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ABSTRACT
This paper describes a vision-based control architecture designed to enable autonomous landing on a moving plat-
form. The landing trajectory is generated by using the receding-horizon differential dynamic programming (DDP), an
optimal control method. The trajectory generation is aided by the output of a vision-based target tracking system. The
vision system uses multiple extended Kalman filters which allows us to estimate the position and heading of the mov-
ing target via the observed locations. The combination of vision-based target tracking system and the receding-horizon
DDP gives an unmanned aerial vehicle the capability to adaptively generate a landing trajectory against tracking er-
rors and disturbances. Additionally, by adding the exterior penalty function to the cost of the DDP we can easily
constrain the trajectory from collisions and physically infeasible solutions. We provide key mathematics needed for
the implementation and share the results of the image-in-the-loop simulation and flight tests to validate the suggested
methodology.

INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become om-
nipresent, and been recognized as a solution for a wide range
of problems in many realms: surveillance, photo/videography,
and delivery. Many tasks that are currently operated by
manned vehicles could be replaced by UAVs, which would
avoid endangering the life of human pilots and limit the man
power required for the mission. However, the autonomy of
UAVs is currently limited to simple tasks and often require
human in the loop presence. Landing is one of the maneuvers
that typically needs humans in the loop for multiple purposes:
recognizing the landing spot, checking for obstacles, control-
ling the vehicle position highly precisely, and aborting the ma-
neuver. UAVs equipped with the capability to automatically
detect the landing target and generate a landing trajectory will
enable various complicated tasks. For example, we can use
a UAV to let it land on an uninstrumented truck or a simple
object that does not communicate with external entities. An-
other scenario could be a fire engine launching UAVs to let
them collect data from disaster zones and relaying the infor-
mation back to rescuers to aid in recovery. In this work, we
suggest a system architecture that enables vision-based land-
ing on a static/moving platform using the target recognition
system and receding-horizon differential dynamics program-

Draft

ming (DDP).

The first part of this work is the development of the vision
system that allows us to estimate the dynamics of a moving
target through the observed position. We use the Haar-like
feature detector to detect our landing place, which is a typi-
cal helipad or landing pad that consists of the letter ”H” sur-
rounded by a circle. There are many methodologies available
to detect this sort of a distinct object such as to use a line de-
tection with Hough transform (Ref. 1), feature point detection
with corner Harris algorithm (Ref. 2), and Lucas-Kanade al-
gorithm (Ref. 3) to name a few, but a complete evaluation of
each method is far beyond the scope of this work. When a tar-
get is very specific and asymmetric, we have a method to mea-
sure the heading of the target just with a single static image,
e.g. using AprilTags (Ref. 4), but we consider a method that
is applicable to a more general target. Some researchers used
the estimator for a vison-based maneuver (Ref. 5), (Ref. 6),
(Ref. 7) whose approaches augment the state of the estimator
to simultaneously estimate the vehicle states. Our estimator is
configured differently to estimate the additional states of the
target, and also we use the statistics obtained from the filter to
solve the corresponding problem (i.e. which measurement is
used to update which filter) and to initiate/abort an operation.

The second part of this work is motion planning for land-
ing. Our approach is to use receding horizon DDP to generate
an optimal landing trajectory. The DDP efficiently converges
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to a local optimum, and gives open and closed loop control
policies; therefore, it is suitable for real-time applications. In
fact, it is already used for suspended load operations (Ref. 8),
humanoid robots (Ref. 9) and many other robotics applica-
tions. Landing maneuvers are sensitive to uncertainties and
disturbances which can cause the UAV to diverge from the de-
sired trajectory. By using the receding horizon DDP we have
the ability to recompute the trajectory throughout the land-
ing maneuver. Saripalli et al achieved an autonomous land-
ing on a moving target using a cubic polynomial (Ref. 10);
however, this method lacks in the adaptivity against uncer-
tainty that happens at some time over the future interval. Also,
the efficiency of a polynomial-based method is highly depen-
dent on the initial condition; the receding horizon DDP, on
the other hand, is less dependent. Second, the receding hori-
zon DDP gives the UAV the capability to optimize the land-
ing time. When there is too little time before achieving land-
ing, the vehicle should not attempt the landing. The receding
horizon approach purely navigates the vehicle to the optimal
points in the near future, and does not force the vehicle to land
with aggressive control sequences. Third, the constraints on a
trajectory such as collision avoidance and flight envelope are
easily considered by using a constrained optimization tech-
nique. In this work, we use exterior quadratic penalty function
(EQPF) (Ref. 11), but other methods (e.g. multiplier penalty
function) can solve constrained optimization problems.

In this paper, we develop a fully autonomous self-
contained vision-based quadrotor for landing. Simulation and
experimental results are provided to validate the suggested
methodology, and the full formulation of control architecture
is described. The several key contributions presented in this
paper are:

1. Development of the vision system that can track a mov-
ing target.

2. Derivation of the control architecture to enable an opti-
mal landing.

3. Demonstration of the suggested landing methodology
through successful simulations and flight tests.

This work is an extension of the results reported in our previ-
ous paper (Ref. 12) that describes static target tracking; there-
fore, we omit some of the details addressing the hardware and
software implementation.

TARGET TRACKER

This section explores our methodology of target tracking. Our
target tracker processes the image to extract the target can-
didate points, and the raw outputs are plugged into multiple
extended Kalman filters (EKFs) to estimate the target posi-
tion and heading. Utilizing the EKF has some advantages in
tracking a moving target, one of the most significant of which
is that we can propagate the desired waypoint even when we
have no outputs from the image processing and/or the target is
out of sight. This would allow us to re-establish the tracking.

However, updating the way points without any measurement
is dangerous at some point. Another benefit of using EKFs is
that it can give us criteria about when we should stop updating
the way point. We use the statistics of the filter to initiate/abort
a maneuver. Also, the corresponding problem is solved using
one of the statistics of the filter, the covariance of the residual.

Target recognition

Fig. 1. The figure shows the results of the target tracking
with the Haar-like feature detector. The target tracker can
store up to 20 measurements and run up to 3 independent
EKFs, each of which appears with a different color. The
rectangles are the outputs from the double-red-circle find-
ing, and the circle is from the helipad finding. The sizes of
the rectangles and the circle correspond to the estimated
dimensions of the target as shown in (1).

We use the Haar-like feature detector (Ref. 13) for target
recognition. This method is widely used for face detection,
and one of the most popular machine-learning-based template
matching method. The quality of this method is highly de-
pendent on the time used to train a classifier and the quantity
of the resources. This method is one of the feature-based ap-
proaches to object classification; therefore, it typically works
faster than the pixel based (Ref. 14). It is still computation-
ally too expensive for a real-time application, but we boost
the processing by limiting the size of the pixels searched in
the algorithm. We assume that we know the target height, true
target dimensions, and the camera position with respect to the
center of gravity of the vehicle; therefore, we can calculate the
distance to the target. Using the distance we can estimate the
size of the target in the camera frame (a,b[pixel]) as follows:

a =− WidthA
2bẐi

i tan( γx
2 )

,b =− WidthB
2bẐi

i tan( γy
2 )

, (1)

where A,B(ft) are the dimensions of the target, γx,γy are the
horizontal and vertical field of view, respectively and bẐi

i is the
z-direction position of the vehicle (b, left upper-script) with
respect to the origin of the inertial frame (i, right upper-script)
expressed in the inertial frame (i, subscript). The same nota-
tion is used throughout this paper. The classifier only searches
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the features with the estimated size with k pixel margins, i.e.,
the detection starts with the smallest classifier size a−k,b−k
and ends with a+ k,b+ k.

Discrete EKF

We design an estimator for a constant-speed target. The non-
linear dynamics of the target is expressed as follows:

f (x) =


tV cos(tψ)
tV sin(tψ)

0
w

 , (2)

where wk ∼ N(0,Qk). The state vector of our estimator is as
follows, and we estimate the position and the heading of the
target:

x =
[tX i

i
tY i

i
tZi

i
tψ
]T

. (3)

We measure target positions through the Haar-like feature
detector, and the measurements are expressed as follows:

zi =

[
u
v

]
i
+ vk =

 fx
tŶ c

c
t X̂c

c

fy
t Ẑc

c
t Xc

c

+ vk, (4)

where vk is measurement noise, which is a zero-mean Gaus-
sian random variable: vk ∼ N(0,Rk), and i is the index for the
measurements at the same time. Since the Haar-like feature
detector provides multiple locations including false hits, up to
20 measurements are stored, and the best measurements are
plugged into the Kalman filter updates. We choose a mea-
surement for the update using the residual covariance, which
is described in the following subsection. The covariance ma-
trix, P, is propagated using the discrete Lyapunov equation,
and the states are propagated using the nonlinear model (2).
In the update phase, the Kalman gain matrix is obtained from
the equation below:

Kk = P−k HT
k (HkP−k HT

k +Rk)
−1. (5)

The state and covariance matrix are updated with the equa-
tions below:

x̂+k = x̂−k +Kk(zk−h(x̂k)), (6)

P+
k = (I−KkHk)P−k , (7)

The h function is a nonlinear function that maps a posi-
tion expressed in the inertial frame to a position expressed in
the camera frame. We calculate the residual with this non-
linear function to avoid the issue caused by linearization, but
the output matrix H requires linearization. We calculate the
H matrix with the standard pinhole camera model. ri and rc
denote the position of the target in the inertial frame and the
one expressed in the camera frame, respectively. Then,

H =
[

∂ z
∂ rc

∂ rc
∂ ri
|x=x̂ 0

]
(8)

=

[[
∂u

∂ t X̂c
c

∂u
∂ tŶ c

c

∂u
∂ t Ẑc

c
∂v

∂ t X̂c
c

∂v
∂ tŶ c

c

∂v
∂ t Ẑc

c

]
Lci 0

]
(9)

=

− fx
tŶ c

c
t X̂c

c
fx

1
t X̂c

c
0

− fy
t Ẑc

c
t X̂c

c
0 fy

1
t X̂c

c

Lci 0

 , (10)

where fx, fy is the focal length of the camera expressed as
follows:

fx =
Width

2tan( γx
2 )

, fy =
Height

2tan( γy
2 )

, (11)

and the rotation matrix from camera to inertial is denoted
Lic = LT

ci.

Corresponding Problem

We use the residual and its covariance to solve the correspond-
ing problem using the Z-test. Since we have three EKFs and
an undefined number of outputs from the Haar-like feature de-
tector, we need to choose a measurement for the update and
which EKF the measurement goes to. The covariance of the
residual can be computed as follows:

E[rkrT
k ] = E[(zk−Hkx̂−k )(z−Hkx̂−k )

T ] (12)

= E[{Hk(xk− x̂−k )+ vk}{Hk(xk− x̂−k )
T + vk}T ]

= HkE[εkε
T
k ]H

T
k +E[vkvT

k ]

= HkP−k HT
k +Rk.

Therefore, the Z value, also called the Mahalanobis distance,
is defined as follows:

Z = rT
k (HkPkHT

k +Rk)
−1rk. (13)

In our case, this gives a measure regarding how much a mea-
surement is separated from the current estimation. The mea-
surement with the smallest Z-value is used for each of the
EKF updates. We set a constant threshold for the Z value;
thus, when the estimation is less confident, the measurement
with a large residual is allowed for the update, and vice versa.

MOTION PLANNING

In this section, we provide our implementation of the differ-
ential dynamic programming (DDP) and introduce one way
to deal with a constrained optimization, an exterior quadratic
penalty function (EQPF). A full description of DDP algorithm
can be found in (Ref. 15), and a DDP with inequality con-
straints is discussed in (Ref. 11).
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Differential Dynamic Programming

We consider the cost minimization that involves finding a con-
trol function u(t) below.

min
u
[φ(x(t f ), t f )+

∫ t f

t0
L(x,u, t)dt] (14)

subject to the dynamics

dx
dt

= f (x,u, t),x0 = x(t0). (15)

Our DDP takes the state vector of

x =
[

bXi
bYi

bZi
bẊi

bẎi
bŻi
]T

, (16)

and the control vector is

u =
[

bẌi
bŸi

bZ̈i
]T

. (17)

We utilize the standard ”Q function” notation from rein-
forcement learning, which is expressed as below:

Q(x(tk),u(tk), tk) = L(x(tk),u(tk), tk)+V (x(tk+1), tk+1)).
(18)

where L(x(tk),u(tk), tk) is the running cost, and
V (x(tk+1), tk+1) is the cost-to-go. Here, the running
cost is expressed as:

L(x(tk),u(tk), tk) =
1
2
(x(tk)−x∗)T Qw(x(tk)−x∗) (19)

+
1
2

u(tk)Rwu(tk),

where Qw is positive semidefinite, and Rw is positive definite,
both of which are diagonal matrices and decide the weight of
states and control, respectively. The target vector x∗ is com-
puted by using the output of the target tracker described in the
prevous section and known target information: target height
and velocity.

x∗ =
[

t X̂i +
t V cos(tψ̂)t f

tŶi +
t V sin(tψ̂)t f

tZi
]T

, (20)

where t X̂i,
t Ŷi, and tψ̂ are the output of the target tracker.

According to Bellman’s principle of optimality, any sub-
trajectory of an entire optimal trajectory is also optimal. This
provides us with one of the essential qualities of the DDP:
backward integration. By using a quadratic expansion of the
cost-to-go at each stage which is achieved by a second-order
Taylor series, we can express the backward path as follows.
For conventional notations, (tk) signifies that the function is
evaluated at (x(tk),u(tk), tk).

Qx(tk) = ∇xL(tk)+∇xV (tk)∇x f (tk), (21)

Qu(tk) = ∇uL(tk)+∇xV (tk)∇u f (tk), (22)

Qxx(tk) = ∇xxL(tk)+∇xV (tk)∇xx f (tk)+∇x f (tk)
T

∇xxV (tk)∇x f (tk),
(23)

Qux(tk) = ∇uxL(tk)+∇xV (tk)∇ux f (tk)+∇u f (tk)
T

∇xxV (tk)∇x f (tk),
(24)

Quu(tk) = ∇uuL(tk)+∇xV (tk)∇uu f (tk)+∇u f (tk)
T

∇xxV (tk)∇u f (tk),
(25)

Vx(tk−1) = Qx(tk)−Qx(tk)Q
−1
uu (tk)Qux(tk), (26)

Vxx(tk−1) = Qxx(tk)−Qxu(tk)Q
−1
uu (tk)Qux(tk). (27)

Plus, we obtain our feedback and feedforward policies (l f b
and l f f ) as follows:

l f b = Q−1
uu (tk)Qux(tk), (28)

l f f = Q−1
uu (tk)Qu(tk). (29)

These two policies makes the update for control (δu),

δu = l f f + l f bδx(tk), (30)

and the forward path is generated by a new control sequence

unew = u+ γδu, (31)

where γ is a learning rate. We set the learning rate to 0.8,
and the trajectories are evaluated N = 40 times at each up-
date. Among the N trajectories, the trajectory which has the
minimum cost is used for position control, and cascaded to
the attitude controller.

Receding Horizon Control

In our controller, the DDP updates the trajectory at 10 Hz and
evaluates the trajectory up to 1 second ahead of time; that is,
our terminal time t f is 1 second. Since the DDP update rate
is 10 Hz, we apply only the first 10% of the control sequence.
Receding horizon control is known to be more robust against
uncertainty and disturbances than fixed horizon control. The
DDP stops updating the trajectory when the vehicle can land
on the target in t f , which is

|bXi(t f )− x∗1| ≤ εx, |bXi(t f )− x∗2| ≤ εy, |bZi(t f )− x∗3| ≤ εz,
(32)

where εx,εy and εz are the design parameters that decide the
position error threshold for the landing. In our implementa-
tion, εx = εy = εz = 0.2 ft.
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Fig. 2. The figure shows an example of the difference be-
tween constrained and unconstrained trajectory planning.
Suppose a UAV attempts to land on an truck by avoiding
the line of sight of the driver. The unconstrained optimal
trajectory (shown as 1) is to fly directly to the target, which
results in the minimum control and state costs. However,
when we penalize the states in the line of sight of the driver,
the UAV prioritizes going outside of the line of sight, and
then approaches the target as shown in 2.

Exterior Quadratic Penalty Function

Trajectory planning for landing requires considering some
constraints: avoiding a collision with the ground, aggressive
landing, and the line of sight of a driver. Fig. 2 shows an
example of constrained and unconstrained optimal trajectory.
The constrained optimization in DDP can be dealt with by
various methods. In this work, the constraints are treated with
an EQPF. We define inequality constraints as follows:

gi(x(t))≤ 0,(i = 1,2, · · · ,n), (33)

where n is the number of constraints. Then, the below repre-
sents the augmented integrand of the running cost.

L̃(x(tk),u(tk), tk) = L(x(tk),u(tk), tk)+w
n

∑
i=1

Aig2
i (x(t)), (34)

where Ai = 0 if the gi constraint is satisfied, and Ai = 1 other-
wise. When all the constraints are satisfied, the above cost
function is equivalent to the unconstrained cost defined in
(19). The weight of the penalty function is determined by w.
The DDP derivation shown above needs a slight modification
to take the penalty function into consideration as follows:

Q̃ = Q+w
n

∑
i=1

Aig2
i , (35)

Q̃x = Qx +2w
n

∑
i=1

Aigi∇xgi, (36)

and

Q̃xx = Qxx +2w
n

∑
i=1

Ai(gi∇xxgi +∇xgi∇xgT
i ), (37)

CONTROL

Our controller has the attitude controller and the position con-
troller; each of which runs at 1000 Hz and 100 Hz, respec-
tively. The position controller is switched between hover and
3D-trajectory control depending on the phases of the landing.
Before we send the landing command to the vehicle, we use
the hover control to chase the moving target. Once it has re-
ceived the landing command, the vehicle follows the 3D tra-
jectory generated by the receding horizon DDP as described
in the previous section. In this section, we present our designs
of the attitude and position controllers. Although the coordi-
nates are defined differently, and the hover target is static, the
basic controller design follows the standard quadrotor con-
troller described in (Ref. 16)

Position Control

The hover controller uses the PID controller to chase a moving
target. We know the velocity of the moving target, and that it
is constant. The target tracker described in the section outputs
the position and heading of the target; thus, we can line up the
position and velocity of the vehicle (denoted br and bṙ) with
the ones of the target (denoted tr and t ṙ). Then, the command
acceleration can be expressed as follows:

r̈d = kp(
tr−b r)+ kd(

t ṙ−b ṙ)+ ki

∫
(tr−b r), (38)

where kp,kd and ki denotes the gain for proportional, deriva-
tive, and integral controller. Here, tr and t ṙ are calculated as
follows:

tr =
[tX tY tZ

]T
, (39)

t ṙ =
[tV cos(tψ) tV sin(tψ) 0

]T
. (40)

We assume the height of the landing platform tZ is known.
Those 3D accelerations (38) are used to calculate the desired
attitude of the vehicle, which is described in the following
subsection. After the landing command is sent, the optimal
control sequence u from the receding horizon DDP is substi-
tuted for the desired acceleration instead.

Attitude Control

Let r̈d =
[
r̈d

1 r̈d
2 r̈d

3

]T ; then, by using the linearized dynam-
ics we can lead the desired accelerations to the following ex-
pressions:

r̈d
1 = g(θ dcosb

ψ +φ
dsinb

ψ), (41)
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Fig. 3. The figure displays the control architecture we suggest. The inner attitude control loop uses onboard gyros and
estimates of attitude to control the roll, pitch, and yaw angle, and runs at 1000 Hz. The outer position control loop
uses the estimates of position and velocity, and runs at 100 Hz. The trajectory planning uses the output from the target
tracker, and computes the trajectory using the receding horizon DDP that achieves landing.

r̈d
2 = g(θ dsinb

ψ−φ
dcosb

ψ), (42)

and

r̈d
3 =

8kF ωh

m
∆ωF . (43)

By solving the equations for φ d ,θ d and ∆ωF we can obtain
the desired attitude and throttle that achieves the commanded
acceleration.

φ
d =−1

g
(r̈d

1 sinb
ψ + r̈d

2 cosb
ψ), (44)

θ
d =

1
g
(r̈d

1 cosb
ψ + r̈d

2 sinb
ψ), (45)

∆ωF =− m
8kF ωh

r̈d
3 . (46)

Since the heading of the vehicle is not determined in the de-
sired acceleration (in other words, we can achieve the speci-
fied acceleration with any heading), the heading is our direct
design parameter for attitude control. One design is that we
choose the heading of the vehicle so that the target velocity
vector is aligned with the lateral direction of an onboard im-
age. This way, we would have more chance to keep the target
in the line of sight. In this work, the vehicle stays in the initial
heading. This method is efficient because it does not require
extra control. Let ∆ωφ ,∆ωθ and ∆ωψ are the deviations from
a nominal attitude; then, they are computed as follows using
the PD controller:

∆ωφ = kp,φ (φ
d−b

φ)+ kd,φ (pd−b p), (47)

∆ωθ = kp,θ (θ
d−b

θ)+ kd,θ (qd−b q), (48)

∆ωψ = kp,ψ(ψ
d−b

ψ)+ kd,ψ(rd−b r). (49)

These commands produce moments by changing the desired
rotor speeds. The conversion to the rotor speed varies depend-
ing on how we defined the body axis. When we use the stan-
dard ”+” quadrotor configuration, that is, the body x and y
axes lie on the legs of the quadrotor, two rotors control the
vehicle roll, and the other two control the pitch. In the ”+”
configuration the rotor speeds can be expressed as the linear
combinations of (46), (47), (48), and (49).


dω1
dω2
dω3
dω4

=


1 0 1 −1
1 −1 0 1
1 0 −1 −1
1 1 0 1




ωh +∆ωF
∆ωφ

∆ωθ

∆ωψ

 , (50)

where ωh is a rotor speed needed to sustain hover.

SIMULATION AND FLIGHT TEST

In this section, we provide our flight test resutls to validate
the suggested vision system. Also, we provide the results of
an image-in-the-loop simulation using the vision system to
test the entire landing. We have operated the flight test in our
indoor flight facility (shown in Fig. 4-(a)) where the Vicon
system is installed so that we can measure the position and
attitude of our aerial vehicle and our moving target. We have
developed the GTQ-Mini (shown in Fig. 4-(b)) for the 2015
American Helicopter Society Micro Air Vehicle (MAV) Stu-
dent Challenge (Ref. 17), and this vehicle is used for flight
tests. This MAV vehicle is less than 450 mm in length in
any dimension and weighs under 500 grams. It is able to fly
without any external aide such as the Vicon cameras, but we
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(a) (b) (c)

Fig. 4. The figure (a) shows our indoor flight facility, in which the GTQ-mini (shown in (b)) is in flight with a safety
cable. Our target is an iRobot Create (shown in (c)), which is powered by Arduino and can be remote-controlled. Both
of the GTQ-mini and iRobot Create have the reflection balls with them, and the position and attitude are recorded by
the Vicon system.

(a) (b) (c) (d)

Fig. 5. The figures show the results of the flight test. The vertical and horizontal crossing is the measurement from the
Haar-like feature detector. The position of the circle represents the estimated position, the radius of the circle corre-
sponds to the estimated size of the target, and the arrow signifies the estimated heading of the target. After obtaining
the consistent measurements, the system initialized the EKF at (a). The initial position estimate is the mean of the
measurement we obtained before the initialization. The figure (b) shows that we have estimated the position and the
heading of the target accurately. While there is no measurement (shown in (c)), the estimation propagated using the
known dynamics of the target. This results in the deviation in estimation from the actual position and heading. After
we reconfigure the measurement, the estimation established a more correct estimation.

have operated in the Vicon room to record the data. We a
use Gigabyte Brix1 as the onboard computer which runs on
Ubuntu 14.04. The vehicle has a downward facing Firefly-
MV2 USB monocular camera. We have a software frame-
work, the Georgia Tech UAV simulation tool (GUST)3, which
allows us to obtain an onboard image, connect to the Vicon
system, and record relevant data. GUST separates the com-
puter vision system from the inner loop navagation, running
both in a seperate thread; thus, the vehicle control is achieved
at a constant frequency. We use an iRobot Create (shown in
Fig. 4-(c)) for a moving target, which carries the landing pad
with the letter ”H”. This is powered by Arduino and can be
remotely controlled. Fig. 5 shows the results of the target de-
tection and estimation. We ran the target in a constrained area,
and the target reverses the heading when it hits the boundary.

1 http://www.gigabyte.us/
2http://www.ptgrey.com/
3http://www.uavrf.gatech.edu/platforms/gust/

Since we only measure the position of the target and estimate
the heading of the target through the position measurement,
our estimator deviated from the true position while the target
is spinning to change the heading. In other words, we can-
not detect when the target entered the spin at this time. We
used the vehicle position and attitude obtained from the Vicon
system, and the onboard images. The measurement was not
as consistent as we obtain in the simulation, but it was suc-
cessful in finding the target most of time, and we were able
to estimate the heading as well as the position as shown in
Fig. 5. We use this vision system to test the suggested landing
methodology.

Now, we test the case where a UAV chases a moving tar-
get vehicle from behind and attempts landing, subject to con-
strained approaches. We start the simulation in which the tar-
get is in the line of sight of the vehicle; thus, we do not con-
sider how to find a target outside the camera’s field of view.
First, the UAV establishes the position and heading estima-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6. The sequential figures show the simulation display and the simulated onboard images while the aerial vehicle
tracks the target, approaches the target, and achieves landing. These figures are obtained while the vehicle lands on
the target using the constrained trajectory. The purple circle represents the current way point, and the purple curve is
the expected trajectory in one second. The yellow line is the vehicle path. The simulated onboard images are used for
the vision system. The images are updated at approximately 50 frames per second; figures (i) to (p) show some of the
simulated onboard images. The vehicle achieves hover behind the target at (a) and (i). The receding horizon DDP is
activated at (b) and (j), and the vehicle approaches the target ((c), (d), (e), (k), (l), and (m)). When the receding horizon
DDP computes the trajectory that allows the vehicle to land in one second ((f) and (n)), it uses the trajectory as a final
approach trajectory. The vehicle follows the last trajectory ((g) and (o)), and lands ((h) and (p)). As shown in the figures,
about one second before the landing, the vehicle loses visual of the target.

tion of the moving target using the hover control described in
the control section. Then, we manually switch to the receding
horizon DDP control. The receding horizon DDP computes
the optimal landing trajectory using the output of the target
tracker. The trajectory is calculated up to one second ahead
of time. When the vehicle determines that it is infeasible to

land in one second, it is simply navigated toward the local op-
timal, which typically results in approaching the target. When
the terminal state of the trajectory is close enough to the tar-
get, the DDP stops updating the trajectory, and the vehicle
attempts landing. This procedure is shown in the simulation
images in Fig. 6. We also consider the cases of constrained
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(a) With side constraints

(b) Without side constraints

Fig. 7. The figures show the results of the image-in-the-loop simulation including the true and estimated vehicle positions.
The green lines are the DDP trajectory that has the minimum cost at the stage. The DDP updates at 10 Hz, but the figure
shows only part of the trajectory for clarity. The shaded regions on the y-axis plot of (a) correspond to the constraied
areas.

9



and unconstrained optimization. In the constrained optimiza-
tion, we add two side constraints with respect to the target
position. This simulates the case where a UAV pursuits land-
ing by avoiding the line of sight of the driver as shown in Fig.
2. The constraints are given as follows:

g1 = (bY −t Y )−1.5≤ 0, (51)

g2 =−1.5− (bY −t Y )≤ 0. (52)

These constraints penalize the portion of the trajectory which
is more than 1.5 ft away from the target in the y-axis direc-
tion. The weight for each constraint is w = 8. We constrain
the trajectory using the EQPF method described in the mo-
tion planning section. The target has the constant speed of 1.1
ft/s, which is the same speed as the iRobot Create had in the
flight test. The vehicle is equipped with GPS, sonar, magne-
tometer, and inertial measurement unit. The vehicle state is
estimated using the hybrid EKF that propagates the state of
the filter using the IMU data and updates the states with the
measurement of other sensors. The GPS update rate is 10 Hz,
and the sonar and magnetormeter updates at 1 Hz. This EKF
can estimate the position, velocity, attitude, and accelerome-
ter and gyroscope biases. The details of the filter are described
in (Ref. 12).

We show the results of the image-in-the-loop simulation in
Fig. 7 of testing the landing case described above. The figure
shows the actual and estimated states of the vehicle as well as
the command trajectories from the DDP. Although the DDP
updates at 10 Hz, we only show some of the trajectories for
clarity. We used the weight matrix (described in (19)) below:

Qw(t f ) = diag
[
100 100 100 50 50 50

]
(53)

Rw = diag
[
40 40 400

]
(54)

where Q(t f ) is the weight for terminal states, and we do not
weigh the states getting to the final states at each stage of the
optimization. The vertical control is penalized more than the
other two controls. This is because our vehicle model is a
standard quadrotor which does not have much of the control
authority to descend as compared to other directions. The
results (Fig. 7) show the implementation of the constrained
optimization’s functionality. For the constrained trajectory,
the vehicle is initially in the penalized area; therefore, it ag-
gressively moves sideways to quickly go outside of the con-
strained area. This resuled in greater acceleration than the
unconstrained trajectories. Also, it takes more time for the
constrained DDP to achieve landing than the unconstrained
version. One reason for this is that in the constrained trajec-
tory, descent is not prioritized as much as going outside of
the penalized area. Therefore, it uses the y-axis control more
aggresively to move sideways, and descends slowly. The un-
constrained method, on the other hand, results in smoother
landing. The results validates our implementation and display
the efficacy of the receding horizon DDP for a vision-based
landing.

CONCLUSION

The authors suggest a new landing method using a vision sys-
tem and the receding horizon DDP. We explore our method for
vision-based tracking and our control architecture that enables
optimal landings. We validate our implementation of the vi-
sion system with the flight test using onboard images. We use
the vision system for an image-in-the-loop simulation to test
vision-based autonomous landings. Both of the constrained
and unconstrained methods are successful.
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