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SUMMARY 

 

 One critical barrier to the success of vascular tissue engineering strategies is the 

need for appropriate endothelial cell sources.  Adult stem and progenitor cells have 

emerged as a potentially promising cell source but very little is known about their 

functional potential.  The endothelial cell (EC) resides on the vascular wall at the 

interface with flowing blood and is a key mediator of hemostasis and thrombosis.  These 

studies investigated the use of endothelial progenitor cells (EPCs) derived from 

peripheral blood as a vascular lining on an engineered blood vessel substitute.  Models 

were developed to investigate two aspects of the vascular environment, shear stress and 

substrate on EPC response at the gene, protein and functional levels.  Isolation of EPC 

colonies from peripheral blood gave rise to cells which displayed an endothelial-like 

phenotype with expression of many EC specific markers and functions.  Through the use 

of transcriptional profiling, results demonstrated that EPC gene expression was generally 

less sensitive to shear stress than ECs but shear stress preconditioning did result in 

upregulation of the EPC antioxidant defense system and promoted anticoagulant 

function.  When co-cultured on a model of the vascular wall, EPCs altered their gene 

expression and favored a response more similar to mature vascular ECs.  In a baboon 

arteriovenous shunt, shear stress preconditioned EPCs were able to resist platelet 

deposition and provided a non-thrombogenic lining on an engineered blood vessel 

substitute.  Although significantly more research needs to be done, this work has 

provided an understanding of EPC function in the shear stress environment and provides 

evidence that EPCs are a viable endothelial cell source for vascular tissue engineering.  
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CHAPTER I:  INTRODUCTION 

 

 Creation of a living blood vessel substitute has the potential to revolutionize the 

treatment of coronary heart disease, now the leading cause of death worldwide [1].  In the 

United States alone, there are over 71 million people suffering from one or more types of 

cardiovascular disease (including hypertension, coronary heart disease, heart failure, 

stroke, and congenital cardiovascular defects) with a cost burden exceeding 403 billion in 

2006 [2].  The World Health Organization (WHO) states that “coronary heart disease…is 

on the rise and has become a true pandemic that respects no boarders” [1].  This 

increasing burden of disease combined with an increasing shortage of organs for 

transplant have heightened the need for alternative therapeutic strategies [3, 4].  Tissue 

engineering is the development of biological substitutes and/or strategies for regeneration 

that can be used to replace, enhance, repair, and/or regenerate tissue/organ function.  

Tissue engineering has emerged as a science and as a technology which aims to address 

the clinical problems of chronic disease and the transplantation crisis [5]. 

 Scientific advances in recent years have moved cardiovascular tissue engineering 

from bench research into initial human studies [6, 7].  While these early studies are 

promising, identifying appropriate cell sources for tissue engineering still remains a 

critical issue.  In the tissue engineering of a blood vessel substitute, creating a functional, 

non-thrombogenic endothelium is essential to ensure clinical success, yet the choice of 

endothelial cell source presents a major barrier.  Issues such as availability, immune 

acceptance and function are important considerations for tissue engineering strategies.  
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Adult stem and progenitor cells have emerged as a promising autologous supply of cells 

but very little is known about their functional potential for use in tissue engineering.   

 The peripheral blood is a repository of circulating progenitor cells and may be a 

useful resource for tissue engineers.  The research presented in this dissertation 

investigates the use of postnatal bone marrow derived circulating endothelial progenitor 

cells (EPCs) as an endothelial cell source for tissue engineering.  These studies focus on 

the potential for EPCs to provide a functional endothelial lining on a living engineered 

blood vessel substitute.  The endothelial cell resides in a dynamic environment at the 

interface between the vascular wall and blood where it is uniquely positioned to regulate 

hemostasis and while remaining poised to respond to vascular injury.  In model systems 

designed to mimic the arterial environment, these studies probed EPCs response to local 

hemodynamic forces with a specific focus on understanding how the shear stress 

environment influences EPC ability to modulate hemostasis and thrombosis.  

 Tissue engineering offers the potential to address the overwhelming clinical need 

for new therapeutic options to treat cardiovascular disease.  It is anticipated that these 

studies will contribute to the field of tissue engineering by providing insights into the 

potential of EPCs as a cell source for vascular applications.   
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CHAPTER II:  HYPOTHESIS AND SPECIFIC AIMS 

 

The critical need for appropriate endothelial cell sources for vascular tissue 

engineering combined with the emergence of scientific evidence that a circulating 

progenitor cell exists in adult peripheral blood with endothelial-like characteristics led to 

the central hypothesis of this work. 

Central Hypothesis 

The central hypothesis of this work is that endothelial progenitor cells (EPCs), 

derived from peripheral blood, may be a useful cell source for tissue engineering of 

blood vessel substitutes due to their ability to maintain hemostasis and provide a 

suitable non-thrombogeneic luminal lining on engineered vascular constructs. 

 

To address the central hypothesis, four specific aims were defined. 

Specific Aim 1 

To isolate and characterize endothelial progenitor cells derived from peripheral 

blood and compare them to mature vascular endothelial cells through evaluation of 

receptor expression and endothelial specific cellular function. 

 

 EPCs were isolated from peripheral blood of a relevant preclinical model 

(baboon) and were characterized according to cell surface marker expression and 

functional assays.  These results are presented in Chapter V. 
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Specific Aim 2 

To compare the phenotypic characteristics of endothelial progenitor cells to 

mature vascular endothelial cells when exposed to a physiologically relevant shear 

stress and three-dimensional engineered tissue substrate. 

 

 The phenotypic response of EPCs to fluid shear stress was quantified at the gene 

and protein level and compared to mature vascular endothelial cells.  A transcriptional 

profile analysis using microarray technology is presented in Chapter VI.  In Chapter VII, 

focusing on a subset of coagulation associated genes, EPCs on both absorbed collagen 

and on an engineered tissue were compared to ECs in response to flow. 

Specific Aim 3 

 To develop an engineered vascular tissue appropriate for ex vivo study 

including characterization of the material properties, matrix organization and cellular 

function. 

 

An engineered vascular tissue model, appropriate for baboon ex vivo studies, was 

created by combining baboon vascular smooth muscle cells with naturally derived matrix 

materials.  The characterization of this engineered tissue is presented in Chapter VIII. 
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Specific Aim 4 

 To evaluate endothelial dependent hemostasis on engineered tissue constructs 

in an ex vivo baboon arteriovenous shunt model. 

 

EPCs functional capacity to maintain hemostasis and to provide a non-

thrombogenic luminal lining was investigated using a femoral artery to femoral vein 

shunt in the baboon.  Results of these studies are presented in Chapter VIII. 
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CHAPTER III: BACKGROUND

 

Cardiovascular Disease and Current Treatment Options 

 The World Health Organization (WHO) in combination with the Centers for 

Disease Control (CDC) recently published "The Atlas of Heart Disease and Stroke" 

which compiled data on the global burden of cardiovascular disease.  In 2002, there were 

11.2 million deaths globally from various forms of heart disease including coronary heart 

disease, peripheral arterial disease, and congenital heart disease [1].  In the United States 

alone, it is estimated that one in three adults has some type of cardiovascular disease [2]. 

 Treatment of cardiovascular disease often necessitates surgical intervention for 

the replacement of diseased arteries or reconstruction of congenital malformations.  

Clinically, there are more than 460,000 coronary bypass procedures performed annually 

and out of an estimated 36,000 babies born each year in the United States with congenital 

heart defects, it is estimated that 9,200 will require invasive treatment [2].  Unfortunately, 

there is a lack of appropriate surgical materials for both applications.  Thrombosis and 

anastomotic intimal hyperplasia compromise the clinical usefulness of smaller diameter 

(<6mm) non-autologous blood conduits [8].  In small diameter applications, surgeons 

must turn to autologous artery or vein grafting which is associated with inadequate 

supplies of healthy tissue and donor site morbidity.  In congenital repair, synthetic 

substrates or chemically preserved homografts may be applicable but those materials do 

not provide potential for growth or remodeling therefore requiring repeat surgical 

interventions as the child matures. 
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 Bypass procedures treating peripheral artery disease can often utilize synthetic 

graft materials for applications ≥6mm but these interventions are limited in long term 

durability.  For example, 5-year patency rates for femoral-popliteal grafts are 

approximately 66%.  In critical ischemia, results are even less encouraging with patencies 

of 47% above-the-knee and 33% for below-the-knee grafts [9].  For the more than 

100,000 patients that are currently on chronic hemodialysis, patency rates for dialysis 

access grafts are usually measured in months [10].  For these applications, expanded 

polytetrafluoroethylene (ePTFE) grafts are most frequently used, although there has been 

only modest improvement in overall patency rates since these grafts were introduced in 

1972 [11, 12]. 

Consequently, a great deal of research has been directed towards the identification 

of graft materials that will prevent thrombosis and limit the development of intimal 

hyperplasia.  While early studies with polymers (e.g., polyurethanes, silicones) often 

showed favorable results on the basis of in vitro tests of biocompatibility, such testing has 

not been predictive of clinical graft outcomes [13].  To more closely simulate properties 

of native blood vessels, biologic and bioactive molecular coatings (e.g. heparin, 

phosphorylcholine) have also been applied to graft materials such as ePTFE [14, 15].  

While such coatings may modestly attenuate early blood reactions and healing responses, 

only a limited benefit may be achievable in terms of late outcome events. 
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The Vascular Wall: Anatomy and Physiology 

 The native blood vessel is composed of three main structural layers containing 

distinct cell and matrix compositions.  The inner most layer of the blood vessel is the 

tunica intima which is composed of a single layer of endothelial cells (ECs) with an 

underlying basement membrane consisting of Type IV collagen, glycosaminoglycans, 

elastin and laminin [16].  The middle layer of the natural blood vessel is the tunica media 

which is composed of concentric sheets of smooth muscle cells (SMCs) encased in a 

fibrillar matrix of Type I and Type III collagen, elastin and proteoglycans.  The medial 

layer provides most of the artery’s strength.  The collagen fibers, aligned both 

circumferentially and helically along the axis of the vessel, are important in resisting 

tension created by pulsatile blood flow while elastin provides elastic compliance to the 

vessel wall.  The outermost layer of the blood vessel, the tunica adventitia, forms a 

connective sheath around the vessel consisting of loosely arranged Type I and Type III 

collagen, elastin and fibroblasts.  The adventitia functions to stabilize and anchor the 

blood vessel in vivo, maintaining longitudinal tension.  In larger vessels, the adventitia is 

infiltrated by a vascular blood supply (vaso vasorum) and nerves [17]. 

The Native Endothelial Cell 

Endothelial Cell Function 

 The endothelium is more than a passive barrier between blood and tissues.  

Rather, it is a biocompatible and physiological container that maintains blood fluidity by 

localizing platelet and coagulation reactions to sites of vessel injury while regulating the 

functions and caliber of blood vessels in response to changing hemodynamic and other 
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environmental conditions [18].  Other endothelial cell (EC) functions broadly include the 

transfer of metabolic substances, synthesis of regulatory substances, thromboresistance, 

vascular repair and wound healing, and cellular immunity [16].  One of these functions, 

endothelial thromboresistance, includes passive mechanisms (surface phospholipids, 

heparins and proteoglycans) and active mechanisms such as the synthesis of prostacyclin 

and nitric oxide (NO), secretion of plasminogen activator, membrane ADPase (CD39) 

activity, degradation of vasoactive amines, inactivation of thrombin, and thrombomodulin 

activation of protein C [19].  Stimulated ECs can be both procoagulant and 

proinflammatory.  Activated ECs express tissue factor, which iniates the extrinsic 

pathway of coagulation.  Stimulated ECs also secrete plasminogen activator inhibitor 

(PAI-1) and release von Willebrand factor from Weibel-Palade bodies within the cell 

[20].  A schematic of the endothelial cell’s role in hemostasis is shown in Figure 3.1 
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Figure 3.1:  Participation of the vascular endothelial cell in the coagulant properties 
of the vessel wall.  Adapted from [20]. 

 9



The regulation of endothelial nitric oxide (NO) (decreased NO synthesis or 

increased NO degradation), is of particular interest to EC function since NO has multiple 

effects on the vessel wall.  Nitric oxide produced by the endothelial isoform of nitric 

oxide synthase (eNOS) mediates a variety of physiological functions in vivo including 

neovascularization, regulation of blood vessel tone (vessel wall tension), vascular 

permeability and leukocyte-endothelial interaction [21].  eNOS represents an integral part 

of vascular hemostasis.  In addition to effects as a vasodilator, NO also prevents the 

adhesion of platelets and white cells to endothelium, inhibits the aggregation of platelets, 

and induces the disaggregation of platelets.  Basal release of NO can also decrease the 

rolling and adhesion of polymorphonuclear leukocytes to the endothelium [22].  The 

capacity of ECs to liberate NO has correlated with the severity of endothelial dysfunction 

(e.g., coronary artery disease) and with patency rates following surgical coronary bypass 

with internal mammary artery and saphenous vein grafts [23, 24]. 

The Role of Hemodynamic Environment in Modulating Endothelial Cell Function 

Through decades of research, we now appreciate the endothelium as a 

multifunctional organ whose health can be the determinant between normal physiology 

and the development of vascular disease.  The endothelium is exposed to three types of 

mechanical forces in vivo; tensile stress acting along the vessel wall due to 

circumferential deformations, normal stress acting radially on the vessel due to 

hydrostatic pressure and tangential stress or shear stress acting along the length of the 

vessel wall due to the flow of blood along its surface [25].  Early in vivo observations that 

arteriosclerosis was a focal disease and subsequent correlations drawn between the local 

hemodynamic forces and disease prevalence launched a field of research into the role of 
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physical forces in EC function [26].  Detailed study of endothelial cell function first 

became possible following the development of techniques to culture ECs in vitro [27-29].  

With collaborations between clinicians, scientists and engineers, in vitro tools were 

developed to precisely control the fluid shear environment on the surface of the 

endothelium in order to study EC response.  These simplified flow systems included 

capillary tubes, concentric cylinders, parallel plate flow chambers and cone and plate 

viscometers [30].  Studies first reported morphological alterations in ECs in response to 

shear [31-34].  EC morphology becomes more elongated with increasing shear stress in 

vitro, a finding consistent with in vivo observations.  More detailed study of the 

cytoskeleton has shown that actin containing stress fiber expression is associated with 

shear exposure.  Increased stress fiber assembly is found in cells exposed to higher shear 

stresses.  Additionally, numerous studies have reported changes in the metabolic and 

synthetic activities of endothelial cells following exposure to shear stress including 

production of prostacyclin, growth factors, coagulation and fibrinolytic components, 

extracellular matrix production and vasoactive mediators [35-37].  We now know that 

unidirectional blood flow generates a constant shear stress which maintains the 

endothelium in a quiescent phenotype, promoting an antiinflammatory, antithrombotic, 

anticoagulative, profibrinolytic and antihypertrophic state.  In contrast, areas of low mean 

shear stress and oscillatory flow with reversal are characterized by endothelium prone to 

vascular disease.  In these “atheroprone” areas, decreased shear stress is associated with 

increases in reactive oxygen species (ROS), endothelial cell permeability to lipoproteins, 

leukocyte adhesion, apoptosis, smooth muscle cell proliferation and collagen deposition.  
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Low and oscillatory shear stress are also associated with reduction in eNOS production 

and endothelial cell repair [38-40].   

There have been a number of endothelial flow sensitive mechanotransducers 

suggested but the exact mechanisms of how a mechanical stress is converted into a 

biochemical signal are not fully understood and still require further study.  Theories on 

mechanotransduction can be generally grouped into either localized models where the 

signal is generated in close proximity to the plasma membrane or a more decentralized 

model (tensegrity model) where forces applied at the cell surface are transmitted to other 

locations via the cytoskeleton.  Integrins, which are membrane associated glycoproteins, 

may provide some intersection between the two models.  Integrins are composed of two 

subunits each with a large extracellular domain, a transmembrane region and a short 

cytoplasmic domain.  The integrin alpha subunit determines binding to the extracellular 

matrix and the beta subunit initiates intracellular signaling.  It has been documented that 

shear stress can sequentially activate mechanosensors, intracellular signaling pathways, 

specific transcription factors and the expression of genes and proteins.  Potential 

endothelial cell membrane mechanosensors such as ion channels (e.g. K+ channel, 

nonselective cation channel and/or voltage-gated Na+ channel), protein kinases, G 

proteins, reactive oxygen species, intracellular junctional proteins and membrane lipids 

have also been suggested [35, 38, 40-42]. 

 EC functional properties related to hemostasis and thrombosis are also influenced 

by fluid shear stress.  Prostacyclin was the first inhibitor of platelet aggregation shown to 

be released from endothelial cells on exposure to shear stress [43, 44].  Since then, 

numerous investigators have demonstrated that shear stress is one of the most powerful 
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stimuli for release of nitric oxide, which also possesses strong anti-platelet aggregation 

properties [45-47].  In addition, enhanced expression of tissue plasminogen activator 

(TPA) [48, 49] and tissue factor pathway inhibitor (TFPI) [50] result from shear stress 

exposure.  There have been conflicting reports about thrombomodulin expression in 

cultured cells.  Malek et al. [51] reported that steady shear stress (15 dynes/cm2) results in 

a time–dependent decrease in THBD mRNA in bovine aortic endothelial cells measured 

by northern blot analysis of total RNA.  In contrast, Takada et al. [52] demonstrated that 

cultured human umbilical vein endothelial cells (HUVEC) respond to shear stress (15 

dynes/cm2) with a time-dependent increase in THBD using RT-PCR, flow cytometry, and 

ELISA methods.  The reason for this disparity in species response is unclear but these 

studies provided evidence that mechanical hemodynamic forces such as shear stress are 

associated with alterations in thrombomodulin expression.   

The interaction between thrombomodulin and shear stress has been demonstrated 

to have clinical relevance.  Clinically, early vein graft occlusion by thrombosis occurs 

more often than in arterial grafts [53].  This has been partly attributed to the loss of 

endothelial thromboresistance and reductions in thrombomodulin expression once vein 

grafts have been placed in the arterial circulation [54].  Although inflammatory processes 

are clearly active in this setting, several groups have established links between 

thrombomodulin expression and the local mechanical environment including shear stress 

and pressure associated changes in vessel wall tension.  Using a rabbit model to perform 

interpositional grafting of jugular vein segments into the carotid circulation, Sperry et al 

[55] demonstrated that decreases in THBD mRNA and protein correlated with increases 

in wall tension and were independent of shear stress changes up to 8.2 dynes/cm2.  Again, 
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conflicting data exists using human saphenous veins in an ex vivo flow circuit.  

Consistent with Sperry’s results, Gosling et al.[56] saw decreases in thrombomodulin 

immunostaining after saphenous veins were exposure to arterial flow (4 dynes/cm2), but 

by limiting circumferential distension in their model system, the authors attributed the 

THBD decrease to shear stress rather than circumferential deformation.   

Endothelin-1, a potent vasoconstrictor and mitogen for SMCs, is unregulated in 

the minutes following exposure to shear but decreased when shear stress is applied for six 

hours or more [57, 58]. In ECs, shear stress has also been shown to regulate tissue factor, 

a membrane bound glycoprotein that triggers extrinsic blood coagulation at the gene, 

protein, and functional levels [50, 59, 60].   

Strategies for Engineering a Vascular Graft 

Considerable evidence suggests that there is no simple biomaterials-based 

solution to the problems of small caliber graft thrombosis and intimal hyperplasia, 

presumably because no synthetic biomaterial or acellular coating can exhibit the anti-

thrombotic, anti-arteriosclerotic, and self-renewing functional properties of the living 

vessel wall.  More promising, therefore, are cellularized devices that have been 

engineered to exhibit specific and durable biological activities for modulating graft 

thrombosis and healing in vivo.  Central to this strategy is a functional endothelium for 

long-term inhibition of blood coagulation and graft intimal thickening. 

The earliest attempts at vascular tissue engineering have seeded autologous 

vascular endothelial cells, harvested from either veins or adipose tissue, onto the surface 

of a graft made from a synthetic material [61-63].  This elective graft endothelialization 

with mature ECs can increase synthetic graft patency in animals [64-66].  In humans, 
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vascular grafts seldom undergo complete endothelialization [67]. For grafts electively 

endothelialized in vitro, the reported clinical experience is still quite limited [68-70].  The 

most extensive clinical results are those reported by Meinhart et al. [9] who show a 

primary patency rate of 62.8% after 7 years in 6 and 7mm infrainguinal grafts. 

There have been a number of biologic strategies to engineer a blood vessel 

substitute.  These started with the work of Weinberg and Bell [71] who used collagen gel 

technology to create a blood vessel substitute that had an intima, a media, and an 

adventia.  Others have continued to work with this naturally derived matrix and have 

made incremental improvements in construct fabrication to increase collagen fiber 

alignment [72], in enhancing the material properties (including strength and compliance) 

through exogenous biochemical stimulation [73], natural crosslinking [74], reinforcement 

strategies [75, 76], and the application of dynamic mechanical strain during in vitro 

culture [77, 78].  In addition to collagen gel technology, decellularized natural tissue 

matrices, which contain the intact extracellular matrix and associated attachment proteins 

have been used to create vascular conduits [79, 80].  More recently, the blood clotting 

protein fibrin has also been investigated as a vascular tissue-engineering matrix [81, 82].  

However, in general the blood vessel substitutes created with these technologies have 

been limited by their ultimate strength. 

The seeding of polymeric scaffolds has been used as a vascular engineering 

approach which led to excellent burst pressures [83].  Although promising, challenges are 

still associated with achieving the necessary cell proliferation and matrix synthesis 

needed.  In addition, there is the problem of polymer degradation products altering the 
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local cellular environment and as a result cell function [84, 85].  Interestingly, there also 

appears to be significant variation in mechanical strength among different species.  

Another approach is one that might be called cell-secreted structures.  This 

includes the approach of L’Heureux et al. [7, 86] in which a blood vessel substitute is 

fabricated by the layering of in vitro cultured cell sheets.  In this approach, sheets are 

created though the production of extracellular matrix by native vascular cells, and these 

then can be rolled around a mandrel to form multicellular tubular blood vessel analogs.  

In a second “cell-secreted” approach, the harnessing of the body’s natural foreign body 

response and associated generation of granulation tissue has been used to create 

completely autologous vascular structures by implanting silicone tubing into the 

peritoneal cavity [87].  Following two weeks of implantation, the silicone can be 

removed and the resulting tubular tissue implanted.   

Cell Sources for Vascular Tissue Engineering 

 There is a critical need for appropriate endothelial cell sources in vascular tissue 

engineering.  There are a variety of endothelialization strategies currently being pursued 

including the autologous cell seeding approaches already discussed, as well as the 

potential use of genetically engineered cells and embryonic stem cells [88-90].  Adult 

bone marrow derived cells, termed endothelial progenitor cells (EPCs) have also emerged 

as a promising endothelial cell source for tissue engineering and are the subject of this 

disseratation.   
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Endothelial Progenitor Cells (EPCs) 

 The established paradigms for the formation of new blood vessels (vasculogenesis 

and angiogenesis) have been challenged in recent years following Asahara et al.’s [91] 

ground breaking report that there was a population of human circulating cells that could 

differentiate ex vivo into cells with endothelial-like characteristics.  This circulating cell 

population, termed “endothelial progenitor cells” or EPCs was reported to contribute to 

the formation of new blood vessels in the adult which Asahara and colleagues termed 

“postnatal vasculogenesis” [92].  Since the first report in 1997, there has been an 

explosion in research related to the isolation, characterization, mobilization and function 

of these mysterious circulating progenitor cells.  To date there are more than 1400 peer 

reviewed publications related to endothelial progenitors [93].  Subsequent studies have 

now demonstrated that these cells are bone marrow derived, they circulate in peripheral 

blood and they are recruited or home to sites of new blood vessel formation including 

ischemic tissues and tumor microenvironments (reviewed in [94-100]).  It has also 

become apparent that they are rare events.  Estimates are that EPCs make up 0.0001% of 

peripheral blood cells depending on the age, sex and health status of the individual [95]. 

 Published reports of circulating angiogenic/endothelial-like cells in blood date 

back at least 40 years [101].  Over the years, surgeons and/or pathologists have provided 

evidence that there are circulating cells which contribute to vascular healing and 

neoendothelialization [102-105].  Today, there is tremendous excitement about the 

therapeutic potential of such a progenitor cell population but along with the excitement 

there are “unresolved questions” about how to appropriately define the endothelial 

progenitor cell.  Emerging evidence suggests that peripheral blood contains a 
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heterogeneous population of cells that posses the ability to differentiate into cells with 

endothelial-like characteristics.  Various culture techniques have generated endothelial 

like-cells from a number of cell types present in peripheral blood.  Circulating 

hemangioblasts which share multi-lineage potential for both primitive hematopoietic and 

endothelial progenitors have been identified [106, 107] as well as monocyte/macrophage 

derived cells [108] and detached mature endothelial cells [109].   

Endothelial Progenitor Cell Isolation and Culture 

 There have been numerous reports of different culture methods for isolation of 

“EPCs”.  These diverse methodologies have increased our understanding and knowledge 

of the circulating progenitor population but have also lead to results which are difficult to 

compare and interpret.  Asahara’s first report [91] used a magnetic separation technique 

to isolate specific cell populations using two antigens that are shared by angioblasts and 

hematopoietic stem cells; CD34 and flk-1, a vascular endothelial growth factor (VEGF) 

receptor.  Use of cell selection techniques has allowed studies of a number of specific cell 

populations within peripheral blood.  In addition to sorting for CD34 and flk-1 (also 

known as KDR or VEGFR2) [110], a more specific stem cell marker termed CD133 (also 

called AC133) has also been used to select a subpopulation of cells which are thought to 

be more “immature stem cells” [111].  CD133 expression has been reported to diminish 

during differentiation and is quickly lost once cells have been removed from the 

circulation and established in in vitro culture.  None-the-less, these cell populations have 

been shown to develop into endothelial-like cells with endothelial marker expression and 

endothelial specific function [112-115].  Another CD133 positive cell population which 

may or may not be related to the cells obtained from peripheral blood sorting is what 
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Reyes et al [116] term multipotent adult progenitor cells (MAPCs).  These cells which 

can be induced to differentiate into an endothelial-like cell are described as 

“nonendothelial bone marrow stem cells”.  In an effort to understand the origins of EPCs, 

additional research using separation of peripheral blood cells based on surface markers 

has been used to suggest that certain EPC populations are derived from CD14 positive 

monocytes [108, 117-121]. 

Blood Outgrowth 

 It has become apparent that a population, or more likely, multiple populations of 

cells exists in peripheral blood which can offer therapeutic potential.  Without the use of 

selection based techniques, EPCs have been observed from “blood outgrowth” when the 

mononuclear fraction of blood is cultured on specific substrates (fibronectin, collagen, or 

gelatin) with medium which contains growth factors: VEGF and/or EGF, FGF-β and 

IGF. 

 Cell selection based on specific markers as described previously or “preplating” 

techniques to remove all adherent low density mononuclear cells have been performed in 

an effort to avoid possible contamination of EPC cultures with monocytes, hematopoietic 

progentitors, and/or mature circulating endothelial cells (termed CECs) [122].  Through 

ground breaking work, Lin et al [123] used human patients who received sex-mismatched 

bone marrow transplants to determine that in the outgrowth population (without specific 

cell selection procedures), there were cells which had both recipient and donor genotype.  

They found CECs appeared early in culture and were derived from the recipient but they 

also reported a population of cells they termed blood outgrowth endothelial cells 

(BOECs) [124] which persisted in cultures greater than six weeks and were bone marrow 
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derived (having donor genotype).  With increasing culture duration, the majority of the 

culture was donor genotype bone marrow derived cells.  These outgrowth cells had 

remarkable proliferative capacity (1023-fold expansion during 4 weeks of culture) and 

were positive for flk-1, VWF, CD36 (collagen type 1/thrombospondin receptor indicating 

microvascular phenotype [125]), and ve-cadherin.  The outgrowth cells were also 

negative for CD14 (monocyte marker).  Since this study, many groups have used the 

blood outgrowth method to establish cultures of endothelial-like cells [120, 123, 126-

140].   

What’s in the name? 

 There is currently considerable debate in the literature about what is an EPC and 

how do we appropriately define it.  When should we use the terms EPC, CEC, OEC, 

BOEC or others?  Ingram et al [135] has proposed that endothelial progenitors be named 

the way that hematopoietic cell progenitors are defined based on differences in 

proliferative and/or differentiation potential.  Using single cell assays, they propose that 

cells giving rise to microscopic colonies that form secondary and tertiary colonies upon 

replating would be termed HPP-ECFCs (high proliferative potential-endothelial colony 

forming cells) in contrast to more differentiated low proliferative potential-endothelial 

colony forming cells (LPP-ECFCs) which form small colonies but do not form secondary 

colonies when replated. 

 There is new evidence which may help clarify some of the mystery associated 

with different reports about “EPCs”.  Recently, several studies have identified two 

populations of cells that emerge from peripheral blood outgrowth cultures, termed early 

EPCs and late EPCs [133, 140] (or late outgrowth endothelial cells (OECs) in other 
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studies [123, 130]).  Early EPCs are similar to the progenitor cells first reported by 

Asahara et al. [91] and have been used in therapeutic angiogenesis trials [141, 142].  

These cells appear to be of monocyte/macrophage origin [120, 130], capable of secreting 

angiogenic peptides [120] and shown to have limited proliferative potential [143].  Late 

EPCs, named after their late outgrowth potential, form homogenous cobblestone 

morphologies and have high proliferative capacity [130, 133, 140] (similar to the 

description of BOECs by Lin et al. [123]).  Ingram et al [134, 135] have extended beyond 

these observations in peripheral blood, suggesting that these populations also exist in 

umbilical cord blood and possibly in vascular tissue.  New data also suggests that there 

may be synergistic angiogenic effects of both early and late EPCs when delivered to 

ischemic tissue as a mixed population [140].   

In a September 2005 editorial in Circulation, Gulati and Simari [144] summarized 

the current knowledge about EPCs in their statement:  “…in vitro studies confirm the 

emerging paradigm that early EPCs are monocyte derived (and not truly endothelial) and 

of limited proliferative potential (and not progenitors), but are capable of assuming 

endothelial features (uptake of acetylated low-density lipoprotein and binding of 

Bandeiraea simplicfolia-lectin) and producing and secreting potent cytokines and growth 

factors. Thus, the term EPC is significant only in an historical rather than literal sense. 

The true endothelial precursor cell population (capable of generating OECs in vitro) is 

rare within the circulation and likely originates from a subset of CD14–/CD34+/KDR+ 

cells that is not fully defined…” 
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The Role of the Hemodynamic Environment in Endothelial Progenitor Cell Function 

 There is very little data available on the effect of shear stress in EPC phenotype 

and function.  Low levels of shear stress exposure (0.1-2.5 dynes/cm2) altered EPC 

proliferation, differentiation, and ability to form in vitro vascular networks [145].  Higher 

levels of shear stress (15-25 dynes/cm2) have been reported to enhance EPC maturation 

[146] and increase tissue plasminogen activator (tPA) secretion and mRNA expression 

[147]. 

Endothelial Progenitor Cells in Tissue Engineering 

 Recently, there has been increasing interest in using EPCs in tissue engineering 

strategies.  EPCs have been seeded onto synthetic polyurethane [148-150] and 

PGA/P4HB substrates [151] and used for the engineering of microvascular networks 

[152, 153].  EPCs have also been tested in vascular graft applications [129, 154-160] 

 Grafts endothelialized using EPCs have shown promise for reducing intimal 

hyperplasia and preserving patency in animal models [156-158].  For example, Kaushal 

et al. demonstrated a dramatic increase in carotid artery graft patency using decellularized 

porcine iliac vessels that were endothelialized with ovine EPCs [157].  The ability of the 

grafts to undergo NO-mediated relaxation was also noted.  Matsuda et al. seeded both 

human and canine EPCs onto segmented polyurethane grafts with success [156, 158].  

While the human EPCs had a profile of tPA expression that was similar to human 

umbilical vein endothelial cells (HUVECs), the expression levels of eNOS and PGI2 

(prostacyclin or prostaglandin I2) were significantly reduced compared to HUVECs 

[158].  Canine EPCs, seeded onto Type I collagen gel within a polyurethane support, 

were positive for acLDL uptake, Factor VIII-related antigen, Flk-1 and intracellular NO 
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production.  When implanted as carotid grafts, these surfaces remained fully 

endothelialized for up to 3 months [156]. 
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CHAPTER IV: MATERIALS AND METHODS 

 

General Cell and Tissue Culture Procedures 

Cell Isolation and Culture 

 Cells used in the following studies were all obtained by primary isolation from 

juvenile male baboons (Papio anubis) weighing approximately 10-20kg.  These studies 

were conducted under approval of the Institutional Animal Care and Use Committees of 

Emory University and Georgia Institute of Technology in accordance with related 

university policies. 

Baboon Vascular Endothelial Cells 

 Baboon carotid artery endothelial cells (ECs) and baboon carotid artery smooth 

muscle cells (SMCs) were isolated from fresh carotid arteries obtained just prior to 

sacrifice from animals enrolled in other chronic implantation studies.  The arteries were 

rinsed using sterile Hanks Balanced Salt Solution (HBSS) containing a 2X concentration 

of antibiotic-antimycotic solution (Gibco/Invitrogen, Carlsbad, CA)) and transported on 

ice from the surgery or necroscopy suite to the cell culture laboratory.  In an aseptic 

environment, the adventitial layer was removed by dissection and the artery lumen was 

exposed.  The endothelial cells were removed by gentle scraping following a five minute 

exposure to 600 U/mL collaganase (type CLS 2, Worthington Biochemical Corp. 

Lakewood, NJ) and plated onto a 6-well tissue culture treated dish precoated for at least 

one hour with either human fibronectin (50µg/mL) (Gibco/Invitrogen) or 0.1% gelatin 
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(porcine skin gelatin, Sigma-Aldrich, St. Louis, MO).  ECs were expanded in a complete 

growth medium containing MCDB 131 supplemented with 5% fetal bovine serum (FBS), 

1% L-glutamine, 1% penicillin-streptomycin, 50µg/mL ascorbic acid, 0.01µg/mL hEGF, 

0.002µg/mL hFGF-basic, 0.002µg/mL IGF-1, 0.001µg/mL VEGF, and 0.001mg/mL 

hydrocortisone (Table 4.1). 

 

 

Table 4.1:  Endothelial Cell Complete Media Formulation 

Component Manufacturer/Supplier Media Final 
Concentration

Base:  MCDB-131 Mediatech cellgro, catalog number 15-100-CV 1X

Fetal Bovine Serum (Heat-Inactivated) Mediatech cellgro, catalog number 35-011-CV 5%

L-Glutamine Mediatech cellgro, catalog number 25-005-CI, L-Glutamine, Liquid 
200mM solution (29.23 mg/mL with 8.5g/L NaCl), 1%

Penicillin-Streptomycin Mediatech cellgro, catalog number 30-002-CI, Penicillin-Streptomycin 
Solution, 100X, 10,000 I.U. Penicillin/mL, 10,000 µg/mL Streptomycin 1%

L-Ascorbic acid 2-phosphate SIGMA, catalog number A-8960 50 g/mL

Epidermal Growth Factor (human, recombinant) Gibco, catalog number 13247-051 0.01 g/mL

Fibroblast Growth Factor-basic (human, recombinant) PeproTech, catalog number 100-18B 0.002 g/mL

Insulin-Like Growth Factor-I (human, recombinant) Gibco, catalog number 13245-063 0.002 g/mL

Vascular Endothelial Growth Factor (human, recombinant) SIGMA, catalog number V-7259 0.001 g/mL

Hydrocortisone SIGMA, catalog number H-4001 0.001mg/mL

 

 

Baboon Smooth Muscle Cells 

 Following removal of the adventitia and endothelium as described above, smooth 

muscle cells were isolated from the vascular media using a facilitated migration method 
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[161].  This method combined the enzymatic digestion method used by some groups 

[162] and the explant outgrowth method which has also been described previously [163] 

to obtain a population of SMCs from the vascular media cross-section.  The medial tissue 

was rinsed in HBSS containing 2X antibiotic-antimycotic solution and dissected into 1-

2mm pieces.  The tissue chunks were transferred to a solution of 300 U/mL collagenase 

(type CLS 2) dissolved in MCDB-131 and incubated at 37ºC with gentle agitation for 16-

19 hours.  Following incubation in collagenase, the partially digested tissue was 

centrifuged and resuspended in MCDB 131 supplemented with 10% fetal bovine serum 

(FBS), 1% L-glutamine and 1% penicillin-streptomycin.  The adherent cells were 

designated passage zero.  SMCs were expanded in complete SMC growth media (Table 

4.2) and cryopreserved for future use.   

 

 

Table 4.2:  Smooth Muscle Cell Complete Media Formulation 

Component Manufacturer/Supplier Media Final 
Concentration

Base:  MCDB-131 Mediatech cellgro, catalog number 15-100-CV 1X

Fetal Bovine Serum (Heat-Inactivated) Mediatech cellgro, catalog number 35-011-CV 10%

L-Glutamine Mediatech cellgro, catalog number 25-005-CI, L-Glutamine, Liquid 
200mM solution (29.23 mg/mL with 8.5g/L NaCl), 1%

Penicillin-Streptomycin Mediatech cellgro, catalog number 30-002-CI, Penicillin-Streptomycin 
Solution, 100X, 10,000 I.U. Penicillin/mL, 10,000 µg/mL Streptomycin 1%
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Baboon Endothelial Progenitor Cells 

 Fresh blood was collected from baboons by venipuncture and anticoagulated with 

buffered sodium citrate.  The anticoagulated blood was diluted 1:2 with HBSS containing 

1 mM EDTA and 0.5% bovine serum albumin.  Density gradient centrifugation was 

performed using Histopaque-1077 (Sigma-Aldrich, St. Louis, MO) following the 

manufacture’s instructions.  Baboon mononuclear cells were isolated from the buffy coat 

and washed three times in MCDB 131 supplemented with 1% L-glutamine and 1% 

penicillin-streptomycin.  Buffy coat mononuclear cells from 50-250mL of blood were 

resuspended in EGM-2 endothelial cell growth media (Cambrex, East Rutherford, NJ)) 

and placed in 1-3 wells of a 6-well tissue culture plate precoated for at least one hour 

with human fibronectin (50µg/mL) (Gibco/Invitrogen).  The plate was incubated at 37oC 

in a humidified incubator with 5% CO2.  After 24 hours, unattached cells and debris were 

removed by exchange of the culture medium.  The culture medium was changed every 

other day for up to 4 weeks.  Cell colonies were passaged using 0.05% Trypsin-0.53mM 

EDTA (Gibco/Invitrogen) and further expanded in fibronectin coated tissue culture 

flasks.  Cells were cryopreserved for future use.  Following cryopreservation, cells were 

thawed and expanded in endothelial cell complete medium (Table 4.1) for use in specific 

experimental protocols. 

Cryopreservation 

 All primary cells were cryopreserved at early passages and were stored in liquid 

nitrogen until needed for experimental procedures.  Following trypsinization, cells were 

pelleted via centrifugation and resuspended in a freezing medium containing 10% 
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dimethyl sulfoxide (DMSO), 40% fetal bovine serum and 50% cell specific complete 

culture medium.  Cells were transferred to cryogenic screw cap vials (Nalgene Nunc) and 

frozen in Nalgene™ freezing canisters containing room temperature isopropyl alcohol 

and incubated in a -70oC freezer for 24 hours.  After 24 hours, vials were transferred to a 

liquid nitrogen tank for long term storage. 

Engineered Vascular Tissue Fabrication 

 Two types of engineered vascular tissues were fabricated as part of this research.  

SMCs were embedded within a type I collagen hydrogel with or without an intact elastin 

scaffold.  The type I collagen was purchased as a lyophilized product (type I collagen 

from calf skin, MP Biomedicals, Irvine, CA) which was dissolved in 0.02N acetic acid 

via gentle stirring at 4oC.  Following the techniques first described by Weinberg and Bell 

[71], reconstitution of the collagen into a fibrillar form was achieved by changing the pH 

and temperature of the solution.  SMCs were suspended in the collagen solution and 

became entrapped in the collagen fiber network during collagen fibrillogenesis. 

Three-Dimensional Collagen Hydrogel Engineered Tissues 

 SMCs were trypsinized with 0.05% Trypsin-0.53mM EDTA (Gibco/Invitrogen) 

following expansion in standard tissue culture treated flasks.  The cells were counted and 

the appropriate number of cells (final concentration 1x106 cells/mL) was resuspended in 

SMC complete medium.  For a typical batch of 8 constructs including 10% excess, SMCs 

were suspended in 16.5mL of complete medium.  In a separate tube, the remaining 

reagents were mixed over ice.  6.6mL 5X MCDB-131, 24.6mL acid solublized bovine 

dermal type I collagen and 3.3mL 0.1N NaOH solution were mixed thoroughly being 
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careful not to introduce air bubbles into the solution.  The cell suspension was then added 

to the neutralized collagen solution and mixed thoroughly, again being careful to avoid 

bubbles.  A 6.0mL volume of this collagen solution was injected into a glass mandrel 

assembly to form a tubular geometry.  The assembly consists of a glass capillary tube 

mandrel outfitted with rubber end stoppers and a glass test tube mold.  The constructs 

were placed in an incubator at 37oC for one hour to promote gel formation.  The mandrel 

and construct were then removed from the test tube and cultured in a 150mm suspension 

culture dish containing SMC complete medium.  The reagent volumes could be scaled to 

fabricate any given number or size engineered tissue.  Using the tubular assembly 

described, original construct dimensions were typically 60mm in length with an 11.6mm 

outer diameter and a 3mm inner diameter. 

Isolation of an Intact Elastin Scaffold 

 The isolation of elastin was performed as described previously [164] using a 

series of enzymatic, chemical and thermal treatments aimed at removing cells and 

nonelastin matrix components.  Fresh porcine carotid arteries (3-5mm inner diameter) 

were obtained from a local slaughter house (Holifield Farms, Conyers, GA) or purchased 

from an animal tissue supplier (Animal Technologies, Tyler, TX).  The arteries were 

incubated in a sodium phosphate buffer solution for three twenty-four hour cycles to 

thoroughly clean each vessel.  Excess adventitia is then removed using surgical scissors 

and forceps, and the arteries were cut into approximately 4-6cm segments and loaded 

onto glass capillary tube mandrels with rubber stoppers placed on each end.  Arterial 

segments were immersed in 100mL of deionized (DI) water and autoclaved for five 

cycles (60 minutes, 120oC).  Upon completion of each autoclave cycle, the water was 
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removed while still hot and replaced with clean DI water.  Arterial segments are then 

incubated in a trypsin-tris buffer solution (0.1M trizma base, 0.02M CaCl2, and 900 

BAEE units/L trypsin (Sigma)) at 37oC for 18 hours.  Following the enzymatic digestion, 

the artery segments are rinsed five times in DI water and further digested for 18 hours in 

a β-mercaptoethanol-urea solution (0.05M trizma base, 6M urea, and 0.5% 2-

mercaptoethanol).  Following five DI water rinses, elastin segments were incubated in 

absolute ethanol for 60 minutes to help remove contaminant lipids.  Finally, at least three 

24 hour rinses were performed in DI water at 4oC to remove residual ethanol.  At this 

point, the isolated elastin scaffolds were sterilized in an autoclave cycle (25 minute, 

120oC) and were ready to be incorporated into engineered tissue constructs.   

Fabrication of an Elastin-Collagen Hybrid Engineered Tissue 

 Following the methodology described for fabrication of 3-D collagen hydrogels 

above, SMCs were mixed with a bovine dermal type I collagen solution and poured into 

glass test tube molds.  Intact elastin scaffolds were incorporated into the engineered tissue 

by inserting the elastin on the glass capillary tube into the SMC-collagen solution (as 

shown in Figure 4.1A).  As described above, the constructs were placed in an incubator at 

37oC for one hour to promote gel formation followed by removal from the test tube for 

static culture in 150mm suspension culture dishes containing SMC complete medium (as 

shown in Figure 4.1B).  While the majority of the SMC-collagen gel resides exterior to 

the elastin scaffold, small gaps between the elastin and mandrel permitted some of the 

SMC-collagen solution to infiltrate the inner lumen of the scaffold.  Constructs were 

cultured in SMC complete medium for up to eight days. 
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Figure 4.1:  Elastin-collagen hybrid engineered tissues in 
culture.  (A) An intact elastin scaffold was combined with a 
SMC-collagen solution to create an elastin-collagen hybrid 
engineered tissue.  Following one hour incubation at 37oC, 
the tissues were removed from the glass test tube mold and 
culture in vitro.  (B) Elastin-collagen hybrid constructs 
following several days in culture.   
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Application of Shear Stress  

 In order to study the effect of steady laminar shear stress on cellular phenotype, 

the fluid mechanic environment was controlled using two bioreactor geometries.  A 

parallel plate flow chamber based on a rectangular channel flow and a tubular bioreactor 

configured to simulate fully developed pipe flow were both used to expose cells to 

controlled magnitudes of fluid shear stress.   

Parallel Plate Flow Chamber with 2-D and 3-D Substrates 

 A parallel plate flow chamber device was used to expose cell monolayers to fluid 

shear stress as previously described [34].  The device was designed such that cells could 

either be grown on glass slides (typically coated with an extracellular matrix protein) or 

could be cultured on an in vitro fabricated engineered tissue slab as shown in Figure 4.2.  

The flow chamber consisted of a polycarbonate flow block which directed fluid to the 

surface, a spacer which defined the flow channel height, two stainless steel plates and a 

rubber gasket to seal the chamber.  Cells will be seeded onto a glass slide coated with 

50µg/mL absorbed collagen or onto 3-D engineered tissue constructs which have been 

opened longitudinally and embedded into agar.   

 The culture medium used for all flow studies was MCDB 131 supplemented with 

5% fetal bovine serum (FBS), 1% L-glutamine, 1% penicillin-streptomycin, 

0.0005µg/mL hEGF and 0.002µg/mL hFGF-basic (Table 4.3). 

 The experimental protocol for shear experiments using the parallel plate flow 

chamber was to embed and seed cells on day zero.  Twenty-four hours later, the flow 

medium was removed and fresh flow medium was added to the Petri dish.  At 48 hours,  
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Table 4.3:  Flow Media Formulation 

Component Manufacturer/Supplier Media Final 
Concentration

Base:  MCDB-131 Mediatech cellgro, catalog number 15-100-CV 1X

Fetal Bovine Serum (Heat-Inactivated) Mediatech cellgro, catalog number 35-011-CV 5%

L-Glutamine Mediatech cellgro, catalog number 25-005-CI, L-Glutamine, Liquid 
200mM solution (29.23 mg/mL with 8.5g/L NaCl), 1%

Penicillin-Streptomycin Mediatech cellgro, catalog number 30-002-CI, Penicillin-Streptomycin 
Solution, 100X, 10,000 I.U. Penicillin/mL, 10,000 µg/mL Streptomycin 1%

Epidermal Growth Factor (human, recombinant) Gibco, catalog number 13247-051 0.0005 g/mL

Fibroblast Growth Factor-basic (human, recombinant) PeproTech, catalog number 100-18B 0.002 g/mL

 

 

 

slides or constructs were transferred into the parallel plate flow chamber.  The chamber 

was connected to a recirculation flow loop containing 110mL of fresh flow medium 

(shown in Figure 4.2B) and flow was initiated.  The flowrate was controlled to maintain a 

laminar shear stress of 15 dynes/cm2 for an additional 24 hours.  Sheared samples were 

then compared to static controls which had been incubated in the same volume of 

medium and in the same incubator environment.  The wall shear stress was determined 

using the following equation:  τw = (6µQ/bh2) where µ is the viscosity, Q is the 

volumetric flowrate, b is the channel width (2.54cm) and h is the channel height 

determined by the spacer thickness minus the cell height (0.0505cm). 

Embedding a 3-D Engineered Tissue for Application of Laminar Shear Stress 

 Following five days in static culture, tubular constructs were removed from the 

glass mandrel, cut longitudinally and gently transferred to a glass slide, lumen side down 
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as shown in Figure 4.3.  The construct was trimmed on either end using a scalpel to 

create a clean rectangular surface.  A polycarbonate mold was placed around the 

construct and the mold was filled with a 3.5% agar solution maintained at 48oC in a 

temperature controlled waterbath.  A second glass slide was quickly placed on top of the 

molten agar and pressure was applied to “sandwich” the construct and force excess agar 

outside of the mold.  The agar was allowed to cool and solidify for approximately 3-4 

minutes (≈37oC) and the embedded construct was turned over (lumen side up) before 

growth medium was added to the culture dish containing the embedded construct.  The 

glass slide was gently removed exposing the luminal surface to growth medium.  ECs or 

EPCs were seeded onto the construct surface using 50,000 cells/cm2 in approximately 

400µL of media.  Cells were allowed to adhere to the surface for one hour before media 

was gently added to the Petri dish and constructs were transferred to an incubator at 37oC.   
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Figure 4.2:  Application of shear stress using a parallel plate flow chamber and 
recirculation flow loop (A) A channel flow geometry was used to create a laminar shear 
stress on the cell surface.  Cells were seeded onto glass slides coated with absorbed 
collagen or onto collagen hydrogel engineered tissues.  (B) A recirculation flow loop 
provides steady flow through the parallel plate flow chamber (highlighted with a yellow 
box). 
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Figure 4.3:  Preparation of an engineered tissue for application of shear stress.  (A) 
An engineered tissue is grown in vitro in a tubular configuration on an inner silicon 
membrane. (B) Using sterile scissors, the silicone membrane and engineered tissue are 
cut longitudinally and (C) positioned lumen side down on a glass slide.  Using a 
polycarbonate mold, the engineered tissue is embedded in agar and flipped over to expose 
the construct lumen.  ECs or EPCs could then be seeded onto the luminal surface. 
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Cylindrical Bioreactor 

 A rudimentary bioreactor system was designed to allow EPC seeding and shear 

stress preconditioning on tubular constructs prior to interposition into the baboon ex vivo 

shunt.  The system was designed to allow for an easy transition from an in vitro flow 

system directly into the ex vivo shunt without the requirement for any tissue 

manipulation.  The tubular elastin-collagen hybrid constructs which were cultured 

between 4 and 8 days, were sutured to Teflon connectors (9 gauge, 20mm long, wall 

thickness 0.250mm, Small Parts, Miami Lakes, FL).  The constructs were encased in an 

outer covering of 3.5% agar inside of a heat shrink Teflon outer covering (1 gauge,10cm 

long).  The thin walled Teflon connectors were inserted into the glass mandrel containing 

the construct and the construct was gently pulled onto the connector.  A suture was tied 

around the outer construct surface to secure the construct to the connectors.  The outer 

Teflon casing was inserted into a glass cylinder capped on one end.  The glass cylinder 

apparatus was positioned vertically in a container of ice.  The construct and Teflon 

connectors, still on the glass mandrel were positioned inside the larger glass cylinder.  A 

molten 3.5% agar solution (48oC) was poured around the exterior surface of the construct 

inside of the outer Teflon casing.  The agar solidified and cooled within 3-4 minutes.  The 

tissue, now encased in agar and an outer Teflon sleeve, was removed from the vertical 

glass cylinder and transferred to a Petri dish.  The inner glass mandrel was gently 

removed and silicon tubing was attached to the thin walled Teflon connectors.  The outer 

Teflon sleeve was heat shrunk around the silicon tubing and additionally sealed with 

another piece of heat shrink rubber being careful to keep the heat distal to the engineered 
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tissue.  Media was added to this rudimentary bioreactor prior to EPC seeding onto the 

construct surface.   

EPC Seeding Inside the Cylindrical Bioreactor 

Medium was drained from the bioreactor and 500uL of EC complete medium containing 

approximately 100,000 EPC cells/cm2 were injected into the bioreactor.  The cell solution 

was confined to the area of the construct surface by capping both ends of the reactor.  The 

bioreactor containing the cell solution was transferred to an incubator at 37oC and rotated 

45 degrees every 15 minutes to ensure uniform cell coverage on the construct surface.  

After 1.5 hours, the media and unattached cells were drained from the bioreactor and a 

second bolus injection of EPCs was added to the bioreactor.  Again the cell solution was 

confined to the construct surface and incubated for an additional 1.5 hours with rotation 

every 15 minutes.  After a total of three hours of static cell seeding, the bioreactor was 

incorporated into the same recirculation flow loop shown in Figure 4.2B.  The exception 

to Figure 4.2B was that the bioreactor was positioned in place of the parallel plate flow 

chamber (highlighted in the yellow box).  The flow loop was primed with flow medium 

prior to addition of the bioreactor.  Once the bioreactor containing the EPC seeded 

engineered tissue was incorporated into the flow loop, the flow was gradually increased 

to 15 dynes/cm2 over the course of forty minutes and maintained for a total of 20 hours 

(time 0-20 minutes 79.5cm3/min or 6.0 dynes/cm2; 20-40 minutes 139.1cm3/min or 10.5 

dynes/cm2, 40 minutes to 20 hours 198.7cm3/min or 15.0 dynes/cm2).  A schematic 

drawing of the bioreactor is shown in cross-section in Figure 4.4. 

The bioreactor was designed based on assumptions of fully developed flow in a 

straight rigid pipe of circular cross section where the wall shear stress was determined 
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using the following equation:  τw = (4µQ/πR3) where µ is the viscosity, Q is the 

volumetric flowrate and R is the radius.  The flow channel was based on the internal 

dimensions of the engineered tissue which was 3mm in diameter and 60 to 80mm in 

length depending on the specific tissue fabrication.  A shear stress of 15 dynes/cm2 was 

achieved at a flow rate of 198.7cm3/min using a working fluid (culture medium) with a 

viscosity of 0.012 dyne s/cm2.  While this methodology did not exactly duplicate the in 

vivo environment, it did allow for precise control of the shear environment on a confluent 

monolayer of cells lining the engineered tissue lumen.  Care was taken to ensure that the 

luminal surface, on which the ECs and EPCs resided, was as smooth as possible and that 

there was minimal flow disturbance at the connectors. 
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Figure 4.4:  Schematic drawing of cylindrical bioreactor crosssection 
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Microscopy 

Cell Viability 

 The construct cellular viability was determined using two different methods: 

LIVE/DEAD® viability/cytotoxicity assay (Molecular Probes, Carlsbad, CA) or a trypan 

blue exclusion assay (Sigma).  The LIVE/DEAD assay was performed on small 

(approximately 5mm) ring samples of the construct.  Tissues were removed from culture, 

rinsed in PBS and incubated with 4µM calcein AM and 4µM ethidium homodimer-1 for 

45 minutes.  The constructs were then rinsed in PBS prior to imaging on a LSM 510 laser 

scanning confocal microscope (Zeiss).  The confocal microscopy was used to acquire 

images from at least five microscope fields at varying depths in the tissue (≈0-100µm) as 

well as at least five fields covering the cross-section were used to quantify average cell 

viability in the engineered tissues.  Image analysis based on threshold measurements was 

performed using ImagePro Plus to quantify the number of viable and non-viable cells in 

the constructs.   

 A Trypan blue exclusion assay was also used in select cases to verify the 

LIVE/DEAD assay results.  For Trypan blue exclusion, construct samples were rinsed in 

PBS and then incubated with 600 U/mL collagenase (type CLS2, Worthington 

Biochemical Corporation) at 37ºC until the matrix was completely dissolved (generally 1 

hour was required).  The collagenase was diluted by addition of SMC complete medium 

(5X the collagenase volume).  A small volume of digested construct solution was 

incubated with trypan blue (0.4%) as previously described [165].  A hemocytometer was 
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used to count the number of viable cells, those that exclude the trypan blue, and the 

number of non-viable cells, those that retain the blue stain. 

F-actin Localization Using Phalloidin 

 Following exposure to shear stress, intracellular F-actin was stained using 

rhodamine phalloidin (Molecular Probes, Carlsbad, CA).  The cells adhered to glass 

slides were fixed in 4% formaldehyde (Tousimis, Rockville, MD) for five minutes.  

Slides were rinsed with PBS, permeabilized with 0.1% Triton X-100 for five minutes and 

stained with rhodamine phalloidin (1:40 in 400µL/slide) for 20 minutes.  Hoechst 33258 

(1:400) was used for nuclear visualization.  Slides were rinsed in PBS followed by 

distilled water and sealed using 1.0 glass coverslips with aqueous mounting medium 

(Faramount, DakoCytomation, Carpinteria, CA).  A fluorescent microscope (Nikon) or 

the LSM510 (Zeiss) was used for imaging. 

General Immunofluorescent Staining 

 Immunofluorescent staining techniques were used for cell characterization of 

ECs, EPCs and SMCs.  Adherent monolayers of cells were fixed in 4% formaldehyde 

(Tousimis, Rockville, MD) for five minutes and rinsed with PBS.  For intracellular 

staining, cells were permeabilized for five minutes using 0.1% triton-X.  Blocking was 

performed using 5% normal goat serum (Sigma) or 5% donkey serum (Sigma) for one 

hour at 37oC.  Primary (1:100) and secondary antibody (1:40) incubations were 

performed for 40 minutes each at 37oC.  Table 4.4 lists specific antiobodies which were 

used with success in this research.  Hoechst 33258 (1:400) was used for nuclear 

counterstaining.  Slides were rinsed in PBS followed by distilled water and sealed using 
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1.0 glass coverslips with aqueous mounting medium (Faramount, DakoCytomation, 

Carpinteria, CA).  A fluorescent microscope (Nikon) or the LSM510 (Zeiss) was used for 

imaging. 

 

Table 4.4:  Primary and secondary antibodies 

Primary Antibody Supplier Description Product Information

Acetylated LDL Molecular Probes acetylated low-density lipoprotein from human 
plasma, DiI complex (DiI AcLDL) L3484

Alpha smooth muscle actin Sigma FITC conjugated monoclonal anti-alpha-smooth 
muscle actin (clone 1A4) F 3777

Calponin DakoCytomation monoclonal mouse anti-human calponin (clone 
CALP) M3556

CD14 Beckman Coulter monoclonal mouse anti-human (clone RM052) IMO643

Endoglin (CD105) Research Diagnostics Inc. FITC conjugated monoclonal mouse anti-human 
(clone 8E11) RDI-CBL418FT

eNOS (NOS Type Ⅲ) Santa Cruz Biotechnology polyclonal rabbit anti-human (N-20) sc-653

Flk-1 (VEGFR2) Research Diagnostics Inc. polyclonal rabbit anti-mouse Flk-1 RDI-MFLK1abrX

Flt-1 (VEGFR1) Alpha Diagnostic International polyclonal rabbit anti-human FLT11-A

Myosin heavy chain (MHC) Santa Cruz Biotechnology monoclonal mouse anti-rat full length myosin 
heavy chain sc-6956

Myosin heavy chain (MHC) Santa Cruz Biotechnology PE conjugated monoclonal mouse anti-rat full 
length myosin heavy chain sc-6956 PE

PECAM-1 (CD31) BD Pharmingen FITC conjugated monoclonal mouse anti-human 
(clone WM59) 555445

Thrombomodulin (CD141) DakoCytomation monoclonal mouse anti-thrombomodulin (clone 
1009) M0617

Tissue Factor (CD142) American Diagnostica Inc. monoclonal mouse anti-human tissue factor 4508

Tissue Factor (CD142) American Diagnostica Inc. FITC conjugated monoclonal mouse anti-human 
tissue factor CJ4508

Ulex europaeus lectin Sigma FITC conjugate L 9006

VE-cadherin (CD144) Santa Cruz Biotechnology polyclonal goat anti-human (C-19) sc-6458

Von Willebrand factor DakoCytomation polyclonal rabbit anti-human A0082

Secondary Antibody Supplier Description Product Information

DakoCytomation FITC conjugated polyclonal swine anti-rabbit F0205

DakoCytomation FITC conjugated polyclonal rabbit anti-mouse F0313

Jackson Immuno Research FITC conjugated polyclonal donkey anti-rabbit 711-095-152

Jackson Immuno Research FITC conjugated polyclonal donkey anti-goat 705-095-147
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Cell Separation from Engineered Vascular Tissues 

 In order to investigate the EC or EPC specific mRNA expression, a sorting 

strategy was developed to remove the cells from the engineered tissue surface followed 

by positive selection for ECs and EPCs to ensure removal of possible SMC 

contamination.  FITC conjugated CD31 (BD Pharmingen) was used to label ECs and 

EPCs followed by indirect magnetic cell labeling with anti-FITC MACS microbeads 

(Miltenyi Biotec, Auburn, CA).  A MACS magnetic column was used to sort for EC and 

EPC specific populations based on CD31 expression as shown schematically in Figure 

4.5.  Validation of this technique is presented in Chapter VII. 

 At the conclusion of the experiment, ECs or EPCs were removed form the surface 

of the engineered tissue.  600 U/mL collagenase (Type II, Worthington) was added to the 

surface and incubated for 4 minutes.  Media was added to the surface to stop the action of 

collagenase and the surface was scraped gently with a flat cell scraper.  The entire 

procedure was performed as quickly as possible and all solutions from this point forward 

were kept on ice and incubations were performed at 4oC.  The surface was rinsed with 

PBS and the cell suspension collected.  The cell pellet was incubated with a FITC-CD31 

antibody (10µL) for 5 min at 4oC followed by secondary incubation with anti-FITC 

microbeads (20µL) following the manufacturer’s instructions.  ECs or EPCs were eluted 

in the positive effluent and immediately used for analysis. 

 42



 

 

 

 

 

 

SMC

EPC or EC

FITC conjugated 
CD31 antibody

Anti-FITC Microbead

MACS magnet

SMC

EPC or EC

FITC conjugated 
CD31 antibody

Anti-FITC Microbead

MACS magnet

 

Figure 4.5:  EC and EPC positive selection using the MACS® cell separation 
system.  ECs and EPCs were separated from cell suspensions using a positive selection 
for CD31 (FITC) followed by indirect magnetic cell labeling with anti-FITC 
microbeads.  CD31 positive cells were retained in the MACS® column and unlabeled 
cells pass through (negative effluent).  The column was removed from the magnet 
separator and the retained cells were eluted as the positively selected cell fraction 
(positive effluent). 
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Gene Expression 

RNA Isolation and Assessing Quantity and Quality of RNA 

 Endothelial cells were lysed and total RNA extracted using the RNeasy Mini kit 

(Qiagen, Valencia, CA) following the manufacture’s recommendations.  Samples were 

lysed in 350µL lysis buffer and stored at -70oC.  Total RNA extraction was performed 

along with analysis of quantity and quality immediately prior to cDNA synthesis to 

minimize the number of freeze thaw cycles and preserve the RNA quality.   

Quality of RNA was assessed using the RNA 6000 Nano LabChip (Agilent, Palo 

Alto, CA) on an Agilent Bioanalyzer 2100 by evaluating degradation of ribosomal RNA 

peaks.  An example of a high quality RNA sample is shown in Figure 4.6.  Quantity of 

high quality RNA was assessed by absorbance at 260nm. 

 

 

Figure 4.6:  Example result from 
Agilent 2100 Bioanalyzer.  This example 
shows a high quality RNA sample used 
for cDNA synthesis for qRT-PCR 
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Quantitative Real Time Reverse-Transcriptase Polymerase Chain Reaction (qRT-

PCR) 

 qRT-PCR was performed as previously described [166, 167].  cDNA synthesis 

was performed on DNaseI-treated total RNA (1 µg) by oligo(dT) priming using the 

Superscript First Strand Synthesis System for RT-PCR (Invitrogen).  qRT- PCR using 

SYBR Green intercalating dye was performed with the ABI Prism 7700 Sequence 

Detection System (Applied Biosystems, Foster City, CA; 40 cycles, melting: 20s at 

95oC, annealing and extension: 120s at 60oC).  qRT-PCR oligonucleotide primers (Table 

4.5) were designed using ABI Primer Express software and purchased from IDTDNA 

(Coralville, IA).  Primer specificity was confirmed by agarose gel electrophoresis and 

ABI Prism 7700 Dissociation Curve Software. Standards for each gene were amplified 

from cDNA using oligonucleotide primers, purified using a Qiagen PCR Purification kit 

and diluted over a functional range of concentrations.  Transcript concentration in 

template cDNA solutions was quantified from a linear standard curve, normalized to 1 

µg of total RNA, and expressed as femtomoles of transcripts per µg of total RNA. 

Detection limits for each gene were determined by reactions without cDNA and 

were at least an order of magnitude below the most dilute sample. 
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Table 4.5:  Oligonucleotide primers for real time RT-PCR 

Sense primer Antisense primer

THBD thrombomodulin 5'-GCATTCGGGCTTGCTCATAG-3' 5'-CAAAAGCGCCACCACCA-3'

TFPI tissue factor pathway inhibitor (lipoprotein-
associated coagulation inhibitor) 5'-GACTCCGCAATCAACCAAGGT-3' 5'-TGCTGGAGTGAGACACCATGA-3'

NOS3 nitric oxide synthase 3 (endothelial cell) 5'-ATCTCCGCCTCGCTCATG-3' 5'-AGCCATACAGGATTGTCGCCT-3'

F3 coagulation factor III (thromboplastin, tissue 
factor) 5'-CACCGACGAGATTGTGAAGGAT-3' 5'-TTCCCTGCCGGGTAGGAG-3'

VWF von Willebrand factor 5'-CCTATTGGAATTGGAGATCGCTA-3' 5'-CTTCGATTCGCTGGAGCTTC-3'

Target

 

DNA Microarray Analysis 

DNA microarray analysis was performed in collaboration with the genomics core 

laboratory at Morehouse School of Medicine.  500ng of total RNA from experimental 

samples and 500ng Universal Human Reference RNA (Stratagene, La Jolla, CA) were 

prepared for competitive microarray hybridization.  Samples were amplified using the 

Agilent Low RNA Input Flourescent Linear Amplification Kit and labeled with Cy-3 and 

Cy-5 CTP (Perkin-Elmer, Wellesley, MA).  Hybridization was performed using the 

Agilent In Situ Hybridization Plus kit to Human Whole Genome Oligo Microarrays 

(Agilent).  Arrays were scanned using the Agilent dual laser DNA microarray scanner 

with SureScan technology.  Image extraction was conducted using Agilent Feature 

Extraction software 7.5.1. 

 Gene expression was analyzed using GeneSpring software.  A one-way analysis 

of variance (ANOVA) was performed using a Student-Newman-Keuls post hoc test and 

the Benjamini and Hochberg False Discovery Rate multiple testing correction.  P-values 

<0.05 were considered significant.  Pairwise comparisons were performed using a 
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student’s t-test.  The specific comparisons were:  EC: shear versus static, EPC: shear 

versus static, Static: EPC versus EC and Shear:  EPC versus EC. 

 Ingenuity Pathways Analysis (IPA) was used to interpret the microarray data in 

the context of pathways and biological systems.  All genes with significant expression 

(ANOVA p<0.05) in the microarray dataset were imported into IPA.  IPA used the 

Genbank gene ID in the dataset to map the imported data against the Ingenuity Pathways 

Knowledge Base (IPKB) which is the world’s largest curated database of biological 

networks including coverage of over 23,900 mammalian genes [168].  All genes within 

the imported dataset which map to the IPKB and interact with at least one other gene in 

the IPKB were considered focus genes.  Focus genes were established for the dataset 

from genes which were significant in the pairwise comparisons (p<0.05).   

Measurement of Protein Expression 

Flow Cytometry 

 Cell samples were collected for flow cytometry and were fixed in a 4% 

formaldehyde/2% sucrose solution for fice minutes, rinsed in PBS and incubated in 

20mM glycine for 15 minutes.  Blocking was performed in 5% normal goat serum (NGS) 

for one hour at 37oC followed by incubation with primary antibody diluted in 1% NGS 

for one hour at 37oC.  In cases where preconjugated antibodies were not available, a 

separate incubation with fluorescently labeled secondary antibodies was performed for 

one hour at 37oC.  For intracellular molecules, cells were permeabilized prior to the 

blocking step in 0.1% Triton X-100. 
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Functional Assessments 

Matrigel Assay 

 An in vitro tube formation assay was perfomed on Matrigel™ basement 

membrane.  Matrigel™ (BD Biosciences) was added to a chamber slide and allowed to 

gel at room temperature for one hour.  1 x 104 cells/cm2 were added to the chamber slide 

in 500µL of EGM-2 medium (Cambrex).  Following 18 and 24 hours of culture at 37oC, 

samples were imaged using a LSM510 confocal microscope (Zeiss). 

Intracellular Nitric Oxide 

Diamino-fluorescein-2-diacetate (DAF-2DA, Cayman Chemicals, Ann Arbor, 

MI), a membrane permeable intracellular nitric oxide (NO)-specific fluorescent indicator, 

was used to detect NO expression.  Cells grown in chamber slides (Lab-Tek II, Nunc) 

were rinsed twice with PBS and then immersed in MCDB-131 containing 10µM DAF-

2DA.  Following 60 minute incubation at 37oC, cells were rinsed with PBS and fixed in 

4% formaldehyde (Tousimis) for five minutes.  Slides were rinsed in PBS followed by 

distilled water and sealed using 1.0 glass coverslips with aqueous mounting medium 

(Faramount, DakoCytomation, Carpinteria, CA).   

Baboon Ex Vivo Shunt 

 Normal male juvenile baboons (Papio anubis) were used with approval of the 

Institutional Animal Care and Use Committee in compliance with the National Institutes 

of Health guidelines.  Shunt studies were performed as previously described [169].  

Chronic exteriorized arteriorvenous (AV) access shunts were surgically placed between 
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the femoral artery and vein to permit interposition of the engineered tissue constructs.  

Engineered tissue constructs were interposed into the exteriorized AV shunts of awake 

immobilized animals and blood flow in the shunt was maintained at 100mL/min by real 

time measurement of flow using an ultrasonic flow probe.  Thrombus accumulation on 

engineered tissues was quantified by measuring the deposition of platelets.  Autologous 

baboon platelets are labeled with 111 Indium chloride (Mallinckrodt Inc., St. Louis, MO) 

and reinjected prior to experimentation.  Gamma camera imaging of the test segments 

was performed at five minute intervals for up to 35 minutes to quantify 111In-labeled 

platelet deposition. 

111 Indium Chloride Labeling of EPCs 

 In order to quantify cell retention on the graft surface during whole blood 

exposure in the ex vivo shunt, EPCs were radiolabeled using a radiopharmaceutical 

Indium (In) 111 Chloride (Mallinckrodt Inc., St. Louis, MO) prior to seeding onto the 

engineered tissue.  EPCs were trypsinized from tissue culture flasks and counted using a 

hemocytometer.  Up to 4x106 cells were resuspended in 0.5mL DPBS (without CaCl and 

MgCl) plus 10µL of labeling buffer and incubated at 37oC for 10 minutes.  The labeling 

buffer was prepared fresh and consisted of 50µL of Indium 111 chloride solution 

(calibrated to be 500µCi), 1.3µL of 0.2M tropolone (Sigma) and 50µL carbonate buffer.  

Immediately following incubation in the labeling buffer, 2mL of fresh growth media was 

added.  The cell solution was centrifuged at 250 RCF, excess labeling buffer was 

removed and cells were resuspended in fresh growth media.  Labeling efficiency was 

quantified using a 1480 Wizard Automatic Gamma Counter (PerkinElmer).  Radiolabeled 
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cells suspended in growth media were then seeded onto the engineered tissue grafts in 

two administrations of approximately 100,000 cells/cm2 each.   

Construct Material Property Testing 

 Mechanical characterization is conducted on a ring testing apparatus that was 

developed and implemented in our laboratory [75, 77, 164].   

Sample Preparation 

 Tubular constructs were removed from the culturing medium and rinsed in PBS 

(pH 7.4) under gentle agitation.  Each construct was divided into ≈5mm ring sections 

using a razor blade, and four small black beads were attached to the cut ends of the rings 

with a cyanoacrylate-based adhesive.  Specimens were handled using surgical 

instruments and care was taken in all steps to minimize incidental damage.   

Uniaxial Tensile Testing and Analysis 

Uniaxial tensile tests were performed on ring samples of the engineered vascular 

tissue.  Ring samples were loaded onto the hooks of the testing apparatus and 

preconditioned through three cyclic loading sequences (0.2 mm/sec) to approximately 

20% of the strain at rupture.  Samples are then stretched at a constant rate to failure (0.2 

mm/sec).  Cauchy stresses and Eularian strains were used to determine the stress-strain 

profiles.   

Cauchy stresses were determined as: 
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where σ(t) is the stress as a function of time,  F(t) is the force as a function of time, Ao is 

the original cross-sectional area, T is the wall thickness, and W is the width of each ring 

sample.  Since both construct walls are assessed at the same time in the ring specimen 

testing format, the dimensions are multiplied by a factor of two to obtain the cross-

sectional area.  Strain was determined from the hook positions from the linear motor 

position voltage output.  The voltage displacement information was converted to 

Lagrangian strain data using the following equation: 
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where ε(t) is the strain as a function of time, L(t) is the distance between the hooks as a 

function of time, and Lo is the original distance between the hooks.   

Ultimate tensile stress (UTS) was defined by the peak stress attained during the 

testing procedure.  Linear moduli were defined by best fit regressions of the regions 

spanning 25 to 75% of the UTS.   
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CHAPTER V:  CELL ISOLATION AND CHARACTERIZATION 

 

Introduction 

 The overall motivation for this study comes from the clinical setting where 

patients present with vascular disease and require medical intervention.  Ultimately the 

disease pathology results in a reduction in blood flow and therefore reduction in oxygen 

transport to the surrounding tissues.  One of the current clinical treatment options is to 

bypass the diseased vessel, thereby providing a new conduit for blood and nutrients to 

reach the tissues.  While a patient’s own vessels may be transplanted as the bypassing 

conduit, there remains an insufficient supply of autologous tissue in a significant number 

of patients.  Tissue engineering approaches aim to provide an engineered alternative to 

autologous vessel transplant by providing a blood vessel substitute which will function as 

the needed conduit for blood and nutrient transport. 

 There are a number of tissue engineering strategies directed at emulating the 

native blood vessel function (a detailed presentation of current tissue engineering 

strategies can be found in Chapter II:  Background).  It has been our approach to build an 

engineered tissue using naturally derived matrix materials and cells which can be 

modulated in vitro to ultimately produce a functional blood vessel substitute.  The native 

vessel is structured as a tri-layer unit composed of a blood contacting intima supported by 

a smooth muscle rich media and anchored to the surrounding tissue by an adventitia 

infiltrated with vaso vasorum.  In vitro, we are able to create an engineered tissue which 

structurally mimics the native vessel with the use of donor vascular cells and natural 

 52



matrix materials.  This approach is able to create a physiologic model of the vascular wall 

in vitro but in order to create clinically viable strategies, current research is aimed at 

identifying appropriate cells sources which are readily available and can replicate the 

functions of the native vascular cells.   

 The vascular endothelial cell (EC) provides a barrier between blood and the 

remainder of the vascular wall.  Extensive research has shown that the EC is a gatekeeper 

for many biological processes including normal hemostasis and it is considered a critical 

cell type needed for engineered blood vessel substitutes.  While it may be possible to use 

allogeneic SMCs in a tissue engineering approach, an autologous or immune privileged 

source of ECs will be required.  The earliest vascular tissue engineering approaches 

isolated autologous endothelial cells and through in vitro expansion, created a neointima 

on synthetic substrates [61-63].  These approaches have made it into clinical application 

but have not gained widespread use due to a number of factors, including their limited 

applicability to large diameter applications (>6mm internal diameter) [9].  Finding 

appropriate endothelial cell sources for tissue engineering remains a challenge but the 

recent discovery of endothelial progenitor cells (EPCs) in bone marrow and peripheral 

blood [91] is a potentially promising addition to the tissue engineer’s toolbox.  To date, 

several “proof of concept” studies have incorporated EPCs into tissue engineering 

strategies [149-153, 157, 158] but a lot of research remains to understand their true 

therapeutic potential. 

 The research presented in this dissertation includes specific aims which rely on 

the use of primary vascular cells.  Vascular smooth muscle cells were used for the 

fabrication of an engineered blood vessel substitute mimicking the medial layer of a 
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native vessel.  This engineered tissue serves as an in vitro model of the vascular wall and 

provides a physiologic substrate on which new endothelial cell sources can be 

investigated.  Endothelial progenitor cells were isolated, characterized and further studied 

in the context of providing a vascular lining.  This newly discovered cell population holds 

promise for many applications including tissue engineering of vascular grafts and 

vascular networks as well as in cell therapies and induction of endogenous repair 

mechanisms.  Vascular endothelial cells were isolated and served as species specific age 

and sex matched controls for many of the studies with EPCs. 

 For the scope of this research, three primary cell types were isolated and 

cultivated in culture.  This chapter highlights the isolation results and phenotype 

characterization for vascular smooth muscle cells (SMCs), vascular endothelial cells 

(ECs), and peripheral blood derived endothelial progenitor cells (EPCs).  In this study, 

primary cells were obtained from juvenile baboon (Papio anubis) tissues and expanded in 

vtiro to sufficient numbers for subsequent experimental protocols.  The baboon is an 

established non-human primate animal model for cardiovascular and thrombosis studies 

and is considered the gold standard in replicating human physiology for pre-clinical 

studies.  The rheology of baboon blood has been extensively validated against the human 

and is considered a premier model for investigating blood biomaterial interactions in vivo 

[169-173].   

Experimental Design 

 SMCs, ECs and EPCs were isolated from juvenile male baboons (Papio anubis) 

weighing approximately 10-15kg as described in detail in Chapter IV: Materials and 

Methods.  The baboon species was chosen because of the similarity with human 
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physiology which facilitates the translation of these results into predictors for human 

application.  These studies were conducted under approval of the Institutional Animal 

Care and Use Committee (Emory University and Georgia Institute of Technology) in 

accordance with related university policies.  Briefly, fresh carotid artery specimens and 

blood samples were obtained just prior to sacrifice from animals enrolled in other chronic 

implantation studies.  ECs were isolated from the carotid artery lumen using a brief 

enzymatic digestion followed by manual scraping of the surface.  Following dissection 

and removal of the adventitia, SMCs were obtained from the carotid artery media.  The 

vascular tissue was treated overnight in a collagenase solution and then plated into 

standard culture flasks for SMC isolation.  Through the course of this research, we were 

able to perform eight successful SMC isolations. 

EPCs were isolated from the mononuclear fraction of anti-coagulated baboon 

blood and cultivated on fibronectin coated tissue culture plastic in endothelial specific 

growth media enriched with VEGF, EGF, FGF-β and IGF.  Within 9-23 days after 

plating, colonies of adherent cells with cobblestone morphology grew out of the buffy 

coat cultures.  Using standard culture techniques, these outgrowth colonies were 

expanded through passaging and characterized.  This project started as collaboration 

between the laboratory of Dr. Robert Nerem and Dr. Stephen Hanson of Emory 

University (now at Oregon Health and Science University).  Dr. Hanson’s group had 

experience with isolation of baboon peripheral blood EPCs.  Initial studies were 

performed with cells generously donated from Dr. Hanson but as the project progressed 

an additional four successful isolations were performed.  The results presented in this 

chapter are results from the later isolations.   
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The cell phenotype was characterized using light and confocal microscopy in 

addition to flow cytometry to investigate protein expression and cell specific functions. 

Results 

Baboon Arterial Smooth Muscle Cells (SMCs) 

Phase Contrast Microscopy 

 Phase contrast microscopy images in Figure 5.1 show the spindle morphology of 

baboon carotid artery smooth muscle cells in culture.  The collagenase digestion resulted 

in a heterogeneous slurry of partially digested tissue and single cells which were plated 

onto tissue culture flasks.  As shown in Figure 5.1A, following five days in culture 

adherent pieces of partially digested tissue were visible surrounded by an abundance of 

spindle shaped cells.  In other areas of the culture flask, single adherent cells were visible 

(Figure 5.1B).  Remnants of tissue could be seen in the cultures for 1-2 passages.  SMCs 

were expanded in culture and used for experiments between passages 6-8.  As SMCs 

reached confluence, SMC morphology took on a “hill and valley” appearance as shown 

in Figure 5.1C. 
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Figure 5.1:  Phase contrast microscopy of SMCs.  (A,B) Baboon carotid artery smooth 
muscle cells (SMCs, passage 0) five days after enzymatic digestion of native tissue (C) 
SMC expanded on tissue culture plastic (passage 7).  Scale bar = 100µm.   
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Contractile Protein Expression 

Immunofluorescence 

 Using immunofluorescence, SMC monolayers were stained with antibodies to 

proteins associated with the smooth muscle cell cytoskeleton and contractile apparatus.  

As shown in Figure 5.2, staining was performed for the major contractile proteins, actin 

(alpha smooth muscle isoform) and myosin (full length including SM-1 and SM-2 

isoforms) as well as for the regulator protein, calponin.  The baboon carotid artery 

smooth muscle cells (SMCs) showed strong expression of alpha smooth muscle actin and 

weaker expression of calponin (Figure 5.2A,B).  Myosin heavy chain expression was not 

detected using immunofluorescence (Figure 5.2C). 

Flow Cytometry 

 Flow cytometry was used as a semi-quantitative method to characterize SMC 

phenotype.  Figure 5.3 shows representative histograms and quantification of protein 

expression for alpha smooth muscle actin, calponin and myosin heavy chain in SMCs.  

Expression was quantified as the percentage of cells which had fluorescence greater than 

95% of the negative control.  The large majority of SMCs were positive for alpha smooth 

muscle actin (99.9%) and calponin (86.2%) but showed negligible expression of myosin 

heavy chain (4.6%). 
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Figure 5.2:  Confocal microscopy of contractile protein expression in SMCs.  (A) 
Baboon carotid artery smooth muscle cells (SMCs, passage 2) stained for expression of 
alpha smooth muscle actin, (B) calponin, (C) smooth muscle myosin heavy chain.  Scale 
bar = 50µm.   
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Figure 5.3:  Characterization of SMC protein expression using flow cytometry.  
Representative flow cytometry histograms are shown for each of the proteins investigated 
in baboon carotid artery smooth muscle cells (SMCs, passage 2) (left panel).  Black 
outlines the negative control.  Red histograms are the fluorescently labeled cell samples.  
Protein expression was quantified from flow cytometry histograms (right panel).  Cells 
with fluorescence values >95 percent of the negative control were considered positive.   

 59



Baboon Arterial Endothelial Cells (ECs) 

Phase Contrast Microscopy 

 Baboon carotid artery endothelial cells were isolated from fresh carotid artery 

specimens using a brief enzymatic (collagenase and/or typsin) digestion followed by 

manual scraping of the luminal surface.  The lumen was rinsed and the solution was 

plated onto tissue culture plastic coated with either 50ug/mL Type I collagen or human 

fibronectin.  Figure 5.4 shows phase contrast microscopy images of adherent carotid 

artery endothelial cells five days after initial plating.  ECs showed cobblestone 

morphology and grew into contact inhibited confluent monolayers.  Occasionally, sheets 

of endothelial cells removed from the native artery surface during scraping or small 

pieces of extracellular matrix could be seen in the culture dishes (Figure 5.4A).  

Individual cells as well as multi-cellular sheets adhered to the culture flask and began to 

proliferate within the first few days of culture. 
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Figure 5.4:  Phase contrast microscopy of ECs.  (A,B) Baboon carotid artery 
endothelial cells (ECs, passage 0) five days after isolation from native tissue.  Scale bar 
= 100µm.   
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Receptor Expression and Cellular Function 

Receptor Expression – Immunofluorescence  

 Figure 5.5 shows representative images of fluorescent staining for alpha smooth 

muscle actin (SMA), nitric oxide synthase 3 (NOS3), Ulex europaeus agglutinin I (ulex 

lectin) and ve-cadherin in baboon carotid artery ECs.  Hoechst 33258 was used as a 

nuclear counterstain.  ECs displayed no detectable expression of SMA but were positive 

for expression of NOS3 and ve-cadherin.  Additionally, ECs bound FITC conjugated ulex 

lectin to their cell surface. 

Cellular Function 

 Two markers of endothelial cell specific function were assayed using fluorescent 

microscopy.  Cellular uptake of Dil labeled acetylated LDL (acLDL) and intracellular 

nitric oxide (NO) production (shown with a NO specific fluorescence indicator, DAF-

2DA) is shown in Figure 5.6.  ECs readily took up Dil acLDL into intracellular storage 

pools as indicated by the bright red staining in individual cells.  In panel B of Figure 5.6, 

EC also stained positive for DAF-2DA indicating the presence of intracellular nitric 

oxide. 

Baboon Circulating Endothelial Progenitor Cells (EPCs) 

 Fresh anti-coagulated blood (50-250mL) was diluted 1:2 in HBSS+1mM 

EDTA+0.5%BSA, layered onto Histopaque-1077 (Figure 5.7A) and centrifuged 

following the manufacturer’s instructions.  This gradient centrifugation resulted in 

aggregation and sedimentation of the erythrocytes and granulocytes to the bottom of the 

centrifuge tube.  The mononuclear cell fraction of the blood remained at the plasma-
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Histopaque-1077 interface (Figure 5.7B) and could be separated, washed and plated onto 

fibronectin coated tissue culture plastic. 
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Figure 5.5:  Fluorescent microscopy of surface markers in ECs.  Immunofluroescent 
staining of baboon carotid artery endothelial cells (ECs, passage 5) for expression of (A) 
alpha smooth muscle actin (SMA), (B) nitric oxide synthase 3 (NOS3), (C) Ulex 
europaeus agglutinin I (ulex lectin) and (D) ve-cadherin.  Hoechst 33258 was used as a 
nuclear counterstain.  Scale bar = 50µm.   
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Figure 5.6:  Fluorescent microscopy of markers of cellular function in ECs.  
Fluorescent microscopy images show baboon carotid artery endothelial cells (ECs, 
passage 5) were positive for (A) uptake of Dil-labeled acetylated LDL and (B) 
intracellular nitric oxide (NO) production as shown with a NO specific fluorescence 
indicator, DAF-2DA.  (A) Hoechst 33258 was used as a nuclear counterstain.  Scale bar 
= 100µm.   

 

 

Figure 5.7:  Buffy coat preparation from baboon peripheral blood.  (A) Blood 
collected in 3.8% sodium citrate or acid citrate dextrose (ACD) solution was diluted 1:2 
in HBSS+1mM EDTA+0.5%BSA and layered onto Histopaque-1077.  (B) Following 
centrifugation, arrow indicates mononuclear cell fraction plated for endothelial 
progenitor cell isolation.  Photograph by TLJ. 

BA 
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Phase contrast microscopy 

 After 24 hours, unattached cells and debris were removed by exchange of the 

culture medium.  Figure 5.8 shows representative phase contract microscopy images of 

the mononuclear cell culture in the days following plating.  The adherent cells had a 

heterogenous morphology.  There were many round, monocyte-like cells as well as a 

number of flattened cells mixed with spindle-like cells.  Media was changed every other 

day and the number of rounded monocyte-like cells diminished over the course of 

approximately 4 weeks.  Cultures were monitored daily and between 9 and 23 days of 

culture, small outgrowth colonies of approximately 30-100 cells were observed.  The 

colonies had cobblestone morphology as shown in Figure 5.9 and rapidly proliferated.  

Colonies were selectively trypsinized and replated in separate culture dishes.  This rapid 

proliferation continued allowing for exponential expansion of the cells.  Cells were 

cryopreserved in 10% dimethyl sulfoxide (DMSO) using standard techniques and thawed 

as needed for characterization and further study. 

Receptor Expression and Cellular Function 

Receptor Expression – Immunofluorescence  

 EPCs were stained for a panel of markers using immunofluorescent techniques.  

Figure 5.10 shows representative images investigating EPCs expression of both smooth 

muscle and endothelial specific markers.  EPCs were negative for expression of SMA.  

EPCs showed positive expression of VEGR1, NOS3, ve-cadherin and von willebrand 

factor (VWF).  EPCs also bound FITC conjugated ulex lectin. 
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Cellular Function 

 As indicators of endothelial cell specific function, the uptake of acLDL, the 

production of intracellular nitric oxide (NO) and the ability to form in vitro vascular 

network structures was investigated.  EPCs readily took up Dil labeled acLDL and also 

stained positive for intracellular NO using a NO specific fluorescence indicator, DAF-

2DA as shown in Figure 5.11. 

 Figure 5.12 shows representative images of EPCs which have been labeled with a 

fluorescent cell tracker (CellTracker Orange CMTMR, Molecular Probes) to enhance 

visualization prior to seeding onto Matrigel™ plugs in multiwell culture dishes.  EPCs 

formed extensive multicellular branching networks when seeded onto Matrigel™ for 18-

24 hours.  By 18 hours, EPCs had formed substantial tube like structures covering the 

Matrigel™ surface which were essentially unchanged at 24 hours.  Additional studies 

performed with unlabeled EPCs showed similar results (data not shown). 

Receptor Expression – Flow Cytometry 

 Flow cytometry was used as a semi-quantitative method to investigate EPC 

protein expression.  Figure 5.13 shows representative histograms of EPCs labeled for 

expression of VWF, ve-cadherin, ulex lectin, thrombomodulin, pecam (CD31), flt-1 

(VEGFR1), flk-1 (VEGFR2), eNOS (NOS3), endoglin (CD105), and CD14.  In addition, 

quantification of flow cytometry data from independent experiments is compiled in 

Figure 5.14.  Cells with fluorescence values greater than 95% of the negative control 

were considered positive.  EPCs were strongly positive for VWF, ve-cadherin, ulex 

lectin, CD31, VEGFR1, eNOS, and CD105 with more than 90% of the cells positive for 
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each of these markers.  EPCs were weakly positive for thrombomodulin and VEGR2 

(23% and 36%, respectively) and showed minimal expression of the monocytic marker, 

CD14 (9%). 
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Figure 5.8:  Phase contrast microscopy of mononuclear cells plated onto 
fibronection coated tissue culture plastic.  Two representative images are shown for 5X 
(A,D), 10X (B,E), and 20X (C,F) magnifications.  Images were taken on days 2-9 of 
culture.  Scale bar = 100µm.   
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Figure 5.9:  Phase contrast microscopy of endothelial progenitor cell (EPC) 
outgrowth from peripheral blood buffy coat cultures.  Representative images are 
shown for 10X (A,D) and 20X (B,C,E,F) magnifications.  Outgrowth colonies were 
observed after 9 to 23 days in culture.  Scale bar = 100µm.   
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Figure 5.10:  Fluorescent microscopy of markers in EPCs.  Immunofluorescent 
staining of baboon endothelial progenitor cells (EPCs, passage 3) for expression of (A) 
alpha smooth muscle actin (SMA), (B) flt-1 / VEFR1 (C) nitric oxide synthase 3 (NOS3), 
(D) Ulex europaeus agglutinin I (ulex lectin), (E) ve-cadherin and (F) von Willebrand 
factor (VWF).  Hoechst 33258 was used as a nuclear counterstain.  Scale bar = 50µm.   
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Figure 5.11:  Fluorescent microscopy of markers of cellular function in EPCs.  
Fluorescent microscopy images show baboon endothelial progenitor cells (EPCs, passage 
3) were positive for (A) uptake of Dil-labeled acetylated LDL and (B) intracellular nitric 
oxide (NO) production as shown with a NO specific fluorescence indicator, DAF-2DA. 
Hoechst 33258 was used as a nuclear counterstain.  Scale bar = 100µm.   

 

B CA B CA

Figure 5.12:  Confocal microscopy of EPC capillary tube formation on Matrigel™.  
Endothelial progenitor cells were labeled with a fluorescent cell tracker and seeded onto 
Matrigel basement membrane matrix.  Following (A) 18 hours and (B,C) 24 hours of 
culture, EPCs readily formed extensive multi-cellular branching networks.  Scale bar = 
200µm.   
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Figure 5.13:  Characterization of EPC protein expression using flow cytometry.  
Representative flow cytometry histograms are shown for each of the proteins 
investigated in EPCs (passage 3).  Black outlines the negative control.  Red histograms 
are the fluorescently labeled cell samples. 

 

 

 

 

 71



 

 

 

 

 

EPC Characterization

0 20 40 60 80 100

cd14

endoglin (CD105)

eNOS

flk-1 (VEGFR2)

flt-1 (VEGFR1)

pecam-1 (CD31)

thrombomodulin (CD141)

ulex lectin

ve-cadherin (CD144)

vWF

percent positive cells
(fluorescence >95% of negative control)

Figure 5.14:  Quantification of EPC protein expression using flow cytometry.  
Protein expression was quantified from flow cytometry histograms.  Cells with 
fluorescence values >95 percent of the negative control were considered positive.  Data 
are expressed as mean ± standard deviation. 

 

 72



Discussion 

Limitations of the Experimental Approach 

 There are several limitations of this study.  In order to isolate cells for in vitro 

culture, the cells were removed from their in vivo native environment of the vascular wall 

or blood.  In vivo, the cells are surrounded by a local milieu of extracellular matrix 

proteins, neighboring cells, soluble or bound factors and a three-dimensional (3-D) 

environment which may or may not be recreated in vitro.  The advantages of this in vitro 

culture approach is that the local environment of the cells is now more easily controlled 

allowing for study of numerous isolated independent variables (i.e. cytokines, substrate, 

local shear stress) on the cellular response.  The disadvantage of this approach may be 

that in the simplified in vitro culture environment, cells could alter their phenotype and 

may not “react” exactly as would be seen in vivo.  Our understanding of vascular biology 

has advanced significantly since the advancement of routine cell culture owing to the fact 

that in vitro culture allows the researcher a mechanism to “probe” specific cellular 

functions.  Culture techniques have begun to advance, incorporating multiple facets of the 

in vivo environment into in vitro platforms.  For example, specialized growth medium 

cocktails are used and co-culture with multiple cell types as well as incorporation of 

extracellular matrix proteins are now often reported in published research.  In addition to 

these advances, we have also incorporated more physiologic in vitro culture methods in 

our own research.  The primary smooth muscle cells described in this study were used as 

building blocks in the generation of an engineered tissue which mimics the medial layer 

of the native vascular wall.  By combining the SMCs with the natural extracellular matrix 
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protein, Type I collagen in a 3-D environment we have created an in vitro model which 

mimics the in vivo blood vessel.  In the research presented in this dissertation, a 

combination of culture approaches will be presented and their advantages and 

disadvantages discussed.  In this study, we have removed SMCs, ECs and EPCs from 

their native environment to allow for detailed characterization of their phenotype and 

function. 

Baboon Arterial Smooth Muscle Cells 

 In this study, baboon carotid artery smooth muscle cells (SMCs) were 

successfully isolated and cultured in vitro and maintained for up to 10 passages.  Since 

the first reports describing smooth muscle cells culture [174, 175], there have been 

significant advances in vascular biology research performed with cultured SMCs.  The 

use of baboon derived primary cells was chosen in preparation for future pre-clinical 

studies where the non-human primate is an established model.  Isolation of the SMCs 

from the vascular media was performed using a facilitated migration method [161].  This 

method combined the enzymatic digestion method used by some groups [162] and the 

explant outgrowth method which has also been described previously [163] to obtain a 

population of SMCs from the vascular media cross-section.  Smooth muscle cells are 

capable of expressing a continuous spectrum of phenotypes ranging from exclusively 

“contractile” on one end to exclusively “synthetic” on the other end [176].  In this study, 

immunofluorescence and flow cytometry were used to positively identify the cell 

population as SMCs which lie somewhere along the spectrum between “contractile” and 

“synthetic”.  The baboon cells expressed SMA and calponin but were negative for 

myosin heavy chain.  It has been previously reported that once SMCs are plated in 
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culture, they rapidly loose their “contractile” phenotype which also corresponds to a 

dramatic decrease in staining for myosin isoforms [177].  This is consistent with our own 

data and may explain why myosin heavy chain expression was not detected using either 

immunofluorescence or flow cytometry.  Unless otherwise stated, SMCs were used 

between passages 6-8 for experimental protocols. 

Baboon Arterial Endothelial Cells 

 Baboon carotid artery endothelial cells were isolated and cultured from fresh 

vascular tissues.  The ECs were characteristic of normal large vessel endothelial cells 

forming contact inhibited confluent monolayers with cobblestone morphology.  In early 

isolation attempts to obtain a homogeneous population of ECs, some cultures were 

“contaminated” with a mixed cell population containing spindle shaped SMCs or 

fibroblast-like cells which would quickly “take over” the culture.  These cultures were 

abandoned and only cultures containing a uniform polygonal morphology were expanded 

and characterized.  Immunofluorescence showed that the cell populations were negative 

for SMA and were positive for a number of endothelial specific antigens including 

NOS3, ulex lectin and ve-cadherin.  Endothelial specific functions; the uptake of acLDL 

and nitric oxide production, were also confirmed in baboon carotid artery ECs.  When the 

lysine residues of LDL’s apoprotein are acetylated, the modified LDL is taken up by 

specialized scavenger receptors on endothelial cells and can be easily visualized using a 

fluorescently labeled acLDL [178].  Intracellular NO was visualized in the ECs using 

DAF-2DA (4,5-diaminofluorescein diacetate).  The diacetate indicator easily enters cells 

allowing the ester bonds to be hydrolyzed by intracellular esterases.  This modification 

results in generation of the relatively nonfluorescent, membrane impermeable DAF-2.  
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DAF-2 reacts rapidly and irreversibly in solution with NO and NO-derived reactive 

species in a concentration dependent manner to produce the highly fluorescent 

triazolofluorescein (DAF-2T).  This method has been used to investigate NO pathways 

and is sensitive to varying concentrations of intracellular NO [179-181]. 

 Consistent with other ongoing research in our laboratory, baboon SMCs and ECs 

showed very similar morphology and growth to human aortic and human coronary artery 

cells (data not shown).  Primary ECs were expanded in culture and cryopreserved as 

needed.  Unless otherwise stated, ECs were used between passages 5-7 for all subsequent 

studies. 

Baboon Circulating Endothelial Progenitor Cells 

 The work described in this dissertation used a blood outgrowth method to 

establish EPC cultures.  Using a modification of the method described by Lin et al. [123] 

(culture of mononuclear cells on culture dishes coated with fibronectin rather than type I 

collagen), we established cultures which have been expanded for greater than 9 passages.  

This cell population, derived from baboon peripheral blood, most resembles the “late 

EPC” phenotype described in recent literature.  For the remainder of this thesis, this cell 

population will be termed peripheral blood derived endothelial progenitor cells or EPCs. 

 Table 5.1 summarizes the results obtained for characterization of the baboon 

peripheral blood derived EPCs.  The EPCs had an endothelial-like phenotype with a 

cobblestone morphology and positive expression of CD105, NOS3, VEGFR1, VEGFR2, 

CD31, THBD, ve-cadherin, and VWF.  The cell population did not express alpha smooth 

muscle actin, one of the contractile proteins expressed by vascular smooth muscle cells 

and they showed minimal expression of CD14, a known monocyte marker.  The EPCs 
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additionally displayed endothelial-like functions by forming capillary tubes structures on 

Matrigel™ basement membrane, taking up Dil labeled acLDL, and staining positive for 

intracellular nitric oxide. 

 These results compare well with many studies published in the literature.  Table 

5.2 provides a summary of recent literature which has reported characterization of blood 

outgrowth colonies maintained beyond 9 days in culture.  In this study, we reported the 

emergence of outgrowth colonies between 9-23 days of culture in growth factor 

supplemented medium.  This is also consistent with other investigators who have 

reported the appearance of colonies between 5 and 22 days after plating the peripheral 

blood mononuclear cell (PBMC) fraction onto protein (fibronectin, collagen or gelatin) 

coated culture dishes [129, 130, 132, 133, 135, 138, 158].   

 Flow cytometry was used to obtain a semi-quantitative evaluation of the marker 

expression in EPCs.  Figure 5.15 shows representative histograms of protein expression 

measured using flow cytometry for EPCs compared to age and sex matched baboon 

carotid artery ECs.  Both cell types show very similar expression profiles for all of the 

markers investigated (CD105, NOS3, VEGFR1, VEGFR2, CD31, THBD, ulex lectin, ve-

cadherin, VWF and CD14).  Yoon et al [140] compared human blood outgrowth 

endothelial cells (OECs) with gastroepiploic artery endothelial cells (GEAECs) obtained 

from age-matched donors and also saw very similar flow cytometry expression profiles 

for AC133, CD34, KDR, ve-cadherin, CD31, CD14 and CD45.  Using reverse-

transcriptase polymerase chain reaction (RT-PCR), Hur et al. [133] demonstrated that 

human late EPCs after 5 weeks in culture exhibited strong expression of endothelial 

genes, ve-cadherin, KDR, FLT-1, eNOS, and VWF at the same level as human umbilical 
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vein endothelial cells (HUVECs).  At the protein level, Hur et al also showed very similar 

flow cytometry expression profiles between the late EPCs and HUVEC for CD31, KDR, 

ve-cadherin, and CD45.  Vascular endothelial cells have not only been compared to 

peripheral blood outgrowth EPCs but also to EPCs derived from the umbilical cord blood 

(UCB) of full term newborns.  Ingram et al. [134] used flow cytometry to perform 

immunophenotype analysis of UCB derived EPCs, HUVECs and human aortic 

endothelial cells (HAECs) and showed that their expression of CD31, CD141, CD105, 

CD146, CD144, VWF, flk-1, CD45, and CD14 were almost identical. 

 At least three surface markers reported by other investigators using late blood 

outgrowth culture methods as part of EPC characterization were not included in this 

study.  CD34 expression in baboon EPCs, a known marker of early hematopoietic 

progenitors, was investigated in preliminary studies but due to concerns with antibody 

cross-reactivity and lack of good control samples, it was not investigated further.  At least 

three studies have shown positive CD34 expression [135, 138, 140] and at least one 

reported that EPCs were negative for CD34 [127].  CD133 or hematopoietic stem cell 

antigen and CD117 (c-kit) also known as mast/stem cell growth factor receptor have been 

investigated by others.  Again, mixed results were seen for blood outgrowth EPC 

expression of CD133, one report found low levels of expression [135] and two studies 

report the cells were CD133 negative [127, 140].  Ingram et al. reported the outgrowth 

cells were CD117 positive [135].  Each of these antigens are considered “early” markers 

and have been reported more frequently in studies using cell selection or from 

mononuclear fractions early in culture (usually only a few days).  As mentioned 

previously, CD133 has been shown to decrease with differentiation and time in culture 
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[116] which may explain these results.  Discrepancies could be due to the culture 

conditions (medium and/or growth factor supplements) and time of analysis (from fresh 

blood or following in vitro culture) or may be due to different “differentiation states”.  

Thinking of cellular differentiation as a continuum from completely undifferentiated or 

uncommitted to fully differentiated; maybe the EPC populations described by separate 

researches are at different points along the continuum.  Additional research in this area 

will be needed to better define EPC biology. 

 In this study, we collaborated with the lab of Dr. Stephen Hanson to obtain 

baboon tissue and blood for cell isolations.  In addition, the early studies in this 

dissertation were performed with EPCs generously donated by Dr. Hanson’s laboratory.  

The isolations performed in this study used the same methodology for isolation and 

culture as Hanson’s group.  Dr. Minhui Ma, working with Dr. Hanson performed 

extensive characterization of the baboon EPCs isolated in their laboratory.  Ma and 

Hanson found that EPCs had the following marker profile:  VWF++, ve-cadherin++, 

CD31++, CD34-, VEGFR2++, CD146+, THBD+, E-selectin+, ICAM1-, VCAM1- and 

NOS3+ using immunocytochemistry.  Drs. Ma and Hanson also found very similar 

expression profiles for ECs.  This data shows strong agreement with the characterization 

presented as part of this dissertation and therefore no future distinction will be made 

between studies using EPC isolations performed prior to or during these studies. 

 Through this work, a population of endothelial-like cells has been isolated from 

peripheral blood and maintained in culture.  The results are significant because we have 

demonstrated in a non-human primate model, an autologous population of cells can be 

derived from a minimally invasive blood draw.  The therapeutic potential of this cell 
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population still remains unknown, but as presented in the following chapters, additional 

research will focus on their potential for providing a non-thrombogenic vascular lining in 

tissue engineering strategies. 

 

 

 

Table 5.1:  Summary:  Baboon peripheral blood derived EPC phenotype 

Morphology

polygonal/cobblestone

Growth pattern in vitro late outgrowth observed after 9-23 days in culture

Antigen expression SMA-, CD14-, CD105++, NOS3++, VEGFR2+, VEGFR1++, 
CD31++, THBD+, Ve-cadherin++, VWF++

AcLDL uptake and lectin binding positive

Tube formation yes

NO production positive

Responsive to fluid shear stress cytoskeletal regorganization, gene, and protein 
changes

++  expression in > 90% of cells
+  expression in > 20% of cells
- expression in < 10% of cells
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Table 5.2: Characteristics of late blood outgrowth EPCs reported by other 
investigators 

   

Characteristic Literature Reference 

Cobblestone morphology [123, 129, 130, 132, 133, 135, 138, 158] 

SMA negative [136] 

CD14 negative [123, 130, 135, 138, 140] 

endoglin (CD105) positive [127, 135, 138, 146] 

eNOS (NOS3) positive [130, 132, 133, 158] 

flk-1 (VEGFR2) positive [123, 127, 129, 132, 133, 135, 140, 158] 

flt-1 (VEGFR1) positive [130, 133] 

pecam-1 (CD31) positive [130, 132, 133, 135, 136, 138, 140, 157] 

thrombomodulin (CD141) positive [135] 

ve-cadherin (CD144) positive [123, 127, 129, 130, 132, 133, 135, 136, 
140, 146] 

A
nt

ig
en

 E
xp

re
ss

io
n 

vWF positive [123, 129, 132, 133, 135, 136, 146, 157, 
158] 

AcLDL uptake and lectin binding [123, 127, 129, 130, 132, 133, 135, 138, 
157, 158] 

Tube formation [129, 130, 133, 135, 140] 

NO production [130, 132, 133, 158] 

Responsive to fluid shear stress [145, 146, 148, 149, 157, 158] 

 81



 

 

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

vWF ve-cadherin

ulex lectin thrombomodulin

pecam (cd31) flt-1 (VEGFR1)

flk-1 (VEGFR2) eNOS

endoglin (cd105)

FITC-A

410310210110010

C
ou

nt

35

28

21

14

7

0

cd14 

FITC-A

410310210110010

C
ou

nt

25

20

15

10

5

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

50

40

30

20

10

0

FITC-A

410310210110010

C
ou

nt

50

40

30

20

10

0

FITC-A

410310210110010

C
ou

nt

55
50
45
40
35
30
25
20
15
10
5
0

FITC-A

410310210110010

C
ou

nt

40

32

24

16

8

0

vWF ve-cadherin

ulex lectin thrombomodulin

pecam (cd31) flt-1 (VEGFR1)

flk-1 (VEGFR2) eNOS

endoglin (cd105) cd14 

A B

EPC EC
FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

vWF ve-cadherin

ulex lectin thrombomodulin

pecam (cd31) flt-1 (VEGFR1)

flk-1 (VEGFR2) eNOS

endoglin (cd105)

FITC-A

410310210110010

C
ou

nt

35

28

21

14

7

0

cd14 

FITC-A

410310210110010

C
ou

nt

25

20

15

10

5

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

vWF ve-cadherin

ulex lectin thrombomodulin

pecam (cd31) flt-1 (VEGFR1)

flk-1 (VEGFR2) eNOS

endoglin (cd105)

FITC-A

410310210110010

C
ou

nt

35

28

21

14

7

0

cd14 

FITC-A

410310210110010

C
ou

nt

25

20

15

10

5

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

50

40

30

20

10

0

FITC-A

410310210110010

C
ou

nt

50

40

30

20

10

0

FITC-A

410310210110010

C
ou

nt

55
50
45
40
35
30
25
20
15
10
5
0

FITC-A

410310210110010

C
ou

nt

40

32

24

16

8

0

vWF ve-cadherin

ulex lectin thrombomodulin

pecam (cd31) flt-1 (VEGFR1)

flk-1 (VEGFR2) eNOS

endoglin (cd105) cd14 

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

75

60

45

30

15

0

FITC-A

410310210110010

C
ou

nt

50

40

30

20

10

0

FITC-A

410310210110010

C
ou

nt

50

40

30

20

10

0

FITC-A

410310210110010

C
ou

nt

55
50
45
40
35
30
25
20
15
10
5
0

FITC-A

410310210110010

C
ou

nt

40

32

24

16

8

0

vWF ve-cadherin

ulex lectin thrombomodulin

pecam (cd31) flt-1 (VEGFR1)

flk-1 (VEGFR2) eNOS

endoglin (cd105) cd14 

A B

EPC EC  

Figure 5.15:  Comparison of EPC and EC protein expression using flow 
cytometry analysis.  EPCs (A) and ECs (B) were subjected to flow cytometry 
following immunofluorescence labeling.  Representative flow cytometry histograms 
are shown for each of the proteins investigated in EPCs (passage 3) and ECs (passage 
5).  Black outlines the negative control.  Red histograms are the fluorescently labeled 
cell samples. 
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CHAPTER VI:  MICROARRAY ANALYSIS OF GENE EXPRESSION 

PROFILES OF ENDOTHELIAL PROGENITOR CELLS AND VASCULAR 

ENDOTHELIAL CELLS IN STATIC AND FLUID FLOW ENVIRONMENTS 

 

Introduction 

 An alteration in gene expression marks the cell’s earliest response to a stimulus 

and initiates a cascade of events which lead to alterations in protein expression and 

cellular function.  The advent of high throughput screening technologies such as DNA 

microarrays, enables researchers to probe thousands of genes simultaneously without the 

time and labor required using other candidate gene approaches such as reverse 

transcription-polymerase chain reaction (RT-PCR), Northern blot analysis or in situ 

hybridization.  DNA microarrays have already been used to advance the study of 

endothelial cell (EC) biology.  Through the use of these methodologies, advancements 

have also been made in understanding cellular response to the local mechanical 

environment, including EC response to fluid shear stress.  DNA microarray approaches 

allow investigations to probe clusters of genes related to specific high level functions as 

well to as understand individual gene responses to a given stimulus.  In tissue engineering 

there continues to be an ongoing challenge of identifying cell sources which will provide 

appropriate functions in an engineered therapy.  DNA microarrays may offer the 

possibility of “screening” promising new cell sources with hopes of predicting 

therapeutic potential.  

 Endothelial progenitor cells (EPCs) derived from peripheral blood have emerged 

as an “endothelial-like” cell which can be isolated from blood outgrowth cultures.  The 
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ability to isolate and expand this cell population from a minimally invasive blood draw 

makes these cells a potentially important autologous source of cells for tissue engineering 

and other therapeutic strategies.  Since the first report of EPCs in the adult circulation 

[91], there has been a significant amount of research into the origin, phenotype and 

therapeutic potential of this heterogeneous cell population.  Although there are many 

reports confirming that EPCs express a number of endothelial specific cell markers, very 

little known about how EPCs respond to stress compared to their mature vascular 

endothelial cell counterparts.  One possible application of EPCs in tissue engineering 

would be as a vascular lining on an engineered blood vessel substitute.  In this 

application, EPCs would be exposed to a complex mechanical environment dominated by 

fluid shear stresses imposed by the flowing blood.  In order to study the response of EPCs 

to this hemodynamic environment, DNA microarray technology offers an excellent tool 

for capturing the entire transcriptional profile and allows comparisons to be made 

investigating both cell type and shear stress dependent responses. 

 ECs perform many specialized functions including maintaining hemostasis, 

responding to oxidative modifications in the circulation and contributing to 

neovascularization in vivo.  Fluid shear stress has been shown to be a potent stimulus for 

ECs and has also been implicated in endothelial inflammation and atherosclerosis.  

Therefore developing an understanding of EPC’s response to shear stress will provide a 

foundation for exploiting their therapeutic potential in this environment.  The objective of 

this study was to characterize the similarities and differences between EPCs and ECs 

though transcriptional profiles in static and shear conditions in order to identify 
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mechanosensitive proteins that may be important for application of EPCs in tissue 

engineering. 

Experimental Design 

 ECs and EPCs were isolated from juvenile male baboons (Papio anubis) as 

described in detail in Chapter IV: Materials and Methods.  ECs from fresh carotid artery 

tissue and EPCs from peripheral blood samples were shown to be positive for endothelial 

receptor expression and cellular function (see detailed analysis in Chapter V:  Cell 

Isolation and Characterization).  ECs and EPCs were seeded onto collagen coated glass 

slides at confluence and allowed to adhere for 48 hours.  A parallel plate flow chamber 

was used to expose ECs and EPCs to steady laminar shear stress (15 dynes/cm2) for 24 

hours.  At the end of 24 hours of shear exposure, cells were removed from the substrate 

and lysed for extraction of total RNA.  Statically cultured slides served as controls.  This 

experimental timeline is displayed graphically in Figure 6.1.  Total RNA was pooled 

from two identical and independent experiments.  Quality of RNA was assessed using an 

Agilent Bioanalyzer 2100 by evaluating degradation of ribosomal RNA peaks.  Quantity 

of high quality RNA was assessed by absorbance at 260nm.  Competitive microarray 

hybridization was performed between experimental samples and Universal Human 

Reference RNA (Stratagene) labeled with Cy3 and Cy5 fluorophores.  Figure 6.2 shows a 

schematic of the microarray experimental design where each of the four conditions; EC 

shear, EC static,  EPC shear and EPC static, were hybridized against human reference 

RNA on one microarray slide.  For each of the four conditions, three replicate 

microarrays were analyzed.   
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Figure 6.3 outlines the analysis procedure that was performed for the microarray 

studies.  The microarray area was scanned using the Agilent Microarray Scanner System 

and image extraction was performed using Agilent Feature Extraction Image Analysis 

software.  GeneSpring software was used to perform statistical analysis of gene 

expression from the 12 microarrays (3 replicates for each of the 4 conditions).  A one-

way analysis of variance (ANOVA) was performed using a Student-Newman-Keuls post 

hoc test and the Benjamini and Hochberg False Discovery Rate multiple testing 

correction.  P-values <0.05 were considered significant.  Pairwise comparisons were 

performed using a student’s t-test.  The four comparisons which will be discussed are the 

effect of shear on each cell type (EC:  Shear vs. Static and EPC:  Shear vs. Static) and a 

comparison of each cell type in static and shear environments (Static:  EPC vs. EC and 

Shear:  EPC vs. EC). 

 Ingenuity Pathways Analysis (IPA) software was used to query significantly 

expressed genes against the Ingenuity Knowledge Base, a comprehensive database of 

published biological information.  This software allowed investigation of relevant 

networks and biological functions for each of the comparisons. 

 Confirmation of microarray results was performed using quantitative real time 

reverse transcription-polymerase chain reaction (qRT-PCR) to quantify mRNA for three 

genes significantly expressed in the microarray comparisons; tissue factor (F3), tissue 

factor pathway inhibitor (TFPI) and thrombomodulin (THBD). 
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Figure 6.1:  Outline of experimental time course.  Cells were exposed to 15 dynes/cm2 
steady laminar shear stress for 24 hours following a 48 hour static incubation. 
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Figure 6.2:  Microarray experimental design 
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EC: Shear vs Static
Four comparisons: EPC: Shear vs Static

p<0.05 condsidered significant Static: EPC vs EC
Shear: EPC vs EC

1-way Analysis of Variance (ANOVA)
Multiple Testing Correction (MTC):  Benjamini and Hochberg False Discovery Rate 

Post hoc test:  Student-Newman-Keuls 

Pairwise Comparison:  Student's t-test

p<0.05 condsidered significant

Imported expression data for 12 microarrays (3 replicates of each condition)
Four conditions:  EC static, EC shear, EPC static, EPC shear

Agilent Whole Human Genome Microarray with 44,290 features / microarray            
(~41,000 genes / microarray)

Microarray area scanned using Agilent Microarray Scanner System

Image Extraction:  Agilent Feature Extraction Image Analysis software 

GeneSpring Analysis

Figure 6.3:  Microarray analysis methods 
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Results 

Overview of Transcriptional Profile Analysis 

 Microarray studies were performed using sheared and static control samples of 

ECs and EPCs.  An ANOVA was performed using GeneSpring with p-values <0.05 

considered significant.  Table 6.1 provides a summary of the total number of genes 

regulated based on significance criteria in this study.  Following outlier subtraction based 

on Agilent microarray internal controls, there were a total of 40,324 gene probes 

investigated.  Using an ANOVA p-value cutoff of p<0.05, there were 5854 genes which 

were significantly regulated across all array comparisons.  All further analysis only 

considered this pool of genes which met ANOVA significance criteria. 

 Pairwise comparisons were made investigating the effect of shear stress and cell 

type on gene expression using a student’s t-test.  As shown in Table 6.1, between 2811 

and 4256 genes of the 5824 genes were up or downregulated based on pairwise 

comparison significance (p<0.05).  Of those genes which met pairwise significance, shear 

stress regulated 939 and 625 genes more than 1.5 fold in ECs and EPCs, respectively.  

When comparing EPCs versus ECs, 1247 genes were differentially regulated more than 

1.5 fold in static conditions and 1528 genes were altered by shear.  Comparisons of gene 

expression are shown as a fold change ratio and therefore ratios of >1.5 or <0.666 are 

included in these numbers. 

 Focusing on genes which met the three criteria (ANOVA p<0.05, pairwise t-test 

p<0.05 and fold change >1.5 or <0.666), Figure 6.4 uses venn diagrams to project the 

overlap of genes regulated similarly by shear in ECs and EPCs (283 genes) and the genes 
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regulated similarly in both cell types (782 genes) under static and shear conditions.  Shear 

exposure upregulated 428 and 319 genes in ECs and EPCs, respectively and of those, 122 

were common to both cell types.  On the other hand, shear exposure downregulated 

expression of 511 and 306 genes in ECs and EPCs, respectively with 152 genes common 

to both cell types.  A total of 579 and 795 genes were expressed more in EPCs compared 

to ECs in static and shear conditions, respectively.  Conversely, 668 and 733 genes were 

expressed more in ECs under the same conditions.  Table 6.2 lists a detailed summary of 

the number of genes which met the three criteria (ANOVA p<0.05, pairwise t-test p<0.05 

and fold change >1.5 or <0.666) in each comparison.  There were a total of 57 genes 

which were expressed in all four comparisons, six of which were upregulated in all 

comparisons and eight of which were downregulated. 

qRT-PCR Validation of Microarray Data 

 Quantitative real time RT-PCR (qRT-PCR) was used to validate select genes 

within the microarray data.  We chose three genes which met the ANOVA significance 

criteria (p<0.05) in the microarray results and were differentially regulated across the 

four comparisons.  Tissue factor (F3), tissue factor pathway inhibitor (TFPI) and 

thrombomodulin (THBD) expression was quantified using qRT-PCR methods.  All qRT-

PCR analyses were performed on n≥3 samples from at least three independent 

experiments.  Data are reported as fold change ratios with significance p-values.  

Statistical comparisons were based on ANOVA and Tukey’s test for pairwise 

comparisons with a p-value < 0.05 considered significant.  In order to make the variance 

independent of the mean, statistical analysis of qRT-PCR data was performed following 

logarithmic transformation of the raw data.  
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Table 6.1:  Microarray data statistical analysis summary.  Microarray data was 
filtered based on significance criteria.  The number of genes significantly regulated for 
each of the four comparisons is shown. 

EC:  
Shear vs. 

Static

EPC: 
Shear vs. 

Static

Static:  
EPC vs. 

EC

Shear:  
EPC vs. 

EC

40324 40324 40324 40324

ANOVA with MTC p<0.05 5854 5854 5854 5854

Pairwise comparison (Students t-test) p<0.05 3323 2811 3835 4256

Total number of genes satisflying ANOVA MTC 
p<0.05, t-test p<0.05 and fold change criteria (>1.5 

or <0.666)
939 625 1247 1528

Data filters 
applied in 

series:

Total gene probes investigated (following outlier subtraction)

Microarray Summary
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EC EPC

Shear vs. Static
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EC EPC
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Static Shear

EPC vs. EC

Figure 6.4:  Venn diagram illustration of Shear vs. Static and EPC vs. EC microarray 
results.  The number of genes which met significance criteria (ANOVA p<0.05, t-test<0.05 
and fold change >1.5 or <0.666) for each comparison.  (left panel) shear vs. static for ECs 
and EPCs, (right panel) EPC vs. EC for static and shear.  Red and yellow circles represent 
the total number of genes significantly expressed for the specified condition.  The orange 
overlapping region represents the number of genes common between the two conditions. 
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Table 6.2:  Microarray analysis investigating the effect of cell type and shear stress 
on gene expression.  The number of genes significantly regulated (ANOVA p<0.05, t-
test<0.05 and fold change >1.5 or <0.666) for each of the four comparisons is shown in 
the table below. 

EC:  
Shear vs. 

Static

EPC: 
Shear vs. 

Static

Static:  
EPC vs. 

EC

Shear:  
EPC vs. 

EC

939 625 1247 1528

428 319 579 795

511 306 668 733

Genes present in BOTH EC and EPC

Genes present in EC NOT in EPC 656

Genes present in EPC NOT in EC 342

EC up AND EPC up

EC down AND EPC down

EC up AND EPC down

EC down AND EPC up

Genes present in BOTH Static and Shear

Genes present in Static NOT in Shear 465

Genes present in Shear NOT in Static 746

Static up AND Shear up

Static down AND Shear down

Comparisons

Fold change <0.666

EPC vs. EC

Shear vs. Static

Total number of genes satisflying ANOVA MTC p<0.05, t-test 
p<0.05 and fold change criteria (>1.5 or <0.666)

Fold change >1.5

5

782

360

414

283

122

152

4

Static up AND Shear down

Static down AND Shear up

8Genes with fold change <0.666 in all four comparisons

4

4

Genes present in all comparisons

Genes with fold change >1.5 in all four comparisons

57

6
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 Microarray and qRT-PCR data comparisons are presented graphically and in 

tabular form in Tables 6.3 and 6.4 and in Figure 6.5.  qRT-PCR confirmed the microarray 

data in 6 of 7 comparisons where microarray results showed a significant difference in 

expression (EC: shear vs. static (F3 and TFPI), EPC: shear vs. static (THBD) and Shear: 

EPC vs. EC (F3, TFPI and THBD)).  In comparing EPC to EC expression of THBD in 

static conditions, the microarray data suggests a 1.7 fold greater expression in EPCs 

while the qRT-PCR results shown no significant difference in expression between the 

two cell types.  In two comparisons (Static:  EPC vs. EC (F3 and TFPI)), microarray data 

did not show a significant difference between EPC and EC expression but qRT-PCR 

results indicated less expression in ECs compared to EPCs. 

Regulation of High Level Biological Functions 

 Ingenuity Pathways Analysis (IPA) was used to interpret the microarray data in 

the context of pathways and biological systems.  All genes with significant expression 

(5854 genes, ANOVA p<0.05) in the microarray dataset were imported into IPA.  IPA 

used the Genbank gene ID in the dataset to map the imported data against the Ingenuity 

Pathways Knowledge Base (IPKB) which is the world’s largest curated database of 

biological networks including coverage of over 23,900 mammalian genes [168].  All 

genes within the imported dataset which map to the IPKB and interact with at least one 

other gene in the IPKB were considered focus genes.  Focus genes were established for 

the dataset from genes which were significant in the pairwise comparisons (p<0.05).  Of 

the 5854 genes imported into IPA, 964 genes were eligible for generating networks and 

were considered focus genes.  Those that were not determined to be focus genes either 

did not meet pairwise significance criteria (p<0.05), the gene ID did not correspond to a 
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known gene product, or there was insufficient findings in the literature regarding the 

gene. 

 IPA was used to perform a global analysis of high level functions.  Two specific 

functional categories revealed differences between EC and EPC response to shear stress.  

Those categories: (1) Molecular and Cellular Functions and (2) Physiological System 

Development and Function were compared for ECs and EPCs in shear vs. static 

conditions.  Each of these high level functional categories includes a number of specific 

functional subsets as shown in Figures 6.6 and 6.7.  There were obvious differences in the 

EC and EPC response to shear in both Molecular and Cellular Functions (Figure 6.6) and 

also in Physiologic System Development and Functions (Figure 6.7).  In these graphs, the 

significance is expressed as a p-value using the right-tailed Fisher’s Exact Test.  This 

methodology generates a p-value by comparing the number of imported genes that can 

participate in a function, relative to the total number of occurrences of these genes in all 

functional annotations stored in the IPKB.  The threshold value line shown on each graph 

marks a threshold of 1:20 meaning that at that level there is a 1 in 20 chance that the 

listed functions were associated with the genes from the imported dataset by random 

chance alone.  The IPA of Molecular and Cellular Functions (Figure 6.6) showed that 

both cell types had genes associated with cell to cell signaling and interaction but that the 

effect of shear stress altered genes which mapped to different functional groups 

depending on cell type.  Shear in ECs was associated with regulation of genes in the 

broad functional categories of cell cycle, cell signaling, cellular function and 

maintenance, molecular transport, and vitamin and mineral metabolism.  In contrast, 

shear on EPCs was associated with differential regulation of genes in the broad functional 
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categories of cell death, cell morphology, cellular movement and post-translational 

modification.  Table 6.5 lists the number of genes associated with each of these 

functional categories.  IPA also identified differences between EC and EPC response to 

shear in the Physiological System Development and Function area.  As shown in Figure 

6.7, both cell types regulated genes associated with nervous system development and 

function and the hematological system development and function with exposure to shear 

stress.  IPA also demonstrated that there were functional categories which contained 

genes specifically regulated by either ECs or EPCs.  In ECs, shear exposure was 

associated with organismal survival while in EPCs, shear modulated genes related to 

embryonic development, immune and lymphatic system development, organ 

development, tissue development, tissue morphology, and visual system development and 

function.   

Shear Stress Responsive Gene Expression 

 Mature vascular endothelial cells have been shown in numerous studies to be 

responsive to their shear stress environment at the gene, protein and functional levels.  In 

this study we were able to investigate the mechanosensitivity of EPCs and compare the 

EPC response to mature vascular ECs in a controlled in vitro environment.  Table 6.6 

lists 26 genes across multiple functional groups which have been shown in other studies 

to be significantly regulated by shear in vascular ECs.  The EPC response to shear was 

compared to age and sex matched baboon carotid artery ECs using microarray studies.  

Two genes (SOD1 and CAV1) are listed twice because they represent the same gene at 

two different locations on the microarray area (noted by different Agilent probe IDs).   
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Table 6.3:  qRT-PCR confirmation of microarray data (shear vs. static)  Red boxes 
are used to highlight significant ratios >1 (p<0.05) and blue boxes highlight significant 
ratios <1 (p<0.05).  Data which were not significantly different (p>0.05) are left without 
color.  

Gene Name Gene 
Symbol

Systematic 
Name

ANOVA   
P-value

Fold 
change P-value Fold 

change P-value Fold 
change P-value Fold 

change P-value

coagulation factor III 
(thromboplastin, tissue factor) F3 NM_001993 0.003 3.628 0.000 6.540 0.000 0.864 0.539 1.285 0.156

tissue factor pathway inhibitor 
(lipoprotein-associated 
coagulation inhibitor)

TFPI NM_006287 0.004 1.357 0.005 1.301 0.041 0.924 0.450 1.516 0.003

thrombomodulin THBD NM_000361 0.001 0.999 0.996 1.187 0.084 1.404 0.033 3.313 0.000

p<0.05 considered significant

EC: Shear vs Static EPC: Shear vs Static

Microarray qRT-PCR Microarray qRT-PCR

 

 

Table 6.4:  qRT-PCR confirmation of microarray data (EPC vs. EC)  Red boxes are 
used to highlight significant ratios >1 (p<0.05) and blue boxes highlight significant ratios 
<1 (p<0.05).  Data which were not significantly different (p>0.05) are left without color. 

Gene Name Gene 
Symbol

Systematic 
Name

ANOVA   
P-value

Fold 
change P-value Fold 

change P-value Fold 
change P-value Fold 

change P-value

coagulation factor III 
(thromboplastin, tissue factor) F3 NM_001993 0.003 1.147 0.350 0.629 0.008 0.273 0.003 0.124 0.000

tissue factor pathway inhibitor 
(lipoprotein-associated 
coagulation inhibitor)

TFPI NM_006287 0.004 0.798 0.082 0.412 0.000 0.543 0.000 0.481 0.000

thrombomodulin THBD NM_000361 0.001 1.787 0.003 0.939 0.846 2.511 0.002 2.620 0.000

p<0.05 considered significant 

Static: EPC vs EC Shear: EPC vs EC

Microarray qRT-PCR Microarray qRT-PCR
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Figure 6.5:  Confirmation of microarray data by qRT-PCR.  NS denotes not 
significantly changed.  All other fold expressions are significantly different (p<0.05).  (A) 
F3 fold change with shear, (B) F3 fold change with cell type, (C) TFPI fold change with 
shear, (D) TFPI fold change with cell type, (E) THBD fold change with shear, (F) THBD 
fold change with cell type 
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D C 
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FIgure 6.6:  Ingenuity Pathways Analysis of Molecular and Cellular Functions for 
Shear vs. Static 

 

 

FIgure 6.7:  Ingenuity Pathways Analysis of Physiological System Development and 
Functions for Shear vs. Static 
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Table 6.5:  Ingenuity Pathways analysis of high level functions.  The following table 
provides a summary of the number of genes associated with each high level function. 

Molecular and Cellular Functions
EC: Shear 
vs. Static

EPC: Shear 
vs. Static

Cell-To-Cell Signaling and Interaction 31 15
Cell Cycle 13 --
Cell Signaling 4 --
Cellular Function and Maintenance 4 --
Cellular Growth and Proliferation 9 --
Molecular Transport 4 --
Vitamin and Mineral Metabolism 4 --
Cell Death -- 14
Cell Morphology -- 9
Cellular Movement -- 24
Post-Translational Modification -- 13

Physiological System Development and Function
EC: Shear 
vs. Static

EPC: Shear 
vs. Static

Nervous System Development and Function 29 7
Hematological System Development and Function 4 28
Organismal Survival 12 --
Embryonic Development -- 8
Immune Response -- 26
Immune and Lymphatic System Development and Function -- 8
Organ Development -- 11
Tissue Development -- 19
Tissue Morphology -- 5
Visual System Development and Function -- 9

Number of genes associated with each high level function:
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This replicate data was consistent for SOD1 across all 4 comparisons and for 2 of 4 

comparisons for CAV1.  In comparing EPC vs. EC in static and shear, one of the two 

replicates (A_24_P12626) did not meet pairwise significance criteria (p>0.05) while the 

second replicate (A_23_P134454) suggested more expression in EPCs compared to ECs 

(1.1 and 1.2 fold for static and shear, respectively).   

 Consistent with other studies, microarray results demonstrated the 

mechanosensitve nature of vessel wall ECs.  EPCs were also mechanosensitive.  In EPCs, 

shear exposure resulted in altered expression of approximately one half (11 of 21) of the 

genes responsive to shear in ECs.  In these shear responsive genes which were common 

for both cell types, EPCs showed similar regulation (up or down) compared to ECs.  In 

only two cases (MMP9 and JAG1) shear resulted in different regulation in EPCs 

compared to ECs.  In both cases, shear resulted in an increase in MMP9 and JAG1 

expression in ECs with a contrasting decrease in EPCs.  Like vascular ECs, shear caused 

a general increase in antioxidant genes (HMOX1 and SOD1) and decrease in cell cycle 

associated genes (CCNA2, CCNB1 and CCNB2) in EPCs.  Shear caused several genes to 

be upregulated by more than two fold in ECs (HMOX1, IL1A, KLF2 and VEGFC).  

EPCs also responded to shear by upregulating these genes but to a lesser extent than seen 

with ECs. (Shear vs. Static -- HMOX1: EC 8.9 fold, EPC 6.0 fold; IL1A: EC 12.0 fold, 

EPC 3.7 fold; KLF2: EC 4.2 fold, EPC 3.3 fold; VEGFC: EC 2.4 fold, EPC not 

significantly altered).  Shear also caused three genes to be downregulated by more than 

double (ratio < 0.5) in both ECs and EPCs.  The same trend was seen where the EPC 

response was attenuated compared to the EC response to shear (Shear vs. Static --  

 101



CCNA2: EC 0.4 fold, EPC 0.6 fold; CCNB1: EC 0.3 fold, EPC 0.4 fold; CCNB2: EC 0.3 

fold, EPC 0.4 fold) 

Thrombosis and Hemostasis 

 One of the primary functions of vascular ECs which line blood vessels is the 

maintenance of hemostasis, providing pro and anti-coagulant function in response to the 

appropriate cues.  ECs lining the vessel are constantly exposed to hemodynamic stresses.  

In this study, we have investigated the effect of unidirectional laminar shear stress on 

gene expression in blood derived EPCs and compared the response to vessel wall derived 

ECs.  Table 6.7 lists 16 genes related to pro and anticoagulant function which were 

significantly regulated (ANOVA p<0.05) in the microarray results.  Two genes (PTGS2 

and THDS2) are listed twice due to duplicate spots on the Agilent array area.  These 

genes serve as technical replicates on the same array slide.  The data for the two 

replicates was consistent across six of eight comparisons.  In two cases (PTGS2 – Static: 

EPC vs. EC and THSD2 – EPC: Shear vs. Static), one data point indicated upregulation 

and the second data point was not significantly changed (p>0.05).  The majority of 

coagulation associated genes (pro and anticoagulant function) were shear stress 

responsive in ECs (12 of 15) while less than one half of those genes were altered by shear 

in EPCs (5 of 12).  Compared to ECs, EPCs showed a similar response to shear in four 

(PLAT, PTGIS, F13B and THSD1) of the five genes.  For one gene (PLAU), ECs 

showed an increase in expression while EPCs displayed a shear depended decrease in 

expression.  Shear resulted in an overall increase in anticoagulant gene expression (7 of 8 

genes) in ECs, a finding that was not consistent with the EPC response to shear.  In EPCs, 

only thrombomodulin (THBD) expression was significantly upregulated (1.4 fold) with 
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shear stress.  In contrast, ECs showed no significant (p>0.05) alteration in THBD 

expression with shear. 

 In static conditions, EPCs expressed six anticoagulant genes to a greater extent 

than ECs.  In fact, EPCs expressed three anticoagulant genes at greater than 1.5 times the 

EC expression (Static: EPC vs. EC -- PLAU 1.8 fold; PLAUR 4.7 fold; PROCR 4.2 fold).  

In addition, EPCs expressed three procoagulant genes (F8A1, THSD1 and THSD2) to a 

lesser extent than ECs in static culture.  When both cell types were exposed to shear 

stress, the balance of expression of pro and anticoagulant genes in EPCs vs. ECs was 

more heterogeneous in nature. 

Oxidative and Inflammatory Gene Expression 

 The pathological basis of a number of diseases has been linked to oxidative 

modifications.  In the cardiovascular system, atherosclerosis has been associated with 

both oxidative stress and inflammation [182].  EPCs are a promising cell source for a 

number of therapeutic strategies in the cardiovascular system and therefore investigating 

the regulation of oxidative and inflammatory genes may be important for predicting the 

therapeutic potential of EPCs.  Table 6.8 shows 36 genes related to oxidation for each of 

the four comparisons investigated.  As presented earlier, SOD1 is listed twice because it 

appears in two different spots on the Agilent microarray.  These two data points which 

are technical replicates showed consistent results across the comparisons.   

 Shear resulted in an upregulation of a large number of antioxidant genes in both 

ECs and EPCs (18 and 16, respectively).  Additionally, there were only four genes with 

antioxidant function downregulated in EPCs following shear exposure compared to eight 

genes downregulated in ECs.  In comparing the EPC and EC gene expression under static 

 104



conditions, there appeared to be a heterogeneous mixture of antioxidant genes which are 

expressed to a greater extent in each cell type.  In the shear stress environment, EPCs 

expressed more antioxidant genes (12 genes) to a greater extent than ECs.  EPCs 

expressed four antioxidant genes at levels more than 1.5 times the level found in ECs 

(ALDH1A1 8.6 fold; GLRX 3.0 fold; GLRX2 3.0 fold; GPX4 2.0 fold).   

 Antioxidant enzymes are largely cell associated proteins whose function is to 

maintain a reducing tone within cells.  There were 12 enzymatic antioxidants regulated in 

the microarray results including superoxide dismutase, glutathione peroxidase, 

glutathione reductase and transferase, and peroxiredoxin (noted with * in Table 6.8).  

Shear promoted an upregulation of these genes in EPCs and when compared to ECs in 

the shear environment, EPCs expressed these antioxidant enzymes to a greater extent 

(1.1-2.0 fold).  In only one case did EPCs express less of the antioxidant enzyme 

(GSTM3) compared to ECs in the shear environment. 

 Genes with important pro and antiinflammatory function are shown in Table 6.9.  

In this study, shear promoted an increase in expression of a number of proinflammatory 

mediators in ECs combined with decreased expression of antiinflammatory molecules.  

Shear had less of a proinflammatory effect in EPCs, increasing expression of only 2 of 11 

proinflammatory genes and reducing expression of three others.  When comparing the 

two cell types, EPCs had less expression of inflammatory genes (both pro and anti) 

compared to ECs in both shear and static conditions. 
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Table 6.8:  Genes related to oxidation.  Red boxes are used to highlight significant 
ratios >1 (p<0.05) and blue boxes highlight significant ratios <1 (p<0.05).  Data which 
were not significantly different (p>0.05) are left without color.  * indicates ROS 
scavenging and detoxifying enzymes [183, 184]. 

Genes related to oxidation

Gene Name Gene 
Symbol

Systematic 
Name

Oxidation 
Effect

Fold 
change

P-value 
(pairwise)

Fold 
change

P-value 
(pairwise)

Fold 
change

P-value 
(pairwise)

Fold 
change

P-value 
(pairwise) ANOVA Agilent Probe ID

NADPH oxidase 4 NOX4 NM_016931 pro 0.840 0.147 0.789 0.114 1.758 0.003 1.651 0.015 0.008 A_24_P739344

aldehyde dehydrogenase 1 family, member A1 ALDH1A1 NM_000689 anti 0.208 0.000 1.594 0.001 1.128 0.145 8.635 0.000 0.000 A_23_P83098

cytochrome P450, family 1, subfamily A, 
polypeptide 1 CYP1A1 NM_000499 anti 1.693 0.016 1.206 0.194 0.337 0.000 0.240 0.001 0.000 A_23_P163402

ferritin, heavy polypeptide 1 FTH1 NM_002032 anti 1.749 0.001 1.967 0.004 0.966 0.787 1.087 0.118 0.002 A_24_P58337

ferritin, light polypeptide FTL NM_000146 anti 1.645 0.003 1.480 0.002 1.160 0.079 1.044 0.567 0.002 A_23_P50504

glutamate-cysteine ligase, catalytic subunit GCLC NM_001498 anti 1.152 0.161 1.420 0.001 0.955 0.456 1.178 0.085 0.023 A_23_P145114

glutaredoxin (thioltransferase) GLRX NM_002064 anti 2.287 0.000 2.310 0.002 2.998 0.001 3.029 0.000 0.000 A_23_P69908

glutaredoxin 2 GLRX2 NM_016066 anti 0.777 0.061 1.268 0.018 1.863 0.000 3.042 0.000 0.000 A_23_P160503

*glutathione peroxidase 4 (phospholipid 
hydroperoxidase) GPX4 NM_002085 anti 0.454 0.003 0.741 0.086 1.248 0.117 2.036 0.007 0.004 A_23_P28075

*glutathione peroxidase 7 GPX7 NM_015696 anti 0.676 0.001 0.968 0.764 0.812 0.014 1.162 0.194 0.046 A_23_P73972

*glutathione reductase GSR NM_000637 anti 1.423 0.011 1.556 0.021 1.201 0.054 1.313 0.097 0.017 A_23_P146084

*glutathione S-transferase M3 (brain) GSTM3 NM_000849 anti 0.864 0.040 0.732 0.003 0.800 0.012 0.678 0.001 0.001 A_24_P914434

*glutathione S-transferase theta 2 GSTT2 NM_000854 anti 0.752 0.010 1.086 0.165 0.881 0.082 1.273 0.013 0.033 A_23_P357571

guanylate cyclase 1, soluble, alpha 3 GUCY1A3 NM_000856 anti 1.530 0.021 0.903 0.155 0.944 0.567 0.557 0.003 0.012 A_23_P69573

heme oxygenase (decycling) 1 HMOX1 NM_002133 anti 8.866 0.000 6.020 0.000 1.224 0.139 0.831 0.216 0.000 A_23_P120883

heme oxygenase (decycling) 2 HMOX2 NM_002134 anti 1.332 0.001 1.051 0.624 0.805 0.042 0.635 0.003 0.006 A_23_P100501

leukotriene B4 12-hydroxydehydrogenase LTB4DH NM_012212 anti 1.985 0.005 1.144 0.416 0.844 0.302 0.486 0.005 0.012 A_23_P157809

monoamine oxidase A MAOA NM_000240 anti 0.967 0.743 1.028 0.667 0.585 0.002 0.622 0.004 0.003 A_23_P83857

monoamine oxidase B MAOB NM_000898 anti 1.138 0.026 0.965 0.387 0.851 0.021 0.721 0.000 0.002 A_23_P85008

microsomal glutathione S-transferase 2 MGST2 NM_002413 anti 0.953 0.320 0.768 0.020 0.630 0.000 0.508 0.001 0.000 A_23_P110167

microsomal glutathione S-transferase 3 MGST3 NM_004528 anti 1.260 0.000 1.144 0.071 1.122 0.029 1.018 0.722 0.012 A_23_P51548

methionine sulfoxide reductase A MSRA NM_012331 anti 1.075 0.332 1.033 0.648 1.416 0.004 1.360 0.012 0.010 A_23_P61426

methionine sulfoxide reductase B3 MSRB3 NM_198080 anti 1.456 0.021 1.240 0.005 1.154 0.247 0.982 0.534 0.028 A_24_P273726

metallothionein 1B (functional) MT1B NM_005947 anti 1.292 0.010 1.268 0.015 1.097 0.071 1.077 0.355 0.016 A_23_P37983

protein disulfide isomerase family A, member 3 PDIA3 NM_005313 anti 1.019 0.759 0.929 0.386 1.360 0.012 1.240 0.027 0.032 A_32_P63182

protein disulfide isomerase family A, member 5 PDIA5 NM_006810 anti 0.799 0.004 0.766 0.013 1.527 0.003 1.464 0.000 0.001 A_23_P167040

P450 (cytochrome) oxidoreductase POR NM_000941 anti 1.553 0.009 1.234 0.148 0.845 0.254 0.671 0.008 0.024 A_24_P29723

*peroxiredoxin 1 PRDX1 NM_002574 anti 1.650 0.001 1.640 0.000 0.943 0.224 0.937 0.281 0.000 A_23_P11995

*peroxiredoxin 2 PRDX2 NM_005809 anti 0.817 0.005 0.924 0.113 1.209 0.003 1.368 0.002 0.001 A_23_P142045

*peroxiredoxin 3 PRDX3 NM_006793 anti 0.761 0.013 0.891 0.016 0.851 0.077 0.996 0.855 0.017 A_23_P63751

*peroxiredoxin 5 PRDX5 NM_012094 anti 1.097 0.083 1.136 0.027 1.083 0.125 1.122 0.032 0.037 A_23_P12989

*peroxiredoxin 6 PRDX6 NM_004905 anti 1.038 0.242 1.204 0.001 0.899 0.003 1.043 0.246 0.006 A_23_P983

*superoxide dismutase 1, soluble (amyotrophic 
lateral sclerosis 1 (adult)) SOD1 NM_000454 anti 1.192 0.010 1.412 0.001 1.009 0.830 1.195 0.008 0.001 A_23_P154840

*superoxide dismutase 1, soluble (amyotrophic 
lateral sclerosis 1 (adult)) SOD1 NM_000454 anti 1.288 0.008 1.379 0.008 1.060 0.453 1.136 0.046 0.009 A_24_P151464

*superoxide dismutase 2, mitochondrial SOD2 NM_000636 anti 0.946 0.589 1.129 0.156 1.250 0.039 1.492 0.012 0.034 A_23_P134176

thioredoxin TXN NM_003329 anti 1.395 0.002 1.295 0.000 1.082 0.010 1.004 0.934 0.001 A_23_P60248

thioredoxin reductase 1 TXNRD1 NM_003330 anti 1.388 0.004 1.344 0.001 1.123 0.077 1.087 0.138 0.002 A_23_P204581

* ROS scavenging and detoxifying enzymes

EC: Shear vs Static EPC: Shear vs Static Static: EPC vs EC Shear: EPC vs EC
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Neovascularization 

 Asahara et al.’s [91] first report of EPCs in adult circulation claimed that these 

circulating cells contributed to neoangiogenesis in the adult species by incorporating into 

active sites of vascular growth and by delivering pro-angiogenic agents.  This work has 

been further confirmed in many additional publications.  The area of neovascularization 

of tissues has enormous potential for clinical benefit.  In this study, we investigated the 

effect of shear stress on a subset of 14 genes related to neovascularization (shown in 

Table 6.10).  Fibroblast growth factor 12 was found on two different spots of the Agilent 

microarray (see different Agilent probe ID numbers) and is listed in the table twice.  This 

technical replicate showed agreement in three of the four comparisons.  The one 

difference was in the Static: EPC vs. EC comparison where A_23_P211727 showed a 

significant increase while A_23_P334300 did not show a significant difference.  Shear 

exposure resulted in a complex and heterogeneous regulation of the genes associated with 

neovascularization in both ECs and EPCs.  When comparing the two cell types in both 

shear and static environments, EPCs expressed genes related to neovascularization to a 

greater extent than ECs.  In static culture, EPCs expressed 1.1 to 3.6 fold more of seven 

angiogenic genes compared to ECs.  Following shear, 9 of 14 genes were more highly 

expressed in EPCs than ECs (1.1 to 3.4 fold).   
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Discussion 

 Hemodynamic force is a well recognized modulator of vascular endothelial cell 

(EC) phenotype and has been implicated in both vascular function and dysfunction.  

Endothelial progenitor cells (EPCs) are derived from bone marrow and circulate in the 

adult circulation.  These cells can be cultured from peripheral blood outgrowth colonies 

and express a number of endothelial specific markers.  Very little is known about the role 

of hemodynamics in EPC biology.  In this study, a comprehensive transcriptional profile 

analysis was performed to investigate the effect of fluid shear stress on EPCs in the 

context of vascular endothelial cell response to shear.  Several high throughput 

technologies have been employed to investigate the effect of varying hemodynamic 

factors in EC mRNA expression [185-195] but to our knowledge, this is the first 

microarray study investigating the effects of shear on EPCs.   

Limitations of the Experimental Approach 

 There are several limitations associated with this study.  First, microarray analysis 

was performed on cells in in vitro culture.  While in vitro culture allows precise control 

of the local microenvironment, it is difficult to exactly simulate the in vivo situation and 

conclusions must be made with caution when trying to predict the true in vivo response.  

A second limitation relates to the vascular endothelial cell choice.  Endothelial cells from 

different anatomical locations in the body have been shown to have diverse phenotypes, 

presumably related to their in vivo functional requirements and local mileu [196].  

Juvenile male baboon carotid artery endothelial cells were chosen as the cell type for 

microarray studies because they represented an age and sex matched control for the 
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baboon peripheral blood derived EPCs.  The carotid artery was an accessible tissue 

sample which yielded sufficient endothelial cell numbers at isolation so that excessive 

expansion was not necessary for experimental protocols.  The carotid artery also 

represented a large artery endothelial cell which experiences mean arterial shear stresses 

in the range of 10-15 dynes/cm2 in vivo.  We chose to investigate the effect of steady 

laminar shear stress on EC and EPC response at 24 hours.  This represented a “chronic” 

exposure to shear where time dependent alterations in gene expression would be 

minimized resulting in stable genetic profiles.  Static culture controls were used to 

compare to the shear environment and represented a “baseline” zero shear stress state.  

There is a significant amount of data that exists on endothelial cells in steady laminar 

shear stress compared to other more complex flow regimes.  This enabled us to make 

more conclusive comparisons to the work of others.  Finally, baboon cells were chosen 

because of the possibility to quickly move into a gold standard and physiologically 

relevant pre-clinical model for functional evaluations.  The microarray system used was 

the Agilent Whole Human Genome microarray.  The baboon is considered one of the Old 

World monkeys which are the closest non-ape relative to humans.  While the baboon and 

human genome are certainly not identical, their genome is highly conserved with human 

[197].  Human cDNA microarrays have been validated with success in at least one other 

study with baboon cells [198].  Baboon specific arrays were not available and therefore 

the human microarray provided a relevant platform for studying transcriptional profile 

changes with a stimulus (shear) compared to species matched controls. 
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EPCs are Shear Stress Responsive 

 Microarray analysis has demonstrated that EPCs are mechanosensitive to fluid 

shear stress, altering expression of 1.5% (625 of 40324) of the total gene probes 

investigated by more than 1.5 fold.  Compared to vascular ECs, the EPCs response to 

shear was attenuated both in the number of genes regulated by shear and the extent of 

regulation (up or down).  Investigating a subset of genes commonly associated with 

endothelial response to shear demonstrated that although EPCs regulated almost all of 

these genes similar to ECs, the EPCs generally altered the expression to a lesser extent 

(lower fold changes).  Shear resulted in altered EC expression by ≥1.5 fold in more of the 

total gene probes investigated (2.3% or 939 of 40324) with only 0.7% (283 of 40324) of 

the genes being similarly regulated by both cell types.   

 There have only been a few reports of blood derived EPC response in a shear 

environment at the molecular level.  Several studies have reported morphological changes 

in EPCs in the presence of shear [149, 157, 158, 160] but few have investigated 

alterations in gene or protein expression.  Rossig et al. [146] recently suggested that 

physiological shear stress (15 dynes/cm2) was capable of promoting the commitment of 

progenitor cells to an endothelial phenotype and that HoxA9 was a critical regulator in 

that process.  HoxA9 is a member of the Hox family of homeodomain transcription 

factors which are known to play important roles in the embryonic development of the 

cardiovascular system.  In our dataset, nine of the Hox transcription factors had altered 

expression across the four comparisons but HoxA9 did not meet ANOVA significance 

criteria (p<0.05).  Yamamoto et al. [145] reported that low levels of fluid shear (0.1-2.5 

dynes/cm2) increased mRNA levels of the VEGF receptors (KDR and Flt-1) and vascular 
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endothelial (VE) cadherin.  In our microarray results with 15 dynes/cm2 shear stress, 

KDR and Flt-1 expression was not significantly altered (p>0.05) by shear based on 

pairwise comparisons and VE-cadherin (CDH5) did not meet ANOVA significance 

criteria (p<0.05). 

 While EPCs and ECs demonstrated similar regulation of specific individual genes 

known to be shear responsive in vascular ECs, Ingenuity Pathways Analysis (IPA) of 

global function identified some interesting differences in EPC and EC response to shear.  

When broken down into specific functional groups, the genes regulated by shear in each 

cell type aligned with different functional categories.  ECs responded to shear with 

alterations in genes associated with more molecular and cellular functions while EPCs 

altered expression of more genes associated with physiological systems development and 

function.  These differences may relate to the origin of these cells.  The fact that EPCs are 

derived from a bone marrow progenitor source may inherently confer the EPCs with 

expression of genes associated with development which are altered in the presence of 

shear stress.  In vascular ECs, this global functional analysis is consistent with previous 

reports that shear causes alterations in categories such as cell cycle, cell signaling and 

cellular growth and proliferation. 

Coagulation 

 As one of the primary endothelial functions, we were keenly interested in how 

shear would modulate EPC genes associated with coagulation.  Shear clearly upregulated 

a number of anticoagulant associated genes in ECs while EPCs were less responsive to 

shear exposure in this system.  One anticoagulant protein, thrombomodulin, stood out as 

being differentially upregulated by shear in EPCs and not in ECs.  Thrombomodulin 
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binds thrombin serving as a co-factor which dramatically accelerates the rate of protein C 

activation.  Through this action, thrombomodulin causes a net loss of coagulant effect 

and an enhancement of anti-coagulant function.   

 When comparing the two cell types in the static environment, EPCs appear to 

display an anticoagulant phenotype with more expression of anticoagulant molecules and 

less expression of procoagulant genes than ECs.  When exposed to shear, the ECs were 

more responsive and therefore the regulation of coagulation associated genes was 

heterogenous.  This study demonstrates that EPCs respond to shear differently than ECs 

when considering genes associated with coagulation but further study will be needed to 

understand how these complex changes in gene expression translate to protein expression 

and ultimately coagulant function. 

EPC Antioxidant and Antiinflammatory Capacity 

 For many years, research in atherosclerosis localization and progression has 

demonstrated that the endothelium, the hemodynamic environment, oxidative 

modifications and inflammation all play critical roles [182, 199, 200].  One overriding 

hypothesis associated with the hemodynamic environment and atherosclerosis is that 

areas of unidirectional laminar shear stress produce a quiescent, antithrombotic, and 

antioxidant phenotype in vascular endothelial cells [201, 202].  Consistent with many 

other studies, our microarray data support this hypothesis in baboon carotid artery ECs.  

In contrast to disease localization and progression, antioxidant capacity in EPCs has 

recently been suggested to have other import functions.  Two recent publications have 

suggested that there exists a set of general stem cell features or “stemness” genes, a 

subset of which provides increased resistance to stress [203, 204].  This high resistance to 
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stress has been proposed as one of the mechanisms which EPCs need to aid in recreating 

a perfusion network in any post-ischemic environment where exceptionally high levels of 

reactive oxygen species (ROS) are known to accumulate [205].  In this study, shear 

exposure resulted in an overall upregulation of antioxidant function in EPCs between 1.1 

and 6.0 fold.  When compared to ECs in the shear environment, EPCs had greater 

antioxidant gene expression including more expression of superoxide dismutase and 

glutathione peroxidase which are believed to be the primary antioxidant defense systems 

in the mitocondria [206].  Recently, two other in vitro studies demonstrated that EPCs 

express higher levels of these two enzymes compared to HUVEC and coronary artery 

ECs or human microvascular ECs [132, 207].  Our microarray results demonstrate that 

shear stress upregulated redundant antioxidant defense mechanisms in EPCs.  This data 

combined with EPCs overall low expression of genes related to inflammation may have 

important implications for EPC’s in vivo function and clinical utility.   

Neovascularization 

 EPCs normally found in the bone marrow may be mobilized into the circulation 

and have been shown to physically integrate into newly forming vasculature or promote 

de novo vessel formation by supplying appropriate cytokines and growth factors 

(reviewed in [100]).  In a subset of genes related to neovascularization including the 

cathepsin proteases, cytokines and growth factors, the microarray data clearly showed 

that EPCs expressed higher levels of these key proteins compared to ECs but that shear 

did not appear to have a significant effect.  EPC enhanced expression is consistent with 

recent reports investigating the both soluble factors and protease activity in EPCs 

compared to mature vascular ECs [208, 209].   
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Study Validation

 qRT-PCR was used as an independent experimental method/technique to “check” 

the mRNA expression results obtained from DNA microarray analysis.  Investigating 

three genes (F3, TFPI and THBD) in the four comparisons (EC: Shear vs. Static, EPC: 

Shear vs. Static, Static: EPC vs. EC and Shear:  EPC vs. EC), mRNA expression was 

regulated similarly (up or down) in 8 of 12 cases.  In four cases, one technique showed no 

significant change in expression where the second method suggested either more (2 

cases) or less (2 cases) expression.  There were no instances where the two methods 

suggested opposite regulation (e.g. up vs. down).   

Concluding Remarks 

 This work has contributed to our knowledge of EPC biology related to vascular 

endothelial cells and provides significant new data on how EPCs response to the 

hemodynamic environment.  These microarray studies provide a transcriptional profile of 

EPC gene modulation and provide a foundation for many additional studies needed to 

more clearly define the role of EPCs in tissue engineering and regenerative medicine. 
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CHAPTER VII:  ENDOTHELIAL PROGENITOR CELL PHENOTYPE IN 

RESPONSE TO FLOW – COMPARISON TO VASCULAR ENDOTHELIAL 

CELLS ON ABSORBED COLLAGEN AND ON AN ENGINEERED VASCULAR 

TISSUE 

 

Introduction 

 The normal endothelium, composed of a single layer of endothelial cells (ECs), 

maintains blood fluidity by producing inhibitors of blood coagulation and platelet 

aggregation, providing a barrier separating hemostatic blood components from reactive 

subendothelial structures, and by modulating vascular tone and permeability.  This 

system maintains blood fluidity under physiologic conditions but is primed to react to 

vascular injury by quickly sealing any vascular wall defect.  Shear stresses produced by 

flowing blood are imposed on the apical surface of ECs and are an important stimulus for 

vascular remodeling.  These local mechanical forces cause documented alterations in 

many aspects of EC biology including cell shape, metabolism and gene expression and 

are often linked to disease pathologies.  Additionally, the local mechanical environment 

alters the ECs role in hemostasis by modulating a number of key molecules critical to 

both pro- and anti-coagulant function.  (A detailed review of endothelial cell response to 

flow can be found in Chapter II:  Background.) 

 Endothelial progenitor cells (EPCs) have been shown to exhibit many of the same 

cellular markers and functions as vascular ECs [94], yet very little is known about how 

these cells respond to local mechanical forces such as fluid shear stress.  EPCs have 
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emerged as a promising autologous cell source for tissue engineering strategies.  For 

example, EPCs could be used as a luminal lining on an engineered blood vessel substitute 

or as a vascular stent coating.  For applications such as these and others where EPCs are 

attached to surfaces exposed to flow, it is critical that the EPC response to fluid shear 

stress be investigated. 

 Depending on the specific therapeutic application, EPCs may be required to 

adhere and function on a variety of substrates.  In vascular applications, it is likely that 

EPCs will interface with neighboring vascular SMCs as well as the native extracellular 

matrix proteins.  A number of in vitro coculture models have been developed which 

incorporate both ECs and SMCs influences.  Approaches have used porous membranes 

[210-214], collagen gels containing SMCs [215, 216], microcarrier/spheroid-bound ECs 

or SMCs [217, 218], conditioned media [213, 219], and direct culture of ECs on SMCs 

[220-222].  These studies have shown that the presence of SMCs may alter EC 

morphology, proliferation, growth factor expression, and inflammatory status.  To 

investigate the role of substrate in this study, EPC response to fluid flow was investigated 

on two surfaces.  EPCs were seeded onto absorbed type I collagen slides or onto an 

engineered vascular tissue.  The engineered tissue, composed of a type I collagen 

hydrogel with embedded carotid artery SMCs, mimicked the medial layer of the native 

blood vessel and served as a more physiologic vascular substrate. 

 One of the most striking responses visualized when mature vascular endothelial 

cells are exposed to fluid shear stress is the morphological shape change which occurs in 

a time and shear dependent manner [34].  These characteristic changes in cell 

morphology including spatial reorganization of cytoskeletal structures have been shown 
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to be important in many downstream signal transduction pathways related to EC 

functions [223].  In order to investigate EPCs gross morphological response to the shear 

environment, this study used fluorescent confocal microscopy to quantify alterations in F-

actin organization as a function of cell type and shear environment.   

 In addition to morphological changes, understanding of how EPCs regulation of 

hemostasis may be influenced by the local mechanical environment and/or substrate is 

important for many applications including their potential use in cardiovascular 

substitutes.  Hemostasis involves a complex cascade or series of events that involve 

zymogens or cofactors, the transformation of these zymogens to proteolytic enzymes, and 

protease inhibitors that limit the reactions at each step [224].  In this study, several key 

molecules central to hemostasis have been investigated to characterize the thrombotic 

potential of EPCs in response to fluid shear stress and on both absorbed collagen and on 

an engineered tissue.  Starting with the cell’s earliest response to a given stimulus, gene 

expression changes with known pro- and anti-coagulant function were investigated using 

quantitative real time RT-PCR.  This study focused on three molecules with known anti-

coagulant function:  thrombomodulin (THBD), tissue factor pathway inhibitor (TFPI) and 

endothelial nitric oxide synthase 3 (NOS3) as well as two molecules with known pro-

coagulant function: tissue factor (F3) and von Willebrand factor (VWF).   

 While variations in mRNA expression represent the cell’s first response to a 

stimulus, translation of gene expression into alterations in protein expression is also 

important in assessing cell phenotype.  Using flow cytometry, cell surface THBD and F3 

protein expression were quantified.  F3 protein is the initiator of the extrinsic coagulation 

cascade which leads directly to fibrin rich clot formation.  In contrast, THBD has 
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significant anti-coagulant function binding thrombin and therefore inhibiting thrombin’s 

ability to cleave fibrinogen and activate platelets and factors Va and VIIIa.  In addition, 

THBD enhances thrombin’s ability to activate protein C and therefore to inhibit 

thrombogenesis. 

 To characterize EPC phenotype, this study uses a combination of approaches to 

quantify gross morphological changes and measure specific alterations in gene and 

protein expression in both static and fluid shear stress environments on two model 

substrates.  Furthermore, using the baboon model, this study compared the response of 

blood derived EPCs to age and sex matched native vascular wall ECs.  These findings 

provide an improved understanding of EPC response to fluid shear stress and allow us to 

make predictions about the anti-thrombotic potential of EPCs when exposed to a flow 

environment. 

Experimental Design 

 The detailed methods for this study are described in Chapter IV:  Materials and 

Methods.  Briefly, an engineered tissue was fabricated with baboon carotid artery smooth 

muscle cells embedded in a type I collagen hydrogel.  The tissue was statically cultured 

for five days to allow for initial SMC mediated remodeling prior to EPC or EC seeding.  

Confluent monolayers of baboon carotid artery endothelial cells or baboon peripheral 

blood derived endothelial progenitor cells were seeded onto glass slides coated with 

absorbed collagen or onto the engineered tissue and allowed to adhere for 48 hours.  

Following this static incubation, both cell types were exposed to steady laminar shear 

stress using a parallel plate flow chamber system.  Cells were exposed to 15 dynes/cm2 of 

steady laminar shear stress for 24 hours and compared to static controls.   
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 Cell morphology was assessed using light and fluorescent microscopy combined 

with F-actin localization.  mRNA was extracted from cell lysates and used for 

quantitative real time RT-PCR analysis of five genes: THBD, TFPI, NOS3, F3, and 

VWF.  For flow cytometry, cells were removed from the slide substrate immediately 

upon completion of the experiment and paraformaldehyde fixed for subsequent 

immunofluroescent labeling of cell surface proteins:  THBD and F3.   

 All analyses were performed on n≥3 samples from at least three independent 

experiments.  Data are reported as mean ± standard error of the mean (SEM) and 

statistical comparisons were based on ANOVA and Tukey’s test for pairwise 

comparisons with a p-value < 0.05 considered significant.  In order to make the variance 

independent of the mean, statistical analysis of real time RT-PCR data was performed 

following logarithmic transformation of the raw data. 

Results 

Monolayer Culture on Absorbed Collagen 

Cell Morphology 

 At confluence, ECs and EPCs displayed very similar polygonal or “cobblestone” 

morphology, a distinct nuclear region and clearly visible cell borders as shown in Figure 

7.1.  Following exposure to fluid shear stress, rhodamine phalloidin was used to visualize 

F-actin distribution within the cells of both static and shear samples.  As shown in Figure 

7.2, both cell types subjected to 15 dynes/cm2 altered their morphology in response to 

flow.  Static ECs and EPCs had dense peripheral bands of F-actin which reorganized to 
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elongated fibers found throughout the cells and oriented parallel to the flow axis 

following 24 hours of shear exposure.   

 Using image analysis, confocal microscopy images were analyzed to quantify 

morphological changes in ECs and EPCs.  Angle of orientation and shape index were 

quantified following 24 hours of shear stress exposure as shown in Figure 7.3.  Angle of 

orientation or the degree of alignment of the cells was characterized by measuring the 

deviation of the primary cell axis direction from the flow direction.  If the orientation of 

the cells was completely random, the mean angle would be 45 degrees.  As cells align 

with the flow direction, the mean approaches 0 degrees.  ECs and EPCs each had a 

statistically significant decrease (p<0.05) in the angle of orientation following 24 hours in 

a steady laminar shear stress environment but there was not a significant (p>0.05) 

difference between the two cell types.  Shape index is defined as 4(π)(area/perimeter2).  

As defined, this parameter has a circular shape when the shape index = 1.0 and in the 

limiting case, a straight line, when the shape index = 0.0.  Therefore the more elongated a 

cell becomes, the smaller the value for its shape index.  Shown quantitatively in Figure 

7.3, both cells types had a significant (p<0.05) decrease in shape index when exposed to 

shear stress for 24 hours but ECs elongated to a greater extent than EPC (p<0.05). 

 Cytoskeletal reorganization occurred as a function of the number of hours of shear 

stress exposure.  Figure 7.4 shows the angle of orientation for ECs and EPCs as a 

function of shear duration.  While shear stress exposure caused both cells types to orient 

parallel with the flow direction, at 6 and 12 hours, ECs exposed to shear stress displayed 

a smaller angle of orientation (p<0.05) than sheared EPCs.  By 24 hours, both sheared 

samples appeared to have reached a minimum angle of orientation and were not statically 
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different from each other (p>0.05).  At 6 and 12 hours, EPC static samples had a 

significantly larger angle of orientation than EC static samples (p<0.05) but the 

interaction of cell type and condition (shear versus static) was not significant (p>0.05) 

indicating that neither cell type was significantly more sensitive to shear exposure at 

these early time points.     
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Figure 7.1:  Phase contrast microscopy of EC and EPC.  (A) Baboon carotid artery 
endothelial cells (EC, passage 1); (B) Baboon peripheral blood derived endothelial 
progenitor cells (EPC, passage 1).  Scale bar = 100µm.   
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Figure 7.2:  Visualization of cytoskeletal reorganization in EC and EPC using 
confocal microscopy.  Rhodamine phalloidin was used to stain F-actin of cells exposed 
to steady laminar shear stress (15 dynes/cm2, 24 hours) compared to static controls.  Flow 
direction was left to right in pictured shear samples.  Hoechst 33258 was used as a 
nuclear counterstain.  Scale bar = 50µm.   
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Figure 7.3:  Quantification of cytoskeletal reorganization in EC and EPC.  Angle 
of orientation (left panel) and shape index (right panel) was quantified in cells exposed 
to steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to static controls 
(mean ± SEM, n≥40).  ANOVA showed differences in groups (p<0.0001).  Pairwise 
comparisons:  *(p<0.05).   
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Figure 7.4:  Quantification of cytoskeletal reorganization in EC and EPC.  Angle of 
orientation was quantified in cells exposed to steady laminar shear stress (15 dynes/cm2 
for 6,12, 24 and 48 hours) and compared to static controls (mean ± SEM, n≥40).  
ANOVA showed differences in groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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Quantification of Gene Expression 

 Quantitative real time RT-PCR was used to quantify gene expression of select 

hemostasis associated genes in ECs and EPCs.  As shown in Table 7.1, five genes 

(THBD, TFPI, NOS3, F3 and VWF) with known pro- or anti-coagulant function were 

investigated.   

 

Table 7.1:  Quantitative real-time RT-PCR of select hemostasis associated genes.   

Primary Function Systematic Name Gene Symbol Gene Name

NM_000361 THBD Homo sapiens thrombomodulin

NM_006287 TFPI Homo sapiens tissue factor pathway inhibitor (lipoprotein-
associated coagulation inhibitor)

NM_000603 NOS3 Homo sapiens nitric oxide synthase 3 (endothelial cell)

NM_001993 F3 Homo sapiens coagulation factor III (thromboplastin, 
tissue factor)

NM_000552 VWF Homo sapiens von Willebrand factor

Anti-Coagulant

Pro-Coagulant

 

Thrombomodulin (THBD) 

 Thrombomodulin gene expression is shown in Figure 7.5 for ECs and EPCs.  

Thrombomodulin is transmembrane protein presented on the surface of endothelial cells.  

Thrombomodulin binds to thrombin serving as a co-factor which dramatically accelerates 

the rate of protein C activation.  Thrombomodulin binding of thrombin also inhibits 

thrombin’s ability to cleave fibrinogen and activate platelets and factors Va and VIII.  

Therefore when thrombomodulin is bound to thrombin, there is a net loss of coagulant 

effect and an enhancement of anti-coagulant effect through the activated protein C 

pathway [225].  Under static conditions, ECs and EPCs both have similar (p>0.05) levels 
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of THBD expression.  When exposed to shear stress, ECs responded with a slight but not 

significant (p>0.05) increase in THBD transcripts while EPCs responded with a greater 

than 3-fold (p<0.05) increase in THBD expression. 

Tissue Factor Pathway Inhibitor (TFPI) 

 Tissue factor pathway inhibitor has anti-coagulant effect by acting on the extrinsic 

system of coagulation.  TFPI is a protein that in association with factor VIIa and factor 

Xa inhibits the tissue factor (TF)/factor VIIa complex.  The result is a fully inhibited 

tetramolecular complex (TF:VIIa:TFPI:Xa) which not only blocks the enzymatic activity 

of TF:VIIa, it also promotes the internalization and degradation of TF:VIIa complexes on 

the cell surface [226].  RT-PCR results (Figure 7.6) show that in vascular ECs there is 

significantly more TFPI expression (p<0.05) than in EPCs under static conditions.  When 

both cell types were exposed to shear stress, the TFPI mRNA expression was unregulated 

(p<0.05) in both cell types but even with the increased expression following shear stress 

exposure, EPCs still showed significantly less TFPI than ECs (p<0.05). 

Nitric Oxide Synthase 3 (NOS3) 

 NOS3, the endothelial isoform of nitric oxide synthase, has been extensively 

studied because the nitric oxide (NO) produced by eNOS mediates a variety of 

physiological functions in vivo including neovascularization, regulation of blood vessel 

tone (vessel wall tension), vascular permeability and leukocyte-endothelial interaction 

[21].  NOS3 represents an integral part of vascular hemostasis.  In addition to effects as a 

vasodilator, NO also prevents the adhesion of platelets and white cells to endothelium, 

inhibits the aggregation of platelets, and induces the disaggregation of platelets.  Basal 
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release of NO can also decrease the rolling and adhesion of polymorphonuclear 

leukocytes to the endothelium [22].  Figure 7.7 shows the NOS3 mRNA expression for 

ECs and EPCs under static and shear conditions.  In static cell culture conditions, EPC 

expression levels of NOS3 were lower than ECs (p<0.05).  Following 24 hours of shear 

stress, both EPC and EC NOS3 mRNA expression increased (p<0.05).  EPCs message 

levels nearly doubled in the presence of shear stress resulting in expression which 

equaled the EC static expression but still at levels significantly lower than in ECs 

following shear exposure (p<0.05).   

Tissue Factor (F3 or TF) 

 There are two main pathways for triggering the coagulation cascade, the intrinsic 

or “contact” pathway and the extrinsic or “tissue factor” pathway.  The extrinsic pathway 

is triggered when plasma comes in contact with cells that express tissue factor.  

Presentation of tissue factor can be a physiological response to injury or can be caused by 

a pathologic activation.  Tissue factor is a transmembrane protein which serves as a co-

factor to a serine protease, factor VIIa.  Tissue factor (TF) can bind factor VII or VIIa 

with high affinity but once the TF:VIIa complex has assembled on the cell surface, it is 

the most potent know activator of the clotting cascade [227].  In vascular ECs, Figure 7.8 

shows that shear stress caused a significant up-regulation (6.5-fold) of F3 mRNA 

(p<0.05) while shear stress did not augment EPC F3 expression over static levels 

(p>0.05).  ECs had a slightly more F3 expression in static conditions than static EPC 

samples (p<0.05).   
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Von Willebrand Factor (VWF) 

 VWF has a pro-coagulant function primarily in supporting the adhesion of 

platelets to damaged blood vessels but it also has post-synthetic association with factor 

VIII which protects factor VIII from proteolysis [228].  VWF is synthesized in both the 

megakaryocyte and the endothelial cell.  Endothelial cells and platelets are known to 

store VWF in secretory granules called Weibel-Palade bodies in ECs and α-granules in 

platelets.  Following stimulation by an appropriate agonist, platelets and ECs can release 

VWF both luminally into plasma and abluminally into the subendothelial cell matrix.  

VWF bound to the subendothelial matrix can interact with circulating platelets, initiating 

platelet adhesion and subsequent platelet activation [229].  Figure 7.9 shows the VWF 

gene expression of both ECs and EPCs in static and following shear stress exposure.  

Shear stress caused a significant down-regulation of VWF mRNA in ECs compared to 

ECs under static conditions (p<0.05).  EPC VWF mRNA under static conditions was not 

different than EC static levels (p<0.05) and following shear stress exposure, although 

EPCs mRNA levels rose slightly, there was not a significant difference compared to static 

controls (p<0.05). 
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Figure 7.5:  Thrombomodulin (THBD) gene expression in EC and EPC 
determined by real-time RT-PCR.  mRNA expression was quantified in cells 
exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to static 
controls (mean ± SEM, n=9).  ANOVA showed differences in groups (p<0.0001).  
Pairwise comparisons:  *(p<0.05).   
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Figure 7.6:  Tissue factor pathway inhibitor (TFPI) gene expression in EC and 
EPC determined by real-time RT-PCR.  mRNA expression was quantified in cells 
exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to static 
controls (mean ± SEM, n=9).  ANOVA showed differences in groups (p<0.0001).  
Pairwise comparisons:  *(p<0.05).   
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Figure 7.7:  Nitric Oxide Synthase 3 (NOS3) gene expression in EC and EPC 
determined by real-time RT-PCR.  mRNA expression was quantified in cells 
exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to static 
controls (mean ± SEM, n=9).  ANOVA showed differences in groups (p<0.0001).  
Pairwise comparisons:  *(p<0.05).   
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Figure 7.8:  Tissue factor (F3) gene expression in EC and EPC determined by 
real-time RT-PCR.  mRNA expression was quantified in cells exposed to steady 
laminar shear stress (15 dynes/cm2, 24 hours) and compared to static controls (mean ± 
SEM, n=9).  ANOVA showed differences in groups (p<0.0001).  Pairwise 
comparisons:  *(p<0.05).   
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Figure 7.9:  Von Willebrand factor (VWF) gene expression in EC and EPC 
determined by real-time RT-PCR.  mRNA expression was quantified in cells 
exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to static 
controls (mean ± SEM, n=9).  ANOVA showed differences in groups (p<0.0001).  
Pairwise comparisons:  *(p<0.05).   
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Protein Expression 

 Using flow cytometry, levels of cellular protein expression were investigated in 

ECs and EPCs under static and shear stress conditions.  Antibodies specific to THBD and 

F3 were used to independently label the protein expressed on the cell surface followed by 

quantification relative to fluorescent standards. 

Thrombomodulin (THBD) 

 Figure 7.10 shows the cell surface protein expression of THBD for both ECs and 

EPCs under static and shear conditions.  There was not a significant difference in THBD 

protein expression between ECs and EPCs in static conditions (p>0.05).  This basal level 

of expression was unchanged in ECs exposed to shear (p>0.05) but in EPCs, shear caused 

a significant 3.9 fold increase in THBD protein (p<0.05). 

Tissue Factor (F3 or TF) 

 At the protein level, Figure 7.11 shows flow cytometry results for F3 expression.  

The opposite trend was seen in F3 protein expression compared to THBD protein.  

Similarly under static conditions, there was not a significant difference in ECs and EPCs 

basal F3 protein expression (p>0.05).  Following shear stress exposure, EPC F3 protein 

remained unchanged from static conditions (p<0.05) while EC F3 protein levels increased 

more than double the static level (p<0.05). 
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Figure 7.10:  Thrombomodulin (THBD) protein expression in EC and EPC 
determined by flow cytometry.  Cell surface protein expression was quantified in 
cells exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to 
static controls (mean ± SEM, n≥9).  ANOVA showed differences in groups (p<0.0001).  
Pairwise comparisons:  *(p<0.05).   
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Figure 7.11:  Tissue Factor (F3) protein expression in EC and EPC determined by 
flow cytometry.  Cell surface protein expression was quantified in cells exposed to 
steady laminar shear stress (15 dynes/cm2, 24 hours) and compared to static controls 
(mean ± SEM, n≥9).  ANOVA showed differences in groups (p<0.0001).  Pairwise 
comparisons:  *(p<0.05).   
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Coculture on an Engineered Tissue 

Cell Morphology 

 Studies were performed to investigate EC and EPC gene expression when 

cultured on the surface of an engineered tissue hydrogel composed of type I collagen 

embedded with SMCs.  Tubular engineered vascular tissue constructs were cut 

longitudinally and embedded in agar exposing the luminal surface as described in 

Chapter IV: Methods and Materials.  Following the same procedures used for the 

absorbed collagen substrate, ECs and EPCs were seeded onto the engineered tissue, 

allowed to adhere for 48 hours and then exposed to either shear or static conditions for an 

additional 24 hours.  A modification of the parallel plate flow chamber was used to 

expose cells on the coculture model to a steady laminar shear stress of 15 dynes/cm2.   

 To visualize cell attachment ECs and EPCs were labeled with a fluorescent cell 

tracker (Orange CMTMR, Molecular Probes) and then seeded onto the construct surface.  

Figure 7.12 shows the morphology of ECs and EPCs using confocal microscopy 

following 48 hours of static culture.  Both cell types formed a confluent monolayer on the 

construct surface and a more elongated morphology than was seen on the absorbed 

collagen slides where the morphology was a more defined cobblestone appearance 

(Figure 7.1 and Figure 7.2).  The cell morphology appeared to be influenced by the 

topography of the random collagen fiber network in the underlying engineered tissue.  

Following the initial 48 hours of static culture, EC and EPCs on the engineered tissue 

were exposed to steady laminar shear stress and compared to static controls.  Figure 7.13 

shows representative images of the EC and EPC morphology with or without shear  

 138



 

A BA B

 

Figure 7.12:  Confocal microscopy of fluorescently labeled EC and EPC on a 3-D 
engineered vascular tissue.  Cells were labeled with a fluorescent cell tracker (Orange 
CMTMR, Molecular Probes) and seeded onto the engineered tissue.  (A) Baboon 
carotid artery endothelial cells (ECs)and (B) baboon peripheral blood derived 
endothelial progenitor cells (EPCs) after 48 hours of static culture.  Scale bar = 50µm.   
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Figure 7.13:  Visualization of cell morphology on a 3-D engineered vascular tissue 
using confocal microscopy.  Calcein AM was used to visualize viable ECs and EPCs on 
the engineered tissue in static conditions and following exposure to steady laminar shear 
stress (15 dynes/cm2, 24 hours).  Scale bar = 50µm.   
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exposure.  Calcein AM was used to label viable ECs and EPCs on the construct surface 

and clearly showed a confluent lining with and without shear exposure.  Morphological 

alterations were evident in samples exposed to fluid shear stress.  Both cell types 

responded to fluid flow by aligning parallel to the direction of flow and elongating after 

24 hours of in vitro stimulation. 

Cell Separation 

 In order to investigate the EC or EPC specific mRNA expression, a sorting 

strategy was developed to remove the cells from the engineered tissue surface followed 

by positive selection for ECs and EPCs to ensure removal of possible SMC 

contamination.  CD31 or platelet/endothelial cell adhesion molecule (PECAM1) was 

investigated as a candidate selection molecule based on cell surface expression.  The flow 

cytometry histograms of CD31 expression in ECs, EPCs and SMCs are shown in Figure 

7.14.  ECs and EPCs showed strong expression of CD31 while SMCs were negative for 

CD31 expression.  

 Indirect magnetic cell labeling was used to sort for EC and EPC specific 

populations based on CD31 expression as shown schematically in Figure 7.15.  

Validation of this technique to yield EC and EPC populations free of SMCs was 

performed using an additional labeling procedure.  In independent experiments, ECs and 

EPCs were labeled with a cytoplasmic cell tracker molecule (Orange CMTMR, 

Molecular Probes), seeded onto engineered tissues and following 72 hours were removed 

using the CD31 indirect magnetic labeling procedure.  Flow cytometry analysis was 

performed on both the negative and positive effluents.  Figure 7.16 shows the flow 

cytometry results for fluorescence detected in the range of 565nm (the emission 
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Figure 7.14:  Flow cytometry analysis of CD31 (PECAM-1) expression in ECs, 
EPCs and SMCs.  Cells were labeled with FITC conjugated anti-CD31 antibody (BD 
Pharmingen, clone WM59) and analyzed using flow cytometry.  Black outline is cell 
only negative control.  Red filled histogram is cells plus antibody. (A) ECs, (B) EPCs 
and (C) SMCs.  At least 10,000 events were recorded. 
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Figure 7.15:  EC and EPC positive selection using the MACS® cell separation 
system.  ECs and EPCs were separated from cell suspensions using a positive selection 
for CD31 (FITC) followed by indirect magnetic cell labeling with anti-FITC 
microbeads.  CD31 positive cells were retained in the MACS® column and unlabeled 
cells pass through (negative effluent).  The column was removed from the magnet 
separator and the retained cells were eluted as the positively selected cell fraction 
(positive effluent). 
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Figure 7.16:  Validation of EC and EPC positive selection using flow cytometry.  
ECs or EPCs were labeled with a fluorescent cell tracker (Orange CMTMR, Molecular 
Probes) prior to seeding onto the engineered tissue.  At the completion of the 
experiment, cells were then removed from the construct surface using a collagenase 
treatment.  ECs and EPCs were separated from contaminating SMCs using a positive 
selection for CD31.  The flow cytometry histograms are shown for the positive and 
negative effluent from MACS separation for both (A) ECs and (B) EPCs.  The x-axis 
(labeled PE) is the fluorescence detection covering 565nm, the emission of cell tracker 
orange CMTMR.  The top panel is the combined negative and positive effluents.  The 
middle panel (red filled histogram) is the positive effluent (CD31 positive fraction).  
The bottom panel shows the negative effluent (CD31 negative fraction) as a black 
outlined histogram. 
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wavelength of the cell tracker orange) for both ECs and EPCs.  The top panel of Figure 

7.16A and B shows the mixed population of cell tracker positive and negative cells which 

corresponded to labeled ECs or EPCs and unlabeled SMCs.  In the middle panel, the red 

solid histogram is the fluorescence of the positive effluent (CD31 positive fraction) from 

the magnetic sorting procedure which demonstrates that the positive effluent contained a 

uniform population of ECs (Figure 7.16A) and EPCs (Figure 7.16B) without SMC 

contamination.  In the lower panel, the black line, which is the fluorescence of the 

negative effluent collected from the MACS column (CD31 negative fraction), shows a 

uniform population of SMCs which were not labeled with the cell tracker dye. 

Quantification of Gene Expression 

 mRNA for ECs and EPCs was obtained from the positive effluent of the magnetic 

separation procedure.  This study focused on three genes having both anti and 

procoagulant function.  The expression of thrombomodulin (THBD), NOS3 and tissue 

factor (F3) was investigated in both cell types on the engineered tissue in static and shear 

environments. 

Thrombomodulin (THBD) 

 ECs and EPCs had comparable expression of THBD on the coculture model under 

static conditions as shown in Figure 7.17  Following exposure to shear stress, there was a 

significant reduction in THBD expression in both cell types (p<0.05), with EPCs 

showing less THBD expression than ECs on the engineered tissue (p<0.05).   
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Nitric Oxide Synthase 3 (NOS3) 

 In contrast to the down regulation of THBD, shear stress exposure resulted in an 

upregulation of NOS3 in both cell types (shown in Figure 7.18).  In static conditions, ECs 

demonstrated significantly more NOS3 mRNA than EPCs on the engineered construct 

(p<0.05).  When exposed to shear stress, there was a significant upregulation of NOS3 in 

ECs and EPCs (p<0.05), but EPCs on the engineered tissue still showed significantly less 

NOS3 expression than the ECs (p<0.05). 

Tissue Factor (F3 or TF) 

 The procoagulant molecule F3 was investigated in ECs and EPCs on the 

engineered tissue.  Quantification of mRNA expression is shown in Figure 7.19.  In the 

static environment, ECs had significantly more F3 expression than EPCs (p<0.05).  When 

the cells were exposed to shear stress, F3 mRNA expression was enhanced.  ECs and 

EPCs both showed increases in F3 mRNA with shear (p<0.05) but ECs still showed 

significantly more F3 expression than the EPCs (p<0.05). 
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Figure 7.17:  Thrombomodulin (THBD) gene expression in EC and EPC on a 3-D 
engineered vascular tissue determined by real-time RT-PCR.  mRNA expression 
was quantified in cells exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) 
and compared to static controls (mean ± SEM, n=3).  ANOVA showed differences in 
groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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Figure 7.18:  Nitric Oxide Synthase 3 (NOS3) gene expression in EC and EPC on a 
3-D engineered vascular tissue determined by real-time RT-PCR.  mRNA 
expression was quantified in cells exposed to steady laminar shear stress (15 
dynes/cm2, 24 hours) and compared to static controls (mean ± SEM, n=3).  ANOVA 
showed differences in groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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Figure 7.19:  Tissue Factor (F3) gene expression in EC and EPC on a 3-D 
engineered vascular tissue determined by real-time RT-PCR.  mRNA expression 
was quantified in cells exposed to steady laminar shear stress (15 dynes/cm2, 24 hours) 
and compared to static controls (mean ± SEM, n=3).  ANOVA showed differences in 
groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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Discussion 

Limitations of the Experimental Approach 

 This study has several limitations.  Due to the in vitro nature of this study, ECs 

and EPCs were removed from their normal extracellular environment for investigation 

and subsequently expanded through routine cell culture techniques.  These studies were 

performed with ECs and EPCs between passages 5-7.  There were no observed 

differences in growth or morphology of either cell type in this passage range.  While in 

vitro culture could affect cellular response, samples were kept in identical culture 

conditions to isolate the effect of shear stress and substrate on cellular response.   

 This study used a parallel plate flow chamber to expose cells to a steady laminar 

shear stress as previously described [34].  The parallel plate flow chamber was designed 

using channel flow geometry where the channel is a rectangular crosssection whose 

height (h) is much less than either its length (L) or its width (b).  In these studies the flow 

channel dimensions were L=6.20cm, b=2.54cm and h=0.05cm.  Based on an estimated 

entrance length of 0.11cm, a fully developed velocity profile was expected over 98% of 

the chamber length.  A shear stress of 15 dynes/cm2 was achieved at a flow rate of 

1.3cm3/s using a working fluid (culture medium) with a viscosity of 0.012 dyne s/cm2.  

The resulting Reynolds number was 44, the shear rate was 1250s-1 and the pressure drop 

was 368 Pa.  While this methodology did not exactly duplicate the in vivo environment, it 

did allow for precise control of the shear environment on a confluent monolayer of cells.  

Incorporation of an engineered tissue into the parallel plate flow chamber was performed 

 148



as previously described.[216, 230].  Care was taken to ensure that the luminal surface, on 

which the ECs and EPCs resided, was as flat as possible. 

 This study focused on a number of genes and proteins related to coagulation.  The 

regulation of hemostasis and thrombosis and the involvement of the endothelium is 

complex and requires regulation of a number of molecules not included in these 

investigations.  This study has attempted to investigate an important subset of the known 

essential factors. 

The Role of Shear Stress and Substrate in EPC Phenotype 

 EPC response to fluid shear stress was evaluated on two substrates; absorbed 

collagen slides and on an engineered vascular tissue.  The engineered tissue mimicked the 

medial layer of the native blood vessel with baboon carotid artery SMCs embedded 

within an extracellular matrix of type I collagen fibrils.  On both substrates, peripheral 

blood derived EPCs were compared to mature vascular ECs derived from the vascular 

wall of the carotid artery.  A significant amount of research has shown that fluid shear 

stress is an important determinant of vascular EC phenotype and more recently, studies 

have also suggested that neighboring SMCs and the extracellular matrix also play an 

important role.  Our current research demonstrates that not only are EPCs responsive to 

the mechanical environment but that the response is dependent on the specific substrate. 

 EPCs responded to shear stress by elongating and orienting parallel to the 

direction of flow when exposed to 15 dynes/cm2 steady laminar shear stress for up to 48 

hours.  This finding was consistent whether EPCs were seeded onto a simplified absorbed 

collagen slide or on a more complex engineered tissue coculture model.  Quantification 

of cytoskeletal reorganization on absorbed collagen showed that EPCs demonstrate a 
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time dependant cytoskeletal reorganization and alignment which mimicked the response 

of baboon carotid artery ECs in the same system.  Following 24 and 48 hours of shear 

stress, the angle of orientation demonstrated increasing alignment of the cells parallel to 

the direction of flow and was not significantly different between EPCs and ECs.  This 

data was consistent with previous reports using bovine aortic ECs and human umbilical 

vein ECs on simplified two-dimensional substrates [31, 32, 34, 231]. as well as with 

reports of porcine aortic ECs and human aortic ECs on a three-dimensional hydrogel 

coculture model [216, 230] in response to steady laminar shear stress  

 Hemodynamic forces have been shown to regulate many of the coagulation 

controlling properties of endothelial cells.  Prostacyclin was the first inhibitor of platelet 

aggregation shown to be released from endothelial cells on exposure to shear stress [43, 

44].  Since then, numerous investigators have demonstrated that shear stress is one of the 

most powerful stimuli for release of nitric oxide, which also possesses strong anti-platelet 

aggregation properties [45-47].  In addition, enhanced expression of tissue plasminogen 

activator (TPA) [48, 49] and tissue factor pathway inhibitor (TFPI) [50] result from shear 

stress exposure.  There have been conflicting reports about thrombomodulin expression 

in cultured cells.  Malek et al. [51] reported that steady shear stress (15 dynes/cm2) results 

in a time–dependent decrease in THBD mRNA in bovine aortic endothelial cells 

measured by northern blot analysis of total RNA.  In contrast, Takada et al. [52] 

demonstrated that cultured human umbilical vein endothelial cells (HUVEC) respond to 

shear stress (15 dynes/cm2) with a time-dependent increase in THBD using RT-PCR, 

flow cytometry, and ELISA methods.  The reason for this disparity in species response is 
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unclear but these studies provided evidence that mechanical hemodynamic forces such as 

shear stress are associated with alterations in thrombomodulin expression.   

The interaction between thrombomodulin and shear stress has been demonstrated 

to have clinical relevance.  Clinically, early vein graft occlusion by thrombosis occurs 

more often than in arterial grafts [53].  This has been partly attributed to the loss of 

endothelial thromboresistance and reductions in thrombomodulin expression once vein 

grafts have been placed in the arterial circulation [54].  Although inflammatory processes 

are clearly active in this setting, several groups have established links between 

thrombomodulin expression and the local mechanical environment including shear stress 

and pressure associated changes in vessel wall tension.  Using a rabbit model to perform 

interpositional grafting of jugular vein segments into the carotid circulation, Sperry et al 

[55] demonstrated that decreases in THBD mRNA and protein correlated with increases 

in wall tension and were independent of shear stress changes up to 8.2 dynes/cm2.  Again, 

conflicting data exists using human saphenous veins in an ex vivo flow circuit.  

Consistent with Sperry’s results, Gosling et al.[56] saw decreases in thrombomodulin 

immunostaining after saphenous veins were exposure to arterial flow (4 dynes/cm2), but 

by limiting circumferential distension in their model system, the authors attributed the 

THBD decrease to shear stress rather than circumferential deformation.   

 In our own study with primary cultured baboon carotid artery ECs cultured on 

absorbed collagen, there was not a significant alteration in THBD mRNA or protein with 

exposure to 15 dynes/cm2 steady laminar shear stress for 24 hours (see summary Table 

7.2).  Yet, in sharp contrast to ECs, EPCs increased THBD mRNA levels 3.3 fold and 

protein levels 3.9 fold in response to flow.  The cell’s response to flow changed when 
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cultured on an engineered tissue.  In the coculture model, ECs showed a two fold 

reduction in THBD mRNA and EPCs responded with over a three fold decrease in 

THBD.  These results mimic the findings of both Sperry et al. [55] and Gosling et al. [56] 

who used in vivo and ex vivo experimental methodologies, respectively.   

 The impact of substrate on EC and EPC expression of THBD is summarized in 

Figure 7.20A.  Each cell’s mRNA expression on the engineered tissue was divided by the 

mRNA expression on the absorbed collagen slide and reported as a fold change.  Ratios 

less than one are reported as negative fold change (in the form of -1/(ratio less than one)).  

In static conditions, there was very little effect of coculture on the THBD expression in 

ECs and EPCs but shear stress caused a reduction in THBD expression which was more 

pronounced in EPCs.  When focused on THBD expression, EPCs are clearly responding 

differently than ECs to local changes in fluid shear stress and that response is heavily 

dependent on the substrate (absorbed collagen versus engineered tissue). 

 Shear stress is only one factor that has previously been reported to alter 

thrombomodulin expression.  THBD has been shown to increase in response to 

stimulants such as tumor-promoting phorbol esters [232], histamine [233], retinoic acid 

and other agents that increase intracellular cyclic adenosine monophosphate (cAMP) 

[234, 235] but decrease in the presences of endotoxin and cytokines such as TNFα or 

IL1-β [236-238].  Heterogeneous levels of thrombomodulin expression can also be found 

in different vascular beds possibly playing a role in vascular bed-specific prothrombotic 

potential [239].  THBD is not only constituently expressed in vascular endothelium, but it  
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Figure 7.20:  The effect of a substrate on gene 
expression in EC and EPC.   The mRNA expression on 
the engineered tissue was divided by the mRNA 
expression on the absorbed collagen slide and reported as 
a fold change.  Ratios less than one are reported as 
negative fold change (-1/(ratio less than one)) for (A) 
thrombomodulin, (B) NOS3 and (C) tissue factor.   
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has also been detected in human platelets[240], smooth muscle cells [241] and monocytes 

(unstimulated monocytes surface THBD activity represents ~20% of early passage 

HUVECs) [242, 243].  It is clear that THBD is required for survival because its absence 

causes embryonic lethality in mice prior to embryonic day 9.5 [244].  While the anti-

coagulant function of thrombomodulin has been established, studies of murine 

development have suggested that THBD may also exert different or related functions in 

locations other than the vascular endothelium [245].   

The biology of EPCs including their origin, differentiation, and functions are 

currently an active area of world-wide research.  Static cultures of EPCs have been 

shown to express THBD [246], consistent with their “endothelial-like” phenotype but to 

our knowledge this is the first demonstration that THBD expression in EPCs is 

modulated by fluid shear stress -- a finding which may have important implications for 

applications where EPCs line a blood contacting surface. 

TFPI, another molecule with known anticoagulant function, was significantly up-

regulated by chronic shear exposure (15 dynes/cm2, 24 hours) in both ECs and EPCs on 

both absorbed collagen (see Table 7.2).  These results with ECs are consistent with 

previous reports that shear stress induces upregulation of synthesis and release of TFPI 

resulting in enhanced anti-coagulant activity [50, 60, 247].  Previously unreported, this 

study showed that EPCs express TFPI in static culture with elevated expression following 

exposure to shear stress.   

NOS3, a multifunctional mediator of anticoagulant function was similarly 

upregulated by fluid shear stress in ECs and EPCs on both the absorbed collagen and 

engineered tissue substrate.  Consistent with the results of this study, NOS3 expression in 
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EPCs under static culture conditions has been reported by a number of investigators [130, 

133, 156, 158].  Functionally, evidence is emerging that NOS3 is not only important for 

EPC function but it is also critical for the initial mobilization of EPCs from the bone 

marrow into peripheral circulation [248, 249].  EPCs isolated from adult human 

peripheral blood have been shown to participate in neovascularization after ischemic 

insults, often referred to as postnatal vasculogenesis [92, 250, 251].  Recently, EPCs were 

shown to not only preserve the microcirculation in ischemic myocardium, by 

incorporation into the host vascular structures, but to also rapidly deliver cytokines to the 

injured tissue [252].  EPCs were shown to be active repositories of NOS activities (i.e. 

eNOS and iNOS) as well as vascular endothelial growth factor (VEGF).  Flow dependent 

regulation of NOS3 in mature vascular endothelial cells is well established (reviewed in 

[253]), but shear induced upregulation of NOS3 in EPCs may have additional important 

biological implications even beyond its known importance in platelet interactions with 

the endothelium. 

Comparing NOS3 expression on an engineered tissue to expression when cells 

were cultured on absorbed collagen showed dramatic decreases in NOS3 mRNA with 

coculture.  Figure 7.20B summarizes the substrate influence on NOS3 expression in ECs 

and EPCs with and without shear stress exposure.  When ECs were cultured on the 

engineered tissue, NOS3 mRNA was prominently decreased compared to culture on 

absorbed collagen.  These results are consistent with several other studies using different 

types of in vitro EC/SMC coculture [211, 254, 255].  Interestingly, EPCs also responded 

to coculture with an obvious down regulation of NOS3 gene expression.  While EPCs 
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overall showed less NOS3 expression than ECs, culture on the engineered tissue heighten 

that difference. 

When cultured on absorbed collagen, shear stress did not significantly alter EPC 

expression of tissue factor or von Willebrand factor, the two prothrombotic factors 

investigated in this study.  As summarized in Table 7.2, EPCs expressed VWF and F3 at 

levels comparable (F3 protein and vWF mRNA) or slightly lower (F3 mRNA) than ECs 

in static conditions.  In contrast to the EPC response to shear on absorbed collagen, shear 

exposure did have a significant effect on F3 and VWF expression in ECs.  Shear stress 

resulted in an increase in F3 mRNA in ECs (6.5-fold) with a corresponding increase in F3 

protein (2.2-fold).  Shear stress exposure resulted in a modest (1.6-fold) decrease in EC 

VWF mRNA.  Shear stress plays many roles in modulating the pro-coagulant function of 

VWF from alterations in cellular expression and storage to structural modifications which 

occur once VWF is circulating in the plasma [256].  In this study, we investigated the 

effect of shear stress on mRNA expression.  It may be difficult to draw direct conclusions 

about the pro-coagulant effect of VWF mRNA changes due to the large intracellular 

pools of VWF that exist in ECs.  Shear stress has been reported to modulate local VWF 

concentrations by stimulating an enhanced release of VWF from Weibel-Palade bodies, 

the ECs’ intraceulluar storage organelles, without significantly altering de novo synthesis 

[257].  Here we have reported the cell’s first response to shear stress at the message level. 

Several hemodynamic factors including shear stress [59, 247, 258-261], pressure 

[262], and cyclic strain [263] have been shown to alter F3 expression in vascular ECs.  

Normally, quiescent vascular endothelium does not favor coagulation and thrombosis 

resulting in undetectable levels of tissue factor in vivo [264-266].  However, cultured 
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human umbilical vein endothelial cells (HUVEC) produce low levels of F3 mRNA [267, 

268] consistent with the findings of this study.  Shear stress has been reported to cause 

induction of the tissue factor gene with transient increases in F3 transcripts and activity 

[261].  Based on studies with HUVEC exposed to shear for up to 15 hours, F3 expression 

continued to decrease with increasing exposure to constant shear stress [258].  Our study 

with baboon carotid artery ECs shows a significant increase in TF mRNA and protein 

following 24 hours of shear stress compared to static controls.  Because we did not 

quantify F3 expression in ECs as a function of shear duration, it is difficult to predict how 

the response of the baboon arterial endothelial cells may change in response to either 

longer or shorter durations of shear stress.  

F3 expression in EPCs was sensitive to changes in substrate.  Not only did EPC 

F3 mRNA increase when cultured on the engineered tissue compared to absorbed 

collagen (Figure 7.20C), but in the coculture environment, fluid shear stress caused a 1.7 

fold increase in F3 mRNA (Table 7.2).  This sensitivity to substrate was also evident in 

the ECs.  ECs also showed increases in F3 mRNA on the engineered tissue compared to 

absorbed collagen (Figure 7.20C) and that expression was increased further by exposure 

to fluid shear stress (Table 7.2).  Several studies have previously reported that in vitro 

coculture of ECs with SMCs resulted in enhanced expression of F3 in both static [219, 

269] and shear [254] environments, consistent with our own data. 

Figure 7.21 summarizes a comparison of EPC to EC gene expression for the three 

molecules studies when ECs and EPCs were cultured on the engineered tissue substrate.  

In the method described for Figure 7.20, the ratio of mRNA expression is presented as a 

positive or negative fold change.  The mRNA expression of EPCs was divided by the 
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mRNA expression of ECs for the given comparison (absorbed collagen slide or 

engineered tissue, ± shear stress) and reported as a fold change.  Ratios less than one 

were reported as a negative fold change (in the form of -1/(ratio less than one)).  As 

shown in Figure 7.21, THBD was heterogeneously regulated in EPCs compared to ECs 

as a function of shear and substrate.  EPCs showed overall lower expression of both 

NOS3 (Figure 7.21B) and F3 (Figure 7.21C) compared to ECs.   
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Figure 7.21:  Gene expression in EPCs compared to 
ECs on a slide and on a 3-D engineered vascular 
tissue under static and fluid flow conditions.  The 
mRNA expression of EPCs was divided by the mRNA 
expression of ECs and reported as a fold change.  Ratios 
less than one are reported as negative fold change (-
1/(ratio less than one)) for (A) thrombomodulin, (B) 
NOS3 and (C) tissue factor.   
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Conclusions 

 The results presented here demonstrate that EPCs derived from peripheral blood 

are responsive to the local shear stress environment.  The mechanosensitive nature of 

EPCs results in morphological changes (cytoskeletal reorganization) as well as alterations 

in their transcriptional profile and antigen presentation.  When cultured on an absorbed 

collagen substrate, fluid shear stress promoted an anti-coagulant phenotype in EPCs by 

upregulating the anti-coagulant factors: THBD, TFPI, and NOS3 without significantly 

altering basal expression of pro-coagulant factors: F3 and VWF.  In static culture, EPCs 

mimic the expression patterns of mature vascular endothelial cells with respect to THBD 

and VWF mRNA as well as THBD and F3 protein expression but have lower levels of 

TFPI, NOS3, and F3 mRNA.  In comparing how each cell type responds to the shear 

stress environment, we found obvious differences in both THBD and F3.  EPCs 

significant upregulation of THBD mRNA and protein with shear was in contrast to the 

ECs response which did not change from static levels.  There was no change in F3 

mRNA or protein expression in EPCs following shear exposure while ECs upregulation 

of F3 indicated they were activated by the local mechanical environment.   

 Culture on an engineered tissue in the presence of neighboring SMCs caused 

dramatic changes in the gene expression patterns for both EPCs and ECs.  In the static 

environment, there was a general decrease in NOS3 expression and upregulation of F3 in 

both cell types.  These gene expression results suggest that coculture with SMCs in a 

static environment may cause EPCs and ECs to exhibit a prothrombogenic phenotype 

compared to cells cultured on absorbed collagen.  Additionally, EPC response to shear 

stress more closely mimicked the expression of ECs when cultured on the engineered 
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tissue compared to culture on absorbed collagen, although the EPC response to shear was 

generally attenuated.  EPCs and ECs showed differential regulation of anticoagulant 

function (downregulation of THBD, upregulation of NOS3) and upregulation of 

procoagulant function (F3) with shear on the engineered tissue.  It is clear that coculture 

with SMCs altered EPC phenotype and response to shear stress but the mechanism is 

unclear at this time.  ECs and SMCs have been shown to communicate through paracrine 

mechanisms [254, 270] as well as though direct gap junction communication at 

myoendothelial junctions [271-273].  It is certainly possible that EPCs may communicate 

with SMCs in similar mechanisms.  Although beyond the scope of the current study, 

SMC coculture may have also effected the differentiation of EPCs, possibly resulting in a 

more mature EC phenotype. 

 The results of this study may have clinical relevance.  The emerging evidence that 

adult tissues possess repair and regenerative capacity through the mobilization of stem 

and progenitor cells from endogenous stores has transformed how engineers and 

clinicians develop treatment strategies in all areas of disease management.  In the present 

study we have shown how application of fluid shear stress can be used to modulate the 

phenotype of a potentially autologous cell source obtained from minimally invasive 

peripheral blood samples.  Manipulation of EPC phenotype using control of the local 

mechanical environment may be important in the development of non-thrombogenic 

surfaces on engineered blood vessel substitutes and other cardiovascular implants.   
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CHAPTER VIII:  ENDOTHELIAL PROGENITOR CELLS AS A FUNCTIONAL 

VASCULAR LINING ON AN ELASTIN-COLLAGEN HYBRID VASCULAR 

TISSUE MODEL 

 

Introduction 

 Tissue engineered small diameter vascular grafts have been considered the holy 

grail in vascular research for a number of years [274].  Tissue engineering has been faced 

with a number of challenges including the need for advances in three core enabling 

technology areas:  cell source, construct fabrication and integration into the living system 

[5].  This work contributes in each of these three areas. 

 The need for a nonthrombogeneic surface on an engineered blood vessel 

substitute is paramount.  In the native vessel, vascular endothelial cells (ECs) provide this 

unique surface but in recent years, other cells sources have emerged as possible 

alternatives to the EC.  Endothelial progenitor cells (EPCs), which were first identified in 

the adult circulation in 1997 [91], are one such possible alternative but very little is 

known about their hemostatic function or their response to the arterial mechanical 

environment.  We use an arteriovenous shunt model to test the application of EPCs in 

creating a vascular lining on an engineered tissue and investigate the role of the 

mechanical environment in EPC functional outcome. 

 In the area of construct fabrication, many strategies have been pursued using 

natural [75, 77, 80-82, 86, 164, 275, 276] and synthetic materials [9, 76, 83] as well as 

the body’s own regeneration capacity [87] to create a suitable vascular substitute.  In this 
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study, we focus on the use of natural extracellular matrix components which can 

(theoretically) be remodeled by donor and/or host cells.  This natural hybrid approach 

provides a physiologically relevant substrate for the investigation of EPC function. 

Experimental Design 

 This study discusses the development of an elastin-collagen hybrid vascular tissue 

which serves as a substrate for endothelial progenitor cells (EPCs).  EPCs were seeded as 

a luminal vascular lining and preconditioned with steady laminar shear stress prior to 

functional evaluation of thrombogenicity in a baboon ex vivo arteriovenous shunt.  

Chapter IV:  Methods and Materials provides a detailed description of the methodology 

used in these studies. 

Results 

Elastin-Collagen Hybrid Vascular Tissue Model 

Elastin Isolation and Characterization 

 An intact elastin scaffold was isolated from fresh porcine carotid arteries 

following the methods described by Berglund et al. [164].  Figure 8.1 shows a 

macroscopic view of the original undigested artery and the resulting intact elastin 

scaffold.  Undigested artery segments with inner diameters between three and five 

millimeters were acquired from either a local slaughterhouse or were purchased from a 

fresh tissue distribution company (Animal Technologies, Tyler, TX).  Artery segments 

were cut to the desired length depending on application.  As described previously, a 

series of thermal and chemical procedures resulted in an elastin scaffold which met 
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published criteria for elastin purity based on amino acid analysis and was absent of type I 

collagen immunostaining [164].  The elastin scaffold displayed significant 

autofluorescence and could be imaged using confocal microscopy.  As shown in Figure 

8.2, the scaffold was composed of multiple concentric lamellar ring structures encased by 

a loosely arranged networks of adventical fibers.  Using scanning electron microscopy, 

the structure was more clearly elucidated.  Figure 8.3A shows a cross-section of the 

scaffold displaying the multilayered structure with unique morphology on both the 

interior and exterior surface.  At higher magnification, the luminal surface is dominated 

by fibers organized into a fenestrated sheet-like morphology (Figure 8.3B).  These thin 

sheets of elastic tissue are termed fenestrated lamellae [277] and were organized into the 

concentric sheets which are predominant in the medial layer of medium size arteries 

(Figure 8.2).  The exterior surface of the elastin scaffold (Figure 8.3C) was structured as a 

three-dimensional meshwork of elastic fibers lacking any significant organized pattern. 

Elastin-Collagen Hybrid Tissue Fabrication and Characterization 

 Intact elastin scaffolds were combined with a solublized type I collagen and 

baboon SMC suspension and allowed to gel in tubular molds.  Using the approach first 

described by Weinberg and Bell [71], a collagen hydrogel was formed entrapping the 

SMCs and the elastin scaffold within a collagen fiber network.  Collagen hydrogels 

containing SMCs were also fabricated in the same way without the intact elastin scaffold 

and were cultured on glass mandrels in baths of nutrient rich media for eight days (shown 

in Figure 8.4).  In the elastin-collagen hybrid tissue, the opaque elastin scaffold can easily  
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Figure 8.1:  Intact elastin scaffold.  (top image) Freshly isolated native porcine 
carotid artery.  (bottom image) Intact elastin scaffold following thermal and 
chemical digestion procedures.   

 

 

Figure 8.2:  Confocal microscopy of 
intact elastin scaffold autofluorescence.  
Scale bar = 100µm. 
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Figure 8.3:  Scanning electron microscopy of an intact elastin scaffold.  A) the cross-
sectional view of the intact elastin scaffold  B) the luminal surface  C) the exterior 
(abluminal) surface.  Scale bars are shown in each image. 
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Figure 8.4:  Engineered vascular tissues in culture.  (elastin 
hybrid) Engineered tissues fabricated with an intact elastin 
scaffold, baboon carotid artery smooth muscle cells (SMCs) and 
Type I collagen following 8 days in static culture.  (collagen) 
Engineered tissue fabricated from SMCs embedded inType I 
collagen.  Scale bar = 3mm. 
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be seen within the more transparent collagen matrix.  Constructs were released from the 

rubber stoppers at each end on day one in culture and were allowed to compact 

constrained only by the inner glass mandrel for the remaining seven days in culture. 

Cell Viability 

 Many of the chemicals used during the isolation procedure are cytotoxic and 

require complete removal from the intact elastin scaffold prior to fabrication of the hybrid 

tissue.  Phosphate buffered saline washes were used as the final isolation steps to ensure 

cytotoxic chemical removal.  Once the elastin scaffold was combined with collagen and 

cells, investigations of cell viability were performed using a two-color fluorescence-

based staining method containing calcein AM and ethidium homodimer-1 (LIVE/DEAD® 

kit, Molecular Probes, Carlsbad, CA).  These molecules allow measurement of two 

recognized parameters of cell viability, intracellular esterase activity and plasma 

membrane integrity [278].  Figure 8.5 shows representative images from LIVE/DEAD® 

staining in elastin-collagen hybrid tissues after eight days in static culture.  The cells were 

generally distributed throughout the collagen matrix as individual cells with the majority 

of cells fluorescing green indicating positive viability.  In rare instances, cell clusters 

could be found in the collagen matrix and probably resulted from poor mixing or 

inhomogeneous suspensions at the time of fabrication (Figure 8.5A).  The elastin scaffold 

autofluorescence could also be seen in the confocal microscopy images (Figure 8.5A).  

Confocal images from at least five microscope fields at varying depths in the tissue (≈0-

100µm) as well as at least five fields covering the cross-section were used to quantify 

average cell viability in the engineered tissues.  Using image analysis (ImagePro Plus), 

the ratio of live/dead cells was quantified as described for constructs fabricated in six 
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independent experiments.  As shown in Figure 8.6, the cell viability was greater than 

73% for both collagen hydrogels and the elastin hybrid tissue.  There was not a 

significant difference in cell viability (p>0.05) between constructs fabricated with or 

without the elastin scaffold indicating that there was not residual toxicity associated with 

the scaffold isolation.  An additional experiment with the elastin hybrid used a 

collagenase digestion (CLS2 600U/mL for 2 hours at 37oC) followed by trypan blue 

exclusion to verify the LIVE/DEAD® staining results.  Trypan blue exclusion showed an 

average of 81% cell viability providing confirmation of the confocal microscopy results. 

Matrix Compaction and Organization 

 Elastin-collagen hybrid constructs were subjected to histological assessment using 

hematoxylin and eosin (H&E) staining.  As shown in Figure 8.7, the construct was 

organized in a composite fashion with the elastin scaffold located at the lumen and the 

SMC rich collagen hydrogel forming an outer covering.  Cells were distributed 

throughout the collagen with a layer of cells along the outer wall.  Very few cells were 

seen within the elastin scaffold after eight days of static culture. 

 Creation of an elastin-collagen hybrid tissue was first reported by Berglund et al. 

[164] using rat aortic smooth muscle cells (RASMCs) and human dermal fibroblasts 

(HDFs).  In this research, early studies were performed with RASMC prior to isolation of 

baboon SMCs.  This work aimed to develop an engineered tissue model appropriate for 

future in vivo studies in the nonhuman primate (baboon) and therefore later studies 

incorporated baboon carotid artery SMCs into the engineered tissues.  It is common for  
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Figure 8.5:  Confocal microscopy using a LIVE/DEAD  viability/cytotoxicity stain.®   
(A) cross-sectional view of the hybrid tissue midsection including elastin scaffold 
autofluorescence following 8 days in static culture; (B) view of external (abluminal) 
surface; (C) cross-sectional view of the hybrid tissue.  Scale bar = 100µm. 
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Figure 8.6:  Quantification of cell viability.  Image analysis was used to quantify the 
ratio of live/dead cells in engineered tissues fabricated with and without an intact 
elastin scaffold following 8 days in static culture.  At least ten fields in each sample 
were acquired using confocal microscopy with a LIVE/DEAD® viability/cytotoxicity 
stain.  Data presented as mean ± SEM, n=6.  ANOVA showed no significant difference 
(p>0.05).   
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Figure 8.7:  Hematoxylin and eosin (H&E) 
section.  H&E was used to identify cell and matrix 
components in the elastin-collagen hybrid tissue 
cross-section following 8 days in static culture.  The 
hybrid construct was a composite of a SMC-
collagen layer (A) combined with an elastin (B) 
inner layer.  Scale bar = 100µm. 
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there to be species specific differences in growth and remodeling and therefore the 

remaining engineered tissue characterization will be presented for both RASMCs and 

baboon carotid artery smooth muscle cells (BaCSMCs). 

 Cells were able to rapidly reorganize and compact their surrounding matrix during 

in vitro culture.  Constructs were typically fabricated 60mm in length with an 11.6mm 

outer diameter and a 3mm inner diameter.  Following eight days in culture, both cell 

types had compacted their matrix to less than 25% of the original volume (Figure 8.8).  

Cell seeded constructs without an elastin scaffold compacted more (occupied less 

volume) than elastin hybrid constructs (p<0.05).  RASMC and BaCSMCs compacted the 

collagen hydrogels to the same extent but RASMC compacted the elastin hybrids slightly 

more than the BaCSMCs (p<0.05).  Changes in wall thickness followed the same trend as 

seen in the compaction results with collagen hydrogels having slightly thinner walls 

(average wall thickness 0.89mm and 0.92mm for RASMC and BaCSMC, respectively) 

than elastin-collagen hybrid constructs (1.12mm and 1.37mm for RASMC and BaCSMC, 

respectively). 

Uniaxial Tensile Material Properties 

 Material properties of the two engineered tissues were evaluated by testing ring 

samples to failure in a uniaxial tensile testing apparatus.  The ultimate tensile stress of 

constructs is presented in Figure 8.9.  Incorporation of an elastin scaffold into the 

construct significantly increased the ultimate tensile strength of engineered tissues using 

either RASMC or BaCSMCs (p<0.05).  The cell type did not significantly impact the 

strength of either collagen hydrogels or elastin collagen hybrid constructs (p>0.05).  
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Figure 8.8:  Quantification of SMC mediated construct compaction.  Construct 
volume was quantified following eight days in static culture and shown as a percentage 
of the original construct volume on day 0 (mean ± SEM, n=6).  ANOVA showed 
differences in groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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Figure 8.9:  Elastin-collagen hybrid tissue material properties:  ultimate tensile 
strength.  Ultimate tensile strength was quantified in ring samples of hybrid tissue 
following eight days in static culture.  Data presented as mean ± SEM, n=6.  ANOVA 
showed differences in groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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Figure 8.10:  Elastin-collagen hybrid tissue material properties:  linear modulus.  
The modulus was determined for 25-75% of the ultimate tensile stress which 
corresponded to the linear region of the tensile stress versus strain curve following eight 
days in static culture.  Data presented as mean ± SEM, n=6.  ANOVA showed 
differences in groups (p<0.0001).  Pairwise comparisons:  *(p<0.05).   
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 The linear modulus was determined from the stress versus strain relationship for 

each material.  In these studies, the linear modulus was defined as 25-75% of the ultimate 

tensile stress.  Modulus data are shown in Figure 8.10.  In BaCSMC fabricated tissues, 

the incorporation of elastin resulted in a significant increase in the linear stiffness 

modulus (p<0.05).  In contrast, collagen hydrogel constructs fabricated with RASMCs 

had significantly higher linear moduli than BaCSMC collagen hydrogels (p<0.05) and the 

addition of elastin did not significantly increase the modulus further (p>0.05). 

Endothelial Progenitor Cells as a Vascular Lining 

 Endothelial progenitor cells (EPCs) derived from baboon peripheral blood were 

investigated as a vascular lining on elastin-collagen hybrid tissues fabricated with baboon 

SMCs.  Elastin-collagen hybrid tissues were secured with sutures to thin walled Teflon 

tubing connectors (250µm), embedded in an agar matrix and encased with heat 

shrinkable Teflon tubing.  The apparatus was connected to a perfusion loop with silicon 

rubber tubing and the ends were sealed by heating, avoiding direct heat to the tissue 

segments.  This aseptically sealed individual construct bioreactor was then used for EPC 

seeding, shear stress preconditioning and interposition in the baboon AV shunt.  A side 

view schematic of the apparatus is shown in Figure 8.11. 

EPCs were expanded in vitro and seeded onto elastin hybrid constructs.  EPCs 

readily attached and spread on the surface of elastin hybrid constructs as shown in Figure 

8.12A and C, 24 hours after initial seeding.  EPCs were labeled with a fluorescent cell 

tracker (Orange CMTMR, Molecular Probes, Carlsbad, CA) prior to seeding onto the 
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engineered tissue to identity EPCs from underlying SMCs within the wall of the 

engineered construct.  EPCs formed a confluent monolayer lining the construct lumen.   

Arterial Shear Preconditioning 

Cell Morphology 

 The response of EPCs to fluid shear stress was also investigated on the elastin-

collagen hybrid tissue.  In preparation for functional evaluations in a baboon shunt 

model, EPCs were seeded onto the engineered tissue in two bolus injections (1.5 hours 

apart), rotated in 15 minute increments and allowed to adhere for a total of three hours.  

Flow was initiated through the construct gradually increasing steady laminar shear stress 

to 15 dynes/cm2 (arterial shear) over the course of forty minutes.  EPCs were then arterial 

shear preconditioned for an additional 20 hours.  EPCs adhered to the matrix and 

responded to flow by orienting and aligning parallel to the direction of flow as shown in 

Figure 8.12B and D. 

Functional Evaluation 

Cell Retention in the Ex Vivo Shunt 

 Elastin hybrid constructs seeded with EPCs and exposed to in vitro shear 

preconditioning were then transitioned into a nonanticoagulated baboon arteriovenous 

(AV) shunt for functional evaluation.  EPCs radiolabeled with Indium 111 chloride were 

seeded onto the elastin hybrid construct, arterial shear preconditioned for 20 hours, and 

then connected to the baboon AV shunt.  Scintillation camera imaging was used to 

quantify changes in radioactivity and therefore EPCs retention on the construct surface as 
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a function of time in the shunt.  Figure 8.13 shows a representative gamma camera image 

and quantification of the change in the number of cells within the construct as a function 

of time.  Quantification was normalized to the number of cells measured at initiation of 

shunt flow and averaged for two studies.  The number of EPCs on the construct surface 

remained constant within 9% of the initial cell density for up to 60 minutes of whole 

blood exposure. 
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Figure 8.11:  Schematic of elastin-collagen hybrid tissue bioreactor.  The hybrid 
tissue was cannulated at each end by thin wall Teflon tubing and secured with a suture.  
The engineered tissue was embedded in agar and covered by an outer heat shrink Teflon 
casing to provide external support and the possibility of blood being lost through the 
device.  Silicon rubber was used to connect the engineered tissue to the arteriovenous 
shunt. 
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Figure 8.12:  EPCs attached to the luminal surface of an elastin-
collagen hybrid vascular tissue.  EPCs were labeled with a fluorescent cell 
tracker (Orange CMTMR, Molecular Probes) and seeded onto the luminal 
surface of the hybrid tissue.  (A, C) Confocal microscopy images of EPCs 
on the hybrid tissue lumen following 24 hours of static culture.  (B,D)  
EPCs were exposed to steady laminar shear stress (15 dynes/cm2) for 20 
hours after a three hour static incubation,.  Scale bar = 50µm. 
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Radiolabeled EPC Retention in Ex Vivo Shunt 
Following Arterial Shear Preconditioning
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Figure 8.13:  Radiolabeled EPC retention in an ex vivo shunt following arterial 
shear preconditioning.  (left panel) The percentage of adherent EPCs on the elastin 
hybrid tissue as a function of time in a baboon ex vivo shunt was determined using 
111In labeled EPCs and gamma camera imaging.  Prior to interposition in the shunt, 
EPCs were exposed to in vitro steady laminar shear stress (15 dyne/cm2) for 20 hours.  
Gamma camera imaging data was normalized to the initial five minute acquisition and 
are presented as mean ± standard deviation, n=2.  (right panel) Representative gamma 
camera image of EPC seeded hybrid tissue following 45 minutes in the ex vivo shunt.  
The radioactivity from 111In labeled EPCs is shown as bright blue within the outlined 
construct area. 
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Quantification of Platelet Deposition 

 Using the same techniques employed to radioactively label EPCs, autologous 

baboon platelets were labeled with Indium 111 chloride and returned to the baboon’s 

circulation.  Unlabeled EPCs were seeded onto the elastin hybrid construct and were 

shear preconditioned prior to interposition in the AV shunt.  Identical constructs without 

EPCs were preconditioned in the same manner and served as hybrid tissue controls.  In 

the shunt, scintillation camera imaging was used to quantify platelet deposition on the 

construct surface.  Figure 8.14 shows the experimental layout with two representative 

gamma camera images of EPC seeded and non-seeded constructs.  Images were color-

coded based on the quantity of radioactivity measured during each five minute 

acquisition.  Constructs were positioned on the surface of the imaging system as shown 

(Figure 8.14A).  Two region of interest (ROI) markers were used to identify the entire 

construct length and also to isolate the central 1cm region.  The number of platelets in the 

central 1cm ROI were quantified and compared across all experiments.   

 Figure 8.15 shows the quantified platelet deposition on the surface of arterial 

shear preconditioned elastin-collagen hybrid constructs as a function of time in the AV 

shunt.  Elastin hybrid tissues without EPCs show a linear and significant increase in 

platelet accumulation with increasing time in the shunt.  In sharp contrast, EPC seeded 

constructs resisted platelet deposition with significantly less platelets on the surface after 

25, 30, and 35 minutes of nonanticoagulated blood exposure (p<0.05). 

 182



Systemic Coagulation Markers 

 Chronic arteriovenous shunts placed between the femoral artery and vein in 

juvenile baboons (Papio anubis) allowed for multiple studies to be conducted in the same 

animal.  Three animals were used for the 18 studies presented as part of this dissertation.  

Table 8.1 lists the baseline measurements of circulating plasma fibrinogen and the 

average blood platelet concentration for each of the three animals.  Fibrinogen 

concentrations were measured daily for each animal.  There was no significant difference 

in the measured plasma fibrinogen (p>0.05) which ranged from 2.28 to 2.82 mg/mL for 

all animals.  Blood platelet concentration was measured immediately prior to each study 

and averaged between 310,000 to 561,000/µL for each of the three animals.  Animal 

24565 had a significantly higher platelet concentration than either 24081 or 24567.  The 

blood platelet concentration for 24565 was reasonably consistent, varying by less than 

6.5% for the seven studies which were conducted in this animal during the course of three 

weeks. 

 Table 8.2 presents study related changes in blood platelet concentration and 

circulating thrombin-antithrombin III (TAT).  Platelet concentration was measured 

immediately following each shunt study and compared to pre-study values.  Circulating 

platelet numbers decreased in construct studies with or without EPCs an average of 

34,500/µL.  There was not a significant difference in the reduction in platelets between 

EPC seeded or non-seeded tissues (p>0.05).  The TAT was also measured immediately 

prior and immediately following each shunt study.  There was an increase in circulating 

TAT following studies with or without EPCs but no significant difference was related to 

the presence or absence of EPCs on the construct surface (p>0.05).
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Figure 8.14:  Gamma camera images of 111 Indium labeled platelet deposition in a 
baboon arteriovenous ex vivo shunt.  (A) Image of experimental setup showing 
nonanticoagulated blood flowing through the construct sample (100ml/min).  (B) 
Example gamma camera image of an arterial shear preconditioned EPC seeded hybrid 
tissue construct (40 minutes).  Imaging was used to quantify 111In-labeled platelet 
deposition in the central 1cm region of the construct.  Boxes outline the entire construct 
length and the central region of interest used for quantification of platelet deposition.  (C) 
Example gamma camera image of an arterial shear preconditioned hybrid tissue construct 
showing significant platelet deposition on the construct surface (40 minutes).  Scale bar = 
2mm. 
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Figure 8.15:  Radiolabeled platelet deposition on elastin-collagen hybrid tissues 
following arterial shear preconditioning.  Gamma camera imaging was used to 
quantify autologous 111In-labeled platelet deposition on the tissue surface as a function 
of blood exposure time when construct samples were placed in a baboon ex vivo 
arteriovenous shunt.  Prior to interposition in the shunt, hybrid tissues with and without 
EPCs were exposed to in vitro steady laminar shear stress (15 dyne/cm2) for 20 hours.  
Data presented as mean ± SEM, n=6.  ANOVA showed differences in groups (p<0.0001).  
Pairwise comparisons:  *(p<0.05).   
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Table 8.1:  Coagulation profile of normal experimental animals.  Fibrinogen 
concentration was measured daily and blood platelet concentration was measured 
immediately prior and immediately following experimental studies.  Data presented as 
mean ± standard deviation.  ANOVA showed no differences in plasma fibrinogen 
concentration (p>0.05).  *significantly different than 24081 and 24567 (ANOVA 
p<0.05). 

Animal 
identification 

number
Number of 

shunt studies
Average plasma fibrinogen 

concentration (mg/mL)

Average platelet count 
prior to initiation of 

experiments (x103/µl)

24081 6 2.82 ± 0.38 369 ± 91  

24565 7 2.28 ± 1.11 561 ± 36 *

24567 5 2.62 ± 0.39 310 ± 19  

 

 

 

Table 8.2:  Alterations in blood platelet concentration and TAT:  arterial shear 
preconditioned samples.  Blood platelet concentration and plasma thrombin-
antithrombinIII (TAT) concentration were quantified from blood samples taken 
immediately prior and immediately following experimental studies.  Data presented as 
mean ± standard deviation.  ANOVA showed no significant differences (p>0.05). 

Arterial Shear 
Preconditioning

Number of 
shunt studies

Average reduction in platelet 
count pre-study minus post-

study (x103/µl) 
Average increase in TAT post-
study minus pre-study (ng/mL) 

EPC Seeded Hybrid Tissue 6 32 ± 31 24 ± 11

Hybrid Tissue 6 37 ± 32 23 ± 18
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Variable Shear Preconditioning 

In preliminary studies (n=3) aimed at investigating the effect of low shear 

preconditioning on EPC functional response in the whole blood environment, EPCs were 

seeded onto the elastin-collagen hybrid tissue, shear preconditioned at low shear stress (1 

dynes/cm2) for 12 hours, and transitioned into the AV shunt.   

Figure 8.16 shows the retention of low shear preconditioned EPCs.  For up to 35 

minutes, the cell number remained constant within 9% (n=2).  Gamma camera imaging 

which allowed for quantification of platelet deposition (Figure 8.17) showed that the 

elastin hybrid tissue without an EPC lining was thrombogenic with linear increases in 

platelet accumulation over 35 minutes of nonanticoagulated blood exposure.  EPCs 

seeded onto the hybrid tissue and exposed to low shear for 12 hours prior to functional 

evaluation in the shunt were also thrombogenic showing comparable platelet 

accumulation to hybrid tissues without EPCs (p>0.05).  In the three studies conducted 

with low shear preconditioned EPCs on the elastin hybrid tissue, there was significant 

reduction in the shunt flow (<<100mL/min) requiring that the studies be terminated after 

15 minutes (n=1) and 20 minutes (n=2) to ensure that the shunt and/or animal were not 

compromised.  Blood platelet concentration measured immediate prior and immediately 

after each study showed an average reduction of 32,500 platelets/µL (Table 8.3) with no 

significant difference between EPC seeded and non-seeded construct samples (p>0.05).   
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Radiolabeled EPC Retention in Ex Vivo  Shunt
Following Low Shear Preconditioning
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Figure 8.16:  Radiolabeled EPC retention in an ex vivo shunt following low shear 
preconditioning.  The percentage of adherent EPCs on the elastin hybrid tissue as a 
function of time in a baboon ex vivo shunt.  Prior to interposition in the shunt, EPCs were 
exposed to in vitro steady laminar shear stress (1 dyne/cm2) for 12 hours.  Gamma 
camera imaging data normalized to the initial five minute acquisition and presented as 
mean ± standard deviation, n=2.   
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Figure 8.17:  Radiolabeled platelet deposition on elastin-collagen hybrid tissues 
following low shear preconditioning.  Gamma camera imaging was used to quantify 
autologous 111In-labeled platelet deposition on the tissue surface as a function of blood 
exposure time when construct samples were placed in a baboon ex vivo arteriovenous 
shunt.  Prior to interposition in the shunt, hybrid tissues with and without EPCs were 
exposed to in vitro steady laminar shear stress (1 dyne/cm2) for 12 hours.  Data presented 
as mean ± SEM, n=3. 
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Table 8.3:  Alterations in blood platelet concentration:  low shear preconditioned 
samples.  Platelet counts were quantified from blood samples taken immediately prior 
and immediately following experimental studies.  Data presented as mean ± standard 
deviation.  ANOVA showed no significant differences (p>0.05). 

Low Shear Preconditioning
Number of 

shunt studies

Average reduction in platelet count 
pre-study minus post-study 

(x103/µl) 

EPC Seeded Hybrid Tissue 3 32 ± 7

Hybrid Tissue 3 33 ± 7
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Discussion 

Limitations of the Experimental Approach 

 There are several limitations associated with the current work.  The elastin-

collagen hybrid construct displayed significantly larger ultimate tensile strengths than the 

more traditional collagen hydrogel tissues but did not withstand loads which would allow 

for an ample margin of safety upon chronic implantation.  Additional research is 

necessary and ongoing in our laboratory to address the need for improved collagen 

organization and/or synthesis of appropriate extracellular matrix materials to further 

improve the construct strength.  The overall composition of the elastin hybrid mimicked 

the medial layer of a native artery but the composite structure did not show significant 

integration and cellular infiltration between the collagen and elastin components.  

Without appropriate integration, the structure may be subject to possible delaminating 

issues when subjected to in vivo cyclic strains.  Dynamic testing measures were not 

performed in these studies but have been addressed by Berglund et al. who showed that 

unlike the collagen hydrogels which tended to relax and creep, the elastin hybrids were 

able to support loads for extended periods of time and showed similar mechanical 

behavior as native arteries at subfailure levels [164].  Strategies to enhance integration 

between layers could include establishing a nutrient or growth factor gradient by 

culturing the constructs in a method which incorporates higher concentrations of these 

exogenous biochemicals inside the lumen of the tissue during maturation.  Another 

possible strategy might be to use a pressure “sodding” technique during the fabrication of 
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hybrid tissues which would use a pressure gradient to force SMCs and collagen into the 

porous elastin matrix. 

 These studies were performed for up to 35 minutes of nonanticoagulated blood 

exposure representing the acute response to implantation which is an important 

determinant of graft patency.  While platelet accumulation may persist for months to 

years after graft implantation, the maximal amount occurs immediately upon placement 

of the graft [169, 279].  In order to predict chronic outcomes, implantation studies would 

be required.  While the possibility exists for autologous cell transplants, these studies 

were performed with allogeneic baboon SMCs and EPCs.  Due to the short term nature of 

these studies, issues related to immune response were not considered significant.  

Previous work has used both xenogeneic and allogeneic cells in similar studies with 

success [279, 280]. 

We performed paired studies (± EPCs) in the same animal in morning and 

afternoon sessions.  By performing multiple studies in the same animal in the same day, 

there is some risk that the first study could impact subsequent results such as causing 

platelets to become refractory and thus less capable of participating in thrombus 

formation.  In order to minimize any impact of multiple studies, there was at least one 

hour and generally more than two hours of “rest” between studies as well as random 

assignment of construct types (± EPCs) to each session (morning versus afternoon).  The 

extent, rather than the rate of blood element accumulation was measured using the 

scintillation camera imaging technique.  Because of this, the differences in 

microembolization rates due to shear stress differences could have influenced the results.  

Different synthetic materials have been shown to produce varying platelet thrombus 
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embolization [172], a factor which was not investigated in this research.  No gross 

embolization was observed from the hybrid tissues.   

General Discussion 

 This work has built upon current tissue engineering strategies to build an 

engineered vascular tissue which mimics the structure of a native artery and is an 

appropriate model supporting acute endothelial functional studies in a baboon 

arteriovenous shunt.  Primary baboon carotid artery SMCs were combined with an intact 

elastin scaffold and a reconstituted type I collagen matrix to form an engineered vascular 

tissue which could be cultured in vitro and supported a neoendothelium of peripheral 

blood derived endothelial progenitor cells.   

 In the body, elastic fibers are almost always found in close association with 

collagenous tissues.  This is certainly the case for native blood vessels where collagen 

and elastin both play major roles in the mechanical performance of the tissue.  In general, 

collagen and elastin carry out different mechanical roles in the composite tissue.  In 

arteries, elastin is responsible for reversible extensibility while the collagen meshwork 

provides rigid constraints and limits the deformation of the elastic elements [277].  In this 

study, intact elastin scaffolds were isolated from porcine carotid arteries and retained the 

overall structure of elastin in the native artery.  The circumferential fenestrated lamellar 

sheets were evident with an adventitial structure of randomly distributed elastic fibers.   

 The elastin scaffold was combined with type I collagen and cells to form a hybrid 

tissue.  This newly formed extracellular matrix supported viable baboon carotid artery 

SMCs (>73% cell viability) which quickly remodeled and compacted the rudimentary 

vascular structure.  This remodeling process occurred primarily in the first few days of 
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culture and by eight days resulted in dense tissues less than one quarter of their original 

volume.  A limitation of the reconstituted protein approach (i.e. collagen hydrogels) as a 

tissue engineering strategy has been their limited strength.  Previous investigations have 

obtained similar tensile strengths for cell seeded collagen hydrogels ranging from 5kPa to 

18kPa depending on the cell type and culture conditions [74, 75, 281].  In the current 

studies, the stress was based on the sample dimensions of the unstressed tissue rather than 

those reported by other investigators based on estimated sample dimensions at failure 

[77].  While using the unstressed sample measurements results in lower ultimate stress 

values, the measurements are less susceptible to subjectivity in this system.  In the 

engineered artery, incorporation of an elastin scaffold resulted in improved mechanical 

strengths compared to collagen hydrogel controls.  With BaCSMCs, the incorporation of 

an elastin scaffold resulted in a greater than 2.5 fold increase in ultimate tensile stress and 

a 1.4 fold increase in linear modulus.  When compared to constructs fabricated with 

RASMCs, BaCSMC engineered tissue had essentially equivalent ultimate tensile 

strengths.  RASMC remodeled tissues were modestly stiffer with an average 25.4% 

higher modulus.  Ultimate tensile stresses measured for elastin-collagen hybrid tissues 

were slightly larger than previously reported [164].  This difference may be due to subtle 

variations in cell isolates, culture conditions and testing or could be due to differences in 

collagen source.  The current work incorporated bovine dermal type I collagen which was 

solublized in 0.02N acetic acid at a concentration of 4mg/mL.  In the previous report, 

investigators used commercially available acid solublized type I rat tail collagen at stock 

concentrations between 3 and 4mg/mL depending on lot.  Recent studies in our 

laboratory have shown that collagen source contributes to differences in ultimate tensile 
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strength in other experimental constructs and that the bovine dermal type I collagen 

produced stronger materials [282]. 

 Estimated burst strength can be predicted from tensile stresses using thin wall 

assumptions and LaPlace’s relationship (σ = rP/t) [164].  Table 8.4 shows estimated burst 

strengths based on the ultimate tensile stress measurements for elastin hybrids and 

collagen controls.  The estimated burst pressures for constructs containing elastin 

scaffolds are substantially larger than those of collagen hydrogels.  While these values are 

significantly lower than burst pressures reported for native arteries which have been in 

the range of 2700 to 4500mmHg [74, 283, 284], they are in the range of physiologic 

blood pressures.  While long term implant studies may not be achievable with this tissue, 

the elastin-collagen hybrid construct does provide a model of the vascular wall with 

sufficient strength for ex vivo study. 

 

 

 

Table 8.4:  Estimated burst pressures of elastin-collagen hybrid and collagen 
hydrogel constructs.  Ultimate tensile strength was converted to an estimated burst 
pressure using thin wall assumptions and LaPlace’s relationship (σ = rP/t) for 
circumferential stress.  σ is stress, r is the radius, P is pressure and t is wall thickness.  
All values are in millimeters of mercury ± standard deviations.   

RASMC BaCSMC

Elastin-Collagen Hybrid 159.0 ± 27.6 173.6 ± 27.4

Collagen Hydrogel 58.7 ± 5.7 43.3 ± 4.1
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 The success of any strategy to tissue engineer a blood vessel substitute will, in 

part, depend on the ability to create a nonthrombogenic lining.  While large diameter 

(>6mm ID) artificial blood substitutes can be transplanted with clinical success, small 

diameter substitutes often fail due to thrombus formation.  The earliest attempts at tissue 

engineering of blood vessel substitutes demonstrated that an endothelial lining on 

synthetic substrates improved patency [285, 286].  Strategies using an autologous donor 

vessel for primary EC harvest, have been implemented in human clinical practice but 

remain limited in their wide spread availability and application to small diameter grafts 

[9, 287].  EPCs offer a promising source of autologous cells which can be obtained 

minimally invasively from a peripheral blood sample.  They are highly proliferative and 

have been shown to exhibit a number of endothelial specific markers.  (see Chapter V:  

Cell Isolation and Characterization for a detailed analysis)  In other studies, we have also 

shown that EPCs are responsive to the mechanical environment, altering gene and protein 

expression in the presence of fluid shear stress (Chapter VI and VII).  In this study, we 

aimed to investigate the function of EPCs as a vascular lining on an elastin-collagen 

hybrid engineered tissue.  EPCs readily attached and spread on the elastin hybrid 

constructs forming a confluent lining.  When subjected to fluid shear stress, the EPCs 

elongated and aligned parallel to the direction of flow on the elastin-collagen hybrid 

tissue.  This is consistent with our own work on absorbed collagen substrates as well as 

several recent observations of cytoskeleton alterations in EPCs as a function of flow 

exposure [145, 158].  Using a radiopharmaceutical, Indium 111 chloride, EPCs were 

radiolabeled and could be monitored following interposition of the engineered tissue into 

a baboon AV shunt.  Scintillation camera imaging showed that EPCs remained adherent 
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to the engineered construct for up to 60 minutes of blood exposure.  Using 111-In labeled 

cells in monolayer culture as a standard, the average EPC density on the hybrid tissue 

was quantified as ≈40,000 cells/cm2.   

 The baboon AV shunt model introduced by Hanson et al. [169] has been 

extensively used to study arterial and venous thrombosis as well as to investigate blood 

biomaterial interactions for many therapeutic applications.  The baboon model has many 

potential advantages including its hemostatic similarity to humans, size, ease of frequent 

blood sampling, long-term acceptance of chronically patent AV shunts, and blood 

proteins which are antigenically similar to humans, permitting the use of human 

immunoassays [171, 288-291].  Autologous baboon platelets were labeled with 111-

Indium chloride and returned to the circulation.  Using scintillation camera imaging, 

radiolabeled platelet deposition on constructs with and without an EPC lining was 

quantified.  EPC lined hybrid constructs which had been exposed to arterial shear 

preconditioning (15 dynes/cm2) significantly resisted platelet deposition compared to 

construct only controls.  Following 35 minutes of blood exposure, the anti-coagulant 

phenotype of EPCs was evident with 6.6 fold less platelets on the EPC lined tissue. 

 Preliminary data also suggests that the shear preconditioning regime (shear 

magnitude and duration) may be an important factor in EPCs pro or anticoagulant 

phenotype on the elastin-collagen hybrid tissue.  Figure 8.18 presents a summary of 

platelet deposition on the hybrid constructs with and without EPCs and following both 

low and arterial shear preconditioning.  Hybrid constructs without EPCs as well as EPCs 

which were low shear preconditioned resulted in a significant accumulation of platelets 

starting immediately following initial blood exposure.  In contrast, the arterial shear 
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preconditioned EPCs prevented platelet deposition on the construct surface.  Figure 8.19 

highlights the platelet deposition quantified after 20 minutes in the AV shunt.  The 

positive anticoagulant effect of arterial shear preconditioning on EPCs is evident with an 

average eight fold reduction in platelet deposition.  Arterial shear preconditioned EPC 

monolayers essentially abolished platelet deposition which is consistent with previous 

studies using both HUVEC and aortic ECs seeded expanded polytetrafluoroethylene or 

endarterectomized segments [279, 280]. 

 In this study, three animals were used with varying baseline platelet 

concentrations (310-561 x103/µL).  Although, initial platelet concentration has been 

reported to be correlated with total deposited platelets [170], in this study no significant 

correlations could be drawn between the baseline platelet concentration and platelet 

deposition on hybrid tissue with or without EPCs (R2<0.03 at 20 minutes).  This 

demonstrates that arterial shear preconditioned EPCs provided a robust defense against 

platelet deposition over a range of platelet concentrations.   

 Acute thrombosis in the baboon shunt has been shown to result in a reduction in 

the circulating platelet concentrations [172].  In the current work, blood platelet 

concentrations reduced by an average of 7.4% ± 5.6% immediately following shunt 

studies but there was not a significant correlation with this reduction in platelet 

concentration and construct type or shear preconditioning protocol (p>0.05).  Platelet 

reduction has been reported to exceed 27% in thrombogenic Dacron grafts as a result of 

platelet consumption in the graft thrombus [172].  It is unclear why there was a 

measurable reduction in platelet concentration in arterial shear preconditioned EPC lined 

tissues  

 198



 

 

 

 

 

Platelet Deposition On Hybrid Engineered Tissue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30 35
Minutes

Pl
at

el
et

s 
x1

09

Hybrid Tissue -- Low Shear
EPC Seeded Hybrid Tissue -- Low Shear
Hybrid Tissue -- Arterial Shear
EPC Seeded Hybrid Tissue -- Arterial Shear

Figure 8.18:  Summary of radiolabeled platelet deposition on elastin-collagen hybrid 
tissues.  Gamma camera imaging was used to quantify autologous 111In-labeled platelet 
deposition on the tissue surface when construct samples were placed in a baboon ex vivo 
arteriovenous shunt.  Prior to interposition in the shunt, hybrid tissues with and without 
EPCs were exposed to in vitro steady laminar shear stress (1 or 15 dyne/cm2 for 12 and 
20 hours, respectively).  Data presented as mean ± SEM, n=3-6.   
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Figure 8.19:  Radiolabeled platelet deposition on elastin-collagen hybrid tissues 
following 20 minutes in a baboon ex vivo arteriovenous shunt.  Gamma camera 
imaging was used to quantify autologous 111In-labeled platelet deposition on the tissue 
surface as a function of blood exposure time when construct samples were placed in a 
baboon ex vivo arteriovenous shunt.  Prior to interposition in the shunt, hybrid tissues 
with and without EPCs were exposed to in vitro steady laminar shear stress (1 or 15 
dyne/cm2 for 12 and 20 hours, respectively).  Data presented as mean ± SEM, n=3-6.  
ANOVA showed differences in groups (p<0.0001).  Pairwise comparisons:  * different 
from hybrid tissue – arterial shear (p<0.05), § different from EPC seeded hybrid tissue – 
low shear (p<0.05).   
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which resisted significant platelet deposition on the construct surface.  Although there 

was substantial effort placed on creating smooth transitions at tubing connectors within 

the construct and shunt apparatus, there could have been minor flow disturbances which 

contributed to platelet deposition (and consumption) in regions not quantified with 

scintillation imaging.  In normal humans, approximately one-third of the total platelet 

mass is transiently sequestered in the spleen as part of the unique splenic circulation.  The 

platelets within the spleen are normally in equilibrium with the peripheral circulation 

[292].  Another possible explanation is that the arterial shear preconditioned EPC lined 

constructs altered the splenic balance and caused an increase in the removal of platelets 

from the circulation or transient platelet sequestration, but this study provides no 

additional data that this occured. 

 In thrombus formation, circulating thrombin cleaves fibrinopeptide A from 

fibrinogen, producing fibrin.  Thrombin complexes with antithrombin III leading to the 

formation of thrombin-antithrombin III (TAT) complexes.  The presences of these TATs 

in circulation are suggestive evidence of the thromobogenic process and in certain 

clinical situations such as acute myocardial infarction, may be increased [293].  TAT 

levels were elevated following shunt studies with arterial shear preconditioned samples 

but we were unable to detect any significant changes in plasma TAT as a function of the 

construct type (with or without EPCs) or shear preconditioning (low or arterial) (P>0.05). 

Plasma fibrinogen levels should directly influence fibrin formation and possibly 

blood cell accumulation.  The fibrinogen concentration was not significantly different 

across all experimental animals.  There were also no unusual alterations in hematocrit or 
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white blood cells counts during these studies (data not shown) indicating the baboons 

were normal and free of any obvious illness. 

Concluding Remarks 

 The research presented as part of these studies has built upon current strategies to 

fabricate an engineered blood vessel substitute by creating a vascular model appropriate 

for ex vivo study in the nonhuman primate.  This model which incorporates cellular and 

extracellular matrix components of the native artery (SMCs plus elastin and collagen) has 

improved material properties compared to tissues without elastin and provides sufficient 

strength to withstand the mechanical environment of an arteriovenous shunt for up to one 

hour.  This research has demonstrated that peripheral blood derived EPCs can be 

expanded in vitro and provide a neointima on an engineered vascular tissue.  This 

neointima of EPCs essentially abolishes platelet deposition on the construct surface 

following in vitro preconditioning with arterial shear stress.  EPCs have been suggested 

as a possible autologous endothelial cell source for tissue engineering and though these 

studies, we have demonstrated that EPCs can provide appropriate anticoagulant function 

on an engineered vascular tissue. 
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CHAPTER IX:  DISCUSSION, CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

 

 The overwhelming incidence of cardiovascular disease worldwide is staggering 

and provides motivation for significant research in this area.  Tissue engineering aims to 

make advances toward future clinical treatment options in the area of vascular bypass 

grafting and cardiac surgical reconstruction.  Tissue engineering strategies to create a 

functional vascular tissue which could be implanted and ultimately be integrated into the 

host are challenging.  The research presented as part of this dissertation focused on cell 

source, one of the core enabling technologies needed for the engineering of vascular 

tissues.  In this work, endothelial progenitor cells (EPCs), a potential endothelial cell 

source for tissue engineering, were isolated from peripheral blood for evaluation.  EPC 

phenotype was characterized in increasingly complex models which probed the cell’s 

response to the mechanical environment and physiologic substrates.  Ultimately, these 

studies demonstrated a functional proof of concept that EPCs can provide a non-

thrombogenic lining on an engineered vascular tissue prototype. 

 These studies demonstrated that EPC phenotype is modulated by fluid shear stress 

at the gene, protein and functional level.  The idea that the local mechanical environment 

alters vascular cell phenotype is not a new finding. Yet, with respect to EPCs, almost 

nothing is known about the effect of mechanical cues on their behavior.  Techniques to 

isolate and culture circulating EPCs have only recently been described and studies of 

their potential role in tissue engineering remain limited.  Isolation of EPC colonies from 

peripheral blood gave rise to cells which displayed an endothelial-like phenotype with 
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expression of a number of EC specific markers (VEGFR2, VEGFR1, CD31, THBD, VE-

Cadherin, VWF) and functions (uptake of acLDL, intracellular eNOS and capillary tube 

formation) while maintaining a high proliferative capacity.  When exposed to fluid shear 

stress, EPCs morphologically altered actin distributions within the cell and elongated and 

aligned parallel to the flow direction.  Transcriptional profiling of EPCs and ECs in the 

flow environment demonstrated that the EPCs response to fluid shear stress was generally 

attenuated compared to vascular ECs both in the number of genes significantly regulated 

by shear stress and also in the overall magnitude of gene expression changes.  Shear 

stress preconditioning of EPCs may have important positive effects including potentially 

priming the EPCs defense against oxidative environments or causing a shift in the 

coagulation balance toward anticoagulant function.  In vitro shear stress on EPCs in a 

two-dimensional environment upregulated important anti-coagulant molecules 

transcriptionally and through cell surface protein expression without significantly altering 

procoagulant function.  Functional assessments of EPCs on a three-dimensional 

engineered tissue also suggested that shear stress preconditioning enhanced anticoagulant 

function and resulted in an endothelial lining capable of resisting platelet deposition from 

the non-anticoagulated blood.  Preliminary studies pointed to shear stress magnitude as 

an important determinant of anticoagulant function in this system.  Recently, shear stress 

has been suggested to play a role in embryonic stem cell differentiation toward an 

endothelial-like phenotype [294, 295] and in maturation of EPCs [146].  Although 

beyond the scope of this dissertation, shear stress exposure could also be altering EPC 

differentiation. 
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 Tissue engineering approaches allow a methodology to create vascular tissue in 

vitro.  The extracellular matrix proteins and vascular cells are combined to recapitulate a 

rudimentary vascular structure.  This structure can be used as an in vitro model system 

which allows for potential direct cell-cell and cell-matrix interactions as well as paracrine 

and autocrine signaling.  Evidence continues to accumulate in the literature that 

simplified culture systems may not always represent a predictive model of in vivo 

function.  Better in vitro models incorporate the use of co-culture with neighboring cell 

types and 3-D extracellular matrix environments which are more representative of the in 

vivo situation [296].  In our own studies, culture of EPCs on a 3-D engineered tissue 

composed of collagen and SMCs altered the gene expression patterns of EPCs in both the 

static and flow environments suggesting that more complex microenvironments may 

influence cellular response to a given stimulus.  In vitro tissue engineered vascular 

models also provide a unique way to study potentially synergistic effects of both physical 

forces, such as shear stress and the complex extracellular environment including ECM 

proteins and neighboring cell types.  These studies demonstrated that when EPCs were 

cultured on a 3-D engineered tissue, there was a general reduction in the expression of 

anticoagulant molecules and upregulation of procoagulant phenotype.  It was also found 

that when exposed to shear on this vascular wall model, EPCs’ gene expression profile 

was more similar to the expression pattern of mature vascular ECs. 

EPCs offer several potential benefits as a cell source for tissue engineering.  

Although not addressed directly in the studies presented as part of this dissertation, the 

possibility of EPCs aiding in postnatal vasculogenesis could also benefit tissue 

engineering approaches.  Developing vascular networks within engineered tissues is of 
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significant interest to the tissue engineering community and EPCs may be a useful cell 

source in this regard [152, 153].  EPCs have already been shown to improve myocardial 

function when injected into ischemic animal models (reviewed in [98]) and our own data 

suggests that EPCs express a subset of genes associated with neovascularization to a 

greater extent than ECs.  Transcriptional profiling also identified a subset of antioxidant 

defense genes which were upregulated in EPCs compared to ECs in the shear 

environment.  Ischemic tissue is known to be an environment rich in reactive oxygen 

species [205] and therefore shear preconditioned EPCs may be better positioned to 

regulate the oxidative balance in ischemic tissues. 

 EPCs hold a lot of promise for use in tissue engineering strategies.  EPCs are a 

potential autologous cell source which can be isolated from peripheral blood and 

expanded in vitro to obtain favorable characteristics of endothelial cell phenotype and 

function.  As a vascular lining, EPCs assume the role of a mature endothelial cell, 

responding to the shear environment both morphologically and functionally.   

Future Recommendations 

 In each chapter, limitations of the experimental approach were discussed.  As this 

research continues beyond the scope of the current dissertation, there are several 

recommendations for future studies.  First, recommendations related to extensions of this 

research which can possibly address present limitations are discussed.  Second, 

recommendations for complementary studies are also presented in the context of 

identifying viable endothelial cell sources for tissue engineering. 

 These studies were conducted using simplified models of human physiology.  

EPCs were exposed to steady laminar shear stress at a magnitude of 15 dynes/cm2 in 
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order to mimic mean arterial shear stress.  This is a simplification of the actual in vivo 

arterial environment and future studies should consider more physiologic flow regimes 

which incorporate unsteady effects.  It is anticipated that optimization of the fluid shear 

environment including investigation of different shear magnitudes and duration will 

impact the EPCs functional response and would be worthwhile investigations.  These 

studies could also be extended to look at markers of EPC differentiation.  It has been 

proposed in other models that shear stress promotes differentiation of stem and progenitor 

cells toward a mature endothelial cell phenotype [146, 294, 295].  This hypothesis could 

be tested using the same methodology.  In the area of coagulation, these studies should be 

extended to look at additional molecules important in regulation of hemostasis such as 

prostacyclin, CD39 and endothelial protein C receptor.  In vitro studies of gene and 

protein regulation could additionally be extended to in vitro functional assays such as 

factor X activation or plasma recalcification. 

 Engineered vascular tissue was used as an in vitro model of the blood vessel wall 

which incorporated a more physiologic substrate for studying EPC function.  Differences 

in gene regulation were measured when EPCs were cultured on the engineered tissue 

compared to an absorbed collagen substrate.  Future studies should investigate the role of 

the extracellular matrix composition and neighboring cells in EPC phenotype and 

function.  Studies in this area could be extended beyond thrombosis to look at markers of 

intimal hyperplasia, a known vascular graft failure mechanism and a condition associated 

with EC-SMC interaction.   

An important consideration for tissue engineering applications in the replacement 

of diseased tissue is the age of the patient (cell donor).  It has been shown that circulating 
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EPC numbers are reduced in older patient populations and may be inversely correlated 

with cardiovascular risk factors (reviewed in [297]).  This could make translation of these 

strategies to clinical application more difficult.  In the current studies we used juvenile 

baboons as EPC donors.  Future studies using peripheral blood derived EPCs should be 

performed using human EPCs from older donors with known cardiovascular disease risk 

profiles.  This research should be conducted to address species, age and donor health 

effects on EPC isolation potential and cellular function. 

Studies presented as part of this dissertation showed encouraging results in terms 

of EPCs providing a non-thrombogenic vascular lining, but additional studies are needed 

to address the long term potential of this strategy.  Implantation of engineered vascular 

tissues lined with EPCs should be performed to address immune and inflammatory 

responses as well as potential failure mechanisms such as intimal hyperplasia and graft 

arteriosclerosis.  Implantation studies would also require engineered tissues with superior 

material properties.  Beyond the incorporation of elastin, integration of additional 

extracellular matrix molecules, biochemical and mechanical stimulation, as well as 

promotion of matrix synthesis may be synergistic strategies which will aid in achieving 

tissues with material properties appropriate for implantation.  Additional material 

property testing will also be important to predict durability in the dynamic in vivo 

environment. 

 A number of complementary or related studies are suggested for future 

consideration based on the evolving body of literature related to EPCs.  In these studies, 

EPCs were derived from late blood outgrowth cultures as described but isolation of EPCs 

from peripheral blood has also been reported using specific cell selection procedures 
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focused on surface marker expression (e.g. CD133, c-kit, sca-1, CD34, CD14 and others 

[91, 106, 108, 110, 112, 114, 116, 298, 299]).  It is anticipated that different cell 

populations could be useful for tissue engineering approaches and would be worthwhile 

investigating.  In addition to specific selection from peripheral blood based on cell 

surface markers, EPCs can also be derived from umbilical cord blood [127, 300] or 

directly from bone marrow [92, 128].  It has also been suggested that endothelial-like 

cells can be derived from amniotic fluid [301].  Each of these sources may result in 

different isolation efficiencies in the number of endothelial-like cells that can be 

generated and it is anticipated that the specific cell source will impact functional 

outcomes.  A proposed advantage of bone marrow or cord blood is that these tissues may 

contain larger numbers of EPCs.  Depending on the therapeutic strategy (e.g. congenital 

applications or adult vascular replacements), these cell sources may also offer the 

potential for autologous application. 

Recently, derivation of SMC-like cells has been reported from peripheral blood 

samples [136].  Complementary to the current studies, derivation of EPC and SMC-like 

cells from the same peripheral blood sample would allow for fabrication of an entirely 

autologous engineered tissue from a single blood draw and is certainly worth 

investigating.   

Ex vivo culture of the EPCs in these studies allowed for their exponential 

expansion to obtain sufficient cell numbers to create a vascular lining on an in vitro 

fabricated engineered tissue.  Recent reports have suggested that there may be ways to 

attract EPCs directly to a blood contacting surface without ex vivo expansion [302].  This 

type of approach offers significant advantage over ex vivo expansion methodology in 
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terms of potential for clinical application and cost but has yet to be proven efficacious.  

Initial studies using anti-CD34 coated ePTFE grafts attracted a cell population to the 

device surface but porcine arteriovenous implantations showed increased intimal 

hyperplasia in anti-CD34 coated grafts compared to uncoated controls [303].  To 

ultimately have an off-the-shelf available product with autologous cells, recruitment of 

the host’s own cells to the graft would be an attractive approach and worthwhile 

investigating.  The baboon ex vivo shunt model would provide an excellent mechanism to 

test this strategy.   

 In summary, these studies have provided a foundation from which additional 

investigations can progress.  It is critical that our understanding of endothelial progenitor 

cell biology continue to advance in order to appropriately harness their potential for 

tissue engineering strategies and to bring engineered vascular substitutes one step closer 

to clinical application. 
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Isolation of Vascular Endothelial and Smooth Muscle Cells 

 
 
Purpose: 
To outline the steps in isolating endothelial cells (EC) and smooth muscle cells (SMC) 
from excised arteries.  This method uses brief collagenase treatment plus gentle scraping 
to obtain ECs followed by enzymatic digestion of the medial tissue of the vessel to obtain 
SMCs.  The advantages of this method include the fact that cells can be obtained quickly 
(within 1-2 days) and that a cross-section of SMCs from the media are isolated (i.e. the 
method does not preferentially select for a certain population of medial cells). 
 
SMC have also been isolated using a non-enzymatic “migration” method involving the 
plating of tissue pieces onto tissue culture plastic.  Over time (3-5 weeks) SMC will 
migrate out of the tissue and begin to proliferate.  It is possible, however, that this method 
selects for especially “migratory” cells and therefore does not obtain a representative 
sample of SMC in the media.  The long time required for this method also makes it less 
practical for some applications. 
 
Reagents : 
Hanks Balanced Saline Solution (HBSS), sterile    Invitrogen 14025-076 
Collagenase CLS2      Worthington Cat# 4176 
Base Medium (without supplements) 
Complete Growth Medium 
Antibiotic-Antimycotic solution [see Note 1] 
 
Note:  The choice of medium can be altered as appropriate for the species of interest.  For 
baboon cells, MCDB 131 was used.  For other animal species, DMEM was used. 
 
Retrieval and Storage of Artery 
 
1] Transfer an appropriate amount of the HBSS to a sterile container for transporting 

the excised artery from the surgical suite or necroscopy (e.g. use ~40 mL in a 50 
mL centrifuge tube per vessel). 

 
2] Add Antibiotic-Antimycotic solution to the transport HBSS to achieve a final 

concentration of 2X the recommended culture concentration. [see Note 1] 
 
3] Put the transport HBSS on ice in a cooler and bring to surgical suite where artery 

is to be excised. 
 
4] Excise artery, maintaining as high a degree of cleanliness/sterility as possible.  

Note:  It is often much easier to gently dissect away adventitial and connective 

 212



tissue surrounding the vessel prior to excising the vessel from the animal.  Be 
gentle with the tissue in order to preserve the endothelium. 

 
5] Place artery in transport HBSS and swirl to remove blood from lumen and outside 

of the artery. 
 
6] Place artery and transport HBSS on ice in a cooler for transport to the lab where 

isolation is to be performed. 
 
7] It is desirable to let the excised tissue cool in HBSS in order to slow the 

metabolism of the cells, however in general it is desirable to start the isolation 
procedure within 2-6 hours of excision.  Successful isolations have been 
performed with tissue stored in HBSS for up to 24 hours.  If tissue is to be stored 
for an extended period of time, the transport HBSS should be replaced with new 
HBSS after transport from the surgical suite. 

 
Isolation Process 
 
1] Prepare two centrifuge tubes with 30 mL of cold HBSS with 5X concentrated 

antibiotic-antimycotic.  Transfer the artery from the transport/storage HBSS and 
allow it to sit in the first tube for 15-20 minutes [Note 2], to wash off adhering 
debris. 

 
2] Autoclave a tray of instruments containing at least the following: 

dissecting scissors (small and large preferred) 
forceps (various sizes and styles) 
scalpel handle 

  dissecting pins 
Also prepare a sterile Petri dish containing paraffin 

 
3] Use a sterile Petri dish (without paraffin) as a place to manipulate the tissue.  

Remove the artery from the first tube of HBSS and use dissecting forceps and 
scissors to remove any adhering fat and connective tissue.  Use two pairs of 
forceps to hold the artery and peel away the adventitial layer from the outside of 
the vessel [see Note 4].  Be gentle to prevent damage to the endothelium. 

  
4] Place the cleaned tissue in the second centrifuge tube containing cold HBSS with 

5X concentrated antibiotic-antimycotic.  Allow it to sit in the tube for 30-60 
minutes [Note 3].  The collagenase solution can be prepared during this time. 

 
5] Collagenase solutions should be prepared fresh or frozen into single use aliquots.  

Two solutions should be prepared, one at 600 U/mL for EC isolation and one at 
300 U/mL for medial tissue digestion [see Note 3].  Dissolve collagenase in base 
medium (WITHOUT FBS).  You will need approximately 1 mL of 600 U/mL per 
2 cm of vessel for EC isolation and approximately 20 mL of collagenase solution 
per 2 cm of vessel for SMC isolation.  Worthington CLS 2 (Catalog #4176) 
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collagenase is the enzyme which has given the best results [see Note 3].  Enzyme 
is typically supplied in non-sterile form, therefore sterile filter the solution before 
use.  For small volumes (10-60 mL), this can be done using a 0.2um syringe filter, 
however the filter may foul quickly and a new filter must be used for every ~10 
mL of enzyme solution.  Place the enzyme solution in a sealed centrifuge tube 
until ready for use below. 

 
6] Use sharp angled scissors to cut axially along one side of the artery so that the 

artery can be opened up and the lumen exposed.  Place the artery on the floor of 
the Petri dish containing paraffin with the adventitial side down and gently flatten 
it out so that the intima is exposed (being careful to not damage the endothelium).  
Gently rinse the surface with HBSS+2X A/A if necessary to remove any 
remaining blood or debris.  You may also use dissecting pins to “pin down” the 
tissue to the paraffin if needed [Note 5].  Using a micropipette, add a few drops of 
600 U/mL collagenase (approx 300 uL / 2cm of vessel) to the surface and 
incubate for 5 minutes.  Collagenase can be warmed to 37oC immediately prior to 
use to increase enzyme activity.  Additional collagenase can also be added if 
necessary.  The goal is to isolate the collagenase to the tissue surface to loosen EC 
attachment.  Collect the collagenase solution, manually scrape the luminal surface 
once using a disposable cell scraper, and generously rinse the surface to detach 
any loose ECs, collecting all solutions [see Note 6].   Add warm culture medium 
(with FBS) to centrifuge tubes in order to dilute collagenase and quench digestion 
(approximately 2:1 by volume). 

 
7] Spin centrifuge tubes for 5 min at 1000 rpm. 
 
8] Aspirate the supernatent and reuspend cell pellet (may be too small to see) in 

fresh complete culture medium and plate into wells of a 6 well plate or Petri dish 
which has been pre-coated with 1% gelatin, 50 ug/mL collagen or 50 ug/mL 
fibronectin.  Cels will adhere and begin to grow in small patches within 2-3 days 
(be patient). 

 
9] Rinse the de-endothelialized tissue in a clean HBSS w/ 2X A/A bath to remove 

any adherent cells. 
 
10] Discard the Petri dish used as a working surface during the cleaning of the artery, 

and lay out a new sterile Petri dish as a working surface. 
 
11] Remove the medial tissue from the HBSS bath and gently flatten it against the 

bottom of the Petri dish used as a working surface.  The tissue should be 
approximately rectangular when laid out in this way. 

 
12] Use a scalpel (larger #20 blade works well) to cut the tissue into strips ~1-2 mm 

wide.  Further cut these strips into pieces ~1-2 mm at a side. 
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13] Transfer the tissue pieces to the centrifuge tube containing the prepared 300 U/mL 
collagenase solution and seal the tube. 

 
14] Place the tube in a water bath or incubator at 37oC.  Agitation using a rocker table 

or similar device can be used, however care should be taken not the produce too 
much wave action which can shear and damage cells.  Isolations have been 
successfully performed with and without agitation. 

 
15] Allow the tissue to digest for an appropriate period of time, depending on the 

source and size of the vessels used.  This important parameter has not been fully 
investigated but the following can provide some insight: 

 
baboon carotid artery:  digested an average of 16 hours with good results.  Tissue 
pieces were visible but easily broken apart into a “slurry” by using a pipette to 
resuspend the solution. 

 
canine carotid artery, porcine carotid, and rabbit aorta : digested 16 and 20 hours 
with good results using Worthington CLS 2 collagenase 

 
rat aorta : digested for 12 and 16 hours with good results using Worthington CLS 
2 collagenase.  Tissue very digested, therefore shorter digestion times may be 
appropriate. 

 
day 9 rat pups: used 4 hours digestion with good results 

 
for canine cells, a 2 hours (n=1) and 5 hours (n=2) time point were also tested, 
however no cells were recovered indicating that the tissue had not been 
sufficiently digested at this point. 

 
16] At end of digestion, add warm culture medium (with 10% FBS) to centrifuge tube 

in order to dilute collagenase and quench digestion. 
 
17] Spin digested tissue down for 5 min at 1000 rpm and aspirate supernatant. 
 
18] Add fresh culture medium to wash tissue, then spin digested tissue down again for 

5 min at 1000 rpm (wash step can be omitted if desired). 
 
19] Aspirate the supernatant and add fresh medium to digested tissue.  The volume of 

medium added will depend on the number of flasks to be prepared.  Generally, 
one T-75 flask should be prepared for each “2 cm” section of vessel.  Add 20-30 
mL of medium for each flask to be prepared. 

 
20] Resuspend tissue by swirling and transfer 20-30 mL of suspension to each T-75 

flask.  All tissue can be plated, including larger chunks and debris. 
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21] Move flask(s) to incubator and allow to sit undisturbed for at least 24 hours.  
Generally, some cells will have attached to the flask bottom by 24 hours.  Leaving 
the flask for a further 24-48 hours will result in more cells attaching and growing 
out of the loose networks of extracellular matrix that still remain (be patient). 

 
22] Once a significant number of cells have attached and started to grow, the 

supernatant from the flask (containing remaining tissue) can be removed, leaving 
a P0 culture which can then be passaged and treated as normal.  In addition, the 
removed supernatant from the flask (containing remaining tissue chunks) can be  
transferred to a new flask in order to start another culture (this can be done 2 or 3 
times with canine and baboon cells, 3-4 times with porcine cells, but with rat cells 
there is generally not enough tissue to warrant starting further cultures). 

 
NOTES 
 
1] 1X concentration (of Gibco BRL Catalog #15240-062) = 100 U/mL penicillin G 

sodium, 100 ug/mL streptomycin sulfate and 0.25 ug/mL amphotericin B as 
Fungizone. 

 
Gibco BRL Catalog #15240-062 is supplied at 100X concentration, but Sigma 
recommends use of 2.5 ug/mL Amphotericin B (see Antibiotics table in Sigma 
catalog).  Can also use other antibiotics/antimycotics (e.g. Nystatin (Sigma Cat 
#N-1638, gentamycin, etc)). 

 
2] Question : do antibiotics/antimycotics have any effect at this temperature for this 

time duration? 
 

The antibiotic/antimycotic wash step can be modified based on the expected risk 
of contamination.  The plated (P0) cells can also be treated with such a wash (4 
hours at 37oC) to remove contamination if necessary. 

 
3] The choice of enzyme is very important.  This has not been exhaustively studied; 

however Worthington CLS 2 (Catalog #4176) collagenase (~230 U/mg) has been 
shown to work well.  Collagenase products are generally relatively impure 
preparations and can vary considerably from lot-to-lot.  600 U/mL is used for EC 
isolation based on positive results from EC/SMC separation assays.  Additional 
time/concentration optimization could be needed. 

 
A combination of 1 mg/mL Worthington CLS1 (Catalog #4196) collagenase 
(~220 U/mg) and Sigma elastase (Cat # E-1250, from porcine pancreas) has also 
been used (n=2), however no cells were recovered using this enzyme 
concentration (both 5 and 16 hours digestion time attempted). 

 
4] Peeling off of adventitia will be considerably easier for larger vessels (e.g. 

baboon, dog, pig), from which the adventitia will peel readily and in large pieces.  
For smaller arteries (e.g. mouse, rat), there may be essentially nothing that can be 
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removed.  Remove the adventitial layer as much as possible without damaging the 
remaining tissue. 

 
5] Larger muscular vessels (e.g. baboon, canine, pig aorta) will not lay flat due to 

residual stress in the tissue.  In this case, the dissecting pins may be very helpful.  
Less muscular arteries (e.g. carotids) will lay flat allowing collagenase to be 
added to the surface. 

 
6] One major challenge is to obtain ECs without SMC/fibroblast contamination.  

One strategy that may be worthwhile is to collect the collagnease solution and 
rinse prior to scraping, then in a separate collection tube, collect cells and rinse 
after scraping.  Following centrifugation, plate each collection tube and the 
supernatent in separate wells of a 6 well plate to monitor for possible 
contaminating cells. 

 
Acknowledgement:   
Jan P. Stegemann was instrumental in development of this protocol. 
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Preparation of Three-Dimensional Type I Collagen Constructs 

 
 
Purpose: 
To outline the procedure for preparing collagen hydrogels using live cells and acid 
solubilized Type I collagen. 
 
Trypsin 
Complete MCDB 131 
5X concentrated MCDB 131 
0.1 N NaOH 
Type I collagen from calf skin     MP Biomedicals #15000026  
 dissolved in 0.02 N acetic acid at 4 mg/mL  
 
Note: For disk constructs, the molds to be used are the 35 mm diameter wells of a 6-
well plate (non-tissue culture treated).  For tubular constructs, the mold consists of a test 
tube and inner mandrel assembly.  Tubular constructs are molded onto a silicone sleeve 
that is coated with collagen. 
 
All procedures (except cell counting) should be performed in a biological safety cabinet 
using aseptic techniques to prevent microbial contamination. 
 
Preparation of Silicone Sleeves (for tubular constructs only) 
Note:  Silicon sleeves are not required for fabrication but are helpful when constructs are 
cut longitudinally for embedding.  Matrix and cell attachment to silicone may be 
enhanced by etching the silicone in sulfuric acid followed by collagen or other matrix 
coating.  Surface modification was not required for simple embedding procedures. 
 
1] Tubular silicone sleeves used are 0.125” X 0.140” purchased from Vesta, Inc. 

(Franklin, WI). 
 
2] Cut sleeves into 50 mm lengths. 
 
3] Autoclave sleeves.  Also autoclave glass mandrels, stoppers, test tubes, caps and 

instruments at the same time. 
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Preparation of Cell-Collagen Suspension 
 
 
Fabrication of 2mg/mL Type I Collagen Hydrogels
Total Hydrogel Volume:  100mL

Regents Volume Notes

Type I Collagen (4mg/mL) 50 mL total hydrogel volume x desired gel concentration  / 
collagen stock concentration 

0.1 N NaOH 6.25 mL collagen volume / 8

5X MCDB 131 12.5 mL collagen volume / 4

1X Complete MCDB 131 31.25 mL total hydrogel volume - collagen volume - NaOH volume - 
5X MCDB 131 volume  

  
 
Appropriate volumes of the following reagents should be ready and kept on ice: 
 
1] Use trypsin to detach cells to be used from their culture surface and collect cells 

in an appropriate tube.  Wash cells once in medium and remove a sample for cell 
counting.  Centrifuge for 5 min @ 1000 rpm to obtain a cell pellet. 

 
2] Count cell sample using Coulter Counter or hemocytometer.  Resuspend pellet of 

collected cells and transfer number of cells required to make constructs to a 50 
mL centrifuge tube.  Typical initial smooth muscle cell concentration is 1x106 
cells/mL. 

 
3] Centrifuge cell suspension for 5 min @ 1000 rpm to obtain a pellet.  Aspirate 

supernatant and place tube on ice. 
 
4] To tube containing cell pellet, add appropriate volume of 1X complete MCDB 

131 and use a pipetor to gently resuspend cells. 
 
5] On ice, in a separate tube large enough to hold final hydrogel volume, add 

required volumes of Type I collagen, 5X MCDB 131 and 0.1 N NaOH and mix 
thoroughly.  Solution is viscous, so mixing is difficult.  Take care to create as few 
bubbles as possible.  Keep solution cool to prevent gelling.  The phenol red pH 
indicator in the MCDB 131 should indicate the pH is appropriate for addition of 
cells.  If the pH is too low, a few additional drops of NaOH may be needed.   

 
6] Add cell suspension to collagen solution and mix well.  Cell-collagen suspension 

should be transferred to the appropriate mold as soon as possible. 
 
7] Use a pipettor to transfer the required volume of cell-collagen suspension to each 

of the molds.  
For disk constructs - Add 3.0 mL of cell-collagen suspension to 35 mm wells of a 
non-tissue culture treated 6-well plate.  Gently swirl plate to distribute suspension 
evenly in the wells.  Put cover on plate. 
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For tube constructs - First add 5.0 mL of cell-collagen suspension to glass test 
tubes.  Then immediately insert a mandel-sleeve-stopper assembly into the test 
tube, ensuring that there is no air trapped in the annular space that will form the 
tubular construct.  Cover test tubes with a cap. 

 
8] Immediately place mold in a cell culture incubator at 37°C.  Allow to sit 

undisturbed for 30-60 min, until gelation is visable. 
 
9] For disk constructs - add warm culture media to the gelled surface 

For tubular constructs - Remove molds from cell culture incubator and place in 
laminar flow hood.  Remove caps and aspirate gelled material from lumen of 
glass mandrels.  Be careful not to aspirate too much material (i.e. do not aspirate 
part of construct, only excess material in lumen of mandrel).  Use ridged forceps 
to carefully remove mandrel assembly and gelled constructs from test tubes, and 
place in a 150 mm Petri dish containing ~130 ml of warm culture medium.  Place 
constructs in cell culture incubator at 37°C. 

 
10] Allow constructs to incubate for 24 hours undisturbed.  After this period, release 

constructs from mold to allow further gel compaction. 
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General Immunofluorescent Staining 

 
 
Reagents: 
Formaldehyde, 20%      Tousimis, Cat. No. #1008A 
Triton X-100       Sigma X-100 
Tween-20        Sigma P-7949 
Hoechst 33258      Molecular Probes H-1398 
Normal Goat Serum (NGS)     Sigma G-6767 
Donkey Serum (DS)      Sigma D-9663 
PBS        
Deionized Water (dH20)       
Mounting Medium      Dako, Cat. No. S3205 
 
Procedure: 
 
Fixation Buffer: 4% formaldehyde (for 50 mL final solution) 
 4% formaldehyde  10mL of 20% aqueous 
 2% sucrose (optional)  1g 
 

Dilute Tousimis formaldehyde (20% aqueous) to 4% in PBS.  Add appropriate 
amount of sucrose and dissolve (optional).  Solution can be stored protected from 
light for up to one month at 4˚C. 

 
Blocking Buffer: 5% NGS or DS 

Add 5 mL of NGS or DS to 95 mL of PBS. 
 
Staining Buffer: 1% NGS or DS 

Add 1 mL of NGS or DS to 99 mL of PBS. 
 
For Intracellular Staining:  
Triton X-100 Stock Solution: 10 % 
 Triton X-100   10 mL 
  

Add Triton X-100 to 90 mL of dH20 and put on stir plate with stir bar.  Will take 
≈30-60 minutes to fully dissolve. 

 
Permeabilization Buffer : 

Add 1 mL of Triton X-100 Stock to 99 mL of PBS (for final concentration of 
0.1% Triton X-100) and mix well. 
 - higher concentrations of Triton can also be used (e.g. 0.2 %, 0.5 %) 
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Staining Cell Monolayers: 
 
1] Fix the cells in fixation buffer for 5 minutes. 
 
2] Rinse twice with PBS. 
 
3] For intracellular staining:  permeabilize the cells in cold 0.1% triton-X 100 for 5 

minutes. 
 
4] Rinse twice with PBS. 
 
5] Incubate in 5% NGS or DS Blocking Buffer for one hour at 37oC.  Blocking 

serum should be chosen so as to not interfere with the primary or secondary 
antibody.  Using serum from the donor species of the secondary antibody usually 
yields good results. 

 
6] Incubate in primary antibody, diluted to the proper concentration with 1% NGS or 

DS Staining Buffer, for 40 minutes at 37oC. 
 
7] Rinse twice with PBS. 
 
8] Incubate in secondary antibody diluted to the appropriate concentration in 1% 

NGS or DS Staining Buffer for 40 minutes at 37oC.  Many fluorophores used in 
secondary antibodies are sensitive to light, so cover them with an opaque 
container.  Note:  Hoechst counterstain diluted to the appropriate concentration 
(usually 1:400) can be incubated together with the secondary antibody. 

 
9] Rinse twice with PBS. 
 
10] Rinse once in dH20. 
 
11] Place 1-2 drop(s) of mounting medium on the slide or coverslip to be sealed. 
 
12] Place a coverslip over the drop and press firmly but evenly on the coverslip to 

remove the air bubbles.  Be careful not to slide the coverslip across the slide. 
 
13] Seal the coverslip with nail polish. (1.0 or less for higher magnification imaging) 
 
14] Place in the refrigerator protected from light if storage is necessary. 
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NOTES: 
 
The following antibodies have been used with success.  Typical primary antibody 
dilution 1:100 and secondary dilution 1:40 were used following manufacturer’s 
recommendation.  These may need optimization depending on the specific system. 
 
 Primary Antibody Supplier Description Product Information

Acetylated LDL Molecular Probes acetylated low-density lipoprotein from human 
plasma, DiI complex (DiI AcLDL) L3484

Alpha smooth muscle actin Sigma FITC conjugated monoclonal anti-alpha-smooth 
muscle actin (clone 1A4) F 3777

Calponin DakoCytomation monoclonal mouse anti-human calponin (clone 
CALP) M3556

CD14 Beckman Coulter monoclonal mouse anti-human (clone RM052) IMO643

Endoglin (CD105) Research Diagnostics Inc. FITC conjugated monoclonal mouse anti-human 
(clone 8E11) RDI-CBL418FT

eNOS (NOS Type Ⅲ) Santa Cruz Biotechnology polyclonal rabbit anti-human (N-20) sc-653

Flk-1 (VEGFR2) Research Diagnostics Inc. polyclonal rabbit anti-mouse Flk-1 RDI-MFLK1abrX

Flt-1 (VEGFR1) Alpha Diagnostic International polyclonal rabbit anti-human FLT11-A

Myosin heavy chain (MHC) Santa Cruz Biotechnology monoclonal mouse anti-rat full length myosin 
heavy chain sc-6956

Myosin heavy chain (MHC) Santa Cruz Biotechnology PE conjugated monoclonal mouse anti-rat full 
length myosin heavy chain sc-6956 PE

PECAM-1 (CD31) BD Pharmingen FITC conjugated monoclonal mouse anti-human 
(clone WM59) 555445

Thrombomodulin (CD141) DakoCytomation monoclonal mouse anti-thrombomodulin (clone 
1009) M0617

Tissue Factor (CD142) American Diagnostica Inc. monoclonal mouse anti-human tissue factor 4508

Tissue Factor (CD142) American Diagnostica Inc. FITC conjugated monoclonal mouse anti-human 
tissue factor CJ4508

Ulex europaeus lectin Sigma FITC conjugate L 9006

VE-cadherin (CD144) Santa Cruz Biotechnology polyclonal goat anti-human (C-19) sc-6458

Von Willebrand factor DakoCytomation polyclonal rabbit anti-human A0082

Secondary Antibody Supplier Description Product Information

DakoCytomation FITC conjugated polyclonal swine anti-rabbit F0205

DakoCytomation FITC conjugated polyclonal rabbit anti-mouse F0313

Jackson Immuno Research FITC conjugated polyclonal donkey anti-rabbit 711-095-152

Jackson Immuno Research FITC conjugated polyclonal donkey anti-goat 705-095-147
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Staining for Flow Cytometry 

 
 
Reagents : 
Glycine     Sigma G-8790 
NaCl      Sigma S-7653 
Normal Goat Serum (NGS)   Sigma G-6767 
Formaldehyde (20% aqueous)  Tousimis Cat #1008A 
Sucrose      
Triton X-100     Sigma X-100 
Trizma Pre-Set Crystals   Sigma T-4753 
Tween-20      
DPBS 
 
Solutions : 
Tween-20 Stock Solution : 0.1 % 
 Tween-20   100 uL 
 Add Tween-20 to 100 mL of dH20 and mix well. 
 
Tris-Buffered Saline with Tween (TBS-T) 

Trizma Pre-Set Crystals 14.2 g 
NaCl    11.7 g 
Tween-20 Stock  10 mL    

 
Dissolve the Trizma Crystals and NaCl in 990 mL dH20 and add 10 mL of 0.1% 
Tween stock (to give a final concentration of 0.001 % Tween).  Mix well.  Adjust 
pH to ~8.0 using Tris-Base/Tris-Cl at RT. 

 
Glycine : 20 mM 

Add 0.15 g of glycine to 100 mL of TBS-T and mix to dissolve.  Adjust pH to 2-3 
for use in protocol. 

 
0.1% Sodium azide in PBS (PBS+SA) 
 Add 0.5 g sodium azide to 500 mL PBS 
 
Blocking buffer: 5% NGS 

Add 5 mL of NGS to 95 mL of TBS-T. 
 
Staining buffer: 1% NGS 

Add 1 mL of NGS to 99 mL of TBS-T. 
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Fixation buffer: Formaldehyde (for 50 mL final solution) 
 4% formaldehyde  10mL of 20% aqueous 
 2% sucrose   1g 
 

Dilute Tousimis formaldehyde (20% aqueous) to 4% in PBS.  Add appropriate 
amount of sucrose and allow to dissolve.  Solution can be stored protected from 
light for up to one month at 4˚C. 
 

Triton X-100 Stock Solution : 10 % 
 Triton X-100   10 mL 
  

Add Triton X-100 to 90 mL of dH20 and put on stir plate with stir bar.  Will take 
~30-60 minutes to fully dissolve. 

 
Permeabilization buffer : 

Add 1 mL of Triton X-100 Stock to 99 mL of TBS-T (for final concentration of 
0.1% Triton X-100) and mix well. 
 - higher concentrations of Triton X-100 can also be used (e.g. 0.2 %, 0.5 
%) 

 
Procedure starting with slides from flow chambers: 
 
1] In square dishes -- rinse slides in 20mL cold PBS+SA, aspirate. 
 
2] Add 2mL/slide of warm collagenase to slide and incubate for 5 minutes. 
 
3] Add 5mL growth media to each slide. 
 
4] Use cell lifter to gently remove cells from slide. 
 
5] Transfer media + cells to 15mL centrifuge tube. 
 
6] Rinse slide with 7mL cold PBS+SA and add to 15mL tube. 
 
7] Spin 1000rpm for 5 min, aspirate 
 
8] Add 1mL cold 4% formaldehyde+sucrose, vortex gently, incubate 5 minutes. 
 
9] Spin1000rpm for 5 min, aspirate 
 
10] Add 2mL cold 20 mM glycine solution for 15 min. 
 
11] Spin1000rpm for 5 min, aspirate 
 
12] Resuspend in 2mL TBS-T and save at 4oC for staining. 
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------------------------------------------------------------------------------------------------------------ 
For intracellular staining (perform 13 & 14) otherwise skip to 15. 
13] Permeabilize cells in Permeabilization buffer for 5 min at room temperature. 
 
14] Wash cells gently 2 times in TBS-T. For each wash, suspend the cells in TBS-T 

and agitate gently, then spin down at 1000 rpm for 5 min and aspirate supernatant. 
 
15] In 15mL tubes, block nonspecific binding with 5% normal goat serum (diluted in 

TBS-T) for 1 hour at 37 °C.  Choose blocking buffer volume so that following 
blocking, cells can be split into the appropriate number of microcentrifuge tubes 
with 0.5mL each.  Blocking serum can be changed as needed depending on the 
source of the primary and secondary antibody. 

 
16] Transfer cells plus blocking buffer to microcentrifuge tubes and spin1000rpm for 

5 min, aspirate. (no wash). 
 
17] Dilute antibody & isotype control in 1% NGS/TBS-T (200uL/sample). 
 
18] Incubate samples in the following solutions at 37oC for 1 hour: 

Unstained control (or secondary only) 1% NGS 
Isotype control (optional)   isotype control antibody in 1% NGS 
Stained sample    antibody of interest in 1% NGS 

 
19] Add 1mL TBS-T, spin 1000rpm for 5 min, aspirate. 
 
20] Wash cells in 1mL TBS-T, spin 1000rpm for 5 min, aspirate. 
 
21] If necessary – incubate with secondary antibody at 37oC for 45min. 
 
22] Resuspend in 200uL TBS-T and transfer to flow cytometry tubes. 
 
NOTES: 
 
Others have suggested being consistent with buffers.  TBS appeared harsh to cells on 
slides so AEE started with PBS through fixation step then switch to TBS-T. 
 
Optional:  Low retention centrifuge tubes (VWR # 20170-650) can be used to minimize 
cells sticking to sides of tubes.  This prevents loss of cells during the multiple washing 
steps. 
 
Cells should be in suspension to begin protocol 
- if cells are from monolayer culture they must be trypsinized to bring into suspension 
- for preservation of surface receptors, cell dissociation solution or collagenase may be 
needed. 
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- if cells are from 3D construct, the construct must be digested to bring cells into 
suspension 
 
Note:  This blocking time has not been optimized.  JPS used 12-15 h at 4°C with alpha 
actin.  Blocking should generally be done with source of secondary antibody.   
 
To prepare sample for analysis using flow cytometry, force sample through a 40 um mesh 
filter.  This ensures that the sample does not contain cell clusters or debris that could clog 
the flow cytometer nozzle. 
 
Acknowledgement:   
This protocol was based on the advice of Jan P. Stegemann. 
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Cell Lysis and RNA Isolation 

 
 
Reagents & Supplies: 
RNeasy Mini Isolation kit      Qiagen 74104 
Qiashredders        Qiagen 79654 
RNase-free DNase kit       Qiagen 79254 
RNase/DNase Free Water      Sigma W-4502 
Ethanol – molecular biology      Sigma E702-3 
RNase/DNase free B-mercaptoethanol    Sigma M3148 
RNase/DNase free tubes 
Agilent UV-Vis Quartz Cuvette (50µL) 
 
Solutions: 
DNase stock 
 Mix lyophilized DNase powder with water in kit to get DNase stock solution, then 

aliquot 100 µL and store at -20oC 
Lysis Buffer  
 Mix RLT buffer (10mL) with 100 µL B-ME; protect from light and store at room 

temp for up to  a month (can scale down ie. 5ml RLT + 50µL B-ME) 
70% Ethanol  
 Mix 200 proof ethanol for molecular biology with RNase/DNase Free Water and 

store solution at RT 
DNase mix 
 Add 10 µL DNase stock to 70 µL RDD (in Qiagen kit) so there is 80 µL mix per 

sample.  Prepare enough solution for 1 extra sample so there is plenty of DNase 
mix. 

 
Procedure: 
Prepare Cells 
1] Aspirate media, rinse with PBS and add trypsin.   
2] Quench trypsin with media and place cell/media/trypsin suspension into 

centrifuge tube; rinse flask with PBS and place in centrifuge tube.   
3] Spin 5-10 min at 1000 rpm and 4oC.   
4] Completely aspirate supernatant and place tubes with cell pellet on ice. 
 
Prepare Cell Lysate 
1] Add 350 µL of lysis buffer to the tube and mix well; transfer mixture to 

qiashredder homogenizer column and spin in centrifuge at max for 2 minutes.  
(Alternative to qiashredder: Leave lysate mixture in tube and put 20-gauge needle 
on 3 mL syringe and place in tube.  Pass the lysate 5-10 times through the needle) 

2] FREEZE at -70C at this point if desired 
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Isolate RNA 
If using frozen samples, allow to warm at 37oC for 10min before adding ethanol 
 
1] Add 350 µL of 70% ethanol and mix well by pipetting 
2] Transfer 700 µL of the sample to the RNeasy mini column placed in a 2mL 

collection tube.  Centrifuge at 10,000 rpm for 30 sec. 
3] Suck up supernatant with micropipette and add to top of column. Centrifuge at 

10,000 rpm for 30 sec then discard effluent.  (If solution remains above column, 
spin briefly to force through column) 

4] Add 350 µL of RW1 solution to the RNeasy column.  Centrifuge at 10,000 rpm 
for 30 sec and discard the effluent. 

5] Add 80 µL DNase mix to the column and incubate at room temp for 15 minutes 
6] Add 350 µL of RW1 solution to the RNeasy column.  Centrifuge at 10,000 rpm 

for 30 sec and discard the effluent. 
7] Discard the old collection tube and replace with a new collection tube.  Add 500 

µL of RPE Buffer; centrifuge at 10,000 rpm for 30 sec and discard the effluent 
8] Add 500 µL RPE Buffer and centrifuge at MAX speed for 2 minutes.  If any 

solution remains above the column, spin again for 30-60 seconds to force through 
column and then discard the effluent. 

9] Label 1.5 mL collection tubes (in kit) and aliquot some RNase free water into a 
medium eppendorf tube 

10] Transfer the RNeasy column to the new collection tube; Add 25 µL (or desired 
volume) of RNase free water and incubate for 1 minute.  Centrifuge at MAX 
speed for 1 minute and discard the RNeasy column.  Place collection tube with 
RNA on ice. 

 
Spec Samples to Determine Concentration and Purity  
1] Prepare small tubes (label for each sample) 
2] Aliquot 68ul water into each tube 
3] Put 2ul of sample (after mixing well) into corresponding tube 
4] Read at 260nm and 280nm 
 
Determine sample concentration: 
(avg spec reading at 260nm)*(dilution factor)*(RNA quantification value) = sample conc 

(ug/ml) 
sample conc (ug/ml)*(volume of sample remaining) = quantity of sample 
 
Determine sample purity: 
(spec reading at 260nm/spec reading at 280nm) should be 1.8-2.1 for pure RNA 
 
Samples are also now ready for Bioanalyzer analysis. 
 
Acknowledgement:   
This procedure was initially developed by Tiffany L. Johnson 
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cDNA Synthesis for RT-PCR 

 

 
Reagents: 
SuperScript III First-Strand Synthesis System for RT-PCR  Invitrogen 18080-051 
RNase/DNase Free Water      Sigma W-4502 
RNase/DNase free tubes 
RNA samples – concentrations known 
 
Procedure: 
Carefully follow ALL steps as detailed in the SuperScript III procedure outline – details 
listed here are meant as a supplement only. 
 
Controls: Several controls are used in RT-PCR reactions.  At this step, be sure to create 
–RT controls.  These are samples which contain sample RNA and all reagents for cDNA 
synthesis EXCEPT the reverse transcriptase enzyme (therefore no cDNA will be created 
and these samples will be a control to check for genomic DNA during the PCR 
amplification steps) 
 
Preparing RNA Samples 
1] Determine concentration and quality of RNA samples using spec and bioanalyzer 

prior to cDNA synthesis.  You will need 1µg of RNA in NO MORE than 8µL of 
water for each tube (cDNA tube as well as –RT tube).  If your RNA is more dilute 
than this, concentrate by precipitation (see protocol) 

2] Based on spec readings and concentration calculations, determine volume of RNA 
for each sample which gives 1µg. 

3] Using spreadsheet, calculate appropriate volumes of RNA and water for each 
sample for a total volume of 10µL.  The components for the first step are in the 
following proportions: 

 
Component   Amount 
RNA (1µg)   n µL 
Primer (50µM oligo dT) 1 µL 
10mM dNTP mix  1 µL 
RNase/DNase free water 10-(2+n) µL 
 
cDNA Synthesis 
Remember to use new tips when moving between reagents and between tubes! 
Before preparing samples, turn on thermal cycler and load program to heat to 65°C. 
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Denaturation step: 
1] Mix and briefly centrifuge RNA samples, oligodT, and dNTP mix 
2] Label RNase/DNase free tubes for cDNA synthesis (remember –RT controls) 
3] Add correct volume of RNA to each tube, then add correct volume of water to 

each tube (total at this point should be 8µL) 
4] Add 1µL oligodT to each tube 
5] Add 1µL dNTP mix to each tube 
6] Vortex briefly and centrifuge to collect total volume 
7] Place in thermal cycler for 5 minutes at 65°C then place on ice for at least 1 

minute. 
 
Annealing and cDNA synthesis step: 
1] Mix and briefly centrifuge 10X RT buffer, 25mM MgCl2, 0.1M DTT, RNase out 

and Superscript III RT. 
2] Change program on thermal cycler to 50°C if using oligodT. 
3] Prepare enough cDNA mix for all tubes + 0.15 extra for pipetting error 
4] Create one tube for cDNA synthesis reactions and one tube for –RT reactions.   
5] Always mix reagents together into one tube in the following order: 
 
 

Component 1 cDNA rxn 10 cDNA rxns 1 –RT rxn 10 –RT rxns 
10X RT buffer 2 µL 20.3 µL 2 µL 20.3 µL 
25mM MgCl2 4 µL 40.6 µL 4 µL 40.6 µL 
0.1 M DTT 2 µL 20.3 µL 2 µL 20.3 µL 
RNase Out 1 µL 10.15 µL 1 µL 10.15 µL 

SuperScript III RT 1 µL 10.15 µL 0 0 
Rnase free water 0 0 1 µL 10.15 µL 

  
6] Vortex and centrifuge to collect total volume of mixture 
7] Add 10ul of cDNA mix or –RT mix to each tube, then mix gently and centrifuge 

briefly to collect 
8] If oligo dT was used, incubate at 50°C for 50 minutes. 
 
Terminate Reaction and Remove RNA: 
1] Terminate the reactions at 85°C for 5 minutes and then chill on ice. 
2] Collect reactions by brief centrifugation and then add 1ul of RNase H to each 

tube. 
3] Incubate at 37°C for 20 minutes. 
4] Store cDNA samples at -20°C or use in PCR immediately 
 
Acknowledgement:   
This procedure was initially developed by Tiffany L. Johnson 
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