
 

PHOTOSYNTHETIC WATER OXIDATION AND PROTON-

COUPLED ELECTRON TRANSFER 

 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Ian Blake Cooper 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Chemistry and Biochemistry 

 
 
 
 
 
 
 

Georgia Institute of Technology 
December 2008 

 
 



 ii 

PHOTOSYNTHETIC WATER OXIDATION AND PROTON-

COUPLED ELECTRON TRANSFER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Approved by:   
   
Dr. Bridgette Barry, Advisor 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

 Dr. Mostafa El-Sayed 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

   
Dr. Christoph Fahrni 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

 Dr. Nils Kröger 
School of Chemistry and Biochemistry 
Georgia Institute of Technology 

   
Dr. Nael McCarty 
School of Biology 
Georgia Institute of Technology 

  

   
  Date Approved:  November 6, 2008 



 iii 

ACKNOWLEDGMENTS 

 

 First and foremost, I wish to thank Dr. Bridgette Barry for her unending support 

and interest in my development as a scientist.  I wish to thank Dr. Mostafa El-Sayed, Dr. 

Christoph Fahrni, Dr. Nils Kröger, and Dr. Nael McCarty for their participation as 

members of my thesis committee.  I wish to thank Dr. Jun Chen, Dr. Antonio de Riso, Dr. 

Sascha Rexroth, Dr. Ilya Vassiliev, Shana Bender, Tina Dreaden, David Jenson, James 

Keough, Adam Offenbacher, Brandon Polander, and Robin Sibert for their discussion and 

support during my research efforts.  I wish to thank the Petit Institute for Bioengineering 

and Bioscience for providing facilities in which to perform research.  I wish to thank Dr. 

Brian Dyer, Dr. Scott Brewer, and Dr. Dung Vu at Los Alamos National Lab for being 

gracious hosts during my visits to LANL and for help in data collection and 

interpretation.  I wish to thank my family and friends for their support and love during 

this period of my life.  I especially wish to thank my wife, Robyn, for her undying love 

and support.  Finally, I wish to thank God for giving me the mind and strength to succeed 

in science. 

 
 
 
 
 
 

  

 

 

 



 iv 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS iii 

LIST OF TABLES vii 

LIST OF FIGURES viii 

LIST OF ABBREVIATIONS x 

LIST OF SYMBOLS xii 

SUMMARY xiii 

CHAPTERS 

1 INTRODUCTION 1 

Structure of Photosystem II 1 

Function and Kinetics of Photosystem II 5 

Inorganic Cofactors of the OEC 7 

Redox-Active Tyrosines 9 

Proton-Coupled Electron Transfer 10 

Vibrational Spectroscopy 12 

Electron Paramagnetic Resonance (EPR) Spectroscopy 17 

Thesis Overview 19 

References 20 

2 TIME-RESOLVED VIBRATIONAL SPECTROSCOPY DETECTS PROTEIN-
BASED INTERMEDIATES IN THE PHOTOSYNTHETIC OXYGEN-
EVOLVING CYCLE 34 

Abstract 34 

Introduction 35 

Materials and Methods 38 



 v 

Results 39 

Discussion 44 

References 46 

3 PROTON COUPLED ELECTRON TRANSFER REACTIONS AND 
TYROSINE Z OF THE PHOTOSYNTHETIC WATER OXIDIZING COMPLEX
 51 

Abstract 51 

Introduction 52 

Materials and Methods 55 

Results and Discussion 56 

References 70 

4 PERTURBATIONS AT THE CHLORIDE SITE DURING THE 
PHOTOSYNTHETIC OXYGEN-EVOLVING CYCLE 76 

Abstract 76 

Introduction 77 

Materials and Methods 80 

Results 82 

Discussion 97 

Summary 101 

References 101 

5 AZIDE AS A PROBE OF PROTON TRANSFER REACTIONS IN 
PHOTOSYNTHETIC OXYGEN EVOLUTION 
 109 

Abstract 109 

Introduction 110 

Materials and Methods 113 

Results 114 



 vi 

Discussion 126 

References 129 

6 CONCLUSIONS 136 

VITA   141 



 vii 

LIST OF TABLES 

Page 

Chapter 2 

Table 1  44 

 

Chapter 3 

Table 1  58 

Table 2  63 

Table 3  65 

 

Chapter 4 

Table 1  83 

Table 2  84 

 

Chapter 5 

Table 1  115 



 viii 

LIST OF FIGURES 

Page 

Chapter 1 

Figure 1  2 

Figure 2  3 

Figure 3  4 

Figure 4  6 

Figure 5  9 

Figure 6  11 

Figure 7  13 

Figure 8  14 

 

Chapter 2 

Figure 1  36 

Figure 2  41 

Figure 3  43 

 

Chapter 3 

Figure 1  57 

Figure 2  59 

Figure 3  61 

Figure 4  62 

Figure 5  64 

Figure 6  67 



 ix 

 

Chapter 4 

Figure 1  85 

Figure 2  87 

Figure 3  89 

Figure 4  91 

Figure 5  93 

Figure 6  95 

Figure 7  96 

 

Chapter 5 

Figure 1  116 

Figure 2  117 

Figure 3  120 

Figure 4  123 

Figure 5  125 

 

 

 

 

 

 

 

 



 x 

LIST OF ABBREVIATIONS 

 

AU  Absorbance Units 

CcO  Cytochrome c Oxidase 

Chl  Chlorophyll 

CP43  Chlorophyll binding polypeptide subunit of PSII 

CP47  Chlorophyll binding polypeptide subunit of PSII 

CPET  Coupled proton-electron transfer 

D1  Reaction center binding polypeptide subunit of PSII 

D2  Reaction center binding polypeptide subunit of PSII 

DCBQ  2,6-dichlorobenzoquinone 

DCMU  3-(3,4-dichlorophenyl)-1,1-dimethylurea 

ENDOR  Electron-nuclear double resonance 

EPR  Electron paramagnetic resonance 

ESEEM  Electron spin-echo envelope modulation 

ET  Electron transfer 

ETPT  Electron transfer proton transfer 

EXAFS  Extended X-ray absorption fine structure 

FT-IR  Fourier-transform infrared 

HAT  Hydrogen atom transfer 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

KIE  Kinetic isotope effect 

kDa  kilo-Dalton 

MCT  Mercury-cadmium-telluride 

MES  2-(N-morpholino)ethanesulfonic acid 



 xi 

MSP  Manganese stabilizing protein 

Nd:YAG  Neodymium:yttrium aluminum garnet 

OEC  Oxygen-evolving complex 

PCET  Proton-coupled electron transfer 

Pheo  Pheophytin 

PGHS-1  Prostaglandin H synthase-1 

PPBQ  Phenylparabenzoquinone 

PSII  Photosystem II 

PT  Proton transfer 

PTET  Proton transfer electron transfer 

RC  Reaction center 

RNR  Ribonulceotide reductase 

Tris  Tris(hydroxymethyl)aminomethane 

UV  Ultraviolet 

XANES  X-ray absorption near edge structure 

YAG  Ytrrium aluminum garnet 

 

 

 

 

 

 

 

 

 



 xii 

LIST OF SYMBOLS 

 

B0  Magnetic field strength 

g  Constant characterizing the magnetic moment of an electron 

h  Planck’s constant 

Ki/Ki′  Inhibitor disassociation constants 

Km  Michaelis constant 

µB  Bohr magneton 

ν  Frequency 

P680  Special pair chlorophyll 

Q  Plastoquinone 

Sn  OEC oxidation states where n = 0 - 4 

Vmax  Maximum enzymatic activity 

YD, D  Y160 of the D2 polypeptide subunit 

YZ, Z  Y161 of the D1 polypeptide subunit 

 

 

 

 

 

 



 xiii 

SUMMARY 

 

 Photosystem II (PSII) is the membrane-bound oxidoreductase peptide complex 

responsible for the oxidation of water to molecular oxygen and reduction of 

plastoquinone to plastoquinol.  Primary electron transfer is initiated upon absorption of a 

photon by the primary donor chl resulting in electron transfer and production of a 

P680
+QA

– charge separated state.  P680
+ is reduced by YZ (Y161 of the D1 polypeptide 

subunit), one of two redox-active tyrosine residues found in PSII.  This produces a 

neutral tyrosyl radical (YZ
•) which is subsequently reduced by electrons derived from 

water at the oxygen-evolving complex (OEC).  The OEC is composed of four 

manganese, one calcium ion, and one chloride ion.  Four photons are required to convert 

water to O2, each photon advancing the OEC through successive oxidation states or S 

states.  The exact chemical mechanism of water oxidation in PSII is not known.  

However, proton-coupled electron transfer (PCET) is thought to be one of the 

fundamental steps in driving the extraction of electrons and protons from water.  Here, 

the mechanism of water oxidation is investigated with focus on PCET events using 

vibrational spectroscopy.  Vibrational spectroscopy is sensitive to changes in protein 

structure, charge, and hydrogen bonding, and is ideal for the study of fast events coupled 

with light-induced electron transfer.  The results presented here demonstrate the utility of 

time-resolved infrared spectroscopy in the detection of intermediates of photosynthetic 

water oxidation.  We suggest that proton transfer may precede manganese oxidation 

during water oxidation based on time-resolved infrared and difference FT-IR 

spectroscopic results.  The mechanism of PCET associated with YZ
• reduction is 



 xiv 

investigated.  Using reaction-induced difference FT-IR spectroscopy, the identity of the 

chloride binding site is speculated through the use of bromide exchange at the OEC.  

Also, proton transfer reactions at the OEC are investigated using azide as a vibrational 

probe.  The advances in the understanding of photosynthetic water oxidation gained in 

this work will aid in the elucidation of the chemical mechanism of this important 

reaction.  Understanding the details of photosynthetic water oxidation will assist in the 

development of technology aimed at harnessing the energy of the sun for the benefit of 

humankind.     
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CHAPTER 1 

INTRODUCTION 

 

Structure of Photosystem II 

 The reduction equivalents required for carbon fixation in plants, algae, and 

cyanobacteria are provided by the water splitting reactions of the oxidoreductase complex 

photosystem II (PSII).  PSII is composed of 20 polypeptide subunits and contains 36 

chlorophyll (Chl) molecules, 7 β-carotene molecules, 2 pheophytin (Pheo) molecules, 2 

plastoquinone (Q) molecules, 1 heme molecule, 1 non-heme Fe+2, 4 variable oxidation 

state Mn, 1 Ca+2, and 1 Cl– (figure 1) [1-6].  The oxidation of water is carried out by the 

reaction center (RC) complex.  The RC consists of 4 Chl, 2 Pheo, 2 Q (QA and QB), 2 

redox-active tyrosines (YZ and YD), 4 Mn, 1 Ca+2, and 1 Cl– (figure 2; Cl– not shown).  

The components of the RC are ligated by the D1 and D2 polypeptide subunits, with 

important amino acids thought to be involved in water oxidation provided by the CP43 

polypeptide subunit.  The Mn4Ca complex, along with Cl– and YZ, constitute the oxygen-

evolving complex (OEC).  Figure 3 shows the OEC from a recent crystal structure [6].  In 

this figure, nearby amino acids are shown which may ligate Mn or may play direct and 

indirect roles in water oxidation chemistry.  Electron density has not been assigned to Cl– 

in recent crystal structures.  Though the lack of Cl– is not addressed, Cl– loss may be a 

consequence of the crystallization process or a result of X-ray damage [7]. 



 2 

 
 
Figure 1.  X-ray crystal structure of dimeric PSII from Thermosynechococcus elongatus 
solved to 3.0 Å resolution [6].  Figure generated using Deep View/Swiss PDB Viewer 3.7 
and Brookhaven Protein Data Bank file 2AXT.  Peptide secondary and tertiary structure 
is shown as gray ribbons, chlorophyll is green, heme is red, pheophytin is blue, and 
plastoquinone is yellow. 
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Figure 2.  Arrangement of electron transfer cofactors of PSII [6].  Figure generated using 
Deep View/Swiss PDB Viewer 3.7 and Brookhaven Protein Data Bank file 2AXT.  
Calcium is green, carbon is gray, iron is purple, manganese is yellow, nitrogen is blue, 
and oxygen is red. 
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Figure 3.  View of the OEC and neighboring amino acids [6].  Figure generated using 
Deep View/Swiss PDB Viewer 3.7 and Brookhaven Protein Data Bank file 2AXT. 
Calcium is green, carbon is gray, manganese is yellow, nitrogen is blue, and oxygen is 
red.  Local secondary structure elements are displayed as gray ribbons. 
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Function and Kinetics of Photosystem II  

 PSII derives reduction equivalents required for carbon fixation from the light-

driven oxidation of water to O2, protons, and electrons and reduction of plastoquinone to 

plastoquinol.  The kinetics of electron transfer in PSII varies widely between sub-

nanosecond and millisecond timescales (figure 4).  The primary step in water oxidation is 

charge separation between the primary donor Chl and Pheo upon absorption of visible 

light of sufficient wavelength and intensity [8, 9].  Some controversy exists surrounding 

the identity of the primary electron donor to Pheo in this initial event.  Primary charge 

separation is thought to occur between ChlD1 and Pheo [8-10].  The positive hole left by 

electron transfer from ChlD1 after light-induced charge separation is proposed to migrate 

to P680, the chl dimer composed of PD1 and PD2 at the D1/D2 polypeptide subunit 

interface [11].  Pheo– is oxidized by QA with a time constant of 250-500 ps [12, 13].  

P680
+ will oxidize D1-Y161 (YZ) to produce a neutral tyrosyl radical (YZ

•).  In O2 

evolving PSII complexes, with an intact OEC, this event occurs on the nanosecond 

timescale [14, 15].  However, in Mn-depleted PSII, the kinetics of P680
+ reduction is 

slowed to the microsecond timescale [16, 17].  The reaction between P680
+ and YZ is in 

competition with charge recombination (P680
+QA

– → P680QA).  Charge recombination 

between QA
– and P680

+ occurs with a time constant of 150-200 µs [16, 18].  YZ
• is reduced 

by the Mn4Ca cluster on the microsecond to millisecond timescale with electrons derived 

from the oxidation of water [19].  The reduction of YZ
• is slowed as the number of 

oxidizing equivalents stored at the Mn4Ca cluster increases [19].  An electron is passed 

from QA
– to QB on the microsecond timescale [20].  A second charge separation will 
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Figure 4.  Diagram of the electron transfer cofactors of PSII with approximate electron 
transfer times color-coded to each event.  Arrows starting at water and ending at QB 
indicate forward electron flow.  The placement of electron transfer cofactors relative to 
the vertical axis indicates the approximate midpoint potential (Em) in volts at pH 6.5 
([151] and references therein). 
 
 
 result in a doubly reduced plastoquinol (QBH2) which then diffuses from the QB active 

site, allowing a fully oxidized Q to bind.  Each round of charge separation advances the 

OEC through oxidation states known as Sn states (S0 - S4).  The subscript denotes the 

number of oxidizing equivalents stored at the OEC.  Molecular oxygen is liberated during 

the S3 → [S4] → S0 transition in which the transient S4 state is formed.  Information about 

the transient S4 state has been collected using transient UV [21], EPR [22], X-ray 

absorption [23], and transient infrared [24] spectroscopies. 
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Inorganic Cofactors of the OEC 

Calcium 

 The quantum efficiency of PSII is dependent on the integrity of the RC and 

associated polypeptides.  Removal of extrinsic 18 and 24 kDa polypeptides from the 

lumenal side of PSII results in loss of Ca+2 and/or Cl– binding affinity at the OEC, 

depending on the method of polypeptide depletion [25-27].  Loss of Ca+2 and Cl–
 leads to 

diminished oxygen-evolving capabilities.  Ca+2 can be replaced with Sr+2 to restore 

oxygen evolution [25, 28].  However, the S3 → [S4] → S0 transition is retarded in the 

presence of Sr+2 [29, 30].  Cd+2 will also bind at the OEC Ca+2 binding site but will not 

restore oxygen evolution [31-34].  Other cations have been shown to compete with Ca+2 

for binding at the OEC including Cs+, K+, and La3+ ([35] and references therein).  Some 

of the proposed roles that Ca+2 may play in water oxidation include maintenance of Mn 

reduction potential [36], maintenance of a hydrogen-bonded network [37, 38], and 

activation of substrate water [32, 39].  Ca+2 may also play a role in assembly of the 

Mn4Ca cluster [34]. 

Chloride 

 Cl– is known to bind near the OEC [40, 41], and previous studies have identified 

one Cl– per OEC [40].  In the absence of Cl–, other anions have been found to activate 

oxygen evolution to varying degrees: Br– >> NO3
– > NO2

– > I– [42, 43].  Other anions 

such as F– [44, 45], SO4
–2 [26, 46], and N3

– [47, 48] inhibit oxygen evolution by binding 

at the Cl– site in the OEC.  Although electron density has been assigned to Ca+2, X-ray 

crystal structures have not identified the specific location of Cl– [2-6].  Cl– has been 

proposed to have a role as a ligand to Mn in the OEC [49], in maintaining a hydrogen-
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bonded network, which facilitates proton transfer [50], in maintaining the potential of the 

Mn cluster [51], or in activation of substrate water [52].  Cl– may associate with amino 

acids [53, 54], or Cl– may be bound to Mn [49]. 

Manganese 

 Four Mn are present in the OEC [55].  The oxidizing equivalents necessary to 

drive oxygen production from water are stored at this cluster of Mn.  The structure and 

orientation of Mn in the OEC is hinted at in recent crystal structures [5, 6], though X-ray 

damage during data collection cannot be discounted [56].  Many different structures have 

been proposed based on extended X-ray absorption fine structure (EXAFS) 

measurements [57, 58], 55Mn electron-nuclear double resonance (ENDOR) spectroscopy 

[59, 60], electron spin-echo envelope modulation (ESEEM) [61], EPR [60] spectroscopy, 

the crystal structures [5], and quantum mechanical/molecular mechanical density 

functional theory calculations [62-64].  Some of the proposed structures derived from 

EXAFS, X-ray crystal structures, and computer modeling are shown in figure 5.  In 

addition to speculation about the structure of the Mn cluster, the oxidation states of Mn at 

each S state have been proposed.  Information about Mn oxidation states has been 

collected using X-ray absorption near-edge structure (XANES) and magnetic resonance 

techniques (reviewed in [65]).  Various experiments conducted over many years have 

lead to the consensus that, for oxidation states S0 - S3 of the Mn cluster, the oxidation 

states of the four Mn ions are (II, III, IV, IV or III, III, III, IV), (III, III, IV, IV), (III, IV, 

IV, IV), and (IV, IV, IV, IV), respectively.  Removal of the Mn cluster leads to complete 

loss of oxygen evolution [66, 67].  Various methods have been developed to remove Mn 

from the OEC including treatment with Tris [66], NH2OH [68], and high pH [69]. 
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Figure 5.  Mn cluster models derived from X-ray absorption experiments, X-ray crystal 
structures, and computer modeling.  A. Model derived from single crystal EXAFS [152].  
B. The cuboid-type model derived from an X-ray crystal structure and density functional 
theory calculations [5, 62]. 

 

Redox-Active Tyrosines 

 Redox-active tyrosines play a role in many biological systems.  In prostaglandin 

H synthase-1 (PGHS-1), Y385• oxidizes bound arachidonic acid to form a fatty acyl 

radical prior to the cyclooxygenase step in the production of prostaglandin G2 [70, 71].  

In class IA ribonucleotide reductase (RNR), a cysteinyl radical necessary for 

ribonucleotide reduction in the R1 subunit active site is generated by Y122• of the R2 

subunit.  The electron is proposed to travel the 35 Å distance between Y122 and C439 via 

transient amino acid radical intermediates [72, 73].  In cytochrome c oxidase (CcO), 
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Y244, covalently linked to H240, becomes a tyrosyl radical when providing reduction 

equivalents necessary for O-O bond breakage during the formation of intermediate P [74, 

75].  Galactose oxidase is another example of an enzyme that employs a covalently 

linked tyrosine.  Y272 is attached to C228 via a thioether linkage and aids in the 

oxidation of primary alcohols at the mononuclear Cu site via radicalization [76]. 

 In PSII, two tyrosine residues play redox-active roles, Y161 of the D1 subunit 

(YZ) and Y160 of the D2 subunit (YD) [77-79].  Each residue is within hydrogen bonding 

distance of nearby histidines, D1-H190 and D2-H189 for YZ and YD, respectively.  

Though both tyrosines can reduce P680
+, YZ is most directly involved in electron transfer 

reactions associated with water oxidation at the Mn cluster.  YD is a dark stable radical 

and is thought to play a role in Mn cluster assembly [80] and photoprotection [81]. 

 

Proton-Coupled Electron Transfer 

 Proton-coupled electron transfer (PCET) is employed in biology to facilitate 

charge transport and catalysis in metabolism.  In enzymes, the coupling of proton transfer 

(PT) and electron transfer (ET) occurs with tight control over kinetics and 

thermodynamic driving forces.  Collinear PCET arises when ET occurs via hydrogen 

bond pathways or through hydrogen atom transfer (HAT) [73].  Orthogonal PCET is also 

common in which ET and PT occur along different coordinates.  Due to the greater mass 

of a proton, PT is limited to relatively short distances compared to ET.  The emergence of 

orthogonal PCET in enzymes may mitigate this difference in transport distances [73].  

PCET can be further subdivided into concerted proton-electron transfer (CPET) where 

ET and PT proceed through one kinetic step, ET followed by PT (ETPT), or PT followed  
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Figure 6.  Illustration of the possible pathways for proton-coupled electron transfer 
(PCET) to occur.  PTET (path I) involves proton transfer followed by electron transfer.  
ETPT (path II) involves electron transfer followed by proton transfer.  CPET (path III) 
involves transfer of both proton and electron in one kinetic step. 
 

 

by ET (PTET) (figure 6).  Each mechanism can be distinguished kinetically by sensitivity 

to pH and solvent isotope exchange as demonstrated through the use of model systems 

[82-87]. 

 As a result of light-induced charge separation, electrons are removed from the 

OEC.  The positive charge that accumulates at the OEC with S state advancement may be 

alleviated by proton release.  If positive charge were allowed to grow and persist, redox 

potentials would increase and high-energy intermediates would be unavoidable [87].  

Two examples of PCET proposed to occur during water oxidation (oxidation/reduction of 
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YZ and Mn cluster oxidation) are both considered orthogonal PCET reactions.  Upon 

oxidation of YZ by P680
+, the phenolic proton of YZ may move to D1-H190 ([88-90], but 

see [91]).  Once reduced by the Mn cluster, YZ is thought to reaccept the proton from D1-

H190 (figure 7).  Oxidation of the Mn cluster via electron transfer to YZ
• has been 

proposed to be coupled to deprotonation of substrate water to CP43-R357 (figure 8) [52, 

92-94].  As part of this deprotonation mechanism, D1-D61 accepts a proton from CP43-

R357 and may form the entrance to a proton exit pathway to the lumen of the thylakoid 

[63, 87, 93, 95, 96]. 

 

Vibrational Spectroscopy 

 Vibrational spectroscopy is concerned with the detection and identification of 

normal vibrational modes of polyatomic molecules.  Normal vibrational modes of a 

molecule arise from the dynamical behavior associated with the motions of the atomic 

nuclei [97].  Spectroscopic detection of normal vibrational modes is dependent on the 

transition from one vibrational energy level to another.  Vibrational energy transitions 

can occur only when the molecular dipole moment is modulated by the motion of a 

normal mode within a normal coordinate of a molecule [97].  Normal coordinates refers 

to the molecular coordinates representing the equilibrium geometry of a molecule.  If the 

dipole moment varies within a given normal coordinate, then the molecule can exchange 

energy with an oscillating electromagnetic field of frequency matching a particular 

normal mode vibration [97].  The energy absorption that results from the interaction of 

normal mode vibrations with an electromagnetic field can be observed spectroscopically 
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Figure 7.  Examples of PCET proposed to occur in the OEC of PSII.  These examples are 
proposed to occur during each S state transition.  In circle 1, YZ reduces P680

+ (1) which is 
proposed to result in proton transfer from YZ

+ to D1-H190 (2) ([88-90], but see [91]).  In 
circle 2, Mn4Ca reduces YZ

• (1), and upon reduction YZ
– is then proposed to reaccept a 

proton from D1-H190 (2) ([88-90], but see [91]).  The final result is shown in circle 3 in 
which a hydrogen bond is shown between YZ and D1-H190 and Mn4Ca has lost an 
electron.  Using the nomenclature of figure 6, these examples involve an ETPT 
mechanism. 
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Figure 8.  Example of PCET proposed to occur in the OEC of PSII.  This example is 
proposed to occur during the S2 to S3 transition.  Prior to the events of circle 1, CP43-
R357 is proposed to become deprotonated.  In circle 1, YZ

• is reduced by Mn4Ca (1) 
which is proposed to result in proton transfer from D1-H190 to YZ

– (2) [52, 92-94].  In 
circle 2, a hydrogen bond in shown between YZ and D1-H190 and water bound to 
[Mn4Ca]+ transfers a proton to nearby CP43-R357 (1) [52, 92-94].  The final result is 
shown in circle 3 in which CP43-R357 has gained a positive charge after receiving a 
proton from water bound to Mn4Ca. 
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 as absorption bands.  One may calculate the normal modes of vibration for a molecule 

through the use of isotopic substitution in experiment to compare shifts of vibrational 

motion caused by mass changes of component nuclei.  One may also calculate the normal 

modes of vibration for a molecule using hybrid density functional theory computational 

methods. 

Fourier Transform Infrared (FT-IR) Spectroscopy 

Unlike dispersive infrared spectrometers, which measure the intensity of 

individual frequencies one at a time, FT-IR spectrometers employ an interferometer that 

allows the detection of all accessible infrared frequencies concomitantly and with greater 

time resolution.  An interferometer is composed of a moving mirror, fixed mirror, and 

beamsplitter.  As infrared light enters the interferometer, half of the light passes through 

the beamsplitter to the fixed mirror and the other half is reflected to the moving mirror.  

The separated light will recombine both constructively and destructively as a result of the 

differing distances the moving and fixed mirrors are from the beamsplitter.  After leaving 

the interferometer, and passing through a sample, the light incident upon a detector 

surface is separated into the various component frequencies by Fourier transformation. 

 FT-IR spectroscopy can provide structural information including covalent bond 

strength, protonation, hydrogen-bonding, and electrostatic interactions.  Particularly in 

biological samples, FT-IR spectroscopy can be performed under physiologically relevant 

conditions, which can supplement information from other structural techniques such as 

X-ray crystallography.  In order to isolate specific reactions of an enzyme system, a 

technique known as reaction-induced FT-IR difference spectroscopy has been used [98-
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103].  In this technique, infrared spectra taken before and after a reaction are compared in 

order to ascertain structural changes that occur as a result of the reaction. 

 PSII has been studied extensively using reaction-induced FT-IR difference 

spectroscopy.  The oxygen-evolving cycle has been documented using reaction-induced 

methods and has revealed the individual infrared fingerprints of each S state transition on 

the seconds timescale [101, 104-106].  Infrared band assignments have been made based 

on shifts in normal mode vibrations caused by isotope labeling of specific amino acids 

[107-110] and solvent isotope exchange [101, 111].  Site-specific mutation of residues in 

and around the OEC has provided insight into the necessity of particular amino acids in 

water oxidation and Mn cluster assembly [112-114].  In addition to the detection of 

peptide and amino acid sidechain vibrational modes, metal-ligand interactions are 

accessible at low frequencies [115].  Also, cofactor depletion and replacement has aided 

in the identification of potential binding sites within the OEC [43, 101, 106, 116]. 

Time-Resolved Infrared Spectroscopy 

  In addition to the high-resolution structural advantage associated with the use of 

infrared spectroscopy, kinetic information may also be gathered.  Fast events in catalysis 

including electron transfer, proton transfer, and peptide conformational changes can be 

monitored via infrared absorption [117-119].  In FT-IR spectroscopy, time resolution is 

exchanged for broad spectral resolution.  However, greater time resolution can be 

achieved by focusing on a particular infrared frequency.  With potentially sub-

microsecond resolution, kinetics associated with changes in absorptivity or secondary 

structure can be examined and attributed to particular reaction events and/or participants 

[120]. 
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 PSII has been studied by time-resolved techniques in the past.  Using visible 

absorption, the kinetics of P680
+ reduction have been observed in both intact and Mn- 

depleted preparations [16, 90, 121-124].  Reaction intermediates of S state oxidation 

changes in the OEC have been observed using transient UV [21, 125, 126], transient EPR 

[22, 127-129], and time-resolved X-ray [23, 130] experiments.  Also, chl fluorescence 

has been used to study electron transfer events [131, 132].  To our knowledge, no one has 

employed time-resolved infrared spectroscopy to investigate intermediates in 

photosynthetic water oxidation. 

 

Electron Paramagnetic Resonance (EPR) Spectroscopy 

 Electrons and nuclei making up atoms possess inherent magnetic-dipole moments 

arising from spin angular momenta.  In atoms and molecules, electrons usually exist in 

pairs, causing a net spin moment of zero.  However, in organic and inorganic radical 

species, and transition metals, electrons can exist unpaired and thus exhibit magnetic-

dipole moments.  The magnetic-dipole moment of a particle will interact with the 

magnetic component of electromagnetic radiation [133]. 

 If placed in an induced magnetic field, a population of electrons will orient 

magnetic-dipole moments with and against the direction of the field.  As the magnitude 

of the field increases, the difference in energy of the electron magnetic-dipole moments 

will also increase.  If incident electromagnetic radiation is applied, resonance will occur 

where the difference in energy of the electron magnetic-dipole moments is equivalent to 

the energy of the light.  Thus, electron paramagnetic resonance (EPR) spectroscopy is 

concerned with the observation of interactions between an induced magnet (paramagnet) 
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and light.  The resonance condition by which the frequency of light is related to the 

magnetic field strength is denoted mathematically by: 

hν = gµBB0 

where h is Planck’s constant, ν is the frequency of light, µB is the Bohr magneton, B0 is 

the magnetic field strength, and g is a proportionality constant characterizing the 

magnetic moment of an electron. 

 EPR spectroscopy has been indispensible in the study of PSII.  In the OEC, four 

Mn ions give rise to EPR signals in all of the S states ([134, 135] and references therein).  

The two redox-active tyrosines, YZ and YD, become neutral tyrosyl radicals that are 

observable via EPR spectroscopy [77, 78, 136].  The difference in environment, as well 

as proximity to the OEC and other electron transfer cofactors, make YZ and YD 

resolvable in spite of their common identity.  The chl dimer P680 becomes a cation radical 

upon light-induced charge separation and is located at g = 2.0025 [137].  Concomitant 

with production of P680
+ cation radical, QA becomes a semiquinone anion radical upon 

light-induced charge separation.  The semiquinone radical interacts with nearby Fe+2 with 

g values of 1.67 and 1.82 [138].  Also, certain chl [139] and carotenoid [140] radicals 

have been observed. 

 The most common microwave frequency used to study PSII has been X-band (9-

10 GHz).  However, S-band (3.9 GHz) [141], P-band (15 GHz) [142], Q-band (34 GHz) 

[143, 144], W-band (94 GHz) [145, 146], D-band (130 GHz) [147], and J-band (245-285 

GHz) [148, 149] frequencies have also been employed.  The use of high-field (J-band) 

EPR techniques has resolved overlapping signals of tyrosyl radicals unobservable with 

low frequency EPR [150].  In addition to continuous-wave studies, pulsed EPR studies of 
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PSII have been performed including electron spin-echo envelope modulation (ESEEM) 

and electron-nuclear double resonance (ENDOR) spectroscopies.  The use of pulsed EPR 

methods has allowed for detection of nuclear spin transitions of magnetic nuclei near the 

OEC.  Such measurements directly probe water binding and protonation state of OEC 

ligands ([59] and references therein). 

 

Thesis Overview 

 In this body of work, investigations into the chemistry involved in photosynthetic 

water oxidation have been performed, with a focus on proton-coupled electron transfer 

(PCET) reactions.  In chapter 2, time-resolved infrared spectroscopy is used to probe 

reactions at the OEC on the timescale of water oxidation. Using this technique, we 

observed period-four oscillations in derived rate constants, which are attributable to S 

state changes and O2 release at the OEC.  The signals observed in the S state 

advancement experiments are assigned to perturbation of histidine residues near the OEC.  

The results indicate that proton transfer or structural changes at the OEC may precede Mn 

oxidation. 

 In chapter 3, time-resolved infrared spectroscopy is used to investigate the 

mechanism of PCET associated with YZ redox reactions.  There are significant solvent 

isotope effects on microsecond rate constants, derived from a transient infrared signal at 

1483 cm–1.  Isotopic labeling suggests that the YZ
• radical contributes to the infrared 

transient on this time scale.  Comparing these results with previous model compound 

studies, a CPET mechanism is suggested, based on the significant kinetic isotope effect 

(KIE) ≥ 2.5. 
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 In chapter 4, perturbations at the Cl– binding site of the OEC are studied by 

reaction-induced difference FT-IR spectroscopy.  Using a preparation of PSII in which 

Cl– is depleted from the OEC, Br– is reconstituted.  Br– reconstitution supports O2 

evolution activity, and difference FT-IR spectroscopy reveals structural perturbations due 

to the presence of Br– versus Cl–.  These results suggest that an arginine residue may 

contribute to the Cl– binding site in the OEC. 

 In chapter 5, azide (N3
–) is used as a vibrational probe of proton transfer reactions 

in the OEC.  Azide is an inhibitor of O2 evolution and competes for binding at the Cl– site 

in the OEC as a mixed inhibitor.  In addition to binding at the Cl– site, bound azide is 

perturbed by light-induced charge separation in PSII as indicated by shifts in its 

asymmetric stretching mode.  Comparison of azide perturbation in different PSII 

preparations gives evidence for the transient protonation and deprotonation of azide in the 

OEC.  This suggests that azide is involved in proton transfer reactions in the OEC prior to 

Mn oxidation. 
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Abstract 

 Photosynthetic oxygen production by photosystem II (PSII) is responsible for the 

maintenance of aerobic life on earth.  The production of oxygen occurs at the PSII 

oxygen-evolving complex (OEC), which contains a tetranuclear manganese (Mn) cluster.  

Photo-induced electron transfer events in the reaction center lead to the accumulation of 

oxidizing equivalents on the OEC.  Four sequential photooxidation reactions are required 

for oxygen production.  The oxidizing complex cycles among five oxidation states, called 

the Sn states, where n refers to the number of oxidizing equivalents stored.  Oxygen 

release occurs during the S3-to-S0 transition from an unstable intermediate, known as the 
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S4 state.  In this report, we present data providing evidence for the production of an 

intermediate during each S state transition.  These protein-derived intermediates are 

produced on the microsecond to millisecond time scale and are detected by time-resolved 

vibrational spectroscopy on the microsecond time scale.  Our results suggest that a 

protein-derived conformational change or proton transfer reaction precedes Mn redox 

reactions during the S2-to-S3 and S3-to-S0 transitions. 

 

Introduction 

 Time-resolved vibrational spectroscopy can detect chemical intermediates formed 

during enzymatic catalysis.  Advantages include the technique’s exquisite structural 

sensitivity and its high temporal resolution.  Recent advances in methodology and 

interpretation have produced insights into the catalytic mechanism in several biological 

systems (for examples, see [1-4]). 

 In this paper, we report the use of time-resolved IR spectroscopy to investigate the 

mechanism of photosynthetic water oxidation.  Photosystem II (PSII) catalyzes the 

oxidation of water and the reduction of bound plastoquinone.  Photoexcitation of PSII 

leads to the oxidation of the chlorophyll donor, P680, and the sequential reduction of a 

pheophytin (figure 1A, reaction 1) and a plastoquinone, QA (figure 1A, reaction 2), in 

picoseconds.  QA reduces QB to generate a semiquinone radical, QB
–, on the microsecond 

time scale (figure 1A, reaction 3) (reviewed in [5]).  A second photoexcitation leads to 

the reduction and protonation of QB
– to form the quinol QBH2.  The rate of reduction of 

QB is faster than the rate of reduction of QB
– (see [6] and references therein), which gives 
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Figure 1.  PSII electron transfer and representative IR results.  (A) Diagram of electron 
transfer steps in PSII and the S state cycle of photosynthetic oxygen evolution.  From the 
S1 state, three saturating flashes (shown in red, green, and blue, respectively) are required 
to produce oxygen.  (B) Flash dependence of transients recorded at 1483-cm–1 and 10°C 
from PSII, which contained 0.6 mM DCBQ and 7.2 mM potassium ferricyanide.  Flash 1, 
generating the S2 state, is shown in the red trace; flash 2, generating the S3 state, is shown 
in the green trace; flash 3, generating the S0 state, is shown in the blue trace; and flash 4, 
generating the S1 state, is shown in the gray trace.  The transients are displayed with 
vertical offsets, which serve to superimpose the traces at the first data point.  
Multiexponential fits to the data (table 1) are shown superimposed. 
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 rise to a characteristic period-2 oscillation in kinetics originating on the PSII acceptor 

side [7]. 

 The primary chlorophyll donor, P680, oxidizes a tyrosine, YZ (Y161 in the D1 

subunit), on the nanosecond to microsecond time scale (figure 1A, reaction 4).  In turn, 

tyrosine YZ
• oxidizes the oxygen-evolving complex (OEC) on every flash (figure 1A, 

reaction 5) [8].  Four sequential photooxidation reactions are required for oxygen 

production, and the oxidizing complex cycles among five oxidation states, called the Sn 

states, where n refers to the number of oxidizing equivalents stored [9].  The rate of OEC 

oxidation slows as oxidizing equivalents are stored on the OEC [10, 11].  This slowing 

gives rise to a characteristic period-4 oscillation in OEC kinetics (figure 1A).  Recently, 

UV spectroscopy was used to detect an intermediate that could not proceed to the S4 state 

at high oxygen pressure [12].  X-ray spectroscopy was used to detect a lag in the 

reduction of Mn during the S3-to-S0 transition; this lag phase was attributed to a proton 

transfer event that precedes the Mn redox reaction [11].  Structural models of PSII have 

been derived from X-ray diffraction at ≥ 3.0-Å resolution [13-17]. 

 There are many proposed mechanisms for water oxidation (for recent reviews, see 

[18, 19]).  IR spectroscopy provides a method of distinguishing among proposed water 

oxidation mechanisms and probing new intermediate states formed during each of the S 

state transitions.  To our knowledge, this report is the first study of the OEC with kinetic 

IR spectroscopy on the microsecond time scale.  These studies show that a protein-

derived intermediate state is formed on each S state transition. 
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Materials and Methods 

 Spinach PSII preparations [20] with steady-state rates of oxygen evolution (>600 

µmol O2 (mg Chl-h)–1 [21]) were exchanged into a 2H2O buffer (2H2O, 99%; Cambridge 

Isotope Laboratories, Andover, MA) containing 0.4 M sucrose, 50 mM MES-NaO2H 

(p2H 6.0), and 15 mM NaCl.  In some control experiments, Mn was removed by 

treatment with 1.8 M alkaline Tris [22] under illumination for 30 min.  Mn-depleted 

samples were exchanged into a buffer containing 50 mM MES-NaO2H (p2H 6.0).  2H2O 

buffers were necessary to minimize the background absorbance and to eliminate a rapid 

thermal response of solvent absorbance to a saturating photolysis pulse. 

 For the transient IR measurements [23], the PSII sample was pelleted by 

centrifugation and was transferred to a calcium fluoride window.  The IR cell was 

assembled by using another calcium fluoride window and a 25-µm spacer.  The 25-µm 

path length spacer was greased, and the sample was sealed with vacuum grease and 

parafilm to prevent dehydration during the experiment [24, 25].  A continuous-wave 

diode laser (Ekips Technology, Norman, OK) emitting at 1483 cm–1 was used as the 

probe, a Q-switched Nd:YAG (neodymium:yttrium aluminum garnet) laser (Spectra-

Physics) was used to produce a 532-nm photolysis pulse, and the transient absorbance of 

the probe was detected with a liquid nitrogen-cooled mercury-cadmium-telluride 

detector.  The instrument response time was 1 µs.  The IR sample was maintained at 10°C 

during the measurement by using a refrigerated water bath.  The 532-nm photolysis 
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pulses had a 10-ns pulse width and a 0.2-cm spot radius (38 mJ/cm2)‡.  Samples were 

aligned with one or more 532-nm flashes before the beginning of data acquisition and 

then translated to a new spot. 

 For the S state experiments, the sample was preflashed and dark-adapted for 15 

min to achieve synchronization in the S1 state [26].  After dark adaptation, 12 (532 nm) 

photolysis flashes were given at an ≈ 1-Hz repetition rate, and an IR transient was 

recorded after each flash.  For other PSII control experiments, kinetics transients were 

averaged.  The transients were fit with a multiexponential function to extract amplitudes 

and rate constants using Igor Pro software (Wavemetrics, Lake Oswego, OR).  Derived 

time constants depended on the choice of initial and final fit points.  For consistency, 

transients from the same experiment were fit with identical beginning and ending points. 

 

Results 

 In figure 1B, the effects of multiple, saturating laser flashes on PSII samples 

containing 2,6-dichlorobenzoquinone (DCBQ) and potassium ferricyanide as electron 

acceptors are shown.  The data exhibit an initial 1483-cm–1 bleach on the microsecond 

time scale on each flash.  This initial bleach, which is limited by the instrument response 

time, is followed by a delayed increase in amplitude over baseline (figure 1B).  

Alterations in the kinetics as a function of flash number are observed in figure 1B and 

will be discussed below. 

                                                

 
 
‡ We wish to clarify that the data presented in this work was collected using a 532 nm spot size of 0.1 cm 
diameter. 
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 Control experiments in figure 2 address the origin of these IR transients.  The 

green trace was acquired from oxygen-evolving PSII containing DCBQ and ferricyanide 

(repeated from figure 1B).  As a negative control, the red trace in figure 2 was acquired 

on PSII, which contained an OEC, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 

and no exogenous acceptors.  DCMU is an inhibitor that will block electron transfer to 

QB [27] (figure 1A, reaction 3) and cause transfer of any electrons on QB back to QA [28].  

This reequilibration, coupled with multiple flash illuminations, will result in a majority of 

closed centers containing QA
– in the dark, which cannot undergo a stable P680

+QA
– charge 

separation.  As observed by comparison of the red and green traces, an IR transient, 

which is the average of multiple flashes in a DCMU-treated sample (figure 2, red trace), 

does not show the bleach that is observed in the presence of the electron acceptors (figure 

2, green trace).  This result demonstrates that the bleach is caused by PSII electron 

transfer events in open PSII centers. 

 Experiments were conducted on PSII from which the OEC had been removed 

with 1.8 M alkaline Tris and which contained hydroxylamine and DCMU (figure 2, 

brown trace).  In this hydroxylamine- and DCMU-treated sample, the P680
+QA

– charge 

separated state will be produced because reactions 3 and 4 in figure 1A are blocked [29, 

30].  The production of this state has been shown to be reversible after an extended 

incubation with hydroxylamine [29, 30].  In agreement with these previous studies, we 

found that extended incubation reproducibly gave a photo-induced negative 1483-cm–1 

signal, the production of which was reversible.  A multiexponential fit to the transient 

gave three time constants equal to 5 ms (46%), 470 µs (19%), and 20 µs (35%). 
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Figure 2.  Control transients recorded at 1483-cm–1 and 10°C from PSII.  In the green 
trace, OEC-containing samples contained 0.6 mM DCBQ and 7.2 mM potassium 
ferricyanide (repeated from figure 1B, flash 1).  In the red trace, OEC-containing samples 
contained 5 mM DCMU alone.  In the beige trace, OEC-inactivated samples contained 
7.5 mM hydroxylamine and 100 µM DCMU.  In the blue trace, OEC-inactivated samples 
contained 0.6 mM DCBQ and 7.2 mM potassium ferricyanide.  For the red, blue, and 
beige traces, transients (5, 24, and 2, respectively) were averaged.  Multiexponential fits 
to the data (table 1) are shown superimposed. 
 

 

Previously, time constants of ≤ 20 and ≈ 200-300 µs have been reported under these 

conditions and assigned to rates of P680
+QA

– decay [29, 30].  The observation of a 5-ms 

component in our experiments may be due to a difference in sample preparation.  In some 

hydroxylamine- and DCMU-treated samples, we observed a small positive signal, which 

we attribute to an incomplete block of YZ-to-P680
+ electron transfer, as previously 

proposed [29, 30].  When this signal was observed, longer incubation of the sample with 

hydroxylamine and DCMU gave the reproducible negative signal (figure 2, brown trace).  

The data acquired on hydroxylamine- and DCMU-treated samples (figure 2, brown trace) 
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suggest that the initial bleach in the OEC sample (figure 2, green trace) is due to the 

generation of QA
–. 

 As an additional control, DCBQ and ferricyanide were added to a Mn-depleted 

sample (figure 2, blue trace).  In this sample, the OEC is inactivated with 1.8 M alkaline 

Tris [22], YZ is the terminal electron donor [31, 32], and reaction 5 in figure 1A is 

blocked.  In this sample, YZ reduces P680
+ with a lifetime in the microsecond time domain 

[31, 32].  The blue trace in figure 2 shows an immediate increase in amplitude, as 

opposed to the decrease in amplitude observed in oxygen-evolving preparations (green 

trace).  We attribute the 1483-cm–1 amplitude increase to a contribution from YZ
• in these 

OEC-inactivated samples.  This YZ
• assignment is in agreement with the previous 

assignments of MacDonald et al. [33], which were derived from analysis of the 

photoaccumulated YZ
• spectrum and have been supported by additional studies (reviewed 

in [34] and [35]). 

 This YZ
• assignment is also supported by fits to the 1483-cm–1 transient (figure 2, 

blue trace), which gave three time constants equal to 34 ms (32%), 1.8 ms (14%), and 95 

µs (54%).  Time constants of 50 ms (40% amplitude) and 3 s (60%) have previously been 

reported for the decay of the YZ
• UV signal [36].  The 3-s time constant would not be 

observable with our data acquisition conditions.  In Mn-depleted PSII, the relatively 

intense, positive 1483-cm–1 absorption from YZ
• masks the less intense bleach, which is 

expected from the formation of the P680
+QA

– charge-separated state.  In OEC-containing 

PSII, the spectrum of YZ
• must be shifted away from the 1483-cm–1 observation 

frequency. 
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Figure 3.  Plot of extracted time constants versus flash number derived from 
biexponential fits to the IR transients recorded at 1483-cm–1.  Two time constants were 
derived, and these time constants are plotted on different scales on the two y axes.  Data 
acquired on the first four flashes are shown in figure 1B. 
  

 

Comparison of these controls suggests that the initial bleach in the OEC-

containing sample is due to the generation of the QA
– state (figure 1A, reactions 1 and 2).  

Interestingly, the initial amplitude shows period-2 dependence (figure 1B).  If QA
– and 

QB
– have a similar contribution at this wavelength, then on this time scale, the acceptor 

side contribution will remain relatively stable.  Therefore, we hypothesized that the 

slower processes after the initial bleach are due to an amino acid side chain that is close 

to or ligating the Mn cluster in the OEC.  To test this hypothesis, transients were fit with 

a double exponential function between 12 µs and 26 ms (figure 1B).  As observed in 

figure 3 and table 1, the derived time constants show a four-flash dependence, with the 

rate slowing by a factor of three to five on the third and seventh flash.  This period-4 

dependence is characteristic of reactions in the OEC (for examples, see [9-11]). 
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Table 1.  Rate constants derived from multiexponential fits to 1483-cm–1 infrared 
transients. 
 

Phase 1 Phase 2  
Flash no. Percentage Rate, s–1 Percentage Rate, s–1 

1 32 10700 68 906 
2 22 17300 78 1300 
3 45 3540 55 496 
4 21 19500 79 968 
5 20 37700 80 1340 
6 33 14200 67 1040 
7 29 5200 71 741 
8 21 29200 79 1440 

 
 

 

Discussion 

 In this paper, we present a time-resolved IR study of the photosynthetic water-

oxidizing complex.  The observed immediate decrease in 1483-cm–1 absorption in the 

OEC-containing samples (figure 1B) is attributed to an amino acid side chain in the 

vicinity of QA that is perturbed in frequency when QA is reduced (figure 1A, reaction 2).  

We propose that this effect cancels the expected positive absorption from QA
– and QB

– 

[37-39] on this time scale and at this frequency.  From the frequency, one possible 

assignment is to an imidazole ring stretching vibration.  Imidazole ring stretching 

vibrations have been reported in the range of 1490-1460 cm–1 in 2H2O and 1H2O [40-42].  

Histidine side chains are known to be ligands to an acceptor side, nonheme iron in PSII 

[15, 16].  This ferrous iron is 9 Å from QA and is magnetically coupled to QA
–, and its 

histidine ligands are close to QA and QB [13-17]. 

 The overlapping 1483-cm–1 negative signal from the OEC, which shows period-4 

dependence, is also assigned to an amino acid side chain.  A reasonable assignment is to a 
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histidine (see discussion above) that is bound to manganese or near the OEC [13-17, 43].  

To explain our results, a histidine frequency change must occur on each S state transition 

(figure 1B).  The transients show an initial bleach, which is followed by an increase over 

the baseline and by an eventual decay to baseline (figure 1B).  Therefore, these 

measurements suggest that an intermediate state in which an OEC histidine is perturbed 

is formed on each S state transition. 

 Our extracted rate constants for the OEC reactions (table 1) can be compared with 

previous measurements.  Through UV spectroscopy, half-times of 110, 350, 1300, and 30 

µs were derived for the S1-to-S2, S2-to-S3, S3-to-S0, and S0-to-S1 transitions, respectively 

[10].  Through X-ray measurements, similar half-times were reported and assigned to Mn 

redox reactions [11], except that a lag time of 200 µs was detected before Mn reduction 

during the S4-to-S0 transition.  The 2H2O isotope effects on the S state transitions have 

been reported in the range of 1.3- to 1.4-fold [44]. 

 In contrast, our measured rates exhibit both microsecond and millisecond phases 

on each S state transition, all of which show period-4 oscillation.  This result suggests 

that IR spectroscopy can detect a kinetic heterogeneity that is not detectable by UV 

spectroscopy or X-ray fluorescence.  For the S1-to-S2 and S0-to-S1 transitions, the 

microsecond time constants derived from our data (≈ 90 and 50 µs, respectively) are in 

agreement with the previously reported rates of Mn oxidation [11].  Therefore, on these 

two transitions, we attribute the perturbative mechanism to the Mn oxidation reaction.  

However, for the S2-to-S3 and S3-to-S0 transitions, the microsecond time constants 

derived from our data (≈ 60 and 300 µs, respectively) are significantly faster than the 

reported rates of Mn redox reactions [11].  Although we have not accounted for S state 
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misses, these results suggest that the perturbative mechanism on these two transitions is 

not a Mn redox change but a conformational change or a proton transfer reaction.  This 

conformational change or proton transfer reaction may be linked to YZ oxidation either 

through electrostatics [11] or allosterics.  The idea that proton transfer reactions may 

precede electron transfer has important implications for the overall water oxidation 

reaction.  Such behavior has recently been observed for the proton-coupled electron 

transfer reactions in cytochrome c oxidase [45] and has been suggested to occur during 

the S3-to-S0 transition, based on the lag phase observed by X-ray spectroscopy [11]. 

 Our measurements are unique when compared with previous studies of the OEC 

with vibrational spectroscopy.  For example, our measurements are on a much faster time 

scale compared with rapid-scan Fourier-transform IR (FT-IR) studies of the OEC (for 

examples see [24, 46, 47]).  Note that it has recently been suggested that a histidine 

perturbation may occur with S state cycling on the 10-s time scale [48].  Although 

cryogenic, rapid-scan FT-IR spectroscopy has been used to study the S1-to-S2 transition, 

this technique cannot be applied to the other S state transitions, which do not occur at 

cryogenic temperature [49].  Raman spectroscopy has been used to study the S1 and S2 

states, but these experiments were designed to probe structure on a relatively long time 

scale under cryogenic conditions [50].  Thus, to our knowledge, our measurements are 

the first to detect these short-lived intermediates with vibrational spectroscopy. 
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Abstract 

 In oxygenic photosynthesis, Photosystem II (PSII) is the photosynthetic reaction 

center that oxidizes water and reduces bound plastoquinone.  Electron transfer in PSII is 

mediated by two redox-active tyrosine residues.  One of these residues, tyrosine Z (YZ), 

has been assigned as Tyr161 of the D1 polypeptide by site-directed mutagenesis and 

isotopic labeling.  YZ reduces a chlorophyll cation radical, P680
+, and oxidizes the PSII 

catalytic site, which is the manganese-containing, oxygen evolving complex (OEC).  

Oxidation and reduction of YZ are expected to change the pKA of the phenolic oxygen, 

resulting in coupled electron and proton transfer reactions.  However, the mechanisms of 

these reactions have not yet been elucidated.  In this report, transient infrared 

spectroscopy was used to investigate the pH dependence of YZ
• reduction reactions.   PSII 

samples were treated with alkaline Tris, which removes the OEC and slows both the YZ 
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oxidation and YZ
• radical reduction rate.  The kinetic isotope effect (KIE), induced by 

solvent deuterium exchange, was also measured.  Transient measurements at 1483 cm–1 

revealed a positive band, with a microsecond kinetic component.  Isotopic labeling of 

tyrosine suggested that a fast kinetic component is assignable to YZ
•.  Slower millisecond 

kinetic components at 1483 cm–1 may be assignable to QA
–.  The microsecond rate 

increased by a factor of ten, when the pH was increased from 5.0 to 8.0.  In addition, this 

reaction exhibited a significant solvent isotope effect (> 2.5), which was pH independent.  

Transient measurements at 1483 cm–1 revealed that the millisecond rate decreased by a 

factor of seven, when the pH was increased from 5.0 to 8.0.  However, the reduction 

reaction exhibited an insignificant solvent isotope effect.   

 

Introduction 

 PSII carries out the light-catalyzed oxidation of water in oxygenic photosynthesis. 

Water oxidation occurs at a Mn4-Ca+2 containing, oxygen-evolving complex (OEC) [1-4].  

Electron transfer is initiated when the primary chlorophyll (chl) donor absorbs light.  

Subsequent electron transfer reactions lead to the production of a chl cation radical, P680
+, 

and the sequential reduction of a pheophytin (pheo), of a single electron-accepting 

quinone, QA, and of QB, a two electron acceptor (reviewed in [5]).  P680
+ is very unstable 

and readily generates other oxidized species [6].  One of these oxidized species, YZ
• [7, 

8], is an intermediary in electron transfer reactions involving P680 and the OEC.  Another 

redox-active tyrosine, YD, is also oxidized by P680
+ [7, 9-11].  However, YD

• forms a stable 

radical and is not required for oxygen evolution [7, 9, 10].  YD may be involved in the 
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assembly of the Mn4-Ca+2 cluster [12].  Site directed mutagenesis has been used to assign 

YZ to Tyr 161 in the D1 polypeptide and YD to Tyr 160 in the D2 polypeptide [13-16]. 

 Because the pKa of the phenolic proton is dramatically altered by tyrosyl radical 

formation [17], redox-active tyrosines function in proton-coupled electron transfer 

reactions in enzymes (reviewed in [18]).  Differences in the mechanism of these reactions 

may contribute to observed alterations in midpoint potential and electron transfer rate.  

For YZ and YD, three distinct mechanisms are possible [19-22].  The first is rate-limiting 

electron transfer to Y• to yield an anionic Y–, followed by fast proton transfer to give the 

product, Y (ETPT).  A second is a pre-equilibrium proton transfer to give a tyrosyl cation 

radical, YH+•, followed by electron transfer to give the product, Y (PTET).  A third is the 

concerted transfer of an electron and a proton to Y• in one kinetic step (CPET), which is 

expected to give a kinetic isotope effect [19-22].  Other mechanisms involve sequential 

electron and proton transfer reactions in which proton transfer is the slow, rate-limiting 

step.  However, proton transfer reactions occur over short distances and are usual facile in 

biological systems (see [21-24] and references therein).    

 In the 3.0 Å PSII structure [4], both redox-active tyrosines are within hydrogen 

bonding distance of a histidine.  His189 in the D2 polypeptide is 2.6 Å from YD, and 

His190 in the D1 polypeptide is 2.8 Å from YZ.  The placement of other amino acid side 

chains, the location of metal ions, and the orientation of the histidines distinguishes the 

protein environment of YD and YZ.  Spectroscopic evidence suggests that proton transfer 

occurs from YD to D2-His189 [25] and that YD
• is hydrogen bonded to this histidine [26].  

D1-His190 has also been implicated as the proton transfer reaction partner of YZ ([27, 28] 
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but see [29]).  Magnetic resonance studies of YZ
• in manganese depleted PSII have been 

interpreted to be consistent with a disordered hydrogen bond to this radical [30, 31]. 

 To obtain more information concerning the mechanism of the YD proton-coupled 

electron transfer reaction, we recently performed solvent isotope exchange and measured 

the solvent isotope effect on YD
• reduction [22].  YD

• was detected independently of YZ
• 

and other PSII electron donors by EPR spectroscopy.  Under the conditions employed, 

the reduction of YD
• was attributed to recombination with the PSII QA

– plastoquinone 

acceptor.  The majority amplitude kinetic phase exhibited a pL-dependent rate constant, 

with a minimum at pL 7.0.  Between pL 7.5 and 8.0, solvent exchange gave significant (> 

2.1) kinetic isotope effects.  These results were consistent with a coupled electron and 

proton transfer reaction (CPET), which occurs with a single kinetic step at pL values > 

7.5.  At pL values below 7.0, smaller KIE values and a significant rate acceleration were 

consistent with a change of mechanism, in which the protonation of YD
• occurs first, 

followed by rate-limiting electron transfer (PTET). 

 For YZ, a discussion of previous, proposed proton-coupled electron transfer 

mechanisms can be found in [32] and references therein.  Reported experiments have 

focused mainly on YZ oxidation kinetics using 820 nm optical spectroscopy to monitor 

P680
+ decay.  The mechanism of YZ oxidation has been attributed by different authors to a 

CPET reaction [32], to a gated reaction in which the reaction rate is governed by histidine 

deprotonation [31], or to consecutive PTET [33].  

 In this study, we have used microsecond, time-resolved infrared spectroscopy to 

monitor YZ redox reactions.  In previous work, we have used this transient infrared 

approach to monitor the PSII oxygen evolving reactions at the OEC [34].  Here, we have 
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treated PSII with alkaline Tris to remove the OEC [34, 35].  This treatment has the effect 

of slowing both the oxidation and reduction of YZ/YZ
• [36-38].  

 

Materials and Methods 

 PSII membranes were isolated from market spinach [39].  Manganese was 

removed by treatment with alkaline Tris at elevated pH [35].  Manganese-depleted PSII 

was pooled and exchanged into 1H2O or 2H2O buffers at pL 5.0, 6.0, 7.0, and 8.0 by 

dialysis, as previously described [22].  The samples contained 0.4 M sucrose and 15 mM 

NaCl.  Succinate (50 mM) was used as the buffer at pL 5, MES (2-(N-

morpholino)ethanesulfonic acid) (50 mM) was used as the buffer at pL 6 and 7, and 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (50 mM) was used as the 

buffer at pL 8.  2H2O was purchased from Cambridge Isotope Laboratories, Inc. (99% 2H 

enrichment, Andover, CA). 

 As a control, PSII was also isolated from cyanobacterium Synechocystis PCC 

6803 which was grown in the presence of either control tyrosine (L-tyrosine) or labeled 

tyrosine (L-tyrosine-ring-d4).  Cultivation of this cyanobacterium in the presence of the 

control or labeled tyrosine leads to the global incorporation of the supplied amino acid 

into PSII [7].  In L-tyrosine-ring-d4, the protons of the phenol ring are replaced with 

deuterons.  Deuteration of tyrosine has the effect of shifting vibrational bands of tyrosine 

and tyrosyl radical [40].  Cyanobacterial PSII was isolated as previously described [41], 

and manganese was removed by treatment with NH2OH [42].  The samples were stored 

in 5 mM MES, p2H 6.0, and 0.03% n-dodecyl-β-D-maltopyranoside at –70°C. 
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 Spinach PSII samples for transient IR measurements were prepared as previously 

described [34].  Briefly, a manganese-depleted PSII suspension was mixed with reagents 

and centrifuged, after which the supernatant was removed.  The pellet was placed 

between two CaF2 windows with a 25 micron Teflon spacer.  The sample cell was sealed 

with parafilm to control hydration and maintained at 10°C by circulating water bath.  

Cyanobacterial PSII samples for transient IR measurement were concentrated to a 

volume of 10 microliters and mixed with reagents.  The mixture was injected between 

two CaF2 windows pre-sealed sealed with parafilm and maintained at 10°C by circulating 

water bath.  Flash-induced excitation was provided by a Nd:YAG pulse laser (Spectra 

Physics, Mountain View, CA), which was frequency-doubled to 532 nm.  The sample 

was probed by a continuous-wave infrared diode laser (Ekips Technologies, Norman, 

OK) at 1483 cm–1.  Infrared absorbance changes were monitored with a liquid nitrogen 

cooled MCT detector (Kolmar Technologies, Newburyport, MA) with a time resolution 

of 1 microsecond. 

 Signal alignment was performed on one spot of the sample followed by 

translation to a new spot for data collection.  After translation, a single 532 nm laser pulse 

was given, and the transient IR signal was recorded.  The data were fit and analyzed 

using Igor Pro software (Wavemetrics, Lake Oswego, OR). 

 

Results and Discussion 

 Figure 1 shows the kinetic transients acquired at 1483 cm–1 from OEC-depleted 

PSII.  YZ and QB are the terminal electron donor and acceptor in this type of PSII 
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Figure 1.  Flash-induced kinetic transients acquired at 1483 cm–1 from OEC-depleted 
PSII.  In (A-D), data were recorded at pL 5.0 (A), 6.0 (B), 7.0 (C), or 8.0 (D).  The red 
and blue traces were obtained either in 1H2O or 2H2O buffer, respectively.  Samples 
contained 3 mM ferricyanide and 3 mM ferrocyanide, and the 532 nm laser energy was 1 
mJ (cm)–2.   Each kinetic trace was an average of 48 experiments, except for (C, red 
trace), which was an average of 68; (D, red trace), which was an average of 66; and (D, 
blue trace), which was average of 52.  The temperature was 10oC.  Exponential fits are 
shown superimposed over each trace, with residuals color-coded at the bottom of each 
panel.  The tick marks on the y axis represent 1 x 10–3 absorbance units. 
 

 

 preparation [38].  The 1483 cm–1 transients in red were acquired in 1H2O at pH 5.0 

(figure 1A), 6.0 (figure 1B), 7.0 (figure 1C) and 8.0 (figure 1D), respectively.  

Immediately (2 microseconds) after the 532 nm flash, the sign of the transient is positive, 
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Table 1.  Rate constants and kinetic isotope effects derived from the kinetic transient at 
1483 cm–1: pL and solvent isotope effectsa 

 
 

Sample 

1H2O rate constant 
(s–1) 

2H2O rate constant 
(s–1) 

 
KIEb 

Fast Phasec 

pL 5.0d 20,600 ± 2,600 8,100 ± 200 2.5 ± 0.3 
pL 6.0d 47,500 ± 3,000 18,100 ± 2,500 2.6 ± 0.4 
pL 7.0d 114,000 ± 36,800 45,600 ± 1,900 2.5 ± 0.8 
pL 8.0d 292,000 ± 145,000 61,700 ± 2,000 4.7 ± 2.8 
DCMUe NDf 10,600 ± 620 ND 

No DCMUe ND 11,400 ± 157 ND 
Controlj ND 150,000 ± 65,000 ND 

Y-ring-d4
j ND 33,000 ± 8,000 ND 

Slow Phasec 

pL 5.0d 23.4 ± 0.7 23.4 ± 3.0 1.0 ± 0.1 
pL 6.0d 10.5 ± 1.3 11.6 ± 1.0 0.9 ± 0.1 
pL 7.0d 5.3 ± 0.9 3.9 ± 0.2 1.3 ± 0.2 
pL 8.0d 3.3 ± 0.9 2.4 ± 0.4 1.4 ± 0.4 
DCMUe ND 16.2 ± 2.5 ND 

No DCMUe ND 14.4 ± 0.6 ND 
a Derived from exponential fits, A0 + A1exp(–k1t), to transient infrared data recorded at 1483 cm–1.  Values 
are reported plus or minus one standard deviation.  Mean chi-squared values for the fits were (3.1 ± 1.3) 
x10–6.  
b Calculated as the ratio of the rate constant measured in 1H2O to the rate constant measured in 2H2O.  
c Fast phase derived from a single exponential fit to the data between 2 and 500 microseconds, and slow 
phase derived from a single exponential fit to the data between 8 and 444 ms.  
d Data acquired with 3 mM ferricyanide, 3 mM ferrocyanide, and energy density 1 mJ (cm)–2. 
e Data acquired at p2H 6.0 with 2.5 mM ferricyanide, 2.5 mM ferrocyanide, 0 or 100 μM DCMU, and 
energy density 38 mJ (cm)–2. 
f Data acquired at p2H 6.0 with 3 mM ferricyanide, 3 mM ferrocyanide, and energy density 63 mJ (cm)−2. 
gND, not determined. 

 

 

 and there are two decaying components on the microsecond and millisecond time scales.  

Table 1 presents rate constants derived from single exponential fits (figure 1, solid 

superimposed lines) in these two time regimes.  At pH 6.0, the derived time constants are 

20 microseconds (fast phase) and 95 milliseconds (slow phase; table 1).  Figure 2A and 

B, red traces, show that increases in pH accelerate the decay rate of the fast phase and 

decrease the decay rate of the slow phase.  The differential pH dependence of the two rate  
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Figure 2.  Rate constants and kinetic isotope effects as a function of pL.  The rate 
constants were derived from exponential fits to the 1483 cm–1 kinetic transients in Figure 
1A-D.   Samples contained either 1H2O (red) or 2H2O (blue).  In (A), rate constants were 
derived from a single exponential fit to the data between 2 and 500 microseconds (fast 
phase).  In (B), rate constants were derived from a single exponential fit to the data 
between 8 and 444 ms (slow phase).  In (C), the solvent, kinetic isotope effects for the 
fast (green) and slow (black) phases are shown; the solvent isotope effect was calculated 
as the ratio of the rate constant in 1H2O to the rate constant in 2H2O.  Error bars represent 
one standard deviation.  Rate constants and kinetic isotope effects are also presented in 
table 1. 
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constants (figure 2A and B) suggests that two different species, with different infrared 

molar absorptivities, are monitored at this frequency. 

In previous work, we found that the positive sign of the transient at 1483 cm–1 is 

dependent on OEC removal, because OEC-containing PSII preparations showed an 

immediate bleach at this frequency [34].  In addition, a DCMU-containing, negative 

control, in which the PSII reaction center was closed to charge separation [34], exhibited 

no kinetic transient (figure 3A, black trace).  A control, in which hydroxylamine and 

DCMU were used to generate the P680
+QA

– state [43, 44], also generated an immediate 

bleach [34] at this frequency (figure 3A, brown trace).  Triple exponential fits to the 

transient gave rate constants of 36,000 ± 6,000 (32%), 2900 ± 600 (24%), and 214 ± 24 

(44%) s–1. 

Compared to our earlier work, which was performed in 2H2O buffer at p2H 6.0, 

the data in figure 1A-D were acquired at much lower 532 nm energy density [34].  

Comparison of data in figures 1 and 3 demonstrates that this change in 532 nm energy, 

from 1 (figure 1B, blue trace) to 38 mJ (cm)–2 (figure 3B, blue trace), had little or no 

effect on the 1483 cm–1 decay kinetics (also see table 1).  Furthermore, figure 4 and table 

2 also demonstrate that laser energy densities ranging from 6.4 to 63 mJ (cm)–2 produced 

similar 1483 cm–1 decay kinetics.  Previously, we indicated a 532 nm spot size of 0.2 cm 

radius used in data collection [34].  We wish to clarify here that the data presented in [34] 

as well as in figure 3B, blue trace, was collected at a 532 nm spot size of 0.1 cm 

diameter. 
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Figure 3.  Flash-induced kinetic transients acquired at 1483 cm–1 from PSII.  In (A), data 
were acquired from OEC-depleted PSII treated with 7.5 mM NH2OH and 100 
micromolar DCMU (brown trace, avg. of 36, energy density 33 mJ (cm)–2) or OEC-
containing PSII treated with 5 mM DCMU (black trace, avg. of 5, energy density 38 mJ 
(cm)–2).  In (B), data were recorded from OEC-depleted PSII treated with 2.5 mM 
potassium ferricyanide, 2.5 mM potassium ferrocyanide, and either 0 (light blue trace, 
avg. of 21) or 100 micromolar (orange trace, avg. of 4) DCMU, energy density 38 mJ 
(cm)–2.  In (C), data were acquired from OEC-depleted PSII treated with 0.6 mM DCBQ 
and 7.2 mM ferricyanide (green trace, avg. of 24, energy density 38 mJ (cm)–2) or with 3 
mM ferricyanide and 3 mM ferrocyanide (blue trace, repeated from figure 1B, energy 
density 1 mJ (cm)–2).  The samples were suspended in 2H2O buffer (0.4 M sucrose, 50 
mM MES-NaO2H, 15 mM NaCl) at p2H 6.0.  The temperature was 10oC.  Exponential 
fits are shown superimposed over each trace, with residuals for each fit color-coded 
below the data.  The space between tick marks of the y-axis represents 1x10–3 absorbance 
units. 
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Figure 4.  Flash-induced kinetic transients acquired at 1483 cm–1 from PSII.  In (A), data 
were acquired from OEC-depleted PSII in 1H2O (red trace, avg. of 40) or 2H2O (blue 
trace, avg. of 40) at energy density 6.4 mJ (cm)–2.  In (B), data were acquired from OEC-
depleted PSII in 1H2O (red trace, avg. of 40) or 2H2O (blue trace, avg. of 40) at energy 
density 20 mJ (cm)–2.  In (C), data were acquired from OEC-depleted PSII in 1H2O (red 
trace, avg. of 40) or 2H2O (blue trace, avg. of 40) at energy density 63 mJ (cm)–2.  
Samples were suspended in either 1H2O buffer (0.4 M sucrose, 50 mM MES-NaOH, p1H 
6.0, 15 mM NaCl) or 2H2O buffer (0.4 M sucrose, 50 mM MES-NaO2H, p2H 6.0, 15 mM 
NaCl).  The temperature was 10°C.  Exponential fits are shown superimposed over each 
trace, with residuals for each fit color-coded below the data.  The space between tick 
marks of the y-axis represents 1x10–3 absorbance units. 
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Table 2. Rate constants and kinetic isotope effects derived from the kinetic transient at 
1483 cm–1: laser energy density effectsa 
 

Laser energy density 
(mJ/cm2) 

1H2O rate constant 
(s–1) 

2H2O rate constant 
(s–1) 

 
KIEb 

Fast Phasec 

6.4d 45,600 ± 6,000 17,800 ± 3,200 2.6 ± 0.6 
20d 44,400 ± 8,300 15,900 ± 2,100 2.8 ± 0.6 
63d 62,200 ± 7,000 16,800 ± 1,000 3.7 ± 0.5 

Slow Phasec 

6.4d 11.2 ± 1.4 12.2 ± 1.9 0.9 ± 0.2 
20d 9.1 ± 0.8 9.9 ± 3.1 0.9 ± 0.3 
63d 12.4 ± 0.7 11.1 ± 2.2 1.1 ± 0.2 

a Derived from exponential fits, A0 + A1exp(–k1t), to transient infrared data recorded at 1483 cm–1.  Values 
are reported plus or minus one standard deviation.  Mean chi-squared values for the fits were (6.4 ± 5.1) 
x10–6.  
b Calculated as the ratio of the rate constant measured in 1H2O to the rate constant measured in 2H2O.  
c Fast phase derived from a single exponential fit to the data between 2 and 500 microseconds, and slow 
phase derived from a single exponential fit to the data between 8 and 444 ms.  
d Data acquired at p1H 6.0 and p2H 6.0 with 3 mM ferricyanide and 3 mM ferrocyanide. 

 

 

The effect on the rate constants of changes in exogenous electron donor and 

acceptor was investigated.  There was no significant change in the rate of the slow or fast 

phase when 0.6 mM DCBQ/7.2 mM ferricyanide (figure 3C, green trace) was substituted 

for 3 mM ferrocyanide/3 mM ferricyanide (figure 3C, blue trace).  Indeed, treatment of 

the sample with 4.5 mM ferrocyanide/0.5 mM ferricyanide (figure 5A), 6 mM 

ferricyanide (figure 5B), or 6 mM ferrocyanide (figure 5C) did not change the derived 

rate constants for the fast and slow phases (see table 3). These results demonstrate that 

the 1483 cm–1 transient is monitoring internal recombination events, which are 

independent of the concentration of exogenous electron donors/acceptors. 
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Figure 5.  Flash-induced kinetic transients acquired at 1483 cm–1 from PSII.  In (A), data 
were acquired from OEC-depleted PSII with 0.5 mM ferricyanide and 4.5 mM 
ferrocyanide in 1H2O (red trace, avg. of 50) or 2H2O (blue trace, avg. of 50).  In (B), data 
were acquired from OEC-depleted PSII with 6 mM ferricyanide in 2H2O (avg. of 50).  In 
(C), data were acquired from OEC-depleted PSII with 6 mM ferrocyanide in 2H2O (avg. 
of 50).  Samples were suspended in either 1H2O buffer (0.4 M sucrose, 50 mM MES-
NaOH, p1H 6.0, 15 mM NaCl) or 2H2O buffer (0.4 M sucrose, 50 mM MES-NaO2H, p2H 
6.0, 15 mM NaCl).  The energy density was 20 mJ (cm)–2 and the temperature was 10°C.  
Exponential fits are shown superimposed over each trace, with residuals for each fit 
color-coded below the data.  The space between tick marks of the y-axis represents 1x10–

3 absorbance units. 
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Table 3. Rate constants and kinetic isotope effects derived from the kinetic transient at 
1483 cm–1: exogenous electron acceptor and donor effectsa 

 
ferricyanide 

(mM) 
ferrocyanide 

(mM) 

1H2O rate constant 
(s–1) 

2H2O rate constant 
(s–1) 

 
KIEb 

Fast Phasec 

3 3d 47,500 ± 3,000 18,100 ± 2,500 2.6 ± 0.4 
7.2 0e NDh 10,000 ± 250 ND 
0.5 4.5f 45,500 ± 2,300 16,500 ± 2,000 2.8 ± 0.3 
6 0g ND 17,100 ± 1,500 ND 
0 6g ND 16,900 ± 900  ND 

Slow Phase 
3 3d 10.5 ± 1.3 11.6 ± 1.0 0.9 ± 0.1 

7.2 0e ND 17.3 ± 2.4 ND 
0.5 4.5f 11.5 ± 0.5 11.9 ± 2.1 1.0 ± 0.2 
6 0g ND 11.9 ± 2.2 ND 
0 6g ND 13.1 ± 2.3 ND 

a Derived from exponential fits, A0 + A1exp(–k1t), to transient infrared data recorded at 1483 cm–1.  Values 
are reported plus or minus one standard deviation.  Mean chi-squared values for the fits were (8.7 ± 2.5) 
x10–6.  
b Calculated as the ratio of the rate constant measured in 1H2O to the rate constant measured in 2H2O.  
c Fast phase derived from a single exponential fit to the data between 2 and 500 microseconds, and slow 
phase derived from a single exponential fit to the data between 8 and 444 ms. 
d Data acquired at p1H 6.0 and p2H 6.0, and energy density 1 mJ (cm)–2.  
e Data acquired at p2H 6.0 with 7.2 mM ferricyanide, 0.6 mM DCBQ, and energy density 38 mJ (cm)–2.  
f Data acquired at p1H 6.0 and p2H 6.0, and energy density 20 mJ (cm)–2. 
g Data acquired at p2H 6.0 and energy density 20 mJ (cm)-2. 
h ND, not determined. 

 

 

Based on previous FT-IR and Raman experiments, positive spectral contributions 

at this frequency could, in principle, be derived from a chl cation radical, QA
–, QB

–, YZ
•, or 

YD
• [45-50].  However, YD

• reactions are too slow to be directly monitored on this time 

scale (for example, see [22]).  A positive P680
+ cation radical contribution is also unlikely, 

because the P680
+QA

– control, presented in our earlier work and in figure 3A 

(hydroxylamine/DCMU), exhibited a bleach at 1483 cm–1.  In this hydroxylamine-

containing control, the YZ to P680
+ reduction reaction is blocked [43, 44]. 
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To evaluate a possible QB
– contribution, 1483 cm–1 kinetic transients were 

acquired in the presence (figure 3B, orange trace) or the absence (figure 3B, light blue 

trace) of the QB inhibitor, DCMU [51].  As shown in the derived rate constants in table 1, 

DCMU had no significant effect on the 1483 cm–1 decay kinetics.  This result suggests 

that QB reduction reactions are not monitored directly under these conditions.   

Possible contributions from QA
– and YZ

• can be evaluated by comparison to 

kinetic experiments in the literature.  Previously, 820 nm optical spectroscopy was used 

to monitor the pH dependence of the P680
+ reduction reaction in Tris-treated, OEC-

depleted samples [36].  In that previous report, the kinetics of YZ oxidation accelerated 

with increasing pH and exhibited a lifetime of 20 microseconds at pH 5.0 and 3.5 

microseconds at pH 8.0.   In our experiments, the time constant of the fast phase of 1483 

cm–1 decay (table 1) was 50 microseconds at pH 5.0 and was 4 microseconds at pH 8.0.  

This comparison suggests that the 1483 cm–1 fast phase is monitoring a donor side 

electron transfer reaction. 

In a previous report, a two flash experiment was used to monitor the kinetics of 

charge recombination between P680
+ and QA

– [36].  This reaction rate was slower than the 

YZ to P680
+ reduction reaction, with a reported lifetime of 200 microseconds.  The P680

+QA
– 

recombination was also found to be pH independent.  In an EPR study of hydroxylamine-

treated PSII, two half times were reported [44].  The fast phase decayed with the time 

constant of the apparatus, 20 microseconds.  The other half time was 200 microseconds 

and was assigned to the P680
+QA

– recombination reaction.  In that previous work, the 20 

microsecond phase was assigned to reduction of P680
+ by hydroxylamine or 
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Figure 6.  Flash-induced kinetic transients acquired at 1483 cm–1 from cyanobacterial 
PSII.  Data were acquired from OEC-depleted PSII containing control tyrosine (red trace, 
avg. of 90) or labeled tyrosine-ring-d4 (blue trace, avg. of 120) with 3 mM ferricyanide 
and 3 mM ferrocyanide.  Samples were suspended in 2H2O buffer (5 mM MES-NaO2H, 
p2H 6.0, and 0.03% n-dodecyl-β-D-maltopyranoside).  The energy density was 63 mJ 
(cm)–2 and the temperature was 10°C.  The traces have been normalized to a common 
initial microsecond amplitude.  Exponential fits are shown superimposed over each trace, 
with residuals for each fit color-coded below the data.  The space between tick marks of 
the y-axis represents 1x10–4 absorbance units. 

 

 

another donor [44].  This faster reaction was reported to be inhibited with longer 

incubation times in hydroxylamine, perhaps due to a PSII modification reaction. 

Therefore, the time constants (20 microseconds and 95 milliseconds) and pH dependence 

of the 1483 cm–1 transients in our data are not consistent with an attribution to a P680
+QA

– 

recombination reaction. 

In order to test the hypothesis that the traces collected at 1483 cm–1 contain 

contributions from YZ
• decay, we collected data using manganese-depleted PSII in which 

tyrosine had been replaced with labeled (2H4-deuterated) tyrosine.  Figure 6 displays 

traces collected at 1483 cm–1 from control (red trace) and labeled (blue trace) PSII.  

Exponential fits between 2 and 500 microseconds revealed kinetic rate constants of 



 68 

150,000 ± 65,000 and 33,000 ± 8,000 s–1 for the control and labeled samples, 

respectively.  2H4 deuteration of the phenol ring of tyrosine is expected to shift vibrational 

bands of tyrosine and the tyrosyl radical [40].  If YZ
• is a contributor to the kinetic traces 

observed at 1483 cm–1, labeling will lead to a change in the 1483 cm–1 kinetics and 

amplitude.  Comparing the difference in rate constants derived from the transient IR 

experiments suggests that YZ
• may contribute to the absorption change at 1483 cm–1 on 

the microsecond timescale.  Contributions on the millisecond time scale are difficult to 

evaluate due to low frequency noise in this data set.  Previous isotopic labeling and site 

directed mutagenesis work have suggested that the CO vibrational band of YZ
• makes a 

spectral contribution at 1478 cm–1 (reviewed in [52]) on longer time scales.   

Previous work has also measured the rate of YZ
• reduction by QA

– or ferrocyanide 

[38].  This experiment was performed by monitoring the absorbance change at 325 nm in 

Tris-treated, OEC-depleted samples at pH 6.0.  A 20 millisecond half time was attributed 

to YZ
• reduction by QA

–, and an 80 millisecond half time was attributed to YZ
• reduction 

by ferrocyanide.  In that previous report, addition of DCMU did not alter the kinetics of 

YZ
• reduction [38].  In our experiments, the time constant for the 1483 cm–1 slow phase 

was 95 milliseconds at pH 6.0 and was found to be DCMU and ferrocyanide independent 

(table 1 and 3).  This comparison suggests that the 1483 cm–1 slow phase is monitoring 

YZ
• recombination with QA

–.  A positive band from QA
– is expected to overlap in this 

spectral region and may be the major contributor on the millisecond time scale [46, 49, 

50].  In addition to a contribution from YZ
• and QA

–, histidine and other amino residues 

near P680 may also be contributing to the infrared transients on the 

microsecond/millisecond timescale. 
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To examine the solvent isotope effect on YZ
• (microsecond) and QA

– (millisecond) 

reduction reactions, transient infrared data were acquired in 2H2O buffers as a function of 

p2H (figure 1A-D, blue traces).  The data were fit, and, as shown in figure 2A and B, 

blue, the derived rate constants for the microsecond and millisecond phases are p2H 

dependent.  The solvent isotope effect was then calculated as a function of pL (table 1) 

for the microsecond (figure 2C, green) and millisecond reactions (figure 2C, black).  A 

significant KIE (> 2.5 ± 0.3, Table 1) was observed for the microsecond rate; the KIE 

was pH independent (figure 2C, green).  On the other hand, a smaller or insignificant 

KIE, in the range from 1.4 ± 0.4 to 0.9 ± 0.1 (table 1), was observed for the millisecond 

rate.  Given the standard deviations, the KIE for the slow phase was also pL independent 

(figure 2C, black).  

Based on models built to study inter- and intra-molecular PCET, three possible 

mechanisms exist [19-21, 32, 53, 54].  Proton transfer may precede electron transfer 

(PTET, 1), electron transfer may precede proton transfer (ETPT, 2), or proton transfer 

and electron transfer may occur through one step (CPET, 3).  Each of these mechanisms 

can be distinguished based on the pL dependence and sensitivity to solvent isotope 

exchange of a particular reaction.  In a study of the oxidation of hydrogen-bonded 

phenols, a CPET mechanism was proposed based on high KIE and thermodynamic 

arguments [21].  Also, using tyrosine covalently linked to a ruthenium tris-bipyridine 

complex, oxidation of tyrosine was concluded to follow a CPET mechanism based also 

on high KIE as well as a pH dependent rate [19, 32].  This conclusion was drawn in spite 

of lower reorganization energy predicted for sequential ETPT mechanism. 



 70 

Oxidation/reduction of YZ has been argued to follow a CPET mechanism when 

comparing the kinetics of a model complex displaying the same mechanism [32, 55].  A 

concerted pathway avoids the high energy intermediates (YZO•H+ or YZO–) of the 

sequential pathways [53].  Multiple authors agree that formation of a tyrosine radical 

cation is highly unfavorable [21, 56, 57].  Indeed, when approximating the ∆G for 

formation of YZO•H+, YZO–, or YZO•, the one step concerted mechanism involving YZO• 

is favored by more than 10 kcal/mol [54].  Based on the significant KIE observed here on 

the microsecond phase of 1483 cm–1 decay, a concerted proton-electron transfer 

mechanism is likely for the reduction of YZ
•.   Moreover, the pL dependence observed 

here distinguishes the YZ
• reduction mechanism from the previously studied YD

• 

reduction reaction [22]. 
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Abstract 

 Photosystem II (PSII) catalyzes the oxidation of water to O2 at the manganese-

containing, oxygen-evolving complex (OEC).  Photoexcitation of PSII results in the 

oxidation of the OEC; four sequential oxidation reactions are required for the generation 

and release of molecular oxygen.  Therefore, with flash illumination, the OEC cycles 

among five Sn states.  Chloride depletion inhibits O2 evolution.  However, the binding 

site of chloride in the OEC is not known, and the role of chloride in oxygen evolution has 

not yet been elucidated.  We have employed reaction-induced FT-IR spectroscopy and 

selective flash excitation, which cycles PSII samples through the S state transitions.  On 

the time scale employed, these FT-IR difference spectra reflect long-lived structural 

changes in the OEC.  Bromide substitution supports oxygen evolution and was used to 

identify vibrational bands arising from structural changes at the chloride-binding site.  

Contributions to the vibrational spectrum from bromide-sensitive bands were observed on 
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each flash.  Sulfate treatment led to an elimination of oxygen evolution activity and of the 

FT-IR spectra assigned to the S3 to S0 (third flash) and S0 to S1 transitions (fourth flash).  

However, sulfate treatment changed, but did not eliminate, the FT-IR spectra obtained 

with the first and second flashes.  Solvent isotope exchange in chloride-exchanged 

samples suggests flash-dependent structural changes, which alter protein dynamics during 

the S state cycle. 

 

Introduction 

 Photosystem II (PSII) carries out the light-driven oxidation of water and reduction 

of plastoquinone.  A heterodimeric core of subunits, called D1 and D2, binds most of the 

electron transfer cofactors.  Other subunits include the chlorophyll (chl) binding subunits, 

CP47 and CP43, and the extrinsic subunits, the manganese stabilizing subunit (MSP), 18, 

and 24 kDa subunits.  Electron transfer is initiated when the primary chlorophyll (chl) 

donor, P680, absorbs light.  Subsequent electron transfer reactions lead to the production 

of a chl cation radical, P680
+, and the sequential reduction of a pheophytin, of a single 

electron-accepting quinone, QA, and of QB, a two electron acceptor (reviewed in [1]).  

P680
+ is very unstable and readily generates other oxidized species [2].  One of these 

oxidized species, tyrosine radical YZ
• [3, 4], is an intermediary in electron transfer 

reactions involving P680 and the catalytic site for water oxidation.  Another redox-active 

tyrosine, YD, is also oxidized via P680
+ and is in redox equilibrium with the manganese 

(Mn) cluster [3, 5-7].  However, YD
• forms a stable radical and is not required for oxygen 

evolution [3, 5, 6].  YD may be involved in assembly of the Mn cluster [8]. 
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 The catalytic site of water oxidation cycles among five oxidation states, called the 

Sn states, where n refers to the number of oxidizing equivalents stored at the active site 

[9].  Each S state advancement is driven by one light-driven charge separation in the 

reaction center, and YZ is oxidized and reduced on every S state transition [10].  The S 

state transitions occur in the microsecond to millisecond time regime, with a rate that 

slows as oxidizing equivalents are stored in the oxygen-evolving complex (OEC) [11, 

12]. 

 Oxygen release occurs during the S3 to S0 transition from an unstable 

intermediate, known as the S4 state.  Evidence that an intermediate state is produced 

during the S3 to S0 transition has been obtained with EPR [13], XANES [14], UV [15], 

and transient infrared [16] spectroscopies.  Four flashes are required to produce 

molecular oxygen from water, and the S1 state is the dark-adapted state [9].  Therefore, in 

a dark-adapted sample, oxygen is produced on the third flash and then on every fourth 

flash.  PSII structural models, derived from X-ray diffraction on three-dimensional 

crystals, have been presented at 3.8-3.0 Å resolution [17-21].  The issue of X-ray-induced 

Mn reduction has been raised as a potential concern in the interpretation of PSII electron 

density [19, 22, 23]. 

 Chloride plays an intriguing and important role in photosynthetic oxygen 

evolution (reviewed in [24, 25]).  Although chloride has not as yet been identified in PSII 

X-ray structures [20, 21], biochemical evidence for a single chloride ion has been 

presented [26].  Electron spin echo envelope modulation (ESEEM) measurements 

suggest that the chloride site is close to the Mn cluster [27, 28].  The OEC chloride can be 

depleted by long dialysis [25], by removal of PSII extrinsic subunits with sodium 
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chloride [26], or by removal of PSII extrinsic subunits with sodium sulfate at high pH 

[29-31].  After these treatments, steady state oxygen-evolving activity is either 

completely suppressed (sodium sulfate and sodium chloride treatment) [26, 31] or 

suppressed to 30-40% of the control rate (dialysis) [26].  With sulfate treatment, optical 

studies demonstrate that chloride depletion leads to a block of the S2 to S3 and S3 to S0 

transitions [31, 32].  Mn oxidation does not occur on these transitions.  Changes in the S2 

EPR signals are associated with reconstitution of other anions, such as fluoride and azide, 

at the chloride site [28, 33, 34].  Bromide can support oxygen evolution if this anion is 

reconstituted at the chloride site [25, 26, 31, 32].  A few other anions, such as nitrate, 

give lower levels of activity [25, 26, 31, 32].  However, replacement of chloride either 

with fluoride, acetate, or azide inhibits activity [25, 32, 35-38]. 

 Site directed mutagenesis has shown that modification of positive amino acid side 

chains in CP47 [39-41], CP43 [42], and MSP [43], influence the Km for chloride.  

Chloride has been proposed to have a role as a ligand to Mn [29, 44], in maintaining a 

hydrogen-bonded network, which facilitates proton transfer [25], in maintaining the 

potential of the Mn cluster [45], or in activation of substrate water in coordination with 

chloride [46].  These proposed roles for chloride are not mutually exclusive.  In addition 

to a possible role as a Mn ligand [29, 44], it has also been proposed that chloride may 

associate with amino acid residues in the Mn coordination shell [47, 48]. 

 Reaction-induced, rapid scan FT-IR spectroscopy has been used previously to 

study structural changes occurring on each of the S state transitions in PSII (for 

examples, see [49-52]).  These spectral changes are measured on time scales, which are 

long (seconds) compared with oxygen production (microsecond-millisecond), but these 
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spectral changes are tightly coupled with the water splitting reactions (see review in 

[53]).  It has been proposed that long-lived thermodynamic intermediates, called Sn′, are 

detected in this type of experiment [53]. We have used this rapid scan method to study 

persistent structural changes at the OEC calcium site [53, 54]. In addition, microsecond 

time resolved infrared spectroscopy has been used to identify kinetically accessible 

intermediate states formed on each S state transition [16]. 

 In this paper, we use rapid scan FT-IR spectroscopy to identify long-lived 

structural changes at the chloride site during the photosynthetic oxygen-evolving cycle.  

Structural changes at the OEC halide-binding site are pinpointed by comparison of 

chloride-exchanged, bromide-exchanged, and chloride-depleted PSII samples. 

 

Materials and Methods 

 PSII was isolated from market spinach as previously described [55] with an 

activity of > 600 µmol O2 (mg Chl-h)–1, as measured with a Clarktype electrode [2].  

Chloride-depleted samples were prepared by sulfate treatment [31].  Briefly, PSII was 

exchanged from SMN buffer (400 mM sucrose, 50 mM MES-NaOH, pH 6.0, 15 mM 

NaCl) into buffer containing 400 mM sucrose and 50 mM HEPES-NaOH, pH 7.5 by 

centrifugation and resuspension.  The samples were then incubated in a sulfate buffer 

(400 mM sucrose, 50 mM HEPES-NaOH, pH 7.5, 50 mM Na2SO4) in darkness on ice 

while shaking for 15 minutes.  This preparation will be referred to as ‘‘chloride-

depleted.’’  Halide reconstitution was performed by suspension of SO4
–2-treated PSII in a 

SH (0.4 M sucrose, 50 mM HEPES-NaOH, pH 7.5) buffer containing either 15 mM NaCl 

(SHCl) or 15 mM NaBr (SHBr).  These preparations will be referred to as ‘‘chloride-
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exchanged’’ and ‘‘bromide-exchanged’’ samples.  Solvent isotope exchange was 

performed on chloride-exchanged PSII as described above, except that 2H2O (Cambridge 

Isotopes Laboratories, Andover, MA, 99% 2H) replaced 1H2O as the solvent.  The p2H of 

the 2H2O buffer is reported as the uncorrected pH meter reading; the p2H was adjusted 

with NaO2H (Cambridge Isotopes laboratories, 99.5% 2H).  For some comparative 

experiments, salt-washed PSII was prepared according to a method previously described 

[53].  The final resuspension buffer contained SMN and 20 mM CaCl2. 

 FT-IR measurements were conducted at p1H or p2H 7.5 as previously described 

[53, 54].  Briefly, samples for FT-IR analysis were mixed with 0.65 mM recrystallized 

2,6-dichlorobenzoquinone (DCBQ) and 7.5 mM K3Fe(CN)6 as electron acceptors and 

centrifuged.  The pellet was spread onto a CaF2 window, and a second CaF2 window was 

placed over the sample.  The windows were sealed with vacuum grease and wrapped with 

parafilm to control sample hydration.  A doubled Nd:YAG laser (Continuum, Santa 

Clara, CA) was used to provide a 532 nm, 35 mJ (cm)–2 excitation pulse.  Samples were 

maintained at 4°C (1H2O) or 6°C (2H2O) during data collection.  A Bruker IFS/66vs 

spectrometer (Bruker Optics, Billerica, MA) equipped with a MCT detector (Infrared 

Associated Inc., Stuart, FL) was employed.  Data acquisition parameters were: resolution, 

8 cm–1; zero filling, four levels; apodization function, Happ-Genzel; mirror velocity, 60 

kHz; phase correction, Mertz.  The sample was given one saturating laser pulse followed 

by a 20 min dark adaptation to synchronize all reaction centers in the S1 state.  The 

sample was then given a train of laser pulses separated by 15 s of rapid scan data 

collection.  Difference spectra were generated by calculating the ratio of single beam 

spectra collected before and after each flash and then converting the ratio to absorbance.  
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To measure the intensity of the amide II band, data were ratioed to an open beam 

background and then converted to absorbance. To eliminate any small differences in 

concentration or pathlength, data were normalized to an amide II absorbance of 0.5 

absorbance units [53, 54]. The hydration was adjusted to give a 3370 cm–1 (1H2O buffers) 

or a 2500 cm–1 (2H2O buffers) to amide II absorbance ratio of greater than 3.  To 

construct double difference spectra, data were scaled to give equal intensity in the 2300-

2200 cm–1 region, in which the vibrational bands of ferricyande and ferrocyanide 

contribute.  This corrects for any differences in the amount of charge separation.  The 

number of spectra averaged was 93 for chloride-exchanged PSII in 1H2O buffer, 89 for 

bromide-exchanged PSII in 1H2O buffer, 76 for chloride-depleted PSII in 1H2O buffer, 

and 80 for chloride-exchanged PSII in 2H2O buffer. 

 

Results 

 Table 1 presents steady state oxygen evolution rates for chloride-depleted, sulfate-

treated PSII and control, untreated PSII in various buffers.  When assayed at pH 6.0 and 

pH 7.5, untreated PSII had oxygen rates of 750 ± 90 µmol O2 (mg chl-h)–1 and 440 ± 70 

µmol O2 (mg chl-h)–1, respectively.  As expected from previous work [31], sulfate 

treatment resulted in a complete suppression of oxygen evolution activity at pH 7.5 (≤ 10 

µmol O2 (mg chl-h)–1).  Under these conditions, hydroxide ion is believed to be bound to 

the OEC anion binding site, and sulfate is a non-interacting anion [29, 38, 44].  Table 1 

shows that addition either of chloride or bromide resulted in the equivalent reconstitution 

of oxygen-evolving activity at pH 7.5, demonstrating that this procedure exchanges 

bromide into the OEC chloride site. 
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Table 1.  Steady-state oxygen evolution rates for sulfate-treated and untreated PSII at pH 
6.0 and 7.5. 
 

pH Assay buffera Untreated PSII Sulfate-treated PSII 
6.0 SMCl 750 ± 90 370 ± 60 
7.5 SHCl 440 ± 70 200 ± 20 
7.5 SHBr 490 ± 30 220 ± 20 
7.5 SHU 20 ± 10 10 ± 6 
7.5 SH 280 ± 40 30 ± 10 

a Activity was measured in buffers containing 400 mM sucrose (S), 50 mM MES-NaOH, pH 6.0 (M), 50 
mM HEPES-NaOH, pH 7.5 (H), 0.5 mM DCBQ, 1 mM K3Fe(CN)6, and either 15 mM sodium bromide 
(Br), 15 mM sodium chloride (Cl), 50 mM sodium sulfate (U), or no added anion.  Oxygen evolution 
activities are reported in µmol O2 (mg Chl-h)–1.  The reported values are the average of 12 measurements.  
 

 

As expected [31], sulfate treatment was associated with loss of the 24 and 18 kDa 

extrinsic subunits (data not shown).  Also, as previously described [31], the addition of 

calcium had little effect on the oxygen-evolving activity of sulfate-treated, chloride-

depleted PSII (data not shown), indicating that sulfate treatment does not remove calcium 

from the OEC.  Table 2 shows the effects of increasing concentrations of chloride on the 

oxygen-evolving activity of BBY membranes at pH 7.5.  Increasing concentrations of 

chloride dramatically stimulate the oxygen-evolving activity of chloride-depleted PSII, 

but have a less significant effect on the activity of untreated PSII at pH 7.5.  A 

concentration of 15 mM chloride, which was used in the FT-IR spectroscopic 

experiments described below, reconstitutes the majority (~ 80%) of oxygen-evolving 

activity at pH 7.5. 

 Comparative FT-IR experiments on chloride-depleted, chloride-exchanged, and 

bromide-exchanged samples were conducted at pH 7.5 to insure the maximum level of 

chloride exchange.  For example, consistently higher levels of residual activity, attributed  
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Table 2.  Chloride dependence of PSII oxygen evolution. 
 

pH [Cl–] (mM) PSII Sulfate treated PSII 
6.0a 15 750 ± 90b 370 ± 60 
7.5c 0 490 ± 10 60 ± 4 
7.5 10 540 ± 10 240 ± 8 
7.5 15 590 ± 10 260 ± 9 
7.5 25 570 ± 20 310 ± 10 
7.5 50 610 ± 2 330 ± 2 
7.5 100 560 ± 20 330 ± 10 

a Assays at pH 6.0 were performed in a buffer containing 400 mM sucrose, 50 mM MES-NaOH, pH 6.0, 
15 mM NaCl, 0.5 mM DCBQ, and 1 mM K3Fe(CN)6. 
b Oxygen evolution activities are reported in µmol O2 (mg Chl-h)–1.  The reported values are the average of 
three measurements. 
c Assays at pH 7.5 were performed in a buffer containing 400 mM sucrose, 50 mM HEPES-NaOH, pH 7.5, 
indicated concentrations of NaCl, 0.5 mM DCBQ, and 1 mM K3Fe(CN)6. 
 

 

to higher levels of contaminating chloride, were observed when chloride-depleted 

samples were assayed at pH 6.0 in sulfate buffer (60 ± 30 µmol O2 (mg chl-h)–1), 

compared to assay at pH 7.5 in sulfate buffer (table 1, 10 ± 6 µmol O2 (mg chl-h)–1). 

 Figure 1 shows the 2200-1200 cm–1 region of difference FT-IR spectra acquired 

from untreated, control PSII samples at pH 6.0 with one (figure 1A, black line), two 

(figure 1B, black line), three (figure 1C, black line), and four (figure 1D, black line) 

saturating, 532 nm flashes.  Samples were dark adapted before data acquisition to set the 

OEC in the S1 state.  The data in figure 1 resemble spectra previously assigned to the S1′ 

to S2′ (A), S2′ to S3′ (B), S3′ to S0′ (C), and S0′ to S1′ (D) transitions (for example, see [49-

52]).  Dark-dark spectra in figure 1E exhibit the level of noise before the measurement. 

 In figure 1, the difference FT-IR spectra acquired from chloride-exchanged PSII 

samples at pH 7.5 are shown superimposed as the green lines (figure 1A-E).  pH 6.0 and 

pH 7.5 FT-IR spectra are similar except for changes in the amide I region [56] (1670- 
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Figure 1.  Difference FT-IR spectra of untreated PSII at pH 6.0 (black traces), salt-
washed PSII at pH 6.0 (red traces), and chloride-exchanged PSII at pH 7.5 (green traces).  
The spectra are associated with the first (A), second (B), third (C), and fourth (D) flashes 
to a dark-adapted sample in the S1 state.  In (E), dark-minus-dark controls are presented. 
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1650 cm–1) and increased intensity at 1478 cm–1 at pH 7.5.  This difference at 1478 cm–1, 

which is only observed after the long dark adaptation before the first flash, may be 

attributable to tyrosyl radical D•, which makes a contribution at this frequency [57, 58].   

 In figure 1, red line, data from salt-washed PSII at pH 6.0 are also superimposed 

[53].  Salt washing removes the 18 and 24 kDa subunits and increases accessibility to the 

OEC [59-61].  The miss parameter in salt-washed PSII is higher than chloride-depleted 

PSII [31], but the spectra, derived from salt-washed PSII, in figure 1, red line, show 

changes with flash number.  This indicates that S state advancement occurs in this 

preparation under the conditions of FT-IR spectroscopy.  We have recently used 

strontium editing in salt-washed PSII to identify the structural changes at the calcium site 

throughout the S state cycle.  A subsequent study of citrate PSII has obtained similar 

results, given the respective signal to noise ratios [62]. 

 Figure 2 shows the 2200-1200 cm–1 region of difference FT-IR spectra acquired 

from chloride-exchanged (green lines) and chloride-depleted samples (black lines) at pH 

7.5.  Chloride-depleted PSII samples are inhibited in oxygen evolution (tables 1 and 2).  

Chloride depletion is expected to block the S2 to S3 transition [31, 63-65].  As shown in 

figure 2A, after one flash, a S2′-minus-S1′ FT-IR spectrum was obtained in chloride-

depleted samples (black line).  However, substantial frequency and amplitude shifts were 

observed in this spectrum compared to the control (figure 2A, black line). 

 Surprisingly, in chloride-depleted PSII, the second flash produced a difference 

FT-IR spectrum on the 15 s time scale.  Evidence from multiple laboratories has shown 

that Mn is not oxidized on this transition; instead, a YZ
•S2 state is formed.  The lifetime of 
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Figure 2.  Difference FT-IR spectra of chloride-exchanged PSII at pH 7.5 (green traces) 
and sulfate-treated PSII, which have been depleted of chloride, at pH 7.5 (black traces).  
The spectra are associated with the first (A), second (B), third (C), and fourth (D) flashes 
to a dark-adapted sample in the S1 state. In (E), dark-minus-dark controls are presented. 
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this state has been reported to be 500 ms [32].  Our FT-IR experiments are conducted 

with a 15 s data acquisition time and a ~ 100 ms gap before the beginning of data 

acquisition, so direct contributions from YZ
• decay will not be detected.  For example, in 

Mn-depleted PSII (Tris washed), YZ
• has a similar lifetime [66], and reaction-induced 

FT-IR spectra on a similar time scale gave a flat line, with no defined spectral features 

relative to the baseline [67].  Therefore, we attribute the FT-IR spectrum, acquired on the 

second flash in chloride-depleted PSII, to a long-lived structural change in the OEC, 

which is driven by decay of YZ
•S2.  This structural change may correspond to a relaxation 

of the Mn ligand environment.  Spontaneous structural changes in the OEC have been 

detected with long dark adaptation [67]. 

 In figure 2C and D, the third and fourth flashes did not result in a well-defined 

FT-IR spectrum in the chloride-depleted sample.  This result is consistent with the 

expected block in S state advancement in the absence of chloride (see [32] and references 

therein). 

 The observed spectral differences on the first and second flash, when chloride-

exchanged and chloride-depleted samples are compared, can be identified through 

construction of a double-difference spectrum.  After correction for any small difference 

in concentration and pathlength, the spectra in figure 2A and B were subtracted (control-

minus-chloride depleted) to generate double difference spectra (figure 3A and B).  To 

appear in these double difference spectra, a vibrational band must be perturbed in 

frequency and/or amplitude by the S′ state transition and also perturbed by chloride 

removal.  Figure 3C shows a control subtraction, which was generated by subtracting 
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Figure 3.  Double difference FT-IR spectra showing the effect of chloride depletion on 
the data from figure 2 acquired with one flash (A) and two flashes (B) to a dark-adapted 
sample.  In (C), a representative double difference control is presented in which no 
vibrational bands are expected.  This control was constructed from the dataset acquired 
with the first flash in the chloride-exchanged sample. 
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one-half of the chloride-exchanged data set (first flash) from the other half of the dataset.  

Figure 3C will contain no vibrational bands, allows an estimation of the noise in the 

measurement, and shows that the vibrational bands observed in figure 3A and B are 

significant. 

 As observed in figure 3A, the removal of chloride has a dramatic effect on the 

spectrum acquired with the first flash.  Most of the spectral bands exhibit flash-induced 

changes in amplitude and frequency.  In particular, changes in frequency and amplitude 

are observed between 1680 and 1635 cm–1, between 1599 and 1563 cm–1, and in the 1400 

cm–1 region.  The spectrum acquired on the first flash has been assigned as a S2′-minus-

S1′ spectrum; the S1 to S2 transition corresponds to a Mn oxidation reaction (reviewed in 

[68]).  It has been suggested that the S1 to S2 oxidation reaction may be uncompensated 

by proton transfer and thus lead to the build up of charge on the OEC (reviewed in [46]).  

In such a case, a possible origin of the S2′-minus-S1′ FT-IR spectrum is an electrostatic 

effect (or Stark effect) on the frequencies of Mn ligand vibrations. Stark effects are 

sensitive to small changes in the magnitude and direction of an electric field [69].  

Therefore, the spectral changes observed in the absence of chloride may be due to an 

alteration in the arrangement of first and second shell ligands to the OEC.  This result is 

consistent with a chloride-binding site in close proximity to the Mn cluster. 

 On the second flash, we have suggested the possibility (see above) that the 

difference FT-IR spectrum reflects a delayed structural change in the Mn cluster, which is 

caused by YZ
• recombination.  When chloride is removed from PSII and replaced by 

hydroxide (figure 3B), the double difference spectrum exhibits spectral contributions that 
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Figure 4.  Difference FT-IR spectra of chloride-exchanged PSII (green traces) and 
bromide-exchanged PSII (black traces).  The spectra are associated with the first (A), 
second (B), third (C), and fourth (D) flashes to a dark-adapted sample in the S1 state.  In 
(E), dark-minus-dark controls are presented. 
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are observed mainly in the 1660-1630 cm–1 (amide I) and 1580-1530 cm–1 (amide II) 

spectral regions [56].  Since the frequencies of these bands are known to be sensitive 

mainly to hydrogen bonding, this result suggests that there is a change in the position and 

hydrogen bonding of the peptide backbone when chloride is depleted.  This change in 

protein structure may contribute to the block observed in S state advancement when PSII 

is depleted of chloride. 

 Figure 4 shows the 2200-1200 cm–1 region of difference FT-IR spectra acquired 

from chloride-exhanged PSII samples with one (figure 4A, green line), two (figure 4B, 

green line), three (figure 4C, green line), and four (figure 4D, green line) saturating, 532 

nm flashes.  The corresponding difference FT-IR spectra acquired from bromide-

exchanged samples are shown superimposed as the black lines (figure 4A-D).  Figure 4E 

is a control difference spectrum, which provides an estimate of the noise in the 

measurements.  An optical study has shown no significant change in the oscillation 

pattern of oxygen production in bromide-reconstituted samples [38].  This previous result 

indicates that there is little difference in the miss parameter when chloride-exchanged and 

bromide-exchanged samples are compared.  Consistent with this, the amplitudes of the 

CN vibrational bands of ferricyanide and ferrocyanide were similar in chloride-

exchanged and bromide-exchanged samples.  Bromide addition should have the effect of 

downshifting vibrational bands of amino acids, which interact with chloride through 

hydrogen bonding interactions [70, 71]. 

 After correction for any small difference in concentration and pathlength, the 

spectra in figure 4 were subtracted (chloride-minus-bromide) to generate ‘‘bromide- 
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Figure 5.  Bromide-edited double difference spectra constructed from the data in figure 4 
(chloride-minus-bromide).  The spectra are associated with the first (A), second (B), third 
(C), and fourth (D) flashes to a dark-adapted sample in the S1 state.  In (E), a 
representative double difference control is presented in which no vibrational bands are 
expected.  This control was constructed from the dataset acquired with the first flash in 
the chloride-exchanged sample. 
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edited’’ spectra (figure 5).  This bromide-editing method picks out Sn′ state dependent 

changes at the chloride site in the OEC.  Figure 5E shows a control subtraction.  The data 

in figure 5 suggest that each of the four flash-induced transitions is associated with a 

small, persistent perturbation of the OEC chloride site.  In particular, each of the four 

spectra is distinct and exhibits bromide-sensitive spectral features in the 1690-1630 cm–1 

region.  Figure 5B also shows an additional negative band at 1545 cm–1.  Possible 

assignments for the observed bands in figure 5A, C, and D are to arginine or to the 

peptide bond [56, 72].  For arginine, two CN vibrational bands are expected at ~1670 and 

~1630-40 cm–1 [70-72].  For the peptide bond vibrations, the amide I frequency is 

dependent on secondary structure content and hydrogen bonding [73], but for an alpha 

helical protein, the C=O vibration is expected at ~ 1660 cm–1.  In figure 5B, in which 

bands between 1680-1660 cm–1 and the band at 1545 cm–1 are both observed, we assign 

the observed spectral features to amide I and II vibrational modes or to the lysine side 

chain.  For the lysine side chain, NH3
+ bending modes are expected at ~ 1630 and ~ 1530 

cm–1 [72].  Taken together, these data indicate that each S state transition structurally 

perturbs the OEC chloride-binding site. 

 The data above provide evidence for changes in protein structure during the S 

state cycle.  Changes in structure can alter protein dynamics and thereby alter the extent 

of solvent isotope exchange.  To address this question, reaction-induced FT-IR 

spectroscopy was performed on chloride-exchanged PSII either in the presence of 1H2O 

or 2H2O.  The transmembrane regions of membrane proteins do not exchange readily (for 
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Figure 6.  Difference FT-IR spectra of chloride-exchanged PSII in 1H2O SHCl buffer at 
p1H 7.5 (green traces) and chloride-exchanged PSII in 2H2O SHCl buffer at p2H 7.5 
(black traces).  The spectra are associated with the first (A), second (B), third (C), and 
fourth (D) flashes to a dark-adapted sample in the S1 state.  In (E), dark-minus-dark 
controls are presented. 
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Figure 7.  2H2O-edited double difference spectra constructed from the data in figure 6 
(1H2O-minus-2H2O).  The spectra are associated with the first (A), second (B), third (C), 
and fourth (D) flashes to a dark-adapted sample in the S1 state.  In (E), a representative 
double difference control is presented in which no vibrational bands are expected.  This 
control was constructed from the dataset acquired with the first flash in the 1H2O-
containing sample. 
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example, see [74]).  In our case, the 2H2O exchange protocol involved resuspension and 

centrifugation from 2H2O buffers and was designed to probe exchange at readily 

accessible sites. 

 Figure 6A-D compares the 2200-1200 cm–1 region of difference spectra generated 

from chloride-exchanged PSII in 1H2O (green line) and 2H2O (black line) buffers as a 

function of flash number.  Control difference spectra are shown in figure 6E.  Double 

difference spectra were then constructed to identify the extent of solvent exchange (figure 

7).  Significant features are observed in the double difference spectra constructed on the 

first and second flash (figure 7A and B).  As described above, these spectral features, 

between 1690-1600 and 1590-1540 cm–1, are most likely assignable to protein amide I 

and II bands.  On the other hand, on the third and fourth flash (figure 7C and D), no 

significant spectral features are observed, compared to the control (figure 7E).  This 

result suggests that a change in protein dynamics occurs during or after the S3 transition. 

 

Discussion 

 In our experiments, chloride was removed from the PSII reaction center by sulfate 

incubation at pH 7.5.  Reconstitution either of chloride or bromide in this preparation 

restores oxygen evolution activity.  Sulfate is a non-activating anion [29, 38, 44].  

Comparison of vibrational frequencies in a chloride-exchanged sample with bromide-

exchanged and chloride-depleted PSII identifies structural changes at the OEC chloride 

site.  Using this approach, we report S state dependent perturbations of the PSII chloride 

site on each S state transition.  We also provide evidence for significant changes in 

protein dynamics during the S state cycle, using 2H2O exchange as a probe.  The detected 
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structural changes occur on long time scales compared to the water splitting reactions; 

however, the conformational changes are tightly coupled to water oxidation, because 

their vibrational spectra exhibit period four oscillations in frequency and amplitude [49, 

50]. 

 Previous work on the transmembrane halide pump, halorhodopsin, used bromide 

editing to identify arginine guanidino groups, which bind chloride [70].  In this protein, a 

chloride ion participates in hydrogen bonding interactions with the protonated Schiff base 

chromophore and a conserved arginine residue.  The difference in ionic radii for chloride 

and bromide resulted in frequency shifts for the hydrogen-bonded arginine, and the 

vibrational bands of the arginine were observed to be perturbed when the photoproduct 

was formed.  Vibrational spectroscopy of model compounds has also revealed halide 

dependent frequency shifts [71].  In this previous work, the frequency shifts, which were 

observed upon bromide substitution, were attributed to a weakening of a hydrogen 

bonding interaction with the bound arginine.  Similarly, the origin of the bromide-

induced frequency shifts in our spectra may also be due to changes in the hydrogen 

bonding of chloride ligands. 

 Optical spectroscopy in the UV has been used previously to investigate the role of 

chloride [31, 32, 38].  In this previous work, it was shown that, while the formation of the 

S2 and S1 states does not require chloride, the S3 to S0 and S2 to S3 transitions do require 

chloride [31].  Bromide reconstitution was shown to slow the S3 to S0 reaction, and it was 

suggested that bromide and chloride adjust the activation barrier of this step [38].  It has 

also been suggested that changes in chloride binding affinity occur during the S1 to S2 

and S2 to S3 transitions [32].  A change in binding affinity is consistent with an alteration 
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in the structure of the OEC chloride site.  If S state-induced structural changes did not 

occur at the chloride site, then bromide substitution would give the same bromide-edited 

spectrum on each flash.  However, we obtain a distinct bromide-edited spectrum on each 

S state transition.  Therefore, our data support the interpretation that structural changes 

occur at the chloride site on each S state transition.  These structural changes could either 

be due to an electrostatic effect on the chloride-binding site or to a more long-range 

conformational rearrangement, caused by carboxylate shifts or changes in hydrogen 

bonding and protonation, for example. 

 In the absence of chloride, evidence from multiple laboratories suggests that 

manganese oxidation occurs during the S1 to S2 transition (reviewed in [1]), but not 

during the S2 to S3 transition [31, 63-65].  However, chloride-depleted PSII exhibits no S2 

multiline signal [75].  Thermoluminesence measurements show a reversible decrease in 

the S2/S1 midpoint potential after removal of chloride [76], and the recombination rate of 

the S2 state is also slower in the absence of chloride [75].  These results suggest that the 

S2 state is structurally modified in the absence of chloride.  Such a change in the ligand 

environment of manganese with chloride removal is consistent with our results on 

chloride-depleted PSII, in which the FT-IR spectrum of the S1′ to S2′ transition exhibits 

frequency and amplitude shifts throughout the 1800-1200 cm–1 region, when compared to 

the chloride-exchanged control. 

 As expected on the basis of previous work, we have shown here that chloride-

depleted PSII exhibits no significant FT-IR signals on the third and fourth flashes, i.e., 

from the S3 to S0 and S0 to S1 transitions.  However, a difference FT-IR signal is observed 

on the second flash, in spite of the fact that the chloride-depleted PSII samples exhibit no 
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residual oxygen evolution under the same conditions (table 1), and that no FT-IR signal is 

observed on the third and fourth flash.  Assignment of this spectrum to a photooxidation-

induced perturbation of manganese ligands on this transition is then problematic.  Instead, 

we favor the assignment of this spectrum to a conformational relaxation in the 

coordination of the manganese cluster. 

 Solvent isotope exchange provides a method to probe protein dynamics and 

conformational flexibility [77, 78].  Solvent exchange rates are determined by protein 

dynamics and by the intrinsic exchange rate of the exchanging group.  Reaction-induced 

FT-IR spectroscopy detects 2H2O-induced shifts in the frequencies of the peptide bond, 

when spectra are constructed from chloride-exchanged PSII with one and two flashes.  

However, when three and four flashes are given to the same chloride-exchanged 

sample,there is no significant 2H2O-induced change in the FT-IR spectrum.  Assuming no 

change in intrinsic exchange rates, these results suggest S state dependent changes in the 

flexibility of the OEC.  Previous work has shown 2H2O isotope-dependent changes in the 

reaction-induced difference FT-IR spectra of intact, cyanobacterial PSII [79].  In that 

study, no double difference spectra were reported, but the effects of 2H2O exchange 

appeared to be small and were similar on each flash.  Comparison of this previous result 

with our data suggests that the chloride-exchange process may induce additional 

conformational flexibility in the OEC.  Note that the bromide-edited and 2H2O-edited 

spectra both exhibit bands in the 1690-1620 cm–1 region of the spectrum, indicating that 

both procedures alter the frequencies of peptide bond, arginine, and/or lysine side chains 

near the OEC. 
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 The effect of bromide replacement and chloride depletion on the S2′-minus-S1′ 

spectrum has been reported previously [80, 81].  In that previous study, chloride was 

removed by salt washing and dialysis, not by sulfate treatment, as employed here.  In 

spite of this difference in chloride removal method, the effects of bromide exchange and 

chloride removal on the S2′-minus-S1′ spectrum (first flash) appear to be similar in [80] 

and this work.  To our knowledge, the effect of bromide substitution and chloride 

depletion on the other S state transitions has not been previously reported. 

 

Summary 

 Our results show that the chloride site is altered by redox reactions at the OEC, 

suggesting that it is in close proximity to the Mn cluster.  We also present evidence that 

chloride depletion causes structural changes in the OEC, which may contribute to the 

inhibition of oxygen evolution in the absence of chloride.  Finally, we have obtained 

evidence for flash-induced changes in solvent isotope exchange, which are indicative of 

alterations in protein conformational flexibility during the water oxidizing cycle. 
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Abstract 

 In oxygenic photosynthesis, photosystem II (PSII) is the multi-subunit membrane 

protein responsible for the oxidation of water to O2 and the reduction of plastoquinone to 

plastoquinol.  One electron charge separation in the PSII reaction center is coupled to 

sequential oxidation reactions at the oxygen-evolving complex (OEC), which is 

composed of four manganese ions and one calcium ion.  The sequentially oxidized forms 

of the OEC are referred to as the Sn states.  S1 is the dark-adapted state of the OEC.  

Flash-induced oxygen production oscillates with period four and occurs during the S3 to 

S0 transition.  Chloride plays an important, but poorly understood role in photosynthetic 

water oxidation.  Chloride removal is known to block manganese oxidation during the S2 

to S3 transition.  In this work, we have used azide as a probe of proton transfer reactions 

in PSII.  PSII was sulfate-treated, in order to deplete chloride, and then treated with azide.  

Steady state oxygen evolution measurements demonstrate that azide inhibits oxygen 

evolution in a chloride-dependent manner and that azide is a mixed or non-competitive 

inhibitor.  This result is consistent with two azide binding sites, one at which azide 
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competes with chloride and one at which azide and chloride do not compete.  At pH 7.5, 

the Ki for the competing site was estimated as 1 mM, and the Ki′ for the uncompetitive 

site was estimated as 8 mM.  Vibrational spectroscopy was then used to monitor 

perturbations in the frequency and amplitude of the azide antisymmetric stretching band.  

These changes were induced by laser-induced charge separation in the PSII reaction 

center.  The results suggest that azide is involved in proton transfer reactions, which 

occur before manganese oxidation, on the donor side of chloride-depleted PSII. 

 

Introduction 

 Photosystem II (PSII) is a chlorophyll-containing protein complex found in the 

thylakoid membrane of cyanobacteria, algae, and higher plants.  PSII catalyzes the light-

induced oxidation of water and reduction of plastoquinone (reviewed in [1, 2]). The 

water-splitting reactions provide molecular oxygen, which is necessary for the 

maintenance of aerobic life on earth.  Chlorophyll (chl) is the primary donor during the 

light-induced electron transfer reactions, which lead to the production of a 

transmembrane, charge-separated state.   Two plastoquinone acceptors, QA and QB, are 

sequentially reduced on the stromal side of the PSII reaction center.   On the PSII 

lumenal side, a chl cation radical, P680
+, oxidizes tyrosine 161 (YZ) of the D1 polypeptide 

to produce a tyrosyl radical (YZ
•).  YZ

• then oxidizes the oxygen-evolving complex 

(OEC), which is composed of four manganese and one calcium ion.  X-ray diffraction has 

been used to determine the structure of PSII at 3.8-3.0 Å [3-7].  However, X-ray induced 

damage to the OEC complicates interpretation of the manganese ligand environment in 

the current structures [5, 8, 9]. 
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Four sequential light-induced charge separations are required to produce one 

oxygen molecule from two water molecules.  These sequential reactions are stored as 

oxidation reactions at the OEC.  Accordingly, the Mn4Ca cluster cycles among five 

oxidation states in the production of molecular oxygen [10].  The oxidation states are 

labeled S0 - S4, where the subscript describes the number of oxidizing equivalents stored.  

The rate of OEC oxidation slows as charge is accumulated, and there is a period four 

pattern of oxygen release [11, 12].  Oxygen release occurs during the S3 to S0 transition, 

in which the transient S4 state is formed.  Information about the S4 state has been 

obtained by X-ray absorption spectroscopy [12], electron paramagnetic resonance (EPR) 

spectroscopy [13], and transient infrared spectroscopy [14].  UV spectroscopy has been 

used to probe the identity of S state intermediates accumulated at high oxygen pressure 

[15]. 

Chloride is required to achieve the maximum rate of PSII oxygen evolution 

activity [16-19].  Although chloride is known to bind near the OEC [20, 21], chloride has 

not yet been located in the PSII X-ray structures and is not an identified component in the 

Mn4Ca cluster [3-7].  Previously, chloride has been proposed to bind to amino acid side 

chains [22-24] or directly to metal ions [16]. 

Chloride depletion alters the functional properties of the OEC.  Chloride-

depletion changes the S2 state EPR signals [25, 26], and S state transition-associated FT-

IR spectra [24, 27].  Chloride removal also inhibits manganese oxidation [28-34].  

Previously, chloride has been proposed to have a role in structural maintenance of the 

OEC [35], as a manganese ligand [16], as a facilitator of proton transfer [19], as an 

adjustor of the OEC midpoint potential [36], and/or as an activator of substrate [37].   
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 In PSII, azide has been shown to be a reversible inhibitor [38].  Evidence has been 

presented for azide interactions with both the PSII donor-side chloride site and the PSII 

acceptor-side.  Evidence for a donor-side azide binding site near the OEC includes 

perturbation of the S2 state EPR [26] and electron spin-echo envelope modulation 

(ESEEM) [39] signals.  In addition, azide-induced inhibition of semiquinone anion (QA
–) 

oxidation is partially reversed by bicarbonate [40].  This result suggests a second, low 

affinity azide binding site on the PSII acceptor side. 

 It has been proposed that proton transfer precedes manganese oxidation on some 

of the S state transitions [12-14].  To gain more insight into proton transfer reactions 

occurring in the OEC, we have used azide as a vibrational spectroscopic probe. The 

antisymmetric stretching vibration of azide is sensitive to changes in protonation and 

hydrogen bonding, because these interactions stabilize the triple-bonded, valence bond 

structures [41].  In our experiments, PSII was chloride-depleted by treatment with sulfate 

[24, 32] and was then treated with azide.  Reaction-induced, rapid scan FT-IR 

spectroscopy and flash excitation were then used to step PSII through the accessible S 

state transitions, and the effect of light-induced electron transfer on the azide vibrational 

spectrum was assessed.  Previous FT-IR studies (for previous examples, see [42-46]) 

have shown that long-lived conformational changes occurring during the S state cycle can 

be monitored, even on the slow (seconds) time scale of rapid scan FT-IR spectroscopy 

[47].  Our work provides evidence that azide inhibition is due to changes in proton 

transfer reactions on the PSII donor side. 
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Materials and Methods 

 PSII membranes were isolated from market spinach as previously described [48].  

Activity was measured with a Clark-type electrode and either recrystallized 2,6-

dichlorobenzoquinone (DCBQ) or recrystallized paraphenylbenzoquinone (PPBQ) as an 

electron acceptor [49].  Chloride-depleted samples were prepared by sulfate treatment as 

previously described [24, 32].  Immediately before the experiment, PSII membranes were 

exchanged into pH 7.5 buffer (400 mM sucrose, 50 mM HEPES-NaOH, pH 7.5) by 

centrifugation and resuspension.  Exchanged samples were incubated in sulfate buffer 

(400 mM sucrose, 50 mM HEPES-NaOH, pH 7.5, and 50 mM Na2SO4) for 15 minutes 

while shaking on ice and in darkness.  After centrifugation, the chloride-depleted samples 

were suspended again in pH 7.5 buffer.  Manganese-depleted samples were prepared as 

previously described using alkaline tris(hydroxymethyl)aminomethane (Tris) [50].  

Manganese-depleted samples were exchanged into pH 7.5 buffer, displayed no oxygen-

evolving capability, and were stored at –70°C until use.  The final Tris concentration for 

the manganese-depleted samples was estimated to be < 6 mM.  Azide-exchanged samples 

were prepared by suspension of chloride-depleted or manganese-depleted PSII into buffer 

containing 400 mM sucrose, 50 mM HEPES-NaOH, pH 7.5, and indicated concentrations 

of sodium 14N-azide or terminally labeled (15N14N14N) sodium 15N-azide (98% 15N 

enriched, Cambridge Isotope Laboratories, Andover, MA).  Solvent isotope exchange 

was achieved by performing each step of the chloride depletion protocol in 2H2O-

containing buffers (99.8% 2H enriched, Isotec, Miamisburg, OH).  The p2H is reported as 

the uncorrected pH meter reading [51]. 
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 Reaction-induced FT-IR difference spectroscopy was performed at pH 7.5 as 

previously described [24, 46, 47].  Chloride-depleted samples were concentrated with dry 

nitrogen gas to give an O-H stretching absorbance (3370 cm–1) to amide II absorbance 

ratio of ≥ 3.  Manganese-depleted samples were concentrated with nitrogen for ten 

minutes.  Data acquisition parameters were as follows: 8 cm–1 resolution; four levels of 

zero filling; Happ-Genzel apodization function; 60 KHz mirror speed; Mertz phase 

correction.  Samples were given a single saturating 532 nm laser flash followed by 20 

minutes of dark adaptation in order to set all reaction centers in the S1 state.  Each 

subsequent flash was followed by 15 seconds of rapid scan data collection at 4°C.  S state 

difference spectra were created by ratio of data taken before and after flash excitation, 

followed by conversion to absorbance.  All data were normalized to an amide II intensity 

of 0.5 absorbance units (AU) in order to eliminate differences in sample pathlength [24, 

46, 47].  The amide II band intensity was determined from an infrared absorption 

spectrum, which was generated through the use of a blank background scan. 

 

Results 

Table 1 presents representative steady state oxygen evolution rates for sulfate-

treated PSII (see also [24]).  Sulfate treatment is known to dissociate the 24 and 18 kDa 

extrinsic subunits and to decrease the chloride binding affinity, allowing for quantitative 

ion release [18, 20, 24, 32, 52].  When assayed at pH 6.0 and pH 7.5 in the presence of 

DCBQ, untreated PSII had oxygen rates of > 750 µmol O2 (mg chl-h)–1 and > 500 µmol 

O2 (mg chl-h)–1, respectively.  Sulfate treatment resulted in a complete suppression of 
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Table 1. Oxygen evolving activity of sulfate-treated PSII at pH 6.0 and 7.5.a 
 

10 mM Ca+2 10 mM Cl– pH 6.0b pH 7.5c 

– – 60 ± 30 30 ± 10 
+ + 460 ± 60 240 ± 3 
– + 370 ± 60 200 ± 20 
+ – 46 ± 7 9 ± 1 

a Oxygen evolving activity measured at 25°C and listed with units of µmol O2 (mg chl-h)–1 [24].  Values 
are reported plus or minus one standard deviation.  All measurements are an average of at least three 
individual experiments.  Each measurement performed with 1 mM ferricyanide and 0.5 mM DCBQ. 
b Conditions were 400 mM sucrose and 50 mM MES-NaOH (pH 6.0). 
c Conditions were 400 mM sucrose and 50 mM HEPES-NaOH (pH 7.5). 

 

 

oxygen evolution activity at pH 7.5 (< 30 µmol O2 (mg chl-h)–1).  Table 1 demonstrates 

that addition of chloride resulted in the reconstitution of the majority of oxygen-evolving 

activity at pH 6.0 (460 µmol O2 (mg chl-h)–1) and pH 7.5 (240 µmol O2 (mg chl-h)–1).  As 

expected [32], calcium addition had little effect on oxygen-evolving activity in sulfate-

treated PSII (table 1).  Thus, sulfate treatment allows the effect of chloride depletion to be 

studied separately from the effects of calcium depletion [24, 32].   In addition, sulfate-

treated samples reconstituted with chloride are known to produce a higher flash yield of 

the S state transitions, compared to other methods of chloride depletion [32]. 

 Figures 1 and 2 demonstrate that azide inhibits PSII oxygen evolution in a 

chloride-dependent manner, both at pH 6.3 (figures 1A and 2A) and 7.5 (figures 1B and 

2B).  The direct plots (figure 2) and the Lineweaver-Burk double reciprocal plots (1/vo 

versus 1/[Cl–]; figure 1) give the dependence of the initial oxygen evolution velocity on 

the azide concentration.  The color coded, superimposed lines were generated with Vmax, 

Km, Ki, and Ki′ values,  derived from fits to the hyperbolic oxygen evolution plots (figure 
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Figure 1.  Lineweaver-Burk double-reciprocal plots, considering chloride as the substrate 
and showing the inhibitory effect of azide on PSII oxygen evolution activity.  PSII was 
treated with sulfate in order to deplete chloride, and the PSII sample was then treated 
with 0 (red), 0.25 (orange), 0.38 (green), 0.50 (light blue), 0.75 (dark blue), or 1.0 
(purple), 1.8 (black), and 2.5 (brown; pH 7.5 only) mM N3

–.  In (A), the assay conditions 
were taken from reference [38] and employed 400 mM sucrose, 50 mM MES-NaOH, pH 
6.3, and 2 mM recrystallized PPBQ.  In (B), the assay conditions were 400 mM sucrose, 
50 mM HEPES-NaOH, pH 7.5, and 2 mM recrystallized PPBQ.  The concentrations of 
chloride and azide were adjusted by addition from 1 M NaCl and 100 mM NaN3 stock 
solutions, respectively, in the appropriate assay buffer.  Error bars represent one standard 
deviation. 
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Figure 2.  Michaelis-Menten plots, considering chloride as the substrate, and showing the 
effect of azide inhibition on PSII oxygen evolution activity.  PSII was treated with sulfate 
in order to deplete chloride, and the PSII sample was then treated with 0 (red), 0.25 
(orange), 0.38 (green), 0.50 (light blue), 0.75 (dark blue), or 1.0 (purple), 1.8 (black), and 
2.5 (brown; pH 7.5 only) mM N3

–.  In (A), the assay conditions were taken from 
reference [38] and employed 400 mM sucrose, 50 mM MES-NaOH, pH 6.3, and 2 mM 
recrystallized PPBQ.  In (B), the assay conditions were 400 mM sucrose, 50 mM 
HEPES-NaOH, pH 7.5, and 2 mM recrystallized PPBQ. The concentrations of chloride 
and azide were adjusted by addition from 1 M NaCl and 100 mM NaN3 stock solutions, 
respectively, in the appropriate assay buffer.  Error bars represent one standard deviation. 
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2).  The double reciprocal pots were fit with the equation: 
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where Ki is the azide inhibition constant for the competitive site and Ki′ is the azide 

inhibition constant for the uncompetitive site.  At pH 6.3, the Lineweaver-Burk results 

(figure 1A) are consistent with a family of lines that intersect to the left of the 1/vo axis.  

This pattern provides evidence for reversible, non-competitive (or mixed) inhibition 

between azide and chloride, in agreement with an earlier report [38].  In a Michaelis-

Menten interpretation, this type of inhibition occurs if azide simultaneously competes at 

the chloride site both in the enzyme (competitive site) and in the enzyme-substrate 

complex (uncompetitive site).  Assuming that azide is a mixed inhibitor, fits to the direct 

plots (figure 2A) were used to yield kinetics constants.  The data were fit using the 

Michealis-Menten equation for mixed inhibition,  
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At pH 6.3, the Km for chloride was derived as 0.7 mM, and the Vmax was derived as 360 

µmol O2 (mg chl-h)–1.  The Ki for azide binding to the competitive site was derived as 0.3 

mM and the Ki for the uncompetitive site was derived as 2 mM.  Note that the 

uncompetitive azide site may correspond to an acceptor side binding event (see 

discussion below).  Previously, Dixon and Cornish-Bowden plots were used to estimate 

the azide inhibition constants for the competitive and uncompetitive sites at pH 6.3 in 

sodium chloride treated PSII samples [38], and indistinguishable kinetic constants were 

obtained.   
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When pH 6.3 (figures 1A and 2A) and pH 7.5 (figures 1B and 2B) data were 

compared, a similar pattern of mixed inhibition was observed.  Fits to the direct plots 

were again used to derive kinetic constants (figure 2B).  At pH 7.5, the Km for chloride 

was derived as 3 mM, the Vmax was derived as 330 µmol O2 (mg chl-h)–1, the Ki for azide 

binding to the competitive site was derived as 1 mM, and the Ki for the uncompetitive 

site was derived as 8 mM.  The Lineweaver-Burk plots exhibit some non-linearity at high 

azide concentrations (figure 1; > 2.5 mM azide).  Azide inhibition was found to be 

reversible at pH 7.5 (data not shown), as previously reported at pH 6.3 [38].  Taken 

together with previous work [38], figure 1 illustrates that the azide inhibition constant is 

similar in sulfate-treated PSII (figure 1) and other PSII preparations [38]. 

Figure 1 suggests that azide can be used as a spectroscopic probe, which will bind 

on the donor side of sulfate-treated PSII.  The azide antisymmetric stretching band has 

been used previously to monitor protonation reactions in other enzymes, including 

bacteriorhodopsin [53] and sensory rhodopsin [54].  The frequency of the antisymmetric 

azide band falls outside the normal range of peptide and biological cofactor infrared 

absorption (1800-1200 cm–1), facilitating detection of azide even in complex biological 

systems [53, 55]. 

In order to probe proton transfer reactions at the PSII azide site, we employed 

reaction-induced difference FT-IR spectroscopy.  Figure 3A and B show the results of 

three consecutive 532 nm laser pulses (red, 1 flash; green, 2 flashes; blue, 3 flashes) on 

the azide antisymmetric stretching vibration in oxygen-evolving PSII at pH 6.0 and 7.5, 

respectively.  Chloride was not depleted in these samples before the addition of 15 mM 
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Figure 3.  Difference FT-IR spectra showing flash-induced perturbation of the azide 
antisymmetric stretching band in untreated, manganese-depleted, or chloride-depleted 
PSII samples. Difference spectra were created by ratio of data taken before and after flash 
excitation, followed by conversion to absorbance.  In (A-E), the results of three 
consecutive 532 nm laser flashes to a preflashed, dark-adapted PSII sample are presented 
in red (flash 1), green (flash 2), and blue (flash 3).  In (A), untreated PSII contained 400 
mM sucrose, 50 mM MES-NaOH, pH 6.0, and 15 mM NaCl (avg. of 12).  In (B), 
untreated PSII contained in 400 mM sucrose, 50 mM HEPES-NaOH, pH 7.5 (pH 7.5 
buffer) (avg. of 15).  In (C), manganese-depleted PSII contained pH 7.5 buffer (avg. of 
38).  In (D), chloride-depleted PSII contained pH 7.5 buffer (avg. of 39).  In (A-D), the 
sample also contained 15 mM N3

–.  In (E), chloride-depleted PSII in pH 7.5 buffer 
contained 15 mM [15N(14N)2]– (avg. of 21).  In F, a dark-minus-dark control was 
generated from the data set in (D).  Delta absorbance on the y-axis indicates that the 
spectra show changes in absorbance.  All samples contained 1.5 mM recrystallized 
DCBQ.  The tick marks on the y-axis represent 5x10–4 AU. 
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azide.  The difference spectra were constructed using data acquired following each flash 

and data acquired before the three laser flashes.  In oxygen-evolving PSII, these spectra 

correspond to the S1 to S2 (one flash), S1 to S3 (two flashes), and S1 to S0 (three flashes) 

transitions.  Our previously published work, analyzing the mid-infrared region of the 

spectrum, demonstrates that S state advancement is detectable under these conditions 

[24].  Azide bands were not observed in PSII without flash excitation (figure 3F) or in 

mixtures of azide, DCBQ acceptor and other buffer components, which did not contain 

PSII, but received flash excitation (data not shown). 

Figure 3A and B show that PSII charge separation perturbs bands assignable to 

the azide antisymmetric stretching mode either at pH 6.0 (figure 3A) or at pH 7.5 (figure 

3B).  In both data sets, two band shifts at 2124 (–) /2111 (+) cm–1 and 2102 (–) /2088 (+) 

cm–1 are observed.  These bands are significant compared to the noise in the 

measurement, as assessed by comparison to a dark-minus-dark spectrum (figure 3F).  The 

pH 7.5 spectrum (figure 3B) displays additional negative bands at 2078 and 2062 cm–1, 

which are not present at pH 6.0 (figure 3A).  In the PSII samples used in figure 3A and B, 

chloride has not been depleted.  Therefore, we assign azide bands, observed under these 

conditions, to a PSII acceptor side binding site.  In agreement with this interpretation, 

similar perturbations of azide bands were also observed in manganese-depleted PSII at 

pH 7.5 (figure 3C).   These manganese-depleted samples do not contain a chloride-

binding site, because the OEC has been removed by Tris treatment [20, 52].  The small 

increase in azide band amplitude on each flash in (figure 3A-C) may be due to a light-

induced conformational change, which allows increased access to the acceptor side 

binding site. 
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Figure 3D reveals the effect of PSII charge separation on azide bands in chloride-

depleted samples.  Reaction-induced FT-IR spectra were recorded at pH 7.5. While the S1 

to S2 transition (first flash) proceeds in chloride-depleted PSII, the S2 to S3 transition 

(second flash) is blocked at the level of manganese oxidation [28-34].  Thus, in chloride-

depleted samples, two flashes generate the S2YZ
• state.  This S2YZ

• or S3′ state has a 

halftime of ~ 0.5 s [32].  Previous FT-IR studies of chloride-depleted samples have 

shown that structural changes occur in the OEC during the S2 to S3′ transition, even 

though manganese oxidation is blocked [24].  These structural changes are long-lived and 

occur on the seconds time scale [24], as are other rapid-scan, FT-IR-detected structural 

changes during the normal S state cycle [46, 47]. 

The reaction-induced spectra obtained with a single flash (S1 to S2 transition) 

(figure 3D, red) are similar to data acquired in manganese-depleted PSII (figure 3C, red).  

This can be ascertained in figure 4A, in which these spectra subtract to give a flat 

baseline (compare to figure 4C).  This result suggests that there is no significant 

perturbation of the azide donor-side binding site on the first flash.  Spectra acquired with 

a second (figure 3D, green) and third (figure 3D, blue) flash (S1 to S3′ transition) are 

similar to each other and exhibit new positive bands at 2111 and 2040 cm–1 and increased 

negative intensity at ~ 2062 cm–1, compared to manganese-depleted PSII.  In these 

samples, both the second and third flashes correspond to the inhibited S1 to (S2YZ
•) S3′ 

transition, because charge recombination occurs in the time between the flashes [56].  

The frequencies of all observed bands were downshifted when terminally 15N labeled 

azide (figure 3E) was employed, confirming the spectral assignment to the azide 
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Figure 4. Double difference FT-IR spectra showing perturbations of azide antisymmetric 
stretching bands.  To identify any structural changes at the OEC azide site, manganese-
depleted PSII data were subtracted from chloride-depleted PSII data. Double difference 
spectra were created by subtraction of data shown in figure 2C and D.  In (A), subtracted 
spectra were acquired with one laser flash (figure 2C and D, red).  In (B), subtracted 
spectra were acquired with three laser flashes (figure 2C and D, blue).  In (C), a control 
double difference spectrum, in which no vibrational bands are expected, was generated 
by subtraction of one half of the data in (figure 2D, red) from the other half of the data set 
and dividing by the square root of two.  Delta absorbance on the y-axis indicates that the 
spectra show changes in absorbance. All samples contained 1.5 mM recrystallized 
DCBQ.  The tick marks on the y-axis represent 5x10–4 AU. 

 

 

antisymmetric stretching band. 

A double difference spectrum (figure 4B), chloride-depleted-minus-manganese-

depleted, can be used to remove acceptor-side and any other non-OEC azide 

contributions.  This method will identify azide bands, which are due to binding at the 

OEC azide site and which are perturbed on the second and third flash.  This double 

difference spectrum reveals three negative bands, at 2093, 2078, and 2066 cm–1, which 

shift both to higher and lower frequency with three flash excitation.  The positive bands 

are observed at 2116, 2052, and 2040 cm–1.  The intensities are significant compared to a 

control double difference spectrum, in which no vibrational bands are expected (figure 
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4C).  The observation of these unique azide spectral features demonstrates that light-

induced charge separation perturbs the OEC azide binding site during the S1 to (S2YZ
•) 

S3′ transition in chloride-depleted PSII.  The observation of multiple bands may be 

consistent with multiple azide orientations in its PSII binding site.  In the presence of 

buried charges, the orientation of azide can influence the vibrational frequency through a 

Stark effect.  Alternatively, sulfate treatment or extrinsic subunit removal may introduce 

heterogeneity at the PSII donor side.  Such heterogeneity may cause the structure of the 

azide binding site to vary slightly from one PSII complex to another. 

In the double difference spectrum (figure 4B), negative bands correspond to 

bound azide in the dark-adapted S1 state.  The antisymmetric stretching vibration of azide 

is expected at 2050 cm–1 in water [53].  In hydrophobic solvents, such as dimethyl 

sulfoxide, the band shifts down to 2018 cm–1 [53].  Protonation of azide upshifts these 

bands into the 2148-2129 cm–1 region [41, 53, 55].  Hydrogen bonding is also expected to 

upshift the antisymmetric stretching vibration [41].  Therefore, the characteristic 

frequencies of the observed negative bands in figure 4B, at 2093, 2078, and 2066 cm–1, 

suggest that azide is bound in the S1 state in a hydrogen-bonded, but deprotonated form, 

consistent with the expected azide pKA of ~ 4.7 [57]. 

The data acquired with a single flash (figure 3D, red) show that no significant 

azide frequency perturbation occurs at the azide donor-side site during the S1 to S2 

transition (see also double difference spectrum, figure 4A).  However, the second and 

third flashes, which generate the S1 to (S2YZ
•) S3′ transition (figure 4B), produce two new 
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Figure 5.  Difference FT-IR spectra showing the effect of solvent isotope exchange on the 
azide antisymmetric stretching band in chloride-depleted PSII samples. Difference 
spectra were created by ratio of data taken before and after flash excitation, followed by 
conversion to absorbance.  In (A) and (B), the results of three consecutive 532 nm laser 
flashes to a preflashed, dark adapted PSII sample are presented in red (flash 1), green 
(flash 2), and blue (flash 3).  In (A), chloride-depleted PSII in 1H2O p1H 7.5 buffer 
contained 15 mM N3

– (avg. of 39).  In (B), chloride-depleted PSII in 2H2O p2H 7.5 buffer 
contained 15 mM N3

– (avg. of 26).  In (C), an isotope-edited, 1H2O-minus-2H2O, double 
difference spectrum was generated by subtracting (B, flash 3, blue) from (A, flash 3, 
blue).  In (D), a dark-minus-dark control was generated from the data set in (A).  In E, a 
control double difference spectrum, in which no vibrational bands are expected, was 
generated by subtraction of one half of the data in (A) from the other half of the data set 
and dividing by the square root of two.  Delta absorbance on the y-axis indicates that the 
spectra show changes in absorbance.  All samples contained 1.5 mM recrystallized 
DCBQ.  The tick marks on the y-axis represent 5x10–4 AU. 
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populations of azide, which are reflected as positive spectral bands.  Based on the 

frequencies, both a protonated form (2116 cm–1) and non-hydrogen bonded, anionic 

forms (2052 and 2040 cm–1) are generated. 

 To test this interpretation, reaction-induced FT-IR spectra were acquired in azide-

containing, chloride-depleted PSII, either in 1H2O (figure 5A) or 2H2O buffers (figure 

5B).  Solvent isotope exchange is expected to downshift the frequencies of protonated 

and hydrogen bonded forms of azide [58-60].  The effect of solvent isotope exchange is 

shown in a double difference, 1H2O-minus-2H2O, spectrum (figure 5C).  A positive band 

at ~ 2106 cm–1 is observed to shift to 2079 cm–1 and a negative band at 2065 cm–1 is 

observed to shift to 2048 cm–1.  These shifts are consistent with assignment of the 

positive 2116 cm–1 band (figure 4B) to protonated azide and the negative 2066 cm–1 band 

(figure 4B) to hydrogen-bonded azide, as described below.  The isotope shifts for the 

other positive and negative bands are not discernable from the isotope-edited spectrum.  

These results suggest that, during the S1 to (S2YZ
•) S3′ transition, azide acts both as a 

proton acceptor and a proton donor at the OEC azide site. 

 

Discussion 

 Azide has been used previously in order to study proton transfer reactions in 

enzymes.  In PSII, azide acts as an inhibitor [38].  In other proteins, azide addition may 

be stimulatory, due to effects on hydrogen bonding networks in proton transfer pathways 

[61].  For example, azide has been observed to stimulate proton transfer in site-directed 

mutants of bacteriorhodopsin, halorhodopsin, and hydroxysteroid dehydrogenase [53, 62-
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67].  Previously, azide has also been shown to promote electron and proton transfer to the 

quinone acceptors in photosynthetic reaction center mutants [57].  

We have used the azide antisymmetric stretching vibration as a vibrational probe 

[53, 55].  The antisymmetric stretching frequency is perturbed by changes in hydrogen 

bonding, polarity, and metal coordination [41, 53, 55].  Azide vibrational band 

frequencies are also sensitive to changes in electric fields [68].  Previously, azide has 

been used as a vibrational probe in bacteriorhodopsin.  An increase in 2132 cm–1 

amplitude was attributed to the transient protonation of azide during proton transfer [53].  

Also, in metmyoglobin, shifts in azide bands at 2046 cm –1 and 2023/2018 cm–1 led to an 

estimation of the thermal spin equilibrium for high- and low-spin heme, respectively [69, 

70]. 

In our work, reaction-induced difference FT-IR spectra show that the 

antisymmetric stretching mode of azide is perturbed by PSII charge separation.  These 

data provide evidence for two azide binding sites in PSII.  At pH 7.5, perturbation of 

azide gave rise to derivative-shaped bands, with both positive and negative components, 

at 2124 (–) /2111 (+), 2102 (–) /2088 (+) cm–1 and negative bands at 2078 and 2062 cm–1.  

We attribute these bands to an acceptor side or other non-OEC azide binding site.  These 

bands were observed both in manganese-depleted PSII, in which the OEC has been 

removed by Tris treatment, and in oxygen-evolving preparations, which had not been 

depleted of chloride. 

Previous EPR and ESEEM measurements demonstrate that azide also binds to the 

chloride site near the OEC [26, 39].  In chloride-depleted PSII, we have detected unique 

azide vibrational bands when a second or third flash induces the S1 to (S2YZ
•) S3′ 
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transition.  We assign these bands to donor-side bound azide, because the vibrational 

frequencies are not observed in manganese-depleted PSII or in PSII, which has not been 

depleted of chloride.  The azide species, which are present in the S1 state, absorb at 2093 

(–), 2078 (–), and 2066 (–) cm–1.  These are frequencies characteristic of hydrogen 

bonded, anionic azide. When the S3′ state is formed, three positive bands are observed. 

The frequency of the 2116 cm–1 band suggests assignment to protonated azide, and the 

frequencies of the 2052 and 2040 cm–1 bands suggest assignment to non-hydrogen 

bonded or weakly hydrogen bonded anionic azide.  Solvent isotope exchange identified a 

27 cm–1, 17 cm–1, and non-detectable isotope shift for the positive 2116, negative 2066, 

and positive 2040 cm–1 bands.  Previous studies of azide have revealed a deuterium 

isotope shift of ~ 30 cm–1 for the protonated species [59, 60] and a ~ 8 cm–1 shift for the 

hydrogen bonded, anionic species [58].  Therefore, the results of solvent isotope 

exchange are consistent with the attribution of the 2116, 2066, and 2040 cm–1 bands to 

protonated azide, hydrogen-bonded anionic azide, and non-hydrogen bonded (or weakly 

hydrogen bonded) anionic azide, respectively. 

These results suggest that a heterogeneous proton-coupled electron transfer 

reaction occurs at the OEC azide site during the S1 to (S2YZ
•) S3′ transition.  Bound, 

hydrogen-bonded azide molecules both protonate and deprotonate.  While manganese 

oxidation does not occur on the second flash or third flash in chloride-depleted samples 

[28-34], the proton transfer reactions may be driven by conformational changes, linked to 

YZ oxidation.  Therefore, our results are consistent with the conclusion that proton 

transfer reactions occur before the manganese oxidation reaction, as previously suggested 

[12, 14].  During the S1 to S2 transition, bands attributable to protonation of azide are not 
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observed in our chloride-depleted samples.  This result is consistent with previous 

suggestions that the S1 to S2 transition involves uncompensated electron transfer and no 

net proton transfer [37, 71, 72].  

 Taken together, our results suggest that azide may establish a perturbed hydrogen 

bond network near the OEC. We propose that azide inhibits oxygen evolution by 

disruption or rearrangement of the normal hydrogen bond network, which is necessary 

for proton-coupled electron transfer reactions in the OEC.  Because azide exhibits mixed 

inhibition and competes at the chloride site, this interpretation may also imply a role for 

chloride in PSII proton transfer reactions. Finally, our data support the interpretation that 

proton transfer reactions at the OEC azide site precede manganese oxidation reactions 

[12, 14, 24], at least in chloride-depleted PSII. 
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CHAPTER 6 

CONCLUSIONS 

 

 The energy needs of the earth’s biosphere as well as the enrichment of oxygen in 

our atmosphere are provided by the membrane-bound, oxidoreductase protein complex 

known as photosystem II (PSII).  PSII utilizes the sun’s energy to oxidize water to 

molecular oxygen while providing electrons used for the fixation of carbon into sugars.  

Multiple investigations into the structure of PSII have revealed the electron transfer 

cofactors involved in water oxidation to 3.0 Å resolution [1-5].  Details of the structure 

have lead to speculation about the role each cofactor plays in water splitting chemistry. 

 We have shown that the kinetics of photosynthetic electron transfer can be 

monitored through the use of time-resolved vibrational spectroscopy.  Focusing on flash-

induced changes in infrared absorption at single wavelengths has allowed us to identify 

cofactors and amino acids involved in water oxidation.  Among these intermediates, the 

transient S4 state, during which oxygen release occurs, has been detected.  This intriguing 

step in water oxidation has been studied by other techniques [6-8], and information about 

this step will lead to a better understanding of O-O bond formation.  We have observed 

the classic perioud-four oscillation associated with oxygen release in our derived rate 

constants, and our results indicate that proton transfer may precede manganese oxidation 

during the S2-to-S3 and S3-to-S0 transitions.  We assign the signal observed at 1483 cm–1 

to perturbation of histidine near the OEC. 
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 Having established the utility of time-resolved vibrational spectroscopy, we used 

the technique to study the mechanism of proton-coupled electron transfer (PCET) 

associated with the function of redox-active YZ.  In Mn-depleted PSII, we observed 

microseond decay kinetics attributable to YZ
• decay.  We also observed millisecond decay 

kinetics assignable to charge recombination between YZ
• and QA

–.  Based on the solvent 

isotope effect calculated by comparing experiments in 1H2O and 2H2O, we suggest a 

concerted proton-electron transfer (CPET) pathway for YZ
• reduction.  This study 

contrasts with a previous study monitoring PCET reactions involving tyrosine D (YD), 

another redox-active tyrosine in PSII [9].  In this study, coupled proton-electron transfer 

(CPET) was suggested at high pH while PTET was suggested at low pH.  These two 

studies underscore the differences in the protein environments surrounding YZ and YD, 

and they address the different roles each residue plays in the function of PSII. 

 To summarize these new studies using time-resolved infrared spectroscopy, we 

have gained novel information about protein- and cofactor-based intermediates of 

photosynthetic water oxidation.  Specifically, we have detected the elusive S4 state and 

suggest that proton transfer reactions precede manganese oxidation.  We have also shown 

that YZ
• reduction may follow a coupled proton-electron transfer mechanism, based on pL 

and solvent isotope effects. 

 Information gained from kinetic experiments using time-resolved vibrational 

spectroscopy is supplemented by the broad spectral resolution of Fourier-transform 

infrared (FT-IR) spectroscopic studies of PSII.  Using reaction-induced difference 

spectroscopy, we have provided evidence for the potential binding site of chloride.  

Though chloride has not been identified in crystal structures [4, 5], it is a necessary 
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cofactor in water oxidation (reviewed in [10]).  Comparing bromide-reconsituted and 

chloride-reconstituted PSII, vibrational band shifts were identified and attributed to 

arginine or lysine sidechains that may form the putative chloride binding site.  Indeed, 

arginine 357 of the CP43 subunit is placed only 5 Å away from manganese in a recent 

crystal structure [5] and has been implicated in proton transfer events during water 

oxidation [11].  Future site-directed mutagenesis studies will test the hypothesis that 

CP43-R357 is the chloride binding site. 

 In another reaction-induced difference FT-IR study, we used azide (N3
–) to probe 

proton transfer reactions at the oxygen-evolving complex (OEC).  The asymmetric 

stretching vibration of azide is sensitive to protonation and hydrogen bonding [12].  The 

asymmetric stretching vibration falls outside the region of protein and cofactor infrared 

absorption [13].  Also, azide is an inhibitor of oxygen evolution [14] and has been shown 

to bind at the chloride site near the OEC [15].  This evidence shows that azide can be an 

ideal spectroscopic probe of proton transfer reactions.  We show that when PSII is 

flashed, azide is transiently protonated and deprotonated at the OEC.  Our results also 

indicate that proton transfer reactions may precede manganese oxidation in our PSII 

preparations and that rearrangement of necessary proton transfer pathways may be the 

mechanism of azide inhibition of PSII. 

 To summarize these new studies using reaction-induced difference FT-IR 

spectroscopy, we have shown that arginine or lysine sidechains may be perturbed by 

addition of bromide to chloride-depleted PSII.  The data indicate that arginine or lysine 

may make up the chloride binding site in the OEC.  In a similar study, we have shown 

that azide in transiently protonated and deprotonated when bound at the chloride site in 
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the OEC.  From the data, we suggest that azide inhibits PSII by altering proton transfer 

networks required for water oxidation.  The data also suggest a role for chloride in proton 

transfer reaction in the OEC. 

In this body of work, the chemistry and mechanism of photosynthetic water 

oxidation have been investigated.  Through the use of vibrational spectroscopy, insights 

into the details of inorganic cofactor involvment and proton-coupled electron transfer 

reactions have been elucidated.  The studies presented here supplement and enhance the 

existing body of knowledge concerning the biological conversion of water to molecular 

oxygen, protons, and electrons.  A deeper understanding of the physical mechanism, 

thermodynamic controls, and elegant precision of photosynthetic water oxidation can aid 

in the design of biomimetic systems.  Such systems can harness the energy of the sun to 

provide energy alternatives to nuclear and fossil fuel sources of today. 
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