
FREQUENCY VARIANT OPTICAL SIGNAL PROCESSING 

By 

James M. Florence 

This work was supported by the 
National Science Foundation 
Grant No. ENG 75-17724 

January 1979 

GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF ELECTRICAL ENGINEERING 
ATLANTA, GEORGIA 30332 

1979 



FREQUENCY-VARIANT OPTICAL SIGNAL PROCESSING 

by 

James M. Florence 

January 1979 

This work was supported by the 
National Science Foundation 
Under Grant: ENG75-17724 

Principal Investigator: W. T. Rhodes 

Optical Information Processing Laboratory 
School of Electrical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



ACKNOWLEDGMENTS 

I am greatly indebted to my thesis advisor, Dr. W. T. Rhodes, 

whose enthusiasm and guidance made this work possible. 

I wish to thank the members of my reading committee, Dr. T. K. 

Gaylord and Dr. R. W. Schafer, for their careful reading and helpful 

suggestions. 

I also wish to express my gratitude to Dr. A. M. Bush for his 

comments regarding general linear systems theory and to Mr. L. J. Laub 

for his numerous comments and suggestions regarding optical systems and 

optical processing. 

Finally, my deepest appreciation goes to my wife, Maureen, for 

her patience and encouragement through the course of my Graduate studies. 

This work was supported by the National Science Foundation. 





TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS 	  ii 

DEDICATION 	  iii 

LIST OF ILLUSTRATIONS 	  vi 

SUMMARY 	  

Chapter 

I. INTRODUCTION 	1 

II. FREQUENCY-VARIANT OPTICAL SPECTRUM ANALYSIS  	4 
Conventional Optical 
Conventional Optical Spectrum Analyzers  	5 
The Variable Resolution Spectrum Analyzer  	17 
The Frequency Mapping Spectrum Analyzer  	21 
The Frequency-Variant Spectrum Analyzer  	27 
Space-Bandwidth Product for Frequency-Variant Analysis. 	39 
The Holographic Frequency-Variant Spectrum Analyzer 	 44 
Discussion 	46 

III. GENERAL LINEAR PROCESSING WITH COHERENT OPTICAL SYSTEMS . 	. 48 

Linear Systems and Operations 	  49 
Optical Implementation of General 1-D Linear Operations . . 	56 
The Mellin Transform: Two Implementations  	65 
Discussion 	70 

IV. FREQUENCY-VARIANT OPTICAL PROCESSING OF TEMPORAL SIGNALS. . 	72 

The Coherent Optical Signal Processor  	73 
Conventional Optical Heterodyne Signal Processing  	79 
Extensions of Conventional Optical Heterodyne Signal 

Processing: Frequency Shifting and Linear Band- 
width Compression 	87 

The Self-Product Terms and System Linearity 	  100 
Frequency-Variant Optical Heterodyne Signal Processing. . 	103 
Interpretation of System Operation With Time-Frequency 

Signal Components 	  108 
Discussion 	  119 

iv 



V 

TABLE OF CONTENTS (Concluded) 

Chapter 	 Page 

V. CHANNELIZED OPTICAL HETERODYNE PROCESSING SYSTEMS 	 123 

Channelized Processor with Periodic Local Oscillator 
Signals 	  124 

The General Channelized Processing System 	  129 
Optical Heterodyne Processing with a Common Optical 

Mapping System ..... . . . 	  135 
Experimental Implementation -- Demonstration of Basic 

System Capabilities 	  167 

VI. CONCLUSION 	  190 

BIBLIOGRAPHY 	  194 

VITA 	  199 



LIST OF ILLUSTRATIONS 

Figure 
	

Page 

2-1. 2-D Fourier Transform System 	6 

2-2. Vignetting in a Single Lens Fourier 
Transform System 	11 

2-3. Multichannel Spectrum Analyzer 	13 

2-4. System for Spectrum Analysis of Broadband 
Signals.  	16 

2-5. Variable Resolution Spectrum Analyzer.  	18 

2-6. Output of Variable Resolution Spectrum 
Analyzer 	22 

2-7. Frequency Mapping Spectrum Analyzer.  	24 

vi 

2-8. Operation 
Analyzer 	 

of the Frequency Mapping Spectrum 
26 

 

2-9. Output of 
Analyzer 	 

Frequency Mapping Spectrum 

 

2-10. Frequency-Variant Spectrum Analyzer. 

2-11. Fourier Transform Plane ResolUtion Cell 
Diagram. 	  

2-12. Output of Log-Frequency Constant-Q Spectrum 
Analyzer 	  40 

2-13. General Output of Frequency-Variant Spectrum 
Analyzer 	  41 

2-14. Holographic Frequency-Variant Spectrum Analyzer.  	45 

3-1. Linear System Model.  	51 

3-2. Two Systems for the Space-Variant Implementation 
of General 1-D Linear Operations 	58 

3-3. Two Systems for the Frequency-Variant 
Implementation of General 1-D Linear Operations 

	
60 

28 

29 

36 



LIST OF ILLUSTRATIONS (Continued) 

Figure 

3-4. Two Systems for the Two-Mask Frequency-Variant 
Implementation of General 1-D Linear Operations 

3-5. System for the Frequency-Variant Implementation 
of the 1-D Mellin Transform.  	68 

3-6. Recording Technique for Holographic Filter in 
the 1-D Mellin Transforming System 	69 

4-1. Coherent Optical Signal Processing System.  	74 

4-2. The Zenith System.  	80 

4-3. Diffraction of Planewave Illuminating Input 
Device with Single Sinusoid Input.  	82 

4-4. Diagram Model for Processor Operation with 
Frequency Shifted Local Oscillator 	89 

4-5. Optical Heterodyne Processing System with Intro- 
duction of a Local Oscillator Signal 	91 

4-6. Impulse Local Oscillator Signal Introduced by a 
Moving Slit. 	 92 

4-7. Optical Frequency vs. Position of Input Signal 
and Local Oscillator Spectral Distributions . 

	 93 

4-8. Equivalent Noncoherent System for Heterodyne 
Processor with Impulse Local Oscillator.  	95 

4-9. The Frequency-Variant Optical Heterodyne Signal 
Processing System . 	  

4-10. Time-Frequency Signal Diagram 

4-11. Scaled Version of Time-Frequency Diagram Viewed 
through Moving Slit . 

5-1. System Diagram for Heterodyne Processor with 
Single Sinusoid Local Oscillator 	  126 

vii 

Page 

63 

105 

111 

114 

5-2. Channelized System Diagram for Heterodyne Processor 
with Multiple Sinusoid Local Oscillators 	  128 



viii 

LIST OF ILLUSTRATIONS (Continued) 

Figure 	 Page 

5-3. Narrowband Imaging System Configuration of the n
th 

Channel in a General Channelized Processor 	  131 

5-4. Channel Model for n
th 

Channel. 	  132 

5-5. System Model For General Channelized System. 	  134 

5-6. A Common Optical Component Heterodyne Processing 
System 	  137 

5-7. Dual Soundtrack for Input in Common Optical 
Processor. 	  139 

5-8. Frequency Multiplexed Common Optical Processor 	  141 

5-9. The Frequency-Domain Distribution of The Input 
Signal and Local Oscillator in the Frequency 
Multiplexed Processor. 	  142 

5-10. Potential Frequency Ranges of the System Output 
Terms when Positive Input Signal Components Mix 
with Positive Local Oscillator Components .   146 

5-11. Potential Frequency Ranges of the System Output 
Terms when Positive Input Signal Components Mix 
with Negative Local Oscillator Components.   148 

5-12. Mask Used in Staggered Channel Processing. 	  150 

5-13. Potential Frequency Ranges of the System Output 
Terms using Staggered Channel Mixing 	  152 

5-14. Variations in Signal and Crosstalk Amplitude 
Factors with Channel Width 	  157 

5-15. Variations in Signal to Crosstalk Power Ratio 
with Channel Width 	  160 

5-16. Variations in Crosstalk Amplitude Factors with 
Increasing Channel Spacing 	  163 

5-17. Variations in Signal to Crosstalk Power Ratio 
with Channel Spacing 	  166 



ix 

LIST OF ILLUSTRATIONS (Concluded) 

Figure 
	

Page 

5-18. Experimental Implementation 
	

168 

5-19. t-v Characteristic for Recording Film 
Soundtracks .  

	

170 

5-20. Recorded Signal Level Variations with 
Signal Frequency, 	  171 

5-21. Experiment No. 1: Positive-Positive Mixing 	  175 

5-22. Experiment No. 2: Positive-Negative Mixing 	  176 

5 - 23. Experiment No. 3: Staggered Channel Mixing 	  177 

5-24. Experiment No. 4: Playback of Recorded Signal. 	  179 

5-25. Experiment No. 5: Bandwidth Compression. 	  180 

5-26. Experiment No. 6: Bandwidth Compression 
with Unequal Channel Resolution. 	  181 

5-27. Experiment No. 7: Bandwidth Compression 
with Unequal Channel Resolution. 	  182 

5-28. Experiment No. 8: Spectral Rearrangement 	  183 

5-29. Experiment No. 9: Spectral Rearrangement 
with Unequal Channel Resolution. 	  184 

5 -30. Time-Frequency Diagram for Swept Frequency Tone. 	  186 

5-31. Experiment No. 10: Bandwidth Compression of 
Swept Frequency Tone 	  187 

5-32. Experiment No. 11: Bandwidth Expansion of 
Swept Frequency Tone 	  188 



SUMMARY 

Two-dimensional optical systems'provide a second degree of freedom 

when processing one-dimensional information. This second degree of free-

dom can be exploited to increase either the information throughput of the 

processor or the kinds of operations performed by the optical system. In 

this thesis, the second degree of freedom is used to perform signal analy-

sis and signal waveform processing operations that are frequency dependent. 

Conventional coherent optical spectrum analyzers are characterized 

by a linear display of signal spectral components and uniform resolution 

over the analysis bandwidth. A general frequency-variant spectrum analy-

zer is developed with the capability of mapping signal spectral components 

along an arbitrary frequency axis and displaying these components with 

frequency dependent resolution characteristics. Log-frequency and log-

frequency constant proportional bandwidth spectrum analyses are implemented 

with this system. A general description of the space-bandwidth product 

of the optical system is also developed applicable to the frequency-

variant system. 

The extension of the basic methods developed for implementing a 

frequency-variant spectrum analysis to the implementation of general 

one-dimensional linear operations is considered. A clarification of the 

two fundamental optical implementations of one-dimensional linear 

operations is presented. 

A general optical system for processing temporal signal waveforms 

is developed. In this system, the frequency-variant spectrum analyzer 

x 



system is used in conjunction with an interferometric optical heterodyne 

processor. The capability of the frequency-variant analyzer to control 

the position and resolution of signal components allows for the very 

general mixing of a signal and a local oscillator. This mixing results 

in a frequency dependent redistribution of the signal components useful 

for bandwidth compression and expansion or for more general spread-

spectrum signaling. The basic procedure for interpreting the operation 

of this system in terms of time-frequency signal components is described. 

The practical problems associated with the experimental implemen-

tation of the signal waveform processor are considered. A channelized 

version of this system is developed greatly simplifying the input-output 

relationships of the system while retaining most of the operational 

generality of the non-channelized processor. The problems of channel 

crosstalk and channel independence in the channelized system are con-

sidered and the maximum number of channels possible in a system for a 

given degree of channel independence is determined. Common component 

optical processing configurations are also developed to eliminate the 

need for interferometric quality optical components and system isolation 

form vibrations. Finally, the basic operational capabilities of the 

processor are demonstrated. 

xi 



CHAPTER I 

INTRODUCTION 

The application of Fourier methods and linear systems theory to 

optical problems was introduced in the late 1940's by Duffieux [1] and by 

Schade [2]. However, it was from the work of Elias, Grey, and Robinson [3], 

Rhodes [4], Marechal and Croce [5], and O'Neill [6], all in the early 

1950's, that an extensive theory for optical systems based on communica-

tions theory has developed. The impact of this new theory - now generally 

referred to as Fourier optics theory - was extensive, changing not only 

the way in which optical systems were analyzed but the very ideas about 

what kinds of operations an optical system is capable of performing. Many 

of the predictions concerning the consequences of a blending of optical 

theory and communications theory were extravagant (for example, Elias 

foresaw the presence of independent base and treble control knobs on a 

camera lens [7]). Nevertheless, optical systems were correctly recognized 

to be information processing systems characterized by high speed of opera-

tion and the ability to handle large amounts of information in parallel. 

Much of the original enthusiasm for the capabilities of optical 

processing systems (and, indeed, for all analog computing systems) died 

as the power and processing capabilities of digital computers increased. 

Yet, even using the present generation of high speed digital computers, 

there are processing operations, readily performable using optical systems, 

for which no fast digital algorithms have been developed. Recent interest 

in hybrid optical/digital system represents a willingness on the part of 
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the information processing community to sacrifice some of the extreme 

accuracy provided by the digital computer in order to gain the advantages 

of the very high speed and parallel processing capabilities of optical 

systems. 

One class of operations for which optical systems can provide an 

alternative to digital processing is linear shift-variant operations. 

Examples of special cases in this class for which fast digital algorithms 

have been developed include the Fourier transform operation [8] and certain 

frequency-warping spectrum analysis operations [9]. However, a general-

purpose high-speed algorithm for linear shift-variant operations is not 

presently available. A general-purpose optical technique for performing 

operations in this class on two-dimensional (2-D) information using gen-

eralized optical components has been described by Bryngdahl [10]. Unfor-

tunately, this technique suffers severly from limitations imposed on the 

total amount of information that can be processed (there are severe band-

width limitations using this method) [11,12]. If, however, we restrict 

our attention to strictly one-dimensional (1-D) information, a distinct 

advantage inherent in the optical systems makes itself evident. Specifi-

cally, the optical system is two-dimensional, and the second dimension can 

be exploited to provide an additional degree of freedom when processing 

1-D information. In the work presented here, we investigate the use of 

this second degree of freedom to perform linear 1-D shift-variant opera-

tions. The range of problems that could be considered in this class is 

quite broad. We therefore restrict our attention, primarily, to frequency-

variant systems(a sub-class of linear shift -variant systems that we define 

in this thesis). We develop the basic optical capacity for frequency- 



variant processing of 1-D spatial signals, and extend these results to the 

frequency-variant processing of temporal signal waveforms. 

The important results of this research lie in six main areas: 

(1) the development of a frequency-variant spectrum 

analyzer; 

(2) a clarification of the two fundamental methods 

used in optical systems to perform general 1-D 

linear operations; 

(3) the development of a general frequency-variant 

optical processing system for temporal signal 

waveforms; 

(4) a general interpretation of the operation of 

the signal waveform processor in both time and 

frequency; 

(5) specification of a practical channelized version 

of the signal waveform processor; and 

(6) the experimental demonstration of the basic 

processing capabilities of the channelized 

system. 
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CHAPTER II 

FREQUENCY-VARIANT OPTICAL SPECTRUM ANALYSIS 

Papoulis defines a spectrum analyzer as a physical system measur-

ing the Fourier spectrum of an arbitrary signal [13]. Thus ideally, a 

coherent optical spectrum analyzer is an optical computer used to evaluate 

the Fourier transform integral 

F( V) = 
	

f(x)e
-i2"x

dx , 	 (2 - 1) 
—oo 

where f(x) is the arbitrary signal input. Taking into account the finite 

extent of any actual optical system, it is clear that such a system can 

evaluate an integral only over finite limits. The output of an 

optical spectrum analyzer would therefore have the form 

F(v) = 	f(x)w(x)e
-27vx

dx 	 (2 - 2) 
- 

where w(x) is some windowing function that limits the input to a finite 

extent. Thus the output of an optical spectrum analyzer is the equivalent 

of the short-time analysis performed by electronic or digital spectrum 

analyzers. 

We begin this chapter with a brief survey of the operation and 

essential characteristics of conventional optical spectrum analyzers for 

one-dimensional (1-D) signals. We discuss some of the important advan-

tages and limitations of these systems. We then describe the extension 
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of optical spectrum analyzer capabilities through utilization of 

the two-dimensionality of the systems. In particular, we describe a class 

of spectrum analyzers for 1-D signals that exploit the additional degree 

of freedom available in the optical system to perform operations that 

are frequency-variant. 

In the discussions below, we assume that the input signal, initi-

ally a function of.time, is introduced into the optical system as 1-D 

spatial variations of a light amplitude distribution. One method of 

implementing this input operation is first to record the input signal as 

a density modulated soundtrack and process the film for light amplitude 

transmittance variations proportional to the recorded signal. Illumina-

ting this soundtrack with a plane wave then produces the input light 

amplitude distribution. We will often discuss the corresponding time 

and temporal frequency characteristics of the recorded signal rather than 

the spatial or spatial frequency characteristics. Real-time operation of 

the analyzer systems is possible if the input recording is replaced with 

one of several real-time input transducers available. Radio-frequency 

signals, for example, can be input directly using a Bragg cell [14]. 

Conventional Optical Spectrum Analyzers  

In a coherent optical system, there exists a two-dimensional (2 -D) 

Fourier transform relationship between the light amplitude distributions 

in the front and back focal planes of a simple thin lens. If we consider 

the single lens system shown in Fig. 2-1, the light amplitude distribu-

tions in planes P 1 
and P 2, the front and back focal planes of the lens L, 

respectively, are related by the expression [15] 

5 
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Figure 2-1. 2-D Fourier Transform System. 
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-i2ff(
Af 
 x+ 	 

of y) 

U 2 (C,11) = A 

- 

ff U
1 
 (x,y)e 	 dxdy , 	 (2-3) 

where A is the light wavelength and f t  is the focal length of the lens, 

and A is a complex constant. The integral in Eq. (2-3) is evaluated over 

the finite limits X representing the area of the limiting aperture placed 

in P l . The extent and limiting nature of this input aperture can be incor-

porated in a windowing function, w(x,y), and the output rewritten as 

	

-i27( 	
Af  x+ Af 

• 

Y)  
U 2 (,T1) = A 

- 

jj U
1
(x,y)w(x,y)e 	 dxdy . 	(2- 4) 

The light amplitude distribution in P 2  is therefore expressible as the 

2-D Fourier integral transform of the product function U l (x,y)w(x,y) 

evaluated at the frequencies v= UXf t  and p =n/Af t . 

Our primary concern is the spectral analysis of 1-D signals. We 

therefore consider the input light amplitude distribution in P 1  to be of 

the form 

U
1
(x,y) = f(x)1(y) 
	

(2-5) 

The function, 1(•), is a constant function with value unity for all values 

of its argument. This function will be used to indicate explicitly the 

two-dimensional nature of distributions that have variations in only one 

dimension. With this input distribution, the output amplitude distribution 

is 



2 (E0) = K'f f(x)wx
(x)e 	 dx 

-i2Tr 	 
Af 

-CO 

(2-9) 

8 

- i2 AT 	x+ 
of 	Y) Af

t  
U (C,n) — A ff f(x)1(y)w(x,y)e 	 dxdy . 	(2-6) 

_co 

If we assume w(x,y) to be separable in x and y, i.e., w(x,y) =w
x
(x)w (y), 

then the integral is separable: 

_ r- 
u (,n) = A j 	1(y)w (y)e 

-i2Tr 	
f9, 

-co 

f(x)w (x)e 
x 

-i27 	 
Af 

dxdy , 

(2-7) 

or 

-i2n Af 
U 2 ( ,n) = 	(n/Af )1 f(x)wx

(x)e 	 dx , (2-8) 

where W (•) is the Fourier transform of w (•). In most cases of interest, 

w (y) will be a wide rectangle function, and most of the light in the out-

put plane will be concentrated along the Therefore, viewing the 

output distribution only along the 	we have 

where 

A' = AW (0) 	. 	 (2-10) 

For convenience, we assume that the output axis is rescaled in terms of 

the frequency variable v=E/Xf t  (this is equivalent to assuming unit 



values for the light wavelength and lens focal 

can then be simplified to 

length). Equation (2 - 9) 

U 2 (v,0) 	= AII 

or 

f(x)w
x
(x)e

-i2wvx
dx (2-11) 

U
2
(v,0) 	= A 15Eff(x)wx (x)} 	, (2-12) 

wheregf•I is the 1-D Fourier transform operator representing the inte-
x 

gral of Eq. (2-11). 

The single lens system of Figure 2 - 1 performs the short -time spec-

trum analysis with the result displayed along the v-axis of the output 

plane. With this system, as with the other system described below, con-

tinuously updated real-time or delayed real-time spectral analysis is 

possible using the real-time input transducer or a moving soundtrack 

input. In the analytical expressions, f(x) then becomes f(x+vt), where 

v is the velocity associated with the input device (e.g., the acoustic 

propagation velocity in a Bragg cell). One distinct characteristic of 

the optical spectrum analyzer is the simultaneous nature of the output--

the system acts as a bank of parallel filters displaying the output for 

all frequencies simultaneously. This is to be compared with sequential 

or scanning electronic systems where the frequency components are read 

out sequentially as the system scans through the analysis bandwidth. 

A measure of the quality of the optical analyzer, for comparison 

with the electronic systems, is the time-bandwidth product (TW) of the 

9 



system. For a spectrum analyzer, the TW can be defined as the maximum 

number of resolvable frequency components present in the output. In a 

Fourier analysis over a signal duration At, frequency components spaced 

closer than 6v= 1/At cannot be resolved. If the analyzer performs the 

analysis over the bandwidth Av, then the maximum number of resolvable 

frequency components in the analysis is 

Av  
TW = 	- AtAv 

1/At 
(2-13) 

The analogous quantity in an optical system is the space-bandwidth pro-

duct or SW. For the optical analyzer, the length of signal under analysis 

is determined by the width of the input aperture, Ax. The maximum work-

able bandwidth of an optical system is limited by vignetting; the situa-

tion for a single lens analyzer is shown in Fig. 2-2. The maximum 

angle through which light passing through the input aperture can be 

diffracted and be totally collected by lens is approximated as [16] 

0 = tan
-1

(
d-Ax  
2f

.4, 

d-l\x  
2f

Z 	
' 

(2-14) 

where d is the lens diameter. Light diffracted through this angle 

represents components of the input with spatial frequency 

sin[tan
-1

(
d-Ax  

)] 
sin8

2f
Z 	d-Ax  

v 	 = 
m 	A 	 A 	 2Af 

(2-15) 

The quantity vm  is therefore the maximum frequency that the single lens 

10 

system can analyze in a signal of length Ax. This is equal to the analysis 
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Figure 2-2. Vignetting in a Single Lens Fourier Transform System. 



bandwidth of the system Av=vm . The system SW is then given by 

-1,d -Ax., 	Ax(d -Ax)  SW = AAx = 	sin[tan [----lj = Af
t 	f

.4, 

(2-16) 

TypicalTypical values of the SW for optical analyzers made with good quality 

optical components range from 10
3 

to 104 . These high values of SW pro-

vide the optical analyzer with the ability to achieve high frequency 

resolution for a given input signal bandwidth. 

Perhaps the most important aspect of the optical spectrum analyzer 

besides the high resolution capabilities is the availability of a second 

dimension. Cutrona et al. demonstrated how the additional degree of 

freedom provided by the second dimension could be used to perform multi-

channel spectrum analysis [17]. The optical configuration of a multi-

channel analyzer is shown in Fig. 2-3(a). This system is seen to be 

fundamentally one that Fourier transforms in the horizontal direction 

while imaging in the vertical direction. This operation is indicated in 

the figure by the symbol 

which represents the directions of operation for the imaging operator, 

egr{•}, and the Fourier transform operator. A particularly easy method to 

determine the operation of the system is a ray-tracing method suggested 

by Mr. Leonard J. Laub. Using this method, we view the operation in the 

horizontal and vertical directions separately as shown in Figs. 2- 3(b) 

12 



P 1  Ivr 
P 2 

 

y 

 

(a) Multichannel System 

  

P 1 	 P
2 

(b) Horizontal 

P 1 
	 P2 

(c) Vertical 

Figure 2-3. Multichannel Spectrum Analyzer; (a) Optical 
Configuration, (b) System Operation in the 
Horizontal Direction, (c) System Operation 
in the Veritcal Direction. 
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and (c). In the horizontal direction, Fig. 2-3(b), the lenses L 1  and 

L
3 
have no effect (they are cylindrical lenses with curvature oriented 

in the vertical direction). The lens L 2 then maps points (6 -functions) 

in plane P 1  into plane waves (linear phase factors) in plane P 2  and vice 

versa. This is the mapping that occurs when a Fourier transform opera-

tion is performed by the lens system. In the vertical direction, Fig. 

2 - 3(c), the lens L
2 
has no effect; lenses L

1 and L3 map points in P 1 into 

points in P 2  and plane waves in P 1  into plane waves in P 2 . This mapping 

is the imaging operation. Returning to Fig. 2-3(a), the input trans-

parency introduces N one-dimensional signals, f(x,y i ), i=1,N, where the 

signals are separated and equally spaced at the vertical positions y.. 

The input is again limited in the horizontal direction by the windowing 

aperture so that the input amplitude distribution at yi  is 

U
1
(x

'
y) = f(x,y.)w 

x
(x) 	. 	 (2 - 17) 

With the vertical imaging/horizontal Fourier transforming operation of 

the system, the output at the position y i  is 

	

u 2 (v,yi ) =4:c if(x,y.)wx 
 (x)} 	. 	 (2 - 18) 

The maximum number of signals that can be analyzed is limited by the re-

solving power of the vertical imaging section of the system. This num-

ber is again equal to the SW of the imaging system with values of 10
3 

to 

10
4 
possible. In the multichannel system, it is therefore possible to 

analyze 1000 signals simultaneously with each analysis having a SW of 10
3

. 
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In another application of the second degree of freedom when pro-

cessing 1-D signals, Thomas has shown that it is possible to use the 

entire 2-D space bandwidth product of the optical system in analyzing a 

single 1-D signal [18]. By using a raster recording of the 1-D input 

signal, as shown in Fig. 2-4, a much longer portion of the input signal 

can be analyzed than with the density modulated soundtrack. Exactly how 

much longer again depends on the SW for the lens--the individual raster 

lines must be resolvable. Using the value of 10
3 

as a typical 1-D SW, 

approximately 1000 times more signal is present to be analyzed with the 

raster technique. Thomas described the technique for properly inter-

preting the output distribution, which may contain up to 10
6
-10

7 
indi-

vidually resolvable spectral components. This method has made possible 

the application of optical spectrum analyzers in high resolution analysis 

of broadband signals [18-21]. 

As can be seen from the above discussions, the historical applica-

tion of the second degree of freedom in spectrum analyzers has been one 

of increasing the number of signals or the amount of signal being pro-

cessed. In other words, the second degree of freedom has been used to 

increase the amount of information throughput of the optical analyzer. 

However, the inflexibility of these conventional systems is still apparent: 

the analysis performed produces a spectral display along a linear frequency 

axis and with fixed resolution characteristics. It is often convenient to 

perform alternative forms of spectral analysis where a non-linear rela-

tionship exists between the position within the spectral display and the 

frequency of the component displayed at that position. An example of this 

type of analysis is a log-frequency spectrum analysis for signals that have 
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Figure 2-4. System for Spectrum Analysis of Broadband Signals. 
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undergone a significant Doppler shift. Another useful form of spectral 

analysis is one in which different frequency components are displayed 

with different resolution characteristics. Such a system would be useful 

in the analysis of speech, where good frequency resolution may be required 

in the low frequency region of voiced phonemes while good time resolution 

is desirable in the higher frequency region of stops and plosives [22]. 

In the remainder of this chapter, we describe how the second degree 

of freedom available in optical systems can be used to increase the kinds 

of operations that can be performed optically in the analysis of 1-D 

signals. 

The Variable Resolution Spectrum Analyzer  

In this section, we describe an optical spectrum analyzer charac-

terized by continuously varying time and frequency resolution. The 

basic optical configuration, shown in Fig. 2-5, is that of the vertical 

imaging-horizontal Fourier transforming system used in the multichannel 

analysis. The distinguishing features in this case are the absence of 

multiple input signals and the use of a special input plane mask. Here 

one signal serves as the input and the input aperture is a non-separable 

function of x and y :  

U l (x,y) = f(x)wt (x,y) 	. 	 (2-19) 

The resulting output distribution in the output plane is 

U 2 (v,y) 4x{yx,y)} 	 (2-20) 



Good Time 
Resolution 

Good Frequency 
Resolution 

Figure 2-5. Variable Resolution Spectrum Analyzer. 



where, for simplicity, we have ignored the proportionality constants and 

scale factors. Substituting Eq. (2-19) for U 1 (x,y), we obtain the output 

plane distribution 
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CO 

where 

and 

U
2
(V,y) = I 	F(u)w

t
(v-u,y)du 

F(v) =gx{f(x)} 	, 

Wt (v,Y) = xffifwt  (x , Y) 1  - 

(2-21) 

(2-22) 

(2-23) 

The convolution integral of Eq. (2-21) represents a smoothing of the 

signal transform F(v), where the nature of the smoothing function depends 

on the value of y. The result is an output distribution that represents 

the spectral content of the input signal for continuously varying degrees 

of time and frequency resolution. Referring again to Fig. 2-5, toward 

the top appears the spectrum of a long segment of the signal (top because 

of the imaging inversion): frequency resolution is relatively good; 

temporal resolution relatively poor. At the bottom, the converse is 

true: temporal resolution is good; frequency resolution is poor. Such 

a system can be useful in the analysis of speech where a tradeoff is 

usually made between time and frequency resolution. The variable window 

spectrum analyzer can provide simultaneously a convenient look at the 



spectral content of input speech segments for a wide range of signal 

durations. 

As an example, let the input signal be a single cissoid 

	

f(x) = e i2Try
o
x 	

(2-24) 

(representing, for example, the positive frequency component of a sinu-

soid recorded on film). The resulting output distribution is then 

CO 

U 2 (v,y) = I 	
6(u-v

o
)w

t (v-u,y)du 
-00 

	

= wt (v-v
o
,y) 	, 
	 (2-25) 

which, for any particular value y, is simply a displaced version of the 

transform of the corresponding cross section window profile. Detailed 

characteristics of the input plane mask's cross sectional profile and 

its variation with y are a matter of choice. Of special interest is the 

case where the window is a function of the product xy, i.e., 

	

wt
(x,y) = w

t
(xy) 	. 	 (2-26) 

This form would be chosen for a display of spectral content with constant 

proportional bandwidth. The output in this case assumes the form 

v-v 1 
U
2
(v,y) = y — Wt ( ( 	(7) ) (2-27) 
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The width of the input window, and therefore the time resolution, is pro-

portional to l/y; the width of the resulting output display, and therefore 

the frequency resolution, is proportional to y. In some applications a 

more general resolution vs. y relationship may be desirable. w
t (x,y) 

can then be specified by wt [x/A(y)], where A(y) specifies the window 

width for a given y. Binary windows of this type are easily fabricated. 

A tapered window, e.g., one with a Gaussian transmittance profile, can 

reduce or eliminate spectral component side lobes. 

In Fig. 2-6, output spectra obtained experimentally using a 

variable resolution spectrum analyzer are shown. The appearance of a 

single spectral line at the output is shown in Fig. 2-6(a) when the 

input plane window is that shown in Fig. 2-6(b). The window is binary 

with a hyperbolic (i.e., l/y) shape; it produces an output intensity 

distribution that has a sinc
2
(.) cross section and a spectral width 

proportional to y. With a square wave (Ronchi ruling) input signal placed 

behind the l/y window as shown in Fig. 2-6(d), the multiple line spectrum 

shown in Fig. 2-6(c) was obtained. Emulsion thickness variations were 

not compensated, with some resultant irregularities in the output spectral 

patterns. 

The Frequency Mapping Spectrum Analyzer 

The optical system illustrated in 	Fig.2-7(a) is capable of dis- 

playing the spectral content of the input signal vs. an arbitrary func-

tion of frequency. As indicated in the ray tracing diagrams for the 

horizontal and vertical directions, 	Fig.2-7(b) and (c), respectively, 

the lens combinations between planes P
1 
and P

2 
and between planes P

2 
and 



(a) 

(b) 

Figure 2-6. Output of Variable Resolution Spectrum Analyzer; 
(a) Single Spectral Component, (b) Input Window. 
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(c) 

(d) 

Figure 2-6(cont.) Output of Variable Resolution Spectrum Analyzer 
(c) Spectrum of Square Wave Input, (d) Windowed 
Input. 
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(a) Frequency Mapping Spectrum Analyzer 

P 1  P
2 P

3 
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(b) Horizontal 

(c) Vertical 

Figure 2-7. Frequency Mapping Spectrum Analyzer; (a) Optical 
Configuration, (b) System Operation in the Hor-
izontal Direction, (c) System Operation in the 
Vertical Direction. 
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P
3 
both image in the vertical direction while Fourier transforming in the 

horizontal direction. The overall system operation with no transform 

plane mask is to image the input plane onto the output plane. This 

frequency-mapping spectrum analyzer is actually a special case of the 

more general frequency-variant analyzer described in the next section. 

We will therefore defer an analytical description of this system to the 

next section to avoid duplication. However, to facilitate a better un-

derstanding of the general analyzer operation, we include here a quali-

tative description of the frequency mapping operation. 

For convenience of illustration, we assume that the desired output 

of the analyzer is a display of spectral content vs. log frequency and 

that the input signal transparency is a recording of sinusoids with fre-

quencies in the proportions 1:2:4:8. To aid in the description of the 

overall operation of the system, we show several intermediate steps in 

Fig. 2 - 8. 	In the first step, the input signal amplitude distribution 

shown in 	Fig. 2-8(a) is imaged in the vertical direction and Fourier 

transformed in the horizontal direction. The resulting distribution, 

shown in Fig. 2-8(b), appears in plane P 2  of the system. Placed in 

this plane is a mask consisting of a narrow logarithmically curved slit. 

The four positive frequency spectral components associated with the 

sinusoids are masked as shown in Fig. 2-8(c). In the final stage of 

the system, a second vertical imaging/horizontal Fourier transform is 

performed. Each spot of light passing the mask, at its original verti-

cal displacement from the origin (ignoring inversion through the optic 

axis), is converted into a horizontal smear about the y-axis. Since the 

light amplitude along that axis is proportional, for each value of y, to 
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 Figure 2-8. Operation of the Frequency Mapping Spectrum Analyzer. 



the average value of the light amplitude in P 2 , masking off all but a 

narrow region of the vertical axis in the output plane results in the am-

plitude distribution shown in Fig. 2-8(d), which displays the spectral 

content of the input signal vs. log frequency. Variable attenuation in 

the vertical direction can be introduced by one of the masks to compen-

sate for the greater spot packing with larger values of frequency. It 

is possible to display signal spectral content vs. many different func-

tions of frequency simply by changing the functional form of the mapping 

slit in plane P 2 . The logarithmic function is useful in many applications, 

such as the aforementioned analysis of Doppler shifted signals, but 

other nonlinear mappings may be desired. 

In 	Fig. 2-9 the output of the frequency mapping spectrum analy- 

zer with a square-wave input is shown. A straight line mapping slit was 

used for Fig. 2-9(a) resulting in the display along a linear frequency 

axis. In Fig. 2-9(b), a curved slit was used to get the illustrated 

results , approximately a log frequency mapping. 

The Frequency-Variant Spectrum Analyzer  

An optical system for general frequency-variant spectrum analysis, 

combining the essential aspects of the variable resolution analyzer and 

the frequency-mapping analyzer, is shown in Fig. 2-10. The operation 

of this system is characteristic of the full power of the two-dimensional 

optical approach to the spectral analysis of one-dimensional signals. 

The optical configuration of this system is essentially the same as the 

frequency-mapping analyzer of Fig. 2-7, but now the input signal trans-

parency is masked as in the variable resolution analyzer of Fig. 2-5. 
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(a) 

(b) 

Figure 2-9. Output of Frequency Mapping Spectrum Analyzer; 
(a)Output with Straight Line Mapping Slit, 
(b)Output with Logarithmic Mapping Slit. 
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Figure 2-10. Frequency-Variant Spectrum Analyzer. 



The characteristics of the slit mask in P 2 thus determines how spectral 

components are mapped, while the mask in P 1  determines the system re-

sponse to each frequency component of the input signal. 

The input to the frequency-variant analyzer is the same as the 

variable resolution analyzer, and U 1 (x,y) is given by Eq. (2-19). The 

resulting distribution incident on the frequency-mapping mask in the in-

termediate plane (plane P 2  of Fig. 2-10) is given by Eq. (2-21), which 

we rewrite here in the form 

U2 (v,y) = F(v)*wt
(v,y) 
	

(2 - 28) 

where * is understood to denote the one-dimensional convolution operation 

with respect to the variable v. Initially, we assume that the mask in 

the intermediate plane consists of an opaque background with a narrow 

transparent slit that follows the curve y=g(v). In most cases of inte-

rest, g(v) will be a strictly increasing monotonic function of v with a 

unique inverse, g
-1

(.). For convenience of notation, we define the map-

ping curve by the pair of equivalent equations 

y = g(v) 	 (2 - 29) 

v = h(y) = g
-1

(v) 
	

(2-30) 

We assume the mapping slit to have a constant width in the direction of 

the curve normal. The light amplitude transmittance of the mask can then 

be represented by the function 
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t
m (v,y) = m(Y)6[v -h(y)] 
	

(2-31) 

where the factor m(y) is given by [23] 

dh 
m(y) = [1 + 	2 ] 

1/2 
dy 

(2-32) 

For a given y, m(y) is proportional to the width of the slit in the hori-

zontal (v) direction. 

The amplitude distribution immediately behind the intermediate 

plane mask is 

u2 (v,y) = [F(v)*W
t
(v,y)]m(y)6[v-h(y)] 	. 	 (2-33) 

The final stage of the optical system performs a second vertical imaging/ 

horizontal Fourier transforming operation. Note that the horizontal axis of the 

output plane has been reversed in direction. We can therefore describe 

the second Fourier transforming operation as an inverse Fourier transform 

with the resulting output plane distribution given by 

U 3 (x ,y ) =gv 1 {[F (v )*Wt ( v,y) ]m(y) 6[v-h(y) 1 } 

= [f(x)wt (x,y)]*[m(y)exp(+i2lrh(y)x)] 
	

(2-34) 

where the convolution operation is with respect to the variable x. The 

output plane is masked with a narrow vertical slit to observe the distri-

bution only for x=0. Writing out the convolution integral and setting 



x=0, we obtain 

C 
U
3 (0,Y) = f f()wt

(C,y)m(y)e
-i2ffh(y) 

   (2-35) 

Equation (2-35) is seen to have the basic form of the Fourier transform 

integral. Specifically, for any position y along the vertical axis, 

U 3 (O,y) represents the spectral content of the input signal f(x) at the 

frequency v=h(y), f(x) having been windowed by the function m(y)wt (x,y). 

The factor m(y) reflects the greater packing of spectral components along 

the y-axis in regions where the slope of the mapping slit is small. (If 

the slit is constructed to have uniform horizontal width as a function 

of y, m(y) will then be a constant.) 

This system can be used in a wide variety of applications requir-

ing a frequency-variant analysis of signal spectral content. If, for 

example, the input or time window, w
t
(x,y), in mask M

1 
has a constant 

cross sectional profile and a width that increases monotonically with y, 

each resolution cell in plane P
2 
represents a different set of values 

(v,Av), where v is the center frequency of the spectral component observed 

at that point and Av is the spectral resolution. If the mapping slit in 

mask M
2 

is a diagonal straight line, spectral components are presented in 

a linear frequency display, but with controllable resolution. As an ex-

ample we consider a constant proportional bandwidth (constant-Q) analysis. 

We assume the mapping slit to be along the straight line y=v and to be of 

constant horizontal width. The inverse function, h(y), for this slit is 

then simply y. For the constant-2 analysis it is necessary that the 

frequency resolution be proportional to the frequency, i.e., Avccv, and 
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therefore proportional to y. From our earlier analysis, we know that an 

input window function of the form w t (xy) provides a spectral display 

where frequency resolution is proportional to y. Thus, by using this 

type of input window and a linear slit, we perform a linear frequency 

constant Q spectrum analysis. 

Alternatively, spectral resolution can be made to change in dis-

crete jumps, say octave by octave. More generally, the functional form 

of the input window cross sectional profile can change with y, leading 

to a general frequency dependent response of the system to a cissoidal 

input. Indeed, the window can be real or complex, symmetric or asymmetric, 

anticipating or delayed, all (through y) as a function of the frequency 

of the spectral component observed. 

Choice of the mapping slit mask M 2  is also quite flexible. It 

can be continuous or discontinuous, monotonic or multiple valued. The 

combination of more general mapping slit curvature and variations in the 

input window can further extend the system capabilities. As an example, 

assume we wish to perform a log-frequency spectral analysis and to re-

tain the constant-Q feature described in the previous example. For the 

log-frequency display, we require that the slit lie along the line y = 

tn(v). We therefore have 

y = g(v) = kn(v) 	 (2-36) 

and 

v = h(y) = eY 	 (2-37) 



The question now arises: How do we determine the width of the input win-

dow as a function of y to produce a constant-Q analysis? First, we let 

wt (x,y) be given by 

wt (x,y) = wt [ A(y) ] 
	

(2- 38) 

With this input window, the frequency resolution as a function of y is 

proportional to 1/11(y). Then, for the constant-Q analysis, we again must 

have frequency resolution proportional to frequency, dictating 

Or 

1 	...y 
,- 

11(y) (2-39) 

A(y) cc e Y  . 	 (2 - 40) 

A similar approach can be taken for other resolution and mapping 

requirements. 

The flexibility in choice of the two system masks can lead to 

quite general forms of spectral analysis. There are, however, constraints, 

imposed by the interaction of the two masks, if mask M2  is to serve prin-

cipally to map spectral components and not to determine, at least in part, 

system time and frequency resolution. These constraints can be viewed as 

a direct consequence of the imaging nature of the overall optical system. 

It is apparent that as the horizontal width of the mapping slit increases, 

the display at the corresponding vertical displacement in the output plane 
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will look more like an image of the input and less like a measure of its 

spectral content. We present here a qualitative analysis of the neces-

sary constraints, a general analytical treatment follows. 

Assume the mapping plane to be divided up into a large number of 

cells as shown in Fig. 2-11. In the vertical direction, cell size is 

determined by the resolution of the one-dimensional imaging operation, 

and is constant throughout the plane. In the horizontal direction, each 

cell has a width equal to the spectral resolution at that location, being 

inversely proportional to the width of the corresponding horizontal slice 

of the input plane mask. We take the simplifying viewpoint that, for a 

given vertical location, each spectral resolution cell represents an in- 

dependent sample of the input signal spectral content. The basic restric-

tion on the mapping slit in mask M2 , then, is that for each vertical 

location the mapping slit must have a horizontal width narrower than the 

spectral resolution cell it transmits. For example, the mapping slit in 

Fig. 2-11, which has a constant cross-sectional width, is satisfactory 

in region (1) but is unsatisfactory in region (2), where, because of its 

small slope, it transmits several independent spectral components. Light 

from these cells interferes in the output plane in a manner that depends 

upon the horizontal position of the input. The result is a false repre-

sentation of spectral content. 

It would appear that the mapping slit should be made as narrow as 

possible, for the chances of interference between adjacent spectral re-

solution cells would then be minimized. For very narrow slits, only the 

dimension of the image resolution cell and the slope of the slit are 

important in determining whether more than one spectral resolution are 
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Figure 2-11. Fourier Transform Plane Resolution Cell Diagram. 
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important in determining whether more than one spectral resolution cell 

(per image cell) will be transmitted. As the slit becomes narrower, 

however, output display brightness diminishes. A more economical approach 

is to choose a mapping slit whose horizontal width at any vertical loca-

tion equals some constant fraction of the spectral resolution cell at 

that location. Such a choice still assures insignificant interference 

from adjacent spectral component cells and at the same time works to 

equalize the output display brightness for both high resolution and low 

resolution spectral components. 

We must now reconsider the analytical description of the system 

operation to determine the effect of a finite-width mapping slit on the 

output distribution. We return to an expression for the light amplitude 

distribution immediately in front of the intermediate plane mask, 

U2 (v,y) -4-x fg(x)wt (x,y)} 	, 	 (2-41) 

and assume a mapping transmittance function of the form 

t
m
(v,y) = W

f
(v-h(y),y) 	. 	 (2-42) 

This is the function W
f
(v,y) shifted by an amount v

o
, where v

o
=h(y). 

The amplitude distribution immediately behind the mask is then 

U;(y,y) =4x (f(x)wt (x,Y)}W f (v-h(y),y) 	 (2-43) 

and the distribution in the output plane is 



1 
U 3 (x,y) = eGiv  Atf(x)wt (x,y)1Wf (v-h(y),y)} 

= 	 (x,y)e
i2ffh(Y)x

] 

	

(2-44) 

where 

wf (x,y) =e30 1)  Wf (v,y)1 
	

(2-45) 

and where the convolution is with respect to the variable x. Writing out 

the integral expression and setting x=0 (again, we observe the output 

along the y-axis), we obtain 

U3 (O,y) = 	f(C)wt (,Y)wf ( -E,y)e 	dE . 
- i2Trh(Y) 

(2-46) 

The output distribution for a given value y is seen to be the spectral 

content at frequency v=h(y) with time and frequency resolution determined 

by an equivalent input window function, w(x,y), given by 

w(x,y) = w
t
(x,y)w

f
( -x,y) 	• 	 (2-47) 

So long as the mapping slit is sufficiently narrow, w f (-x,y) will be 

quite broad in the x-direction, and resolution will be determined pri-

marily by the input plane window. If, on the other hand, Wf (y,y) be-

comes too broad in the v-direction, wf (x,y) can be approximated by a 

6- function in Eq. (2- 43) with the result 
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U
3 (x,V) 	f(Owt (FV)(5(x

-Oe
i2wh(y)(x-) 

-co 

ccf(x)w
t
(x,y) 	; 
	

(2-48) 

i.e., the output plane distribution is simply an image of the masked 

input recording. 

Spectra obtained with the frequency variant spectrum analyzer are 

shown in Figs. 2-12 and 2-13. In both cases the input was a Ronchi 

ruling giving a square-wave input signal. The output of the system con-

figured for a log frequency, constant Q analysis is shown in Fig. 

2-12. Each frequency component appearing in this display is viewed 

through a window whose length is inversely proportional to frequency. 

The example of a general analysis shown in Fig. 2-13 further illus-

trates the flexibility of the operations that can be performed. In this 

analysis, low frequency components are viewed through a twin aperture 

window (giving a sinusoidal variation to the spectral cross-section) and 

with a magnified frequency axis (the slope of the line segment mapping 

low frequencies is greater than unity). For the high frequency components 

a single aperture window is used with the frequency mapping resulting in 

a demagnification (slope less than unity) or compression of the components. 

Space-Bandwidth Product for Frequency-Variant Analysis  

As mentioned earlier, the measure of quality for a spectrum analy-

zer is the time- or space-bandwidth product, which measures the maximum 

number of resolvable frequency components in the analysis bandwidth. For 

the conventional optical analyzer, it was found that the SW was equal to 

the product of the analysis bandwidth and the length of the singal under 
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Figure 2-12. Output of Log-Frequency Constant-Q Spectrum Analyzer. 
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(A) 

(C) 

(B) 
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• 
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(D) 

Figure 2-13. General Output of Frequency-Variant Spectrum Analyzer; 
(a)Input Window, (b) Transform Distribution with 
Square Wave Input, (c) Mapping Slit, (d) Analyzer 
Output with Square Wave Input. 



- Ax(v )dv 
1/Ax(v

o 	
o o 

d v  
(2-49) 

analysis. However, in the frequency-variant analyzer, the length of the 

input signal being analyzed varies as a function of frequency resulting 

in continuously varying resolution characteristics as a function of fre-

quency. The SW of the system is not given by the simple product, AxAv, 

but must be found by actually adding up the number of resolution cells 

over the total analysis bandwidth. The procedure for calculating the SW 

(valid for both frequency-variant and frequency-invariant analyzers) is 

as follows: At the frequency v o , the length of signal being analyzed is 

Ax(v
o
). Therefore, in the narrow band of frequencies dv

o 
about v

o 
the 

frequency components cannot be spaced closer than 1/Ax(v
o
) apart. The 

number of resolution cells in the band dv
o 

is then 
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Adding up the number of resolution cells over the analysis bandwidth, we 

obtain 

v
max 

SW = 	Ax(v )dv 
o o 

v 
min 

(2-50) 

where v. and v 	are the minimum and maximum frequencies of the 
min 	max 

analysis. 

In the optical frequency-variant spectrum analyzer, the vertical 

level displaying the component of frequency v o  is yo =g(vo ) . If we as-

sume that the input window has the form of Eq. (2-38), then the length 

of signal being analyzed at that level is 
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A(y0 ) = A(g(v 0 )) 	 (2-51) 

giving 

Ax(v
o
) = A[g(v)] 
	

(2-52) 

For this analyzer the SW is obtained from Eqs. (2-50) and (2-52) as 

f max 
SW = 	A(g(v0))dv 

v . 
min 

(2-53) 

As an example, consider the SW of an analyzer performing a constant-Q 

analysis. For the linear-frequency, constant-Q analysis, 4(y o ) = Ax/Y0  

(where Ax is the constant of proportionality), and y =v . For the log- 
o o 

Y frequency, constant-Q analysis, Ay o = Axe and yo =Znvo . In either case, 

we have 

Ax (y) = A[g(vo )] = 4x-\-)47) 
	 (2-54) 

Substituting Eq. (2-54) into Eq. (2-50), we obtain the SW for a constant 

Q analysis: 

max 
dv = Ax[Znv 	- 9.nv SW 	 = 	 . ] constantsv . v 	 max 	min 

min o 
(2-55) 

We note that, assuming v min l, Eq. (2-55) indicates that a constant Q 

analysis has substantially fewer resolution cells than a conventional 

analysis of signal length Ax. However, this is certainly to be expected 



in an analysis where resolution cell size increases proportionally with 

frequency from some (system determined) minimum. 

The Holographic Frequency-Variant Spectrum Analyzer  

The use of a slit to map the spectral components in the frequency 

variant analyzer is convenient because it is easy to fabricate and simple 

to design. However, the slit mapping technique is very inefficient in 

the utilization of light; only a small fraction of the available light in 

the system actually passes through the slit. Rhodes has described an 

alternative technique employing a holographic mapping element, which, 

although more difficult to fabricate, uses more of the available light 

[24]. The system configuration for the holographic frequency-variant 

analyzer is shown in Fig. 2-14. The optical configuration is similar 

to the slit mapping analyzer, but in this case the lens system between 

the intermediate plane P 2  and the output plane P 3  consists of a single 

spherical lens. The operation of this system is characteristic of 

the more general 1-D signal processing systems described in the next 

chapter. We note here, however, that with an intermediate plane mask 

with transmittance 

t(v,y) = m(v,y)e
i271-11(v)y 	

(2-56) 

the system output along the vertical axis is 

co 

u
3 
 (0,n) = 	F(v)M (v,n-g(v))dv 	 (2-57) 
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Figure 2-14. Holographic Frequency-Variant Spectrum Analyzer. 



where 

M (v,r1) = t4. {m(v,y)} 	. 	 (2-58) 
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The response to an individual frequency component exp[i2nv
0
x] 

(F(v)= 6(v-v o )) is then 

U 3 (0,11) = M y  (V o ,r1 -9(vo )) 	- 	 (2-59) 

In this system, the resolution vs. frequency characteristics as well as 

the frequency mapping characteristics are controlled by the intermediate 

plane mask. The transmittance described in Eq. (2-56) is difficult to 

fabricate even for simple frequency mapping requirements. However, the 

transmittance can be incorporated into a holographic recording. Details 

concerning the construction of the holographic mask can be found in the 

paper by Rhodes [24]. 

Discussion  

Conventional coherent optical spectrum analyzers are generally 

characterized by frequency-invariant operation: a cissoidal component, 

exp[i2Trvx], of an input signal produces a response in the output plane 

whose position varies linearly with frequency and whose shape remains 

fixed. There are circumstances, however, when a frequency dependent 

analysis of signal spectral content is desirable. 

We have shown how the second degree of freedom provided by an opti-

cal systems allows the frequency content of one-dimensional signals to be 

analyzed in operations that are frequency-variant. We have discussed in 
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general the requirements and constraints on the masks used in the system 

to control resolution vs. frequency characteristics and frequency mapping 

characteristics. Also, we have given an equivalent mask description 

simplifying the description of mask interaction in the system operation. 

Specific design examples considered include both linear frequency and log 

frequency constant proportional bandwidth analyses. Additionally, we have 

provided a general procedure for the calculation of space (time)-

bandwidth products appropriate for both frequency invariant and freauency 

variant systems. 

The descriptions presented in this chapter are intended to convey 

a general understanding of the operation and limitations of this class 

of signal analysis system. It has not been our purpose to specify design 

parameters; anyone skilled in the area of Fourier optics is capable of 

determining pertinent focal lengths and scale factors, and the choice of 

input window or mapping slit profiles--whether they should be binary or 

tapered, gaussian or raised cosine--relates to signal analysis topics 

adequately discussed elswhere [25-29]. 	The systems described 

enjoy relative ease of construction. Interferometric accuracy in the 

positioning of components is not necessary. The masks that control the 

frequency varying response and frequency mapping operations can be 

specified with great flexibility. 



CHAPTER III 

GENERAL LINEAR PROCESSING WITH COHERENT OPTICAL SYSTEMS 

In this chapter, we discuss the problem of optical implementation 

of general 1-D linear superposition operations. Cutrona et al. in 1959 

were first to recognize the capability of astigmatic optical systems to 

perform such operations [17]. The work reported by Rhodes and Florence 

on frequency-variant spectrum analysis, the major results of which were 

reported in the previous chapter, is the first significant additional 

investigation and application of 1-D shift-variant operations in optical 

systems [23,30-33]. This recent work has stimulated renewed interest in 

the topic, as is evident by the number of papers and reports describing 

the optical implementation of such operations. The work of Goodman, 

Kellman, et al. has closely paralleled that of Marks, Walkup et al., 

with both groups describing a number of systems for geometrical trans-

formations [34,35] and for performing integral transform operations 

such as the inverse Abel transform [34,36]. Additionally, Kellman and 

Goodman have described a purely optical system for 1-D Mellin trans-

forms [37], and Marks et al. have described a system to display the 

ambiguity function for 1-D signals [38]. 

The spectrum analysis operations discussed in the previous chapter 

were described as frequency-variant primarily to indicate that the output 

was a spectral display that had been distorted or altered in a manner 

that was somehow frequency dependent. Similarly, a geometrical distortion 

can be described as space-variant, indicating a distortion that is 
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spatially dependent. In many cases, however, optical systems have been 

described as space-variant simply to indicate that general linear opera-

tions are performed by the system on a signal without regard for what 

the operations are or how they are performed. 	In the discussion 

below we take the viewpoint that there is a fundamental difference be-

tween a space-variant implementation of a general linear operation and a 

frequency-variant implementation of a general linear operation. We 

demonstrate this difference later by considering both implementations of 

a single operation, the Mellin transform. First, however, we begin with 

a basic discussion of linear operations and the various optical methods 

for implementing these operations. 

Linear Systems and Operations 

The theory of linear systems has been well established for many 

years. The concept of linear shift-invariant systems and the relation-

ships describing their operation are fundamental in all areas of science 

and engineering. In many areas (such as communications or electronics), 

shift-variant systems (e.g., time-variant communications channels or time-

varying filters) have been studied and their basic operational relation-

ships determined (see, for example Ref. [39]). In this section, we 

consider the distinctions between shift-invariant and shift-variant 

systems, and we introduce the concepts of frequency-invariance and 

frequency-variance in a linear system. In addition, we establish the 

relationships between these various properties in a general linear system. 

Our primary interest here is optical systems and we will therefore 

make reference to the space domain and the spatial frequency domain. 

(The latter we often denote simply as the frequency domain.) Except where 
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optical systems are specifically mentioned, the discussion is equally 

valid for systems operating on functions of time, requiring simply the 

substitution of the words time for space and temporal frequency for spa-

tial frequency. We note, however, that the major implications of the 

discussion are important only in the context of optical systems. 

In, order to establish notation, we begin this discussion with a 

very brief review of the basic theory. Referring to Fig. 3-1, a sys-

tem can be considered as a device or process that operates on an input, 

f(x), producing an output, g(y). Analytically, a system can be character-

ized by an operator, 0{•}, that specifies the relationship between the 

input and the output according to 

g(y) = O{f(x)} 	. 	 (3-1) 

A linear system is a system whose operator has the property of linearity: 

0{c
1  f 1 

 (x) + c 
2  f 2 

 (x)1 = c
1 
 O{f

1 
 (x)} + c

2
0{f

2 (x)} 
	

(3-2) 

where c1 
and c 2 are arbitrary constants. In general, the response of a 

linear system to an arbitrary input is given by the superposition integral 

00 

g(y) = 	f(x)h(y,x)dx 
	

(3-3) 
-CO 

where h(y,x) is the system response at y to a unit impulse input at x. 

The validity of Eq. (3-3) is easily verified by making the substitution 
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Figure 3-1. Linear System Model. 
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f(x) = ) 	f(x')6(x 1 -x)dx 1 	 (3-4) 

in Eq. (3-1) and applying the linearity property. The function h(y,x) 

therefore completely characterizes the system for all inputs that can be 

expressed as in Eq. (3-4). If a shift in the system input results in an 

equivalent shift in the system output, with the output remaining other-

wise unchanged, then the system is called space-invariant. In this case, 

the impulse response reduces to a function of y-x, i.e., 

h(y,x) 	h(y-x) 	, 	 (3-5) 

and Eq. (3-3) becomes the convolution operation 

r -  

	

g(y) = 	f(x)h(y-x)dx 	 (3-6) 
-CO 

The expression for the input function given in Eq. (3-4) describes 

the input in terms of a continuum of delta-functions. This description 

decomposes f(x) into the simpler functions for which the system response 

is known. Due to the linearity property, the response to the general 

function is then the sum (integral) of the responses to the simpler in-

puts. An alternative decomposition of interest here is found by expres-

sing f(x) in terms of its Fourier transform, i.e., 

f(x) = J  
-co 

(3-7) 

where 



00 

g(y) = f 
	

F(v)C(y,v)dv (3-11) 
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F(v) = 	f(x)e
-i21rvx

dx 	 (3-8) 
-co 

In this decomposition, f(x) is given as a weighted sum of single frequency 

cissoidal functions 
ei271-vx. 

 Substituting Eq. (3-7) for f(x) in Eq. (3-1) 

and applying the linearity property, we find the system output 

g(Y) = f°3  F(v)O{e
12Trvx

}dv 
	

(3-9) 

The system cissoid response can then be defined as 

C(y,v) = 0{e 
i27 vx l 	

(3-10) 

which is the system response at y to a cissoidal input at frequency v. 

The output can then be rewritten as 

The function C(y,v) completely characterizes the system for all inputs 

for which the Fourier transform exists. This description is particularly 

appropriate when dealing with optical systems because such systems can 

provide direct access to the frequency domain. Single frequency cissoidal 

components of an input can be isolated and manipulated in certain planes 

within an optical system just as a single spatial component (delta func-

tion) can be isolated and manipulated in other planes. Thus, unlike the 

situation in electronic systems, this characterization corresponds to a 

physically realizable configuration in the optical system. 
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If the cissoid response shifts linearly with a shift in frequency 

of an input cissoid but otherwise' remains unchanged, then we refer to this 

system as frequency-invariant  and 

C(y,v) 	C(y-v) 	 (3-12) 

The general response of a frequency-invariant system can therefore be ex-

pressed as the convolution integral 

g(y) = I 	F(v)c(y-v)d 
	

(3-13) 

An example of such a system would be a conventional spectrum analyzer. 

We have described two different methods for determining the response of 

a linear system to an arbitrary input. One method specifies the output 

in terms of the system impulse response, while the dual method (the cis-

soid is an impulse in the frequency domain) describes the output in terms 

of the cissoid response. The equivalence of expressing the output of any 

linear system in terms of the impulse response or in terms of the cissoid 

response is found in a general statement of Parseval's theorem [401: 

I:.  f(x)h (y,x)dx = I 	F(v)H (y,v)dv 
co 

(3-14) 

where 

F(v) =g1c {f(x)} 	, 	 (3 - 15) 



and 

H(y,v) =4;{h(y,x)} 	. 	 (3-16) 

We have also defined two special cases of linear systems, one being the 

space-invariant system, the other being the frequency-invariant system. 

It is easy to show that space-invariance and frequency-invariance are 

mutually exclusive properties of linear systems. Consider the response 

of a space-invariant system with impulse response h(y-x) to a single 

frequency cissoidal input e
i2Trvx. 

The output of the system is, from 

Eq. (3-5) 

i2uvxI 	e  i2uvx 
0{e 	

= 	
h(y-x)dx = H(v)e 	 (3-17) 

where 

H(v) =5c{h(x)} 	 (3-18) 

The cissoid response is clearly not a function of y-v alone. It can, 

similarly, be shown that a frequency-invariant system can not also be 

space-invariant. 

Finally, we consider more closely the non-invariant cases. Simply 

stated, a system is space-variant if the system impulse response changes 

shape or size or shifts non-linearly (here we mean any non-equivalent 

shift) with a shift in the input impulse. Similarly, if the system cis-

soid response changes shape or size or shifts non-linearly with a change 
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in the frequency of the cissoidal input, then the system is frequency-

variant. If we consider the cissoid response of a space-variant system, 

we find 

0{e
i2m-vx

} = 	e
i2wvx

h(y,x)dx = H(y, - v) 
	

(3-19) 

where 

H(y,y) ----gx{h(y,x)} 	. 	 (3- 20) 

It is clear that the space-variant system will be frequency-invariant only 

if the impulse response is of the form 

	

h(y,x) = h(x)e
i2Tryx 	

(3-21) 

In the more general case, a space-variant system is also frequency-

variant. Similarly, a frequency-variant system will in general be space-

variant with the exception occurring when the cissoid response has the 

form of Eq. (3-17). 

Optical Implementation of General 1-D Linear Operations  

The equivalence of space-variant and frequency-variant expressions 

for a general linear operation is especially important when considering 

the optical implementation of that operation. Because a coherent optical 

system can provide direct access to the frequency domain, Eq. (3-14) 

suggests that there are two fundamentally different schemes for optically 

56 



57 

implementing a given linear operation. One scheme operates directly on 

the input signal, altering or distorting the spatial components of the 

input according to the superposition integral on the left side of Eq. 

(3-14). In the other scheme, the input undergoes a Fourier transform, 

after which the spatial frequency components of the input are altered 

or distorted according to the superposition integral on the right side 

of Eq. (3-14). 

Two optical systems utilizing the first scheme are shown in Fig. 

3-2. In both systems, the input transparency, f(x), is placed in contact 

with a mask, w(x,y), in plane P l . In system A, this combination is imaged 

in the vertical direction and Fourier transformed in the horizontal 

direction. The transform distribution is masked with a vertical slit at 

v=0. The kernel of the transform operation becomes unity at v=0 resulting 

in the output given by the integral expression 

U(0,y) = I 	f(x)w(x,y)dx 	 (3-22) 
_00 

In system B, the single spherical lens performs a 2-D Fourier transform, 

which again becomes an integration with respect to x if we observe only 

at v=0. The vertical Fourier transform is not affected by the slit mask. 

The resulting output distribution is then 

U2 (0,y)=ff f(x)w(x,n)e
-i2Tryn

dxdfl 
	

(3-23) 

—oo 

which we can rewrite as 
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(A) 

(B) 

Figure 3-2. Two Systems for the Space-Variant 
Implementation of General 1-D Linear 
Operations. 
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U
2 (0,y) = 	

f(x)W(x,y)dx 	 (3-24) 

where 

W(x,y) =4:0{w(x,n)} 	 (3-25) 

In system A, we see that the system impulse response is given directly 

by the mask transmittance 

h(y,x) = w(x,y) 	, 	 (3-26) 

whereas in system B, the impulse response is 

h(y,x) = W(x,y) 	, 	 (3-27) 

which can be determined from the mask transmittance according to Eq. (3-25). 

In both systems, the mask operates directly on the input signal, consis-

tent with the space-variant expression for general linear operations. 

This scheme is therefore appropriately described as the space-variant  

implementation of a general linear operation. 

The second approach for performing general linear operations on 

1-D signals is utilized by the two systems shown in Fig. 3-3. In each 

system, the input, f(x), undergoes a vertical imaging/horizontal Fourier 

transforming operation. The resulting spectral distribution appears in-

cident on a filter mask W. The general linear superposition operations 
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(C)  

z' 

(D)  

Figure 3-3. Two Systems for the Frequency-Variant Implementation 
of General 1-D Linear Operations. 



.1 U
3
(0,y) = 	F(v)W(v,y)dv (3-28) 

are then performed in the same manner, respectively, as the system in 

Fig. 3-2. 	In system C, a second vertical imaging/horizontal Fourier 

transform operation is performed, with the output along the y-axis given 

by 
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The cissoid response of system C is given directly by the mask transmit-

tance 

C(y,v) = W(v,y) 	. 	 (3-29) 

System D employs a final 2 -D Fourier transform to perform the superposition, 

with the resulting output given by 

U3
(0,y) = f 	F(v)W (v,y)dv (3- 30) 

The system cissoid response is determined from the mask transmittance by 

	

C(y,v) = w
n
(v,y) = e9{w(v,n)} 
	

(3-31) 

Both of these systems perform the general linear superposition operation 

on the spectrum of the input signal as indicated in the frequency-variant 

representation of the operation. We therefore describe this scheme as the 

frequency-variant implementation  of a general linear operation. 

The general linear operation can also be implemented with the 

CO 



U
3 
 (0,y) = I 	(u)We  (u,y)du 

CO 

(3-35) 

systems of Fig. 3-3 using two masks, one in the input plane and one in 

the transform plane. These alternate configurations are shown in Fig. 

3-4. The input signal is masked in the input plane by w1(x,y). The 

frequency-plane light distribution is then given by the convolution 

U 2
(v,y) = 	F(u)W

1 
 (v-u,y)du 
	

(3-32) 

in either system, where 

Wl (v ' Y)  = 	
(x,y)} 	 (3-33) 

These systems then perform like the frequency-variant implementations, 

multiplying the frequency-plane distributions by the filter W 2 (v,y), and 

performing an integration with respect to v. In system E, the output is 

given by 

CO 

U 3 (O,y) = if F(u)W
1 
 (v-u,y)W

2
(v,y)dudv 	 (3-34) 

-CO 

This expression can be rewritten as 
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where 

W (u,y) = I 	W
1 
 (v-u,y)W

2 
 v,y)dv  (3-36) 



(E) 
(E)  

(F)  

Figure 3-4. Two Systems for the Two-Mask Frequency-Variant Im-
plementation of General 1-D Linear Operations. 
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Equation (3-36) is the expression for the equivalent frequency domain  

window  for the system. This expression is also the system cissoid re-

sponse. In system F, the filtered frequency-domain distribution under-

goes a 2-D Fourier transform, with the output given by 

co 

U
3
(0,y) = fff F(u)W

1 (v-u,n)W 2
(y,fl)e

-i2Tryn
dudvdri 	 (3-37) 

This expression can also be simplified to the frequency-variant expression 

00 

U 3 (O,y) =- F(u)w
e
(u,y)du 

m 
(3-38) 
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where here 

Co 

W
e
(u,y) = ff W

1 
 (v-u,n)W

2
(v,n)e

-i2Tryn
dvdn . 	 (3-39) 

W
e
(u,y) is, again, the system cissoid response. 

The two-mask implementations can have certain advantages in flexi-

bility over an equivalent one mask system by dividing the control of the 

overall system operation between two planes. The spectrum analyzer system 

described in the previous chapter employed two masks to perform the opera-

tion. In that system, the transform plane mapping slit controlled the 

position vs. frequency characteristics of the output display, while at 

the same time the resolution vs. frequency characteristics were controlled 

by a variable width mask in the input plane. We note, however, that the 

operation of the two-mask implementations, like the one-mask frequency-

variant implementation, relies inherently on access to the frequency 



CO 

g(y) = I f(x)xdx (3-40) 

domain provided by the optical systems. We will therefore refer to these 

implementations as the two-mask frequency-variant implementations of the 

general linear operation. 

The Mellin Transform: Two Implementations  

To understand better the differences between frequency-variant and 

space-variant implementations, we consider both methods of implementing a 

single operation. The operation we choose to implement is the Mellin 

transform (with purely imaginary argument) given by 
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The Mellin transform has been studied by several researchers for its pos-

sible application to optical pattern recognition [41,42], and Doppler 

signal processing [43]. The primary feature of this transform that makes 

it applicable to these problems is its scale invariance. 

Casasent and his colleagues have demonstrated both 1-D and 2-D 

Mellin transforms using an electrooptical input device to perform part 

of the operation [41-44]. In this system, the input is introduced to the 

system using a spatial light modulator. The amplifiers controlling the 

position coordinates of the input distribution are logarithmic, so that 

the input function arguments become exponential functions of the input 

plane cartesian coordinates. The operation is then completed by perform-

ing a Fourier transform operation. That this operation produces the 

Mellin transform can be seen by making the substitution x=e n  in Equation 

(3-40). Noting that dn=dx/x, we see that, after the variable substitution, 

Equation (3-40) becomes 
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00 

g(y) = f M  f(en )e
i27 Y

dri 
1- 71 

(3-41) 

as desired. 

A purely optical space-variant implementation of the 1-D Mellin 

transform can be effected directly along these lines. To determine the 

required mask (and best space-variant system) to use, we rewrite Equation 

(3-41) as 

00 

g(Y) = ff f(C)6( --- e n )e i2urlYdOn 
	

(3-42) 

-CO 

Comparing this expression with Equations (3-23) and (3-25), it is evident 

that system B in Fig. 3-2 can be used to perform this operation. The 

mask required is simply a narrow slit along the line x=e
T1
. This system 

is shown in Fig. 3-4. 

For a frequency-variant implementation, we need access to the 

spectral distribution of the input signal. 	The analytic form of the 

Mellin transform in terms of F(v) can be determined from Equation (3-41) 

by noting that f(e n ) is the inverse Fourier transform of F(v) evaluated 

at x= e 11  i ; i.e., 

f(e rl ) = I 	F(v)e
i2"e 

dv 
	

(3-43) 

Substituting Equation (3-43) into Equation (3-41), we obtain an equivalent 

expression for the Mellin transform 

00 

g(Y) = if F ( v ) e i 2ffvene
i 2Tryn dvdn 	

(3-44) 



67 

A system that performs this operation is shown in Fig. 3 - 5. This system 

is the second example (system D) of the frequency-variant implementations 

of Fig. 3-3. 	Comparing Equations (3-30), (3-31) and (3-44), the required 

frequency-plane mask is seen to be the phase-only transmittance function 

W(v,11) = e
i2Trenv 	

(3-45) 

Phase-only transmittance filters, although efficient in the utilization 

of light, are somewhat difficult to construct directly. As a consequence, 

the phase functions are usually incorporated in the transmittance of 

holographic filters. Recently, Kellman and Goodman have demonstrated 1-D 

Mellin transforms using essentially the system in Fig. 3-5 and a holo-

graphic filter [37]. The filter is recorded from a double slit mask as shown 

in Fig. 3- 6.* 	The transmittance of the carrier frequency holographic 

filter is 

W(v,n) = B+acos[2Trv(e n +x
0
/2)] 	, 	 (3- 46) 

where B is the bias transmittance, a is the fringe amplitude, and X0/2 is 

the offset carrier for the recording determined by the minimum slit 

separation of the double slit mask. When this mask is used in the system 

of Fig. 3-5, the distribution in the output plane is 

* 
This holographic mapping technique had been previously described by 
Rhodes for implementing a log-frequency spectrum analysis [24]. 
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Figure 3-5. System for the Frequency-Variant Implementation 
of the 1-D Mellin Transform. 
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Separation 

cc ey  

(b) 

Figure 3-6. Recording Technique for Holographic Filter in 1-D 
Mellin Transforming System: (a) System for Exposing 
Film Plate; (b) Double Slit Mask Used in the Re-
cording System. 
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U
3 
(x,y) = fl F(v){B+ acos [2Try 	+ X0/2) ] 1

2Tr(vx+ny)
dvdr1 	 (3-47) 

-00 

In the vicinity of x=-X0/2, the bias term and the negative frequency 

(-i) term of the cosine are negligible. (The distributions resulting 

from the bias transmittance and the negative frequency diffraction order 

of W(v,n) are spatially separated from the positive-frequency diffraction 

order). From Equation (3-47), we then obtain 

Xo 	. 	Xo 
1 

i2uv— 
2 	 . 

	

U
3
(-x

o
/2,y) =if F(v) 2l- 

127ve 
e 	e 	 2 	2Tryn

e 	dvdn , 

-00 

X
o 	. 	

X 
i2uv —

2 
-12uv —

o 
2 

or, noting that e 	e 	= 1, 

(3-48) 

Co 

xo 1 
U
3
(--,y) =-

2 
ff F(v)e

i2uve 
e
i27ryn

dvdn . 

-00 

(3-49) 

Comparing Equation (3-49) and Equation (3-44), we see that the output 

along x= -X0/2 is, indeed, the Mellin transform of f(x).* 

Discussion  

We have presented four different systems capable of performing 

general 1-D linear superposition operations (there are actually six sys-

tems if we include the two two-mask frequency-variant implementations). 

* 
In the analysis of Ref. [37], Kellman and Goodman incorrectly conclude 
that this system evaluates the Mellin transform of xf(x) rather than 
of f(x) alone. 
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The systems described were classified--space-variant or frequency-variant-- 

depending on how the operation was implemented. For each system there 

are different requirements of the system masks for a given operation, pro-

viding a good deal of flexibility in implementing that operation. General 

statements concerning which system is to be preferred are not possible. 

But in specific cases, the different implementations can be compared with 

attention to such matters as ease of implementation and efficiency of 

light utilization. The discussion of the two optical implementations of 

the Mellin transform made clear the essential differences between the two 

classes. The operation in a space-variant implementation relies intrinsi- 

cally on a distortion or alteration of the spatial components of the input. 

A frequency-variant implementation is based on a distortion or an altera-

tion of the Fourier spectral components of the input. Thus, for optical 

systems, the two fundamental expressions for a general linear operation 

translate directly into two fundamental methods of implementing the 

operation. 



CHAPTER IV 

FREQUENCY-VARIANT OPTICAL PROCESSING OF TEMPORAL SIGNALS 

The processing operations discussed in the preceding chapters have 

all produced an optical display as the output, such as the spectral dis-

play. In this chapter, we investigate the extension of the frequency-

variant mapping operations to the mapping of temporal frequencies from 

an input temporal signal waveform to an output temporal signal waveform. 

Optical techniques for performing frequency-invariant short-time spectral 

mappings have been studied previously [45, 46, 47, 48]. The new techni-

ques described here, however, provide greater flexibility and generality 

in the mapping operations. The special nature of these techniques, which 

rely on the two-dimensional processing capability of optical systems, 

makes it possible to perform spectral mappings in a frequency-dependent 

manner. Applications of this type of signal processing include bandwidth 

compression or expansion operations where the amount of compression or 

expansion can vary for different portions of the signal spectrum. Addi-

tionally, it has applicability in more general frequency domain redistri- 

butions for spread-spectrum signaling or the correction of frequency domain 

distortions. 

In this chapter, we speak of both temporal frequencies associated 

with signal waveforms and spatial frequencies associated with light dis-

tributions. To avoid confusion in the analytic relationships dealing with 

these quantities we introduce a notation slightly different from the pre-

ceding chapters. Specifically, the variable v is used to denote temporal 
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frequency while u and v denote spatial frequencies. We make this change 

in order to retain v as the variable associated with frequencies being 

mapped in the processing operation. 

The Coherent Optical Signal Processor  

The general format for a coherent optical signal processing system 

is shown schematically in Fig. 4-1. In such a system, we begin with an 

input signal, f(t), to be processed and proceed through three different 

mapping operations to an output signal g(t). As indicated in the figure, 

the input signal first undergoes an input mapping designed to produce an 

optical distribution, i(x,y;t) suitable for processing by a coherent op-

tical system. Specifically, the input mapping maps f(t) into a light 

amplitude distribution of the form 

i(x,y;t) = [C
b 
 + C a 
	a 
f(

x+(3t
)]w(x,y), 	 (4-1) 

where a and (3 are real constants, C
a 

is a constant of proportionality, C
b 

is a bias amplitude, and w(x,y) is an aperture function limiting the extent 

of i(x,y;t). A distribution of this form can be produced in several ways. 

If real time processing is not required, the input mapping can be accom-

plished by recording the signal as a density modulated film sound track. 

Recording and film processing are such that the resulting sound track has 

a light amplitude transmittance 

t(x,y) = tb  + taf(!)1(y) 	 (4-2) 

where here a represents the recording velocity of the sound track. When 
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Figure 4-1. Coherent Optical Signal Processing System. 
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the sound track is illuminated and translated in the x-direction past the 

aperture w(x,y) with a playback velocity (3, an amplitude distribution of 

the form of Eq. (4-1) results. Note that the time-varying portion of the 

input amplitude observed at x=0 is proportional to f(st/a). With a sound 

track, the input signal can be introduced with a transport velocity greater 

or less than the recording velocity for variable rate playback. For real-

time processing applications, an acoustooptic cell can be used in the input 

mapping. In this case, a and (3 are equal and represent the acoustic trans-

port velocity within the cell. 

Associated with the input mapping is a time delay t d . Taking this 

delay into account in the analytic expressions, the processor output has 

the form g(t) = g i (t-td). In the case of real-time processing using the 

acoustooptic cell, t
d 

is associated with the acoustic wave transit time 

through the cell, which is very small (typically microseconds). For the 

sound track, t
d 
might represent the time between the recording and the 

playback of the sound track - a time that could be minutes, hours, or even 

days. In either case, explicit retention of the time delay term is found 

to be analytically clumsy. We will therefore assume that the time delay 

associated with the input mapping to be understood and represent both the 

input signal and the input optical distribution as functions of the time 

variable t. In a further effort to simplify the analysis, we assume that 

3=a, reducing the final expression for the input mapping to 

„., 
a 

x+at 
f(t) 	i(x,y;t) = [Cb  + C 

a  r l-) lw (x,Y) (4- 3) 

All analytical results derived in this chapter are therefore applicable in 
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the cases of real-time input mapping or film sound track input mapping 

where recording and playback velocities are equal. For the case of vari-

able-rate playback of sound track recordings, the time variable t in all 

expressions must be replaced with (S)t. 

The second mapping occuring in the coherent processor is an instan-

taneous optical mapping that produces an output optical distribution 

0(E,n7t) from the input optical distribution, i.e. 

i(x,y;t) a 0(E,rut). 	 (4- 4) 

The specific details of the optical mapping depend on the optical system 

used to perform the mapping. The function of this mapping in conjunction 

with the input mapping is to transform the input signal into an optical 

distribution of appropriate form for processing in the final system map-

ping. 

The final mapping of the processing system is performed in the co-

herent detection of the output distribution. For this mapping, a second 

optical distribution, which for reasons that will become clear shortly 

we call the local oscillator distribution, is added to (mixed with) the 

output optical distribution. Denoting the local oscillator distribution 

as r( 11;t), the total output amplitude distribution is 

0(,r1;t) + r(E,71;t), 	 (4-5) 

giving an output irradiance distribution 
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I(11;t) = !0(1;t) + r(E,n;t)1 2 . 	 (4-6) 

This irradiance distribution is incident on the photosensitive surface of 

a large area photodetector such as a photomultiplier tube (PMT). The PMT 

responds to the incident irradiance producing a current signal 

s(t) cc ff  I(7-1;t)adn, 	 (4-7) 

where E represents the extent of the photosensitive surface of the PMT. 

If a large area detector is used that collects all of the incident light, 

the limits of integration may be assumed infinite. Substituting Eq. (4-6) 

into the expression for s(t) and expanding the squared modulus term, we 

obtain 

s(t) 	ff (10(E0;t) I 2  + ir(,n;t)12  + 0(,TI;t)r * (,TI;t) 

	

+ 0*(,n;t)r(n;t)]ddrl, 	(4-8) 

which we rewrite as 

	

s(t) cc s
0 
 (t) + s

r
(t) + g(t), 	 (4-9) 

with 

	

s
0 
 (t) = ff l0(,r1;t)1 2 ddyl, 	 (4-10) 
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s
r (t) = ff Ir(C,n;t)1 2d0n, 	 (4-11) 

E 

and 

g(t) = ff [0(c,11;t)r*(mt) + 0*(E,n;t)r(,n;t)ldEdn. 	(4-12) 
E 

The signal terms s
0 
 (t) and s

r
(t), which we call the self-product terms, 

represent the signals that would be detected by the PMT from the amplitude 

distributions 0(E,fl;t) and r(,n;t) individually (without mixing). The 

cross product term g(t) is the desired output signal and represents the 

final mapping of the system. The detector output thus contains the desired 

output signal plus two additional signals which may degrade the processor 

output. We show in the next section that there are several ways to elimi-

nate the self-product terms from the detector output. Assuming this is 

done, the final processor output is simply g(t), given by Eq. (4-12). We 

can simplify this expression by noting that the integrand is the sum of a 

function and its complex conjugate; then 

g(t) = 2Refff 0(,n;t)r*(E,n;t)dCdnl, 	 (4-13) 

where Re{•} denotes the real part. It will be convenient in the analysis 

below to express the system operation in terms of the analytic signal 

4(t) = if 0(C,n;t)r*(C,n;t)ddn, 	 (4-14) 
E 

with the final real output signal given by 
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g(t) = 2Re{4(t)}. 	 (4-15) 

The overall operation of the processor of Fig. 4-1 depends strongly 

on the optical mapping operation performed and on the nature of the local 

oscillator distribution. In the sections below, we investigate more 

specifically the operation of the coherent signal processor. We begin 

with a discussion of conventional optical heterodyne processing as exem- 

plified by a system developed by Whitman, Korpel, and Lotsoff at the Zenith 

Radio Corporation [49]. This system, which we will refer to as the Zenith 

system, was initially designed to simulate the operation of complex elec-

trical networks. We will discuss its operatior_ and describe how the basic 

design can be extended to linear bandwidth compression and expansion appli-

cations. These extensions lead to the description of a considerably more 

versatile signal processor that utilizes the second degree of freedom 

available in the optical mapping system to perform general linear trans-

formations (mappings) of signal spectral components. 

Conventional Optical Heterodyne Signal Processing  

The fundamental characteristics of conventional optical heterodyne 

signal processing can be demonstrated using the Zenith system, shown in 

Fig. 4-2. In this system, a laser provides coherent plane wave illumina-

tion at an optical frequency v
0 
 = 5 x 10 14  Hz. Through a series of beam- 

splitters and mirrors, in an arrangement related to a Mach-Zender inter-

ferometer, the illumination is divided (we assume equally), passes through 

two dissimilar optical subsystems and is recombined coherently on the 

photosensitive surface of a PMT. In one arm of the interferometer, the 

input mapping is performed in the front focal plane of a lens L, by placing 
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Figure 4-2. The Zenith System. 
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the input device (acoustooptic cell or the moving sound track) in that 

plane. The photosensitive surface of the PMT is coincident with the back 

focal plane of the lens*; the optical mapping operation of the system is 

therefore the 2-D Fourier transform operation 

o(u,v ; t) 4V(x,y;t)}. 	 (4-16) 

In the other arm of the interferometer, an optical system modifies the 

illuminating plane wave to produce the local oscillator distribution that 

mixes with the output optical distribution at the PMT. In the output plane 

a narrow slit is placed along the u-axis, with a stop blocking the range 

u50. The PMT therefore collects only the light along the positive u-axis, 

and from Eq. (4-14) the analytic output signal is 

CO 

4(t) = f 0(u,O;t)r*(u,O;t)du. 	 (4-17) 
0 

Before analyzing the system with a general input signal, we illus-

trate its operation by introducing a single sinusoid of temporal frequency 

v
1 
as the input. This input causes a sinusoidal grating-like variation 

(amplitude or phase) in the input device with a spatial frequency v
1
/a. 

The grating-like structure, moving with velocity a in the negative x-

direction, introduces the temporal variations at frequency 	As As shown 

in Fig. 4-3, each of the two cissoidal components of the sinusoidal input 

*It can be shown using conservation of energy arguments that the exact 
placement of the PMT in the back focal plane of the lens is not necessary -
see, for example, Reference [50]. 
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diffracts a portion of the illuminating plane wave. The diffracted waves 

are brought to a focus by the lens to produce two spots of light at 

u=±- v
1
/ct on the u-axis. The undiffracted or bias portion of the input 

distribution focuses to a spot of light at u=0. These spots represent the 

spatial frequency components of the input distribution through the Fourier 

transform optical mapping. The spot at u=0 represents the average ampli-

tude of the input distribution, and will be referred to as the d.c. spot. 

The spots at u=v
1
/a and u= -v

1
/a will be referred to as the positive and 

negative frequency components, respectively, of the input signal. The 

motion of the grating- like variations in the input plane results in a 

shift in the optical frequency of these two spots of light. The frequency 

shift can be interpreted as a Doppler shift: light in the positive fre-

quency spot, being deflected away from the direction of motion of the gra-

ting, is downshifted in optical frequency from v o  to v 0-v 1 . Similarly, 

the light in the negative frequency spot, being deflected in the opposite 

direction, is upshifted in optical frequency from v
0 
 to v

0
+v

1
. The optical 

frequency of the undeflected light in the d.c. spot is unchanged. In the 

heterodyne mapping of the Zenith system, the unblocked positive frequency 

component is mixed with a local oscillator distribution at the original 

optical frequency v o . This mixing of the positive frequency spot at opti-

cal frequency v 0-v 1  with a distribution at v 0  produces an irradiance dis-

tribution that varies sinusoidally at the difference frequency v i . The PMT 

responds to this distribution yielding as the output signal waveform a 

sinusoid at temporal frequency v i . 

Adding additional sinusoidal components at frequencies v n  to the 

input signal produces additional light spots in the output light distribu- 
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tion at points u=v
n
/a. The optical frequency of each spot is shifted from 

v
0 
 by the temporal frequency of the corresponding input signal component. 

When these spots mix with the local oscillator distribution at v o , the 

output mapping reproduces the original input sinusoids in the output signal 

waveform. If the local oscillator distribution is uniform in amplitude and 

phase along the entire u-axis (e.g. a plane wave local oscillator), then 

the relative amplitude and phase of the input signal components are pre-

served in the output signal waveform. However, variations in the local 

oscillator distribution can alter the amplitude and/or phase of the compo-

nents in the output signal. Thus, we can control the amplitude and phase 

response of the processor by controlling the amplitude and phase of the 

local oscillator distribution. 

For an arbitrary input signal f(t), the input mapping produces the 

input optical distribution given in Eq. (4-3). The 2-D Fourier transform 

optical mapping then produces the output distribution 

0(u,v;t) = C
b
W(u,v) + C

a
faF(au)e

+i2Traut
*u  Vi(u v)} 
	

(4-18) 

We block the d.c. spot and the negative frequency components of the signal 

with the stop and, through the slit, observe the output distribution only 

along the u-axis. Thus, for u>0, 

0(u,0;t) = C
a
faF(au)e

i27Taut
*u 	' W(u 0)1 
	

(4-19) 

(In blocking the d.c. spot, we also block any average component of the 

input signal. We therefore assume that the input signal has zero average 



4(t) = Ca 
f f aF(a)ei2Tract

W(u-C,O)B(u)edCdu• 
0 

(4-21) 

85 

value or that the signal of interest is placed on a carrier to insure zero 

average value.) The general local oscillator distribution in the Zenith 

system has the form 

r(u,O;t) = B(u)e
iflu) 	

(4-20) 

for u>0. Substituting Eqs. (4-19) and (4-20) into Eq. (4-17), we obtain 

the general output for the Zenith system, 

We can assume that the local oscillator distribution varies slowly along 

the u-axis compared with the spot size W(•,0). Then, integrated Eq. (4-21) 

with respect to u, we obtain 

CO 

g(t) = C
a 
f F(v)BAe

-icp(v/a)
e
i2Trvt

dv, 
0 

(4-22) 

where we have made the variable substitution v=aC. Assuming the input 

signal is real, Eq. (4-22) is the analytic expression for the output of 

a system whose input is f(t) and whose transfer function is 

B(v/a)e
-iflv/u)  , v > 0 

H (v ) = 
	

(4-23) 

B(-v/a)e
ifl-v/a)  

v < 0 

(This form is required for the transfer function to be Hermetian.) The 



real system output signal can then be expressed as 

g(t) = a 	f(T)h(t-T)dT, 	 (4-24) 

where 

h(t) =gv
1 
 fH(V)}, 	 (4-25) 

is the system impulse response. The system response is that of a linear 

time-invariant system whose transfer function is determined by the local 

oscillator optical distribution along the u-axis.* If the input signal 

is not strictly real, the system output signal will have the form of Eq. 

(4-24) with f(t) now the real signal whose positive frequency spectrum is 

equal to that of the complex input signal. (The input signal can be 

complex-valued either by intentionally introducing a non-real input or as 

a result of phase problems associated with the input transducer.) 

Control over the amplitude and phase of the local oscillator is 

quite flexible, indicating that general system responses can be simulated 

with this system by the proper choice of local oscillator distribution. 

A simple example of such a simulation is a local oscillator consisting of 

a plane wave that is uniform at the detector except at v=v , where it is 

blocked by a thin wire placed across the surface of the PMT perpendicular 

*The general nature of the relationship between the local oscillator opti-
cal distribution and the system transfer function suggests that non-causal 
filter response characteristics are possible. However, recalling that a 
time delay is associated with the input mapping, it can be shown that the 
system response is indeed causal. 
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to the v-axis. (This wire will block both the local oscillator distribu-

tion and the signal distribution, but the result is the same as if only 

the local oscillator were blocked.) This system will pass all frequencies 

with unaltered amplitude and phase except the very small band of frequen-

cies centered at temporal frequency v. The system response is therefore 

that of a notch filter. 

As a second example, consider the introduction of a thin lens into 

the local oscillator arm of the interferometer. This lens will change the 

illuminating plane wave into a spherical wave. If the focal length of the 

lens is chosen to produce a diverging spherical wave at the detector sur-

face, the amplitude of the local oscillator will be uniform across the 

detector but the phase will vary quadratically with position u. The phase 

response of the system is therefore a quadratic function of frequency, 

corresponding to a signal delay proportional to the frequency of the sig-

nal. The system has the transfer characteristics of a dispersive delay 

line and can be used to simulate such a system. 

Extensions of Conventional Optical Heterodyne Signal Processing:  

Frequency Shifting and Linear Bandwidth Compression  

In the system developed at Zenith, the amplitude and phase of the 

various input signal components could be modified, but the frequencies of 

the components in the output signal remained unchanged. However, a shift 

in the optical frequency of the local oscillator can easily be used to 

introduce a uniform shift in the frequencies of all sinusoidal components 

of the system output. Such a frequency shift can be used, for example, 

to place the output components in an intermediate band for subsequent pro-

cessing or to return a signal that has been upshifted, prior to input to 



the optical system, to its original baseband range. The shift in optical 

frequency of the local oscillator can be accomplished with a variety of 

devices including moving mirrors, rotating quarter- and half-wave plates, 

and acoustooptic devices [51,52,53]. With an appropriate device intro-

ducing a downshift of v
c
, the local oscillator distribution along the u- 

axis will be 

2.  (u,0; t) = B(u)e icP(u) e
i271- v ct 	

(4-26) 

The system output then becomes 

OD 

g(t) = C
a

f f f(t)h(t-T)dT}e-i2Try ct 
	

(4-27) 

where we have returned to the analytic signal representations. The opera-

tion of this system is shown diagramatically in Fig. 4-4. The input sig-

nal is processed by a linear time-invariant filter whose impulse response 

is again found from Eqs. (4-23) and (4-25). The filter output is then 

downshifted in frequency by v c . In this diagram the analytic representa- 

tion is used for all signals. The multiplication of the analytic filter 

output by the cissoid e
t 

is therefore equivalent to multiplication 

of the real filter output by a cosine at v
c 

followed by low pass filtering 

to give only the difference frequencies. This corresponds closely with 

the actual optical heterodyne operation: sum frequencies of the mixing 

of two optical distributions are themselves at optical frequencies and are 

not detected by the PMT. We note that v c  is a downshift applied to the 

local oscillator optical distribution. If we should instead apply an 
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90 

upshift to the local oscillator, then v
c 

is negative and the filter output 

is upshifted by an equivalent amount. 

A uniform shift in the optical frequency of the local oscillator 

distribution produces a uniform shift in the frequency of output signal 

frequency components. If, however, the optical frequency of the local os-

cillator distribution changes as a function of position in the output 

plane, an entirely different type of signal processing occurs. The fre-

quency components of the input signal are then processed with local oscil-

lators of different frequencies. The amount of frequency shift is differ-

ent for each component resulting in a rearrangement of the frequency com-

ponents in the output signal. One method of introducing a local oscillator 

distribution of this type is to introduce a time-varying signal in the 

local oscillator arm, as shown in Fig. 4-5. An input mapping similar to 

that used for the input signal is employed and a lens is again used to form 

the spectral distribution of the local oscillator signal at the detector 

surface. The optical frequency of the local oscillator distribution at the 

PMT, like that of the signal distribution, varies linearly with position. 

Consider, for example, a local oscillator signal introduced by a moving 

slit as shown in Fig. 4-6. The spectral distribution for this signal (a 

moving impulse) is uniform at all frequencies. (The spectral distribution 

is a plane wave whose angle of incidence - assumed small - changes at a 

constant rate as the slit moves through the input plane.) Ignoring for 

the moment the finite extent of the input apertures of the lenses L
1 

and 

L2 , the optical frequency vs. position for the local oscillator distribu-

tion and the input signal spectral distribution are shown in Fig. 4-7. 

single Fourier component of the input signal at temporal frequency v 
1 
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Figure 4-5. Optical Heterodyne Processing System with Intro-
duction of a Local Oscillator Signal. 
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produces a spot of light in the spectral distribution at u=v
1
/a

1
, where a

1 

is the velocity associated with the input mapping of the input signal. 

(

of the local oscillator distribution is at the optical frequency v
0
-a

2 ci
1 

, 

where a
2 is the velocity of the moving slit. The output mapping then mixes 

these distributions producing an output sinusoidal signal at the difference 

frequency 

a
2 	

a
2 	

a
1 
 -a 

2  - )v - (v - v ) = v - — v - 
0 	a

1 
1 	0 	1 	1 	a

l 
1 	( a

l 
)
v
1

. (4-28) 

The various Fourier components of the input signal therefore appear in the 

output signal scaled in frequency by a factor 
(ala2
a)  suggesting that a 
1 

bandwidth compression or expansion can be performed. 

The output of this processor is identical to what would be obtained 

with a noncoherent playback of a film strip recording with a moving slit, 

as shown in Fig. 4-8. In the noncoherent playback, we assume the intensity 

transmittance (not the amplitude transmittance) to be equal to the recorded 

signal. The film strip moves with velocity a l  past a slit that is itself 

moving with velocity a 2. The light intensity transmitted through the slit 

and signal recording is collected by a detector, producing the output sig-

nal. Relative to the slit, the playback velocity for the recorded signal 

is 
a1-a2' 

and the Fourier components of the input are therefore all scaled 

The optical frequency of the light in this spot, downshifted by the signal 
v
1 

frequency, is v -v 	At the position u=— in the output plane, the light 
0 1 . 	 a

1 

by the factor 
(ala2), 

 however it takes the moving slit a
1 	

( a  a l  ) ti
m es as 

\ 1 2 
long to scan a given length of recorded signal as would a stationary slit. 

The frequency scaling is thus seen to result from a change in the signal 
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Figure 4-8. Equivalent Noncoherent System for Heterodyne 
Processor with Impulse Local Oscillator. 
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time base. If we include the effect of finite input apertures, the moving 

slit scans the recorded signal only during the time it moves through the 

fixed window. To obtain a continuous output, additional moving slits must 

be introduced, one entering the fixed window as the previous slit leaves. 

The frequency scaling of the recorded signal then proceeds on a section by 

section basis. Dennis Gabor first described such a processing technique 

for signal bandwidth compression or expansion in his classic 1946 paper, 

"Theory of Communication." [45]* There are several fundamental problems 

with this processing technique all discussed by Gabor. In the heterodyne 

system, these problems can be attributed to the impulse train nature of 

the signal introduced to produce the local oscillator distribution. We 

therefore turn our attention to an alternative processing technique that 

employs a more general local oscillator signal. 

If we introduce an arbitrary signal, r(t), in the local oscillator 

arm of the system, the spectral distribution that appears in the output 

plane as the local oscillator distribution will retain (approximately) the 

linear optical frequency vs. position characteristic shown in Fig. 4-7. 

The distribution itself, however, will no longer be uniform in amplitude 

and phase along the u-axis as in the case of an impulse local oscillator 

signal. The system will still perform a frequency scaling of the input 

signal but there will also be a certain transfer function associated with 

the operation specified by the spectral distribution of the local oscilla-

tor signal. We must be careful in defining this transfer function because 

*Gabor describes what has come to be known as the "sample-and-discard," 
or "sampling" method of time/bandwidth compression. For additional 
discussions, see, e.g. Reference [54]. 
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at any time t, the transfer characteristics will be specified only by the 

spectrum of the local oscillator signal present in the window of the local 

oscillator spectrum analyzer. Furthermore, these transfer characteristics 

will apply only to the portion of the input signal under the window of the 

input signal spectrum analyzer at that time. Any description of system 

operation must therefore take into consideration the temporal and frequency 

characteristics of both input signal and local oscillator. 

We need first to reformulate the analytical description for the 

spectrum analyzer output distribution to state explicitly the time-frequency 

characteristics of the distribution. From Eq. (4-3) we rewrite the input 

amplitude distribution for the input signal spectrum analyzer as 

x+a t 
i(x,y;t) = Cai ( a1  )wi(x)w(y) 

1 
(4-29) 

where we have ignored the bias term that results in the d.c. spot and we 

have for convenience assumed a separable input window w(x,y) = w i (x)w(y). 

For the present, we are interested in the light distribution only along the 

u-axis in the output plane of the spectrum analyzer: 

x+a t 
0(u;t) 	0(u,O;t) =C

a 
f f 	 

( al\ 

) w  1 (x) e  
-i2Trux 

dx. 
1 

(4-30) 

Making the variable substitution T=(x+a
1
t)/a

1
; this distribution reduces 

to 

0(u;t) = C F (u;t)e
1-i2Tralut 

a w (4-31) 



where 

Co 

w
(u;t) = f f(T)w 1 [a

1 
 (T-t)]e

-12TraluT
a
1
dT 
	

(4-32) 
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is the spectrum of the signal under the analyzer window at time t, i.e. 

the short-time spectrum of the input signal evaluated for v=a
1
u. To intro-

duce the local oscillator signal we perform an input mapping and an optical 

mapping (spectrum analysis) similar to those applied to the input signal. 

The local oscillator spectral distribution can therefore be expressed as 

in Eq. (4-31), 

k(u;t) = C R (u;t)e
-1-i271-a2ut 

a w 
(4-33) 

where 

CO 

R
w
(u;t) = f 1- (T)w

2
[a

2
(T-t) ]e

-i27a2uT
a
2
dT. 	 (4-34) 

Here, w
2
(x) is the input window for the local oscillator spectrum analyzer 

and a
2 

is the velocity associated with the input mapping of the local os-

cillator signal. The quantity Rw (urt) is the short-time spectrum for the 

local oscillator signal evaluated for v=a 2u. 

When the input signal and local oscillator spectral distributions 

are mixed and detected at the PMT, the system output signal is 

Co 

2 	
i2"a 

r  4(t) = C
a J 

F
w
(u;t)R*(u;t)el-a2)11tdu. 

0 
(4-35) 



4(t) = —
1 

C
2 f F ( ,t,)R ( ,t)dv. 

aa 	wa 	wa 
1 	0 	1  

v 
CO 

(4-38) 

Expressing the system output in terms of the frequency V=a lu of the input 

signal short-time spectrum we obtain 

i27
r1-2] 

	

al 

1 	 a1 (t) = 	C2
a 
 f F

w a
l

w 
R* 
 a 	

e 	 dv. 	(4-36) 

	

1 	0 	 1 

From this expression it is clear how the short-time spectrum of the local 

oscillator establishes the transfer• characteristics for the input signal 

short-time spectrum. The expression also shows explicitly that the fre-

quencies of the input signal short-time spectrum will be scaled in the 

system output by the factor 
(ala2). 

 From this frequency scaling factor, a
1 

we can define a compression factor equal to the reciprocal of the scaling 

factor, i.e. 

a 
1  Y - a - 

1 a 2 
(4-37) 

In terms of this compression factor, the system performs a bandwidth com-

pression if Y>1 and a bandwidth expansion if Y<1. Clearly, if a l=a 2 , 

the compression factor becomes infinite. The meaning of an infinite Y can 

be seen directly from Eq. (4-36) for a l=a 2 : 
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After substitution of the expressions for the short-time spectra and some 

analytical manipulation, the output expression will become 

CO 

g(t) = a
l
C
a
2  f f(T)r*(T)W

e
(t-T)dT, 	 (4-39) 



where 

w
e
(t) = w 1 [-a12 t]w*(-a

1 
 t]. 	 (4-40) 
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Equation (4-40) indicates that the system output with a 1=a 2  ( Y infinite) 

is equal to the output of a filter whose impulse response is W
e
(t) when 

the input is the product function f(t)r*(t). The input windows W 1 (•) and 

W
2
(•) used in the two system spectrum analyzers are usually rectangular or 

slightly smoothed, such as a Gaussian or a raised cosine window. In such 

cases, the structure of the impulse response described in Eq. (4-40), which 

is equal to the product of the two time-windows, will be that of a low pass 

filter. The output is then a low pass filtered version of the product of 

input signal and local oscillator. 

The Self-Product Terms and System Linearity  

In the previous sections we have ignored the self-product terms in 

the system output and described system operation in terms of the linear 

operation Eq. (4-14). We now consider these terms in more detail. We re-

call from Eqs. (4-9) through (4-12) that the total system output is 

s(t) m s 0  (t)+ s r  (t) + g(t), 	 (4-41) 

where g(t) is assumed to be the desired output signal and s 0 (t) and sr (t) 

are the self-product terms produced due to the square-law nature of the 

photodetector response. In the processor of the previous section where we 

observe the output only along the u-axis, these self-product terms have 

the form 



2 f A
0 
 (t) = a

l
C
a 

j Ir(T)1 2w
e 

(t•T)dT, 
-03 1 

(4-45) 

	

r 	1 

	

s r (t) = a
2
C
a
2 j 
	w

e 
(t-T)dT, 

-w 2 
(4-47) 
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CO 

s 0  (t)= f 0(u,t)0*(u,t)du, 	 (4-42) 
0 

and 

CO 

s r
(t) = f r(u,t)r*(u,t)du, 

0 
(4-43) 

where the " " again indicates the analytic signal. SubstitUting Eq. (4-31) 

for 0(u,t) in the expression for s
0 
 (t) we obtain 

CO 

0 (t) = C
a
2  f F (u;t)F*(u,t)du. 	 (4-44) 

This signal has the same form as the cross-product signal Eq. (4-35) in 

the case where R (u;t) = F (u;t) and with a l=a 2 ; i.e. with Y infinite. 

The signal can then be expressed in a form similar to Eq. (4-39), 

with 

w 	(t) = 1w
1

[ -a l t] 1
2

. 
e
l 

(4-46) 

Similarly, in the case of a local oscillator distribution, 

00 

with 



1 
w e 2 (t)= lw

w
(-a

2
t)1

2 
 (4-48) 
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Both self-product terms are therefore low-frequency signals that can be 

removed by high-pass filtering the system output. If such a filtering 

would remove portions of the desired output signal, this latter component 

can be upshifted to a higher frequency band by uniformly shifting the 

optical frequency of the light illuminating the local oscillator signal 

input device. The self-products can then be removed by filtering and the 

frequency-scaled output recovered in the desired frequency band by a post-

detection electronic heterodyne operation. 

For a more physical interpretation of the intermodulation terms, 

we reintroduce the variable x in Eq. (4-45) by making the substitution 

x=a
1
(T

1
-t). Then, g

0 
 (t) is given by 

(x+a t 
/ ,1 

s 0  (t) = C
2 
 f It 	) w

1 
(x)1

2
dx. 

a
-co 	

a
1 

l 
 

Similary, we replace x with x=a 2 (T-t) in Eq. (4-47), obtaining 

(x+a
2t) 

s r (t) = C
2 f   w

2
(x)1

2
dx. 

a 	a
2 

(4-49) 

(4-50) 

The integrands of Eqs. (4-49) and (4-50) are the non-bias portions of the 

light irradiance distributions passing through the signal aperture and 

local oscillator aperture respectively. These expressions then indicate 

that the intermodulation terms are measures of the variations in the light 

flux passing through the input signal aperture and the local oscillator 

aperture induced by the input signal and local oscillator signal. If we 
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assume a rectangular or Gaussian aperture transmittance, then several cy-

cles of the higher frequency components of f(•) and i(•) will be present 

in the window at any time, and the integrals of Eqs. (4-49) and (4-50) will 

represent the average of these components over several cycles. This aver-

age will be essentially constant for the higher frequency terms. The only 

significant temporal variations of the signal•induced light flux comes 

from low frequency components where the period of variation is a large 

fraction of the effective width of the input aperture. 

Frequency-Variant Optical Heterodyne Signal Processing  

The optical heterodyne processing system described in the previous 

section can certainly be viewed as a frequency•variant processing system, 

since input signals of different frequencies are processed with different 

local oscillators. However, because conventional spectrum analyzers are 

used, the frequency vs. position characteristics are linear for both spec-

tral distributions mixing in the system output plane. The operation per-

formed by this system is therefore a uniform (i.e. frequency-independent) 

frequency scaling operation. In Chapter II we showed that, by exploiting 

the second degree of freedom available in an astigmatic system, a spectrum 

analyzer could be devised in which the frequency vs. position characteris-

tics and the time-frequency resolution characteristics within the spectral 

display are frequency-dependent. We show in this section that by using 

frequency-variant spectrum analyzers in a heterodyne signal processing 

system the processing capabilities of the system for 1-D signals can be 

extended to include general frequency-domain redistributions of signal in-

formation. 

The optical configuration for a general frequency-variant heterodyne 
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processing system is shown in Fig. 4-9. The input signal and the local 

oscillator signal are introduced in separate arms of the system by the 

conventional input mapping. The optical distributions produced by the 

input mappings are therefore 

x+cl
1
t 

i
s
(x,y;t) = C

a
f ( 	) wl (x,y) 

in the signal arm, and 

x+a
2
t )  

i
r (x,Y;t) = C a 	

w2 (x,y) 
(1 2 

(4-51) 

(4-52) 

in the local oscillator arm where we have ignored the bias amplitude in 

each distribution. The optical mapping performed on the input signal dis-

tribution is a frequency-variant spectrum analysis using a system like that 

described in Chapter II, with the output passing through a vertical slit 

onto the PMT. We assume a spatial frequency mapping characteristic u=m
1
(y) 

in this system with mapping slit narrow enough that w
1
(x,y) is the equiva-

lent window for the operation. Then, from Eq. (2-35), the input signal 

spectral distribution along the y-axis is 

x+at 

0(y;t) = C
a 

f 	
al 
	) w

l
(x,y)e

-i2)11111(y)x
dx, 

1 
(4-53) 

which, with an appropriate variable substitution, we can simplify to 

0(y;t) = C
a
F
w
(m

1
(y),y;t)e

i2T(alml(y)t 	
(4-54) 
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Figure 4-9. The Frequency-Variant Optical Heterodyne Signal Pro-
cessing System. 



where 

co 

F
w
(m

1
(y),y;t) = f i(T)a 1 w 

 1 	d  [
a  (T_LN 'x'l _e-i27aimi(y)TdT 	

(.4-55) 
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is the frequency-variant short-time spectrum of the input signal. For 

complete generality, we assume that the local oscillator input distribution 

is also mapped by a frequency-variant spectrum analyzer with spatial fre-

quency mapping characteristic u=m 2 (y).* With w 2 (x,y) as the equivalent 

window for this mapping, the spectral distribution of the local oscillator 

system is 

r(y;t) = C
a
R
w
(m

2 (y),Y;t)e
i27a2m2(y)t 	

(4-56) 

where 

CO 

R
w 
 (ms  (y),y;t) = I i-(T) 

a
2
w
2 

[a
2
(T-t),yle

-i27a2m2(y)TdT 	
(4-57) 

is the frequency-variant short-time spectrum of the local oscillator sig-

nal. 

The input signal and local oscillator distributions are superimposed 

at the PMT, which responds with the system output signal 

2  Co 4(t) = C a j Fw (m (y),y;t)R*(m2 
	" 
(y) y-t)e i2ff[alml (Y)-a2m2(Y)ltdy. (4-58) 

 0 

*General short-time spectral mappings can be performed with only one non-
linear spatial, frequency mapping. 
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In this expression, we note again that the local oscillator short-time 

spectrum establishes the transfer characteristics for the short-time spec-

trum of the input signal. In this case, however, the short-time spectra 

are frequency-variant: the system transfer characteristics are more gen-

eral, and the frequency scaling becomes a nonuniform frequency mapping. 

In terms of the frequency v s  of the input signal short-time spectrum, the 

system output takes on the rather formidable analytic form 

tlei27[vs-a2m2(17s)]t 	dys  4(t) = c2  f F [v /a ,y ; t]R* [m (y ) y 
a 	w s 1 s 	w 2 s's' 	

a11 
m' (y 

s
) 

(4-59) 

where 

and 

1 
Y = m1 (v

s
/a1

), (4-60) 

m l  (y) = 	m1 (y).dy 
	

(4-61) 

The factor 1/a11  m'(y 
s
) is present in the integral expression to compensate 

for the non-uniform packing of the spectral distribution along the y-axis. 

From this expression the frequency mapping relationship for the system is 

readily determined: 

v
s 	

v
s
-a

2
m
2
(y

s
). 	 (4-62) 

-CO 

A uniform system compression factor cannot be defined for this system 



Y(v
s
) = 	  

v
s
-a

2
m
2
(y

s
)  

v s 
(4-63) 
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because the frequency mapping relationship is no longer a simple frequency 

scaling. We can, however, define a compression function equal to the ratio 

of input frequency to the output frequency, 

Using this compression function it is then possible to define the overall 

system compression factor as the ratio of the input signal bandwidth to the 

output signal bandwidth. If vand v 	are the minimum and maximum fre- 
min 	max 

quencies of the input signal, then the system compression factor is 

 

v -v 
maxmin 

(4-64) - sys 	v 
max 

f Y (v ) dv 
s 	s 

v . 
min 

Interpretation of System Operation With 

Time-Frequency Signal Components  

The expressions derived for the operation of the general frequency-

variant processing system, although mathematically correct, are largely 

uninformative. The relationship for the mapping of short-time spectral 

frequencies was easily determined from Eq. (4-59), but further interpreta-

tion of system operation is hidden by the complexity of the expression. 

If we are to properly interpret system operation, a mapping relationship 

should be established that describes the effect of the processing opera-

tion, in both time and frequency, on basic components of the input signal. 

This task is complicated by the presence of the local oscillator signal - 

the system operation can be viewed as a very general mixing of two signals 
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distinguished only by the labels we have placed on them. The mapping rela-

tionship must therefore describe the operation in terms of a mixing of 

basic components from two arbitrary signals. 

The question now arises as to what basic components to use in the 

mapping relationship. Neither frequency components (sinusoids) nor tem-

poral components (delta-functions) are wholely adequate for this represen-

tation. This is suggested by the operation of the frequency-variant opti-

cal mappings used in the system, in which different frequencies are pro-

cessed with different temporal characteristics, and by the output expres-

sion Eq. (4-59), in which the system frequency transfer characteristics 

are seen to change with time. We turn therefore to basic components that 

are localized in both time and frequency. Gabor first used a superposition 

of elementary time-frequency components to represent an arbitrary signal. 

[45] His "elementary signals" were cissoidal pulses with Gaussian time 

envelopes. Lerner extended Gabor's technique of signal representation to 

include cissoidal pulses with non-Gaussian temporal envelopes or, in gen-

eral, elementary time-frequency components of the form [53] 

e (t) = w(t-t )e
i2ffvnt 

mn 

In the frequency domain, this signal has the form 

E (v) = W(v-v)e
-i2ff(v-v n )tm 

 mn 	 n 

(4-65) 

(4-66) 

where 

W(v) =jc{w(t)}. 	 (4-67) 



The duration of the elementary signal, At, can be taken as the effective 

width of w(t), while the frequency spread, Av, can be described as the 

effective width of W(v). The elementary signal can therefore be viewed 

as occupying an area AtAv in a time-frequency diagram centered at time t
m 

and frequency vn . Using a root-mean-square definition for effective width, 

Gabor was able to show that the area of a time-frequency component was 

restricted by an uncertainty relationship, 

AtAv — 
1 
2 

(4-68) 

where the minimum area of 
1 
 is achieved only for elementary signals with 

Gaussian envelopes. The uncertainty product, he noted, relates to the in-

ability of any receiver to define simultaneously time and frequency in an 

exact way. 

An arbitrary signal f(t) can be approximated by a superposition of 

elementary time-frequency components: 

f(t) =ZEa 	w(t-t)e
i2Trvnt 

m n mn 	m  
(4-69) 

Component spacing in time and frequency is usually taken to be uniform, 

i.e. t
m
=mAt and v

n
=nAv. The accuracy of the approximation depends on both 

the choice of envelope w(t) and on the choice of At and Ay. (There is no 

clear cut "best" choice for any of these quantities.) The expansion of 

Eq. (4-69) covers the entire time-frequency area for the original signal, 

as shown in Fig. 4-10. In this figure, each rectangle represents a single 

time-frequency component; the amount of shading in the rectangle indicates 
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the component amplitude. In general, the elementary time-frequency compo-

nents used in such an expansion are neither orthogonal nor do they form a 

complete set. Nevertheless, such expansions can be highly accurate. For 

example, Markel and Carey have demonstrated that the expansion of speech 

waveforms in terms of Gaussian elementary signals, although not exact, is 

virtually indistinguishable from the original speech, both qualitatively 

and quantitatively [56]. 

In Gabor's original expansion with elementary signals of minimum 

area, each elementary signal was viewed as carrying an elementary quantum 

(or logon)  of signal information observable in time t. Each elementary 

signal of the general expansion can be associated with an elementary piece 

of signal information observable by a receiver or processor with time win-

dow w(t). In a system operating with this time window, signal expansion 

in terms of elementary signals with time envelopes equal to w(t) is there-

fore a natural choice. 

We now consider an interpretation of the general system processor 

in terms of time-frequency components for the special case of frequency-

invariant operation. In the frequency-invariant case, the input windows 

for both the input signal and the local oscillator signal are frequency-

independent and the frequency mapping characteristics are linear: m
1
(y)=y 

and m
2 (y)=y. We now assume that an adequate expansion for the input signal 

and local oscillator can be found in terms of the elementary time-frequency 

components associated with their respective input windows, i.e. we assume 

the expansion 

f(t) = 
m 
EZa.mn 

 w 1
[a

1 
(t- t

m
)1e

i2"nt 
n  (4-70) 



for the input signal and the expansion 

i,(t)=E 

k 

zipJk.1,72 Ea2 (t_ t_) , ei27Tvkt 

J 
(4-71) 

for the local oscillator to be correct. In these expressions we recall 

that w
1
(x) and w

2
(x) are the input aperture transmittances for the input 

signal and local oscillator respectively and that a
1 

and a
2 

are the velo-

cities associated with the input mappings of those two signals. 

The optical mapping performed on the input signal is a conventional 

Fourier transform where signal components are mapped in frequency along 

the y-axis according to the relation v=a ly. The time-frequency component 

at t=t
m 

and v=v
n 

appears in the transform distribution in the small spatial 

interval Av/a
I 

centered about y=v
n
/a

1 
and during the time interval At cen-

tered about t=t
m
. Observing the transform distribution of the input signal 

along the y-axis is therefore equivalent to observing the time-frequency 

diagram of the input signal (with frequency axis scaled by 1/a 1 ) through 

a narrow vertical slit that slides along the time axis, as shown in Fig. 

4-11. In order to describe analytically the distribution observed through 

the slit, as a function of space and time, we define the function 

mn 	
A 

(y,t) = w
1
[a

1
(t-t
m1

(y-v
n
/a

1
)e 

i2Tryn
t 

(4-72) 

which describes the distribution of a single time-frequency component at 

t=t
m 

and v=v
n
. The quantity Errin (y,t) expresses explicitly both the time 

envelope, wi [a l (t-tm)], and the frequency envelope (along the y-axis), 

Wi ly-v n /a
1 
 ), of the component as well as the shift in optical frequency 

113 
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Figure 4-11. Scaled Version of Time-Frequency Diagram Viewed through 
Moving Slit -- Equivalent to Transform Distribution of 
the Input Signal Along the y-axis at the PMT. 
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of the light in the distribution. In terms of this elementary distribution, 

the transform distribution of the input signal is 

0(y;t) =E 
m Eamn w1 

 [a
1 
 (t-t

m 
 )]W

1 
 (y-y

n
/a

1
)e

i2Trvnt 
n  

(4-73) 

We should recover the input signal directly from this distribution by intro-

ducing a plane wave local oscillator. Assuming the plane wave to be nor-

mally incident and of unit amplitude, the system output would be 

co 

4(t) =f0(y;t)dy = 
m 
EZ 

 n 
a
mn 

w
1 
 [a

1 
 (t-t

m 	
i27rynt 

0 

CO 

Or 

• { f
1
(y-y

n
/a

1
)dy}, 

0 
(4-74) 

g(t) = w
1
(0) • m EEamn w

1 
 [a

1 
 (t-t 

m
Hei2"nt  

n  
(4 - 75) 

Comparing Eqs. (4-70) and (4-75), we see that the input signal is indeed 

recovered. 

The components of the local oscillator are also mapped into a spec-

tral distribution along the y-axis, with frequencies mapped according to 

v=a
2
y. The spectral distribution can be expressed in terms of elementary 

components similar to those for the input signal, i.e. 

r(y;t) =EEb w[a (t-t.)]W 	 . 
j k jk 2 2 	3 	2 	a

k

2 
(4-76) 
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The mixing of the two spatial distributions then produces the system output 

CO 

g(t) = f 0(y;t)r*(y;t)dy 
0 

=EEEEa 	w[a (t-t )]14*[a (t-t.)]e
i2Tr(v n-vk)t 

	

, 	(4-77) 
jkmn mn jk kn 1 1 	m 2 2 	3 

where 

oo 

ckn = f W (V - 
	2 	a 

(y - —k)dy. 
0 

1 	a
1 	2 

(4-78) 

Equation (4-77) indicates how the various time-frequency components of the 

input signal and the local oscillator mix in the optical processing system. 

Again, interpretation is impeded by the complexity of the expression. 

Nevertheless, we can obtain some useful information from this expression 

by considering the mapping of a single input signal component at time t
m 

and frequency v n . From Eq. (4-77) we obtain 

aw
1
[a

1 	m
(t-t

i2Tcvnt 
-÷EEa b*c w 

mn 
 

j k mn 3k kn 1 1 	m 

• w2 [a 2 (t-t.)]e 
i27 (v n-vk )t 	

(4-79) 

It is clear from this expression that an input component is mapped into 

several components of the output signal due to the mixing with different 

components of the local oscillator. However, the major contribution to 

the output from this input signal component will result from the mixing 

with the one local oscillator component that occurs at approximately the 
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(4-80) 

same time and at approximately the same position along the y-axis. Thus 

the major contribution results from the local oscillator component at time 
v
k 

v
n 

t.=t
m 
 and at frequency v

k 	 a 
for which 	

a 	
The nominal component mapping 

2 	1 
relationship can then be expressed as 

amnw1[a1(t-t
m
)]ei27rvnt

m
,v
n
)a
mn
w
1
[a

1
(t-tm) ] 
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where the factor C(t
m
,v

n
) is determined by the amplitude of the local os- 

a
2 

cillator component at t.=t
m 
 and v

k 
— v

n
. This relationship indicates 

that the input signal components are mapped with time-frequency resolution 

characteristics determined by the product window w
1 
 [a

1 
 t]w

2
[a

2
t] and that the 

a1-a2 
component frequencies are scaled by a factor 	I . 

 
a • 
1 

Expressing the system output in terms of the nominal mapping rela- 

tionship we obtain 

12ff
(a1a2

)vn 

m 	

t 

4(t) = E E -6(t
m 

 ,v 	
n)amn w1 

 [a
1 
 (t-t

m
Hw

2 
 [a

2 
 (t-t nH 	

1 
e 	 . (4-81) 

n  

The quantity C(t
m
,v

n
) can be viewed as the system transfer function in both 

time and frequency and is established directly from the time-frequency 

characteristics of the local oscillator signal. As was mentioned, the 

time-frequency resolution characteristics in the system output are estab-

lished by the product window. 

A complete analytic description for the system output in the general 



118 

frequency-variant processor, analogous to Eq. (4-77), becomes extremely 

complex due to the use of separate input windows for components of differ-

ent frequencies and the nonlinear frequency mapping relationships. The 

nominal mapping relationship can, however, be determined in the same manner 

as in the frequency-invariant case. In a frequency-variant processor, the 

input signal components are mapped in frequency onto the y-axis according 

to the relationship v=a imi (y). The input signal is processed with an input 

window whose characteristics are, through y, frequency dependent. The in-

put signal component at the time t
m 

and frequency v
n 
has the form 

a
mn
w
1
[a

1
(t- t

m),yn le
i27vnt 	

(4-82) 

where yn  is found from 

v
n 

=
l
m
l
(y
n
). 	 (4-83) 

The local oscillator component mixing with this signal component has fre-

quency vk=a 2m2 (yn) and is processed by the time window w 2 (a 2 t,yn ]. The 

nominal mapping relationship is then given by 

a
mn
w
1
[a

1
(t-t

m),yn
]ei2nv, 

-t -0- C(t
m
,v
n
)a
mn
w
1
[a

1
(t-t

m
)] 

• w
2
[a

2
(t-t

m
),y

n
]e
i27fvn-a2m2(yn)]t 	

(4-84) 

where again C(t
m
,v
n
) is determined by the amplitude of the local oscillator 

component at t.
3
=t
m 
 and vk=a2m2(tn).  From the nominal mapping relationship, 



we see that components of the input signal are processed in the general 

system with frequency-dependent time-frequency, resolution characteristics. 

Assuming the mapping function m
1
(•) has a unique inverse, m

11
(•), we also 

find that the components are redistributed in the frequency domain accord- 

ing to 

-1 
V
n 
	vn  - a

2
m
2
[m

1 
(v
n
/a

1
)]. (4-85) 

Discussion  

In this chapter, we have presented the essential aspects of optical 

heterodyne signal processing systems for 1-D signals. We discussed the 

basic properties of the conventional heterodyne processors exemplified by 

the system investigated at Zenith Corporation by Whitman, Korpel, and 

Lotsoff. We then described extensions of the fundamental systems to more 

general signal processing applications characterized by the mapping of 

short-time signal components. The general processing system, whose opera-

tion is based on the general mapping capabilities of the frequency-variant 

spectrum analyzers, displays a unique flexibility among systems of this 

class. In this system, general nonlinear frequency mapping characteristics 

are easily implemented and controlled by the design of the mapping slits 

of the spectrum analyzers. Additionally, the use of varying width input 

apertures allows the control of system time-frequency resolution charac-

teristics as a function of frequency. 

In a general processing operation (especially a bandwidth compres-

sion), certain components of the input signal could be mapped so as to be 
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indistinguishable in the system output, (A receiver of the output signal 

could not uniquely recover the original components.) Recalling that we 

can view each time-frequency component as carrying an elementary piece of 

signal information, we can then associate a loss of signal information with 

the loss of signal components in the processing operation. The frequency-

dependence of the mapping operation in the frequency-variant processor in-

dicates that the loss of signal components and therefore the loss of signal 

information can be nonuniform over the signal bandwidth. 

These general capabilities of the frequency-variant heterodyne pro-

cessor suggest its applicability to the processing of audio signals where 

the human ear is the final receiver. Gabor showed that the ear's ability 

to distinguish elementary signals decreases nonlinearly with increasing 

component frequency [45]. The frequency-variant processor could then be 

used to minimize preceived information loss in a bandwidth compression of 

audio signals by compressing high frequency components more than low fre-

quency components. Also, the control of resolution characteristics as a 

function of frequency could possibly be used to match the resolution capa-

bilities of the ear. Finally, the general nature of the frequency mapping 

characteristics suggests the potential applicability of this system to the 

correction of frequency-domain signal distortions such as those observed 

in speech in a helium atmosphere [57]. 

In addition to the applicability in the area of audio signal pro-

cessing, the frequency-variant processor should be a useful tool in the 

processing of general communication signals. In television, radar, and 

sonar signals, the quasi-periodic nature of the signals results in spectral 

information concentrated in frequency bands separated by regions relatively 
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free of spectral content. The optical processor can be designed to process 

only those regions where spectral information exists, ignoring the separa-

ting regions. Bandwidth compression or expansion operations could there-

fore be performed for efficient signal transmission or storage with very 

little loss of signal information. 

The general mixing of input signal and local oscillator can also be 

viewed as a time-variant modulation of the input signal. Careful choice 

of the local oscillator time and frequency characteristics can lead to a 

controlled time-variant modulation useful in secure communications problems 

as a spreading spectrum technique. 

The operation of the general optical heterodyne signal processing 

system has been described essentially as a frequency-variant mixing of the 

short-time spectral components of an input signal and a local oscillator. 

As indicated in Eqs. (4-36), (4-59) and (4-77), the nature of this mixing 

requires that the analytic description of system operation be in terms of 

complicated analytic expressions. The complexities of these analytic rela-

tionships are not conducive to easy interpretation of general system opera-

tion. We have shown that knowledge of general frequency mapping and reso-

lution characteristics can be applied for an intuitive description of sys-

tem operation, but the complete analytic descriptions are readily inter-

pretable only for elementary specific cases. In the next chapter, we 

describe optical heterodyne signal processors in which the mixing of input 

signal and local oscillator components is performed in a channelized manner. 

The interpretation of the channelized system operation is greatly simplified 

by the assumption of frequency-invariance within the individual processing 

channels. However, the flexibility of the processor provided by the 2-D 
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nature of the optical systems allows us to maintain a substantial degree 

of generality in the spectral mapping operations even with this channelized 

arrangement. 



CHAPTER V 

CHANNELIZED OPTICAL HETERODYNE PROCESSING SYSTEMS 

In this chapter, we are concerned with the practical implementation 

of a frequency-variant heterodyne signal processing system. We have ana-

lyzed the general processor and found the relationships between system 

input and output to be unwieldy in their complexity. The primary cause 

of this complexity is the continuous nature of the variations in mapping 

parameters over the input signal bandwidth. Here we make the simplifying 

assumption that the mapping parameters change over the input signal band-

width in a finite number of discrete steps, i.e. the mapping operation is 

channelized. We describe below two versions of the channelized system: 

first, a system whose channelized structure arises directly from the gen-

eral processor described in Chapter IV when periodic local oscillator 

signals are used; second, a more general channelized configuration resul-

ting when segmented or channelized masks are employed in the optical map-

ping portion of the system. In both cases, we show that the analytical 

description of individual channel operation is greatly simplified, and we 

develop appropriate channel models. The overall operation of the chan-

nelized processors can then be described in terms of the individual channel 

models. 

In either a channelized or a non-channelized system, the interfero-

metric configuration of the processor requires that optical components, 

particularly mirrors and beamsplitters, be of very high quality, implying 

high cost. The system must also be isolated from any mechanical vibrations. 

123 
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We describe in this chapter two alternative configurations that eliminate 

the need for mirrors and conventional beamsplitters. These configurations 

also greatly reduce the requirements for mechanical stability by processing 

all optical distributions with a common optical system. 

In a channelized processor, the finite imaging resolution capabili-

ties of practical optical mapping systems introduce channel crosstalk terms 

into the system output. The magnitude of these crosstalk terms increases 

as the number of channels increases, limiting the number of independent 

channels obtainable in the optical system. We analyze the crosstalk terms 

and describe their effect in terms of an overall crosstalk noise signal. 

It is then possible to determine the maximum number of channels obtainable 

in the optical processor for a given signal-to-crosstalk noise power ratio. 

We also describe a processing technique with which we can substantially 

increase the number of independent channels for a given signal-to-crosstalk 

ratio. 

Finally, we demonstrate some of the basic operational capabilities 

of the optical processing system with a series of experiments demonstrating 

spectral component mapping. 

Channelized Processor with Periodic Local Oscillator Signals  

In Chapter IV, we derived the analytical expressions for the output 

signal using an arbitrary input signal and an arbitrary local oscillator 

signal. We now consider the system output for the specific local oscilla-

tor 

r(t) = a
1 

cos 2rrv 1t. 	 (5-1) 
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For simplicity, in this chapter, we assume that the velocities associated 

with the input mappings of both the input signal and the local oscillator 

are the same and equal to unity: 	
1
=a

2
=1. The local oscillator frequency 

mapping characteristic is then v=m
2
(y). The single sinusoid local oscilla-

tor signal produces a single spot of light in the local oscillator spectral 

distribution at the position yl  for which v 1=m2 (y i ). This distribution 

mixes with the input signal spectral distribution at the PMT. We assume 

that the extent of the local oscillator spot is small in the y-direction 

compared with variations in the input signal spectral distribution as map-

ped along the y-axis. The effect of this local oscillator spot is then 

to sample the input signal spectral distribution at y=y 1 . From Eq. (4-58), 

this sampling gives the output signal 

4(t) = C
a 

a
l
F
w (m1 (y 1 ),y 1

:t)e 
2 	 i2u[mi (y 1)-v 1 ]t 	

(5- 2) 

Substituting Eq. (4-55) for the frequency-variant short-time spectrum we 

obtain 

4(t) 	C 
 a 
{i(t) * W 

 1 
(t,y 

1 
)ei271111(Y1)tla 1e-i27v1t 	 (5-3) 

A block diagram system model for the optical processor with a single sinu-

soid local oscillator is shown in Fig. 5-1. The input signal is filtered 

by a narrowband filter whose center frequency is m i (y 1 ). The filter out-

put is then scaled in amplitude by a l  and downshifted in frequency by v i . 

In general, if we introduce a local oscillator consisting of N 

separate sinusoids of different frequencies, 
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Figure 5-1. System Diagram for Heterodyne Processor with Single 
Sinusoid Local Oscillator. 



N 
r(t) = E a

n 
cos 27v

n
t, 

n=1 
(5-4) 

127 

the processor output is 

N 
4(t) = E ff(t) * w

1 
 (-t y

n
)ei2ffml (Yn)tla

n
e-i2"nt 

n=1 
(5-5) 

where yn  is found from 

v
n 

= m
2
(y
n
). 	 (5-6) 

The operation of the optical processor with a local oscillator in the form 

of Eq. (5-4) can now be visualized in a relatively simple manner, as illus-

trated in Fig. 5-2. The input signal is first divided into N narrowband 

components;* the narrowband components are then rearranged in frequency, 

each component being shifted in frequency by a different amount. The cen- 

ter frequency of the n
th 

narrowband component is v
c

=m
1
(yn); the time and 

n 
 

frequency resolution of the component are determined by the input window 

w
1
(-t,y

n
). These quantities are, in turn, dependent on the local oscilla-

tor frequency v n  through Eq. (5-6). This dependence establishes a set of 

relationships between component characteristics and the subsequent fre-

quency shift applied to that component. In the general frequency-variant 

processor, these relationships are quite flexible: the rearrangement of 

components can represent a bandwidth compression or expansion operation, 

and the time-frequency resolution can vary from component to component. 

*It is not necessary that the components be narrowband, this would, 
however, be a typical case. 
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Figure 5-2. Channelized System Diagram for Heterodyne Processor 
with Multiple Sinusoid Local Oscillators. 



129 

In a practical implementation of this system, a local oscillator 

signal of the form given in Eq. (5-4) may cause problems due to dynamic 

range limitations of the input devices. If all or even a substantial por-

tion of the frequency components are at integer multiples of some fundamen-

tal frequency, the local oscillator will exhibit a periodic, pulse-like 

structure with magnitude excursions that can be large compared with normal 

signal levels, especially if the number of components is large. Such 

variations in signal level can easily exceed the dynamic range of the input 

devices. The pulse-like structure of the local oscillator can be elimi-

nated by introducing the local oscillator frequencies with different phases: 

N 
r(t) = E a

n 
cos [27v

nt + (1)
n ]e 

n=1 
( 5- 7) 

where the0
n 

are random or otherwise chosen to minimize the maximum excur- 

sion of r(t). The introduction of the phase differences in the local os-

cillator frequencies introduces phase changes in the processed signal com-

ponents. These changes must be incorporated as part of the overall mapping 

operation. 

The General Channelized Processing System  

A more general configuration for a channelized optical processing 

system is produced by channelizing the masks controlling the optical mapping 

operation within the processor. In this system, the vertical axis of the 

mapping system is divided into N regions centered at y n  with each region of 

nonoverlapping width Ay. Within each region the transmission characteris-

tics of the optical mapping masks are invariant, i.e. they do not change 

in the y-direction. Thus, within the n
th 

region, the input optical distri- 



bution is imaged by a shift-invariant narrowband imaging system as shown 

in Fig. 5-3. The local oscillator distribution in this region is imaged 

by a similar narrowband imaging system with the two images superposed at 

the detector. The two images combine coherently in the output plane, 

passing through a narrow slit at x=0 onto the photosensitive surface of 

the PMT. 

From Eq. (4-58), the two narrowband images in the n
th 

channel at 

x=0 can be expressed as 

[f(t) * w
1
(-t,yn )ei27m1(Yn)t)rect(Y-Yn) = f (t)rect(Y-Yn) (5-8) 

Ay 	n 	Ay ' 

and 

[r (t) * w (-t,y
n
)ei2711112(Yn )t]rect rZa = rn (t)rect Y-Yn 	(5-9) 2 	 Ay ' 

where rect(•) is the unit rectangle function. The signal detected by the 

th 
PMT in the n channel is the 

y
n
+Ay/2 

g 	 f
n
(t)r*(t)dy = C 2Ayi (t);-*(t). 

n
(t) = C2

a 	 a 	n 	n y
n
-Ay/2 

(5-10) 

A diagram model for this channel is shown in Fig. 5-4. This channel model 

has the form of a Type I separable shift-variant system described by 

Kailath [39]. In such a system, a signal first passes through a linear 

shift-invariant filter and is then multiplied by a time-varying function. 

In this optical channel, the time-varying signal is produced by passing 

the local oscillator signal through a narrowband linear shift-invariant 
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Figure 5-3. Narrowband Imaging System Configuration of the n
th 

Channel in a General Channelized Processor. 
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filter. 

The total system output in the channelized processor is the sum of 

all the individual channel outputs 

2 N  
4(t) = AyC 	E f (t)k*(t). 

n=1  n 	n 
(5-11) 

The channelized system can then be modeled as shown in Fig. 5-5. The input 

signal and the local oscillator signal pass through separate banks of 

narrowband filters dividing each signal into N narrowband components. The 

components of the input signal are then mixed channel by channel with the 

local oscillator components to produce the total system output. 

The overall operation of this channelized processor is a rearrange-

ment of the input signal spectral components in a manner controllable by 

the choice of optical mapping within each channel and by the choice of 

local oscillator signal. The channelized processor of the previous section, 

which used periodic local oscillator signals, can be viewed as a special 

case of this general processor. However, channelization of the masks 

allows an extra degree of flexibility not possible in a system employing 

a continuously varying mapping slit. With certain restrictions we describe 

in the next section, the optical mapping operation performed in an indivi-

dual channel can be viewed as completely independent of that performed in 

any other channel. The frequency mapping relations m
1
(•) and m

2
(•) do not 

have to describe continuous curves, and the input windows w
s
(•,.) and 

w
r
(.,.) can change drastically from one channel to the next. Thus, any 

narrowband component of the input signal can be mixed with any component 

of the local oscillator with any desired resolution characteristics by 
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Figure 5-5. System Model for General Channelized System. 
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proper design of the channel mapping operations. Applications of such a 

system range from simple constant-compression-factor bandwidth compression 

to frequency domain scrambling for secure communications. 

In addition to the mapping characteristics of the individual chan-

nels, the overall operation of the channelized processor is dependent on 

the total number of channels used in the processing system. More channels 

means a finer division of the total signal spectrum and the possibility of 

more general mapping characteristics. The total number of independent 

channels in the system depends on the imaging resolution capabilities of 

the optical mapping system and on requirements for channel independence. 

We discuss this aspect of the channelized processor in a later section; 

first, however, we consider alternative optical configurations for the 

heterodyne processing system. 

Optical Heterodyne Processing with a Common Optical Mapping System  

A major practical problem in the implementation of the optical 

heterodyne processor is the interferometric configuration used to combine 

the signal and local oscillator light distributions. Any slight irregu-

larity in an optical component of the system (especially a mirror or a 

beamsplitter) will introduce a phase change in one or both optical distri-

butions. The phase change can be observed in the output as a change in 

the output irradiance distribution at the PMT. Constant phase irregular-

ities can be minimized by using optical components of very high (inter-

ferometric) quality, but the most serious problems in the heterodyne 

processor result from phase changes caused by vibration of individual 

optical components. The vibrations cause time-varying changes in the 

output irradiance distribution that are detected by the PMT as a noise- 



136 

like signal in the system output. Elimination of this vibration noise 

requires mechanical isolation of the system components from all vibration 

sources. This is usually done by mounting system components on an air 

suspended stable table. However, if moving film sound tracks are used to 

input the signal and local oscillator, it is virtually impossible to iso-

late the system from vibrations induced by the film drives or even by the 

moving film strips themselves. 

We describe in this section two alternative configurations for the 

heterodyne processor that significantly reduce the effect of vibrations. 

In these configurations, mirrors and conventional beamsplitters are eli-

minated; the optical mappings of both the signal and local oscillator dis-

tributions and the subsequent combination of the two distributions are 

performed with a single optical system. All components of the optical 

system are common to both the signal and local oscillator distributions 

so that minor vibrations of individual components impart equal phase 

changes to both distributions. Equal phase changes, even though time 

varying, cause no change in the output irradiance distribution and there-

fore no noise signal in the system output. 

The first common optical configuration we discuss is shown in Fig. 

5-6. In this system, the two optical distributions resulting from the 

input mapping of the signal and the local oscillator are both positioned 

in the input plane of a single astigmatic processor. These distributions 

are separated in the vertical direction allowing the use of different 

input plane masks for each distribution. The first vertical imaging/ 

horizontal Fourier transforming operation of the astigmatic processor 

produces the transform distributions for the signal and local oscillator 
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in the intermediate plane. The vertical imaging operation maintains the 

spatial separation of the two distributions. Separate frequency-domain 

masks can then be applied to each distribution to affect the desired map-

pings. The second vertical imaging/horizontal Fourier transforming opera-

tion produces the two output plane distributions still spatially separated 

in the vertical direction as indicated in Fig. 5-6(a). Portions of these 

distributions can be superimposed and aligned normally incident to the PMT 

by a pair of diffraction gratings as shown in Fig. 5-6(b). 

In this system, the only components not common to both distributions 

are the input devices, which in the case of acoustooptic input devices in-

troduce virtually no vibrations. If film sound tracks are used to input 

the signals, separate film strips and film drives can be eliminated by 

recording both the signal and the local oscillator on a single film strip 

as shown in Fig. 5-7. Certain limitations of this approach are, however, 

readily apparent. The gratings used to combine the signal and local os-

cillator distributions can diffract only a small portion of the total light 

distribution incident upon them. Since the output signal can only be de-

tected from the light distributions that are diffracted by both gratings, 

the light levels of the output distribution will be low. These low light 

levels result in low level output signals that may be lost in the inherent 

low level noise signals inherent to the photodetector (e.g. dark current 

noise). Another problem with this configuration is a limitation in the 

total number of channels that can be processed by the system. In order to 

combine the two distributions properly with the gratings, they must ori-

ginally be spatially separated by a distance at least equal to their ver-

tical extent. This separation allows the diffracted portions to overlap 
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without interference from the undiffracted portions of the two distribu-

tions. At most only one third of the total vertical extent of the optical 

mapping system can then be used to form individual channels. The total 

number of channels possible in this configuration is therefore reduced from 

that of the interferometric configuration by a factor of at least three. 

The second common optical configuration we consider is shown in 

Fig. 5-8. In this system the signal and local oscillator are combined in 

a frequency multiplexed fashion as shown in Fig. 5-9(a). The signal com-

ponents occupy the low frequency portion of the combined spectrum while 

local oscillator components are restricted to a separate high frequency 

region. The combined signal undergoes the input mapping with a single 

input device in the input plane of an astigmatic processor. Only one input 

plane window can be used, the same for both signal and local oscillator. 

However, the single-mask frequency-variant processor can easily incorporate 

the separate mapping operations in a single frequency-domain mask. An 

example of a mask for separate, continuous slit-mapping operations is shown 

in Fig. 5-9(b). The second vertical imaging/horizontal Fourier transfor-

ming operation performed in the optical system then combines the two output 

distributions in the proper manner at the PMT. No grating or beamsplitters 

are required to combine the two distributions. 

With the frequency multiplexed configuration, the total vertical 

extent of the optical mapping system can be used in forming channels. The 

maximum number of channels possible in this system is the same as in the 

interferometric configuration. Output distribution light levels are higher 

in the frequency-multiplexed configuration than in either of the other con-

figurations because no light is lost at beamsplitters or gratings. We do, 
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Figure 5-9. The Frequency-Domain Distribution of the Input 
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Multiplexed Processor; (a) Spectral Distribution 
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Mask for the Frequency Multiplexed Processor. 
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however, sacrifice available bandwidth for the signal and local oscillator. 

Most input devices (especially film) have a finite bandwidth over which 

they will operate. If we multiplex the signal and local oscillator in the 

frequency domain, we must divide the available bandwidth between the two 

signals. Additionally, input signal and local oscillator levels must be 

restricted because of dynamic range limitations in the single input device. 

Channel Crosstalk and Channel Independence  

The system models presented in previous sections described channel 

ized systems in which the operation of an individual channel is completely 

independent from that in any other channel. Inherent in this model is the 

assumption that the vertical imaging operation of the astigmatic processor 

is ideal, imaging point into point. The ideal light distributions (fil - 

 tered input signal and filtered local oscillator) in the n
th 
 channel were 

given in Eqs. (5-8) and (5-9). However, a practical imaging system has 

finite resolution - the image produced by such a system is the ideal image 

smoothed by some pointspread function p(y). The smoothed images then mix 

in the heterodyne operation to produce the desired output term for the n
th 

channel: 

(Y-Y f 	
AY  

C
a
2 	

[rect 	n  * Y p(y)]
2
dyl n 
	n 	a 
(t)r*(t) = C

2 
 A
O  fn 

 (t)r*(t). 	(5-14) 
n 

The signal and local oscillator light distributions in the other 

system channels are also smoothed by the imaging operation causing an 

overlap of light distributions from neighboring channels with light in the 

n
th 

channel. The overlap results in additional mixing in the heterodyne 

operation producing extraneous signal terms in the system output. We 
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consider the additional signal terms produced in the n
th 

channel from the 

overlap of light from the m
th 

channel. One additional term resulting from 

this overlap is produced by the mixing of the signal distribution in the 

n
th 

channel with the local oscillator distribution from the m
th 

channel. 

This mixing produces the output signal term 

2 (Y-Yn 	 ( 

Ay 

 Y-Ym  
f 	

Ay 	

A 	 A 

Cal 	Erect 	)* p(y)][rect 	)*p(y)]dyl • f 
n
(t)r*(t) 

-c 
	n 

- 

	

= C
2 
 A f (t)r*(t). 	(5-15) 

	

a nm n 	m 

A similar mixing occurs between the local oscillator component in the n
th 

channel and the signal distribution of the m
th 

channel, but we associate 

this term with the output of the m
th 

channel. Two additional terms are 

- 
produced in the heterodyne operation due to this overlap, C

2
a
A
nm

f
n
(t)i*(t) 

and C
2
a
Anmr

n
(t)r*(t). The first of these terms results from the cross- 

m 

channel mixing of input signal components, whereas the second results from 

cross-channel mixing of local oscillator components. We can assume that a 

portion of these last signal terms is present in output of both the n
th 

and the m
th 

channel. We therefore assign one half of these terms to each 

channel. The overlap of light from the m
th 

channel thus produces an addi-

tional signal in the output of the n
th 

channel given by 

„ 	
- 

P 	(t) = C
2 
A [f 

n 
 r*(t) + — f 

n
(t)f*(t) +- 

1 
 r

n
(t)r

m
(t)]. 	(5-16) 

rim 	a nm 	m 	2 
1 
	m 

We refer to this extraneous signal as the crosstalk in the n
th 

channel from 

the m
th 

channel and can treat it as signal dependent noise in system output. 
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The total crosstalk signal in the n
th 

channel is the sum of the crosstalk 

from all other channels 

N 
p (t) = E p 	(t) , 

nm 
m=1 
mn 

(5-17) 

and the total output associated with the n
th 

channel is the sum of the 

desired output and the crosstalk noise: 

g
n 

(t) = C
2 

 A
0 

 f 
n 
 (t) r*

n  (t) + p n (t) - a  
(5-18) 

Each term of the total channel output is formed by the mixing of 

two narrowband signal components. The first term of the crosstalk signal 

Eq. (5-16) is similar in nature to the desired channel mapping, i.e. the 

term results from the mixing of an input signal component with a local 

oscillator component. The second and third term of the crosstalk signal 

have the form of self-product signals; however, since there are no restric-

tions on the change in filter passband from channel to channel, these terms 

are potentially higher in frequency than normal self-product terms. The 

possible frequency range of any term in the system output is the frequency 

difference possible between the two components that mix to form the term. 

With the aid of Fig. 5-10 we can determine the potential frequency range 

for each term of the channel output. 

We assume that the frequency multiplexed processing configuration 

is used in the processing, with input signal and local oscillator compo-

nents distributed in frequency as shown in Fig. 5-10(a). Initially, we 

assume that the desired mapping in all channels is performed by mixing a 

positive frequency component of the input signal (between 0 and v
s
) with 
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a positive frequency component of the local oscillator (between v
1 

and v
2
). 

The minimum frequency difference in the mixing of components in these 

ranges is v i-v s  while the maximum frequency difference is v 2 . The desired 

channel output signal therefore lies in the frequency range from v i-v s  to 

v
2 
as shown in Fig. 5-10(b). The first term of the crosstalk signal p

nm
(t) 

is also the result of mixing a signal component (0 to v
s

) and a local os- 

cillator component (v, to 	The The potential range of this crosstalk term, 

Fig. 5-10(c), is the same as the desired channel output. The first self 

product term of p (t) mixes two components of the input signal with possi-

ble frequency difference from 0 to v s , as shown in Fig. 5-10(d). Similarly 

the self product term mixing two local oscillator components has the possi-

ble frequency range from 0 to v 2-v 1 , Fig. 5-10(e). 

From Fig. 5-10, we see that any self-product terms below v
1
-v

s 
can 

be removed by highpass filtering the system output signal without affecting 

the desired channel output. Certainly, if v 1 > 2v s , then all of the self-

product crosstalk terms can be removed from the system output by highpass 

filtering. However, this requirement would put further restrictions on 

input signal and local oscillator bandwidths already limited in a frequency 

multiplexed processor due to the finite operational bandwidth of the input 

device. 

An alternative to the use of such high frequency local oscillator 

components is to perform the channel processing by mixing positive fre-

quency input signal components (between 0 and v
s

) with negative frequency 

local oscillator components (between -v 2  and -v i) as indicated in Fig. 

5-11(a). The desired channel mixing of an input signal component and a 

local oscillator component then produces an output signal in the range 
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indicated in Fig. 5-11(b), between v
1 

and v
2
+v

s
. The range of the cross-

product crosstalk term, Fig. 5-11(c), is the same as the desired channel 

signal, while the self product terms appear in the ranges shown in Figs. 

5-11(d) and (e). Thus, in this processing scheme, the self-product cross-

talk terms can be completely removed from the system output by highpass 

filtering, subject only to the requirement that v 2 < 2v
1. 

(This requirement 

insures that the mixing of two local oscillator components will not fall 

in the range of the desired channel output.) 

If the self-product crosstalk terms are removed by post-detection 

filtering, then the total channel output reduces to 

N 
- 	 - 

n 
g
n 

(t) = c 2  A 
O
f 
n

(t) 
n 	 a 

(t) + E C
2

A 
nm 

 f (t) r*
m 
 (t) . 

a  
m=1 

(5-19) 

Using a processing technique we refer to as staggered channel processing, 

we can further reduce the number of crosstalk terms in the channel output 

by post detection filtering. We note first that the desired output term 

in any channel can be formed either by mixing a positive-frequency input 

signal component with a negative-frequency local oscillator component or 

by mixing the corresponding negative-frequency input signal component with 

the corresponding positive-frequency local oscillator component. If the 

input signal and local oscillator are both real-valued signals, then either 

mixing will produce the same term in the real output signal. In the stag-

gered channel processing technique the mixing used in the various channels 

alternates as shown in Fig. 5-12. In the n
th 

channel, mixing occurs be-

tween a positive-frequency signal component and a negative frequency local 

oscillator component. In the closest neighboring channels, n±1, the oppo- 



Channel 

	OD. 

-v
2 	-v

1
-v

s 	 s 
v
1 	

v
2 

Figure 5-12. Mask Used in Staggered Channel Processing. 
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site mixing method is used; in the second closest channels, n 2, the same 

mixing as in channel n is used, and so on. This staggering of channel 

mixing has a significant effect on the potential frequency ranges of the 

crosstalk terms as shown in Fig. 5-13. The input signal component and 

the local oscillator component of the n
th 

channel mix to produce the de-

sired output term in the range v
1 

to v
2
+v

s
. The local oscillator compo-

nents from the two closest channels n±1 also mix with the input signal 

component in the n
th 

channel, but they are both positive-frequency compo-

nents. The cross-product crosstalk terms produced by this mixing are 

therefore in the range 
v1-vs 

to  v 2. 
The same is true for any odd-ordered 

cross-product crosstalk term, i.e. the cross-product term from any channel 

n±1, n±3, .... The even-ordered cross-product crosstalk terms (from 

channels n±2, n±4, ...) are produced by the same type of mixing as the 

desired output - positive-frequency input signal component with negative-

frequency local oscillator component. These terms therefore have the 

same potential frequency range as the desired channel output, v i  to v 2+vs . 

The self-product terms are also affected by the staggering of channels, as 

indicated in the figure. The odd-ordered self-product terms can have 

significant high frequency content, whereas even-ordered self-product terms 

remain in the relatively isolated low-frequency regions. 

In Fig. 5-13, we can observe some of the advantages of the staggered 

channel processing technique. First, if we employ a local oscillator sig-

nal such that v
1
> 2v

s 
and v

2
+v

s
< 2v

1
, the range of the desired output will 

be separate from all self-product crosstalk terms. The self-product terms 

can then be removed by bandpass filtering the processor output. Next, we 

note that most of the potential range of the odd-ordered cross product 
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terms are outside the range of the desired signal components. A proper 

choice of optical mapping parameter variations from channel to channel can 

insure that all significant odd-ordered cross product terms appear in that 

portion of the potential range. As we show below, the amplitude of the 

crosstalk terms falls off rather rapidly with increasing distance between 

channels. Thus, this choice does not impose any severe restriction on the 

processing capabilities of the system. Using the staggered channel approach 

we are therefore able to remove all self-product crosstalk and all signif i-

cant odd-ordered cross product crosstalk terms in the channel output by 

bandpass filtering the system output. The channel output can then be 

written as 

N 
- 	 - 

n (t) = Ca
2 
 A
0
f
n
(t)r*(t) +EC

2
A
nm

f
nm
(t)r*(t). 	 (5-20) 

a  
m=1 
m/n,n±1,n±3,... 

As we mentioned above, the crosstalk terms can be considered to be 

signal dependent noise in the channel output. The presence of these terms 

in a channel output can also be viewed as an indication of the dependence 

of the operation in that channel on surrounding channels. The ratio of 

the power in the desired channel output signal to the power of the channel 

crosstalk signals can therefore be viewed as a signal-to-noise ratio mea-

sure for the channel and as a measure of channel independence. Larger 

signal-to-crosstalk noise ratios mean greater independence of the channel 

operation from surrounding channels; the operation of the practical system 

more closely resembles that of the ideal system shown in Fig. 5-5. 

The power of the desired signal in the channel output is given by 

P
s 
= <IC

2 
 A 
0 
f 
 nn 	 a 
(t)r*(t)

12
> = C

4 
A2 <If 
nn 

 (t)r*(t) 1
2
>, a 	 0  

(5-21) 
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where <•> indicates time average. The power of the crosstalk terms in a 

non-staggered channel processing system would be 

N 
2 	- 

P
c 

= 	E C
a
Anmf

n
(t)i-

m
(t)1

2
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m=1 
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= E C A <It (t),2-* 	1 2> + E 	E C
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A A <If (t)I 2;.* (t)r (t)>. 
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a nm n 	m(t) 	m=1 k=1 a nm nk n 	m 	k 

m#n 	 m#n k#11 	 (5-22) 
m#k 

The terms r
m (t) represent different narrowband components of the local 

oscillator signal. Assuming sufficient frequency separation between the 

different components, the time averages of the terms in the second summa-

tion will be zero, i.e. 

<If
n
(t)1 2 i.*(t)C-  (t)> = 0 

m 	k 
for all m#k. 

The crosstalk signal power in the n
th 

channel is then simply 
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P
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and the signal-to-crosstalk noise ratio is 

(5-23) 
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This signal-to-noise ratio is obviously signal dependent, particularly on 

the various oscillator levels. However, we can obtain a reasonable measure 



of channel performance assuming all local oscillator levels to be equal. 

Then all time averages in Eq. (5-24) will be equal and 

A 
S/N = 	

0 	 (5-25) 
2 

E A
nm 

m=1 
rtin 

for the non-staggered channel processor. Using the staggered channel pro-

cessing technique we can eliminate all odd-ordered crosstalk terms in the 

signal, resulting in an improved signal-to-crosstalk noise ratio 

S/N = 

 

A
2 

0 (5-26) 
N 2 
E A 

 

 

m=1 nm  
mn,n±1,n±3,... 

To determine the order of magnitude of the signal-to-crosstalk noise 

ratio we may encounter in a practical system, we consider two representa-

tive special cases. In the first case, we assume the ideal channels are 

tightly packed, one next to the other. Channel separation is then equal 

to channel width Ay. These channels are imaged with a non-ideal system 

whose point spread function is p(y) = sinc (y/d), where d is the minimum 

resolution width of the imaging system. The signal amplitude factor A
0 
 is 

then 

00 

A
O 

= f [rect 17-11 Y *sinc(17-)] 2 dy, 
Ay 

(5-27) 

and the crosstalk amplitude factors are 

co 

(5-28) A = 	[rect(, 617)*sinc(2)] [rect(-m l*sinc(17-Hdy. Ay nm 	 Ay _co 
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The integral expressions of Eqs. (5-27) and (5-28) have been evaluated 

numerically for different values of Ay ranging from d to 10d. The results 

of this evaluation are shown in Fig. 5-14. The variations of A
0 
 with Ay 

are shown in Fig. 5-14(a), while variations of the amplitude factors 

An(n±1) through 
An(n±3) 

are shown in Fig. 5-14(b) and (c). (By a substi- 

tution of variables in Eq. (5-28), it can be shown that A
n(n-k)

=A
n(n+k) 

for 

any k.) We note immediately from Figs. 5-14(b) and (c) that the crosstalk 

amplitudes drop off rapidly for higher order terms. Also, all crosstalk 

amplitudes fall off rapidly compared to A
0 
 as the channel width increases. 

The sidelobe structure of the point spread function introduces the cyclic 

variations in the crosstalk amplitudes, with most high order amplitude 

factors taking both positive and negative values as Ay varies. 

The signal-to-crosstalk noise ratios for both the staggered channel 

and non-staggered channel processing technique were evaluated numerically 

including the crosstalk contribution from the 40 nearest neighboring chan-

nels. The variations of these signal-to-noise ratios with channel width 

are shown in Fig. 5-15. As expected, in the non-staggered case the S/N 

increases slowly and uniformly with increasing channel width. The S/N for 

the staggered channel processor is significantly higher than the non-

staggered case for almost all channel widths. The major cause of this 

significant increase is the elimination by channel staggering of the cross-

talk signals from the two nearest neighboring channels. The staggered 

channel S/N oscillates through a large range of values with variations in 

channel width maintaining a steadily increasing average. The channel 

widths can be chosen at the peaks of this curve enabling channels of small 

width to operate with a good degree of independence from other channels. 
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The total number of channels available in the system is dependent 

on the channel width. The maximum number of optical resolvable channels, 

i.e. those separated by d, is equal to the space-bandwidth product (SW) 

of the imaging system. From the curves of Fig. 5-15, we can determine the 

channel width, Ay, required to give a desired degree of channel indepen-

dence (a desired S/N). The maximum number of channels available in the 

system with that degree of independence is then 

N
max 

= SW(d/Ay). 	 (5-29) 

It is clear from Fig. 5-15 that using the staggered channel processing 

technique makes available a significantly greater number of channels with 

given S/N (especially if we operate at the peaks of the S/N curve) than 

using the non-staggered approach. For example, if the SW for the imaging 

system is 1000, then by choosing iy=2d we can operate 500 separate channels 

with the staggered channel technique, all with a S/N of 55 dB. Although 

not shown on the curve, an S/N of 55 dB with the non-staggered processing 

technique would require Ay=20, indicating that only 50 channels could be 

operated with that degree of independence. 

As a second example, we consider the variations in signal-to-noise 

ratio as the channel spacing is increased while holding the channel width 

constant. We assume rectangular channel cross-sections with channel width 

equal to the minimum resolution width, d, and the spacing, s, varying from 

d to 10 d. The signal amplitude factor remains constant, depending only 

on the channel width. The variations of the crosstalk amplitude factors 

A 	through A 	with increasing channel spacing are shown in Fig. 
n(n±l) 	 n(n±3) 
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5-16. The variations in signal-to-crosstalk noise ratio with channel 

spacing in both the staggered and the non-staggered processors are shown 

in Fig. 5-17. Again, the staggered channel approach provides a larger 

signal-to-noise ratio, but the curve also indicates a significant peak in 

S/N in the non-staggered processor when channel spacing is an integer mul-

tiple (2 or above) of the channel width. These peaks can again be attri-

buted to the sidelobe structure of the sinc-function pointspread. The 

maximum number of channels in this case depends on the channel spacing with 

N 	= sw(d/s). 
max 

(5-30) 

The curves of Fig. 5-17 indicate that, although the channel S/N in the 

staggered channel processor is larger, the non•staggered processor can be 

operated with a large number of channels, all with reasonably high S/N, 

by choosing the channel spacing at integer multiples of channel width. 

As we have mentioned above, the oscillations and peaks that are ob-

served in the channel S/N as channel width and spacing change are a result 

of the sidelobe structure in the pointspread function of the imaging sys-

tem. We would not observe these oscillations if the pointspread function 

had little or no sidelobe structure as with a Gaussian function. For a 

Gaussian pointspread function, the variations of the channel S/N would 

follow steadily increasing curves approximately along the average of the 

curves for the sinc-function pointspread. Apodized apertures are often 

used in imaging systems to modify image appearance by the reduction of 

sidelobe structure in the imaging pointspread function. However, in the 

heterodyne processing system, non-apodized imaging is clearly preferable 
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for it enables us to take advantage of the peaks in the channel signal-

to-crosstalk noise ratio. 

Experimental Implementation - Demonstration of Basic System Capabilities  

A general channelized version of the frequency-variant heterodyne 

processing system has been implemented experimentally, and the basic opera-

tional characteristics of the system have been demonstrated. A block dia-

gram of the experimental system and the supporting electronics is shown in 

Fig. 5-18. The optical configuration used in the processor was the 

frequency-multiplexed, common optical system with a moving film sound track 

serving to input the combined input signal/local oscillator. A film trans-

port system was built from a surplus magnetic tape drive powered by a syn-

chronous motor to provide control over film transport velocity. Included 

in the supporting electronics was a photomultiplier tube to detect the 

processor output signal. An additional photodetector was used to detect 

a portion of the light illuminating the sound track. The processor output 

signal was normalized by the output of this second detector in an analog 

dividing circuit for reasons we discuss below. An amplifier and electronic 

bandpass filter were then used to boost signal level and eliminate unde-

sired portions of the processor output. An analog multiplier, a tunable 

oscillator, and a second bandpass filter were used if post-detection heter-

odyning was necessary and the final system output was recorded on magnetic 

tape. 

The density modulated sound tracks used in the experimental demon-

strations were recorded using the film transport system and a commercially 

available sound track recording unit (Back Auricon Modulite). A slow 

speed, blue sensitive film (Kodak 7476 Microfilm) was used for the sound 
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tracks to enable handling in relatively bright safe light conditions. The 

slow speed of the film required a slow transport velocity for sufficient 

film exposure. Driving the synchronous motor of the transport system at 

100 Hz provided a transport velocity of 6.2 cm/sec, which was found to be 

adequate for proper exposure. Curves showing the developed film amplitude 

transmittance vs. applied galvonometer voltage (the t-v characteristic) 

for several values of lamp filament voltage are shown in Fig. 5-19. In 

order to properly record a signal in this fashion it was necessary that we 

record on a linear portion of the t-v characteristic. 

The recording unit was originally designed to record voice band 

signals in a 35mm motion picture camera. The film recording velocity in 

such a camera is approximately 60 cm/sec (=24 frames/second x 24.8 cm/ 

frame). The much slower recording velocity used in these experiments re-

duced the bandwidth of the recorded signal because of the finite width of 

the exposing line source. A curve showing the recorded signal level vs. 

frequency for constant amplitude input is shown in Fig. 5-20. The re-

corded signal levels were measured directly from the level of the light 

diffracted by the sound track recording. From this curve, it is clear 

that the combined input signal/local oscillator had to be restricted to 

the range 0 to 1500 Hz. 

In this system, a wideband noise signal was present in the PMT out-

put signal, with or without system input, as a result of noise in the laser 

illumination source. (For the Helium-Neon laser used in these experiments, 

the beam intensity noise in the range 0 to 100 KHz was approximately 3% of 

the rms beam intensity.) With a system input, the laser noise appeared in 

the PMT output signal as a multiplicative noise term. In order to reduce 
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substantially this term, a portion of the unmodulated plane wave illumina-

ting the sound track was picked off and detected by a photodiode. The 

system output from the PMT was normalized by the photodiode output signal, 

and the laser noise was thereby virtually eliminated. 

There were two major practical problems encountered in the experi-

mental implementation of the processing system that were not completely 

resolved in the course of this research. These problems are not inherent 

to the processing technique itself; rather, they were a result of the use 

of film as an input medium. 

First, there was a problem with noise in the system output induced 

by variations in emulsion thickness of the film sound tracks. Emulsion 

thickness variations cause the optical path length through the film to 

change from point to point along the film strip. These variations caused 

noise-like variations in the phase of the sound track amplitude transmit-

tance, introducing a substantial noise signal on top of the input signal 

and local oscillator. It was found that, without compensation, the 

emulsion-induced noise level was high enough to effectively obliterate the 

input signal in a coherent playback. Most, but not all, of this noise was 

eliminated by the use of a liquid gate to compensate for the emulsion 

thickness variations. In the liquid gate, the film strip was placed be-

tween two optically flat pieces of glass and the remaining air space was 

filled with xylene, a liquid whose index of refraction approximately equals 

that of the film emulsion. The optical path length through the film and 

liquid gate was then approximately constant from point to point, eliminating 

most of the phase variations in the sound track amplitude transmittance. 

The second major problem with the film sound track input was the 
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low diffraction efficiency of the recorded film strips. The maximum signal 

variations applied to the recorder galvonometer were restricted in order to 

record the signal on a linear portion of the film t-v characteristic. Be-

cause of this restriction, the dynamic range of the recorded transmittance 

variations was small, and, as a result, only a small portion of the light 

illuminating the film strips was diffracted by the recorded signal. The 

light levels of the signal and local oscillator distributions in the system 

were therefore extremely low. The residual effects of the emulsion thick-

ness variations not totally eliminated by the liquid gate introduced noise 

signals at levels often approaching that of the desired input signal and 

local oscillator. In addition, with such low light levels, the thermal 

noise of the PMT (shot noise and dark current) became a substantial portion 

of the detector output. In order to maintain the light levels in indivi-

dual channels at levels that could be detected by the PMT without being 

lost in the thermal noise, the channel widths in the y-direction had to be 

fairly wide - between lmm and 2mm. However, the sound tracks recorded were 

narrow in the y-direction, only about 4mm wide. Thus, due to the low light 

levels, only 2 or 3 channels could be successfully operated in this imple-

mentation, and these remained quite noisy. 

Despite the low number of channels available in this experimental 

implementation, the basic capabilities of the frequency-variant processor 

in mapping signal components have been demonstrated. In the first series 

of experiments the frequency ranges of the various terms in a channel 

output (i.e.,the desired output, the self-product terms, and the cross pro-

duct terms) were verified for the three different methods of mixing signal 

components: (1) positive frequency signal components with positive fre- 
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quency local oscillator components, (2) positive frequency signal compo-

nents with negative frequency local oscillator components, and (3) stag-

gered channel mixing. The results from these three different methods of 

mixing are shown in Figs. 5-21, 5-22 and 5-23, respectively. In each 

experiment, the input signal consisted of two narrowband noise-like compo-

nents entered at 100 Hz and at 400 Hz and both with bandwidth of approxi-

mately 100 Hz; the local oscillator consisted of two sinusoids at 950 Hz 

and at 1100 Hz. In part (a) of each figure the channelized transform 

plane mask used to perform the mixing is shown superposed with the 

frequency-multiplexed transform distributions. Because of the low light 

levels in the processing system, the effect of the image smoothing is 

simulated by overlapping the channels in the transform plane mask. In 

each case, the input signal was processed with the mask shown and the 

system output recorded on magnetic tape without filtering or electronic 

heterodyning. The recorded output signal was then analyzed using an 

electronic spectrum analyzer. (Signals were analyzed on a Kay Sonograph 

operated in a sectioning mode.) The output of the electronic spectrum 

analyzer is shown in part (b) of each figure. In the first two methods 

of mixing, we see that the desired output terms and the cross product 

crosstalk terms in both channels are closely spaced. (The local oscilla-

tor frequencies were chosen such that crosstalk terms would not appear 

at the same frequency as the desired output terms to facilitate the illus-

tration. With a different choice of local oscillators, these terms could 

appear at the same frequencies as the desired terms and would not there-

fore be removable by filtering.) However, in the staggered channel mixing, 

the desired output terms are well separated from the other components of 
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the system output. 

A second series of experiments were performed to demonstrate the 

system's capabilities in rearranging signal components in the frequency 

domain with frequency-dependent resolution. To demonstrate this aspect 

of the system the input signal was chosen to be two frequency modulated 

sinusoids, one at 300 Hz, the other at 500 Hz. The frequency modulation 

was narrowband (modulation index =0.5) with the modulating signals also 

sinusoids. To distinguish the two signals, the carrier at 300 Hz was mod-

ulated with a 75 Hz sinusoid while the carrier at 500 Hz was modulated 

with a 50 Hz sinusoid. The two frequency -modulated sinusoids were recorded 

on a film strip with a local oscillator consisting of sinusoids at a number 

of different frequencies. The results of processing this signal are shown 

in Figs. 5-24 through 5-29. Again, part (a) of each figure shows the chan-

nelized transform plane mask used to process the signal superposed with 

the transform distribution of the signal and local oscillator. In this 

series of experiments, staggered channel mixing was used and the crosstalk 

and self product terms were eliminated by bandpass filtering. The signal 

was then returned to the baseband region by electronic heterodyning and 

recorded. Electronic spectrum analysis was performed on the recorded sig-

nals with the result shown in part (b) of each figure. In Fig. 5-24, we 

show the results of a simple playback of the input signal showing the two 

carrier signals and the sidebands resulting from the frequency modulation. 

In the next three figures, Figs. 5-25 through 5-27, we show the results of 

a slight bandwidth compression with frequency dependent resolution. In 

each case, the signal is processed so that the 300 Hz carrier appears in 

the output at 300 Hz while the 500 Hz carrier is downshifted to 450 Hz. 
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Figure 5-24. Experiment No. 4: Playback of Recorded Signal; 
(a) Transform Plane Mask, (b) System Output. 
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Figure 5-25. Experiment No. 5: Bandwidth Compression; 
(a) Transform Plane Mask, (b) System Output. 
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Figure 5-26. Experiment No. 6: Bandwidth Compression with 
Unequal Channel Resolution; (a) Transform 
Plane Mask, (b) System Output. 
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Figure 5-27. Experiment No. 7: Bandwidth Compression with 
Unequal Channel Resolution; (a) Transform 
Plane Mask, (b) System Output. 



183 

-1100 	-750 -700 -500 -300 300 500 700 750 	1100 	(Hz) 

(a) 

System Output Desired OUtput vas on 
900 Hz Carrier 

1 	11111111- 	1 
100 200 300 400 500 600 700 800 900'1000 (Hs) 

(b) 

Figure 5-28. Experiment No. 8: Spectral Rearrangement; 
(a) Transform Plane Mask, (b) System Output. 
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Figure 5-29. Experiment No. 9: Spectral Rearrangement with 
Unequal Channel Resolution; (a) Transform 
Plane Mask, (b) System Output. 
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In the experiment illustrated in Fig. 5-25, the frequency resolution of 

both channels was the same and sufficient for the FM sidebands of each 

carrier to be processed. In the experiments shown in Figs. 5-26 and 5-27, 

the frequency resolution in the channels was different with the FM side-

bands of the higher frequency carrier removed from the output in the first 

case, and those of the lower frequency carrier removed from the output in 

the second case. In the next two experiments, shown in Fig. 5-28 and 5-29, 

the two carrier signals are switched in frequency, i.e. the 300 Hz carrier 

appears in the output at 500 Hz and the 500 Hz carrier appears at 300 Hz. 

This is evident in the output signal spectrum shown in Fig. 5-28(b) where 

now the 500 Hz carrier is modulated by the 75 Hz signal and the 300 Hz 

carrier is modulated by the 50 Hz signal. The results of the experiment 

shown in Fig. 5-29 again show the ability to process the signal with fre-

quency dependent resolution. 

Finally, in the results shown in Figs. 5-30, 5-31, and 5-32, we 

illustrate the general characteristics of the channelized processor in both 

time and frequency. In the first figure, Fig. 5-30, we show the time-

frequency diagram (a sonograph) obtained from the direct playback of the 

recorded signal. As shown, the input is a swept frequency tone, sweeping 

from 200 Hz to 700 Hz in 2 seconds and the dropping back to 200 to begin 

another sweep. In parts (a) of Figs. 5-31 and 5-32, we show the transform 

plane masks used in the two frequency mapping operations performed on this 

input signal. In both cases, the frequency range 200 Hz to 700 Hz is divi-

ded equally among three separate channels. In the experiment illustrated 

in Fig. 5-31, the local oscillators for the channels are chosen to perform 

a bandwidth compression. As seen in the output signal sonogram, shown in 
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Figure 5-30. Time-Frequency Diagram for Swept Frequency Tone. 
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Figure 5-31. Experiment No. 10: Bandwidth Compression of 
Swept Frequency Tone; (a) Transform Plane Mask, 
(b) Time-Frequency Diagram of Compressed Signal. 
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Figure 5-32. Experiment No. 11: Bandwidth Expansion of Swept 
Frequency Tone; (a) Transform Plane Mask 
(b) Time-Frequency Diagram of Expanded Signal. 
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part (b) of this figure, the channelized compression results in an output 

consisting of three shorter sweeping tones in the range 200 Hz to 500 Hz. 

In Fig. 5-32, we illustrate the results of a bandwidth expansion where, 

again because of the channelization, the resulting output signal consists 

of three short sweeping segments, now in the range from 200 Hz to 900 Hz. 



CHAPTER VI 

CONCLUSION 

In this work, we have described new capabilities of coherent optical 

systems in processing 1-D information. These new capabilities were seen 

to be a direct result of exploiting the second degree of freedom available 

in an optical system when processing 1-D signals. 

The essential features of the new processing techniques were demon-

strated in the general mapping of spatial frequencies performed by the 

frequency-variant spectrum analyzer. The ability to control position and 

resolution of frequency components within the spectral display has made 

possible log-frequency and constant-Q spectrum analyzes with optical sys-

tems. A general description of the space-bandwidth product applicable to 

the frequency-variant system has also been developed to enable the deter-

mination of system information handling capacity with arbitrary mapping 

characteristics. 

A discussion of the two fundamental implementations of general 1-D 

linear operations was offered to clarify the methods by which these general 

operations can be performed in optical systems. 

The basic theory of operation of a general frequency-variant optical 

heterodyne system for signal waveform processing has been developed, and 

the method required for proper interpretation of the system's operation in 

both time and frequency was described. A practical implementation of the 

heterodyne processing system employing channelized mapping characteristics 

has been described and its basic operational capabilities have been demon- 
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strated. In the development of the practical implementation, special 

attention was focused on non-interferometric processor configurations and 

on processing techniques designed to insure channel independence. 

There are a number of topics for future research opened by this 

work, primarily in the area of signal waveform processing with the 

frequency-variant optical heterodyne system. 

A more precise analytical description of the general nonchannelized 

system operation in terms of time-frequency components would be highly 

desirable if such a system is to be designed and implemented. The possi-

bility of an analytic description of this type raises questions concerning 

the validity and the accuracy of signal representations with elementary 

components whose time-frequency resolution characteristics change with 

frequency. The work of Markel and Carey suggests that such a representa-

tion is valid, at least in a qualitative sense, for speech signals [56]. 

From another point of view, the limitations on the maximum number 

of channels in a channelized system suggests that finite vertical imaging 

resolution in the optical system might force a channelized structure on 

the general nonchannelized system. Using shift-variant sampling techniques 

[39,58], a channelized optical mapping may be found, equivalent to the 

nonchannelized optical mapping of both the input signal and the local 

oscillator. The general heterodyne mapping could then be modeled as that 

occurring in the channelized system, probably with the introduction of 

channel crosstalk to properly describe the system operation. 

In an experimental implementation, considerable improvement on the 

diffraction efficiency of film sound tracks could be accomplished by com-

puter controlled recording to use the entire dynamic range of the film. 
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This would certainly reduce the problem of low light levels, but the re-

sidual effects of film emulsion thickness variations would continue to 

introduce significant noise in the heterodyne processor output. It is 

therefore recommended that acoustooptic input devices be used in any future 

implementation. This presents a problem for the processing of audio fre-

quency signals as acoustooptic devices normally operate at radio frequen-

cies. However, it may be possible to employ speed-up processing or re-

cently developed time-integration techniques [591 for near real-time pro-

cessing of audio signals. 

Assuming that audio frequency signals can be effectively processed 

in the optical processor, a number of interesting psychophysical tests 

are suggested in the area of speech or music processing. Many audio signal 

processing systems (e.g. speech vocoders) compromise between time and 

frequency resolution by processing the signal with fixed time windows 

approximately 30 msec long. The human ear, however, operates with what 

Gabor described as an adjustable time constant, at times displaying time 

resolution approaching 5 msec, and at others displaying frequency resolu-

tion approaching 4 Hz or better (requiring an effective time-window of 

250 msec). By matching the processing system's resolution characteristics 

with those of the ear, the ear should be largely unaware of any processing 

taking place. With the frequency-variant processing system it may prove 

possible to obtain a reasonable match of the ear's resolution characteris-

tics by providing, simultaneously, different degrees of resolution in 

different frequency regions, e.g. good frequency resolution in the low 

frequency range of most first forments in speech and good time resolution 

in the high frequency range of many speech or music cues. 
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Finally, there are potential applications of the frequency-variant 

signal waveform processor in the shift-variant processing of 2-D informa-

tion. The techniques of general 1-D linear operations for 1-D spatial sig-

nals are not directly extendable to 2-D signal processing because these 

techniques rely on the second dimension to perform the processing operation 

(direct extension would require a 4-D optical system). However, Rhodes has 

recently described a method by which a time-varying 2-D image is encoded 

on a temporal signal waveform where each element of the image modulates a 

different temporal frequency carrier [60]. Application of the frequency-

variant processing capabilities of the heterodyne processor to this encoded 

signal then translates into the shift-(space-)variant processing of the 

2-D image. 
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