 

demonstrated the role of thermodynamic coupling between the ocean and the atmosphere 

whereby the ocean feeds back onto the atmosphere, increasing the persistence of SAM. 

These studies show that the Ekman upwelling intensifies in a positive SAM condition.  

 In a positive SAM condition, because of the uncertain degree of cancellation 

between the Ekman flow and eddy-induced circulation, we still do not thoroughly 

understand the behavior of the meridional overturning circulation (MOC) and the tilt of 

isopycnal surfaces. Tilted isopycnal surfaces of the SO are baroclinically unstable, 

spontaneously forming an energetic eddy field.  Eddies have a tendency to homogenize 

potential vorticity and flatten isopycnal surfaces, counteracting the Ekman flow.  To 

understand the compensation between the Ekman flow and eddy-induced circulation and 

the tilt of isopycnal surfaces, researchers have employed observation.  Observed 

temperature and salinity changes based on ship- and float-based CTD data indicate that 

isopycnal surfaces are displaced downward while the tilt of density surfaces remain 

relatively constant (Böning et al., 2008).  The tilt of density surfaces correlates with the 

transport of ACC. The density contrast across the ACC is directly related to the vertical 

shear of the zonal flow through the thermal wind balance. Assuming that deep current is 

relatively weak, overall ACC transport may also be proportional to the density gradient 

and the isopycnal tilt.  
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 Fine-resolution models (e.g. Farneti and Delworth, 2010) also support the 

importance of wind-induced eddy fluxes and the insensitivity of the ACC mass transport 

to increased westerly wind stress.  Using a scaling method, Meredith et al. (2012) argued 

that increased eddy activity itself cannot fully compensate for the increased Ekman flow 

within a reasonable dynamical range. Below a certain wind threshold, eddy activity will 

be too weak for compensation to occur, and MOC and the ACC then become strongly 

sensitive to changes in wind stress (Hofmann and Morales, 2011).  Furthermore, because 

the characteristic time scale of isopycnal slope adjustment is many decades and centuries, 

detecting significant changes from a few decades of observations is difficult (Jones et al, 

2011). 

1.2 Southern Ocean Carbon Cycle 

 The SO has unique biogeochemical characteristics. Since the steep isopycnal 

slope directly connects the deep ocean carbon reservoir to the atmosphere, the SO is an 

important region for ocean carbon uptake. Annually, the global ocean absorbs about two 

petagrams of carbon, half of which occurs in south of 30°S (Takahashi et al., 2012; 

Khatiwala et al., 2009; Gruber et al., 2009).  Air-sea carbon flux has been an area of 

intense research, and its pattern and magnitudes have been estimated by several methods:  

ocean in-situ observations (Takahashi et al., 2002, 2009; Manning and Keeling, 2006; 

Bender et al., 2005; Quay et al., 2003; Sabine et al., 2004), the inversion of general ocean 

circulation models (Gruber et al., 2009; Mikaloff Fletcher et al., 2006, 2007; Gloor et al., 

2003), ocean forward models (OCMIP-2; Matear and Hirst , 1999), and atmospheric 

inverse models (Baker et al., 2006; Patra et al., 2006; Gurney et al., 2002, 2003, 2004).   

The estimates of these methods do not agree, particularly when the methods are applied 

to the SO.  All estimates contain biases or errors that make a comparison of them 

valuable but challenging.  For example, McNeil et al. (2007) indicated weaknesses of 

both the atmospheric inverse modeling and the !!"! observational predictions of air-sea 
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carbon flux.   While atmospheric inverse modeling estimates are subject to biases 

resulting from unrealistic atmospheric transport and sparse regional record of the 

Southern Hemisphere, !!"! observations are subject to seasonal biases that result from 

difficulties in obtaining data during the austral winter.  

 Observational estimations can be further separated into several groups according 

to their method of measurement:  the difference between sea and air !!"! (Takahashi et 

al., 2009), the mass balance of 13C to 12C (Quay et al., 2003), changes in atmospheric 

oxygen and !"!  (Bender et al., 2005; Manning and Keeling, 2006), and changes in 

ocean !"! (Sabine et al., 2004). Since the net air-sea flux can be estimated by 

multiplying the gas transfer coefficients by the difference between the air and sea !!"! 

(Δ!"#!) (Ho et al., 2011; Wanninkhof, 1992), this measurement is one of the primary 

methods for the direct measurement of the air-sea carbon flux (Takahashi et al., 2012).  

Takahashi et al. (2002) previously found an uptake region in the southern high latitudes, 

which was later corrected to be a moderate source.  Figure 1.3 shows the annual-mean of 

 

 

Figure 1-3: Takahashi global ∆!"#! annual mean 
(Data from: http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide) 
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global Δ!"#! based on Takahashi (2010) observational dataset, which has a reference 

year of 2000. We can see positive Δ!"#! in high latitude SO, which indicates an 

outgassing of !"#! in the region. Moreover, negative Δ!"#! regions are shown in mid- 

to lower latitude SO. In a climatological sense, the mean !"! flux undergoes significant 

outgassing in the equatorial region (about 0.7 Pg C per year) counteracting the sinking of 

!"! in two major regions:  around 40°N (about 0.7 Pg C per year) and around 40°S 

(about 1.0 Pg C per year) (Takahashi et al., 2009, 2012).   

 Takahashi et al. (2012) identified strong seasonal variability in the air-sea carbon 

flux with prominent sink for the global sea-air carbon budget centered around 40°S.  

During the austral summer, the biological drawdown of carbon contributes to a strong 

sink zone centered around 45°S.  In higher latitude regions, the carbon flux is weak due 

to seasonal compensation between biological carbon uptake and !"! solubility caused by 

warming. During the austral winter, the spatial distribution of the air-sea carbon flux 

exhibits a pattern similar to that of the annual mean.  The sink zone centered around 40°S 

is intensified by stronger wind and cooler seawater.  Moreover, a strong !"! source zone 

is located around 60°S. The sea to air carbon flux in this zone is caused by the change of 

the ice field.  However, this source zone makes a relatively small contribution to the 

annual carbon flux and the global sea-air !"! budget. The latitude-depend seasonal cycle 

of zonal-mean Δ!"#! based on Takahashi dataset is shown in figure 1.4. 

 Gruber et al. (2009) compared carbon flux estimates obtained by simulations of 

the inverse ocean model (Gruber et al., 2009; Mikaloff Fletcher et al., 2006, 2007) and 

measurements of the differences between air and sea !!"! (Takahashi et al., 2009).  One 

of the advantages of ocean inversion is the separation of the natural and anthropogenic 

air-sea carbon flux.  Similar to the study of Takahashi et al. (2009), Gruber et al. (2009) 

found a meridional distribution of air-sea carbon flux with outgassing in the tropics,  
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Figure 1-4: Seasonal cycle of latitudinal zonal-mean ∆!"#! 

(Data from: http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide) 
 

sinking in the middle latitudes, and small fluxes in the high latitudes.  Model simulations 

revealed strong compensation between the uptake of anthropogenic !"! and the 

outgassing of natural !"!, and models and observations do not agree with regard to the 

pattern of ocean carbon uptake in the Southern Ocean.  Estimates from ocean inversion 

models (Gruber et al., 2009) suggests more uniform carbon uptake while those from 

!!"!-based observations show strong uptake in the mid-latitudes (44°S to 58°S) with a 

source in the high latitude region (south of 58°S)(Takahashi et al., 2009).  To estimate the 

!"! uptake using surface dissolved inorganic carbon and total alkalinity, McNeil et al. 

(2007) also obtained a relatively uniform uptake region in the SO using an empirical 

approach.  

 As atmospheric !"! and the global climate change, the air-sea fluxes of both 

anthropogenic and natural !"! are predicted to change in the future (Yoshikawa et al., 

2008; Gruber et al., 2004; Plattner et al., 2001; Matear and Hirst, 1999; Joos et al., 1999b; 

Sarmiento et al., 1998).  Furthermore, Lenton and Matear (2007) and Lovenduski et al. 

 

−40

−30

−20

−10

0

10

20

30

40

Delta pCO2 (Takahashi zonal mean)

[micro atm]   J        F      M       A      M      J        J        A       S       O      N       D

−60

−56

−48

−44

−40

−36

−64

−52

Time (month)

Lat



 8 

(2007) found a relationship between SAM and !"! flux in ocean biogeochemistry model 

simulations.  They suggested that a decrease in ocean !"! sink resulting from the wind-

driven upwelling of high-DIC waters from the deep ocean accompanies the positive SAM 

trend.  Several studies show a similar weakening of the carbon sink under an increasing 

westerly wind.  Le Quéré et al. (2007) showed an increase in deepwater upwelling with a 

stronger wind during between 1981 to 2004.  Le Quéré et al. (2010) quantified the change 

in the difference between air and sea !!"! (20 µatm per decade), which is faster than the 

increase in atmospheric !"!  (16 µatm per decade) between 1981 and 2007 using a 

biogeochemical ocean GCM. Takahashi et al. (2012) suggested that the observed !!"! in 

Antarctic surface waters has increased faster than atmospheric !!"!, indicating a 

weakening of the carbon uptake. 

1.3 Objective and Scope of This Study 

 The climate and circulation of the Southern Ocean is closely coupled to the 

overlying atmospheric variability.  The oceanic response to the multi-decadal 

atmospheric trend has profound influences on the future carbon uptake in the SO. 

However, many questions remain about the processes controlling the air-sea carbon flux 

and its link to climate variability.  The spatial patterns and magnitudes of modeled and 

observational estimates of carbon flux do not agree. Significant spatial and temporal 

variability exists in the carbon flux and associated biogeochemical processes (Lovenduski 

et al., 2008; Takahashi et al., 2009).  Because of significant seasonal variability in 

temperature, wind, sea ice, and biological processes, the detection of relatively weak 

long-term trends is difficult (Takahashi et al., 2012). Furthermore, as the above processes 

undergo significant compensation in controlling the surface ocean !!"! and air-sea 

carbon fluxes, the interpretation of observations is also complex.  

 In this study, we perform realistic simulations of the SO carbon cycle on seasonal 

to interannual time scales, including the explicit representation of the mesoscale ocean 
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eddy fields.  Therefore, we cannot directly address questions concerning long-term 

trends.   Instead, we focus our attention on the key physical and biogeochemical 

processes that are crucial in controlling the behavior of the SO carbon sink.  In particular, 

our model analysis will address the following two questions:   

 (1) What controls the variability and seasonal cycle of air-sea !"! flux in the SO? 

 (2) What are the relative roles of ocean transport, biological uptake, and air-sea 

!"! flux in regulating the regional carbon budget? 

We will utilize a modified version of a general circulation model (GCM) to simulate the 

SO carbon flux on seasonal to interannual timescales based on a state estimate. The 

model we use in this study will be described in section two (methodology.) Then the 

analysis of the outputs will be discussed in the following section (results.) We started 

with answering the first question by concerning the contribution of different variables on 

the air-sea !"! flux variability. A detail about our simulations and analysis can be seen in 

section 3.1. To solve the second scientific question, we analyzed the regional carbon 

budget in the SO (section 3.2). Furthermore, in section 3.3, we conclude the results from 

section 3.1 and 3.2 to investigate the seasonal cycle of air-sea carbon flux in regional 

differences. We demonstrate the relationship between different variability by a schematic 

chart in the same section. After a brief summary in the results section, we have a 

conclusion and future work section to summarized this study and address some weakness 

of our study and possible future work. 
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CHAPTER 2 

METHODOLOGY: MODEL DESCRIPTION 

 

 We used a numerical biogeochemistry model as a tool to better understand the 

variability of SO carbon flux on the seasonal to interannual time scales. The model is 

based on the SOSE-OCMIP model, in which a simple biogeochemistry scheme is 

coupled the Southern Ocean State Estimate (SOSE) (Woloszyn et al. 2011; Ito et al., 

2010; Mazloff et al., 2010). 

2.1 Southern Ocean State Estimate (SOSE) 

 The Southern Ocean State Estimate (SOSE) is a physical state estimate that 

combines an MIT general circulation model (Marshall et al., 1977) with observational 

data in the regional SO domain at an eddy-permitting resolution (Mazloff et al., 2010). 

Obeying the Navier-Stokes equations and conservation of mass, heat, and salt, the model 

is fitted to the data in a constrained least-squares sense. The observational dataset 

includes satellite SST data, Argo float profiles (Gould et al. 2004), CTD sections, satellite 

altimeter, and instrument-mounted seal profiles (Boehme et al. 2008). The model domain 

covers poleward of 25°S in the latitude-longitude grid of 1/6° horizontal resolution 

containing all. In the vertical direction, it has 42 varying thickness z-levels with a KPP 

mixed layer scheme (Large et al., 1994). A thermodynamical seaice scheme is also 

coupled to the model, and the exchanges of momentum, heat, and freshwater (salt) 

between the atmosphere and ocean are calculated by the bulk formulae (Large and 

Yeager, 2004). 

 To obtain the least squares fit to the suite of observational data, Mazloff et al. 

(2010) define the cost function as the weighted squared model state and data differences, 

which is summed over time and space. The same weighting has been used as the ECCO 
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global estimates (Forget and Wunsch, 2007; Ponte et al., 2007; Wunsch and Heimbach, 

2007). To minimize the cost function, the gradients of cost function with respect to the 

control vector are calculated using an adjoint model (Giering and Kaminski, 1998). The 

control vector contains adjustable parameters of initial conditions (three-dimensional 

temperature and salinity) and boundary conditions (time varying two-dimensional 

atmospheric state.) The National Centers for Environmental Prediction–National Center 

for Atmospheric Research (NCEP–NCAR) reanalysis data (Kalnay et al., 1996) was used 

for the first-guess atmospheric state, and a special 1° global state estimate (Forget, 2010) 

was used for the first-guess initial condition and northern boundary conditions. The 

model state is iteratively optimized by the adjustment of the control vector according to 

the results of adjoint calculation. The quasi-Newton search algorithm of Gilbert and 

Lemare´chal (1989) was used for the gradient descent algorithm. After the cost function 

is reduced to an acceptable level, the adjusted control vector was used to run the free 

model forward in time to obtain the state estimate. 

2.2 Biogeochemistry Model 

 We simulate the Southern Ocean carbon cycle in the offline mode based on the 

modified OCMIP-2 scheme (Ito et al., 2010; Woloszyn et al., 2011). The tracer transport 

is calculated using the five-day averaged state estimates from SOSE including the three-

dimensional velocity fields, temperature, salinity, and the KPP mixing coefficients. The 

circulation and mixing fields are pre-computed, making the model simulation 

computationally efficient. The biogeochemistry model is based on the Ocean Carbon-

Cycle Model Intercomparison Project phase two (OCMIP-2) scheme (Najjar et al., 1992), 

in which the near-surface (<75m) phosphate concentration is restored toward the monthly 

climatology using the linear relaxation if the simulated concentration was greater than 

that of climatology.  The reference climatology was based on World Ocean Atlas 2009 

(Garcia et al., 2010). Biological carbon uptake was then parameterized using the constant 
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stoichiometric ratios, which have the elemental ratio of organic material between 

phosphate, carbon and oxygen of 1:117:-170.  One-third of this carbon uptake was 

directed to the sinking particulate pool, and the vertical dissolution for this pool was 

computed based on a power-law function, specifically, the Martin curve (Martin et al., 

1987). To calculate the calcium carbonate formation, a uniform carbonate to organic rain 

ratio of 0.07 is used. We spun up the model for ten years from 1995 to 2004 by an 

initialization in 1995 based on the Global Ocean Data Analysis Project data set 

(GLODAP) (Key et al., 2004). We repeated the same annual cycles as those in 2005. For 

the simulation period of 2005 to 2008, the time-varying circulation fields and boundary 

conditions are used. The air-sea !"! flux is calculated using the ten meter wind speed 

based on the satellite scatterometer (QuikScat). Atmospheric !"#! is based on average 

monthly zonal mean values derived from GLOBALVIEW dataset (GLOBALVIEW-

CO2, 2012) provided by NOAA ESRL. 

 Woloszyn et al (2011) compared an earlier version of SOSE-OCMIP simulations 

with several in-situ and observational datasets. Considering the annual mean of air-sea 

carbon flux in the Drake Passage, the model outputs are consistent with the Takahashi 

climatology (Takahashi et al., 2009), which has the annual mean referenced to 2000. 

Even though the simulated outgassing of carbon dioxide is stronger and equatorward 

shifted than that of observation, the model well captured the general spatial pattern and 

magnitudes, with a dominant outgassing region around 50°S to 60°S, and the main uptake 

region north of 50°S.  

  Woloszyn et al (2011) also made a comparison between the in-situ observations 

(CLIVAR repeat hydrography data from line A16S (25°W–40°W) and P16S (150°W)) 

and SOSE-OCMIP model simulations for the top 1000m. The model reproduced the 

observed pattern of temperature, salinity, alkalinity, and Dissolved Inorganic Carbon 

(DIC) with small misfits along the P16S line. Similarly, the model well reproduced all 

temperature, salinity, Alkalinity and DIC in Atlantic sector, with misfits even smaller 
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than those in Pacific region. In this study, we extend the simulation period to four years 

(2005-2009) using a newer version SOSE (iteration 59). 
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CHAPTER 3 

RESULTS 

 

3.1 Drivers of the Variability and Seasonal Cycle of Air-sea Carbon Flux 

 To investigate the variability of air-sea !"! flux in the SO, we started with the 

air-sea !"! flux equation, which is written as: 

F!"# = (1-­‐f!"#)GK!(pCO!!"#-­‐pCO!!"#), 

where the air-sea flux (!!"!) is proportional to the multiplier of gas exchange coefficient 

(G), Henry’s law coefficient (!!), and the difference of oceanic and atmospheric partial 

pressure of carbon dioxide  (!!"!!"# − !!"!!"#). (1− !!"#) includes the effect of sea 

ice. The grids with fully covered sea ice have !!"# = 1, and those with no sea ice have 

!!"# = 0. In other words, sea ice slows down the air-sea flux. Note that Henry’s law 

coefficient depends on temperature and salinity, which is based on the SOSE product. 

Having the typical range of temperature and salinity in the SO region, the solubility can 

decrease by about 60% by the temperature contribution (0 to 30°C) and decrease by 1.5% 

by the salinity contribution (34 to 37 psu).  The atmospheric partial pressure of carbon 

dioxide is based on the observational dataset. While the model explicitly calculates the 

air-sea !"! fluxes including all these terms, we focused on the gas exchange rate and the 

oceanic  !!"! variability that contributes to the seasonal to interannual variability of air-

sea flux in the SO.  

3.1.1 Control Simulation 

 Figure 3.1 shows the maps of the air-sea flux (!!"!), gas exchange rate (G), and 

the oceanic partial pressure of carbon dioxide (!!"!), based on their four-year time mean 

spatial patterns. Because of the constraint of the time period of our simulations, we  
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Figure 3-1: Four-year-mean special patterns of air-sea carbon flux, gas exchange rate, and oceanic 

partial pressure of carbon dioxide 
 

calculated the “climatology” using the whole four-year (2005-2008) of the SOSE-OCMIP 

model outputs to demonstrate the patterns in interannual time scale.  

 In figure 3.1, we can see that G is very zonally symmetric, with smaller values in 

higher latitudes because of relatively small wind speed and lower temperature. (The black 

circle separating higher (Antarctic) and lower (Subantarctic) latitudes set at the 50°S 

latitudinal line.) In lower latitudes, the G magnitudes are higher, especially around 50°S. 

The pattern of !!"! shows uptake regions in both higher latitudes and lower latitudes, 

while outgassing regions occur around mid-latitudes (~50°S). The pattern of !!"! is very 

similar to that of !!"!. However, both  !!"! and !!"! patterns have are zonally 

asymmetric. Having the mean !"#!!"# value about 380 ppm with little variances in both 

time and space, the signs of regional (!"#!!"# − !"#!!"#) are matching with those of 

!!"!.  

 Therefore, because of large latitudinal variances, we choose to separate the SO 

into two regions: the Antarctic and the Subantarctic regions. The Antarctic region is 

defined as 50°S to 78°S, while the Subantarctic region is defined as 35°S to 50°S of the 

SO in this study (Figure 3.2). We divided the SO by 50°S for two reasons: First, the  
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Figure 3-2: An illustration of the Antarctic and the Subantarctic regions 

 
 

distributions of nutrient such as phosphate are zonally symmetric with a large gradient 

around 50°S; Second, The parameters associated with the carbon flux such as oceanic 

!!"!, air-sea !"! flux and gas exchange rate have large gradient in the meridional 

direction. 

 Furthermore, to explain the reason why we have smaller G in higher latitudes, we 

can demonstrate the relationship between G and both temperature and wind speed using 

the equations of G. We used the gas exchange rate of Wanninkhof (1992) for our control 

runs, and both cubic and quadratic form of gas exchange rate from Ho et al. (2011) for 

perturbation runs. We performed sensitivity experiments to quantify uncertainty from 

parameterization of air-sea gas transfer. (In our simulations, surface DIC and !!"! 

dynamically adjust to the different gas exchange parameterization.) The expressions of 

the gas exchange rate (in !"
!"

) are as follows: 
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!!"# = 0.31!"#$!
660
!"     , 

!!!" = 0.277!"#$!
600
!"     , 

!"#    !!!" = 0.0241!"#$!
600
!"     , 

where Sc is the Schmidt number, which depends on both temperature and salinity; Wspd 

is the ten-meter wind speed; GwaQ, GhoQ, and GhoC are the quadratic equation from 

Wanninkhof (1992), quadratic equation and cubic equation from Ho et al. (2011), 

respectively.  

 Figure 3.3 shows the relationship between G and temperature as well as wind  

 

 
Figure 3-3: The relationship between the gas exchange rates, sea surface temperature (SOSE), and 

ten-meter wind speed (QuikScat) 
 

speed using the three expressions of G (Wanninkhof, 1992 (the control run); Ho et al., 

2011 (perturbation run 1 and 2 for quadratic and cubic equations, respectively)). An 

increase of G occurs with increasing in temperature and wind speed with different rates. 
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Note that we are only considering the control simulation (base line G: Wanninkhof 

(1992)) in figure 3.1. 

3.1.2 Sensitivity Study on Air-sea Gas Exchange Rate 

 To calculate the sensitivity of the air-sea carbon flux to the gas exchange rate, we 

used three different expressions for G: Wanninkhof (1992) for our control simulations, 

both cubic and quadratic form of gas exchange rate from Ho et al. (2011) for our 

perturbation simulations. The time-mean spatial patterns of !!"!, G, and !!"! from the 

two perturbation simulations (not shown) are similar to those from the control simulation. 

However, if we take the difference between three simulations quantitatively, regional 

differences occur (figure 3.4). The differences between the three simulations are smaller  

 

 
Figure 3-4: The regional differences of air-sea carbon flux, gas exchange rate, and oceanic partial 

pressure of carbon dioxide between the four-year mean of the perturbation simulations 
(HoQ and HoC, representing the quadratic and cubic expressions from Ho et al. (2011)) and that of 

the control simulation (WaQ, representing the quadratic expression from Wanninkhof (1992).) 
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than 0.8 !"#$ !!!" for !!"!, which has a range of ±5 !"#$ !!!" in the SO region 

(figure 3.1). For G, the differences are in a range of ± 10 !" !", with the SO G values 

from 0 to 40 !" !". The differences of oceanic !!"! between the three simulations are 

in a range of ±4 µatm, while the four-year average of !!"! in the SO region is from 340 

to 420 µatm.  Here we used the control simulation as the basic patterns. Note that the 

differences are larger in the Subantarctic region but are with the same orders as those in 

the Antarctic region. This latitudinal difference may because of the effect of lower 

temperature, lower wind speed, and higher coverage of sea ice in higher latitudes. 

 Other than the time-mean spatial patterns, we also investigated the time variances 

of !!"!, G, and !!"! (Figure 3.5, figure 3.6, and figure 3.7, respectively) using three  

 

 
Figure 3-5: The time series of the regional mean of air-sea carbon flux based on different 

parameterization of the G 
 

different expressions of G. Note that the variability of G and !!!! are two of the drivers 

that contribute to the variability of !!"! in our simulations. For all three components, we 

see a large seasonality with a larger interannual variability in the Subantarctic region, 
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except the maximum G in the Antarctic region during summer to fall. The model 

simulates the three-dimensional distribution of biogeochemical tracers, surface !!"!, and 

air-sea !"! fluxes, in conjunction with the parameterization of G. As a result, we will 

have different magnitudes of !!"! and !!"! based on our paramerization of G. 

 Figure 3.6 shows that the interannual variability is not obvious in the time series 

of G, while the seasonality is large and especially in the Subantartic region. Note that 

 

 
Figure 3-6: The time series of the regional mean of gas exchange rate based on different 

parameterization of G 
 

there are some peaks in Antarctic region due to temporary large wind speed during late 

austral summer. Comparing figure 3.6 to figure 3.7, the maximum of G is corresponds to 

the minimum of !!"!. However, the values of G only control the magnitudes of !!"! but 

not the signs of it. Moreover, the time variability of !!"! (figure 3.7) shows a similarity 

with that of !!"! (figure 3.5) in both seasonal and interannual time scales. Maximum 

uptake of carbon dioxide by the ocean happens during austral fall in Antarctic region, and 

during late fall to winter in Subantarctic region. On the other hand, maximum outgassing  



 21 

 
Figure 3-7: The time series of the regional mean of oceanic partial pressure of carbon dioxide based 

on different parameterization of G 
 

in Antarctic region occurs during austral spring to summer, while that in Subantarctic 

region happens only in winter with much smaller magnitudes. Note that the magnitudes 

of uptake peaks are much larger than that of outgassing peaks, regardless of the region. 

Therefore, the seasonal variability of G reinforces the ocean carbon uptake from air-sea 

flux in both Antarctic and Subantarctic regions. 

 From regional average of !!"! and !!"!, we see little differences between 

different parameterization of gas exchange rates. In other words, even though the regional 

differences of time mean properties do occur, regional mean time series of the properties 

have little differences regardless of the paramerization of the gas exchange rate. The little 

differences in the air-sea carbon fluxes may because of the compensation between the gas 

exchange rate (G) and the !"#!!"# − !"#!!"#  (or ∆!"#!) contributions.  

 If we take the time mean of the regional average of !!"!, !!"!, and G, we can 

investigate the compensation quantitatively. All three simulations in both regions have 

negative values for mean !!"! (uptake). In Antarctic region, the average carbon uptake in 
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hoQ (hoC) run is 2.5% (4.4%) smaller than that of control run, while in Subantarctic 

region, the uptake in hoQ (hoC) run is 5.8% (7.9%) smaller than that of control run. 

These values show little differences between the three simulations, with slightly larger 

differences in Subantarctic region. Having the time mean values of the regional average 

!"#!!"# about 380 µatm in both regions, the hoQ (hoC) run has a 56.6% (90.9%) larger 

negative value of ∆!"#! comparing to the control run in the Antarctic region. In the 

Subantarctic region, the hoQ (hoC) run has a 33.6% (45.5%) larger negative value of 

∆!"#! comparing to the control run. Moreover, the hoQ (hoC) run has a 14.8% (13%) 

smaller value of G in the Antarctic region, while the hoQ (hoC) run has a 14.8% (20.9%) 

smaller value of G comparing to the control run in the Subantarctic region. Therefore, we 

can conclude that during our simulation period and in the SO region we investigated, a 

larger difference between air and sea !"#! accompanies a smaller G value. Therefore, 

the variability of G and ∆!"#! compensates each other, leading to little differences of 

!!"! in the three simulations. 

 Furthermore, we can tell that the variability of !!"! strongly impact that of !!"!. 

Bearing in mind that the variability of G only contributes to the magnitudes of !!"! but 

not the signs, we would like to understand more of the seasonal cycle of !!"!. Figure 3.8 

shows the seasonal cycle of zonal mean ∆!!"! from about 35°S to 65°S. Figure 3.8 (a) 

shows the observational ∆!!"! from Takahashi climatology, and figure 3.8 (b) shows 

the same variable as (a) but is based on our SOSE-OCMIP simulation model. We can see 

postive ∆!!"! during late winter to spring in the Antarctic region in both Takahashi 

observation and our simulation. Moreover, negative ∆!!"! occurs in the Subantarctic 

region around about 45°S, and persists for all seasons in observation, but happens only 

during fall to spring and with much smaller magnitudes in our simulation. The largest 

difference between the Takahashi observation and our simulation is around 35°S, where 

∆!!"! shows positive values in our simulation during the austral summer, while it shows 



 23 

 

 

Figure 3-8: The seasonal cycle of zonal mean delta !!"! in a latitudinal range of about 65°S to 35°S. 
(a) shows the observational data from Takahashi monthly climatology 
(http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide), and (b) shows the simulation results from 
our SOSE-OCMIP model 
 

negative values all over the seasons in observation. Although the differences between 

Takahashi observation and our model simulation can be seen in figure 3.8, we have to 

note that while we used the year 2005 to 2008 as our simulation period, the Takahashi 

climatology has a reference year of 2000. Moreover, while the model has a better spatial 

resolution than observation, our simulations only have a four-year time period. To further 

investigate the variability of oceanic !!"! and thus of ∆!!"! in seasonal to interannual 

timescales, we would like to investigate the drivers of the variability of !!"!. 

3.1.3 Controllers of the variability of partial pressure of carbon dioxide 

 For calculating the components that mainly controls the variability of the oceanic 

!!"!, we used the linearization of carbonate chemistry. (Woloszyn et al., 2011, Follows 

et al., 2006) We linearized carbonate chemistry based on the work of Woloszyn et al. 

(2011) to compute the regional contributions from temperature (T), salinity (S), dissolved 
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inorganic carbon (DIC), and alkalinity (Alk) to oceanic !!"!. Note that we normalized 

DIC and Alk with salinity to isolate the freshwater effect. In order to get the sensitivities 

of !!"! on T, S, DIC and Alk, we utilized the subroutine in Follows et al. (2006). We 

calculated the time mean values for the reference states. Moreover, we adjusted the 

nutrient concentration equations to fit the SO conditions: We regressed !"! and !"#! 

onto (salinity/35) based on the World Ocean Atlas monthly climatology (WOA09) for the 

Subantarctic region. In the Antarctic region, we used constant values for phosphate and 

silicate concentration (45mmolm-3 for silicate and 2.2mmolm-3 for phosphate.) The result 

is shown in figure 3.9. The reference value of !!"! is the time mean of the regional 

!!"! magnitudes, which is 377.7 µatm in the Antarctic region, and 376.2 µatm in the 

Subantarctic region. 

 

 

Figure 3-9: The time variability of regional oceanic !"#! and other variables (temperature, salinity, 
dissolved inorganic carbon, alkalinity, and freshwater effects) that contribute to the variability of 
!"#!. Note that we added the regional time-mean !"#! to all time series of other variables to 
compare to the time series of !"#! 
 

 The dominant controls of !!"! differ in the Antarctic and the Subantarctic 

regions. The variability of !!"! in the Antarctic region is dominated by the variability of 
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DIC. Both DIC and Alk variability are in phase with the variability of !!"! in this 

region, but the temperature contribution, which plays a secondary role, is out of phase 

with !!"!. Note that the interannual variability of temperature moderates that of DIC. 

Moreover, the seasonal variability of Alk, though in phase with that of !!"!, has smaller 

contribution to !!"! variability than that of DIC. 

 In the Subantratic box, the interannual variability of DIC plays a much smaller 

role. The seasonal cycle of temperature, which is the main controller of the !!"! 

variability, is much larger in this region comparing to that in Antarctic region. The 

seasonal variability of DIC is clearly out of phase with that of !!"! and temperature. The 

variability of !!"! is dominated by both seasonal and interannual variability of 

temperature, with a secondary modulation by the variability of DIC. Furthermore, both 

Alk and freshwater effects have negligible effects comparing to DIC and temperature 

contributions.  

 We conclude that the variability of temperature and DIC are the two main drivers 

of regional !!"! variance, controlling the air-sea carbon flux in the SO. The variability 

of temperature is relatively understood, especially on seasonal timescales. Thus, we 

focused on the variability of DIC in the following sections. 

3.2 Regional Carbon Budget in the Southern Ocean 

 Considering the air-sea carbon fluxes, we can similarly separate the SO region 

into two regions: the Antarctic and the Subantarctic regions. We first establish the surface 

DIC budget in these regions before diagnosing the variability of DIC (Figure 3.10). 

Entrainment of high DIC water contributes to a !"! outgassing region in higher latitudes 

(the Antarctic region), while the surface cooling, subduction of the water, as well as the 

biological carbon uptake all drive a !"! uptaking region in lower latitudes (the 

Subantarctic region). Therefore, it is valuable to investigate the relative roles of ocean 
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transport, biological uptake, and the air-sea !"! flux in the SO in regulating the regional 

carbon budget. 

Since the processes that governing atmosphere-ocean interaction in the SO region are 

rather complex, we analyzed the regional carbon budget based on the main activities such 

as oceanic carbon transport, biological carbon uptake, precipitation effect, etc. To  

 

 
Figure 3-10: An illustration of the SO region carbon budget. The pink and yellow shading show the 
Antarctic and Subantarctic box from surface to about 250 meter deep. The white arrows represent 
the carbon transport by physical circulation, and the black arrows above the ocean box represent the 
regional air-sea carbon dioxide flux. The black dots in the subsurface Subantarctic region show the 
biological carbon uptake. 

 
 

demonstrate the SO carbon budget quantitatively, we first expressed the carbon budget 

locally as: 

!"
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Where the local carbon time variance (1) is contributed by resolved circulation (2), sub-

scale flux (3), air-sea exchange flux (4), biological uptake (5), and precipitation effect 

(6). Since we would like to investigate the regional carbon budget, we integrated the 

equation over the control volumes of the Antarctic and the Subantarctic sectors. 

Therefore, the regional carbon budget can be expressed as: 

!
!" !"# = − !! ∙ !! − ! ∙ !! − z=0	
  !!"! ∙ !" − !"#

+ z=0	
  ! ! − ! !". 

In order to completely close the regional carbon budget, we considered the free surface 

effect when calculating the change of DIC concentration with time. Note that for regional 

budget calculations, we only considered surface to 250 meter deep (figure 3.2).   

 We plot the mean seasonal cycle (Figure 3.11) and analyzed the regional carbon 

budget quantitatively. dCdt, which is the change of DIC with time, shows positive (DIC 

increases) values during the austral winter seasons and negative (DIC decreases) values 

during the summer seasons in both Antarctic and Subantarctic regions. Both biological 

uptake and transport play important roles in regional carbon budget in the seasonal time 

scale. In both Antarctic and Subantarctic regions, biological uptake mainly drives the 

DIC variability in austral summer, while transport mainly drives the DIC variability in 

austral winter. The transport of carbon is strongly related to the surface wind stress. The 

zonal wind stress at 50°S (30°S) is correlated with the upwelling (subduction) in the 

Antartic (Subantarctic) box with a coefficient of 0.93 (0.85). The merdional advection at 

50°S (30°S) is correlated with the zonal wind stress at the same latitude with a coefficient 

of 0.97 (0.96). While the effect of precipitation contributes to little of the DIC variability, 

it is important during the austral summer in Antarctic region. Baring in mind the 

importance of the drivers of seasonal variability of DIC such as transport and biological 

carbon uptake, we would like to diagnose the variability of air-sea flux. 
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Figure 3-11: The four-year mean seasonal cycle of the change of dissolved inorganic carbon (DIC) 
with time, and other processes that contribute to the change of DIC. The change of DIC with time is 
shown in the blue lines. A positive (negative) value corresponds to an increase (decrease) in DIC 
concentration. The red lines represent the contribution of carbon transport, the black lines represent 
that of biological uptake, the pink dashed lines represent that of negative air-sea flux (a positive value 
represents an oceanic uptake of carbon dioxide), and the light blue lines represent that of the 
precipitation effect 
 

3.3 The Seasonal Cycle of Air-sea Carbon Flux in Regional Differences 

 Both figure 3.11 and figure 3.5 show that the maximum air-sea carbon flux 

(uptake) happens during fall (MAM) in the Antarctic region, during later fall to winter 

(MAM to JJA) in the Subantarctic region. Note that we plot the negative air-sea carbon 

flux in figure 3.11. Therefore, a positive value for −!!"! represents an oceanic uptake 

flux of !"!from the atmosphere into the ocean. In this section, we further separate the 

time into four seasons, and show the variability in spatial maps instead of regional-mean 

values. We investigated the relationship of the seasonal variability of the air-sea carbon 

flux and that of !!"!, and connected the carbon flux variability to other variances such 

as temperature and DIC that contribute to the variability of !!!!. 
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 We can illustrate the relationship between the seasonal cycle of the SO carbon 

budget and air-sea CO2 flux in Figure 3.12, Figure 3.13, and Figure 3.14. We analysis the 

seasonality by four seasons: DJF, MAM, JJA, and SON, which are austral summer, fall, 

winter, and spring, respectively. We can see a strong seasonality in !!"!. A minimum of 

!!"! occurs during MAM (austral fall) in Antarctic region, while it occurs during MAM  

 
Figure 3-12: The spatial variability of the seasonal mean of air-sea carbon flux 

 

to JJA (austral fall to winter) in Subantarctic region. These !!"! minimums are driven 

by the compensation of large anomalies in temperature and DIC during late summer, 

especially in Antarctic region (figure 3.9). During austral summer, biological carbon 

uptake drove down the surface layer carbon concentration, inducing a minimum in 

oceanic !!"! as shown in figure 3.11 and 3.9. Since the sea surface temperature is 

largest during summer, the summer minimum of !!"! is compensated by the minimum 

solubility. In Antarctic region, during late winter, Alkalinity has a negative contribution, 
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which further decreases the !!"! concentrations. Nevertheless, the Alk contribution is 

not important in Subantarctic region. It is the contribution of decreasing temperature 

during austral fall to winter that decreases the !!"! concentration in Subantarctic region 

during that time (figure 3.9). 

 

 
Figure 3-13: The spatial variability of the seasonal mean of gas exchange rate 

 

 Moreover, the maximum !!"! happens during austral summer in Subantarctic 

region, and during spring in Antarctic region. The main drivers of these maximum are 

summer high temperature and spring high-level DIC, which is contributed from 

wintertime maximum carbon transport into the SO region (figure 3.11). The seasonal 

patterns of air-sea carbon flux are similar to those of !!"!, with smaller values of fluxes 

in the high latitudes because of the small gas exchange rates (figure 3.12, 3.13 and 3.14). 

In other words, the maximum uptake regions occur during MAM in Antarctic sector, and 

during MAM to JJA in Subantarctic sector, while the maximum outgassing happens 
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during SON in Antarctic sector, and during DJF in Subantarctic sector. These seasonal 

patterns are also shown in figure 3.5 and 3.11. However, the seasonal outgassing in both 

sectors is not obvious when we only consider the regional mean values (figure 3.11).  

 

 

Figure 3-14: The spatial variability of the seasonal mean of oceanic partial pressure of carbon 
dioxide 

 

3.4 Summary 

 According to the above discussion, the air-sea carbon flux in the SO region 

depends on both oceanic partial pressure of carbon dioxide (!"#!) and gas exchange rate 

(G). While G (always positive) only contributes to the magnitude of the flux, !"#! 

influence both the sign and value of the flux. If we consider only the contribution of G, 

since the magnitude of G depends on both temperature and wind speed, the values of G 
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(and thus the contribution to the values of !!"!) are small in high latitudes and larger in 

the mid- and lower latitudes. Note that the regional variability is largest during JJA. 

 The contribution of !"#! to the variability !!"! is more complicated. Based on 

the linear decomposition of the carbonate chemistry (figure 3.8), the seasonal and 

interannual variability of !"#! is controlled by temperature, salinity, DIC, Alk, and 

freshwater effects. However, the contributions of these variables differ between the 

Antarctic and the Subantarctic regions. The variability of temperature is more dominant 

in the Subantarctic region, and the variability of DIC is more important in the Antarctic 

region. While both DIC and Alk are in phase with the variability of !"#! in the Antarctic 

region, the variability of temperature is out of phase with that of !"#!.  In the 

Subantarctic region, the variability of temperature is in phase with that of !"#!, while 

DIC is out of phase with !"#!. Furthermore, from the regional carbon budget analysis, 

we can know that the variability of DIC is mainly depends on the biological carbon 

uptake and the carbon transport into and out of the SO region.  A schematic relationship 

between different variables and the SO air-sea carbon flux is shown in figure 3.15. 

 

 

Figure 3-15: The relationship of the air-sea carbon flux in the SO region and different variables. + (-) 
represents positive (negative) contribution by the variable to the variability of the variable above it 
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CHAPTER 4 

CONCLUSION 

 

 This study addresses the following questions: what controls the variability and the 

seasonal cycle of air-sea !"! flux in the SO?  To answer this question, we performed 

several regional simulations of the carbon cycle in the SO and analyzed the processes 

controlling the air-sea carbon flux on seasonal to interannual timescales. The model is 

based on the offline biogeochemistry model (Ito et al., 2010; Woloszyn et al., 2011), in 

which we utilized the eddy-permitting circulation fields from the Southern Ocean State 

Estimate (Mazloff et al., 2010). The spatial pattern and the seasonal cycle of the air-sea 

carbon dioxide flux is calculated, and is broadly consistent with climatological 

observations (Takahashi et al., 2009). Furthermore, we also investigated the mechanisms 

underlying the air-sea flux. 

 The partial pressure of carbon dioxide in the surface water plays the dominant 

role in controlling the variability of air-sea carbon dioxide flux. The seasonal cycle of 

!"#! is in turn controlled by the compensating changes in temperature and dissolved 

inorganic carbon. The nature of compensation changes between the DIC-dominated 

Antarctic region and the temperature-dominated Subantarctic region. 

 Air-sea carbon flux reflects the strong seasonal variability of !"#!. The lowest 

surface !"#! and the strongest carbon uptake occur during the fall in the Antarctic 

region, and between the fall and the winter in the Subantartic region. In contrast, the 

highest surface !"#! occurs during the spring in the Antarctic region, and the summer in 

the Subantarctic region. The maximum values of both !"#! and !!"! are contributed by 

the combination of summer high temperature and spring high DIC. The thermal effect 

dominates in the Subantarctic region because of the larger seasonal temperature range. 

The DIC effect dominates the Antarctic region, which is mainly driven by the large 
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carbon transport during the winter seasons. For the fall-winter minimum !"#! values, the 

causes are slightly different between the Antarctic and the Subantarctic regions. It is the 

combination of DIC and Alk compensating with the temperature effect that contributes to 

the minimum values in the Antarctic region. In the Subantarctic region, the decrease of 

temperature during fall is the main driver. However, the compensation between 

temperature and DIC effects is also crucial to the minimum !"#! and !!"! values there. 

 We also evaluated the dynamical adjustment of surface DIC and !"#! in 

response to the different gas exchange parameterization in the sensitivity experiments, in 

which several forms of the wind-speed dependence of the gas transfer coefficients are 

used. The analysis allows us to quantify the uncertainty arising from the parameterization 

of air-sea gas transfer. We conclude that specific choices of G have little impact on 

spatially integrated carbon flux. During our simulation period and in the SO region we 

investigated, a larger difference between air and sea !"#! accompanies a smaller G 

value. In other words, the contribution of the variability of G and ∆!"#! to the spatially 

integrated carbon flux compensates each other. 

Model Improvement and Future Work 

 Our simulation well captured the SO carbon cycle variability on seasonal to 

interannual timescales. Moreover, the sensitivity tests of the gas exchange rate show that 

the effect of the parameterization of the air-sea transfer coefficient on the regional-

integrated carbon fluxes is small. However, the model still contains several weaknesses 

and needs further improvement. For example, our current model cannot fully capture the 

biological variability because of the macro-nutrient restoring scheme. To improve the 

model, a more realistic scheme considering the nutrient cycle should be employed. The 

impact of iron cycling on the SO carbon cycle is also not taken into account in our model. 

The cycling of iron plays an important role regulating the SO productivity (Pollard et al., 

2009; Coal et al., 2004; Boyd et al., 2000).  
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A possible direction of future research would be to perform a suite of dye simulations 

from hypothetical iron source regions, which include aerosol deposition, upwelling of 

deep water, and continental shelves, and to directly simulate the iron biogeochemistry 

(Parekh et al., 2005) by adding iron sources one at a time. In addition to the iron cycling 

on the SO carbon cycle, the ecosystem also plays an important role in this region, which 

can be simulated using an ecosystem-carbon cycle model including a representation of 

iron cycling and a few dominant phytoplankton functional groups (Dutkiewicz et al, 

2009). Such models may allow us to diagnose the role of eddies in iron and carbon 

transport, and analysis the factors the limit the biological productivity in the model. 

Based on the outcome of the diagnostic study, we can further perform a few sensitivity 

experiments to test specific mechanisms controlling regional biological carbon uptake. 
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