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SUMMARY

We show that in Euclidean 3-space any closed curve γ which lies outside the unit sphere

and contains the sphere within its convex hull has length ≥ 4π. Equality holds only when

γ is composed of 4 semicircles of length π, arranged in the shape of a baseball seam, as

conjectured by V. A. Zalgaller in 1996.
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CHAPTER 1

INTRODUCTION

What is the shortest closed orbit a sattelite may take to inspect the entire surface of a

round asteroid? This is a well-known optimization problem [1, 2, 3, 4, 5, 6] in classical

differential geometry and convexity theory, which was resolved in [7]. In this work we give

a more fleshed out argument, which proceeds the same as in the previous work. Now the

question which we are interested in may be precisely formulated as follows. A curve γ in

Euclidean space R3 inspects a sphere S provided that it lies outside S and each point p of

S can be “seen” by some point q of γ, i.e., the line segment pq intersects S only at p. It is

easily shown that the latter condition holds if and only if S lies in the convex hull of γ. The

supremum of the radii of the spheres which are contained in the convex hull of γ and are

disjoint from γ is called the inradius of γ. Thus we seek the shortest closed curve with a

given inradius. The answer is as follows:

Theorem 1.1. Let γ : [a, b] → R3 be a closed rectifiable curve of length L and inradius r.

Then

L ≥ 4πr. (1.1)

Equality holds only if, up to a reparameterization, γ is simple, C1,1, lies on a sphere of

radius
√
2 r, and traces consecutively 4 semicircles of length πr.

It follows that the image of the minimal curve is unique up to a rigid motion, and

resembles the shape of a baseball seam as shown in Figure 1.1, which settles a conjecture

of Viktor Zalgaller made in 1996 [1]. The previous best estimate was L ≥ 6
√
3 r obtained

in 2018 [4]. Here we use some notions from [4] together with other techniques from integral

geometry (Crofton type formulas), geometric knot theory (unfoldings of space curves), and

geometric measure theory (tangent cones, sets of positive reach) to establish the above
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Figure 1.1: The unique minimizer, known as the Baseball Curve

theorem. We also derive a number of formulas (chapter 3, chapter 6, and chapter 8) for

the inspection efficiency of curves, which may be verified with the aid of the computer

software package that we have provided [8].

Our main approach for proving Theorem 1.1 is as follows. Since (Equation 1.1) is

invariant under rescaling and rigid motions, we may assume that r = 1 and γ inspects the

unit sphere S2, in which case we say simply that γ is an inspection curve. Then we define

the horizon of γ (chapter 3) as the measure in S2 counted with multiplicity of the set of

points p ∈ S2 where the tangent plane TpS
2 intersects γ:

H(γ) :=

∫
p∈S2

#γ−1(TpS
2) dp.

Since γ is closed, TpS
2 intersects γ at least twice for almost every p ∈ S2. Thus H(γ) ≥

8π. Next we define the (inspection) efficiency of γ as

E(γ) :=
H(γ)

L(γ)
. (1.2)

So to establish (Equation 1.1) it suffices to show that E(γ) ≤ 2. Now note that, since H is

additive, for any partition of γ into subsets γi, i ∈ I ,

E(γ) =
∑
i

H(γi)

L(γ)
=
∑
i

L(γi)

L(γ)
E(γi) ≤ sup

i
E(γi). (1.3)

So the desired upper bound for E(γ) may be established through a partitioning of γ into
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subsets γi with E(γi) ≤ 2.

To find the desired partition, we may start by assuming that γ in Theorem 1.1 has

minimal length among all (closed) inspection curves, and is parameterized with constant

speed (chapter 2). Then we apply an “unfolding” procedure, studied by Cantarella, Kusner

and Sullivan [9], to transform γ into a planar curve γ̃ with the same arclength and height,

i.e., radial distance function from the origin o of R3 (chapter 4). It follows that E(γ) =

E(γ̃). Furthermore, the minimality of γ will ensure that γ̃ is “locally convex with respect

to o” [10]. Consequently γ̃ may be partitioned into a collection of curves γ̃i we call spirals

(chapter 5). A spiral is a planar curve which lies outside the unit circle S1, is locally convex

with respect to o, has monotone height, and is orthogonal to the position vector of its closest

boundary point to o. We will show that the efficiency of any spiral is at most 2 by polygonal

approximations and a variational argument (chapter 7), which establish (Equation 1.1).

The rest of the paper will be devoted to characterizing minimal inspection curves. First

we note that equality holds in (Equation 1.1) only when E(γ) = 2, which forces all the

spirals γ̃i to have efficiency 2 as well. Then we show that a spiral has efficiency 2 only when

it has constant height
√
2. The argument will depend on whether the minimum height of

the spiral is above or below
√
2. In the former case we will compute that the instantaneous

efficiency of the spiral is less than 2 (chapter 8), and in the latter case we devise a variational

procedure called lifting and splitting to estimate the efficiency of the portion of the spiral

below the height
√
2 (chapter 9). Once we know that any minimal inspection curve γ has

constant height
√
2, we proceed to the final stages of the characterization (chapter 10).

The simplicity of γ follows from a Crofton type formula of Blaschke-Santalo. Then a

characterization of C1,1 submanifolds in terms of their tangent cones [11] and reach in

the sense of Federer, ensures the regularity of γ. Finally we show that γ is composed of

4 semicircles by constructing a “nested partition” of γ [12], which completes the proof

of Theorem 1.1. The last technique goes back to the proofs of the classical 4-vertex

theorem due to Kneser and Bose [13, 14], which has been developed further by Umehara
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and Thorbergsson [15, 16].

The question we study in this work belongs to a circle of long standing optimization

problems for the length of a curve in Euclidean space subject to various constraints on its

convex hull, including bounds on volume, surface area, width, and inradius [4, 17, 1, 18,

19, 20] [5, A28, A30]. With the exception of results in dimension 2, and the above result

in dimension 3, most of these problems remain open; see [4, 21] for more background and

references. We should also note that these problems may be posed both for closed and open

curves. In the latter case, there are connections to the “lost in a forest problem” of Bellman

[22], or its dual version, Moser’s “worm problem” [23, 24, 25], which are well-known in

computational geometry.
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CHAPTER 2

EXISTENCE OF MINIMAL INSPECTION CURVES

The central objects of study in this work are rectifiable curves, which become Lipschitz

mappings after reparameterization with constant speed. We begin by recording some basic

facts in this regard; more extensive background may be found in [26], [27, chap. 2], or [28,

chap. 4]. These notions will be used in this to establish the existence of minimal inspection

curves, and study their tangent lines.

Here Rn denotes the n-dimensional Euclidean space with origin o, standard inner prod-

uct ⟨·, ·⟩, and induced norm | · | := ⟨·, ·⟩ 1
2 . Furthermore Sn−1, Bn denote respectively the

unit sphere and closed unit ball in Rn. The interior, closure, and boundary of any set

X ⊂ Rn will be denoted by int(X), X , and ∂X respectively. By a curve we shall mean a

continuous mapping γ : [a, b] → Rn, where [a, b] ⊂ R denotes a closed interval with a < b.

We will also use γ to refer to its image, γ([a, b]). We say that γ is closed if γ(a) = γ(b).

A closed curve γ is simple if it is one-to-one on [a, b), and is C1 provided that it is contin-

uously differentiable with γ′
+(a) = γ′

−(b). Furthermore, γ is C1,1 if γ′ is Lipschitz. The

length of γ is defined as

L(γ) := sup
n∑

i=1

∣∣γ(ti)− γ(ti−1)
∣∣,

where the supremum is taken over all partitions a := t0 ≤ t ≤ · · · ≤ tn := b of [a, b].

We say that γ is rectifiable provided that L(γ) is finite. Furthermore, γ has constant speed

C provided L(γ|[t,s]) = C |t − s| for all t < s ∈ [a, b]. So constant speed curves are

rectifiable. We say that γ̂ : [c, d] → Rn is a reparameterization of γ provided that there

exists a nondecreasing continuous map ϕ : [a, b] → [c, d] such that γ = γ̂ ◦ ϕ. If [a, b] =

[c, d], then we say that γ̂ is domain preserving. Note that L(γ̂) = L(γ). It is also well-
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known [27, Prop. 2.5.9] that:

Lemma 2.1. Any rectifiable curve γ : [a, b] → Rn admits a domain preserving reparame-

terization with constant speed.

Thus we may assume that all rectifiable curves in this work have constant speed. Next note

that if γ : [a, b] → Rn has constant speed C, then for all t < s ∈ [a, b],

|γ(t)− γ(s)| ≤ L
(
γ
∣∣
[t,s]

)
= C|t− s|. (2.1)

So γ is C-Lipschitz, and therefore differentiable almost everywhere by Rademacher’s the-

orem. Then L(γ) =
∫ b

a
|γ′(t)| dt [27, Thm. 2.7.6]. Furthermore, (Equation 2.1) implies

that |γ′| ≤ C at all differentiable points of γ. On the other hand,
∫ b

a
|γ′(t)| dt/(b − a) =

L(γ)/(b− a) = C. Thus |γ′| = C almost everywhere. So we have established:

Lemma 2.2. Let γ : [a, b] → Rn be a rectifiable curve. Then γ has constant speed if and

only if |γ′| = L(γ)/(b− a) almost everywhere.

In particular, when L(γ) > 0, we may assume after a reparameterization that |γ′| ̸= 0

almost everywhere. Let C0([a, b],Rn) denote the space of curves γ : [a, b] → Rn with the

supremum norm or uniform metric [27, p. 47] given by

dist(γ1, γ2) := sup
t∈[a,b]

|γ1(t)− γ2(t)|. (2.2)

Unless noted otherwise, convergence of curves in this paper will be with respect to the

uniform metric. It is well-known that the length functional L : C0([a, b],Rn) → R is lower

semi-continuous [27, Prop. 2.3.4(iv)]. The convex hull of a set X ⊂ Rn, denoted by

conv(X), is the interof all closed half-spaces containing X . We say that γ : [a, b] → R3 is

an inspection curve if it is closed and S2 ⊂ conv(γ).

Proposition 2.3. There exists an inspection curve of minimum length.
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Proof. After a reparameterization, any inspection curve γ : [a, b] → R3 may be identified

with an element of C0([0, 1],R3). Let X ⊂ C0([0, 1],R3) denote the collection of inspec-

tion curves whose length is bounded above by some constant C, chosen sufficiently large

so that X ̸= ∅. Since the length functional L is lower semi-continuous on C0([0, 1],R3), it

suffices to show that X is compact. To this end we may assume that all elements of X have

constant speed by Lemma 2.1. Let γi ∈ X be a sequence of curves. Then, by Lemma 2.2,

|γ′
i| = L(γi) ≤ C almost everywhere, and therefore γi are C-Lipschitz. Furthermore, since

o ∈ conv(γi), γi are confined within a ball of radius C centered at o. So by Arzela-Ascoli

theorem [27, Thm. 2.5.14], a subsequence of γi converges to a C-Lipschitz and therefore

rectifiable curve γ : [0, 1] → R3. Since γ is C-Lipschitz, |γ′| ≤ C almost everywhere,

which in turn yields that L(γ) ≤ C. Furthermore since S2 ⊂ conv(γi), it follows that

S2 ⊂ conv(γ), which means that γ is an inspection curve. So we conclude that γ ∈ X as

desired.

Any curve given by the above proposition will be called a minimal inspection curve.

Next we establish an important property concerning tangent lines of these curves. Let

∠(v, w) := cos−1(⟨v, w⟩/(|v||w|)) denote the angle between v, w ∈ Rn \ {o}. For any

rectifiable curve γ : [a, b] → Rn \ {o}, with L(γ) > 0, we set

α(t) := ∠
(
γ(t), γ′(t)

)
.

By Lemma 2.2, if γ has constant speed, then |γ′| ̸= 0 almost everywhere. So α is well-

defined for almost every t ∈ [a, b]. The tangent cone Ttγ of γ at t ∈ [a, b] is the collection

of all rays emanating from γ(t) which are limits of a sequence of secant lines emanating

from γ(t) and passing through points γ(si) as si converge to t. If γ is closed and t = a

or b, then we set Ttγ := Taγ ∪ Tbγ. See [11, Sec. 2] for basic facts and background on

tangent cones. If Ttγ is a line, then we call it the tangent line of γ at t. In particular when

γ is differentiable at t and |γ′(t)| ̸= 0, then Ttγ is the line through γ(t) spanned by γ′(t).

7



Thus almost all tangent cones of a constant speed curve γ, with L(γ) > 0, are lines. The

following lemma generalizes an earlier observation [4, Lem. 7.4] for polygonal curves.

Lemma 2.4. Let γ : [a, b] → R3 be a constant speed minimal inspection curve. Then

tangent lines of γ avoid int(B3). In particular

α(t) ≥ sin−1

(
1

|γ(t)|

)
, (2.3)

for almost every t ∈ [a, b].

Proof. Let T be a tangent line of γ at t ∈ [a, b]. Suppose towards a contradiction that T

intersects int(B3). Set X := conv({γ(t)} ∪B3). Then T intersects int(X). Consequently

there exists a open interval U ⊂ [a, b] of the form (t, s) or (s, t) such that γ(U) ⊂ int(X),

and γ(s) lies on ∂X . Let U denote the closure of U . Replacing γ(U) with a line segment

connecting γ(t) and γ(s) (or if γ(t) = γ(s) then cutting out γ(U)) yields a closed curve β

with L(β) < L(γ). On the other hand, conv(β) = conv(γ), since γ(U) ⊂ int(conv(X)) ⊂

int(conv(γ)). In particular S2 ⊂ conv(β). So β is an inspection curve shorter than γ, which

is the desired contradiction. Now (Equation 2.3) follows from basic trigonometry.
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CHAPTER 3

THE INTEGRAL FORMULA FOR EFFICIENCY

As we had mentioned in the introduction, the efficiency of any rectifiable curve γ : [a, b] →

R3 with |γ| ≥ 1 is defined as

E(γ) :=
H(γ)

L(γ)
, where H(γ) :=

∫
p∈S2

#γ−1(TpS
2) dp. (3.1)

Recall also that H(γ) is called the horizon of γ, and # indicates cardinality. When γ is an

inspection curve it follows from Caratheodory’s convex hull theorem that

#γ−1(TpS
2) ≥ 2

for almost every p ∈ S2, see [4, Lemma 7.1]. Thus H(γ) ≥ 8π. So to prove (Equation 1.1)

it suffices to show that E(γ) ≤ 2. To this end we use the area formula in geometric measure

theory [29, Thm 3.2.3] to compute E(γ). This generalizes previous work in [4, Sec. 7.2]

where the following proposition had been established under the additional restrictions that

γ be piecewise C1,1 and its tangent lines pass through o only finitely many times. Recall

that α := ∠(γ, γ′).

Proposition 3.1. Let γ : [a, b] → R3 be a constant speed curve with |γ| ≥ 1. Then

E(γ) =
1

b− a

∫ b

a

∫ 2π

0

1

|γ|2
∣∣∣√|γ|2 − 1 sin

(
α
)
cos(θ) + cos

(
α
)∣∣∣ dθdt. (3.2)

Proof. Let γ(t) := γ(t)/|γ(t)|. Since γ is Lipschitz, γ is Lipschitz as well. So there

exists a point x ∈ S2 \ γ. Let e1 be a C1 unit tangent vector field on S2 \ {x}, and set

e2(p) := p × u(p). Then (e1(p), e2(p)) is a Lipschitz orthonormal frame on any compact

9



subset of S2 \ {x}. So if we set

e1(t) := e1
(
γ(t)

)
, e2(t) := e2

(
γ(t)

)
,

then t 7→ (γ(t), e1(t), e2(t)) is a Lipschitz orthonormal frame. Next set

λ :=
1

|γ|
, and ρ :=

√
1− λ2.

Define F : [a, b]× [0, 2π] → S2 by

F (t, θ) = λ(t)γ(t) + ρ(t)
(
cos(θ)e1(t) + sin(θ)e2(t)

)
.

Then θ 7→ F (t, θ) parameterizes the horizon circle H(γ(t)), i.e., the set of points in S2

generated by all the rays which emanate from γ(t) and are tangent to S2 (if γ(t) ∈ S2, then

H(γ(t)) degenerates into a single point). So, for all p ∈ S2,

F−1(p) = γ−1(TpS
2).

Thus, since F is Lipschitz, the area formula [29, Thm 3.2.3] yields that

H(γ) =

∫
p∈S2

#F−1(p) dp =

∫ b

a

∫ 2π

0

JF (t, θ) dθdt,

where JF := |∂F/∂t × ∂F/∂θ| is the Jacobian of F . Next, for every differentiable point

t ∈ [a, b] of γ let

Eγ(t) :=

∫ 2π

0

JF (t, θ) dθ.

By the Lebesgue differentiation theorem, for almost every t ∈ [a, b],

Eγ(t) = lim
ε→0

1

2ε

∫ t+ε

t−ε

Eγ(s) ds = lim
ε→0

1

2ε
H(γ|[t−ε,t+ε]).

10



So Eγ(t) does not depend on the choice of the frame (e1, e2). We claim that for almost

every point t0 ∈ [a, b] of γ we may choose the frame (e1, e2) so that

JF (t0, θ) =
1

|γ(t0)|2
∣∣∣√|γ(t0)|2 − 1 sin

(
α(t0)

)
cos(θ) + cos

(
α(t0)

)∣∣∣ |γ′(t0)|. (3.3)

This would complete the proof because E(γ) = (
∫ b

a
Eγ(t) dt)/L(γ), and since the speed is

constant |γ′| = L(γ)/(b − a). To establish (Equation 3.3) note that if t0 is a differentiable

point of γ, then it is a differentiable point of γ as well. There are two cases to consider:

either γ′(t0) ̸= 0 or γ′(t0) = 0.

First suppose that γ′(t0) ̸= 0. Let C be the great circle in S2 which is tangent to γ at

γ(t0). Set e1(γ(t0)) := γ′(t0)/|γ′(t0)|. We may extend e1 smoothly to a unit tangent vector

field in a neighborhood of γ(t0) on S2 so that e1(p) is tangent to C when p ∈ C. Recall

that e2(p) := p× e1(p), and e1(t) := e1(γ(t)), e2(t) := e2(γ(t)). Let v := |γ′(t0)|. Then


γ

e1

e2


′

(t0) =


0 v 0

−v 0 0

0 0 0




γ

e1

e2

 (t0).

Now one may compute [8] that at t = t0,

∂F

∂t
=

(
λ′ + ρv cos(θ)

)
γ +

(
λv + ρ′ cos(θ)

)
e1 + ρ′ sin(θ)e2,

∂F

∂θ
= −ρ sin(θ)e1 + ρ cos(θ)e2.

It follows that

∣∣∣∣∂F∂t × ∂F

∂θ

∣∣∣∣2 = ρ2
(
v2 cos2(θ)− 2v cos(θ)(λ′ρ− λρ′) +

(
(ρ′)2 + (λ′)2

))
.

11



It is easy to check that λ′ρ− λρ′ = λ′/ρ and (ρ′)2 + (λ′)2 = (λ′/ρ)2. So

JF = |ρv cos(θ)− λ′|,

which is equivalent to (Equation 3.3) since

v =

√
|γ′|2|γ|2 − ⟨γ, γ′⟩2

|γ|2
=

sin(α)|γ′|
|γ|

and λ′ = −⟨γ, γ′⟩
|γ|3

= −cos(α)|γ′|
|γ|2

.

It remains to consider the case where γ′(t0) = 0. Then e′1(t0) = e′2(t0) = 0 as well. So,

at t = t0,

∂F

∂t
= λ′γ + ρ′ cos(θ)e1 + ρ′ sin(θ)e2,

and ∂F/∂θ is as computed above. Since γ′ = 0, α = 0 or π. Thus |λ′| = |γ′|/|γ|2. So

∣∣∣∣∂F∂t × ∂F

∂θ

∣∣∣∣2 = ρ2
(
(λ′)2 + (ρ′)2

)
= (λ′)2 =

(
|γ′|
|γ|2

)2

.

Hence JF = |γ′|/|γ|2, which establishes (Equation 3.3) since α = 0 or π.

Note that if γ : [a, b] → R3 has constant speed C, then

∣∣ |γ(s)| − |γ(t)|
∣∣ ≤ |γ(t)− γ(s)| ≤ C|t− s|.

So the function |γ| : [a, b] → R, which we call the height of γ, is Lipschitz. In particular,

|γ| is differentiable almost everywhere. Furthermore note that if t is a differentiable point

of both γ and |γ|, then |γ|′ = ⟨γ, γ′⟩/|γ| at t. Thus for almost every t ∈ [a, b]

α(t) = cos−1

(
⟨γ(t), γ′(t)⟩
|γ(t)|C

)
= cos−1

(
|γ|′(t)
C

)
. (3.4)

This shows, via Proposition 3.1, that E(γ) depends only on |γ|. Hence we conclude

12



Corollary 3.2. Let γ1, γ2 : [a, b] → R3 be constant speed curves with L(γ1) = L(γ2).

Furthermore suppose that |γ1(t)| = |γ2(t)| ≥ 1 for all t ∈ [a, b]. Then E(γ1) = E(γ2).
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CHAPTER 4

UNFOLDING OF MINIMAL INSPECTION CURVES

Here we describe a natural operation, called unfolding [9], which transforms a rectifiable

space curve into a planar one. This operation preserves the arclength and height of the

curve, and thus will preserve its efficiency due to the results of the last section. Furthermore

we will show that the unfolding of any minimal inspection curve satisfies a certain convex-

ity condition. Let γ : [a, b] → R3 \ {o} be a rectifiable curve. Then we set γ := γ/|γ|, and

let

θγ(t) := L
(
γ
∣∣
[a,t]

)
=

∫ t

a

|γ′(t)|dt,

denote the arclength function of γ (θγ measures the “cone angle” [9] or “vision angle” [30,

31] of γ from the point of view of o). The (cone) unfolding of γ is defined as the planar

curve γ̃ : [a, b] → R2 given by

γ̃(t) := |γ(t)|eiθγ(t),

where eiθγ = (cos(θγ), sin(θγ)). In other words, γ̃ is generated by the isometric immersion

(or unrolling) into R2 of the conical surface generated by the line segments oγ(t). Note

that |γ̃(t)| = |γ(t)|. Furthermore, assuming γ is reparameterized with constant speed,

γ̃′ = (|γ|′ + i|γ|θ′γ)eiθγ , and θ′γ = |γ′| = 1

|γ|2
√
|γ|2|γ′|2 − ⟨γ, γ′⟩2, (4.1)

almost everywhere. Thus it follows that, for almost all t ∈ [a, b],

|γ̃′|2 = (|γ|′)2 + |γ|2(θ′γ)2 =
⟨γ, γ′⟩2

|γ|2
+

1

|γ|2
(
|γ|2|γ′|2 − ⟨γ, γ′⟩2

)
= |γ′|2.
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So γ and γ̃ have equal height and length. Hence, by Corollary 3.2,

Proposition 4.1. Let γ : [a, b] → R3 be a rectifiable curve with |γ| ≠ 0, and γ̃ be the

unfolding of γ. Then E(γ) = E(γ̃).

Next we develop some geometric properties of γ̃. First we record that

Lemma 4.2. Let γ : [a, b] → R3 be a minimal inspection curve with constant speed. Then

γ̃ is locally one to one.

Proof. It suffices to show that θγ is increasing, or θ′γ > 0 almost everywhere. The formula

for θ′γ in (Equation 4.1), via the Cauchy-Schwartz inequality, shows that θ′γ ≥ 0, and θ′γ = 0

only when γ′ vanishes, or else γ and γ′ are parallel. But γ′ can vanish only on a set of

measure zero, since γ has constant speed. Furthermore if γ and γ′ are parallel, then α = 0.

But by Lemma 2.4, α ̸= 0 almost everywhere, which completes the proof.

A convex body K ⊂ R2 is a compact convex set with interior points. We say that a

planar curve γ : [a, b] → R2 is locally convex provided that it is locally one-to-one and

each point t ∈ [a, b] has an open neighborhood U ⊂ [a, b] such that γ(U) lies on the

boundary of a convex body K ⊂ R2. A local supporting line ℓ for γ at t is a line passing

through γ(t) with respect to which γ(U) lies on one side. If ℓ does not pass through o and

γ(U) lies on the side of ℓ which contains o, then we say that ℓ lies above γ. Finally, if γ

is locally convex and through each point of it there passes a local support line which lies

above γ, then we say that γ is locally convex with respect to o.

Proposition 4.3. Let γ : [a, b] → R3 be a minimal inspection curve with constant speed.

Then γ̃ is locally convex with respect to o.

Proof. By Lemma 4.2, every t ∈ [a, b] has a neighborhood U ⊂ [a, b] such that γ̃ is one-

to-one on U . Furthermore, assuming that U is small, γ̃(U) will be star-shaped with respect

to o, i.e., for every s ∈ U the line passing through o and γ̃(s) intersects γ̃(U) only at γ̃(s).

Thus connecting the end points of γ̃(U) to o yields a simple closed curve, say Γ. We call
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the segments which run between o and end points of γ̃(U) the sides of Γ, and let θ denote

the interior angle of Γ at o. We may assume that U is so small that θ ≤ π. Then we claim

that the region K bounded by Γ is convex, which will complete the proof. To this end let

p0, p1 ∈ int(K). There exist a curve p : [0, 1] → int(K) with p(0) = p0, and p1 = p(1),

since int(K) is path connected by Jordan curve theorem. Let t ∈ [0, 1] be the supremum

of all points t ∈ [0, 1] such that the line segment p(0)p(t) ⊂ int(K). If t = 1, for all pairs

of points p0, p1 ∈ int(K), then the line segment p(0)p(1) ⊂ int(K). So int(K) is convex,

which implies that K is convex, and we are done.

Suppose then, towards a contradiction, that int(K) is not convex. Then t < 1 for some

pair of points p0, p1 ∈ int(K). Note also that t > 0 since p0 ∈ int(K). Consequently an

interior point x of p(0)p(t) intersects ∂K = Γ, while p(0)p(t) ⊂ K. Since θ ≤ π, x cannot

lie on a side of Γ, for then either p(0) or p(1) will be forced to lie on a side of Γ as well,

which is not possible as they are interior points of K. So x must lie on γ̃(U). Now we

may slightly perturb the segment p(0)p(t) so that a point of it leaves K while its end points

remain in int(K). Then we obtain a line segment σ whose end points lie on γ̃(U) while its

interior lies outside K. Thus if we replace the segment of γ̃(U) which lies between the end

points of σ with the line segment σ, we obtain a star-shaped curve β̃ with L(β̃) < L(γ̃).

Parameterize β̃ by letting β̃(t) be the point where the ray generated by γ̃(t) intersects

β̃. Then |β̃(t)| ≥ |γ̃(t)|. Now set

β(t) :=
|β̃(t)|
|γ̃(t)|

γ(t).

Then β̃ is the unfolding of β. So L(β) = L(β̃) < L(γ̃) = L(γ). On the other hand,

note that o ∈ conv(β); otherwise there exists u ∈ S2 such that ⟨β(t), u⟩ > 0 for all

t ∈ [a, b], which in turn yields that ⟨γ(t), u⟩ > 0, which is not possible since o ∈ conv(γ).

So o ∈ conv(β) which yields that λβ(t) ∈ conv(β) for all 0 ≤ λ ≤ 1. In particular

γ ⊂ conv(β). So it follows that conv(β) ⊃ conv(γ) ⊃ S2. Thus β is an inspection curve
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shorter than γ, which is the desired contradiction.
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CHAPTER 5

SPIRAL DECOMPOSITION OF THE UNFOLDING

Using the local convexity property established in the last section, we will show here that

the unfolding of a minimal inspection curve admits a partition into certain segments we call

spirals. First we note that a locally convex curve γ : [a, b] → R2 is rectifiable, and therefore

may be reparameterized with constant speed C. Then |γ′| = C at almost all differentiable

points of γ by Lemma 2.1; however, local convexity ensures more:

Lemma 5.1. Let γ : [a, b] → R2 be a locally convex curve with constant speed C. Then one

sided derivatives of γ exist at all points. Furthermore, |γ′
+(a)| = |γ′

−(b)| = |γ′
±(t)| = C

for all t ∈ (a, b).

Proof. Existence of one sided derivatives of γ follows from existence of one-sided deriva-

tives for convex functions [32, Thm. 1.5.4]. Since γ has constant speed C, for all t ∈ (a, b),

|γ′
±(t)| = lim

s→t±

|γ(s)− γ(t)|
|s− t|

= lim
s→t±

|γ(s)− γ(t)|
L(γ|[t,s])

L(γ|[t,s])
|t− s|

= C lim
s→t±

|γ(s)− γ(t)|
L(γ|[t,s])

.

It is not hard to show that, due to local convexity,

lim
s→t±

|γ(s)− γ(t)|
L(γ|[t,s])

= 1,

which establishes the desired result for t ∈ (a, b). The cases where t = a or t = b follow

similarly, where we will only have s → t+ or s → t− respectively.

Let γ : [a, b] → R2 \ {o} be a locally convex curve with constant speed. If t ∈ (a, b)

is a differentiable point of γ then γ′
+(t) = γ′

−(t) = γ′(t). Thus the above lemma shows

that |γ′(t)| ̸= 0 at all differentiable points of γ, since C = L(γ)/(b− a) > 0. In particular

α := ∠(γ, γ′) will be well defined at all differentiable points of γ. We also count a, b
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among differentiable points of γ, and set γ′(a) := γ′
+(a), γ

′(b) := γ′
−(b). We say that γ is

a spiral provided that (i) γ is locally convex with respect to o, (ii) |γ| is nondecreasing, (iii)

α(a) = π/2, and (iv) |γ(a)| ≥ 1. Note in particular that condition (ii), via (Equation 3.4),

implies that

α(t) ≤ π

2
(5.1)

at all differentiable points t ∈ [a, b] of γ. We say that γ is a strict spiral if |γ| is increasing.

By a spiral decomposition of a constant speed curve γ : [a, b] → R2 we mean a collection

Ui of mutually disjoint open subsets of [a, b] such that (i) γ|U i
is a strict spiral, after switch-

ing the direction of γ if necessary, and (ii) |γ|′ = 0 almost everywhere on [a, b] \ ∪iU i. By

a parameter shift we mean replacing t with (t + x)mod (b − a) for some x ∈ [a, b]. The

main result of this is:

Proposition 5.2. Let γ : [a, b] → R3 be a minimal inspection curve. Then the unfolding of

γ admits a spiral decomposition, after a parameter shift.

We may assume, after a reparameterization, that γ has constant speed. Let γ̃ be the

unfolding of γ and x ∈ (a, b) be a local minimum point of the height function |γ| = |γ̃|.

Then γ̃ is locally supported from below by a circle of radius |γ̃(x)| centered at o. Thus,

since γ̃ is locally convex with respect to o, there can pass only one local support line of γ̃

through γ̃(x). Consequently γ̃ is differentiable at x [32, Thm. 1.5.15]. Furthermore, note

that the local support line at γ̃(x) must be orthogonal to γ̃(x), since x is a local minimum

of |γ̃|. So ⟨γ̃′(x), γ̃(x)⟩ = 0. Now if we shift the parameter of γ̃ by x, it follows that γ̃ is

orthogonal to γ̃(a) and γ̃(b). Thus to prove Proposition 5.2 it suffices to show:

Lemma 5.3. Let γ : [a, b] → R2 be a constant speed curve which is locally convex with

respect to o. Suppose that α(a) = π/2 = α(b), and |γ| ≥ 1. Then γ admits a spiral

decomposition.

To prove this lemma first recall that, as we had mentioned at the end of chapter 3, the height

function |γ| of a constant speed curve is Lipschitz. In particular |γ| is absolutely continuous
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and so it satisfies the fundamental theorem of calculus:

|γ(s)| − |γ(t)| =
∫ s

t

|γ|′(t)dt (5.2)

for every pair of points s < t ∈ [a, b]. Furthermore, let us reiterate that if the speed of γ is

equal to C then

α(t) = cos−1

(
|γ|′(t)
C

)
, (5.3)

almost everywhere.

Proof of Lemma 5.3. Let X be the set of points t ∈ [a, b] such that γ has a local support

line at γ(t) which is orthogonal to γ(t). Then it follows from (Equation 5.3) that |γ|′ = 0

almost everywhere on X . Also note that X is closed, since the limit of any sequence of

support lines of a convex body is a support line. Consequently each (connected) component

U of [a, b] \X is an open subinterval of [a, b]. We claim that γ|U is a strict spiral, possibly

after switching the direction of γ|U , which will complete the proof.

To establish the above claim first note that by (Equation 5.3), |γ|′ cannot vanish at any

differentiable point of |γ| on U , for any such point would belong to X . We will show that

either |γ|′ > 0 almost everywhere on U or else |γ|′ < 0 almost everywhere on U . To

this end we start by orienting each local support line ℓ of γ consistent with the orientation

of γ at the point of contact with ℓ, so that the angle between any support line ℓ and the

position vector of its point of contact will be consistently defined along γ. Now suppose,

towards a contradiction, that there are subsets X and Y of U with nonzero measure such

that |γ|′ > 0 on X and |γ|′ < 0 on Y . Since X ∪Y is dense in U , there exists a point r ∈ U

which is a limit both of X and Y . More specifically, there are sequences of differentiable

points ti, si converging to r such that |γ|′(ti) > 0 and |γ|′(si) < 0, which in turn implies

that α(ti) < π/2 and α(si) > π/2 by (Equation 5.3). Hence, since the limit of support

lines to a convex body is a support line, there exists a local support line through r which

makes an angle ≤ π/2 with r, and there also exists a support line through r which makes
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an angle ≥ π/2 with r. So we conclude that there exists a local support line orthogonal to

r, which is not possible by definition of U . Hence |γ|′ is always positive or always negative

at differentiable points of |γ| in U as claimed.

Now it follows from (Equation 5.2) that |γ| is strictly monotone on U . Next, let t0 be

the boundary point of U which forms the minimum point of |γ| on U . We have to show that

γ|U is orthogonal to γ(t0). If t0 = a, b this already holds by assumption. So suppose that

t0 ∈ (a, b). Then t0 ∈ X , and so γ has a local support line ℓ at γ(t0) which is orthogonal

to γ(t0). Since γ is locally convex with respect to o, locally γ lies below ℓ. On the other

hand, since t0 is the minimum point of |γ| on U , then, near γ(t0), γ|U lies above the circle

S with radius |γ(t0)| centered at o. Thus γ|U must be orthogonal to γ(t0) as desired. We

conclude then that γ|U is a spiral, after switching the direction of γ|U if necessary, so that

γ(t0) becomes its initial point.
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CHAPTER 6

FORMULAS FOR EFFICIENCY OF LINE SEGMENTS

Here we derive a number of formulas for the horizon, and therefore efficiency, of line

segments, which may be checked using [8]. Suppose that we have a line segment p0p1

(with p0 ̸= p1) such that the line generated by p0p1 avoids int(B3), see Figure 6.1. For

p0

p1

H(p0) H(p1)

q

q′

q

q′

Figure 6.1: The geometric representation of the horizon of line segments

each point p on p0p1, let Cp be the (inspection) cone generated by all rays which emanate

from p and pass through a point of B3. Let H(p) be the set of points where ∂Cp touches

S2, i.e., the horizon circle from the point of view of p (as had been mentioned earlier in

the proof of Proposition 3.1). Then H(p0p1) is the area of the union of all horizon circles

H(p). Let Ci := Cpi , Hi := H(pi), and {q, q′} := H0 ∩ H1; it is possible that q = q′

which happens precisely when the line through p0 and p1 is tangent to S2. Note that all

horizon circles H(p) pass through q and q′, because the triangles p0p1q and p0p1q
′ lie on

planes which are tangent to S2. Thus H(p0p1) consists of the two lunar regions determined

by H0 and H1, if q ̸= q′; otherwise, H(p0p1) is the region lying inside one of the circles

and outside the other. More precisely, if Di denote the (inspection) disks in S2 bounded by

Hi, which lie inside Ci, then

H(p0p1) = A(D0) + A(D1)− 2A(D0 ∩D1), (6.1)
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where A stands for area. Now we may use basic spherical trigonometry to compute

H(p0p1) as follows. To start, note that if we set

hi := |pi|, and ℓ := |p0p1|

then the radii of Di and the distance in S2 between the centers of Di are given respectively

by

ρi := cos−1

(
1

hi

)
, and d := ∠(p0, p1) = cos−1

(
h2
0 + h2

1 − ℓ2

2h0h1

)
.

It is a basic fact that

A(Di) = 4π sin2
(ρi
2

)
.

Furthermore it is known that [33], if H0 and H1 intersect, then:

A(D0 ∩D1) = 2
(
cos−1

(
cos(ρ0) cos(ρ1)− cos(d)

sin(ρ0) sin(ρ1)

)
− cos−1

(
cos(ρ1)− cos(d) cos(ρ0)

sin(d) sin(ρ0)

)
cos(ρ0)

− cos−1

(
cos(ρ0)− cos(d) cos(ρ1)

sin(d) sin(ρ1)

)
cos(ρ1)

)
.

Substituting these formulas in (Equation 6.1) yields the following formula for H(p0p1):

H(h0, h1, ℓ) = 4
( 1

h0

sin−1

(
h2
1 − h2

0 − ℓ2√
(h2

0 − 1) ((h0 + h1)2 − ℓ2) (ℓ2 − (h1 − h0)2)

)
+

1

h1

sin−1

(
h2
0 − h2

1 − ℓ2√
(h2

1 − 1) ((h0 + h1)2 − ℓ2) (ℓ2 − (h1 − h0)2)

)
+cos−1

(
h2
0 + h2

1 − ℓ2 − 2

2
√
(h2

0 − 1) (h2
1 − 1)

))
.

(6.2)

Furthermore note that

h1 =
√

h2
0 + ℓ2 + 2h0ℓ cos(α), where α := ∠(p0, p0p1).
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Then we obtain an alternative expression for H(p0p1):

H(h0, ℓ, α) := 4
(
cos−1

(
h2
0 + h0ℓ cos(α)− 1√
(h2

0 − 1) (h2
1 − 1)

)

+
1

h0

sin−1

(
cot(α)√
h2
0 − 1

)
− 1

h1

sin−1

(
h0 cos(α) + ℓ

h0 sin(α)
√

h2
1 − 1

))
.

In particular, if α = π/2, i.e., p0p1 is orthogonal to the position vector of its initial vertex

p0, then we obtain a formula for one-edge spirals:

H(h0, ℓ) = 4

(
cos−1

( √
h2
0 − 1√

h2
0 + ℓ2 − 1

)
− 1√

h2
0 + ℓ2

sin−1

(
ℓ

h0

√
h2
0 + ℓ2 − 1

))
.

(6.3)

Finally, if we set ℓ =
√

h2
1 − h2

0 in the last expression we obtain another formula for the

horizon of one-edge spirals

H(h0, h1) := 4

(
cos−1

(√
h2
0 − 1√

h2
1 − 1

)
− 1

h1

sin−1

( √
h2
1 − h2

0

h0

√
h2
1 − 1

))
. (6.4)

The graph of the corresponding efficiency function E(h0, h1) := H(h0, h1)/
√
h2
1 − h2

0, for

h1 ≥ h0 ≥ 1 is shown in Figure 6.2. Note that E(h0, h1) ≤ 2, and equality holds only

Figure 6.2: Graph of the efficiency function of a spiral segment by initial and final heights

when h0 = h1 =
√
2, or the spiral has constant height

√
2. Below we will prove that all

spirals satisfy these properties.
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CHAPTER 7

UPPER BOUND FOR EFFICIENCY OF SPIRALS

Here we apply the formulas derived in the last to show that the efficiency of spirals is

bounded above by 2, via a variational argument applied to polygonal curves. First we need

to show that spirals form a locally compact space and the efficiency functional is continuous

on that space. To this end we start by extending the definition of a spiral as follows. We

say that γ : [a, b] → R2 is a (generalized) spiral provided that either γ is a spiral as defined

earlier in chapter 5, or else γ is a constant map with |γ| ≥ 1. We also extend the definition

of efficiency by setting

E(γ) :=
4
√
|γ|2 − 1

|γ|2
, when L(γ) = 0. (7.1)

So it follows from Proposition 3.1 that, when L(γ) = 0, E(γ) is the efficiency of a curve of

constant distance |γ| from the origin. Note that then E(γ) ≤ 2, and E(γ) = 2 only when

|γ| =
√
2. The space of spirals γ : [a, b] → R2, with the topology induced on it by the

uniform metric (Equation 2.2), will be denoted by S([a, b]). To show that E is continuous

on S([a, b]) first we observe that:

Lemma 7.1. Let γ : [a, b] → R2 be a constant speed spiral with L(γ) ̸= 0. Then

α(t) ≥ sin−1

(
|γ(a)|
|γ(t)|

)
, (7.2)

at all differentiable points t ∈ [a, b] of γ.

Proof. We may assume, for convenience, that the speed of γ is one. Then taking the cosine
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of both sides of (Equation 7.2) and squaring yields

⟨γ, γ′⟩2 ≤ |γ|2 − r2. (7.3)

Recall that by (Equation 5.1), α(t) ≤ π/2 which in turn yields that ⟨γ, γ′⟩ ≥ 0. Thus

(Equation 7.3) is equivalent to (Equation 7.2). To establish (Equation 7.3), first assume

that γ is C1,1. Then the left hand side of (Equation 7.3) is Lipschitz; therefore, it is differen-

tiable almost everywhere and satisfies the fundamental theorem of calculus. Furthermore,

since γ is locally convex with respect to o, ⟨γ, γ′′⟩ ≤ 0 almost everywhere. So, since

⟨γ′(a), γ(a)⟩ = 0, and ⟨γ, γ′⟩ ≥ 0,

⟨γ(t), γ′(t)⟩2 = 2

∫ t

a

⟨γ(s), γ′(s)⟩
(
1+⟨γ(s), γ′′(s)⟩

)
ds ≤ 2

∫ t

a

⟨γ(s), γ′(s)⟩ds = |γ(t)|2−r2,

as desired. To establish the general case we consider the outer parallel curves γε of γ at

distance ε > 0. These curves are given by setting γε(a) := γ(a) + εγ(a)/|γ(a)|, and

requiring that γε maintain constant distance ε from γ. Since γ is locally convex, γε is C1,1

[34, Prop. 2.4.3]. Furthermore, it is not difficult to see that γε is a spiral. So γε satisfies

(Equation 7.3). Next note that for each differentiable point γ(t) of γ there exists a unique

point γε(tε) of γε which is closest to γ(t). Then α(t) = αε(tε) where αε := ∠(γε, γ′
ε).

Thus

α(t) = αε(tε) ≥ sin−1

(
r + ε

|γε(tε)|

)
.

Letting ε → 0 completes the proof.

Since for a spiral γ(t) with L(γ) ̸= 0, α(t) ≤ π/2, the last lemma shows that α(t) →

π/2 as γ(t) → γ(a). This observation, together with some basic convex analysis, yields:

Lemma 7.2. The efficiency functional E is continuous on the space of spirals S([a, b]).

Proof. For convenience we may assume that [a, b] = [0, 1]. Let γk : [0, 1] → R2 be a

sequence of spirals converging to a spiral γ : [0, 1] → R2. We have to show that E(γk) →
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E(γ). To this end, we may assume that all spirals have constant speed. First suppose that

L(γ) = 0. If L(γk) = 0 as well, then we obtain the desired result by (Equation 7.1). So we

may assume that L(γk) > 0, by passing to a subsequence. Then, by Proposition 3.1

E(γk) =

∫ 1

0

∫ 2π

0

1

|γk(t)|2
∣∣∣√|γk(t)|2 − 1 sin

(
αk(t)

)
cos(θ) + cos

(
αk(t)

)∣∣∣ dθdt. (7.4)

Note that γk(a) → γ(a) and γk(t) → γ(t) = γ(a). So γk(t) → γk(a). Consequently,

by Lemma 7.1, αk(t) → π/2. So, since the integrand in (Equation 7.4) is bounded, the

dominated convergence theorem yields that

E(γk) →
∫ 1

0

∫ 2π

0

√
|γ(a)|2 − 1

|γ(a)|2
| cos(θ)| dθdt = 4

√
|γ(a)|2 − 1

|γ(a)|2
= E(γ),

as desired. Next suppose that L(γ) > 0, then we may assume that L(γk) > 0 as well.

So, again (Equation 7.4) holds. By assumption γk → γ uniformly. Furthermore, since γ

and γk are locally convex, it follows that γ′
k → γ′ almost everywhere on [0, 1]. This can

be shown by representing γk, γ locally as graphs of convex functions and applying well-

known results on convergence of derivatives from classical convexity theory; e.g., see [35,

C(9), p. 20], [36, Lem. 2], or [37]. Alternatively, one could give a more direct geometric

argument as follows. Let ℓk be the tangent line of γk at γk(t). Then ℓk is a local support

line of γk and so it converges to a local support line ℓ of γ at γ(t). But γ is differentiable at

γ(t). Thus ℓ must be the tangent line of γ at γ(t). So αk → α almost everywhere on [0, 1].

Thus by the dominated convergence theorem

E(γk) →
∫ 1

0

∫ 2π

0

1

|γ(t)|2
∣∣∣√|γ(t)|2 − 1 sin

(
α(t)

)
cos(θ) + cos

(
α(t)

)∣∣∣ dθdt = E(γ),

which completes the proof.

Next we use the above results to bound the efficiency of polygonal spirals. A polygonal

curve P is a collection of line segments determined by a sequence of points p0, . . . , pm ∈
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R2 which are successively distinct, i.e. pi+1 ̸= pi for i = 0, . . . ,m− 1. We also allow for

the possibility that P may be degenerate, i.e., consist of a single point. We use the formal

notation P = (p0, . . . , pm) to specify a polygonal curve. The points pi are called vertices of

P , and the segments pipi+1, form the edges of P . Each polygonal curve P admits a unique

constant speed parameterization γP : [0, 1] → P , with γp(0) = p0 which traces the edges of

P . The distance between a pair of polygonal curves P 1, P 2 is defined as dist
(
γP 1 , γP 2

)
,

the uniform metric defined by (Equation 2.2). Let Pm denote the space of polygonal curves

with at most m edges in R2. We endow Pm with the topology induced by dist. Then any

sequence of polygonal curves Pi ∈ Pm which is confined to a bounded region of R2 will

have a converging subsequence. So Pm is locally compact. We say that P ∈ Pm is a

polygonal spiral provided that γP is a spiral. Note that a polygonal spiral is always strict.

Let Sm be the collection of polygonal spirals with at most m edges.

Lemma 7.3. The space of polygonal spirals Sm is locally compact, for every m ≥ 0.

Proof. Since the space of polygonal curves Pm is locally compact, it is enough to check

that Sm is closed in Pm. Let Pk ∈ Sm be a sequence of polygonal spirals converging

to a polygonal curve P ∈ Pm. If L(P ) = 0, then P already belongs to Sm and there

is nothing to prove. We may suppose then that P = (p0, . . . , pℓ) with ℓ > 0. It is clear

that the distance of points of P from the origin must be increasing. Furthermore, P will

be locally convex by Blaschke’s selection principle [27, Thm. 7.3.8] on convergence of

convex bodies. Finally note that there exists a sequence of edges Ek of Pk such that the

initial point of Ek converges to p0 while the final point of Ek converges to another point

of p0p1. So Ek becomes parallel to p0p1. Furthermore note that the initial point pk0 of Pk

converges to p0. Thus the initial point of Ek must converge to pk0. So, by Lemma 7.1, Ek

becomes orthogonal to pk0 and therefore to p0. Thus p0p1 must be orthogonal to p0, which

completes the proof.

Lemma 7.4. The efficiency of any polygonal spiral is at most 2.
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Proof. Fix an integer m ≥ 0, and number R > 1. By Lemma 7.3 there exists a polygonal

spiral P = (p0, . . . , pk) which maximizes E among elements of Sm which lie in the ball

of radius R centered at o. We need to show that E(P ) ≤ 2. If P is a singleton, this

is guaranteed by (Equation 7.1). So we may assume that k ≥ 1. Then r := |p0| < R.

Note that for −ε < t < ε there exists a point pt0 such that pt0 is orthogonal to pt0p1, and

|pt0| = (1 + t)r, assuming that ε sufficiently small. Indeed pt0 lies on an arc of the circle

of radius |p1|/2 which is centered at the midpoint of op1; see Figure 7.1. Furthermore,

p0 p1

o

Figure 7.1: Perturbation of initial point of polygonal spiral

choosing ε sufficiently small, we can ensure that P t := (pt0, p1, . . . , pk) is locally convex.

Thus P t will be a spiral provided that |pt0| ≥ 1, which will be the case for small ε provided

that r > 1 or else t ≥ 0. Let us assume first that r > 1. Then P t will be a spiral in BR(o)

for −ε < t < ε. Let L(t), H(t), and E(t) denote respectively the length, horizon, and

efficiency of P t. Then

0 = E ′(0) =
H ′(0)L(0)−H(0)L′(0)

L(0)2
,

which in turn yields
H ′(0)

L′(0)
=

H(0)

L(0)
= E(P ).

To compute L′(0) note that

L(t) = L(pt0p1) + L
(
(p1, . . . , pk)

)
=
√
|p1|2 − (r + t)2 + L

(
(p1, . . . , pk)

)
.
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So it follows that

L′(0) = − r√
|p1|2 − r2

.

Next, to compute H ′(0), note that

H(t) = H(pt0p1) +H
(
(p1, . . . , pk)

)
.

Furthermore, by (Equation 6.3) we have

H(pt0p1) = H
(
r + t, L(pt0p1)

)
.

Now a computation [8] yields that

H ′(0) =
d

dt
H
(
r + t, L(pt0p1)

)∣∣∣
t=0

= −4

r

√
r2 − 1√

|p1|2 − r2
. (7.5)

So we conclude that

E(P ) =
H ′(0)

L′(0)
= 4

√
r2 − 1

r2
≤ 2,

as desired. It remains to show that our earlier assumption that r > 1 was justified. Suppose

then, towards a contradiction, that r = 1. Then E(t) and H(t) will still be well defined for

t ≥ 0, and so will their right-hand derivatives at 0. By (Equation 7.5), H ′
+(0) = 0. Thus

E ′
+(0) =

−H(0)L′(0)

L(0)2
=

H(0)

L(0)2
1√

|p1|2 − 12
> 0.

So E(t) > E(0), or E(P t) > E(P ), for small t > 0 which is the desired contradiction.

The above lemma together with Lemma 7.2 now yields the main result of this section:

Proposition 7.5. The efficiency of any spiral is at most 2.

Proof. Let γ be a spiral. If L(γ) = 0, then it is a polygonal spiral and so E(γ) ≤ 2 by

Lemma 7.4. Thus we may assume that L(γ) > 0 and γ : [a, b] → R2 has unit speed. For
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k = 3, 4, . . . , we construct a sequence of polygonal curves P k = (pk0, . . . , p
k
k) converging

to γ as follows. Set pki := γ(iL/k), for i = 1, . . . , k − 1, and let pk0, pkk be the points on the

rays oγ(a) and oγ(b) respectively such that pk0 is orthogonal to pk0p
k
1 and pkk is orthogonal

to pkk−1p
k
k; see Figure 7.2. Note that E(P k) → E(γ) by Lemma 7.2. So, to complete

Figure 7.2: A polygonal approximation to a spiral

the proof, it suffices to show that E(P k) ≤ 2. To see this note that since γ is a spiral,

P k is locally convex with respect to o, assuming that k is sufficiently large. Thus P k may

be partitioned into a collection of spirals by Lemma 5.3. The efficiency of each of these

spirals is at most 2, by Lemma 7.4. Hence, by (Equation 1.3), E(P k) ≤ 2 as desired.

As we had mentioned in the introduction, Proposition 7.5 together with Proposition

5.2 now establishes inequality (Equation 1.1). The rest of this work will be concerned

with characterizing the case where equality holds in (Equation 1.1).
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CHAPTER 8

INSTANTANEOUS EFFICIENCY

Here we show that a spiral with initial height ≥
√
2 assumes its maximum efficiency 2

only when it has constant height
√
2. This argument is based on the notion of instantaneous

efficiency, which was used in the proof of Proposition 3.1, and will be developed further

below. Let γ : [a, b] → R3 be a constant speed curve with |γ| ≥ 1, and t ∈ [a, b] be a

differentiable point of γ with |γ′(t)| ≠ 0. Then α(t) is well defined. Now we define the

instantaneous efficiency of γ at t as

Eγ(t) :=

∫ 2π

0

∣∣F (|γ(t)|, α(t), θ)
∣∣dθ, (8.1)

where

F (h, α, θ) :=
1

h2

(√
h2 − 1 sin(α) cos(θ) + cos(α)

)
.

Note that if t is a differentiable point of t 7→ H(γ|[a,t]), then by (Equation 3.2) Eγ(t) =

d
dt
H
(
γ|[a,t]

)
. So Eγ(t) is the rate of change of horizon along γ. Furthermore, by Proposi-

tion 3.1,

E(γ) =
1

b− a

∫ b

a

Eγ(t)dt ≤ sup
[a,b]

Eγ(t). (8.2)

Thus to find an upper bound for E(γ) it suffices to bound Eγ . To this end we derive a more

explicit formula for Eγ by computing the integral in (Equation 8.1) as follows. Let

Ω :=

{
(h, α)

∣∣∣h ≥ 1, sin−1

(
1

h

)
≤ α ≤ π

2

}

be the phase space of all possible values for pairs of heights and angles (|γ(t)|, α(t)),

at differentiable points of curves γ which lie outside S2 and whose tangent lines avoid
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int(B3). For every (h, α) ∈ Ω we set

θ0 = θ0(h, α) := cos−1

(
− cot(α)√

h2 − 1

)
.

Since sin(α) ≥ 1/h, | cot(α)/
√
h2 − 1| ≤ 1. So θ0 is well defined. Also note that

F (h, α,±θ0) = 0. Now we may compute that [8]

∫ 2π

0

|F (h, α, θ)| dθ =

∫ θ0

−θ0

F (h, α, θ) dθ −
∫ 2π−θ0

θ0

F (h, α, θ)dθ

=
4

h2

(√
h2 − 1 sin(α) sin (θ0) +

(
θ0 −

π

2

)
cos(α)

)
=

4

h2

(√
h2 sin2(α)− 1 + sin−1

(
cot(α)√
h2 − 1

)
cos(α)

)
.

Thus if we set

E(h, α) := 4

h2

(√
h2 sin2(α)− 1 + cos(α) sin−1

(
cot(α)√
h2 − 1

))
, (8.3)

then we obtain

Eγ(t) = E
(
|γ(t)|, α(t)

)
,

for curves whose tangent lines avoid int(B3). We also set

E(h) := E
(
h,

π

2

)
= 4

√
h2 − 1

h2
≤ 2.

Note that E(h) = 2 only if h =
√
2. For any set X ⊂ [a, b], with nonzero measure µ(X)

we define

E(γ
∣∣
X
) :=

1

µ(X)

∫
X

Eγ(t)dt.

The above discussion has established that

Proposition 8.1. Let γ : [a, b] → R3 be a constant speed curve with |γ| ≥ 1. Suppose that
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the tangent lines of γ avoid int(B3). Then, for any set X ⊂ [a, b] with nonzero measure

E(γ
∣∣
X
) =

1

µ(X)

∫
X

E
(
|γ(t)|, α(t)

)
dt,

where E is given by (Equation 8.3).

The values of the instant efficiency function E(h, α) on the phase space Ω are shown

in Figure 8.1. These values range from 0 to about 2.6, and the red contour line in the right

Figure 8.1: The instantaneous efficiency by height and angle

diagram corresponds to the value E(h, α) = 2. The cusp of this contour line lies at the point

(
√
2, π/2), which corresponds to the conjectured minimal curve. The region bounded by

this contour line has E(h, α) ≥ 2, and separates the phase space into two components

where E(h, α) ≤ 2. In one of these components h ≥
√
2 and in the other h ≤

√
2. This

may be regarded as the reason why we need to treat the spirals with initial height above
√
2 separately from those with initial height below

√
2, which will be treated in the next

section.

Now let γ : [a, b] → R3 be a spiral with initial height r := |γ(a)| ≥
√
2. We will show

that then the instantaneous efficiency Eγ(t) ≤ 2, for almost all t ∈ [a, b], which in turn

implies that E(γ) ≤ 2 by (Equation 8.2). The main idea behind the proof is as follows.

Any curve γ : [a, b] → R3 which lies outside S2 and whose tangent lines avoid int(B3),

generates an associated mapping

t 7−→ (|γ(t)|, α(t)) ∈ Ω
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where Ω is the phase space described above, and t ∈ [a, b] are differentiable points of γ

with |γ′(t)| ̸= 0. So Eγ(t) ≤ 2 provided that the associated mapping of γ avoids the

region in Ω where E(h, α) > 2. An illustrative example is provided in the case where γ

traces a straight line segment (which is orthogonal to the position vector of its initial point).

Then the associated curves are given by α(t) = sin−1(r/|γ(t)|). These curves for different

values of their initial height r are depicted in yellow and blue in Figure 8.2. The blue curve

corresponds to r =
√
2. Recall that the cusp of the red contour curve, which bounds the

1.0 1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

Figure 8.2: The instantaneous efficiency along with lines of equality for α =
sin−1(r/|γ(t)|) for different values of r

region with E(h, α) ≥ 2 has coordinates (
√
2, π/2). Thus Figure 8.2 shows that if r ≥

√
2,

then the instantaneous efficiency of γ is always below 2. We prove this in the next lemma.

Recall that E(h) := E(h, π/2).

Lemma 8.2. For h ≥
√
2 and sin−1(

√
2/h) ≤ α ≤ π/2,

E(h, α) ≤ E(h) ≤ 2.

Proof. Since E(h, π/2) = E(h) ≤ 2, it suffices to check that α 7→ E(h, α) is nondecreas-
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ing. So we compute [8]

∂E
∂α

(h, α) =
4

h2

(
cot(α)

√
h2 sin2(α)− 1− sin(α) sin−1

(
cot(α)√
h2 − 1

))

≥ 4

h2

cot(α)− sin−1

 cot(α)√
(
√
2/ sin(α))2 − 1


=

4

h2

(
cos(α)√

1− cos2(α)
− sin−1

(
cos(α)√

1 + cos2(α)

))
.

Now if we let x := cos(α), then it remains to check that the following expression is non-

negative
x√

1− x2
− sin−1

(
x√

1 + x2

)
for 0 ≤ x ≤ 1. To see this note that the above expression vanishes for x = 0. Furthermore,

its derivative is given by 1/(1 − x2)3/2 − 1/(x2 + 1) which is indeed nonnegative for

0 ≤ x ≤ 1.

The last lemma, together with Lemma 7.1 and Proposition 8.1, yields:

Proposition 8.3. Let γ : [a, b] → R2 be a constant speed spiral with initial height r ≥
√
2.

Then

E(γ) ≤ 1

b− a

∫ b

a

E(|γ(t)|)dt ≤ E(r) ≤ 2.

Equality in the second inequality holds only when |γ| ≡ r, and equality in the third in-

equality holds only when r =
√
2.
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CHAPTER 9

SPIRALS WITH MAXIMUM EFFICIENCY

Here we refine the variational method employed in chapter 7 to show that the efficiency of

any spiral assumes its maximum value only when it has constant height
√
2. We start by

considering one edge spirals P = (p0, p1). By a lifting of P we mean any polygonal curve

P̃ = (p̃0, p1) where p̃0 = λp0 for λ > 1.

Lemma 9.1. Let P = (p0, p1) be a spiral. For any lifting P̃ of P , H(P ) < H(P̃ ).

Proof. Suppose P̃ := (p̃0, p1), see Figure 9.1. Since p0p1 is orthogonal to p0, the horizon

p0 p1

p̃0

H(p1)H(p̃0)

H(p0)

Figure 9.1: The effects of the perturbation of the initial point of a spiral segment radially
on the horizon of that segment

circle H(p1) (depicted in orange) bisects the horizon circle H(p0) (depicted in dotted blue

line), because the two planes which contain p0p1 and are tangent to S2 intersect H(p0) at

a pair of its antipodal points. Thus the area that is gained by the horizon, as p0 rises to p̃0

exceeds the area which is lost.

Let P = (p0, p1) be a spiral and set r := |p0|, R := |p1|. For every h ∈ [r, R], let

P̃ h := (p̃h
0 , p1) be the lifting of P such that the distance of p̃h

0 p1 to o is equal to h. Let qh

be the closest point of p̃h
0 p1 to o; see Figure 9.2. Set P̃ h

+ := (qh, p1) and P̃ h
− := (p̃h

0 , q
h).
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p0 p1

p̃h
0 qh

o

Figure 9.2: The splitting of a lifted segment

Lemma 9.2. Let P = (p0, p1) be a spiral with initial height r, and final height R. Then for

every r ≤ ρ ≤ R,

H(P ) ≤
∫ ρ

r

w(h)E(h)dh+H(P̃ ρ
+),

where
∫ ρ

r
w(h)dh = L(P )− L(P̃ ρ

+), and w ≥ r/
√
R2 − r2.

Proof. If the desired inequality holds for all r > 1, then it also holds for r = 1 by continu-

ity. So we may assume that r > 1. We claim that

w(h) := − d

ds
L(P̃ s

+)
∣∣∣
s=h

= − d

ds

√
R2 − s2

∣∣∣
s=h

=
h√

R2 − h2

is the desired weight function. Clearly
∫ ρ

r
w(h)dh = L(P )−L(P̃ ρ

+) and w ≥ r/
√
R2 − r2.

Set ∆h := (ρ − r)/n, hi := r + i∆h, and qi := qhi . We define a sequence of liftings

as follows. Set P 0 := P . Once P i is defined, let p̃i0 be its initial point, qi be its closest

point to o, and set P i
− := (p̃ i

0, q
i), P i

+ := (qi, p1). Then we define P i+1 := (̃P i
+)

hi+1

; see

Figure 9.3. By Lemma 9.1 H(P i
+) < H(P i+1) = H(P i+1

− ) + H(P i+1
+ ). Applying this

o

p0 p1

Figure 9.3: The repeated lifting and splitting of a spiral segment
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inequality iteratively yields

H(P ) ≤
n∑

i=1

H(P i
−) +H(P̃ ρ

+).

Now, for 0 ≤ s ≤ ∆h, let qi(s) := qhi−1+s; see Figure 9.4. Furthermore let xi(s) be the

qi−1

qi
p̃ i
0

xi(s) qi(s)

p1

Figure 9.4: Parameterizing the lifting and splitting of a segment

point where the line passing through qi(s) and p1 intersects qi−1p̃ i
0. Set σi

s := xi(s)qi(s).

Let fi(s) := H(σi
s). By (Equation 6.3), fi(s) = H

(
hi−1 + s, L(σi(s))

)
. So fi is C∞ on

[0,∆h] provided that hi−1 + s > 1 or hi−1 > 1, which is the case since r > 1. We have

H(P i
−) = fi(∆h) − fi(0) ≤ f ′

i(0)∆h + Ci(∆h)2, where Ci := sup[0,∆h] f
′′
i (s)/2 < ∞.

Note that Ci depends continuously on qi. So Ci are bounded above by some constant C,

independent of i, which yields

H(P i
−) ≤ f ′

i(0)∆h+ C(∆h)2 = f ′
i(0)∆h+ C

(ρ− r)2

n2
.

Next we compute that

f ′
i(0) =

d

ds
L(σi

s)
∣∣∣
s=0

E(σi
0) + L(σi

0)
d

ds
E(σi

s)
∣∣∣
s=0

=
d

ds
L(σi

s)
∣∣∣
s=0

E(hi−1).

If we let τ is := qi(s)p1 then at s = 0, d
ds
L(σi

s) +
d
ds
L(τ is) = d

ds
|xi(s)p1| = 0, because

xi(0)p1 = qi−1p1 is orthogonal to qi−1p̃ i
0. Now recall that qhp1 = P̃ h

+. Thus

d

ds
L(σi

s)
∣∣∣
s=0

= − d

ds
L(τ is)

∣∣∣
s=0

= − d

ds
L(P̃

hi−1+s
+ )

∣∣∣
s=0

= w(hi−1).
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The last four displayed expressions yield

n∑
i=1

H(P i
−) ≤

n−1∑
i=0

(
w(hi)E(hi)∆h+ C

(ρ− r)2

n2

)
=

n−1∑
i=0

w(hi)E(hi)∆h+ C
(ρ− r)2

n
.

Letting n → ∞ completes the proof.

The last lemma via an induction yields:

Lemma 9.3. Let P be a polygonal spiral with initial height r, and final height R. Then

H(P ) ≤
∫ R

r

w(h)E(h)dh, (9.1)

where
∫ R

r
w(h)dh = L(P ), and w ≥ r/

√
R2 − r2.

Proof. If P has only one edge (Equation 9.1) holds by Lemma 9.2. Suppose that (Equation 9.1)

holds for spirals with n edges and let P = (p0, . . . , pn+1). Let ρ be the distance of

the line spanned by p1p2 from o and q be the closest point of that line to the origin.

Then P ′ := (q, p2, . . . , pm) is a spiral with n edges. Note that H(P ) = H
(
(p0, p1)

)
+

H
(
(p1, . . . , pn+1)

)
, and by Lemma 9.2, H

(
(p0, p1)

)
≤
∫ ρ

r
w0(h)E(h)dh + H

(
(q, p1)).

Thus

H(P ) ≤
∫ ρ

r

w0(h)E(h)dh+H(P ′),

where
∫ ρ

r
w0(h)dh = L(p0p1) − L(qp1) = L(P ) − L(P ′), and w0 ≥ r/

√
|p1|2 − r2 ≥

r/
√
R2 − r2. By the inductive hypothesis

H(P ′) ≤
∫ R

ρ

w1(h)E(h)dh,

where
∫ ρ

r
w1(h)dh = L(P ′), and w1 ≥ ρ/

√
R2 − ρ2 ≥ r/

√
R2 − r2. Set w := w0 for

h < ρ and w := w1 for h ≥ ρ. Then the last two displayed inequalities yield (Equation 9.1)

.

Now we prove the main result of this section, which extends Proposition 7.5:
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Proposition 9.4. For any spiral γ, E(γ) ≤ 2 with equality only if |γ| ≡
√
2.

Proof. Lemma 9.3 together with Lemma 7.2 yields E(γ) ≤ 2 via a polygonal approx-

imation. Next suppose that E(γ) = 2. Let r, R be the initial and final heights of γ. If

r = R, then 2 = E(γ) = E(|γ|) which yields |γ| ≡
√
2. Suppose towards a contradiction

that r < R. Let Pi, i = 1, 2, . . . be a sequence of polygonal spirals converging to γ, with

initial and final heights ri, Ri. We may assume for convenience that r ≤ ri < Ri ≤ R. Let

wi be the weight functions for Pi given by Lemma 9.3. Set wi := wi/L(Pi) on [ri, Ri] and

wi := 0 elsewhere. Then
∫ R

r
wi(h)dh = 1. By Lemma 7.2, for any given ε > 0, we may

choose i so large that E(Pi) ≥ 2− ε. Then by Lemma 9.3,

2− ε ≤ E(Pi) ≤
∫ R

r

wi(h)E(h)dh ≤ sup
[r,R]

E ≤ 2.

So sup[r,R] E = 2. Since E = 2 only at
√
2, [r, R] ∋

√
2. So the set of heights h ∈ [r, R]

with E(h) ≥ 2−
√
ε forms a subinterval [x−

ε , x
+
ε ]. It follows that

2− ε ≤
∫ R

r

wi(h)E(h)dh ≤ −
√
ε

(∫ x−
ε

r

wi(h)dh+

∫ R

x+
ε

wi(h)dh

)
+ 2.

So
∫ x−

ε

r
wi(h)dh+

∫ R

x+
ε
wi(h)dh ≤

√
ε. But wi ≥ 1/

(
L(Pi)

√
(R/r)2 − 1

)
. Thus

R− r ≤
√
εL(Pi)

√
(R/r)2 − 1 + x+

ε − x−
ε .

Letting ε → 0, we obtain r = R, since x±
ε →

√
2, and L(Pi) is bounded above. Hence we

arrive at the desired contradiction.
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CHAPTER 10

PROOF OF THEOREM 1.1

By Proposition 2.3 there exists a minimal inspection curve γ : [a, b] → R3, which we may

assume to have constant speed by Lemma 2.1. As we described in chapter 3, to establish

(Equation 1.1) it suffices to show that E(γ) ≤ 2. By Proposition 4.1, E(γ) = E(γ̃) where

γ̃ is the unfolding of γ. Furthermore, by Proposition 5.2, γ̃ admits a spiral decomposition,

generated by a collection of mutually disjoint open sets Ui ⊂ [a, b], i ∈ I . Set U0 :=

[a, b] \ ∪iU i, and let γ̃i := γ̃|U i
, γ̃0 := γ̃|U0 . Then

E(γ̃) =
H(γ̃)

L(γ̃)
=

1

L(γ̃)

∑
i

H(γ̃i) =
1

L(γ̃)

(
L(γ̃0)E(γ̃0) +

∑
i

L(γ̃i)E(γ̃i)

)
, (10.1)

where we define L(γ̃0) :=
∫
U0

|γ̃′
0(t)|dt. So L(γ̃0) +

∑
i L(γ̃i) = L(γ̃). If L(γ̃0) = 0, then

we may disregard the first term in the summation above. Otherwise, by definition of spiral

decomposition, α̃(t) = π/2 for almost all t ∈ U0. Thus, by Proposition 8.1,

E(γ̃0) =
1

µ(U0)

∫
U0

E
(
|γ̃(t)|, π

2

)
dt =

1

µ(U0)

∫
U0

E
(
|γ̃(t)|

)
dt ≤ 2. (10.2)

Furthermore, by Proposition 7.5,

E(γ̃i) ≤ 2, (10.3)

assuming Ui ̸= ∅. So it follows that E(γ̃) ≤ 2, as desired.

It remains to characterize the case of equality in (Equation 1.1), which corresponds to

E(γ) = 2. Then E(γ̃) = 2, which yields that the terms E(γ̃i) and E(γ̃0) in (Equation 10.1)

must all be equal to 2. But the inequality in (Equation 10.3) must be strict by Propositions

8.3 and 9.4, since γ̃i are strict spirals by definition of spiral decomposition. So γ̃ cannot

contain any strict spirals or Ui = ∅, which means that U0 = [a, b] or γ̃ has constant height.
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Furthermore, equality in (Equation 10.2) implies that E(|γ̃(t)|) ≡ 2 which can happen

only when |γ̃(t)| ≡
√
2. So we conclude that γ has constant height

√
2, since unfoldings

preserve height.

Now let γ := γ/
√
2 be the projection of γ into S2. Then L(γ) = L(γ)/

√
2 = 4π/

√
2.

Recall that, since γ is an inspection curve, the horizon circles generated by points of γ cover

S2. Since |γ| ≡
√
2, these circles have (spherical) radius π/4 and are centered at points

of γ. Thus γ satisfies the hypothesis of the following proposition, which will complete the

proof of Theorem 1.1.

Proposition 10.1. Let γ : [a, b] → S2 be a closed constant speed curve with L(γ) =

4π/
√
2. Suppose that the distance between any point of S2 and γ is at most π/4. Then

γ is a simple C1,1 curve which traces consecutively 4 semicircles of length π/
√
2.

It remains then to establish the above proposition. To this end we need:

Lemma 10.2 (Crofton-Blaschke-Santalo [38]). Let γ : [a, b] → S2 be a rectifiable curve,

and for every point p ∈ S2, and 0 ≤ ρ ≤ π/2, let Cρ(p) ⊂ S2 denote the circle of radius ρ

centered at p. Then

L(γ) =
1

4 sin(ρ)

∫
p∈S2

#γ−1
(
Cρ(p)

)
dp.

For the rest of this we assume that γ satisfies the hypothesis of the last proposition. Then,

since L(γ) = 4π/
√
2, applying the last lemma with ρ = π/4 to γ yields

Ave
p∈S2

#γ−1
(
Cπ

4
(p)
)
=

1

4π

∫
p∈S2

#γ−1
(
Cπ

4
(p)
)
dp =

1

4π
L(γ) 4 sin

(π
4

)
= 2.

Furthermore, note that Cπ
4
(p) must intersect γ for all p ∈ S2, since the distance of p from

γ cannot be bigger than π/4 by assumption. So, since γ is closed, #γ−1(Cπ
4
(p)) ≥ 2 for

almost all p ∈ S2. Now since the average of #γ−1(Cπ
4
(p)) is 2, it follows that

Lemma 10.3. For almost every p ∈ S2,

#γ−1
(
Cπ

4
(p)
)
= 2.
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By a side of a circle C in S2 we mean either of the two closed disks in S2 bounded by

C. If the radius of C is less than π/2, then the disk with radius less than π/2 will be called

the inside of C and the other disk will be called the outside of C. Furthermore, by strictly

inside or strictly outside we mean the interior of inside and interior of outside respectively.

Lemma 10.4. For any point p ∈ S2, the portion of γ which lies outside Cπ
4
(p) has length

at least π.

Proof. By assumption, γ intersects Cπ
4
(−p), which has distance π/2 from Cπ

4
(p). Further-

more, since γ is closed, there must exist at least two segments of γ which connect Cπ
4
(−p)

and Cπ
4
(p).

For the rest of this section, we will assume that γ is reparameterized so that [a, b] =

[0, 2π], and identify [0, 2π] with the unit circle S1 ≃ R/(2πZ). Furthermore we fix an

orientation on S1. Then for every pair of distinct points t, s ∈ S1, we let [t, s] denote

the segment in S1 with end points t and s whose orientation from t to s agrees with the

orientation of S1.

Lemma 10.5. For every t ∈ S1, the tangent cone Ttγ is a line.

Proof. Let si ∈ S1 be a sequence of points converging to t from the left hand side (with

respect to the orientation of S1). Since γ has non-vanishing speed, it cannot be locally

constant. Thus we may assume, after passing to a subsequence, that γ(si) ̸= γ(t). Then

the secant rays ℓi in R3 which emanate from γ(t) and pass through γ(si) are well-defined.

Let ℓ be a limit of ℓi. Similarly, we can consider the secant rays ℓ′i generated by points

s′i ∈ S1 converging to t from the right hand side, and let ℓ′ be a limit of ℓ′i. We claim that

the angle between ℓ and ℓ′ is π. Suppose not. Then there exist points s, s′ ∈ S1 arbitrary

close to t and with (s, s′) ∋ t such that the angle between the geodesic segments γ(t)γ(s)

and γ(t)γ(s′) in S2 is less than π. Consequently, there exists an open set S of circles of

radius π/4 in S2 such that for every C ∈ S we have γ(s), γ(s′) lie strictly inside C while

γ(t) lies strictly outside C. Thus, by Lemma 10.3, there exists a circle C ∈ S which
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intersects γ in only two points. So the portion of γ which lies outside C is a subset of

γ([s, s′]). But since s and s′ may be chosen arbitrarily close to t, the length of γ([s, s′])

may be arbitrarily small. Hence we obtain the desired contradiction via Lemma 10.4. So

the angle between ℓ and ℓ′ is π as claimed. Now since ℓ and ℓ′ where arbitrary limits of the

right and left secant rays of γ at t, and all these limits are tangent to S2, it follows that ℓ

and ℓ′ are unique. Hence Ttγ = ℓ ∪ ℓ′ which completes the proof.

Now that γ has a well-defined tangent line at each point, we may talk about whether

γ is tangent or transversal to any circle in S2. Furthermore, by the above lemma, for any

point t ∈ S1, the left and right unit tangent vectors of γ given by

u±
γ (t) := lim

s→t±

γ(s)− γ(t)

|γ(s)− γ(t)|

are well-defined with u+
γ (t) = −u−

γ (t), where s → t+ (resp. s → t−) means that s

approaches t from the right (resp. left) hand side, with respect to the orientation of S1.

Lemma 10.6. Let C ⊂ S2 be a circle of radius π/4. Suppose that there exists an inter-

val [t, s] ⊂ S1 such that γ(t) lies on C while γ((t, s]) lies strictly inside C. Then γ is

transversal to C at γ(t).

Proof. Suppose towards a contradiction that γ is tangent to C at γ(t). Let C ′ be a circle

of radius π/4 in S2 which passes through γ(t) and is transversal to C at γ(t) with u+
γ (t)

pointing outside C ′. Then there exist r ∈ (t, s) such that γ(r) lies strictly outside C ′.

Furthermore, choosing C ′ sufficiently close to C, we can ensure that γ(s) lies strictly inside

C ′. Next, by perturbing the center of C ′, we may find another circle C ′′ of radius π/4 such

that γ(t) and γ(s) lie strictly inside C ′′ while γ(r) lies strictly outside C ′′. Since C ′′ may

be chosen freely from an open set of circles in S2, we may assume by Lemma 10.3 that

C ′′ intersects γ at only two points. Thus the portion of γ lying outside C ′′ is a subset of

γ([t, s]). But γ([t, s]) can have arbitrarily small length, since we may choose s as close to

t as desired. Thus we obtain a contradiction by Lemma 10.4.
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We say that a circle C ⊂ S2 supports γ at a point p of γ provided that C passes through

p and γ lies on one side of C. Furthermore, if the radius of C is less than π/2, then we

assume that γ lies outside C.

Lemma 10.7. Through each point of γ there pass a pair of support circles of radius π/4

which lie outside each other.

Proof. Let C be one of the two circles of radius π/4 which are tangent to γ at γ(t). Suppose

towards a contradiction that there exists a point t′ ∈ S1 such that γ(t′) lies strictly inside

C. Let D be the disk of radius π/4 bounded by C, and I be the closure of the component

of γ−1(int(D)) which contains t′. By Lemma 10.3 γ cannot lie entirely in C. Thus I is

a proper interval in S1. By Lemma 10.6, γ is transversal to C at the end points of I . In

particular there are points s1, s2 ∈ S1 close to each of the end points of I such that γ(si)

lie strictly outside C, and t, s1, t′, s2 are arranged cyclically in S1. Now by perturbing the

center of C we may find a circle C ′ of radius π/4 such that γ(t) and γ(t′) lie strictly inside

C ′, while γ(si) lie strictly outside C ′. It follows that C ′ intersects γ at least 4 times. Thus

we obtain the desired contradiction via Lemma 10.3, since C ′ may be chosen freely from

an open set of circles in S2.

In the terminology of [11], the conclusion of Lemma 10.7 means that γ has double

positive support. A set X in a Riemannian manifold has positive support provided that for

some constant r > 0 there passes a ball of radius r through each point of X whose interior

is disjoint from X . If there are two such balls at each point of X , whose interiors are

disjoint from each other, we say that X has double positive support. The last two lemmas

now yield:

Lemma 10.8. γ is simple.

Proof. Suppose towards a contradiction that there are distinct points t, s ∈ S1 such that

γ(t) = γ(s). Let r1, r2 be points of S1 which lie in the interior of different segments of S1

determined by s and t, so that s, r1, t, r2 are cyclically arranged in S1. By Lemma 10.7,
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there exists a circle C of radius π/4 in S2 which supports γ at γ(t) = γ(s). Furthermore,

by Lemma 10.3, γ cannot lie completely on C. So we may choose ri so that at least one of

the points γ(r1), γ(r2) lies strictly outside C. Then we may translate C to obtain a circle

C ′ of the same radius such that γ(t) = γ(s) lies strictly inside C ′ while γ(ri) lie strictly

outside C ′. Hence C ′ ∩ γ must consist of at least 4 points. Furthermore C ′ may be chosen

from an open set of circles of radius π/4 in S2. Thus we obtain a violation of Lemma 10.3,

which completes the proof.

For a topological hypersurface X in a Riemannian manifold, double positive support

is equivalent to the notion of positive reach introduced by Federer [39]. Thus the last two

lemmas imply that γ has positive reach, which in turn yields:

Lemma 10.9. γ is C1,1.

Proof. Since γ has finite length, there exists a point in S2 \ γ, which we may assume to be

(0, 0, 1) after a rotation. Let π : S2 \ {(0, 0, 1)} → R2 be the stereographic projection, and

set γ̃ := π ◦ γ. It suffices to show that γ̃ is C1,1. To this end note that, since stereographic

projections preserve circles, and by Lemma 10.7 γ has double positive support, then γ̃ has

double positive support as well. Furthermore, by Lemma 10.8, γ is simple. So, by Jordan’s

curve theorem, γ has two sides in S2. The support circles of γ must lie in opposite sides of

γ at each point; otherwise the tangent cone would be a ray (or γ would have a cusp) which

is not possible by Lemma 10.5. Thus the support circles of γ̃ must lie on the opposite sides

of γ̃ as well. Consequently γ̃ is C1,1 by [11, Thm. 1.2]; see also [40, prop. 1.4].

Next we observe that:

Lemma 10.10. Let C be a support circle of γ of radius π/4. Then C ∩ γ is either a pair of

antipodal points of C or else is a semicircle of C.

Proof. We claim that (i) every closed semicircle of C intersects γ, and (ii) every open

semicircle of C intersects γ in a connected set. These two properties easily imply that
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γ ∩ C is either a pair of antipodal points of C, a closed semicircle of C, or the entire C.

The last possibility is not allowed, because by Lemma 10.8 γ is simple; therefore, if γ

covers C, it must coincide with C, which would violate Lemma 10.3. So establishing the

above claims will complete the proof.

To establish the first claim suppose, towards a contradiction, that there exists a closed

semicircle of C which does not intersect γ. Then moving the center of C by a small distance

towards the center of that semicircle yields a circle C ′ of radius π/4 which is disjoint from

γ. Obviously all circles of radius π/4 which are close to C ′ will be disjoint from γ as well,

which would violate Lemma 10.3.

To establish the second claim suppose, towards another contradiction, that there exists

an open semicircle S of C which intersects γ in a disconnected set. Then there exist points

t1, t2, s ∈ S1, with s ∈ (t1, t2) such that γ(ti) ∈ S while γ(s) lies strictly outside C.

Furthermore note that either γ((t2, t1)) lies entirely on C or not. In the former case there

exist a point s′ ∈ (t2, t1) such that γ(s′) lies in the open semicircle of C which is disjoint

from S; in the latter case there exists a point s′ ∈ (t2, t1) such that γ(s′) lies strictly outside

C. In either case, moving the center of C by a small distance towards the midpoint of S

will yield a circle C ′ of radius π/4 such that γ(ti) lie strictly inside C ′ while γ(s), γ(s′) lie

strictly outside C ′. But t1, s, t2, s′ are cyclically arranged in S1. So perturbing the center

of C ′ yields an open set of circles of radius π/4 each of which intersects γ at least 4 times.

Thus again we obtain the desired contradiction via Lemma 10.3.

The last lemma leads to the proof of Proposition 10.1 via the notion of nested partitions

of a circle employed in [12] as a weaker version of a device developed by Umehara and

Thorbergsson [15, 16] to prove 4-vertex type theorems for closed curves. To describe this

approach note that since, by Lemma 10.8, γ is simple, it bounds a topological disc D ⊂ S2.

By Lemmas 10.7 and 10.9 through each point p ∈ γ there passes a circle Cp of radius π/4

which lies in D. Furthermore, it follows from Lemma 10.9 that Cp is unique. Thus if we
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set

[p] := γ ∩ Cp, and P := {[p] | p ∈ γ},

then P will be a partition of γ, which is a topological circle. A partition P of a circle is said

to be nested provided that no element of P separates the components of any other element,

i.e., for every [p] ∈ P and q ∈ γ \ [p], [q] lies in a connected component of γ \ [p].

Lemma 10.11. The partition P of γ is nested.

Proof. Suppose that P is not nested. Then there are distinct support circles C, C ′ of γ of

radius π/4 contained in D such that C has points in different components of γ \ C ′. In

particular neither C ∩ γ nor C ′ ∩ γ is connected. So by Lemma 10.10, C and C ′ must

intersect γ in precisely two points each, say C ∩ γ = {p, q} and C ′ ∩ γ = {p′, q′}. Since D

is simply connected, each of the segments pq and qp of C separate D into two components.

Thus each of the segments p′q′ and q′p′ of C ′ must intersect each of the segments pq and

qp. Furthermore, each of these intersections must occur in the interior of the segments,

because the interior of each segment is disjoint from γ. Thus C and C ′ intersect at least 4

times. So C = C ′, which is the desired contradiction.

Finally we need to invoke the following fact which has already been established in [12,

Lem. 2.2]. A partition is called nontrivial provided that it contains more than one element.

Lemma 10.12. Any nontrivial nested partition of a topological circle contains at least two

elements which are connected subsets of the circle.

So there are two distinct elements [p1], [p2] ∈ P such that Cpi ∩ γ is a connected set.

Consequently, by Lemma 10.10, Cpi ∩γ are semicircles. Thus γ contains a pair of disjoint

semicircles which curve toward D. Similarly, by repeating the above argument for the

other domain D′ in S2 bounded by γ, we obtain two disjoint semicircles in γ which curve

toward D′. The interior of the semicircles which curve toward D must be disjoint from the

interior of the semicircles which curve toward D′. Thus all 4 semicircles have mutually
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disjoint interiors. Finally, since each semicircle has length π/
√
2 = L(γ)/4, it follows that

the semicircles cover γ, which completes the proof of Proposition 10.1.
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