
A System for Efficient and Flexible One-Way Constraint
Evaluation in C++

Scott E. Hudson

Graphics Visualization and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

E-mail: hudson@cc.gatech.edu

ABSTRACT

This paper describes the Eval/vite system for
compiling one-way constraints into C++ objects,
as well as the highly efficient lazy and incremental
evaluation algorithm behind it. This system
supports the creation of C++ object classes whose
members are controlled by one-way constraint
equations. These objects are declared with simple
specifications much like C++ class declarations.
The system is designed to work smoothly with
other C++ code, producing type-safe code which
supports normal inheritance and information
hiding mechanisms and works with most types.
In particular, the system efficiently supports
constraints involving indirection either through
pointers or C++ reference types. The system also
works with other sophisticated constructs such as
the use of function valued constraint equations.

Keywords: one-way constraint systems, object-
oriented programming, incremental update, lazy
evaluation.

1 INTRODUCTION

Constraints offer the ability to describe, in a high-
level and declarative fashion, a set of relationships
that are to hold among data items. Given a set of
values and a set of relationships between them
expressed as equations, a constraint maintenance
or evaluation system can be employed to
automatically maintain the proper relationships
between these values in the face of changes. The
automatic nature of this update allows very high
level specifications to be employed for a number
of tasks in the user interface software domain.
These include, for example, controlling user
interface presentations [Huds89, Huds90a,

 This work was supported in part by the National Science
Foundation under grants IRI-9015407, and DCA-9214947.

Myer93, Vand90], making connections between
data objects and interactive views of those objects
[Huds88, Hill92], support for construction of
graphical documents [VanW82], and controlling
animation [Born86].

Because of their inherent advantages, constraint
systems of various sorts have been used in a
number of user interface systems (see for example
[Bart86, Born86, Myer90, Huds90b]). However,
constraints are still considered an "exotic"
technology in many circles. One reason for this is
that, in the compiled languages that would
typically be used for production user interface
development (i.e., languages like Pascal, C, C++,
Eiffel, etc.), there have been no systems that allow
truly convenient and efficient integration of
constraints with the rest of the user interface and
application code. This paper introduces the
Eval/vite system which is designed to provide a
practical solution to this problem.

The Eval/vite system accepts specifications for
object classes whose fields can be controlled by
one-way constraint equations. These
specifications resemble C++ class declarations and
are compiled into C++ classes and supporting
code. The resulting classes can be used very
easily with other C++ code. By employing a
simple preprocessor and only a very slight
notational change (i.e. adding an "@" symbol
before the name), constrained values Ñ what we
will call attributes Ñ can be accessed in essentially
the same way as any other value. Further, the
classes produced are type safe in the statically
typed world of C++ and can enforce the same
encapsulation and information hiding as other
classes. Similarly, these classes can inherit from
other classes (constrained or otherwise) using

 "Vite" is French for fast and is pronounced like "beat".

2

either single or multiple inheritance and can act as
base- or super-classes. Finally, and perhaps most
importantly, a wide range of types can be used for
attribute values. In particular, both pointer and
reference typed attributes are fully supported
without loss of efficiency or use of cumbersome
notational constructs. Similarly, more exotic
techniques such as function-pointer valued
attributes are also fully supported.

In addition to ease of use with general C++ code,
the system also has several other important
advantages. First, it employs a simple but very
efficient update algorithm. This algorithm is an
enhancement of the one described in [Huds91] and
is both incremental and lazy. Specifically, after a
modification to the system, it only reevaluates
attribute values which both could have changed
value and have actually been directly or indirectly
requested. Second, this algorithm can be
implemented using no dynamically allocated
storage and so does not incur significant
overheads for storage management. Finally, the
system allows constraint equations themselves to
be compiled into C++ code. As a result, the
system is practically efficient and can make good
use of optimizing compiler technology.

All of these features combine to make the Eval/vite
constraint compiler an attractive and practical
system for implementing a range of user interface
tasks.

The next section of this paper considers the
tradeoffs involved in using one-way constraints
and the importance of support for indirection.
Section 3 will describe how constraints are
specified in the Eval/vite system and give an
example of their use in the interface to a parallel
program visualization system. Section 4 will
briefly consider how constraints can be compiled
into C++ classes, while Section 5 will consider the
underlying incremental evaluation algorithm.
Section 6 will go on to show how this same
algorithm can be used to support constraints with
indirect references, and finally, Section 7 will
provide a conclusion.

2. ONE-WAY CONSTRAINTS WITH INDIRECTION

The general problem of constraint satisfaction is
unsolvable. Consequently, all constraint systems
place some limitations on the classes of constraints
that they can deal with. Among systems
supporting user interface applications both so

called "one-way" and "multi-way" constraint
satisfaction systems have been used.

One-way systems (such as the one described here)
place limitations on the form of equations that may
be used such that information always flows only
from the right hand side of a constraint rule to the
left hand side Ñ hence the designation as "one-
way". In general, these systems support rules of
the form:

A = F(B, C, D)

This rule states that the value of attribute A will
always be equal to the value obtained by applying
function F to (the updated values of) attributes B,
C, and D. This form of rule allows only a single
attribute on the left hand side and does not allow
any given attribute to be defined by more than one
equation. Typically these systems also require that
there are no circular dependencies between
attributes, however, this restriction is lifted in
various ways in some systems. The discussions
in this paper assume acyclic constraints, however
the system behaves gracefully in the presence of
cycles.

Multi-way constraints normally remove the
asymmetry from rules and allow information flow
in different directions at different times. In general
they may support rules such as:

F(A,B) = G(C,D)

However, except in special cases (such as multi-
linear equations) the system designer is normally
responsible for providing a series of factorizations
of the rule equation, each of which allows one
attribute to be computed as a simple function of the
remaining attributes.

In general, multi-way constraints are more
powerful and can support some constructions that
one-way constraints cannot. However, with this
generality comes some cost.

First, multi-way constraint satisfaction systems
can fail to find a solution to a system of constraints
that arise at runtime Ñ either because no such
solution exists, or because the particular solution
mechanism being employed cannot find one.
Currently few analysis techniques exist for
detecting or characterizing this possibility in
advance. Consequently the system designer may
need to explicitly provide for this possibility in all
aspects of the system that use constraints (see

3

[Born87, Free90] for one approach to this). In
contrast, one-way constraints are always
guaranteed to find a solution (so long as the code
for each individual constraint equation completes
in finite time).

Second, multi-way constraint systems are much
less predictable and understandable than one-way
systems. For example, unlike one-way systems,
multi-way systems can find themselves in under-
constrained situations where more than one
solution is valid. Robust approaches for
specifying how the system is to respond in these
cases have been developed (see [Born87,
Free90]). However, it is can still be difficult to
understand at design or specification time, just
how the system will react in all cases at run-time.
Again, this is in contrast to one-way systems
which, because of their more restricted form are
very easy to understand and predict.

Finally, because of the greater degrees of freedom
in multi-way constraints, they are typically harder
to debug .

In addition to these traditional reasons for
considering the use one-way constraints over the
use of more general multi-way systems, there is
also an additional new reason Ñ full support for
pointers and indirection. Dynamically changing
pointers offer a significant challenge for constraint
systems because they can cause the dependencies
between values to change in the middle of the
evaluation itself. Fortunately, in the case of one-
way constraints efficient incremental update
algorithms that work in the presence of general
indirection do exist. (Two such algorithms are
described in [Vand91] and a more efficient one is
described here). At present no corresponding
incremental algorithms have been published for
multi-way constraints.

As described at length in [Vand91], the use of
indirection opens up a range of new opportunities
for constraint systems. These include increased
opportunities for describing dynamic behaviors
and improved facilities for specifying easily
composable and reusable components. One of the

 In the past, multi-way constraints have also been
considered much more inefficient than one-way constraint
systems. However, with modern incremental algorithms
the difference in efficiency between the approaches is small,
and should probably not be a major factor in deciding which
type of solver to use.

central reasons for this significant increase in
capability has to do with a hidden limitation in
conventional constraint systems.

The equations that form constraints require that all
objects they operate over be explicitly named in the
equation. However, without support for
indirection, this implicitly limits constraints to
operating on objects whose existence is known at
the time the constraint is constructed Ñ typically at
design time. This means that dynamic and
unpredictable objects (for example, objects
representing files in a desktop interface) are very
difficult to deal with. Typically either these types
of objects can't be supported, or less efficient
interpreted approaches which allow dynamically
construction of new constraint equations, must be
employed.

In the Eval/vite system, the need for indirection is
even more immediate. Normal programming in
C++ makes heavy use of pointers. As a result,
full support for pointers (and C++ reference types)
is a must for any practical system designed to
work smoothly with conventional C++ code.

All of these reasons combine to make support for
one-way constraints with indirection a good choice
for the Eval/vite system. The more general
question of the relative merits of one-way versus
multi-way constraints is still an issue for debate.

3. SPECIFYING CONSTRAINTS Ñ AN EXAMPLE

A major goal behind the development of the
Eval /vite system has been its convenient
integration with conventional C++ code. To
accomplish this, the system employs a translator
which supports constraint specifications very
similar to normal class specifications in C++ (an
example appears later in Figure 3). In addition,
the same translator also acts as a preprocessor for
any additional code that needs to access attribute
values. This preprocessor works using a very
simple lexical extension. Specifically, any code
which wishes to make use of an attribute value
simply refers to the value as it normally would,
but precedes the name of the attribute with an "@"
symbol. The translator / preprocessor then
converts this name into the proper code to
transparently evaluate and return the updated value
of the attribute. Since the same program performs
both translation and preprocessing, constraint and
normal code can be freely intermixed. All
syntactic and semantic uses of normal values are

4

Figure 1. A Message Dependency and Timing Visualization System

Figure 2. Exploring the Effects of a Delay in Process 1

also supported for attribute values. In addition,
attributes support assignment in precisely the same
form as any other program variable.

To illustrate how these specifications work, a
small example will be used Ñ a system for
visualizing the dependencies and timing
relationships in message trace data captured from

the processes of a parallel program.

Figure 1 shows a display from this system. Each
horizontal gray line in this visualization
corresponds to a single process executing over
time from left to right. Each small icon placed on
the process line corresponds to an event indicating
that a message has been sent or received. Lines

5

@class evt_display : public drag_icon {
protected:

proc_display *proc = (proc_display *)0;
evt_display *prev_evt = (evt_display *) 0;
evt_display *recv_from = (evt_display *) 0;

coord natural_x = default_natural_x;

bitmap *icon_image ::=
if @natural_x == @x_pos

then small_black
else small_gray;

public:
constructor : drag_icon(0,0,small_black);

coord x_pos ::= max3(
@natural_x,
if @prev_evt

then @prev_evt->@x_pos + min_pspace
else 0,

if @recv_from
then @recv_from->@x_pos + min_ospace
else 0

);

coord y_pos ::=
if @proc

then @proc->@y_pos
else floating_y_pos;

members {
...

};
};

Figure 3. An Example Class

between processes represent messages (in these
figures, a random set of messages has been used
for illustration purposes).

One of the major difficulties in working with
parallel programs is that coincidences and small
perturbations of timing can cause bugs to appear
and disappear. In addition to serving as a
visualization of a specific event trace, the system
shown in Figures 1 and 2 also allows the specific
timing in the trace to be modified in order to
explore what might have happened in different
executions of the same program. In particular, it
allows the user to ask "what-if" questions for
debugging and performance tuning purposes by
modifying the timing directly in the display.
However, it only allows the timing of events to be
changed in ways which are consistent with the
partial order inherent in the original execution
(i.e., messages cannot be received before they are

sent and events within a single process cannot be
reordered).

Figure 2 shows an example of such a user
manipulation. Here the user has grabbed the
second event in the first process and forced it later
in time by dragging it to the right (introducing a
new delay that was not in the original execution).
The system responds by repositioning event icons
in the display so that they remain consistent with
the partial order requirements implied by the
original execution trace. In each case where the
event has been forced to change its timing, the
icon is changed from black to gray. In this
example, we can see that this delay in the first
process has relatively little effect on the other
processes, only affecting the timing of four events
outside the process.

A natural method for modeling trace data of this
form in C++ is to use a graph structure
constructed from objects linked by pointers. Each
event object is linked to the process that it occurs
in and the event immediately preceding it in the
process. In addition, receive events are linked to
the event which sent the message.

Figure 3 shows such a class declared using the
Eval/vite system. Those familiar with C++ will
recognize that this declaration is very similar to a
normal C++ class declaration. The fact that this is
an Eval/vite class definition Ñ what we will call
an attribute class Ñ rather than a normal class is
signaled by the use of the @class keyword instead
of the normal class keyword. Note that this class
inherits from the drag_icon class in a conventional
fashion. (The drag_icon class comes from the
Artkit user interface toolkit [Henr90] used to
implement this interface).

Within an attribute class the visibility operators
private:, protected:, and public: apply as usual.
Any data members declared in the class are treated
as attributes. Member functions (methods) and
conventional (non-attribute) data members may be
declared in the separate members section shown at
the bottom of the class.

This class begins by declaring three attributes for
the pointers described above. Each declared
attribute must either be assigned an initial value
(using "=") or be given a constraint or evaluation
rule (using "::="). In this case, they are each
initialized to null. Both initializations and
evaluation rules are expressed using C++

6

expressions. The only unsupported features are
the ++, --, assignment, and new operators. In
addition, because of their importance in
constraints, a more convenient if-then-else syntax
for conditional expressions is also supported
(although the more obtuse ?: form can still be used
by die hard C programmers).

Our example class next declares an attribute for the
natural position of the event. This attribute
indicates where the event would be if it were not
constrained by other events. This will be initially
set to the position corresponding to the event's
timestamp in the original trace, and will be
modified whenever the user drags the event to
change its timing.

Finally, the actual interactive behavior of the event
display object is implemented with three attributes
and their associated rules. The icon_image
attribute selects one of two appearances for the
object (black if the natural position is in use, gray
otherwise), while x_pos and y_pos determine the
position of the object on the screen. The y
position of the object is constrained to match the y
position of the process it is associated with, and
the x position is constrained to be the maximum of
either the natural position or position offset from
event(s) that it cannot be placed before.

Several additional features of the specification can
be seen in this class declaration as well. First, a
constructor for the class can be declared (using the
"constructor :" syntax). This allows initializations
for base classes and non-attribute members to be
declared. In addition, the members section at the
bottom allows member functions and non attribute
data members to be declared using full C++
syntax.

Attributes are inherited just like any other member
of a class. A feature not shown here is the ability
to override an attribute's initialization or constraint
rule in a subclass. To do this, the attribute's
declaration is simply preceded by the keyword
override. This allows the inheritance system to be
fully utilized for attribute as well as non-attribute
members.

Finally, although not apparent from our example,
the Eval/vite system does place several limitations
on the C++ declaration syntax that can be
employed. The most serious of these is that types
used in attribute declarations are limited to simple
names, pointers to simple named types, or

references to simple named types. More complex
type constructions are supported by the system,
but must be declared with a separate typedef
statement and introduced to the system using a
special @ type declaration. This syntactic
limitation was placed on declarations so that the
system was not forced to parse, represent, and
understand the full complexity of the C++ type
system (a task more difficult than the rest of the
translator implementation combined).

4. COMPILATION OF CONSTRAINTS

The system compiles each attribute class
declaration into a corresponding C++ class
declaration plus additional code to implement
evaluation for the declared constraints. A special
attribute object is declared for each attribute in the
class. This object contains the storage for the
attribute's value as well as all the bookkeeping
needed by the evaluation algorithm. For each
constraint rule, a special rule object is created and
attached to the corresponding attribute. Finally,
for each dependency edge resulting from a
constraint rule, a dependency edge object is
declared. These objects maintain the bookkeeping
associated with dependency edges as discussed in
the next section. One dependency edge occurs for
each attribute value reference in the constraint
equation (e.g., for each name prefaced by an "@"
sign).

Almost all code for evaluation is simply inherited
from a base class found in the run-time support
system or instantiated from a class template.
Beyond declarations, the only specific code
generated is an evaluation function for each
constraint. This function is responsible for
evaluating enough of the equation and its
parameters to determining if the value could
change, then if necessary, evaluating the full rule.

For code which is not inside an attribute class
declaration, the translator acts as a preprocessor,
translating all attribute value references (marked
with an "@") into proper code to evaluate and
return the attribute's up-to-date value.

5. AN EFFICIENT UPDATE ALGORITHM

The code embedded in run-time support base
classes (and class templates), as well as the code
generated by the system, works together to
implement a very efficient incremental and lazy
update algorithm. This algorithm is incremental in
that it only reevaluates attributes that actually could

7

have changed value since the last time they have
been accessed. The algorithm is lazy in that it only
evaluates attributes whose values are actually
requested. This algorithm is optimal in the set of
attributes reevaluated after a change but is sub-
optimal in the total work performed (see [Huds91]
for discussion and proofs regarding the base
algorithm). Note that the optimality claim made
here is stronger than the one for Reps' optimal
update algorithm [Reps83] because it allows lazy
evaluation. In particular, this algorithm will never
evaluate more attributes than Reps' algorithm and
in some cases may take advantage of laziness to
evaluate fewer (although it may do more total
work in some cases).

@class {
int A ::= f(@B);
int B ::= @E + @D;
int C ::= f(@D);
int D ::= @E / 2;
int E = 99;
int F = 42;

};

A

B
C

DE

F
Figure 4. An Example Dependency Graph

The base algorithm (ignoring for the moment the
issue of indirect references) is fairly simple. The
algorithm works on the basis of a dependency
graph. Each attribute forms a node in the graph
and an edge is placed in the graph for each
attribute dependency. An attribute A is said to
depend on another attribute B if B's value is
needed to compute A's value. In this situation we
also call attribute B a parameter attribute of A
(since it forms a parameter to the evaluation
function for A). The set of potential dependencies
can be established by examining the constraint
rules. If no indirection is allowed, an attribute A
may depend on an attribute B only if B is
mentioned in its constraint rule. Figure 4 shows a

system of constraints (within a single class) and
the resulting dependency graph.

In addition to the dependency graph, the algorithm
maintains a small amount of additional
bookkeeping. With each attribute it keeps a
Boolean mark indicating if the attribute's value is
currently known to be up-to-date with respect to
any constraint rule attached to it. With each
dependency edge a Boolean mark is also kept
which indicates whether a change is pending
across that edge Ñ that is, whether the "upstream"
attribute has changed value since the
"downstream" attribute has incorporated that
change into its own value.

The update algorithm works in two parts or
phases . Whenever an attribute without a
constraint attached to it is assigned a new value, all
attributes which directly or indirectly may depend
on it are marked out-of-date with a simple graph
traversal. The out-of-date mark indicates that the
attribute's value may be incorrect with respect to
its defining equation. Figure 5 illustrates the
effects of modifying attribute F. Attributes which
are marked out-of-date are shown filled with gray
and dependency edges which are pending are
marked with an X.

D

A

B
C

E

F
Figure 5. Effects of Modifying Attribute F

Whenever an attribute's value is requested the
second (evaluation) phase of the algorithm is
begun. This phase starts by examining the out-of-
date mark of the attribute. If the mark indicates
that the attribute might be out-of-date, an
evaluation process is started. This process works
recursively starting from the attribute whose value
is requested always ensuring that an attribute's
parameters are up-to-date before bringing the
attribute itself up-to-date. When recursive
processing reaches an already up-to-date attribute

8

(for example, one with no constraint equation
attached to it), its value is simply returned. For an
out-of-date attribute, first all its parameter
attributes are recursively brought up-to-date, then
if necessary, the attribute's constraint equation is
used to compute a new value.

Figures 5 and 6 illustrate what happens in the
evaluation process when attribute D is requested.
When D's value is found to be out-of-date, the
system recursively evaluates all of its parameter
attributes (in this case, just the attribute F). Since
F is up-to-date, its value is simply returned. At
this point attribute D is evaluated. Assuming its
value actually changes, the system will be left as
shown in Figure 6.

D

A

B
C

E

F
Figure 6. System After Evaluation of D

Each time an attribute computes a value that is
different from its old value, it marks each of its
outgoing dependency edges as pending to indicate
that the change has yet to propagate across those
edges. For example, in Figure 6, each of the
outgoing edges from attribute D are marked
pending because D's new value has not be used in
computing B or C.

After recursively processing all of its parameter
attributes, an attribute can determine if it must
reevaluate itself by examining the pending marks
on its incoming edges. If no edges are pending,
then no parameter attributes have changed. This
means that the attribute's value will not change and
that reevaluation (and further propagation of
pending marks) can be skipped.

Figure 7 illustrates how this works. Here we
assume that attribute A has been requested. This
will result in a recursive evaluation of B. B will
further request recursive evaluation of D and E.
Since these attributes are already up-to-date, no

new evaluations will be performed and their values
will simply be returned. However, as indicated by
the mark on the edge between D and B, attribute B
must still be evaluated since it might change as a
result of the earlier change to D. Let us assume
that after evaluating B we find that its new value is
the same as its old value. In this case, pending
marks would not be placed on outgoing
dependency edges. This would leave the system
as shown in Figure 7.

D

A

B
C

E

F
Figure 7. System After Evaluation of B

Now when attribute A completes its evaluation it
can note that none of its parameters have changed
value (since there are no incoming pending edges),
consequently it cannot possibly change value. As
a result, actual reevaluation of A can be skipped
and the attribute can simply be marked up-to-date.

In addition to normal expressions, the algorithm
can also make an important optimization for
conditional expressions (and other forms of non-
strict functions). In particular the system can act
in a lazy fashion to avoid reevaluation of the
branch of the condition that is not actually used
during evaluation. For example, a rule such as:

test_result ::= if @user_wants_it
then @expensive_test
else 1;

can be used to dynamically turn on and off
expensive features of a system. Without this
ability, a system's response time will always be
governed by the total set of features built into it,
rather than the subset of features that are currently
in use.

To support efficient evaluation, the system
generates code for evaluation rules in two parts.
The first part evaluates enough of the expression

9

to determine if the value can change and the
second actually computes the new value for the
attribute. For normal expressions, the first part of
the evaluation consists of the recursive evaluation
of each parameter attribute and a test for pending
edges. For a conditional expression, the first part
of evaluation begins by evaluating the Boolean
control expression. Based on this result, one of
the two sub-expressions is chosen to complete the
initial test.

6. SUPPORTING INDIRECT REFERENCES

The algorithm described so far is simple and
efficient, but does not support the use of
indirection in constraint equations. Indirect
references present problems for evaluation
systems since they can cause the dependency
graph to change in the middle of the evaluation.
Consider for example a rule such as:

A ::= F(@B)->@C

Here A is clearly always dependent on B.
However, it may be dependent on many different
C's over time, and the particular C that it is
currently dependent upon cannot, in general, be
determined until after F(@B) has been evaluated.

In order to support indirect references of this type
we exploit a unique property of the base
algorithm. In particular, under some
circumstances the algorithm can produce correct
and efficient results even when the dependency
graph is partially incorrect. Specifically, the
algorithm can tolerate incorrect incoming
dependency edges for any attribute that is currently
marked out-of-date.

To see why, consider the consequences of one or
more incorrect edges into an out-of-date attribute.
In all cases, the second (evaluate) phase of the
algorithm does not present a problem, since the
evaluation function need not use the dependency
graph at all to compute a proper result Ñ it can
simply evaluate an expression which inherently
resolves all names and addresses involved
correctly.

The potential difficulty is in the first (mark out-of-
date) phase of the algorithm. Here it might be
possible to either mark an attribute out-of-date
when it shouldn't be, or fail to mark an attribute
out-of-date when it should be. These two
possibilities correspond directly to the two cases
of an incorrect edge that might occur: an extra

edge that should not go to the attribute can be
present, and/or an edge that should go to the
attribute can be missing. However, if the attribute
is already marked out-of-date, neither of these
possible difficulties is of consequence. Marking
the attribute out-of-date when it should not be will
have no significance since that attribute is already
marked and marking it again will have no effect.
Similarly failing to mark the attribute a second time
will also have no effect.

This analysis, plus the fact that any changes which
could invalidate the incoming edges of the
dependency graph (e.g. changing attribute B in
our example) will also mark the attribute out-of-
date are central to establishing the correctness and
efficiency of the algorithm in the face of
dynamically changing dependencies. In particular,
the algorithm can be shown to be correct and
efficient so long as the incoming dependency
edges are always correct whenever the
corresponding attribute is marked up-to-date. This
can in turn be ensured by properly implementing
evaluation rules such that they internally correct
their local portion of the dependency graph before
the attribute is fully evaluated.

With this small addition, the base incremental
update algorithm performs correctly and efficiently
in the presence of indirect references.

7. IMPLEMENTATION AND FUTURE WORK

The Eval/vite system has been implemented in
C++ with the help of the YACC and Lex compiler
generation tools. The translator itself consists of
3364 lines of C++ code, 948 lines of YACC
specification and 311 lines of Lex specification.
The classes comprising the run-time system
consist of another 1004 lines of C++ code. The
system is currently being beta tested at a few
selected sites. In addition to the system proper, a
User's Manual is also available [Huds93].

Future plans for the system include small changes
such as support for parameters to attribute class
constructors, as well as more substantial
enhancements such as an extension to allow
constraint equations to be treated as completely
separate objects which can be dynamically attached
to attributes at run-time. In addition, we are
currently exploring the possibility of using the
system in the next release of the Artkit user
interface toolkit [Henry90].

10

8. CONCLUSION

This paper has described the Eval/vite one-way
constraint to C++ compiler and its underlying
incremental update algorithm. This system
operates in a highly efficient manner, supports
nearly all C++ constructs (including indirection
through pointers and references) and makes it easy
to integrate systems of one-way constraints into
conventional C++ code.

REFERENCES

[Bart86] Barth, P., "An Object-Oriented
Approach to Graphical Interfaces", ACM
Transactions on Graphics, v5, n2, April
1986, pp. 142-172.

[Born86] Borning, A., Duisberg, R., "Constraint-
Based Tools for Building User
Interfaces", ACM Transactions on
Graphics, v5, n3, Oct. 1986, pp. 345-
374.

[Born87] Borning, A., Duisberg, R., Freeman-
Benson, B., Kramer, A., and Woolf, M.,
"Constraint Hierarchies", Proceedings of
OOPSLA '87, October 1987), pp. 48-60.

[Free90] Freeman-Benson, B., N., Maloney, J.,
and Borning A., "An Incremental
Constraint Solver", Communications of
the ACM, v33, n1, Jan. 1990, pp. 54-63.

[Henr90] Henry, T.R., Hudson, S.E., Newell G.L.,
"Integrating Gesture and Snapping into
a User Interface Toolkit", Proceedings
of the ACM Symposium on User
Interface Software and Technology, Oct.
1990, pp. 112-121.

[Hill92] Hill, R.D., "The Abstraction-Link-View
Paradigm: Using Constraints to Connect
User Interfaces to Applications",
Proceedings of SIGCHI '92, April 1992,
pp. 335-342.

[Huds88] Hudson, S. E., and King, R., "Semantic
Feedback in the Higgens UIMS", IEEE
Transactions on Software Engineering,
v14, n8, August 1988, pp. 1188-1206.

[Huds89] Hudson, S. E., "Graphical Specification
of Flexible User Interface Displays",
Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software
and Technology , pp. 105-114,
November 1989.

[Huds90a] Hudson, S. E. and Mohamed, S. P.,
"Interactive Specification of Flexible
User Interface Displays", A C M

Transactions on Information Systems,
v8, n3, pp. 269-288, July 1990.

[Huds90b] Hudson, S. E., "An Enhanced
Spreadsheet model for User Interface
Specification", University of Arizona
Technical Report TR90-33, 1990.

[Huds91] Hudson, S., "Incremental Attribute
Evaluation: A Flexible Algorithm for
Lazy Update", ACM Transactions on
Programming Languages and Systems,
v13, n3, July 1991, pp. 315-341.

[Huds93] Hudson, S.E., "Eval/vite User's Guide
(v1.0)", Georgia Institute of Technology
technical report GIT-GVU-93-xx, 1993.

[Myer89] Myers, B.A., Vander Zanden, B., and
Dannenberg, R. B., "Creating Graphical
Interactive Applications Objects by
Demonstration", Proceedings of the
ACM Symposium on User Interface
Software and Technology, Williamsburg,
VA, Nov. 1989, pp. 95-104.

[Myer90] Myers, B.A., et al. , "Garnet:
Comprehensive Support for Graphical,
Highly Interactive User Interfaces",
IEEE Computer, v23, n11, Nov. 1990,
pp. 71-85.

[Nels85] Nelson, G., "Juno a Constraint-Based
Graphics System", Proceedings of
SIGGRAPH '85, San Francisco, CA July
1985, pp. 235-243.

[Reps83] Reps, T., Teitelbaum, T., and Demers,
A., "Incremental Context-Dependent
Analysis for Language-Based Editors",
ACM Transactions on Programming
Languages and Systems, v5, July 1983,
pp. 449-477.

[Vand90] Vander Zanden, B. and Myers, B.A.,
" A u t o m a t i c , L o o k - a n d - F e e l
Independent Dialog Creation for
Graphical User Interfaces", Proceedings
of SIGCHI '90, Austin TX, April 1990,
pp. 325-330.

[Vand91] Vander Zanden, B., Myers, B. A., Giuse,
D., and Szekely, P., "The Importance of
Pointer Variables in Constraint Models",
Proceeding of the ACM Symposium on
User Interface Sof tware and
Technology, November 1991, pp. 155-
164.

[VanW82] Van Wyke, C.J., "A High-Level
Language for Specifying Pictures",
ACM Transactions on Graphics, v1, n2,
April 1982, pp. 163-182.

