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 SUMMARY 
 
 
 

With each heartbeat, major arteries experience circumferential expansion due to 

internal pressure changes.  This pulsatile force is called “cyclic strain” and has been 

implicated in playing a pivotal role in the genetic regulation of vascular physiology and 

pathology.   This dissertation investigates the hypothesis that in human umbilical vein 

endothelial cells (HUVEC), pathological levels of cyclic strain activate the c-Myc 

promoter, leading to c-Myc transcription and downstream gene induction.  To determine 

expression and time-dependency of c-Myc in HUVEC, mRNA and protein expression of 

c-Myc under physiological (6-10% cyclic strain) and pathological conditions (20% cyclic 

strain) were studied.  Both c-Myc mRNA and protein expression increased more than 

3-fold in HUVEC (P4–P5) cyclically strained at 20%.  This expression occurred in a 

time-dependent manner, peaking in the 1.5–2 hour range and falling to basal levels by 3 

hours.  Subsequently, the mechanism of c-Myc transcription was investigated by using a 

specific inhibitor to modulate c-Myc transcriptional activation.  This compound, obtained 

from the University of Arizona Cancer Center, attenuates cyclic strain–induced c-Myc 

transcription by about 50% by binding to and stabilizing the silencer element in the 

c-Myc promoter.  Having established this reduction in expression, it was investigated 

how these effects modulate downstream genes that are regulated by c-Myc.  The results 

indicate that direct targeting of the c-Myc promoter may decrease stretch–induced gene 

expression of vascular endothelial growth factor (VEGF), proliferating cell nuclear 

antigen (PCNA), and heat shock protein 60 (HSP60).  These findings may help in the 

development of a novel therapeutic opportunity in vascular diseases. 
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 CHAPTER I: THESIS RATIONALE 
 
 
 
1.1 Introduction 
 

According to the Heart Disease and Stroke Statistics published by the American 

Heart Association, cardiovascular disease (CVD) remains the primary cause of mortality 

in both women and men in the United States.  It is estimated that almost 80 million 

American adults (1 in 3) suffer from one or more types of CVD, which includes high 

blood pressure, coronary heart disease, heart failure, and stroke.  Every day, nearly 2400 

Americans die of CVD.  In fact, CVD claims more lives each year than the next four 

leading causes of death (cancer, chronic lower respiratory diseases, accidents, and 

diabetes mellitus) combined.  The estimated direct and indirect cost of CVD for 2007 

exceeds $430 billion [1]. 

As a result of these staggering statistics, numerous studies have attempted to 

characterize the onset and progression of human CVD.  With an enhanced biological 

understanding of the cell cycle events involved in this pathogenesis, it would be possible 

to better treat and/or prevent these diseases.  Although numerous genes have identified 

roles in atherosclerosis, the mechanism of their induction is largely uncharacterized.  

Cyclic strain, which results as a consequence of pulsatile blood flow, is a principal factor 

in the localization of these diseases [2].  Under normal physiological conditions, arterial 

vascular endothelial cells (EC) are continuously subjected to cyclic strain (6–10%).  

When certain pathological conditions arise in vivo, such as hypertension, atherosclerotic 

plaque development, and intracoronary stenting, elevated cyclic strain (~20%) can induce 

vessel remodeling, leading to a pro-atherogenic endothelium [2, 3].  By implementing an 
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in vitro cyclic strain model, it is possible to mimic some of the hemodynamic conditions 

associated with atherosclerosis and thereby study it from a mechanistic point of view. 

Recently, in an attempt to study the transcriptional changes that occur in 

vasculoproliferative vascular diseases, research has turned to finding parallel pathological 

mechanisms in cancer.  These findings have identified the oncogene c-Myc, known to be 

involved in the modification of cell cycle-related events (proliferation, differentiation, 

and apoptosis), as a potential research target.  This project will examine the functional 

contributions of c-Myc to the human EC cyclic strain response in an attempt to add 

insight into the pathogenesis of atherosclerosis/restenosis.  This dissertation proposes that 

pathological levels of cyclic strain activate the c-Myc promoter, leading to c-Myc 

transcription and downstream gene induction, which, in sum, contribute to the 

development of cardiovascular disease.  If true, these findings will help to develop a 

novel therapeutic opportunity in occlusive vascular diseases. 

 
1.2 Hypothesis and Specific Aims 
 

The principal goal of this project was to investigate the genetic expression of 

human umbilical vein endothelial cells (HUVEC) in response to applied mechanical 

stretch.  Specifically, in order to model the circumferential expansion of arteries in vivo, 

HUVEC were subjected to uniaxial, cyclic strain in vitro.  The overall hypothesis for this 

research, as outlined in the original thesis proposal, was: 

 
Pathological levels of cyclic strain activate the c-Myc promoter, leading to c-Myc 

transcription and downstream gene induction, which, in sum, contribute to the induction 

of vascular obstructive diseases. 
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To evaluate this general hypothesis, the following three specific aims were formulated: 

 
 
Specific Aim 1: Determine the expression and time-dependency of c-Myc in human 

umbilical vein endothelial cells subjected to cyclic strain 

This aim will investigate the mRNA and protein expression of c-Myc under pathological 

conditions (20% cyclic strain) and compare these results to those under physiological (6–

10% cyclic strain) and static conditions. 

 

Specific Aim 2: Determine whether it is possible to use specific inhibitors to 

modulate c-Myc transcriptional activation and, thereby, determine the mechanism 

of c-Myc transcription by cyclic strain   

By using compounds that directly target the silencer element in the c-Myc promoter, it 

will be determined if cyclic strain–induced c-Myc transcription can be attenuated.   

 

Specific Aim 3: Determine both the mRNA and protein expression of downstream 

genes (especially those related to cardiovascular disease), which are regulated by 

c-Myc 

Once establishing that c-Myc transcriptional activation can be attenuated (specific aim 2), 

it will be examined if this modulation can affect the transcription of c-Myc target genes.  

Cyclically-strained endothelial cells will be treated with and without compounds that 

prevent c-Myc transcription in order to examine potential downstream targets (vascular 

endothelial growth factor, proliferating cell nuclear antigen, and heat shock protein 60). 
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The completion of these studies helped to elucidate the genetic expression of 

HUVEC in response to cyclic strain.  Hopefully, these results will contribute to the 

understanding of the link between hemodynamic forces and the physiology of arterial 

tissue, both in healthy and diseased states. 
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 CHAPTER II: BACKGROUND & LITERATURE REVIEW 
 
 
 
2.1 Arterial Physiology 
  

Research on the structure and function of arteries is imperative to understanding 

the pathophysiology of cardiovascular disease, the primary cause of death in developed 

countries.  Although there exists extensive knowledge in this field, arteries are complex 

and dynamic—arterial cells actively respond to and affect their surrounding mechanical 

and biochemical environments.  This background and literature review offers a 

generalized understanding of arterial physiology, with an emphasis on one specific 

arterial cell type—the endothelial cell. 

 
2.1.1 Structure 
 

The human artery is composed of three concentric layers surrounding a lumen, 

through which the blood flows.  The layers are the tunica intima, tunica media and the 

tunica adventitia, as idealized in Figure 2.1.   

 

 

Figure 2.1: The artery [4] 
 
 

media 
adventitia 

intima 
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The three layers are distinguished by their extracellular matrix and component 

cell type.  They are bound together by connective tissue.  The intima, the innermost layer, 

is in direct contact with the blood.  It consists of a single layer of endothelial cells and 

rests on a connective tissue membrane that is rich in elastic and collagenous fibers.   The 

media makes up the bulk of the arterial wall and is composed primarily of concentric 

layers of elastic laminae interposed with layers of extracellular matrix and contractile 

smooth muscle cells.  The outermost, relatively thin layer, which attaches the artery to the 

surrounding tissues, is the adventitia.  It consists chiefly of connective tissue with 

irregularly arranged elastic and collagenous fibers [5]. 

 
2.1.2 Function 
 

The overall function of arteries is to deliver blood from the heart to the peripheral 

vessels, but these conduits also play important roles in vascular hemodynamics.  Arteries 

regulate vascular mechanics primarily at the cellular level by controlling vascular tone, 

regulating the vessel diameter and by dampening pulsatile pressure waves [6].   

 
2.1.3 Endothelial  Cell Biology 
 

Endothelial cells line the lumen of all blood vessels, serving as a barrier between 

blood-borne constituents and the underlying vascular tissue.  Their function is 

complicated with multiple roles, including: cell growth, migration and differentiation, 

maintaining vascular tone, and responding to injury.  EC accomplish these diverse tasks 

through cytokines, vasoactive peptides, and growth factors.  Additionally, EC are directly 

exposed to the forces developed from blood flow and pressure.  As a result of this direct 

contact, they are believed to be the primary mediators of response to shear stress and 
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cyclic strain [7, 8].  In fact, EC at sites of complex flow (i.e. vessel bifurcations and 

curvatures) exhibit increased permeability and a proinflammatory phenotype [9].  

Disruptions in the hemodynamic forces imparted on vascular EC can cause their secretion 

of vasoactive factors including vasorelaxants (e.g. nitric oxide and prostacyclin) and 

vasoconstrictors (e.g. endothelin-1 and platelet-activating factor) and in the long-term, 

remodeling of the vessel wall [10].    

 
2.2 Arterial Hemodynamics 
 

The three hemodynamic forces imparted on vascular EC by blood flow are shear 

stress, hydrostatic compression and cyclic (circumferential) strain.  Each of these forces 

has an associated phenotype and gene expression profile.  Additionally, due to inherent 

differences in the varying types of blood vessels, the properties of the vessel wall vary 

along the vascular tree.  Large and medium-sized arteries behave differently than 

capillary vessels, which in turn behave differently than low pressure veins.  Within the 

arteries, typical physiological values of shear stress, cyclic strain, and transmural pressure 

range from 6 to 40 dyne/cm2, 6% to 10% at 1 Hz, and 60 mmHg to 140 mmHg, 

respectively [11].  Although all three forces mediate vascular responses, some evidence 

indicates that shear stress and hydrostatic compression may not be the major factors 

influencing atherosclerosis or other vasculoproliferative cardiovascular diseases [2].  

Rather, cyclic strain, which results from pulsatile blood flow, is the principal factor in the 

localization of these diseases [2].  Cyclic mechanical strain regulates the apoptosis, 

proliferation, and migration of vascular cells, and the degradation, synthesis, and 

reorganization of extracellular matrix [12].  Therefore, for the purpose of this 

dissertation, this review of arterial hemodynamics will emphasize cyclic strain in major, 
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typically elastic arteries, such as the coronary arteries.  In these vessels, normal 

physiological cyclic stain is about 10% [6, 13]. 

The vascular wall exhibits complex material properties, including spatial 

heterogeneity, anisotropy, nonlinearity, and viscoelasticity [6].  Thus, the wall mechanics 

of the native artery are neither simple nor straightforward.  However, by making a few 

assumptions, it is possible to derive a simplified relationship between transmural blood 

pressure and wall stretch. 

Under normal conditions, the arteries are always “pressurized.”  Therefore, based 

upon the law of LaPlace, the wall stress in the circumferential direction for a thin-walled 

cylinder of wall thickness, h, and with transmural pressure, P, can be approximated as 

(inertial effects ignored): 

 
σθ (t) = P * r 

            h 
 

where r is the deformed radius. 
 
 

From Hooke’s law for an elastic, thin-walled cylinder, circumferential strain (εθ) can be 

equated to circumferential (hoop) stress (σθ) through the definition of bulk Young’s 

modulus, E, by the formula: 

 
εθ = (1/E)(σθ) 

 
 

Thus, if the artery is assumed to be a classic pressure, thin-walled, linear elastic cylinder, 

governed by LaPlace’s and Hooke’s laws, a very simple model can be developed to 
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provide a basis for in vitro work.  By equating the stress and strain, the relationship 

between transmural blood pressure and wall stretch is derived: 

 
εθ = σθ/Ε = (P∗r) 

                                                     (h∗E)  
 

Although this simplified equation is only applicable for infinitesimal strains of a 

thin-walled, linear elastic cylinder, it demonstrates that the relative circumferential 

expansion of the arterial wall is directly related to the wall composition and structure.  

Restated, arterial pressure, comprised of both blood pressure and pulsatile tensile stresses, 

causes a radial-directed stress in the wall, and the resulting strain directly depends on the 

constitutive properties of the arterial wall. 

 
 
 

P

Pulsatile blood flow

shear stress
normal 
radial 
stress

circumferential stress

Longitudinal stress

PP

Pulsatile blood flow

shear stress
normal 
radial 
stress

circumferential stress

Longitudinal stress

 

Figure 2.2: Mechanical forces acting on the artery 
The figure at right shows the resultant stresses acting on an element of the vascular wall, 

where the endothelial cells reside. 
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2.3 Vascular Obstructive Diseases 
 

Through autocrine and paracrine hormonal mechanisms, EC are able to react to 

local hemodynamic modifications.  Almost immediately, vascular tone is used to 

compensate and restore any changes in mechanical forces.   As reviewed in Section 2.1.3, 

one of the functions of EC is to respond to humoral agents and injury.  If the endothelium 

is damaged, dysfunction is clinically characterized by a loss of nitric oxide production 

and therefore, reduced endothelium-dependent vasodilation.  The shift in phenotype to a 

state of dysfunction is also characterized by increases in endothelial adhesiveness, 

permeability, proliferation, and thrombogenesis.   

When the phenotype of vascular cells is altered or compromised, and thus not 

capable of restoring physiological levels through vascular tone alone, vascular 

remodeling occurs and can lead to vasculoproliferative diseases.  These disorders can 

occur as a result of numerous pathological conditions, notably atherosclerosis, 

hypertension, and the consequence of mechanical interventions.  The pathologies are 

similar in that they result in an abnormal narrowing of the blood vessel.  Advanced lesion 

formation can result in mortality or serious tissue damage, including cerebral and 

myocardial ischemia and infarctions. 

 
2.3.1 Atherosclerosis 
 

Atherosclerosis is the pathological event leading to the development of plaque on 

the inner walls of arteries, decreasing lumen size.  Specifically, vascular injury triggers a 

vasculoproliferative cascade that can be divided into three phases: (1) an early phase of 

platelet activation and thrombus formation, (2) an intermediate phase of vascular smooth 

muscle cell (VSMC) recruitment, and (3) a late proliferative phase [14].  It is known that 
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hemodynamics and the endothelium mediate these atherosclerotic events, but the balance 

amongst autocrine, paracrine, and endocrine cell signaling remains to be elucidated. 

 
2.3.2 Hypertension 
 
 Hypertension is an increase in blood pressure due to a narrowing lumen and 

reduction in vessel elasticity.  Instead of being focal in nature, like atherosclerosis, 

hypertension involves diffuse changes in hemodynamics and arterial structure.  

According to one hypothesis, high blood pressure causes chronic damage to the 

endothelium, promoting plaque formation [5].  Therefore, although not a “disease” by 

definition, chronic hypertension can lead to vessel stiffness via extracellular matrix 

(ECM) deposition, hypertrophy and hyperplasia of VSMC in the intima and media.   

 
2.3.3 Surgical Intervention 
 

In an effort to reduce CVD mortality, a variety of procedures, including balloon 

angioplasty, endarterectomy, and coronary artery bypass grafting and stenting, are 

performed.  In 2004, an estimated 6,363,000 inpatient cardiovascular operations and 

procedures were performed in the United States, contributing to a decline in CVD 

mortality [1].  However, these treatments, like atherosclerosis, involve acute mechanical 

injury to the structure of the vessel wall, leading to increased susceptibility to 

atherosclerosis, aneurysm formation, and plaque disruption.  Remodeling of the injured 

vasculature usually occurs within a few hours or days after injury [15] and often leads to 

neointimal hyperplasia and eventually, restenosis.  It is estimated that 30 to 50% of 

patients undergoing percutaneous coronary interventions will experience restenosis [16, 

17], and 20% of these will require additional operations, including coronary artery bypass 
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surgery, a procedure that in itself is limited by graft failure due to luminal obstruction 

[18].  Estimated costs as a result of restenosis complications exceed $3.5 billion per year 

in the United States alone [19]. 

 
2.4 Treatment of Vasculoproliferative Disease 
 
 
2.4.1 Improved Stent Design  

 
Stenting serves to unblock and hold open a narrowed vessel, ensuring perfusion to 

downstream tissue.  Since it is a less caustic method than radiation or brachytherapy, 

stenting is a popular method to treat vasculoproliferative diseases.  Recent reports state 

that more than 1.25 million stents are implanted in North America annually [20].  

However, the consequences of stent placement are often deendothelialization, dissection 

of the media and occasionally the adventitia, and stretch of the entire artery [21].  In 

addition, a complex interaction occurs between the blood and the biomaterial surface.  

The complement system is activated, platelets and leukocytes become activated, and 

coagulation leads to thrombi formation [22].  These events initiate the arterial wall’s 

healing response to mechanical injury, often leading to restenosis. 

 
2.4.1.1 Drug-Eluting Stents (DES) 

 
Since restenosis after stent placement is entirely the result of intimal hyperplasia, 

stent coatings with drugs or non-pharmaceutical agents may reduce in-stent restenosis.  

The metal stent is either coated with a matrix, allowing controlled drug release, or the 

pharmacological agent is incorporated into a polymer-metal composite stent [23].  Thus 

far, in comparison to bare metal stents (BMS), these “drug-eluting stents (DES)” have 



   

13 

been successful in reducing restenosis (from the 20–30% range to single digits [24]) and 

neointimal hyperplasia [25]. 

It is important to consider the local drug pharmacokinetics when designing a 

DES.  Any pharmacological agent delivered locally is influenced by the local transport 

forces, which are related to the properties of the target tissue.  Suboptimal transport could 

result in either toxic or nontherapeutic levels.  The highly heterogeneous composition of 

the arterial wall and its asymmetric geometrical organization represent a challenge for 

most agents applied in DES technologies [21].  The ideal compound should contain 

hydrophobic elements to ensure high local concentrations as well as hydrophilic 

properties to allow homogeneous drug diffusion. 

DES also have potentially dangerous complications.  Recent studies report 

increased risk of stent thrombosis, myocardial infarction, and death associated with the 

use of this type of stent [26-28].  Since the currently employed drugs fail to specifically 

target the factors involved in the vascular injury caused by surgical implantation, there 

are complications known as "late stent thrombosis."  The antiproliferative agents prevent 

the growth of endothelial cells onto the stent, thereby increasing the tendency for blood 

clotting inside the stent.  This complication is generally avoided in BMS because they 

promote the growth of a smooth, thin layer of endothelial cells, incorporating the device 

into the artery [29].  A possible solution could be designing a drug-eluting stent which 

employs a novel drug designed with a molecular-target approach, specifically targeting 

the factors involved in vascular injury.   
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2.4.1.2 Alternative Stent Improvements 
 
The alternative approach to improving stent design acts to accelerate, not inhibit, 

the healing process.  Healing-enhancing stents aim to reduce VSMC migration and 

proliferation, promote local angiogenesis, and improve re-endothelization.  These stents 

are coated with growth factors, hormones or antibodies [30] to prevent endothelial 

denudation and subsequent thrombosis.  For example, researchers have designed a stent 

coated with anti-human CD34 antibodies in order to capture circulating endothelial 

progenitor cells [31].  The estrogen-releasing stent [32], the nitric-oxide-releasing stent 

[33], and the cell migration inhibitor (batimastat)-releasing stent [34] use elution to 

control inflammation and accelerate endothelial regeneration.  Animal studies from these 

novel stents ascertain that this new technology may be an effective means to treat 

restenosis.  However clinical trials are still underway and future investigations are 

necessary to overcome methodological limitations, such as dosing and vehicle delivery. 

 
2.4.2 Intraluminal Radiotherapy 
 

Intraluminal radiotherapy of arteries has been shown to inhibit restenosis by 

suppressing neointimal growth.  The irradiation can target cells in all three layers of the 

blood vessel, i.e. from the intima to the adventitia.  This technology attempts to inhibit 

new cell growth without causing long-term vascular necrosis.  Several irradiation 

techniques are currently being investigated, including temporary intravascular insertion 

of gamma or beta-emitting wires, inflating balloon catheters with radioactive liquid, and 

using radioactive impregnated stents.  However, uncertainties in dose-volume effects and 

the biological time course of restenosis make intraluminal radiotherapy as yet difficult to 

both plan and execute [35]. 
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2.4.3 Gene Therapy 
 

Since in-stent restenosis remains an important clinical problem, gene therapy 

offers an alternative approach for treating vessel remodeling.  The genes delivered to 

vascular wall cells can encode for proteins that are either directly or indirectly cytotoxic 

or cell cycle-inhibitory.  There is great interest in developing a strategy for safe, efficient, 

targeted gene delivery into the vessel wall.  However, as a result of the nature of 

atherosclerotic lesions and lipid-rich atheroma, there is a potential for harmful 

biodistribution of vector.   

Under evaluation are several approaches using gene therapy to prevent or reduce 

intimal hyperplasia.  Viral vectors have the advantage of high gene transfer efficiency 

[36], but their success has limitations.  Adenoviruses efficiently transfect both 

proliferating and quiescent cells, but they often have a short duration of expression and 

transfect untargeted organs and cells [37].  Retroviruses, lentiviruses, and baculoviruses 

are limited by host reactions and safety concerns.  An attractive alternative approach is 

plasmid DNA with or without carrier molecules, because it is easy to produce and has a 

high level of safety.  However, it is limited by low efficiency of gene transfer in vascular 

applications [37]. 

In spite of recent promise in the field of gene therapy, including success in 

preclinical animal models [38], there are not yet any therapeutic effects in clinical trials 

[39, 40].  Additionally, gene therapy is best suited for treating genetic disorders with 

single gene defects [36] and therefore, is unlikely to be successful in treating most 

vascular obstructive diseases, which involve multiple genes.  Thus, this CVD treatment 



   

16 

option faces the same problem as the DES and radiotherapy fields—a need to develop an 

optimally-targeted pharmacological solution. 

 
2.5 Role of c-Myc in Vascular Disorders  
 

Cardiovascular disease and cancer are the predominant causes of mortality in 

industrialized countries [41].  Biological evidence suggests that these human pathologies 

may share pathological mechanisms.  The three stages of carcinogenesis—induction, 

growth and invasion of tissue, and neoangiogenesis—parallel the course of 

atherosclerosis—initiation, progression, and complication.  As a result of these 

commonalities, genes that have classically been studied in regards to carcinogenesis 

(c-Myc, Ras, and the Insulin-like growth factor-1 cascade) are now being linked to 

endothelial dysfunction and atherogenesis [42]. 

Specifically, a growing body of evidence implicates that the c-Myc proto-

oncogene can play a pivotal role in cardiovascular disease.  c-Myc, whose overexpression 

is associated with a significant number of human cancers [43, 44], controls numerous 

functions, including cell cycle progression, differentiation, and apoptosis [45-47].  In fact, 

c-Myc expression occurs within 30 minutes of mitogenic stimulation of quiescent cells, 

and peaks around 2 hours [48].  Disruption of c-Myc gene expression lengthens both the 

G1 phase of the cell cycle (prior to DNA synthesis) and the Go to G1 transition [49, 50].  

Moreover, c-Myc plays a key role in p27 sequestration through modulation of the level of 

regulatory cyclin D and E proteins [51]. 

Specific to the development of obstructive vascular disease, c-Myc is quickly 

induced in VSMC after arterial injury [50] and activated by proliferative signals, 

including a number of mediators of vascular EC biology, such as LDL [52], thrombin 
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[53], endothelin [54], and angiotensin II [55].  Inhibition of c-Myc has been shown to 

inhibit smooth muscle cell proliferation in vitro and in several animal models [56].  

Several studies suggest that c-Myc may be involved in the regulation of angiogenesis 

[57].  Research with c-Myc knockout mice indicates that a deficiency in this gene causes 

serious defects in the development of blood vessels, angiogenesis and erythropoiesis [58, 

59].  c-Myc also regulates the downstream genes causing cell migration and adhesion, 

collagen formation, secretion of extracellular matrix, and cell proliferation [60].  When 

compared with healthy conditions, there is increased c-Myc expression in atherosclerotic 

plaques, after carotid injury, and in hypertensive rats [61]. 

 
2.5.1 Targeting of c-Myc to Treat Vascular Diseases 
 

To combat atherosclerosis and other cardiovascular diseases effectively, drugs are 

needed to downregulate the overexpressed genes comprising the vasculoproliferative 

response.  Transcriptional factors such as c-Myc, which are downstream of the signaling 

cascades, have advantages because, unlike targeting a signaling molecule, there is less 

likely to be redundancy due to upregulation of parallel pathways, resulting in drug 

resistance.   

Additionally, since c-Myc is an early-activated oncogene, a drug regulating its 

expression would only need to be released in the first 48 hours following intervention.  In 

fact, in vivo studies have shown that single-dose suppression of c-Myc can prevent 

neointimal formation months later because the proliferation is critically dependent upon 

mitogenic events that occur very shortly after injury [62].  Not only does this treatment 

generate an easily controllable local pharmacokinetic profile, but it also has enormous 

potential for drug-eluting stents [63].  After the relatively brief delivery of the anti-
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restenosis drug, the stent would become a bare metal stent—which may eliminate the 

concern of late stent thrombosis present in currently-designed drug-eluting stents.  With 

bare metal stents, endothelial cells are able to grow, incorporating the device into the 

artery.  A major complication of drug-eluting stents in use today is that the drugs that 

coat them have a long-term potency that prevents regrowth of endothelium, increasing 

the risk of thrombosis months later. 

For all of these reasons, inhibition of c-Myc-dependent signaling has become a 

novel therapeutic opportunity in vascular obstructive diseases.  Strategies have been 

undertaken to downregulate c-Myc, such as through intervention with antioxidants, RNA 

synthesis inhibitors, and antisense oligonucleotides against c-Myc [64].  However, an 

effective means to modulate c-Myc gene expression in humans has yet to be developed.   

 
2.5.1.1 Antisense Oligonucleotides  
 

The mechanism by which antisense oligonucleotides (AS OND), the most-

researched therapy, inhibit expression of c-Myc involves interference with translation of 

the target c-Myc mRNA [65].  Thus far, these strategies have shown prevention of 

restenosis in animal models [66].  In rat studies, c-Myc AS OND reduce negative 

remodeling induced by arteriotomy, significantly reducing cell proliferation, 

inflammatory cell infiltration, and medial oedema [50].  However, when c-Myc AS OND 

were studied in humans, there was no reduction in angiographic or clinical restenosis 

after bare metal stenting [39] or in randomized human clinical trials [56].  It is generally 

believed that the ineffectiveness of these therapies in humans is due to an inherent 

nonspecificity, a slow uptake across the cell membrane, and rapid intracellular 

degradation of the oligonucleotide [67].  AS OND have unfavorable pharmacokinetics 
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because a significant fraction of antisense may be retained by membrane lipids [63] and 

large amounts of drug are required to produce an effect.  

Instead, what is needed to effectively treat these vascular obstructive diseases is a 

de novo drug design.  A novel and potentially more effective drug would prevent c-Myc 

transcription (and therefore downstream gene expression) by directly targeting the c-Myc 

silencer element.   

 
2.5.1.2 Drug Targeting: Arizona Cancer Center Collaboration 
 

Since there is an established relationship between vasculoproliferative 

cardiovascular diseases and cancer, a logical next step would be the investigational 

application of cancer drug therapies in the cardiovascular field.  c-Myc has been a 

particularly attractive target for cancer drug development because it is overexpressed in 

the majority of tumor types and its inactivation can induce regression of malignant 

cancers.  The University of Arizona Cancer Center (UAZCC) in Tucson, Arizona actively 

researches and develops cell-selective molecular targets for antitumor application, 

specifically identifying compounds targeted to the c-Myc promoter.  Their drug design 

involves the traditional approach of using a small molecule as the starting point for drug 

optimization.  

c-Myc transcription takes place when transcription factors heterogeneous nuclear 

ribonucleoprotein (hnRNP K) and cellular nucleic acid binding protein (CNBP) bind the 

c-Myc promoter.  The compounds identified by UAZCC are able to silence the c-Myc 

promoter and thus, repress gene expression by preventing this binding of hnRNP K and 

CNBP to the c-Myc promoter.  As proof of principle, the Cancer Center has performed 
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chromatin immunoprecipitation (ChIP) analysis.  In unpublished data, their results verify 

that these compounds almost completely inhibit hnRNP K and CNBP binding. 

  As justification of the modulation capability of these compounds, UAZCC has 

performed serum-starvation experiments.  It is well established that serum induces c-Myc 

expression in numerous cell types.  In order to monitor basal levels of c-Myc, cells are 

often serum-starved, thus inducing a quiescent growth state.  In a serum-starvation study 

with cancer (HeLa) cells, UAZCC researchers showed that compounds prevent the 

recovery of c-Myc levels after starvation.  HeLa cells were grown to confluence, then 

rinsed and placed in media without serum for 12 hours.  After serum-starvation, cells 

were then given media containing serum with and without drug.  After starvation, c-Myc 

mRNA expression levels are about 0.4.  When serum is added back to the cells and no 

drug is given, c-Myc levels increase to 0.75.  On the contrary, when cells are given serum 

AND drug, there are no noticeable differences from serum-starved cells—the levels 

remain around 0.4.  Therefore, these findings indicate that University of Arizona has 

identified drugs that are able to modulate the transcriptional activation of c-Myc. 

Thus far, these UAZCC compounds have only been studied in oncology, but there 

is also a clear application in cardiology.  Additionally, these compounds have both 

hydrophobic and hydrophilic properties—desirable traits for allowing homogeneous drug 

diffusion on a DES. 

Therefore, a Material Transfer Agreement has been established between 

University of Arizona and Georgia Institute of Technology.  This project utilized 

University of Arizona’s lead compounds to investigate the modulation of c-Myc 
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transcriptional activation in my own experimental setup, which mimics the hemodynamic 

conditions associated with vessel remodeling and atherosclerosis. 

 
2.5.2 Structure of c-Myc Promoter Region 

 
The c-Myc gene is located on human chromosome 8q24 and consists of three 

exons.  Translation at the AUG start site in the second exon produces a major 439 amino 

acid, 64 kDa c-Myc protein  [68].  The transcriptional regulation of c-Myc expression is 

complex and involves multiple promoters and transcriptional start sites.  The nuclease 

hypersensitivity element (NHE III1) in the c-Myc promoter controls up to 90% of the 

transcriptional activity of this gene that occurs at the P1 and P2 promoters (the 

predominant c-Myc promoters) [69] (Figure 2.3).  

 
 
 

 

Figure 2.3: c-Myc sequence [70] 
 
 
 

The NHE III1 sequence includes an inordinate number of guanine residues on one 

strand and the corresponding cytosine residues on the opposing strand.  The unique 

G-rich and C-rich sequences impart a special property to the DNA in this region—the 

ability of this duplex NHE III1 to convert to a structure in which the purine-rich strand 
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adopts a G-quadruplex structure [71-73] (Figure 2.4).  When NHE III1 takes on this form, 

either side of these structures is single-stranded for at least one turn on each side.  By 

stabilizing this silenced form, the binding proteins hnRNP K and CNBP, which directly 

mediate transcriptional activation, can be prevented from binding.  In other words, by 

transforming the purine-rich sequence of the NHE III1 to a parallel G-quadruplex 

structure, hnRNP K and CNBP cannot bind.  Thus, gene expression is silenced [74].  

Potential drugs could succeed in preventing transcription of c-Myc by stabilizing this 

region of NHE III1. 

 
 
 

 
Figure 2.4: Proposed structure of c-Myc promoter [70] 

 
 
 
2.6 Genetic Markers of Vasculoproliferative Diseases 
 

Direct targets of c-Myc are defined as genes whose expression is directly 

regulated by binding of the c-Myc protein to the promoter region.  These target genes 

have been identified by several techniques including DNA microarray analysis and serial 

analysis of gene expression (SAGE).  It is important to point out that there may be 

differences in the c-Myc targets induced in normal cell homeostasis and those induced in 

pathophysiological conditions when c-Myc is overexpressed.  The following are potential 
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downstream targets of c-Myc that have also been implicated in promoting 

vasculoproliferative diseases. 

 
2.6.1 Proliferating Cell Nuclear Antigen (PCNA) 
 

Proliferating cell nuclear antigen (PCNA) has been identified by microarray as a 

transcriptional target of c-Myc (3.2–fold upregulation) in rat endothelial cells [75].   This 

protein was originally identified as an antigen expressed in cell nuclei during the DNA 

synthesis phase of the cell cycle.  PCNA encircles double-stranded DNA as a trimer, 

forming a sliding clamp that tethers proteins such as polymerases to DNA [76].  Based 

upon its essential role in DNA synthesis and therefore, increased concentrations during 

the cell cycle, this protein is considered to be a valid indicator of cell replication.  Cells 

traversing the cell cycle are often identified by PCNA immunostaining. 

PCNA is implicated as a downstream gene of c-Myc [77] and in relation to CVD, 

PCNA has been identified as playing an important role in vascular remodeling 

(proliferation, migration, and phenotypic change).  Its expression is frequently used to 

determine the proliferation activity of endothelial cells in restenotic tissue [78] and matrix 

accumulation in neointimal vasculature [79] obtained from porcine coronary angioplasty.  

Smooth muscle cell proliferation, an important stage in the pathogenesis of vascular 

obstructive diseases, can be inhibited in vitro and in several animal models by inhibiting 

PCNA expression [56].  Because of its role in vascular disease, in addition to targeting 

the c-Myc gene for AS OND, research is also directed towards developing AS OND for 

PCNA [80]. 
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2.6.2 Heat Shock Protein 60 (HSP60) 

 
HSP60, a protein which is expressed on the endothelial surface, has been 

identified as a transcriptional target of c-Myc [81] through SAGE and confirmed with 

microarray (5-fold induction).  It is a suspected contributor to the initiation and 

aggravation of vascular pathologies like atherosclerosis and restenosis [82].  The first 

published discovery of human HSP60 detection in diseased vascular tissue was in the 

early 1990s [83], with the identification of HSP60 expression in atherosclerotic lesions.  

Subsequent research has validated this discovery, showing localization of HSP60 in 

neointimal, but not healthy, vasculature [84] and soluble HSP60 levels associated with 

intima–media thickness [85]. 

With increasing studies, HSP60 is now being recognized as a marker for early 

cardiovascular disease.  Elevated HSP60 levels have been identified in patients with 

borderline hypertension and there is an association between early atherosclerosis and 

HSP60 levels [86].  Further, HSP60 both activates and is induced in endothelial cells, 

smooth muscle cells, and monocyte-derived macrophages in atherosclerotic lesions [85].  

Endogenous as well as exogenous HSP60 have been implicated in stimulating vascular 

smooth muscle cell proliferation in a concentration-dependent fashion [87, 88]. 

The association of HSP60 with the induction/progression of both chronic 

hypertension and atherosclerosis can be further substantiated from a vascular mechanics 

point of view.  Disturbed flow patterns have been found to induce HSP60 and have been 

suspected to provoke autoimmune reactions which result in atherogenesis [89].  Altered 

hemodynamic conditions, like those found in venous bypass grafts and atherosclerosis-

prone sites of the vascular tree, are also possible causes of HSP60 induction.  In 
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particular, increased levels of fluid shear stress (30 dynes/cm2) increased HSP60 

expression in endothelial cells in vitro [81, 90].   

 
2.6.3 Vascular Endothelial Growth Factor (VEGF) 
 

Vascular endothelial growth factor (VEGF)  is well characterized as a 

transcriptional target of c-Myc at both the mRNA and protein levels [91].  In fact, 

upregulation of c-Myc has been shown to cause almost a 10-fold induction of VEGF 

expression [92].  Within the vasculature, VEGF is a potent mitogen, identified as a 

mediator of c-Myc–induced angiogenesis. 

VEGF plays a key role in both physiological and pathological conditions.  This 

growth factor is involved in processes ranging from wound healing and 

neovascularization to carcinogenesis and cardiovascular disease [36].  It acts on 

endothelial cells, inducing various effects, including increased vascular permeability, 

angiogenesis, vasculogenesis, and endothelial cell proliferation and migration [37].  

Although VEGF is necessary for maintaining hemostasis, studies also indicate 

that increased expression and activity of endogenous VEGF are essential to the 

development of restenosis.  Injurious conditions due to pathologies or surgery alter the 

mechanical environment, leading to a thickening and subsequent increased stretch of the 

vessel wall.  In VSMC, the increasing stretch induces a significant increase in VEGF 

expression both at the mRNA and protein levels [93] and in a time- and amplitude-

dependent manner [94].  Since VEGF enhances neointimal formation and atherogenesis 

in vitro and in vivo [21], these findings suggest that VEGF plays a role in arterial disease.  

In fact, higher levels of VEGF are found in atherosclerotic and restenotic legions as 

compared with normal, healthy tissue [95, 96].   
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2.7 Cell Culture Models of Mechanical Forces  
 

The fluid mechanical forces imparted by blood flow have been implicated in 

playing a pivotal role in the initiation and progression of CVD.  Stenotic lesions 

preferentially develop in regions of disturbed blood flow, implicating that local 

hemodynamic forces directly influence pathobiological processes.  Endothelial cells 

grown statically on tissue culture fail as an appropriate in vivo model of EC behavior 

because this oversimplified system lacks the critical feature of mechanical stress.  In vivo, 

EC experience stress from the flow of blood, pressure fluctuations, and pulsatile stretch 

(see Section 2.1.3).  Relevant to this dissertation, c-Myc has been reported to respond not 

only to shear stress, but also to other types of mechanical forces, such as pressure 

overload and stretch in cardiac myocytes [97]. 

At present, however, it is not possible to monitor and control the hemodynamic 

factors in the vicinity of the vessel wall.  Since an in vivo model does not exist, the 

mechanism by which mechanical forces modulate the morphology, metabolism and 

genetic expression of EC must be studied with appropriate in vitro models.  Various types 

of experimental apparatuses have been developed to impose different forms of 

mechanical forces on culture cells.  Thus far, limited studies have been performed using 

direct hydrostatic pressure separate from circumferential wall tension. 

 
2.7.1 Shear Stress Models 
 

In order to mimic the effect of arterial wall shear stress due to blood flow, in vitro 

models study fluid flows on cultures.  These designs usually involve a parallel plate, cone 

and plate, or flow loop apparatus.  Published research studying the gene expression 
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effects of shear stress indicate that flow induces c-Myc expression, peaking in the 1.5–2 

hour time range.  Specifically, Li et al. found that both steady and 1 Hz pulsatile flow 

(average shear stress of 16 dynes/cm2) caused slight increases in c-Myc mRNA levels 

which peaked at 2 hours and returned to basal levels by 4 hours [98].  Hsieh et al. 

investigated c-Myc protein levels in HUVEC subjected to steady shear stress at very low 

levels (4 and 10 dynes/cm2).  Their results show a peak in expression at 1.5 hours, which 

falls to basal levels by 2.5 hours [99].  Both of these studies substantiate the role of 

c-Myc expression in the pathogenesis of vascular disease. 

 
2.7.2 Cyclic Strain Models 
 
 Although several types of devices have been used to induce mechanical stretch  

in vitro, in general, researchers have employed two different stretch regiments to mimic 

pulsatile circumferential wall stretch: uniaxial and biaxial.  Different types of mechanical 

stretch elicit different molecular and cellular responses.  Uniaxial systems mimic in vivo 

pulsatile (one-dimensional) expansion of the artery wall.  Biaxial systems are 

advantageous because multiple systems can be run in parallel, but they incur a non-

uniform strain field and are therefore inconsistent with in vivo mechanics. 

In the biaxial stretch apparatus, cells are generally cultured on a circular 

membrane, constrained at the periphery.  Cyclic stretching is imposed either by vacuum 

suction of the air or fluid below the membrane or by moving a central piston.  The strain 

field produced is non-uniform throughout the membrane—maximal strain occurs near the 

outer edges, where the strain is primary radial as a result of clamping.   Approaching the 

membrane center, strain levels decrease and the strain field is isotropic and biaxial.  At 

the center, strain is close to 0%.  A commercially available system called “Flexercell” 
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utilizes a vacuum-operated biaxial system.  Extensive studies reveal that the biaxial strain 

induced in this system are insufficient to model vascular cyclic strain and in fact, are 

more appropriate for studying heart tissue and bone mechanics, where biaxial strain is 

apparent in vivo [100-102].  Additionally, during stretching, microscopic observation is 

impaired as a result of vertical movement in the center of the membrane.   

Another model for cyclic strain implements an equibiaxial system.  Indenter 

devices apply a uniform and equibiaxial strain to the membrane, but they have a limited 

range of cyclic strain (0.04–0.4%).  These low percentages are suitable for bone cells, but 

not for vascular applications [103].  In one equibiaxial strain model [104], research found 

that endothelial cells were exposed to the same stress field and showed no morphological 

changes after 20% cyclic strain at 1 Hz.   Since in vivo morphology indicates that cells 

orient themselves perpendicular to circumferential stretch, this lack of cytoskeletal 

reorganization makes results suspicious for in vivo application. 

In uniaxial stretching devices, such as employed in this dissertation, the cells are 

cultured on a rectangular membrane, with one end anchored and the other end pulled at a 

certain frequency.  Since the membrane in these devices moves only in one direction, 

microscopic observation of the cultured cells is relatively simple. Additionally, consistent 

with in vivo observations, morphological studies show that endothelial cells subjected to 

uniaxial cyclic strain orient themselves so that their long axis is perpendicular to the 

direction of stretch.  This reorganization may play a fundamental role in regulating 

vascular tone and blood fluidity.  Theories on cell alignment conjecture that the 

perpendicular alignment may be an attempt to reduce the strain energy exerted on the cell 
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[105].  Cells may be trying to minimize stretching of microtubules or other cytoskeletal 

networks during pulsation.  

Published studies measuring c-Myc expression levels in cyclic strain models are 

limited.  Thus far, no one has reported on the effect of c-Myc gene expression in uniaxial 

stretched HUVEC.  However, preliminary research has investigated the effect of 20% 

uniaxial stretching of cardiac myocytes [106].  This group reported a transient stretch–

induced upregulation of c-Myc mRNA that peaked around one hour.  
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 CHAPTER III: MATERIALS AND METHODS 
 
 
 
3.1 Experimental Procedures 
 
3.1.1 Cyclic Strain Model 
 
 The system was designed to mimic the “normal” in vivo conditions that arteries 

experience during circumferential expansion.  Since the radius of curvature of large 

arteries is much greater than the dimensions of the cell, the in vitro design was simplified 

by “cutting” a vessel along its axis and laying it flat, as shown in Figure 3.1.  In this way, 

fluid shear stress and wall strain act together to cause alignment of the EC parallel to the 

flow axis of the vessel.  In short, cyclic strain is imposed by culturing EC on a flexible 

membrane that is inserted into a chamber with one side of the chamber oscillating. To 

mimic the heart beating, a simple sinusoidal function (uniaxial cyclic strain) was imposed 

at 1 Hz.   

 
 
 

 
 

Figure 3.2: Rationale for cyclic strain model 

In Vivo In Vitro 



   

31 

3.1.1.1 Elastic Substrate 
 

Silicone sheeting (Specialty Manufacturing Inc) was chosen as the substrate 

material because it is elastic, relatively inexpensive, readily available, non-toxic, and 

chemically inert.  It is also optically clear, allowing for microscopic visualization of the 

cells. Another advantage of the silicone is that it does not lose its elasticity with 

autoclaving sterilization and can be stored at this stage for several weeks.  The elastic 

substrate was cut to 8 centimeters long x 4 centimeters wide, a uniform geometry that 

provides uniform strain with axial loading.  Since the membrane is very thin (0.005 

inches), relative to its width and length, edge effects on the strain distribution are 

minimized (St. Venant’s principle) [107]. 

 After cutting membranes, they were placed in sealed autoclaving bags and 

sterilized for 10 minutes at 135°C.  At the time of cell seeding, autoclaved membranes 

were moved to a laminar hood and assembled into the cyclic strain chamber.  The 

detailed procedure is given in Section 3.1.1.3 

 
3.1.1.2 Surface Modifications of Silicone Membrane 

 
Although the silicone is medical implant grade and therefore biocompatible, its 

main disadvantage is its hydrophobic nature which prevents cell attachment.  In order to 

improve this property, the silicone surface was modified through gelatin and 

gluteraldehyde cross-linking.  Biological candidates for extracellular matrix include 

structural proteins (i.e. collagen and elastin), adhesive proteins (i.e. fibronectin and 

laminin), and polysaccharide glycosaminoglycans (i.e. heparin and hyaluronic acid).  

Cells will secrete their own ECM after attachment, but it is important to select an 

artificial matrix that will encourage this process.   
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For the purposes of these cyclic strain experiments, gelatin (Sigma) was chosen as 

an appropriate substrate for growing a confluent monolayer and retaining attachment, 

even during stretching.  Once the stretch chambers were assembled, 1% gelatin dissolved 

in 1x phosphate buffered solution (PBS) was added to the membranes and the entire 

chamber was incubated at 37°C for at least one hour. 

In order to crosslink the gelatin to the membrane, 0.5% (final concentration) 

gluteraldehyde [108] was added to the gelatin and the membranes were incubated at room 

temperature for 25 minutes.  Immediately following, since residual gluteraldehyde is very 

toxic to cells, the membranes were thoroughly rinsed with 1 x PBS.  The PBS wash was 

repeated a minimum of 4 times. 

 
3.1.1.3 Cyclic Strain Apparatus 
 

The apparatus for stretching consists of a polycarbonate chamber divided into two 

identical compartments.  Polycarbonate is non-toxic, sterilizable and optically clear, 

allowing for visualization of the culture before and after stretching. All polycarbonate 

and stainless steel (ss) parts were rinsed thoroughly with deionized water, dried, and 

autoclaved unassembled.  Chambers were assembled under sterile conditions in a laminar 

flow hood.  The silicone membrane is mounted with ss clamps at either end of the 

chamber so that it is positioned close (within 1mm) and parallel to the floor of the 

chamber.  This dynamic model takes into account the effect of not just cyclic strain, but 

also fluid agitation by including a “motion control.”   

Specifically, ss plates were fastened to the rear of the unit and were connected to ss bars 

at the front of the unit.  The bars were set into the arm of the camshaft whose 

displacement was regulated through an adjustable pin mounted atop a rotating cylinder.  
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Displacement frequency is regulated by a DC motor.  A detailed description of the strain 

apparatus is given in Figure 3.2.  

 

 

 

 
Figure 3.3: Cyclic strain model 

Cyclic strain apparatus A: relaxed position. B: stretched position.  Upper chamber in both 
A and B contains the cyclically-strained (CS) membrane, whereas bottom chamber 

contains the motion control (MC) membrane [109]. 
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3.1.2 Human Endothelial Cell Culture 
 

Pooled HUVEC obtained from Cambrex were grown to confluence on pre-

gelatin-coated tissue culture flasks in media [composed of Media-199 supplemented with 

20% fetal bovine serum (Cellgro), 25 mg/mL purified endothelial mitogen (Biomedical 

Technologies), 2 mM L-glutamine (Cellgro), 2.5 U/mL heparin sodium (American 

Pharmaceutical Partners), 50 U/mL penicillin (Cellgro), and 50 mg/mL streptomycin 

(Cellgro)] and maintained at 37°C in the presence of humidified 5% CO2/95% air.  Pre-

warmed (to 37°C) media was replaced every 2–3 days, thus removing metabolic wastes 

and supplying fresh nutrients.  HUVEC growth was monitored by assessing culture 

confluence and the cells were generally passaged every 4–6 days, just prior to reaching 

over-confluence.  Cells were passaged by washing with 1xPBS and then incubating with 

0.25% trypsin-EDTA solution (Gibco), centrifuged, and resuspended in complete 

HUVEC media.  Cells were only used up to passage 5 since stretch-induced gene 

expression has been found to change in late passage EC [97]. 

The same HUVEC lot was used for each independent experiment to minimize 

lot-to-lot variability.  Time-matched static controls were maintained for each stretching 

condition. The cell suspensions (approximately 1 x 106 cells in 1 ml of media) were 

carefully placed onto the pre-treated membranes and allowed at least 4 hours in the 

incubator for attachment.  Cells were uniformly seeded and confluent.  Although many 

cells remained unattached, the entire wetted surface was completely covered, and the cell 

appearance was the typical HUVEC cobblestone morphology characteristic of tissue 

culture.  After cell attachment, 13 ml of complete media were added to each compartment 

and the chamber was placed in the incubator. 
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In order to synchronize the cells, they were incubated in quiescent media for 12 

hours prior to stretching.  This step also removed the unattached HUVEC.  Quiescent 

media is identical to normal media, except it has a low serum content (5% versus 20%) 

and does not contain endothelial growth factor or heparin.  Cyclic strain experiments 

were performed in quiescent media. 

 
3.1.3 Exposure to Cyclic Strain 
 
 During an experiment, the polycarbonate unit was transferred to the motor-gear 

assembly inside a 37°C incubator and in the presence of humidified 5% CO2/95% air.  If 

necessary, the central shaft was coated with antibiotic ointment to provide lubrication and 

minimize contaminate entry via the drive shaft surface.  The motor assembly was plugged 

into an extension cord which was specifically routed into the culture incubator and turned 

on.  The motor speed and cam eccentricity were adjusted to subject the experimental 

membrane to cyclic deformation of 5–20% of its unstretched length at 1 Hz.  The 

movement of the clamp in the motion control (MC) compartment was set to give the 

same media movement as in the experimental cyclic strain (CS) compartment.  Thus, 

although the membrane was not stretched in the MC chamber, fluid motion due to clamp 

motion was nearly identical in both chambers.  In the CS chamber, the movement of the 

clamp provided a cyclic stretching and relaxation of the membrane together with viscous 

drag-induced movement of the media bathing the membrane. An additional control 

utilized cells cultured on membranes maintained under static incubation without any fluid 

motion.   
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3.2 Experimental Assays 
 
 
3.2.1 Quantitative RT-PCR 
 
 
3.2.1.1 Isolation of mRNA 

 
Immediately after stretch and, if applicable, drug exposure, membranes were 

removed from the cyclic strain chambers under a laminar hood and placed in a sterile 

Petri dish.  The stainless steel clamps were cut off at the point of attachment with a sterile 

scalpel blade.  The HUVEC were washed with ice-cold 1x PBS.  Cells were removed 

from the membrane with a sterile cell scraper and collected in fresh 1x PBS.  The 

resulting cell suspension was centrifuged for 10 minutes at 1500 rpm, 4°C.  After 

aspirating the PBS from the resultant pellet, cells were lysed in Buffer RLT from the 

RNeasy RNA Mini Extraction kit (Qiagen) and homogenized using a QIAShredder 

(Qiagen).  To prevent DNA contamination, on-column DNase digestion was performed 

using RNase-free DNase and Buffer RDD (Qiagen).  The DNase was efficiently washed 

away in subsequent steps.   

The integrity and quantity of RNA was verified through spectroscopic analysis, 

except with very small yields of RNA, which cannot be accurately quantified 

photometrically.  In these cases, RNA was instead quantified by quantitative real time 

polymerase chain reaction (qRT-PCR).  Readings were taken at ultraviolet wavelengths 

of 260, 280, and 320.  The A260/A280 ratio, an indication of RNA purity, was at least 

1.8 for all isolations.  The A320 reading was used to provide a background reading.  The 

A260 reading provided a measure of the concentration of RNA, such that 1 absorbency 
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unit equaled 40µg of RNA/ml of solution [110].  Purified RNA was stored at -80°C in 

RNase-free water, but used within one year to ensure stability. 

 
3.2.1.2 cDNA Synthesis 
 

For qRT-PCR, 0.1 μg of total RNA was reverse transcribed into cDNA with 

SuperScript II (Invitrogen) according the manufacturer’s instruction.  The resulting 

template cDNA was purified through Micro Bio-Spin P-30 Chromatography Columns 

(BioRad) to reduce background fluorescence.  

 
3.2.1.3 RNA Primers 
  

Quantitative RT-PCR primers were designed with Primer3 software [111] with 

the following criteria: 

• primer size should be between 20 and 22 (optimally 22) 

• Tm should be matching and within 55°C to 65°C (optimally 65°C because this 

matches the melting temperature for the c-Myc primer set) 

• product Tm optimally 80°C 

• the percentage of G to C binding should be between 50–60% (optimally 55%) 

• the last 5 bases at the 3 prime end should have no more than two G's or C's 

• annealing temperatures of the primers as close as possible 

• primer pairs with minimal number of potential primer dimers and primer hairpins 

as possible 

 
From these criteria, four possible binding pairs were selected for each gene 

(Sigma Genosys).  Primer efficiency was determined for each primer set at 8 
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temperatures ranging from 55–65°C.  The optimal primer set for each gene was used at 

its respective melting temperature. 

 
 
 

Table 1: Primer Sets for qRT-PCR on MyiQ Cycler 

Gene Primer Sequence Tm (°C) 

c-MYC 5'- GCTGCTTAGACGCTGGATTP -3' 
5'- TCCTCCTCGTCGCAGTAGA -3' 

65 

ACTIN 5'- CTGGAACGGTGAAGGTGACA -3' 
5'- AAGGGACTTCCTGTAACAACGCA -3' 

65 

HSP60 5’- AGTCAAGGCTCCAGGGTTTGG -3' 
5'- TGGCATCGTCTTTGGTCACA -3' 

65 

PCNA 5'- CCTGACAAATGCTTGCTGACC -3' 
5'- CTTGAGGATGGAGCCCTGGA-3' 

63.1 

VEGF 5'- TTTGCTTGCCATTCCCCACT -3' 
5'- GGTCACTCACTTTGCCCCTGT -3' 

61.2 

 
 
  

Genes were analyzed on a MyiQ Cycler (Bio-Rad).  Quantitative RT-PCR was 

performed according to the following protocol: each 16µl reaction contained 1x iQ Sybr 

Green Supermix (Bio-Rad), 0.3 µM of forward and reverse primers, and 1:2 dilution of 

cDNA.  Reactions were carried out in a MyiQ Single-Color Real-Time PCR Detection 

System (Bio-Rad).  Amplification conditions were as follows: Tm (50 sec), 95°C (60 sec); 

40 repetitions.  The appropriate number of cycles was determined in preliminary 

experiments to ensure that PCR was taking place in the linear range, in order to guarantee 

a proportional relationship between input RNA and densitometry readout.  Absolute 

concentrations were quantified from CT values with a linear standard curve and 

normalized to β-actin expression.  Each PCR was repeated at least 4 times. 
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3.2.2 Western Blotting 
 

HUVEC exposed to cyclical stretch (0–20% elongation) were harvested by 

scraping and then centrifuged (1500 rpm) for 10 min at 4°C.  The pellet was resuspended 

and homogenized by syringe needle in 100–150 µl Cell Lysis Buffer (CLB) [50 mM 

Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 2 mM EDTA], and the supernatants 

were collected and stored frozen at -80°C.  Protein content was determined by Bradford 

assay (Bio-Rad) using CLB as the standard.  Equal protein was resolved by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 7.5% Tris-HCl 

precast polyacrylamide gels (Bio-Rad).  Proteins were electroblotted onto nitrocellulose.  

Blots were incubated for 1 hour at room temperature with 3% non-fat dried milk to block 

non-specific binding.  Proteins were revealed with primary antibodies [rabbit anti-

(c-Myc) monoclonal (Cell Signaling); mouse anti-(VEGF) polyclonal (Santa Cruz 

Biotechnology); goat anti-(HSP60) polyclonal (Assay Designs); rabbit anti-(PCNA) 

polyclonal (Santa Cruz Biotechnology)] (1:1000) overnight at 4°C.  Next, blots were 

incubated with secondary antibodies [horseradish peroxidase-conjugated polyclonal anti-

(rabbit IgG), anti-(mouse IgG), or anti-(goat IgG)] (1:10000) for 1 hour at room 

temperature.  Protein was detected with an enhanced chemiluminescence detection 

system (Amersham Biosciences).  Equal protein loading was verified by mouse-anti-

(ß-actin) monoclonal antibody (Sigma-Aldrich).  Western blots were quantified using 

densitometry (Kodak EDAS 1D Imaging System). 
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3.2.3 Quantitative Protein ELISA 
 
TransAM (Active Motif) is a sensitive, quantitative enzyme-linked 

immunosorbent assay (ELISA) for transcription factor activation. This kit uses a plate to 

which the consensus-binding site oligonucleotide for c-Myc has been immobilized.  

Nuclear extract from cyclic strain samples is added to each well and c-Myc binds 

specifically to this bound oligonucleotide. A primary antibody specific for an epitope on 

the bound and active form of c-Myc is then added, followed by secondary antibody and 

developing solution.  Absorbance was measured using a Wallac Victor microplate reader 

(Perkin-Elmer) at 450 nm. 

 
3.2.4 Cell Viability Assays 
 
 
3.2.4.1 CellTiter Cell Proliferation Assay 
 

In vitro cytotoxicity assays were performed using the CellTiter 96 nonradioactive 

cell proliferation assay (Promega). Cells were plated in 0.1 mL of media on day 0 in 

96-well microtiter plates. On day 1, 10 μL of serial dilutions of the investigational 

compound were added in replicates of four to the plates.  After incubation for 4 days at 

37°C in a humidified incubator, 20 μL of a 20:1 mixture of 2 mg/mL MTS [3-(4,5-

dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 

salt] and an electron coupling reagent, phenazine methosulfate (0.92 mg/mL in DPBS), 

were added to each well followed by incubation for 4 hours at 37°C.  Absorbance was 

measured using a Wallac Victor microplate reader (Perkin-Elmer) at 490 nm.  Data were 

expressed as the percentage of survival of the control calculated from the absorbance 

corrected for background absorbance.  The surviving fraction of cells was determined by 
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dividing the mean absorbance values of the test agents by the mean absorbance values of 

the untreated control.  

 
3.2.4.2 BrdU Cell Proliferation Assay 

 
Chemicon's BrdU Cell Proliferation Assay Kit was used to evaluate cell cycle 

progression of HUVEC subjected to quiescent media.  This kit uses bromodeoxyuridine 

(BrdU) to immunochemically detect the population of cells which are synthesizing DNA.  

BrdU is incorporated into newly synthesized DNA strands of actively proliferating cells 

and absorbance was measured using a Wallac Victor microplate reader (Perkin-Elmer) at 

wavelength 450nm.  Data are expressed as the BrdU absorbance corrected for 

background absorbance.  

 
3.2.4.3 Cell Cytotoxicity Assay 
 

CytoTox-ONE Homogeneous Membrane Integrity Assay (Promega) is a 

cytotoxicity assay used specifically to measure necrosis in a system.  Since lactate 

dehydrogenase (LDH) is produced in HUVEC with damaged membranes, by quantifying 

the amount of LDH released into cell culture media, the number of lysed cells can be 

determined.  The enzymatic assay functions by measuring the fluorescence created in the 

reaction of LDH with resazurin.  Immediately after stretch and, if applicable, drug 

exposure, cyclic strain chambers were relocated to a laminar hood and a 100 μL sample 

of cell culture media was removed for analysis.  The kit was used according to the 

manufacturer’s protocol. Absorbance was measured using a Wallac Victor multilabel 

counter (Perkin-Elmer) at 490 nm. Data were expressed as relative necrosis, which is the 

absorbance of the stretched fraction divided by the absorbance of the static fraction. 
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3.2.4.4 Cell Apoptosis Assay 
 

Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) is used to detect 

apoptosis in a system.  This kit fluorescently detects the presence of caspase-3 and -7 

(apoptosis markers) in cells by utilizing Promega's proprietary lysis/activity buffer, in 

conjunction with the (Z-DEVD)2-Rhodamine 110 substrate. Absorbance was measured 

using a Wallac Victor multilabel counter (Perkin-Elmer) at 490 nm.  Data were expressed 

as relative apoptosis, which is the absorbance of the stretched fraction divided by the 

absorbance of the static fraction. 

 
3.2.5 Preparation of Drug Compound 
 

Compounds were synthesized at University of Arizona Cancer Center and 

authenticated through nuclear magnetic resonance and liquid chromatography-mass 

spectrometry.  Lyophilized drug compound was shipped overnight from the University of 

Arizona Cancer Center to Georgia Tech.  Upon arrival, the compound was resuspended 

in 100% 0.02 μm filtered-sterilized DMSO at 10mM and frozen at -20°C until use.  

Repeated freeze/thaws of the compound were avoided.  Upon use, the compound was 

thawed at room temperature and diluted to 100 μM in 0.02 μm filtered deionized water.   

The compound was then diluted to its final concentration of 5 μM in the quiescent media.  

Specifically, the quiescent media was removed, drug added, and then added back to the 

cyclic strain chamber.  
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3.3 Data Analysis 
 

Significance in protein expression was assessed by Student’s t-test.  Data are 

expressed as mean ± SE. Student's t-test was used for the comparisons between the 

different groups. Differences were considered significant (P<0.01 or P<0.05) as indicated 

on the graphs. 
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 CHAPTER IV: RESULTS 
 
 
 
4.1 Morphological Analysis 
 

To test the accuracy of the cyclic strain system, it was imperative to examine 

whether stretching the silicone substrate resulted in cell stretch and to determine if 

HUVEC responded appropriately to the application of this cyclic strain.  Previously 

published studies [105] using a precursor of the stretching apparatus employed for this 

dissertation examined the mechanical effects of cyclic strain on the morphology of 

HUVEC.  The results found that EC most frequently aligned 90° away from the direction 

of stretch.  Additionally, in visualizing the cytoplasmic microtubule complexes, there was 

a greater density of microtubules running parallel to the major axis of the cell after 

stretch–induced alignment.  Upon replication of these previous morphological analyses, it 

was determined that in fact, the cells do align perpendicular to the direction of stretch, not 

only at pathological levels of cyclic strain, but also at percentages as low as 5%.  This 

altered morphology occurs as soon as 15 minutes after the initiation of stretch. 

Comparable to previous studies on cyclic strain, cells in less confluent sections of 

the membrane aligned more rapidly.  Static membranes failed to align at a specific angle 

and had an essentially random pattern.  Figure 4.1 shows the morphology of stretched and 

static HUVEC. 
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Figure 4.1 Morphology of static and stretched HUVEC 
 
 
 

In order to discount the possibility of apoptotic and necrotic induction by the 

experimental system, it was necessary to assay cell necrosis and apoptosis 

simultaneously.  The CytoTox-ONE Homogeneous Membrane Integrity Assay 

(Promega) and the Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) were 

multiplexed.  Although necrosis and apoptosis both ultimately conclude with cell death, 

necrosis is traumatic cell death resulting from acute cellular injury, while apoptosis is 

carried out in an orderly process [112]. 

The CytoTox-ONE Homogeneous Membrane Integrity Assay measures the 

release of lactate dehydrogenase (LDH) into the cell culture media.  LDH levels were 

measured when the cells were cyclically strained at the maximum percentage, 20%, 

because higher strains implicate a higher probability for cell injury.  As shown in Figure 

4.2, there was no increase in release of LDH by 20% stretch for the 0–3 hour time range.  

Thus, 20% cyclic strain of HUVEC had comparable results to static conditions, 

implicating that cyclic straining of cells causes cell deformation without significant cell 

injury.   

Static 

1 Hz, 20% 

Stretched 

Cyclic Strain 
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Figure 4.2: Cyclic strain of 20% does not increase cell necrosis in HUVEC, n=1. 
 
 
 

Next, the effect of cyclic strain on EC apoptosis was detected using the Apo-ONE 

Homogeneous Caspase-3/7 Assay, which employs a luminescent substrate to detect 

caspase-3/7 activity.  The caspases, a family of cysteine proteases, mediate apoptosis at 

different stages.  With activation, they disable cellular housekeeping and repair programs 

and cleave important structural components in the cells [112]. 

Numerous studies on VSMC and EC using various techniques for apoptosis 

detection have shown that physiological levels of cyclic strain (5% to 10%) do not induce 

apoptosis [3, 113, 114].  However, higher potentially pathological levels of strain (15% to 

20%) stimulate apoptosis on both vascular cell types [3, 12, 114-116].  Cyclic strain has 

been shown to activate p53 and Bcl-2 and cause the production of reactive oxygen 

species [116].  These events result in direct oxidative DNA damage.  Therefore, a slight 

increase in apoptosis was expected with 20% cyclic strain.  Figure 4.3 demonstrates that 

20% cyclic strain causes a slight increase in caspase activity.  
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Figure 4.3: Cyclic strain of 20% slightly induces apoptosis in HUVEC, n=1. 
 
 
 
4.2 Quiescent HUVEC 
 

It is well-known that serum exerts strong and rapid control over c-Myc expression 

in numerous cell types [117].  Therefore, in order to monitor basal levels of c-Myc, cells 

are often serum-starved in “quiescent media,” inducing a quiescent growth state.  

Quiescent media is identical to normal media, except it has a low serum content (5% 

versus 20%) and does not contain endothelial growth factor or heparin.  It has been 

established that c-Myc is not expressed in quiescent cells [118], but the length of time 

necessary for specific cell types to become quiescent is imprecisely known.  For that 

reason, before any c-Myc analysis could be undertaken, it was imperative to determine a 

sufficient time period for pre-incubation of HUVEC with quiescent media.   

Bromodeoxyuridine (BrdU) is commonly used to determine if cells are 

proliferating, and thus, is an indicator of whether cells are in a quiescent (G0) state.  

During the S-phase of the cell cycle, BrdU is incorporated into the newly synthesized 
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DNA of replicating cells, substituting for thymidine.  Although this method gives an 

indication of cell quiescence, unfortunately, it has limitations.  Cells in serum-starved 

experiments have previously been determined to not only be quiescent, but also maintain 

positive BrdU staining [119].  This apparent contradiction is explained by the process of 

apoptosis.  Serum and growth factor deprivation induce cells, such as HUVEC, to 

undergo apoptosis.  Researchers report that during this programmed cell death, cells 

depart from their quiescent state and experience some part of the G1 phase of the cell 

cycle, thus explaining their positive BrdU staining.  It is hypothesized that the reason may 

be due in part to the process of apoptosis requiring the presence of newly synthesized 

proteins [119]. 

Thus, bearing these limitations in mind, Chemicon’s BrdU Cell Proliferation 

Assay Kit was employed as an efficacious means to evaluate alterations in cell cycle 

progression of HUVEC subjected to quiescent media.  HUVEC change morphology and 

die when deprived of serum and growth factors for more than 16 hours (based upon 

morphological analysis).  For this reason, and taking into account that HUVEC will 

spend up to 4 hours in quiescent media during cyclic strain experiments, 12 hours was 

determined to be the maximum incubation period.  Therefore, cells were incubated up to 

12 hours in quiescent media and assayed at 2–hour intervals.  Results are shown in Figure 

4.4. 
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Figure 4.4: BrdU staining of HUVEC cultured in quiescent media for 0–12 hours, 
n=4. 

* Significance vs. cells not subjected to quiescent media 
 
 
 
Based upon these results, it was determined that a 12–hour incubation with 

quiescent media was necessary in order to attain a significant change in BrdU 

incorporation.  Although there was not a major decrease in positive BrdU staining, the 

deficit was sufficient to assume cell quiescence without incurring apoptosis.  

Consequently, EC were incubated in quiescent media for 12 hours prior to stretch 

experiments.  Subsequently, all cyclic strain experiments were performed in the same 

quiescent media, ensuring no addition of serum or growth factors, which could alter 

c-Myc expression. 

 
4.3 c-Myc Expression in EC subjected to cyclic strain 
 

To examine the impact of cyclic strain on c-Myc expression, an in vitro system 

mimicking the hemodynamic conditions associated with cyclic strain was employed.  

With any in vitro cyclic strain model, cells are concomitantly exposed to low fluid 
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motion–induced shear stress and convective transport.  Since fluid agitation may alter 

gene expression, the utilized cyclic strain system accurately takes into account the fluid 

agitation inherent in the strain apparatus.  This is accomplished by including a motion 

control (MC) condition.  The devices used in many strain studies do not allow for a 

motion control; therefore, many of the reported cellular responses to cyclic strain (CS) 

have not been confirmed as actual stretch responses (for a detailed description of the 

strain unit, please see Section 3.1.1.3).  

It has been well documented that normal physiological cyclic strain can be 

modeled as about 10% [6, 13], and pathological strain as about 20% [3, 12].  Since it has 

also been established that higher c-Myc levels correspond with pathological states [50, 

61, 66], a direct correlation can be made between c-Myc expression and cyclic strain 

percentage.  Preliminary studies using the imposed cyclic strain model examined if 

fluctuations in cyclic strain percentage were associated with changes in c-Myc 

expression.  HUVEC were subjected to 10% or 20% cyclic strain for 1.75 hours.  Results 

are shown in Figure 4.5.  
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Figure 4.5: Physiological and pathological c-Myc mRNA expression in HUVEC 
HUVEC were subjected to physiological and pathological levels of cyclic strain for 1.75 

hours, n=4–9. 
** Significance (P<0.01) vs. static control 

++ Significance (P<0.01) vs. motion control 
 
 
 

In comparing 20% CS to static and 10% CS samples, it is apparent that c-Myc 

mRNA expression at 20% CS is almost 3 times that of the other conditions.  Since 

expression of c-Myc in the normal cell is tightly regulated, this expression change has 

enormous implications for downstream targets.  In fact, the normal cell expresses little 

c-Myc unless prompted by external signals, such as growth factors and extracellular 

matrix contacts.  Even then, changes are on the order of only a 1- to 1.5-fold increase. 

Additionally, 20% CS is significant over the motion control, meaning that the 

increased c-Myc expression is due to the actual stretching of the cells and not just to the 

motion of fluid across them.  Based upon these results, it can be summarized that 20% 

cyclic strain does indeed infer a more “pathological” state of cyclic strain. 

To further investigate the correlation between in vitro cyclic strain and in vivo 

conditions, the cyclic strain regimen from 0–20% was examined.  Figure 4.6 shows 
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c-Myc mRNA expression in HUVEC subjected to 1.75 hours of cyclic strain at 5%, 10%, 

15%, and 20% CS. 
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Figure 4.6: c-Myc mRNA expression in HUVEC cyclically strained 0–20%. 
HUVEC were subjected to cyclic strain at percentages of 0-20% for 1.75 hours, n=4–9. 

** Significance (P<0.01) vs. static control 
* Significance (P<0.05) vs. static control 

++ Significance (P<0.01) vs. motion control 
 
 
 
 From the results in Figure 4.6, we can again see that c-Myc expression is 

significant in the 15–20% range—the range previously implicated as modeling a 

pathological state in the vasculature.  Thus, having established and confirmed the in vitro 

conditions necessary to model in vivo conditions, experiments could now be confidently 

and competently preformed to examine the time-dependency of c-Myc expression.  

c-Myc mRNA expression, as measured by qRT-PCR, was examined at the 

following time-points: 0, 0.5, 1, 2, 3, 4, 5, 6, and 12 hours.  As shown in Figure 4.7, 
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expression increased almost 3-fold in HUVEC cyclically-strained at 20% for 1.5 to 2 

hours over control conditions. 
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Figure 4.7: c-Myc is induced by cyclic strain and is time-dependent 
HUVEC were subjected to 20% cyclic strain for 0–12 hours and c-Myc mRNA 

expression was examined in comparison to motion control and static samples, n=4–13. 
** Significance (P<0.01) vs. static control 

++ Significance (P<0.01) vs. motion control 
+ Significance (P<0.05) vs. motion control 

 
 
 

This upregulation is time-dependent, returning to basal levels by 3 hours.  Also, 

the motion controls did report a very slight, but not significant, increase in expression.  

This finding implicates that the slight movement of media is not a factor in determining 

the cyclic strain–induced gene expression profile.  Therefore, for the purposes of 

simplification, the motion control data will only be reported in Appendix A. 

Western analysis also indicates that 20% cyclic strain induces a time-dependent 

increase in c-Myc protein expression, which peaks around 2 hours (Figure 4.8).   
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Figure 4.8: Western blot analysis of c-Myc protein 
A. Band intensities from densitometry of 6 independent experiments were normalized to 

ß-actin. 
* Significance (P<0.05) vs. static control    

B. Representative immunoblot of c-Myc and ß-Actin. 
 
 
 
These results are further confirmed through quantitative ELISA (Figure 4.9). 
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Figure 4.9: c-Myc protein expression as measured by TransAM ELISA, n=2–3. 
** Significance (P<0.01) vs. static control 

++ Significance (P<0.01) vs. motion control 
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Through the use of transcriptional profiling, these results demonstrate significant 

changes in endothelial cell c-Myc gene expression with imposition of pathological levels 

of cyclic strain.  Specifically, both mRNA and protein expression of c-Myc is induced in 

a time-dependent manner by 20% cyclic strain. 

 
4.4 Compound screening to modulate c-Myc transcription 
 

Having established that c-Myc expression is induced by pathological levels of 

cyclic strain, the question arises whether it is possible to modulate this activation.  As 

detailed in Section 2.5.1.2, University of Arizona Cancer Center (UAZCC) in Tucson has 

identified compounds targeted to the c-Myc promoter, which are able to prevent c-Myc 

transcription in cancer cells.  In order to study whether cyclic strain–induced c-Myc 

transcription can also be attenuated, three lead UAZCC compounds were investigated—

compounds 0005, 0010, and 0012. 

The toxicity of each drug was determined by using a cell proliferation assay 

(CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay, Promega).  The LD50, 

the concentration of drug at which 50% of cells die, was calculated to be the following 

(Table 2, Appendix B). 

 
 
 

Table 2: LD50 of UAZCC Compounds 
 
 COMPOUND 0005 COMPOUND 0010 COMPOUND 0012 
LD50 56.5 µM 5.4 µM > 100 µM 
 
 
 

These results indicate a high level of toxicity for Compound 0010.  Compounds 

0005 and 0012 are more viable options for HUVEC treatment.  
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In discussing toxicity, it should also be noted that the lyophilized compounds 

have been dissolved in dimethyl sulfoxide (DMSO).  DMSO is often chosen as an ideal 

solvent due to its ease in dissolving solutes.  However, with in vivo use, this same 

property raises safety issues.  These concerns are easily avoided in this experimental 

setup, however, because the compounds are in cell culture for a very short incubation 

time and the final concentration of DMSO is extremely low (0.05%).  In fact, the FDA 

has approved the clinical use of DMSO at 100-fold higher concentrations.  Patients 

inflicted with interstitial cystitis and intractable cerebral edema are routinely treated with 

50% and 10% DMSO, respectively [120]. 

As further confirmation that DMSO is not hindering the cells or inducing 

secondary responses, HUVEC were treated with 0.05% DMSO.   The minimal addition 

of DMSO did not induce any noticeable cell differentiation, such as death, change in 

morphology, or alteration in cell doubling time.  DMSO-treated samples yielded 

responses comparable to untreated samples (Figure 4.10). 
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Figure 4.10: Effect of DMSO on HUVEC culture, n=2. 
 
 
 

Next, to evaluate the efficacy of each of these compounds in the cyclic strain 

experimental setup, a preliminary time course experiment was performed.  Since cyclic 

strain’s effect on c-Myc levels parallels that of treating cells with serum, results were 

expected to mirror those of University of Arizona’s serum-starvation experiment in 

cancer cells (see Section 2.5.1.2).  For this preliminary experiment, all drugs were used at 

1 µM for at least 24 hours.  Cells were seeded in normal HUVEC media.  For 12 hours, 

HUVEC were placed in normal media containing 1 µM of drug, washed, and then treated 

for an additional 12 hours in quiescent media containing drug.  cDNA from 20% cyclic 

strain and motion control samples was then collected from the following time-points: 0, 

0.5, 1, 1.5, 2, 2.5, and 3 hours.  The results from each drug were as follows (Figures 4.11, 

4.12, and 4.13). 
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Figure 4.11: Compound 0005, n=1. 
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Figure 4.12: Compound 0010, n=1. 
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Figure 4.13: Compound 0012, n=1. 
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From these preliminary evaluations, it was concluded that compound 0012 is non-

toxic and the most effective at attenuating c-Myc levels, while 0010 and 0005 are 

essentially inconsequential.  From a drug development point of view, the failure of a 

compound is due to a number of limitations, which are disease and cell-type specific.  A 

compound with suboptimal chemical properties may be toxic or unable to penetrate the 

cell nucleus due to its stereochemistry and/or hydrophobicity.  The efficacy of compound 

0012 reveals that it is indeed possible to attenuate c-Myc expression by targeting the 

silencer region of the c-Myc promoter. 

 
4.5 Compound Optimization 
 

As the target compound for further analysis, the usage of compound 0012 was 

further optimized to maximize its ability to attenuate c-Myc expression.  

 
4.5.1 Compound 0012 Dosage 
 

In order to determine the optimal concentration of 0012 to use, cells were 

subjected to 1.75 hours of cyclic strain and treated with the following concentrations of 

0012: 0µM, 0.5µM, 1µM, 2.5µM, 5µM, 10µM, 15µM, 25µM, and 50µM.  Results are 

graphed in Figure 4.14. 
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Figure 4.14: Compound 0012 dose response 
c-Myc mRNA expression was examined in HUVEC that were cyclically strained for 1.75 

hours and treated with varying concentrations of Compound 0012, n=1–5. 
## Significance (P<0.01) vs. untreated HUVEC 

 
 
 

By comparing the treated cyclic strain samples to 0 µM, it is apparent that 

compound 0012 is most effective at concentrations of 5 µM and 10 µM.  Since 5 µM is a 

slightly lower concentration of DMSO (0.05% as compared to 0.1%), it was chosen as 

the optimal treatment concentration. 

 
4.5.2 Compound 0012 Time Treatment 
 

The next step in optimizing compound 0012 efficacy was to determine the 

optimal dosing schedule.  A treatment time course was investigated as follows (Table 3).  

Shading is indicative of 5 µM of compound 0012 in the media.  For all samples, at 12 

hours prior to stretch, normal media was removed and replaced with quiescent media.  

For example, “36 hours” refers to cells that were given drug in regular media 36 hours 

prior to stretch, then replaced with quiescent media without drug.  Since normal cells are 
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in a G0 state and only express the gene when they actively divide, the “0 hrs” time point 

mimics physiological conditions. 

 
 
 

Table 3: Time Treatment Course 
 

 
 
 
 The results of the time treatment experiment are shown in Figure 4.15. 
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Figure 4.15: Time treatment experiment, n=2–5. 

## Significance (p=0.01) vs. untreated HUVEC 
# Significance (P<0.05) vs. untreated HUVEC 

 
 

36     24           12         0 HOURS 
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Quiescent 
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Condition 1: “O hrs” 

Condition 2: “12 hrs” 

Condition 3: “24 hrs” 

Condition 4: “24* hrs” 

Condition 5: “36 hrs” 

Condition 6: “NO Drug” 
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Interestingly, the optimal results were seen in the “0 hrs” treatment in which the 

drug was added as stretch began.    The “0 hrs” treatment resulted in an attenuation of 

c-Myc expression by 40%.  Comparing this data to UAZCC’s serum-starvation 

experiment with cancer cells, “0 hrs” treatment parallels adding serum back in the cancer 

cell experiment. 

The other time points also yielded interesting results.  At “12hrs”, there was no 

effect.  This result could indicate that HUVEC must be in a nondividing G0 state in order 

for the drug to be effective.  The results for the “24 hrs”, “24* hrs”, and “36 hrs” indicate 

that perhaps the drug is being metabolized.  This could explain why “24 hrs” and “24* 

hrs” attenuated cyclic strain effects by 15% and 25%, respectively, and “36 hrs” had no 

effect at all. 

 
4.6 Modulation of c-Myc Transcriptional Activation 
 

After determining the best possible conditions for using compound 0012, its 

success in modulating cyclic strain induced c-Myc expression was evaluated.  HUVEC 

were seeded onto silicone membranes in normal media.  Twelve hours prior to the 

initiation of cyclic strain, quiescent media replaced the normal media.  At the time of 

stretch, the quiescent media was removed and mixed with compound 0012 to give a final 

concentration of 5 μM.  The compound-containing quiescent media was then returned to 

the stretching apparatus and cyclic strain experiments commenced.  c-Myc mRNA 

expression with and without compound 0012 was examined at the following time-points: 

0, 0.5, 1, 2, 3, 4, 5, 6, and 12 hours.  As shown in figure 4.16, at peak c-Myc expression, 

compound 0012 succeeds in attenuating mRNA transcriptional activation about 33% and 

28% at 1 and 2 hours, respectively. 
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Figure 4.16: Compound 0012 attenuates c-Myc mRNA expression, n=4–13. 
** Significance (P<0.01) vs. static conditions 
# Significance (P<0.05) vs. untreated HUVEC 

 
 
 

Western analysis also indicates that cyclic strain–induced c-Myc expression can 

be modulated at the protein level.  As shown in Figures 4.17, c-Myc protein expression is 

attenuated 55% and 64% at 1 and 2 hours, respectively, by the addition of compound 

0012. 
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Figure 4.17: Compound 0012 attenuates c-Myc protein expression 
A. Compound 0012 attenuates c-Myc protein upregulation by cyclic strain.  Band 

intensities from densitometry of 5 independent experiments were normalized to ß-actin. 
# Significance (P<0.05) vs. untreated HUVEC 

B. Representative immunoblot of c-Myc and ß-Actin. 
 
 

 
4.7 Necrosis and Apoptosis  
 

Although results indicate that c-Myc transcription can be attenuated through the 

use of compound 0012, it is imperative to ensure that this outcome is due to c-Myc 

promoter targeting, and not as a secondary result of necrosis and/or apoptosis.  As 

detailed in Section 4.1, the CytoTox-ONE Homogenous Membrane Integrity Assay and 

the Apo-ONE Homogenous Caspase-3/7 Assay were used to determine levels of necrosis 

and apoptosis.  These two assays were performed as described before—HUVEC were 

cyclically strained at 20%, but now, 5 μM of compound 0012 was added to the quiescent 

media at the time of stretch.  Results for necrosis and apoptosis are shown in Figures 4.18 

and 4.19, respectively.    
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Figure 4.18: Necrosis caused by compound 0012, n=1. 

 
 
 
 

1 2 3
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

Cyclic Strain
Cyclic Strain + Drug

Cyclic Strain (Hours)

R
el

at
iv

e 
C

el
l A

po
pt

os
is

(S
tr

et
ch

/S
ta

tic
)

 
Figure 4.19: Apoptosis caused by compound 0012, n=1. 

 
 
 

From these figures, it is apparent that the addition of compound 0012 does not 

induce HUVEC necrosis or apoptosis.  Therefore, it is unlikely that the attenuation of 

c-Myc gene expression is due to these cellular death processes.   
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4.8 c-Myc Downstream Target Genes 
 
The subsequent step in studying the modulation of c-Myc focuses investigations 

on the genetic profile downstream targets of c-Myc.  These are genes whose expression is 

directly regulated by the c-Myc protein.  It is well known that c-Myc induction leads to 

activation of numerous genes with a wide range of functions, including regulating cell 

proliferation, apoptosis, differentiation, morphology, migration, and secretory function.  

Of interest to this dissertation are genes related to cardiovascular disease.  Three genes in 

particular have been identified as both regulated by c-Myc and as playing a significant 

role in the progression of vasculoproliferative cardiovascular diseases.  These c-Myc 

downstream target genes are proliferating cell nuclear antigen, heat shock protein 60, and 

vascular endothelial growth factor (see Section 2.5). 

 
4.8.1 PCNA 
 

Proliferating cell nuclear antigen (PCNA) mRNA expression of HUVEC 

subjected to cyclic strain is shown in Figure 4.20.  As expected from the review of 

relevant literature, this graph shows that cyclic strain does indeed induce PCNA 

expression and that the addition of compound 0012 succeeds in attenuating it. 

 
 
 



   

67 

0.5 1.0 2.0 3.0 4.0 5.0 6.0
0.0

0.5

1.0

1.5

2.0

2.5

Cyclic Strain
Cyclic Strain + Drug

*
# #

*
#

* *##

Cyclic Strain (Hours)

PC
N

A
 m

R
N

A
Ex

pr
es

si
on

(n
or

m
al

iz
ed

 to
 s

ta
tic

)

 

Figure 4.20: PCNA mRNA expression, n=3–10. 
* Significance (P<0.05) vs. static control 

# Significance (P<0.05) vs. untreated HUVEC 
## Significance (P<0.01) vs. untreated HUVEC 

 
 
 

Western analysis (Figure 4.21) also indicates that 20% cyclic strain induces 

PCNA protein expression, which can also be attenuated by treatment with compound 

0012.  As expected, the protein expression peaks later than the mRNA expression. 

 
 
 

 
Figure 4.21: PCNA protein expression 

A. Compound 0012 attenuates PCNA protein upregulation by cyclic strain.  Band 
intensities from densitometry of 5 independent experiments were normalized to ß-actin. 

* Significance (P<0.05) vs. static control 
# Significance (P<0.05) vs. untreated HUVEC 

B. Representative immunoblot of PCNA and ß-Actin. 

2 4 6
0.0

0.5

1.0

1.5

2.0

2.5
Cyclic Strain
Cyclic Strain + Drug

*
#

*
#

Cyclic Strain (Hours)

PC
N

A
 P

ro
te

in
Ex

pr
es

si
on

(n
or

m
al

iz
ed

 to
 s

ta
tic

)

A                     B 



   

68 

4.8.2 VEGF 
 

Vascular endothelial growth factor (VEGF) mRNA expression of HUVEC 

subjected to cyclic strain is shown in Figure 4.22.  As expected from the review of 

relevant literature, this graph shows that cyclic strain does indeed induce VEGF 

expression and that the addition of compound 0012 does succeed in attenuating it. 
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Figure 4.22: VEGF mRNA expression, n=3–12. 
** Significance (P<0.01) vs. static control 
* Significance (P<0.05) vs. static control 

## Significance (P<0.01) vs. untreated HUVEC 
# Significance (P<0.05) vs. untreated HUVEC 

 
 
 

Western analysis also indicates that 20% cyclic strain induces VEGF protein 

expression, which can also be attenuated by treatment with compound 0012 (Figure 

4.23). 
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Figure 4.23: VEGF protein expression 
A. Compound 0012 attenuates VEGF protein upregulation by cyclic strain.  Band 

intensities from densitometry of 5 independent experiments were normalized to ß-actin. 
* Significance (P<0.05) vs static control 

# Significance (P<0.05) vs. untreated HUVEC 
B. Representative immunoblot of VEGF and ß-Actin. 

 
 
 

These results are consistent with other researchers who have found VEGF 

expression can be induced for several hours [94, 121]. 

 
4.8.3 HSP60 
 

Heat shock protein 60 (HSP60) mRNA expression of HUVEC subjected to cyclic 

strain is shown in Figure 4.24.  As expected from the review of relevant literature, this 

graph shows that cyclic strain does indeed induce HSP60 expression and that the addition 

of compound 0012 does succeed in attenuating it.   
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Figure 4.24: HSP60 mRNA expression, n=3–9. 

* Significance (P<0.05) vs. static control 
 
 
 

Although the effect of compound 0012 is not significant for mRNA expression, 

there is a slight decrease in expression.  For all of these downstream genes, the genetic 

profile is essential at the mRNA level, but more important at the protein level, where 

cellular functions are directly affected.  In the case of HSP60, the effect of the compound 

effect is significant at the protein level (Figure 4.25). 
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Figure 4.25: HSP60 protein expression 
A. Compound 0012 attenuates HSP60 protein upregulation by cyclic strain.  Band 

intensities from densitometry of 4 independent experiments were normalized to ß-actin. 
* Significance (P<0.05) vs. static control 

# Significance (P<0.05) vs. untreated HUVEC 
B. Representative immunoblot of HSP60 and ß-Actin. 

 
 
 
4.8.4 Overlay of c-Myc Downstream Target Genes 
 
 By plotting the mRNA expression of all three target genes onto one graph, we can 

easily see the time-dependent expression of c-Myc downstream target genes (Figure 

4.26). 
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Figure 4.26: Combined mRNA expression of c-Myc downstream genes 

 
 
 

The mRNA expression of these genes after treatment with compound 0012 is 

compiled in Figure 4.27.  By directly comparing Figures 4.26 and 4.27, it can be inferred 

that compound 0012 succeeds in attenuating the expression of PCNA, VEGF and HSP60.  

Hence, by inhibiting cyclic strain–induced c-Myc transcription, compound 0012 

modulates c-Myc downstream gene expression. 
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Figure 4.27: Compound 0012 attenuates c-Myc downstream gene expression 

Compound 0012 attenuates c-Myc, PCNA, HSP60 and VEGF mRNA expression in 
HUVEC subjected to cyclic strain.
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CHAPTER V: DISCUSSION 
 
 
 
5.1 Mechanotransduction 
 

The primary focus of this research is on the nuclear events that occur in response 

to pathological levels of cyclic strain, specifically, transcription factor c-Myc and its 

downstream gene targets.  However, in studying the effects of mechanical forces on EC, 

it is also important to discuss the mechanisms by which vascular cells sense the 

extracellular mechanical stimuli and convert them into chemical signals.  The aim in 

postulating this mechanotransduction pathway is to aid in the understanding of 

physiological and pathological processes involved in vascular remodeling and 

cardiovascular disease. 

Specific mechanotransductive signaling pathways have not yet been elucidated; 

however, some possible mechanisms can be hypothesized.  Stretch-mediated responses 

can be simplified in five generalized steps.  First, applied mechanical forces are 

transmitted thorough the extracellular matrix to the cytoskeleton.  Second, the 

cytoskeleton responds by activating membrane receptors, including integrins, ion 

channels, platelet-derived growth factor receptors, and G proteins [122].  Third, these 

mechanosensors convert the mechanical stimuli into chemical signals, activating second 

messenger systems.  Next, these molecules transduce the signals from the 

mechanoreceptors to the nucleus.  Finally, the nuclear events result in changes in cellular 

function [123].  It is known that there are different levels of sensing and control at each 

step, but current research is still being undertaken to determine the specific mechanisms.   
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Research shows that transduction of cyclic strain to the nuclear level seems to 

involve the same second messenger pathways and genes as those involved in other 

mechanical forces [124].   These second messengers include mitogen-activated protein 

kinases, protein kinase C, and Akt.  Important to this discussion is second messenger 

adenylate cyclase/cAMP, which has not only been identified as activated by cyclic strain, 

but also has an implicated role in c-Myc expression.  Studies with bovine aortic 

endothelial cells indicate that the activity of adenylate cyclase/cAMP increases within 15 

minutes of 10% cyclic strain.  This induction of adenylate cyclase/cAMP, which does not 

occur at 6% stretch, more than doubles the basal expression levels [115].  These 

experiments provide evidence that when cyclic strain reaches a threshold, the adenylate 

cyclase (AC) signal transduction pathway is activated, stimulating the expression of 

genes containing cAMP-responsive promoter elements. 

Important to this dissertation is the discovery that c-Myc is a gene with this 

promoter element, meaning cAMP is able to activate transcription factor c-Myc [125].  

Therefore, a possible pathway for cyclic strain induced c-Myc is via the activation of 

adenylate cyclase/cAMP.  The diagram shown in Figure 5.1 outlines the possible 

pathway of cyclic strain-mediated EC responses. 
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Figure 5.1: Proposed mechanotransduction pathway for c-Myc 
Pathological levels of stretch induce adenylate cyclase/cAMP which leads to increased 

c-Myc expression, and subsequent gene expression. 
 
 
 
5.2 c-Myc Control of Gene Expression 

 
Although the mechanical forces initiating vascular disease have been studied 

extensively, their implicated differential gene expression profiles remain relatively 

unknown.  As a starting point for investigation, immediate-early proto-oncogenes, such 

as c-Myc, have been identified as the earliest genetic responses to stimuli.  c-Myc is a 

particularly promising choice because it is shear-inducible [126] and due to its vast 

network of downstream target genes, is referred to as a “global regulator of transcription” 

[127].  In all, c-Myc controls the expression of about 15% (3000-4000 genes) of the 

genome [127].  These target genes are involved in proliferation, apoptosis, metabolism, 

migration, and remodeling. 
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 Although vast, high-throughput genomic and functional analyses, such as SAGE 

and microarray, have been performed on c-Myc, very few target genes are identified as 

being the most relevant to the progression of vascular diseases.  This lack of data is not 

due to insufficient accomplishment in the field.  Rather, despite numerous studies 

documenting the proliferation markers in human atherosclerotic plaques and restenotic 

lesions, universal acceptance of the “pertinent genes” remains controversial.  Research 

does reveal that the starting events of the stenotic process include cell proliferation, 

migration, apoptosis, deposition of extracellular matrix, and inflammatory reactions [14].   

Accordingly, pertinent c-Myc target genes were chosen based on their roles in 

these initiation events.  Together, the selected genes, VEGF, HSP60 and PCNA, are three 

markers often simultaneously monitored for initiation and progression of vascular 

pathologies [128].  Although each gene can be isolated to determine its individual role in 

proliferative cardiovascular diseases, it is their concerted effects which result in the 

culmination of abnormal blood vessel narrowing.  Together, these genes comprise the 

steps implicated in the vasculoproliferative cascade, beginning with regulation of the cell 

cycle and the inflammatory response, and culminating with vascular remodeling. 

Examination of the mRNA and protein expression profile of each gene (Section 

4.8.1–4.8.4) presents the opportunity to hypothesize a potential timeline governing this 

proliferative process.  It is reasonable to postulate that upregulation of c-Myc quickly 

triggers the expression of PCNA and HSP60, while VEGF is induced slightly later and 

sustained longer.  These time points can be further substantiated by extrapolating to the 

known progression of events in vivo.  Animal studies suggest that vascular cell 

proliferation is the prevailing event in the initiation of vascular diseases [51].  Not only 
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are all three genes intimately linked to regulating the cell cycle, each gene mediates its 

effects at a different phase.  Thus, their concerted expression allows direct cell cycle 

regulation at the G1, S, and G2 phases.  VEGF can directly stimulate cell cycle 

progression from the G1 to S phase [129] and can mediate indirect effects through cell 

cycle regulators [130].  PCNA is essential for the S phase of the cell cycle.  Lastly, heat 

shock proteins protect cells from apoptosis and reverse cell-arrest in the G2 phase [131]. 

After early cell proliferation, likely mediated by the expression of HSP60 and 

PCNA, arterial remodeling begins at the site of intimal injury.  This later process, alike to 

the reported expression of VEGF, is sustained.  In addition, the implicated roles of VEGF 

implicated roles, such as wound healing, neovascularization, and EC migration [37], are 

pivotal to vascular remodeling.  Hence, these parallels corroborate the argument that 

remodeling is at least partly accomplished through the activation of VEGF. 

In conclusion, the upregulation of c-Myc by cyclic strain leads to the expression 

of c-Myc downstream targets.  These genes can be implicated in comprising the steps of 

the vasculoproliferative cascade, beginning with regulation of the cell cycle and the 

inflammatory response, and culminating with vascular remodeling. 
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5.3 Drug-Eluting Stents 
 

A promising contribution of this research is the identification of a possible novel 

treatment for vascular disease.  Restenosis after surgical intervention is a major clinical 

problem, occurring in 30-50% of patients [16, 17].  Anti-coagulants, anti-inflammatories, 

and anti-proliferative drugs have been unsuccessful at preventing restenosis [132].  

Ideally, the most effective pharmacological solution to preventing restenosis is the 

controlled-release of an anti-proliferative drug directly targeted to the factors involved in 

vascular injury. 

Based upon these ideal drug characteristics and the data reported in this 

dissertation, compound 0012 is an excellent candidate for the treatment of in-stent 

restenosis.  Results demonstrate not only the effectiveness of compound 0012 in reducing 

c-Myc protein expression (by more than 50%), but also in attenuating (to different 

extents) the expression of downstream genes (VEGF, HSP60, and PCNA) that contribute 

to vascular remodeling pathologies.  It can be postulated based upon the roles of these 

genes that compound 0012 inhibits key targets in the cell cycle, while also potentially 

preventing inflammation and vascular remodeling.   

 Additionally, the chemistry of compound 0012 makes it an ideal anti-restenotic 

drug because it contains hydrophobic elements, which ensure high local concentrations, 

and hydrophilic elements, which allow homogeneous drug diffusion.  Most importantly, 

since compound 0012 has been identified as specifically targeting the factors involved in 

vascular injury, its use can be short-lived and thus, will not inhibit re-endothelialization 

of the intima.  Therefore, the fear that drug-eluting stents (DES) cause late stent 

thrombosis is abrogated.  
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Despite these encouraging in vitro results with compound 0012, several questions 

remain to be answered.  Recalling that c-Myc controls up to 15% of the genome, the use 

of compound 0012 must be tethered by the concern for attenuating essential downstream 

genes.  Additionally, compound 0012 must be proven to be anti-thrombotic, anti-

inflammatory, anti-proliferative, and non-toxic in vivo.  Once confirmed to be safe and 

efficacious, it needs to be determined if compound 0012 readily diffuses across vascular 

tissue and achieves high local tissue concentration.  The standard pharmacology for in 

vivo animal models and, later, human clinical trials will also need to be determined.  

Specific to the use of compound 0012 in DES, research will have to be completed to 

identify a biocompatible polymer able to deliver the drug at a sustained, controlled, and 

predictable rate.  However, the successful completion of these studies could culminate in 

the development of a novel therapeutic opportunity to treat vasculoproliferative diseases. 

 
5.4 Limitations of Experimental Setup 
 

The extrapolation of these results to in vivo conditions must be tempered by the 

understanding that all in vitro experimental models have limitations.  Specific to this 

setup are cell culture and hemodynamic restrictions. 

An idealized in vivo experiment is limited at even the cellular level.  The use of 

HUVEC is often criticized as an inaccurate representation of EC behavior because they 

are vein-, not arterial-, derived endothelial cells [109].  Further, once in culture, 

researchers argue whether passaged HUVEC accurately represent in vivo genetic profiles.  

However, since HUVEC are the most economically feasible EC, low passages are 

generally accepted as an accurate representation of arterial EC.  A final concern in cell 
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culture is the fear that by not including VSMC and macrophages, HUVEC are permitted 

to respond differently than they would in vivo. 

From a mechanistic point of view, it is important to point out that, although cyclic 

strain is a major contributor to vascular disease, the arterial blood vessel is also subjected 

to two other forces: hydrostatic compression and shear stress.  An ideal model would 

allow the study of the concerted effects of all three forces.  Additionally, this 

dissertation’s setup incorporated the use of a motion control to account for the small 

movement of media, but these controls are not a perfect reproduction.  Fluid motion is 

possibly slightly greater when the entire substrate is agitated rather than a single edge 

moving.   

The only plausible solution to combat these limitations is the development of a 

novel setup integrating a whole vessel model with all of the hemodynamic forces 

implicated in vascular mechanics.  Since this experimental setup does not yet exist, this 

project employed an optimal uniaxial system to experimentally investigate cyclic strain.  

Very recent data validate this type of bioreactor as the most suited at replicating the 

physiological environment [133].  Therefore, the minimal limitations imposed on this 

experimental setup deem it a reliable method for monitoring the interrelationship between 

hemodynamics, vascular biology, and disease progression. 

 

 
 



   

81 

 CHAPTER VI: CONCLUSIONS 
 
 
 
6.1 Summary of Results  

 
Each heartbeat creates a pressure difference between systole (peak pressure, 

corresponding to the opening of the heart valve) and diastole (closing of the valve).  This 

fluctuating difference in pressures causes a pulsatile circumferential expansion of the 

artery called “cyclic strain,” which is normally about 10%.  When certain pathological 

conditions arise in vivo, such as hypertension, atherosclerosis, or after surgical 

intervention, elevated cyclic strain (~20%) can induce vessel remodeling, leading to a 

pro-atherogenic endothelium [3].  Research thus far has been successful in demonstrating 

that different cellular functions are modulated by changes in cyclic strain, but elucidation 

of the mechanisms by which EC alter these functions remains to be detailed. 

This dissertation’s chief goal is to offer a possible mechanism and promising 

clinical treatment for vascular diseases initiated by increased cyclic strain.  The unifying 

theory is that pathological conditions increase cyclic strain in the endothelium, leading to 

plaque formation and intimal thickening, occurring directly due to the induction of 

c-Myc.  In order to substantiate this hypothesis, this study verified that elevated levels of 

cyclic strain (20%) induce c-Myc mRNA and protein expression.  In fact, by justifying 

these pathological levels of cyclic strain, this dissertation presents novel evidence that 

HUVEC c-Myc mRNA and protein expression are induced by 20% cyclic strain in a 

time-dependent manner. 

This study provides evidence that these pathogenic levels of cyclic strain 

specifically activate the c-Myc promoter, leading to c-Myc transcription and downstream 
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gene induction.  Further, by specifically targeting the c-Myc promoter, it is possible to 

not only modulate c-Myc, but also the downstream gene targets of c-Myc, which are 

prevalent in the induction of vascular disease.  The compounds targeting c-Myc could 

provide a potential therapeutic opportunity in treating vasculoproliferative diseases. 

  
6.2 Recommendations for Future Work  
 
6.2.1 Cyclic Strain Model Enhancements 
 

Based upon experiences with the current cyclic strain apparatus, it is possible to 

offer several possible modifications.  The current methodology poses serious problems 

with HUVEC seeding and adherence, including spillage, patchy seeding, and cell 

detachment.   Furthermore, there are several technical problems, including difficulty in 

sterilizing the multi-component stretch chamber and limitations of the substrate size, 

which often required the pooling of multiple chambers to provide enough cells for 

experimental assay. 

 
6.2.2 Additional Areas for Research 
 

This in vitro work elucidates some of the possible mechanisms of HUVEC gene 

regulation by mechanical stimuli. However, there are several areas for continued 

research.  

• Since this experimental setup only utilized endothelial cells, it would be valuable to 

investigate smooth muscle cell behavior individually and in co-culture with EC. 

 

• An interesting study would be to precondition the cells to “normal” physiological 

conditions (10% CS) and then introduce pathological stretching conditions (20%). 
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• This dissertation focused on three c-Myc downstream gene targets, however, other 

possible genes exist for future investigation.   

o Preliminary research was attempted without success on two c-Myc target 

genes implicated in vascular remodeling: matrix metalloproteinase-9 (MMP-

9) and cyclin dependent kinase 4 (CDK4).  However the limited achievement 

could be due to experimental methodology and further studies are warranted.  

Both genes have been identified as transcriptional targets of c-Myc [90, 134].  

CDK4 is an especially interesting target because it directly correlates to the 

ability of c-Myc to promote vasculoproliferative responses and cell-cycle 

progression.  MMP-9 is only induced by vascular cells during pathogenesis 

and is neither produced under basal conditions nor detectable in healthy 

human arteries. 

 

o Three genes, matrix metalloproteinase-2 (MMP-2), fibroblast growth factor 

(FGF-2), and platelet derived growth factor (PDGF) have been shown to have 

increased expression with cyclic strain and are implicated in the progression 

of vascular obstructive diseases [135-137].  However, current publications 

have not yet identified these genes as downstream c-Myc targets.  The 

establishment of these genes as c-Myc targets could lead to the elucidation of 

more genetic targets in restenosis that can be modulated by attenuating c-Myc 

transcription. 
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 APPENDIX A: MOTION CONTROL DATA 
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Figure A.2: c-Myc mRNA expression in HUVEC cyclically strained 0–20%. 

HUVEC were subjected to cyclic strain at percentages of 0–20% for 1.75 hours, n=4–13. 
** Significance (P<0.01) vs. static control 
* Significance (P<0.05) vs. static control 

++ Significance (P<0.01) vs. motion control 
## Significance (P<0.01) vs. untreated HUVEC 
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Figure A.3: Compound 0012 dose response 

c-Myc mRNA expression was examined in HUVEC that were cyclically strained for 1.75 
hours and treated with varying concentrations of Compound 0012, n=1–5. 

## Significance (P<0.01) vs. untreated HUVEC 
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Figure A.4 Time treatment experiment, n=2–5. 
## Significance (p=0.01) vs. untreated HUVEC 
# Significance (P<0.05) vs. untreated HUVEC 
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Figure A.5: VEGF mRNA expression, n=3–12. 

** Significance (P<0.01) vs. static conditions 
* Significance (P<0.05) vs. static conditions 

## Significance (P<0.01) vs. untreated HUVEC 
# Significance (P<0.05) vs. untreated HUVEC 
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Figure A.6: HSP60 mRNA expression, n=3–9. 

* Significance (P<0.05) vs. static control 
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Figure A.7: PCNA mRNA expression, n=3–10. 

* Significance (P<0.05) vs. static control 
# Significance (P<0.05) vs. untreated HUVEC 
## Significance (P<0.01) vs. untreated HUVEC 
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 APPENDIX B: CELLTITER PROLIFERATION ASSAY  
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Figure B.8: Percent death in HUVEC treated with compound 0012 
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Figure B.2: Percent death in HUVEC treated with compound 0010 
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Figure B.3: Percent death in HUVEC treated with compound 0005 
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