
UNSUPERVISED DISCOVERY OF ACTIVITY
PRIMITIVES FROM MULTIVARIATE SENSOR DATA

A Thesis
Presented to

The Academic Faculty

by

David C. Minnen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing, College of Computing

Georgia Institute of Technology
August 2008

Copyright c© 2008 by David C. Minnen

UNSUPERVISED DISCOVERY OF ACTIVITY
PRIMITIVES FROM MULTIVARIATE SENSOR DATA

Approved by:

Professor Thad Starner, Advisor
School of Interactive Computing,
College of Computing
Georgia Institute of Technology

Professor Charles L. Isbell
School of Interactive Computing,
College of Computing
Georgia Institute of Technology

Professor Aaron Bobick
School of Interactive Computing,
College of Computing
Georgia Institute of Technology

Professor Bernt Schiele
Department of Computer Science
Darmstadt University of Technology

Professor Irfan Essa
School of Interactive Computing,
College of Computing
Georgia Institute of Technology

Date Approved: July 7, 2008

ACKNOWLEDGEMENTS

The research presented in this dissertation is the result of a long process of intel-

lectual exploration, development, and refinement that would not have been possible

without the support of others. In particular, I would like to thank my advisor, Thad

Starner, who introduced me to the world of computer science research when I was

an undergraduate and then helped me form my own research direction as a Ph.D.

student.

The other members of my thesis committee have also been invaluable assets during

my graduate studies. Irfan Essa challenged me to consider how my work connects to

related subfields and helped me keep track of my broader goals despite my propensity

to focus on algorithmic details. Charles Isbell encouraged me to explore the base

assumptions of my work and to consider how the algorithms implied different claims

about the world. Aaron Bobick seemed to always ask the deep questions, helping

me to understand my research from many perspectives and ensuring that I could not

take any intellectual short-cuts. Finally, Bernt Schiele helped push me to be clear

about the applicability and limitations of my methods, ultimately leading to a much

improved approach.

While my committee provided important guidance for my research, I could not

have reached this point without the day-to-day discussions and support of the other

students in my lab. I would like to thank Tracy Westeyn, Dan Ashbrook, Kent Lyons,

Helene Brashear, and Brad Singletary from Thad’s research group as well as Yifan

Shi, Adam Feldman, and Raffay Hamid for focused discussions as we each developed

our research within the area of activity recognition and discovery. I would also like to

thank Chip Mappus, Michael Holmes, Peng Zang, David Roberts, Arya Irani, Liam

iii

MacDermed, and Sooraj Bhat from Charles’ lab for broader perspective and machine

learning discussions.

Finally, I would like to thank my family for their long-term and unconditional

support as I adapted my life, academic, and career goals. My accomplishments would

not be possible without the encouragement and facilitation that I have received from

my mother and father from my early childhood through today. My sister has long

been an important ally in my endeavours by providing perspective and inspiration.

Finally, I would like to acknowledge the vital role that Alexis plays in my life. She is

a source of joy and passion that drives and supports me.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

SUMMARY . xiv

I INTRODUCTION . 1

1.1 Background . 2

1.2 Motivation . 6

1.3 Example Domains . 8

1.4 Thesis Statement and Contributions 8

II RELATED WORK . 11

2.1 Activity Recognition . 11

2.2 Time Series Clustering . 12

2.3 Scene Detection . 13

2.4 Motif Discovery . 14

2.5 Other Forms of Activity Discovery 18

2.6 Additive Component Models . 19

2.7 Anomaly Detection . 19

III DISCOVERING ACTIVITY PRIMITIVES 21

3.1 Discovery Framework . 21

3.1.1 Phase 1: Efficient Pattern Filtering 22

3.1.2 Phase 2: Pattern Modeling and Occurrence Detection . . . 23

3.2 Discovery Using Global Discretization 25

3.2.1 Identifying Seed Motifs . 25

3.2.2 Seed Motif Refinement . 29

3.2.3 Motif Modeling and Occurrence Detection 32

3.3 Discovery Using Local Discretization 35

3.3.1 Local Discretization and Random Projection 36

v

3.3.2 Automatic Neighborhood Estimation 41

3.4 Density-based Discovery without Discretization 44

3.4.1 Efficiently Locating Density Modes 44

3.4.2 Greedy Mixture Learning for Motif Selection 45

3.5 RP-GML: Random Projection with Greedy Mixture Learning . . . 51

IV EMPIRICAL RESULTS . 53

4.1 Evaluation Methods . 53

4.1.1 Expert Analysis of Discovered Patterns 54

4.1.2 Effect on Primary Task . 55

4.1.3 Correspondence to Expected Patterns 55

4.1.4 Evaluation Metrics . 57

4.2 Optical Character Recognition . 61

4.3 Speech . 66

4.4 Exercise via On-Body Inertial Sensors 69

4.5 American Sign Language . 76

4.6 Other Domains . 79

V SUBDIMENSIONAL DISCOVERY . 85

5.1 Subdimensional Discovery Algorithm 87

5.2 Empirical Results . 90

5.2.1 Computational Complexity on Synthetic Data 90

5.2.2 Exercise Data with Irrelevant Features 92

VI DISCUSSION . 97

6.1 Feature Selection . 100

6.2 Global Optimization . 102

6.3 Unsupervised to Supervised Learning Spectrum 103

6.4 Variable-Length Patterns . 103

6.5 Run-Time Performance . 107

6.6 Pattern Hallucination . 110

vi

6.7 Overlapping Patterns . 115

VII FUTURE WORK AND CONCLUSIONS 120

7.1 Online Discovery . 120

7.2 Coarse-to-Fine Processing . 121

7.3 Higher-level Learning & Feedback 122

7.4 Automatic Timescale Estimation 123

7.5 Motif Ranking . 124

7.6 Interactive Discovery . 125

7.7 Predictive Motifs . 128

7.8 Transfer Learning . 129

7.9 Conclusions . 129

REFERENCES . 131

vii

LIST OF FIGURES

1 An illustration of the sparse motif discovery problem for four 1D time
series. Rectangles correspond to motif occurrences and each color rep-
resents a different motif. 5

2 Overview of the global discretization discovery algorithm 26

3 Suffix tree for the string ABABC. The left diagram shows explicitly la-
beled edges for clarity, while the diagram on the right shows how string
indices are used to ensure linear space complexity. In the tree, every
subsequence of the input strings is represented as a (possibly partial)
path from root to node. The leaf nodes are annotated with the index
in the original string of the corresponding suffix. Internal nodes hold
a count of their children to allow efficient subsequence tallies. 27

4 A dendrogram showing a motif that should be split (compare to Fig-
ure 5). A dendrogram represents the results of clustering by showing
each item along the bottom and drawing a horizontal line for each
merge (equivalently, for each split if the clustering is performed top-
down). The distance between clusters increases as you move up the
diagram, so merges near the bottom are typically more confident. Sim-
ilarly, large vertical gaps between successive merges tend to indicate a
natural partitioning. 30

5 A dendrogram showing a motif that should not be split. Note how the
final merge accounts for a relatively small amount of the total distance
(compare to Figure 4). 31

6 A dendrogram showing the results of motif clustering. Two motif pairs
should be merged (Motifs 4 & 5 and 6 & 7). 32

7 By modifying the standard Viterbi alignment algorithm, we can find
the best subsequence in linear time. k∗ is the optimal subsequence
length, which is found by tracing backward along “parent pointers”
exactly as in the standard Viterbi algorithm. 33

8 Three consecutive subsequences of length w from a 1D time series.
The three subsequences are all very similar but are considered trivial
matches since they overlap. 36

9 A real-valued, 1D signal is converted into a SAX string (edacb) using
five PAA segments (bounded by the vertical dotted lines) and five SAX
symbols. 37

viii

10 Depiction of the results of local discretization using four symbols when
applied to a univariate signal. In general, the sliding window can have
more or less overlap and can be applied to multivariate time series. . 38

11 (a) For each iteration of random projection, a subset of string positions
are selected (here, positions one and three). (b,c) The remaining sym-
bols are hashed, and (d) equivalent projections are tallied in a collision
matrix. 39

12 A single neighborhood radius may not be able to capture the extent of
different patterns (left). When the radius is allowed to vary, however,
each pattern can adapt to more accurately separate valid occurrences
from other subsequence (right). 42

13 The radius of each motif neighborhood is estimated from the distance
between each potential member and the motif seeds (left). It is equated
with the inflection point, which is estimated by the weighted mean of
the derivative of the distances (center). The result is automatic motif-
specific neighborhood sizes (right). 43

14 The density-based algorithm tries to locate high density regions by
finding those data points with the nearest kth-nearest neighbor. . . . 44

15 After computing the k-nearest neighbors for each subsequence and esti-
mating the surrounding density, only those subsequence that are local
maxima are kept as candidate motif seeds. 46

16 A hierarchical HMM can be used to learn the parameters of the motif
models [68] but leads to a difficult optimization problem with many
local minima. 47

17 In a greedy mixture learning framework, models are added incremen-
tally. While this approach leads to multiple learning problems, each
problem is much simpler than in the full hierarchical model case. [5, 58] 47

18 Illustration of HMM construction. Each sequence in the training set is
divided into equal-sized, overlapping segments from which the Gaus-
sian observation distribution of each state is estimated. Self-transitions
for each state (not shown) allow the model to adapt to long occurrences,
while the skip states allow it to map to shorter occurrences. 48

19 Synthetic data set that illustrates variable-length motifs. Each image
represents a random string drawn from the alphabet {zgwxfpmik} and
is corrupted by white noise. The “time series” frames correspond to
features extracted from a vertical bar that slides across the image and
measures the intensity of the underlying pixels. 61

ix

20 Accuracy results for the five algorithms compared in this research on
the OCR data set. The two algorithms that model motifs using HMMs
selected using a competitive learning framework perform the best due
to their relative robustness to variable motif lengths. 62

21 Accuracy of the AdaptLD (orange) and LocalDisc (blue) methods on
the rendered character data across a range of parameter values. The
parameters represent the window length and the number of PAA seg-
ments used. In each case, the accuracy reported is the maximum
achieved via manual, supervised search across the relevant neighbor-
hood size parameter. 64

22 Accuracy of the LocalDisc method on the rendered character data
across a range of neighborhood radius values. The reported accuracy
is the maximum achieved after manually searching for the best settings
for the other parameters. Note that values around 330 were more
densely sampled after identifying that as a likely region to contain the
maximum accuracy setting. 65

23 Accuracy results for the five evaluated algorithms on the TIDIGITS
speech data set. This data set highlights the shortcomings of the
GlobalDisc algorithm, which has a negative accuracy and thus is not
visible on the graph. 66

24 Graph of accuracy vs. number of discovered motifs for the TIDIG-
ITS data set. The algorithm automatically selected 15 motifs for the
TIDIGITS data (truth: 11 + background). 67

25 Two sequences from the spoken digits data set showing all 13 features.
The highlighted segments represent occurrences of one of the discovered
motifs, which corresponds to the utterance “one.” 68

26 Two XSens MT9 inertial sensors and a modified glove used to mount
a sensor on a subject’s wrist. The MT9 measures acceleration and
rate-of-rotation in three axes at 100Hz. 69

27 A visualization showing the raw accelerometer and gyroscope data from
one sequence in the top portion and the quantized data from all 32
sequences in the bottom portion. The apparent regularity in the data
is an artifact of orderly collection and does not help the discovery
algorithm. 70

28 Sample occurrences of the six motifs discovered in the exercise data
set showing the three-axis accelerometer readings. Each column corre-
sponds to a different discovered dumbbell exercise. 71

x

29 Accuracy results for the five evaluated algorithms on the exercise data
set. Note that the graph starts at 75% accuracy. Although all of the
algorithms perform well, using HMMs as motif models provides better
accuracy results than using the hypersphere model in all cases. 72

30 Graph of accuracy vs. number of discovered motifs for the exercise data
set. The density-based algorithm automatically selects seven motifs for
the exercise data (truth: six + background). 73

31 Graph showing the accuracy rate of the LocalDisc algorithm for a
range of radii. Performance based on both the DTW and a straight-
forward squared error distance metric are included. 74

32 Graph showing the accuracy rate of the AdaptLD algorithm for a range
of analysis proportions. Performance based on both the DTW and a
straightforward squared error distance metric are included. 75

33 Each of the four graphs shows performance (accuracy, precision, recall,
and f-measure) for a different algorithm. The results were averaged
over 16 trials, each composed of 24 sequences randomly sampled from
the 32 sequences in the exercise data set. The confidence interval
corresponds to +/- one standard deviation across the 16 trials. 76

34 The ASL video was captured using a hat-mounted video camera (left)
that captured a top-down, wide-angle view of the signer’s hands (right). 77

35 Performance of the hybrid algorithm on the ASL data set. The four
curves provide the event and frame-based performance rates accord-
ing to both the accuracy and F-measure statistics. The event-based
accuracy (blue curve) is comparable to Figures 24 and 30. 78

36 Six dimensional shuttle telemetry data with the discovered pattern
highlighted (only the first three dimensions are shown) 79

37 The primary motif discovered in the 8D fetal ECG data (the first four
dimensions are shown) . 80

38 Two recurring paths in the GPS data. Left: a common driven route
along the highway; Right: a recurring walking route between buildings
on the Georgia Tech campus . 81

39 The top row shows spectrograms for three occurrences of the discovered
word “California” in a recording of Joni Mitchell’s song California,
while the bottom row shows spectrograms for occurrences of the phrase
“United States” in a recorded political lecture. 83

xi

40 Four categories of multidimensional patterns: (a) “all-dimensional”
patterns include all of the features, (b) a subset of the dimensions are
relevant to all patterns, (c) each motif can have a different subset of
relevant dimensions, and (d) feature relevance depends on the motifs
and the patterns can temporally overlap if they include disjoint features. 86

41 A three-dimensional signal with two subdimensional motifs. The first
motif only spans dimensions two and three, while the second motif
spans dimensions one and two. 87

42 A feature is considered relevant to a particular seed motif if the seed
distance in that dimension has high probability under the CDF esti-
mated from random samples from the overall data set. 88

43 The basic subdimensional discovery algorithm scales linearly with both
(a) the size of the time series data and with (b) the length of the motifs.
However, the dynamic time warp distance measure scales quadratically
with the length of the sequences being compared and so it leads to
an O(T 2) complexity as the motif length approaches the overall data
length as shown in (b). 91

44 Graph showing event-based accuracy as the amount of noise increases
in a single irrelevant dimension. The subdimensional algorithm can
detect and ignore the noise, while the all-dimensional algorithms are
disrupted. 92

45 Graph showing event-based accuracy as the number of noisy, irrelevant
dimensions increases. The subdimensional algorithm is negatively ef-
fected but not with the same severity as the all-dimensional methods. 93

46 Event-based accuracy for the subdimensional algorithm applied to the
exercise data set for eight different similarity measures. 94

47 Three discovered occurrences of the twist curl exercise. The top
row shows the relevant dimensions while the bottom row shows the
irrelevant (noise) dimensions. 95

48 Run-time of a single run of each of the five algorithms on the exercise
data set. Note the logarithmic time scale. 108

49 The HMM topology used to generate the random walk data (self-
transitions are not shown) . 112

50 Graph showing a segment from the random walk data generated to
test spurious pattern suppression. 112

xii

51 Graph showing a pair of similar subsequences detected by the discovery
system in the random walk data. Although the sequences are visually
similar, the random walk model still provides a higher probability than
the learned model, thus allowing the proposed pattern to be rejected
as spurious. 113

52 Interface for manually adjusting the threshold for removing “silence”
in the time series data. The interface supports both a constant and
locally linear silence model. 126

53 Graphical interface for interactive motif discovery. This display shows
sample occurrences, the occurrence distance graph and associated thresh-
old, previously discovered patterns, and a dendrogram summarizing the
relative similarity between the patterns. 127

xiii

SUMMARY

This dissertation addresses the problem of discovering unknown activity primitives

through the unsupervised analysis of low-level sensor data. These primitives corre-

spond to recurring temporal patterns that support higher-level prediction, reasoning,

and modeling. Thus, the goal is to discover semantically meaningful constructs from

low-level sensor data using minimal top-down knowledge and few domain-specific

constraints.

Existing techniques for detecting unknown recurring patterns, often called “mo-

tifs” in the bioinformatics and data mining communities, make restrictive assumptions

or have poor computational complexity characteristics that make them impractical for

analyzing large data sets. For instance, many algorithms are only applicable to sym-

bolic sequences, do not scale well to multidimensional data, require extensive manual

tuning of data-dependent parameters, or require patterns to span all of the input

dimensions even for high-dimensional data sets. The contribution of my dissertation

is the development of an improved discovery algorithm as measured by overall com-

putational complexity, real-world run time, motif quality, and sensitivity to locally

irrelevant input features.

I have developed and evaluated several new approaches to pattern discovery that

use different data representations to achieve efficient operation. The first approach

globally discretizes the sensor data and builds a suffix tree using Ukkonen’s linear-time

algorithm to expose recurring patterns [90, 57]. The algorithm works well in some

low-dimensional data sets, but sensitivity to the precise quantization boundaries and

number of symbols leads to relatively poor performance in more complex domains.

xiv

To address these shortcomings, I adopted the method of symbolic aggregate ap-

proximation to perform local, context-dependent discretization [50]. I used a random

projection method to quickly find similar subsequences within the locally discretized

data and developed a method for automatically estimating a similarity threshold for

accurately locating additional occurrences [8, 10]. This enhancement increased the

modeling flexibility of the approach and reduced the required number of user-specified

parameters [59].

To investigate the possibility of efficient pattern discovery without the use of a

discrete representation for filtering, I developed an approach based on subsequence

density estimation [58]. Consider the space of all subsequences of a time series data

set. In this space, the discovery algorithm identifies candidate patterns as those subse-

quences that lie at local density maxima. To maintain efficiency, density is estimated

directly from k-nearest-neighbor distances, which can be quickly determined for large

data sets using dual-tree methods [23].

In order to select accurate patterns from the candidates detected at density max-

ima, I represented each pattern with a probabilistic temporal model and used a com-

petitive framework to iteratively learn a mixture model whose components jointly

explain the original data [5]. At each iteration, the pattern is selected which leads to

a maximal increase in data log-likelihood when the corresponding model is added to

the mixture. The strength of this approach is that it is principled, efficient, and more

robust than the previous approaches.

The observed performance boost is mainly due to the probabilistic modeling and

competitive selection framework rather than the density estimation procedure used

to locate candidates. Therefore, I developed an approach that uses the faster random

projection technique to locate candidates and then combines it with probabilistic

xv

modeling and greedy mixture learning to perform the final pattern detection. The re-

sult is an approach with run-time characteristics closer to the fastest discovery meth-

ods, accuracy rates comparable to algorithms that require far more computational

resources, and a reduced reliance on and sensitivity to user-specified parameters.

Finally, I also introduce a variation of the multivariate pattern discovery problem

in which each pattern only spans a subset of the dimensions. This formulation is more

appropriate for systems such as distributed sensor networks and high-dimensional

data sets in which not all of the sensor readings are relevant to every pattern. To

address this variation, I developed an algorithm that automatically determines the

relevancy of each input dimension on a per-pattern basis, which allows it to ignore

spurious or distracting features.

In order to evaluate the empirical performance of my approach, I use it to analyze

several data sets spanning different domains and different sensor modalities. The ex-

periments show how the algorithm can discover recurring words from lectures, music,

and other speech data sets. When applied to raw accelerometer and gyroscope read-

ings collected by on-body sensors, the algorithm recovers motion primitives, while

application to low-level vision features extracted from video of American Sign Lan-

guage leads to the recovery of repeated signs.

xvi

CHAPTER I

INTRODUCTION

Intelligent systems can be categorized along a fundamental dimension that measures

the amount of a priori knowledge available to the system as it learns to understanding

its domain. At one end of this spectrum, a knowledge engineer must fully specify the

structure of the domain and all of the relevant information, while at the other end, the

designer only provides a minimal bias or representational restriction to allow mean-

ingful learning. My thesis focuses on the design of computational systems that lie near

the latter end of this spectrum. That is, they perceive their environment and learn

to understand what is happening. My research investigates methods to automati-

cally discover characteristic components of an activity by observing many examples.

Through the analysis of activity data, intelligent systems can learn perceptual pat-

terns that are useful for detection, recognition, and prediction of typical behavior

within an activity. This analysis allows them to provide useful services to users in-

cluding helping to form a better understanding of an activity, learning patterns for

automatic surveillance systems, providing sensory apparatus for aware environments,

and investigating early conceptual development through computational modeling.

Activity data is data that represent information about the behavior of an entity

over time. My research focuses on the analysis of human activities, though the ideas

presented here are equally applicable to a wider range of time series such as those

representing data collected from other creatures (e.g., a bee, ant, dog, or robot)

or another system (e.g., neuronal response to a particular stimulus, power usage

for a city, automobile traffic density at key intersections, network packet identifiers

observed by a router, or stock price fluctuations).

1

1.1 Background

The behavior of humans can be captured in a variety of ways using sensors either worn

by the subject or embedded in the environment. For example, cameras mounted in

the ceiling can capture the movement and interactions of people in a home or office,

simple circuits built in to doors, cabinets, or drawers can detect when an inhabitant

uses these fixtures, and microphones can detect a subject’s speech and even their

location if multiple microphones are arranged as a phased array.

Users can also wear sensors that may provide more precise or personal informa-

tion. Examples of wearable sensors include accelerometers that directly measure the

acceleration of the wearer’s body or limbs, gyroscopes that record rotational motion,

galvanic skin response (GSR) sensors, and body-mounted cameras or microphones

that record the user’s first-person view of the world.

The idea of activity discovery arose out of existing research in activity recognition,

monitoring, and prediction. In activity recognition, as in the general case of temporal

sequence recognition and time series prediction, a learner is provided with annotated

examples of an activity and seeks to learn a model. This model may take many forms,

for example, state machines, grammars, or rule sets, as well as probabilistic gener-

alizations therein. Success is measured by applying the learned model to previously

unseen test sequences and comparing the detected activity (and in some cases, the

detected sub-components) with ground truth labels. A more detailed examination

of previous research in activity recognition will be given in Section 2.1, but the key

difference between activity recognition and my research is that my goal is to discover

embedded activity primitives and higher-level structure via unsupervised analysis. In

other words, I seek to learn models without the help of previously segmented and

labeled activity components, while research in activity recognition depends on such

labeled training data for learning.

For the purposes of this dissertation, an activity is a general term for the extended

2

behavior of a person or system. The behavior could be temporally or spatially ex-

tended. For example, compare cooking an omelette or playing baseball with

the nucleotide sequence in DNA or with the density of a pollutant at various points

along a river. In the latter two cases, the sequence is defined through space rather

than through time by either detecting the nucleotides along the DNA or by inspect-

ing the pollution level at successive locations along a river. Despite the incongruous

description when applied to some data sets, I will continue to use the term activity

for brevity and due to my focus on analyzing human activity data.

Naturally, my research only pertains to directly observable activities, though it

should be clear that observability is relative to the sensors at hand. For example,

running, walking, and sitting are, barring occlusion and insufficient acuity, ob-

servable by a video camera, whereas thinking and feeling are not. However, with

other sensor, thinking, or at least some kinds of brain activity, become directly ob-

servable as with near-infrared (FNIR), electroencephalography (EEG), and functional

magnetic resonance imaging (fMRI) machines.

Given an observable activity, activity data is a characterization of the activity

through time or space as perceived by a sensor or set of sensors. Thus, activity data

may be symbolic or continuous and may be univariate or multivariate. The approach

proposed here can operate over data of any of these types, though I will focus on the

multivariate, continuous case due to its generality. I do, however, make the simplifying

assumption that the input data has already been (pre-)processed to include appropri-

ate features, and, in the case of multivariate data sets, that the various features have

already been temporally aligned. The issue of feature extraction, transformation,

and synchronization is a central issue for all machine learning methods but is not

addressed explicitly by my research. Therefore, for each experimental domain that

will be discussed, I will explain any feature extraction processing used, and I have

made a great effort to use either raw sensor values or standard features for the domain

3

(e.g., frequency spectrum amplitudes for audio or tracked “blob” characteristics for

gesture-based vision applications).

The concept of a motif is important to my formulation of activity discovery. A

motif is a set of recurring subsequences embedded in a larger sequence for which the

occurrences exhibit high similarity. When the data represents an activity (in the

narrow sense), I will refer to such motifs as activity components or primitive actions

depending on whether the motif can reasonably be subdivided given the structure

of the activity and the precision and temporal resolution of the activity data. More

generally, the motifs are simply recurring patterns in the data set, though this phrase

refers to a broader set of patterns and problems than just motif detection.

My research involves two kinds of multivariate motifs. The first kind corresponds

to a set of recurring patterns that extend across all of the dimensions of the given time

series data. These motifs are sensible when the multivariate signal comprises many

features extracted from a single sensor channel (e.g., MFCCs extracted from waveform

data) or when the multivariate sensor readings are strongly coupled (e.g., readings

from a three-axis accelerometer). The second kind of motif, called a “subdimensional

motif,” corresponds to a recurring pattern which only includes a subset of the sensor

channels. Such patterns may arise from distributed or uncorrelated sensor systems.

For instance, an on-body, multi-sensor system may capture different primitive actions

from sensors placed near the ankle and on the wrist. Similarly, an EEG recording may

contain different patterns across different subsets of the electrode signals. Finally, a

geographically distributed sensor system may contain sensors that are too distant

to give rise to a meaningful motif, while spatially proximal sensors do record joint

motifs.

For the purposes of this work, I define activity discovery as the discovery of motifs

in activity data (see Figure 1) as well as learning higher-level structure over the

discovered motifs, if such structure exists. As a practical matter, this dissertation

4

Figure 1: An illustration of the sparse motif discovery problem for four 1D time se-
ries. Rectangles correspond to motif occurrences and each color represents a different
motif.

and the included empirical evaluation only covers specific measures of similarity and

certain kinds of structure, but it should be clear that the approach allows a wide

range of models and metrics.

Note that my formulation is only one possible definition for activity discovery.

Specifically, it relies on the “signature” of the motif, that is, the space in the relevant

feature space carved out (perhaps with appropriate time-warping) by the occurrences

of the motif. Contrast this formulation with activities that are defined by a goal in

which the particular signature is not important (see Section 2.5) or with patterns

characterized by event occurrences and the time between them as with neurological

spike trains.

Since a motif is a collection of occurrences, the properties of these occurrences will

have a huge impact on how easy or difficult they are to discover. Previous research

has assumed fixed-length occurrences, used distance metrics that assume a uniform

temporal progression to measure the similarity between time series, and specified a

single distance threshold to define the neighborhood size of all motifs (see Section 2.4

for details). Such assumptions are too restrictive for many activity data sets, and

5

so they are relaxed in this work to allow variable-length occurrences and similarity

based on hidden Markov models (HMMs), which allow time-warping for matching

and modeling.

Finally, I am interested in discovering motifs in a wide range of data sets which

may contain different numbers of motifs and different numbers of occurrences. In

some data sets, such as in typical speech or American Sign Language (ASL) data

where motifs correspond to words or signs, the motifs are densely distributed within

each time series. Here, a dense distribution means that the majority of the data

frames fall within an occurrence of one of the motifs. On the other hand, as in

data representing activities of daily living and many sports, the motifs may occur

relatively infrequently and thus be sparsely distributed within the time series. In this

case, more efficient discovery algorithm is needed since most of the data may occur

outside of any of the motifs, and therefore it will be more difficult to find any valid

motif occurrences. Since I am interested in motif discovery that covers both cases, the

approach presented here is largely motivated by quickly locating candidate patterns

so that it performs efficiently for both sparse and dense data sets.

1.2 Motivation

The unsupervised analysis of activity data can be motivated on both practical and

theoretical grounds. On the practical side, an activity discovery system can help

verify an expert’s intuition concerning the components of an activity. It can also find

new components or provide a decomposition when an expert is not available either

due to practical complications (e.g., scarcity, scheduling conflicts, low funds, etc.) or

simply because the data comes from a new field that is not yet well understood (e.g.,

DNA sequences or spike responses in networks of neurons).

For users interested in building automated surveillance systems or robust per-

ceptual subsystems for intelligent spaces, a more important motivation comes from

6

the fact that discovered activity components are necessarily detectable. In contrast,

human specified components, which are currently used in most approaches in the

literature, may or may not be reliably detectable by a particular system and set of

sensors. Discovered motifs are necessarily detectable due to the simple fact that a

motif that can not be detected can not be discovered, and any motif that was dis-

covered must have be detected as either a candidate seed or as a subsequent motif

occurrence. The importance of this difference is highlighted by ideas from embodied

cognition in which it is theorized that entities conceptualize their environment rel-

ative to their ability to sense and act in the world. Thus, a human who interacts

with the world through their hands and feet and who senses primarily through sight,

sound, and touch, may identify certain activity components as critical, whereas an

artificial system that uses sonar or accelerometers may find that an entirely different

set of primitive actions more robustly characterize the same activity.

The final motivation for activity discovery is philosophical and builds on the posi-

tion put forth by Cohen et al. [13]. In that work, the authors argue that “most of the

intellectual work in AI is done not by programs but by their creators, and virtually all

the work involved in specifying the meanings of representations is done by people, not

programs.” They adopt Fred Dretske’s theory of meaningful representation, which

posits that an internal state must both indicate a condition and have the function of

indicating that condition. Applying this theory to robotics, Cohen et al. conclude

that learning meaningful representations requires a robot to analyze its sensor read-

ings to learn abstractions that inform action. Similarly, I seek to design an activity

discovery system that learns endogenously meaningful representations via unsuper-

vised analysis of sensor data. Since I am primarily interested in wearable systems and

intelligent spaces, however, the function of indicating (i.e., the action triggered by

a learned state) is not driving robotic actuators. Instead, the function of indicating

is to provide useful information and robust services to the user. Importantly, the

7

final output must be meaningful to the user (for how else could it be understood or

evaluated?), but the internal states that serve to robustly characterize the data and

allow accurate detection of the desired state are learned and need only be meaningful

to the system. Thus, I see activity discovery as a method for acquiring endogenously

meaningful perceptual concepts, a long-standing goal in artificial intelligence.

1.3 Example Domains

Although the motifs found by an activity discovery system need not correspond to

those expected by a human analyst, it is still useful to motivate activity discovery

with examples from domains with well-known primitives. For instance, in speech data

a discovery system can be reasonably expected to locate either words or phonemes

depending on the time-scale specified by the user. Similarly, sign language is com-

prised of many elemental signs, exercise routines consist of several repetitions of a

basic, strenuous movement, and Kung Fu forms are typically built by combining dif-

ferent punches and kicks. In assembly tasks, we expect that the characteristic motions

necessary to effectively use tools such as hammers, screwdrivers, hand saws, drills,

and sanders will correspond to discoverable primitives. Similarly, economists have

identified a range of so-called “chart patterns” including flags, pennants, ascending

triangles, and the head and shoulders pattern. An effective discovery system should

be able to rediscover these patterns, although this may require simultaneous analysis

at several time-scales. Finally, some spatial data sets can be viewed as time series

data and thus analyzed by an activity discovery system. For example, lines of hand-

written text could be converted by scanning each line and extracting features from the

vertical columns. Analysis of the resulting sequence would likely lead to primitives

corresponding to either characters or words depending on the scale.

1.4 Thesis Statement and Contributions

The thesis of this dissertation is:

8

Semantically interpretable activity primitives can be automatically and ef-

ficiently discovered in multivariate activity data by identifying recurring

motifs with high intra-motif similarity.

There are three main contributions of my research. First, I will demonstrate that

discovering recurring patterns is feasible in interesting domains and realistic data sets.

For instance, I have evaluated the performance of my approach on speech, American

Sign Language, music, GPS tracks, rendered text, and on-body inertial sensor data

(details can be found in Chapter 4). These domains are particularly interesting be-

cause they have been the subject of study for supervised learning methods within

the pattern recognition community and because they all have higher-level structure

that influences the temporal relationship between the primitive actions. Broad exper-

iments across a range of different domains are important to demonstrate and evaluate

the generality of an approach and to help avoid including unintended, domain-specific

biases into the algorithm.

The second contribution is the development of a new approach to activity discovery

that improves on existing methods from the bioinformatics and temporal data mining

literature. For instance, many existing algorithms are only applicable to symbolic

sequences, do not scale well to multidimensional data, require manual tuning of data-

dependent parameters, or have poor run time characteristics. Correspondingly, the

improvements of my approach relate to the algorithm’s computational complexity,

expected real-world run time, and range of applicability, as well as to the quality of

the discovered motifs. More detailed information concerning the evaluation of activity

discovery systems will be discussed in Section 4.1.

The third main contribution of my research is the development of an efficient

algorithm for discovering subdimensional motifs. To my knowledge, this problem has

not been directly addressed before in the literature, although existing methods could

be adapted through a (generally inefficient) meta-search for applicable dimensions

9

or by thresholding weights learned by additive factorization methods (described in

Section 2.6). My approach adopts the same random projection framework used by

the “all-dimensional” algorithm but modifies it to be robust to irrelevant dimensions

without requiring an explicit search over the possible feature combinations.

10

CHAPTER II

RELATED WORK

2.1 Activity Recognition

As discussed previously, activity recognition is a supervised analogue of activity dis-

covery. In typical approaches, an agent is first given labeled observations of a tem-

porally extended activity and must learn a model from these training examples. The

agent is then tested on previously unseen observation sequences and must detect

the occurrence of a known activity and must often also segment and identify sub-

components.

Much research in this area has focused on learning a probabilistic model to repre-

sent the activity and then sought to match the model to new sequences. For example,

HMMs have been used to model and recognize gestures [6, 82], American Sign Lan-

guage [87, 92], and other actions [7, 63, 97]. Other researchers have shown how such

state-based methods fail to capture the extended semantics of certain activities (at

least without introducing an intractable number of states) and have turned to more

complex models. Stochastic context-free grammars (SCFGs) offer one such model

that extends the efficient representational power of HMMs [64, 33, 56]. To address

the problem of concurrent, interleaved streams of activities Shi et al. developed

Propagation Networks (P-Nets), which generalize HMMs and SCFGs with a network

structure and allow multiple nodes to be “active” simultaneously [84].

A different form of activity recognition arose out of tracking research in which

the state dynamics includes a discrete hidden variable which represents the current

activity or behavior regime. Typically, the recognized activities are distinguishable

by their dynamics, which are conditioned on the activity itself. Thus, the techniques

11

adopt a switching-state algorithm in which the hidden activity variable is chosen

to best account for the currently observed dynamics, perhaps also subject to di-

rect filtering to promote temporal cohesion and known transition constraints. As an

example of tracking-based activity recognition, Black and Jepson developed a vision-

based, interactive white board system that tracked the position of a hand-held pen

or eraser [4]. The object dynamics were conditioned on the gesture class, and par-

ticle filtering [31, 19] was used to simultaneously explore multiple class and location

hypotheses. Similarly, Patterson et al. tracked people carrying a GPS sensor around

a city and recognized their activity (walking, riding-the-bus, or driving) using

a similarly augmented particle filter [76].

Other researchers have used a variety of methods to recognize the current activity

of the user. Typically, this assumes that only one activity can take place at each

time step and little higher-level structure is utilized (though in some cases, a higher-

level model is used to smooth the results of the frame-based classifier). For instance,

Lukowicz et al.[55] recognize wood workshop activities using a variety of on-body

sensors including microphones and accelerometers. They classified the incoming sen-

sor data using linear discriminant analysis (LDA) for dimensionality reduction and

HMMs. Wyatt et al. extracted hundreds of features from an on-body sensor package

and used a boosting framework to select the features that were most discriminative

for a set of standard daily activities [47]. Liao et al. improved upon these results by

using a conditional random field (CRF) [43] along with a similar boosting framework

to learn discriminative features while considering temporal context [48].

2.2 Time Series Clustering

Time series clustering is related to activity discovery since the solutions to both prob-

lems lead to sets of similar time series. While both problems require unsupervised

learning, the key difference is that time series clustering assumes that the time series

12

are segmented (or nearly segmented) and thus each sequence belongs to exactly one

cluster. In motif discovery, however, each time series may contain multiple subse-

quences that are occurrences of different motifs. There is a huge literature on time

series clustering and the references given here are just a small sampling of recent work

on the problem (see [49, 1, 22, 61, 70, 51]).

2.3 Scene Detection

Research in the computer vision and multi-modal pattern recognition communities

has focused on dense discovery in work that can broadly be called shot detection

or scene boundary detection. A particularly nice example is the work of Xie et al.

in which the parameters of a hierarchical hidden Markov model (HHMM) are esti-

mated in an unsupervised manner to learn different segments of soccer and baseball

games [96]. The games are analyzed based on both video and audio features, and

the hierarchical model naturally accounts for both low-level and high-level structure.

This research is specifically targeted at recovering dense structure, however, although

it may be possible to identify one of the higher-level states as “background” and then

separate valid motifs from “background frames.” Further theoretical and empirical

investigation is needed to determine if the HHMM successfully recovers motifs and if

an unsupervised procedure can distinguish between motifs and background data.

Earlier work by Clarkson and Pentland explicitly used a two-layer HMM to model

audio and video data captured using on-body sensors [11]. Low-level transitions

between the states of each HMM captured local information, while transitions between

HMMs captured scene boundaries. Although this was important early work, the

model is subsumed by the more general hierarchical HMM formulation.

Similarly, research by Naphade and Huang [68] segmented video by learning a

mixture of HMMs. The high-level model used in their research is also a Markov

model, essentially leading to a simple HHMM structure overall. The parameters of

13

the model were learned via EM after random initialization. This process leads to

reasonable segmentation but requires a relatively long training period and makes it

difficult for the component models to isolate short recurring scenes.

Huynh and Schiele take a different approach to activity discovery which tries to

explain the time series data in terms of multiple low-dimensional eigenspaces [30].

Their approach uses a multiple eigenspaces algorithm [46] to automatically learn the

number of subspaces, the projection vectors for each eigenspace, and the boundaries

between different regions. The result is that the time series data is clustered based

on the discovered boundaries and the corresponding subspace that best explains each

region.

2.4 Motif Discovery

In bioinformatics, systems such as MEME were developed to discover motifs in DNA

and protein sequences [3]. Many other specialized systems have been developed since

then, though few are applicable to real-valued time series analysis since they were

designed to work with categorical sequences (see [34] for a brief review). Recently,

Jensen et al. generalized motif discovery over both categorical and continuous data

and across arbitrary similarity metrics [34]. This research represents an important im-

provement, but their approach has two significant issues. First, it requires a pairwise

comparison of all subsequences of a particular length, but this is a quadratic oper-

ation which precludes scaling to large data sets. Second, although they do support

variable length motif occurrences, this is only achieved via a post-process. In se-

quence data this is probably not a major problem, but in time series, two very similar

subsequences may appear quite different if only fixed-length segments are compared

(e.g., consider comparing ABCD and AABBCCDD with a window length of four).

Within the data mining community, Chiu et al. developed an efficient, probabilis-

tic algorithm for motif discovery using a form of locality-sensitive hashing [10]. This

14

approach only discovers fixed-length motifs, however. Their approach gains its effi-

ciency by first searching for potential motifs amongst a discrete representation of the

subsequences. Quantization is performed by symbolic aggregate approximation [50]

(SAX, see Section 3.3.1 for details). Although the original presentation only worked

with univariate data, SAX can also be applied to multivariate time series by concate-

nating the “words” representing each dimension [38]. This method, along with my

improvement that allows automatic estimation of a motif-specific neighborhood size,

is presented in more detail in Section 3.3.

Tanaka and Uehara generalized the approach of Chiu et al. to work with multi-

variate time series and to allow variable length motifs [88]. Their solution is to apply

a univariate algorithm to the first principal component of the time series. Unfortu-

nately, the first principal component will often not retain enough information about

the original multivariate sequence to allow differentiation between different actions.

Their approach also allows variable-length motifs (called Different Length or DL pat-

terns in the paper). This is achieved by first using SAX to discretize short windows

and then assigning a unique symbol to each SAX string. Although this appears to

work well for the data sets presented in the paper, the number of unique symbols

could grow exponentially in the length of the SAX string. Therefore, further em-

pirical evaluation is needed to ensure that the number of unique symbols remains

manageable for a wider range of data sets and time scales.

More recently, Yankov et al. extend Chiu’s method to handle small variations in

the duration of motif occurrences (though not variable-length motifs per se) by using

a uniform scaling distance metric instead of Euclidean distance [98]. Their approach

uses the same random projection algorithm to identify candidate motifs in univariate

time series but then searches over a small range of similar durations to identify other

motif occurrences. Their method also seeks to reduce the number of user-specified

parameters by estimating some of the parameter values based on a separate, unlabeled

15

training set. Inference from the unlabeled training set is possible within the context

of the nearest-neighbor motif discovery problem, which only seeks to find the k most

similar occurrences, instead of all of the occurrences.

The PERUSE algorithm discovers motifs directly in multivariate time series and

allows both non-linear time warping and variable-length motifs [69]. It uses a model

similar to a left-right HMM with an explicit, Gaussian distribution over the time

between each sample. This additional parameter allows the model to map on to

data that was not uniformly sampled and to skip over shot noise when necessary.

PERUSE discovers motifs by positing a hidden multinomial distribution over all data

frames that specifies the probability that an occurrence of the current motif ends

at that frame. Expectation-maximization (EM) is used to iteratively estimate this

multinomial along with the motif’s model parameters. Impressively, PERUSE was

able to learn many of the repeated words in a speech data set and was also able to

learn “episodes” from robot sensor data. The algorithm was developed for data with a

dense motif structure, an assumption that holds for both the speech and robot sensor

series. However, although the algorithm is potentially applicable to sparse data, it

scales quite poorly due to the initialization procedure and the need to re-estimate the

hidden multinomial at all frames during each iteration. Also, in my experiments, the

EM iterations often found trivial local maxima in which only a single, very accurate

occurrence was found, rather than finding the appropriate set of approximate matches.

Catalano, Armstrong, and Oates focused on a different aspect of the motif discov-

ery problem by developing a streaming discovery algorithm [9]. Their method runs in

linear time relative to the number of sensor readings and only requires a fixed amount

of memory since it does not analyze all of the data at once. To achieve these run-time

properties, the algorithm essentially assumes that the motifs are densely distributed.

Otherwise, a very large memory would be required to detect a motif that only occurs

rarely and after relatively long intervals.

16

Hamid et al. proposed an approach for activity discovery that used variable mem-

ory Markov chains (VMMCs) to detect motifs in event streams [27]. My approach to

finding seed motifs using a globally discretize representation of the time series data

(see Section 3.2.1) shares much in common with this method but also allows time-

warping, though it operates over data at a much lower-level of abstraction compared

to the semantically meaningful events used in the work of Hamid et al. In addition,

Hamid et al. used histograms of event n-grams as a representation to compute event

sequence similarity, whereas my research focuses on multivariate sensor data (or ex-

tracted features) and thus uses direct, numerical measures for similarity. In more

recent work, Hamid et al. improve this representation by using suffix trees to extract

common, variable-length event sequences from which to build a histogram represen-

tation for each activity sequence [25]. This approach leads to more accurate models

compared to the fixed n-grams used previously.

Park and Glass focused on the problem of pattern discovery in the speech do-

main [72, 73, 71]. Their research takes a different approach compared to much of the

other motif discovery work due to their focus on human speech and the subsequent

ability to take advantage of the specific properties of speech signals. In particular, the

researchers pre-segment audio data by removing silent regions detected by analyzing

the log-energy of the audio spectrum. Any segment below a given threshold is con-

sidered silence. The authors show that for typical speech data sets, the result after

silence removal is a large set of relatively short speech segments, generally lasting

between one and 10 seconds. Their algorithm then computes a “segmental dynamic

time warp” between each pair of segments and searches for low distortion regions that

correspond to similar utterances. Each segment that is part of such a pair with low

distortion becomes a node in a graph with weighted edges representing the amount of

distortion. Finally, to discover words and short phrases, a graph clustering algorithm

is applied to the segment graph.

17

The main drawback of Park’s approach is that it relies on the ability to pre-

segment the data. While silence removal is quite reliable for human speech recorded

in a quiet environment, similar heuristics may not exist in other domains. Trying to

develop a domain-general segmentation rule is even more difficult. Even within the

audio domain, other data sets such as music or recordings made in noisy environ-

ments can not be easily split into segments amenable to pair-wise comparisons. The

computational complexity of the algorithm is also a concern since there are either

O(T 2) segments or, if there are fewer segments, the segmental DTW procedure scales

as O(N2) where N is the length of the longest segment.

2.5 Other Forms of Activity Discovery

Other research is able to discover information about a subject’s activity by directly

analyzing descriptive information about the activity or by using other specialized

data. For example, by clustering entries on a calendar or “To Do” list, especially

when temporal regularities are detected from the clusters, a person’s activities can

be easily inferred.

Ashbrook and Starner collect data from GPS devices carried by subjects as they

move through their daily lives [2]. Points are selected based on GPS signal loss,

indicating that the person went inside of a building or some other structure. These

points are clustered to learn “significant locations” using an algorithm similar to

mean shift [14] with a uniform, circular kernel. The significant locations are then

used to learn a Markov model that can be used to predict the user’s future behavior.

The predictive user model allows them to discover activities such as going to the

grocery and to learn that the person will likely return home after finishing at the

store. What differentiates my work from this kind of activity discovery is a relaxation

of required meta-information. Discovery in Ashbrook and Starner’s work is 2D spatial

clustering. What makes it activity discovery is the observation that GPS signal loss

18

indicates entering a building and the inference, made by the researcher rather than

by the system, that activities such as grocery shopping are robustly predicted by

GPS signal loss in the vicinity of a grocery store.

2.6 Additive Component Models

The motifs of a time series can be viewed as components or as a basis set that combine

to generate the time series data. I have assumed that activity primitives are tem-

porally distinct components, and so a simple but sufficient generating process (from

Oates [69]) is to randomly select a motif (or the background / non-motif model),

sample from it to get an occurrence, append the occurrence to the data generated

so far, and then repeat. Researchers focused on other domains have made different

assumptions. For example audio signals are typically additive rather than tempo-

rally distinct, leading to an additive component model. In this domain, Smaragdis

and Raj adopted an additive model for single-channel source discovery and separa-

tion [83, 86]. Similarly, Parry and Essa use repetitive structure in audio signals for

blind source separation [74]. Within the field of neuromotor physiology, researchers

have also adopted an additive component model. For instance, d’Avella and Bizzi

discovered muscle activation components, which they call muscle synergies, by ana-

lyzing activation levels across several electrodes implanted in frogs [17]. They found

that some of these synergies were stable across activities (e.g., walking, hopping, and

swimming) and across different frogs.

2.7 Anomaly Detection

A related form of unsupervised learning from activity data deals with discovering

anomalous behavior. Whereas my goal is to discover those motifs that correspond

to semantically interpretable or otherwise useful recurring components of an activity,

in anomaly detection the goal is to find those events or subsequences that are most

dissimilar, unexpected, or surprising. Typically, this dissimilarity is measured relative

19

to a model built from the current data set or to another data set representing the

same activity but without the anomalies. Note, however, that recurring patterns can

be considered a kind of anomaly in that the similarity between and frequency of the

occurrences are anomalously high [28].

In a representative research paper of anomaly detection within the computer vi-

sion community, Zhong et al. analyze video and automatically detect unusual inter-

vals [100]. They divide the video into equal length intervals and divide each frame into

a grid over which color and motion histograms are computed. Prototypes are learned

over the frames using k-means clustering and then co-occurrence statistics are cal-

culated between intervals and prototypes. Finally, a similarity metric between video

segments is inferred by embedding the prototypes and segments in a low-dimensional

space that preserves the co-occurrence information. Anomalies are then identified as

isolated intervals in this induced space.

Using a different approach, Hamid et al. treat a video sequence as a string of

manually defined and labeled events that are relevant to the activity [26]. An activity

is then modeled as a histogram of n-grams of such events, which would encode global

properties of the local temporal structure. For example, a histogram of trigrams

would capture the relative frequency of all event triplets. Activity instances are then

clustered to find sub-class structure and anomalies are defined as outliers of the closest

sub-class model.

20

CHAPTER III

DISCOVERING ACTIVITY PRIMITIVES

I have investigated multiple approaches to activity discovery in order to compare

the benefits of different methods and to explore various trade-offs between accuracy,

efficiency, and generality. The purpose of this exploration was to use the empirical

evaluations to guide the development of a single algorithm that incorporates and

improves upon the best techniques from existing approaches. In this chapter, I will

describe my approach to motif discovery and discuss several implementations that fit

within this framework.

3.1 Discovery Framework

The central design characteristic of my approach to motif discovery is a split of the

algorithm into two phases. The goal of the first phase is to quickly locate candidate

motif seeds and, equivalently, to efficiently filter out the potentially large number of

subsequences that are not part of any pattern. The second phase serves a complimen-

tary role by performing a detailed analysis of the candidate motif seeds to determine

which are valid and where additional occurrences are located in the data set.

Many discovery algorithms can be understood in terms of this two-part frame-

work, including several algorithms that were not originally presented in this way. For

instance, Oates’ PERUSE algorithm [69] does not include an explicit filtering phase,

although in practice one typically samples the potential motif locations to find the

next pattern. This sampling serves the same purpose as a filter, but it does not

depend on the data and so is unlikely to be particularly efficient.

Viewing existing algorithms in terms of this two-phase framework can make it

easier to combine algorithmic components from different approaches to form improved

21

algorithms. In this chapter, I discuss four different complete, published algorithms [57,

10, 59, 58] and then present an improved algorithm that combines components from

the first four. An empirical evaluation of all of the algorithms on several different

data sets is presented in the following chapter.

3.1.1 Phase 1: Efficient Pattern Filtering

In the initial stage of pattern discovery, the goal is to filter out regions of the time

series data that are not part of any pattern. In particular, the algorithm must be very

efficient since it is analyzing the entire data set, but it need not be extremely accurate.

In particular, to be successful the algorithm only needs to retain two occurrences of

each pattern whereas maintaining non-pattern regions reduces efficiency but will not

cause the overall algorithm to fail. That is, false negatives are acceptable as long as

enough occurrences are kept to allow model learning in the second phase, and false

positives only decrease efficiency not accuracy.

I have investigated three different methods for pattern filtering, which are briefly

described here and explained and evaluated in detail within the context of the full

algorithm.

1. Global Discretization & Suffix Trees – In this approach, the real-valued,

multivariate time series data is discretized so that each sequence becomes a

string composed of symbols from a small alphabet. This representation provides

dimensionality reduction by converting a multivariate sequence to a univariate

sequence. More importantly, the discretization provides a simple, unequivocal

measure of similarity. The suffix tree [24] data structure, along with a linear-

time construction algorithm [90], exploits this direct measure of equivalence.

Variable-length recurring patterns can then be detected in the suffix tree with

a simple, linear traversal.

22

2. Local Discretization & Random Projection – Local discretization meth-

ods take into account the surrounding values in the real-valued signal when

converting a particular reading into a discrete symbol. Instead of transforming

each time series into a single string, these methods discretize overlapping sub-

sequences extracted by a sliding window and thus create it words that can be

arranged in a matrix of symbols that represents the original data (see Figure 10).

Global discretization leads to a representation that allows very efficient, direct

detection of variable-length patterns using suffix trees. Local methods are re-

stricted due to the fixed length window used to construct each word but have

the advantage of more sensitive symbols due to the contextual interpretation.

In addition, random projection algorithms can be used to detect approximate

patterns in linear time whereas the suffix tree approach is restricted to exact

matches or simple warpings.

3. Density-based Detection – The third approach for pattern filtering that I

have investigated does not require any discretization of the time series data to

achieve efficient performance. It is based on the observation that since motifs

are sets of similar subsequences, well-supported motifs in a particular data set

will have many occurrences that are all very close together. The combined effect

of set size and compactness is captured directly by the concept of subsequence

density. Thus, the density-based detection method estimates the density around

each subsequence using a k-nearest neighbor approximation and provides can-

didate patterns by selecting those subsequence that lie at local density maxima.

3.1.2 Phase 2: Pattern Modeling and Occurrence Detection

Along with the different approaches to pattern filtering, I investigated two pattern

models and corresponding detection methods. The requirements for successful algo-

rithms in this phase are complimentary to those of the earlier filter. Here, the system

23

must learn a model for each candidate pattern, select the valid patterns, and detect

all of the occurrences in the data set. Because the output of this phase constitutes

the final decision of the overall algorithm, the results must be as accurate as possible.

Thus, emphasis is placed on minimizing errors rather than minimizing execution time,

although the system is still bound by our design goal of sub-quadratic complexity.

1. Hypersphere Model – The hypersphere model is a prototype-based model

for motifs. It provides a measure of confidence that a specific subsequence is

a member of the pattern based on the distance between the subsequence and

the central prototype (or to a small set of prototypes). Subsequences that are

farther from the protoype(s) are less likely to be valid members, and typically

a hard decision is made based on a distance threshold [10, 89, 59].

2. Probabilistic Temporal Model – An alternative approach for modeling pat-

terns is to use a probabilistic temporal model. In the case of generative models

like an HMM, the model induces a probability distribution over all possible

subsequences. To detect occurrences, one can threshold this probability or can

estimate a model for each potential pattern and simultaneously fit all of the

models to the data according to some objective such as maximum likelihood.

The primary benefit of the latter approach is that the precise temporal bound-

aries of the occurrences are determined by the models within a competitive

framework rather than being pre-specified.

An alternative to learning a generative model for each pattern is to estimate a

discriminative model or some other time series classification system. In general,

discriminative approaches can be more flexible than their generative counter-

parts, and thus are likely to lead to more accurate decision boundaries for valid

occurrences. However, the severe lack of training data and difficulty of applying

such classifiers en masse limits their practical applicability for discovery.

24

3.2 Discovery Using Global Discretization

This approach to activity discovery seeks to combine the efficiency benefits of search-

ing globally quantized time series with the modeling abilities of HMMs learned over

the raw, real-valued data [57]. The algorithm follows the two-phased architecture

described previously but also adds intermediate processing that refines the candidate

motifs before the HMMs are learned (see Figure 2 for a diagrammatic overview). In

the first phase, it generates a discrete representation of the data, builds a compact tree

structure that allows efficient searches, and then identifies a set of seed motifs. The

seed motifs are selected in a greedy fashion by first removing the occurrences of the

best motif and then iterating until the next best motif fails to meet an information-

theoretic criterion described in Section 3.2.1. The seed motifs are then refined using

information from the continuous time series (Section 3.2.2), and, finally, a HMM is

trained for each seed motif and used to detect the corresponding occurrences via a

modified Viterbi alignment procedure (Section 3.2.3).

3.2.1 Identifying Seed Motifs

In the initial phase of the approach, the multivariate data is discretized such that

each time series is transformed into a string. In all of the experiments presented here,

the discretization is performed by fitting a mixture of Gaussian distributions to the

data set comprised of all of the time series frames. The mixture model is learned

using standard methods: first the k-means algorithm is used to find reasonable initial

parameters, and then EM is used to refine the model parameters in order to maximize

the data likelihood. The data used to learn the mixture model is simply the set of

samples that make up the time series data. Thus, if the original data set consists

of eight time series with an average of 1,000 frames per sequence, then the mixture

model is fit to a data set of 8,000 points.

After estimating the mixture model parameters, each component is assigned a

25

Figure 2: Overview of the global discretization discovery algorithm

unique symbol, and each frame of the time series is replaced with the symbol cor-

responding to the closest component. In the previous example, the result would be

eight strings with an average of 1,000 symbols per string. Note that discretization

methods other than fitting a Gaussian mixture model can also be used.

Once each time series is discretized, the resulting strings are used to build a

generalized suffix tree. A suffix tree is a tree structure that holds all of the suffixes

of a string in linear space [24] (see Figure 3). As an example, if the string ABABC is

used as input, then the suffix tree will hold the strings ABABC, BABC, ABC, BC, and C.

Importantly, every subsequence of the original string is the prefix of a suffix, and so

every subsequence is stored in the suffix tree starting at the root node. For instance,

in the ABABC example, the subsequence BAB is the prefix of the suffix BABC.

Ukkonen devised a conceptually simple algorithm to build a suffix tree for a sin-

gle string in linear time [90]. His work was later extended to include linear time

construction of generalized suffix trees which store multiple strings within a single

tree [24]. Generalized suffix trees and the linear time construction algorithm provide

a method to efficiently represent all of the quantized data and then to rapidly search

it for common subsequences.

To identify potential motifs, each unique subsequence with a user-specified length

26

Figure 3: Suffix tree for the string ABABC. The left diagram shows explicitly labeled
edges for clarity, while the diagram on the right shows how string indices are used
to ensure linear space complexity. In the tree, every subsequence of the input strings
is represented as a (possibly partial) path from root to node. The leaf nodes are
annotated with the index in the original string of the corresponding suffix. Internal
nodes hold a count of their children to allow efficient subsequence tallies.

is used as a query to find all other subsequences, of any length, that are equiva-

lent after appropriate dynamic time warping. In the original implementation [57],

this search was efficiently performed by a depth-limited traversal of the suffix tree.

This search can be performed more efficiently, however, by pre-scaling each string

to combine contiguous, repeated symbols. Then, once the suffix tree is built from

the pre-scaled strings, the algorithm only needs to search for exact matches, which

is much faster. In both cases, the result of the suffix tree search is a set of potential

motifs along with a list of occurrences. Note that the algorithm can detect pattern

occurrences with durations that differ from the precise value specified for the query

length, but this value does restrict the temporal scale of the motifs that are likely to be

found. This flexibility is due to the time-warping and temporal extension refinement

steps (described in Section 3.2.2), but it is still highly unlikely that the algorithm

will find a pattern with a drastically different duration (e.g., a five minute long motif

when the query length is only three seconds).

In order to rank the potential motifs and determine when to stop searching, each

27

motif is scored according to an information-theoretic criterion. The criterion com-

putes the change in description length of the original data sequence if the motif were

encoded separately and every occurrence were replaced with a new symbol. This

criterion serves to balance the number of occurrences of a particular motif with the

complexity of each occurrence, which is necessary for two reasons. First, the motifs

found should be maximal, which means that they should be as long as possible while

maintaining intra-motif similarity. Second, in general, neither very long, complex, but

rare motifs nor short, simple, and frequent motifs are particularly interesting. The

criterion balances these two extremes. It arises directly from the work of Tanaka and

Uehara [88] in this context, though using such minimum description length (MDL)

criteria for knowledge discovery tasks has been used in many contexts before (e.g.,

[27, 41, 1]).

The MDL criterion balances occurrence frequency with motif complexity and rep-

resents the number of bits needed to encode the motif plus the number of bits needed

to mark each occurrence. The expression for the criterion is:

M · log2(qm) + n · log2(qs + 1)

where M is the total number of frames in all occurrences (i.e., the total length of

all occurrences), qm is the number of unique symbols in the motif, n is the number of

occurrences, and qs is the total number of unique symbols in the quantized data. As

an example, consider a string over the alphabet {ABCDE} and the motif ABC with the

four occurrences ABBC, AABC, ABBCC, and ABCCC. In this case, M = 18, qm = 3, n = 4,

and qs = 5. This leads to a description length of 18 · log2(3)+4 · log2(5+1) = 38.8692.

The motif with the largest score (implying the largest reduction in total description

length) is selected as the most reliable and is added to the list of seed motifs. If this

score is too small, however, seed motif discovery terminates. Otherwise, the process

iterates in a greedy fashion to find the next best motif. The description length

28

threshold used to decide when to terminate is a user-specified parameter.

3.2.2 Seed Motif Refinement

Once the full set of seed motifs are identified, they are refined to account for errors

introduced by the quantization and by the user-specified query length. Four different

kinds of refinement are performed: splitting, merging, affix detection, and temporal

extension.

The split refinement step accounts for motifs that appear similar in the quantized

data, but are clearly different when viewed in the continuous domain. For each

motif, the occurrences are analyzed with agglomerative clustering using the farthest-

neighbor rule. This linking rule compares the similarity of two sub-clusters and

computes the distance between the farthest pair of members [20]. Then, the two

sub-clusters that have the smallest farthest-neighbors are merged. This rule tends to

generate more compact clusters compared to the nearest-neighbor or mean-distance

rules. The result of agglomerative clustering is a binary tree of merges where each

node represents a (sub)set of members. Leaf nodes represent individual members,

while the root node corresponds to the entire set. The full merge tree can be visualized

with a dendrogram (e.g., see Figures 4 and 5).

For split refinement, the dendrogram is tested to see if it supports splitting the

set into two new clusters. The test is performed by comparing the last merge (which

takes the system from two down to one cluster, call it dm) and the second to last

merge (from three down to two clusters, dm−1). If the corresponding distances are

sufficiently large, then it means that the two clusters are very different, and so a

split is performed (see Figures 4 and 5). This determination is made by comparing

the proportion of the last two merges, dm−1/dm, to a user-specified ratio. If this

proportion is larger than the threshold, then the split proceeds.

After all motifs have been tested for splitting, the resulting set then undergoes

29

Figure 4: A dendrogram showing a motif that should be split (compare to Figure 5).
A dendrogram represents the results of clustering by showing each item along the
bottom and drawing a horizontal line for each merge (equivalently, for each split if
the clustering is performed top-down). The distance between clusters increases as
you move up the diagram, so merges near the bottom are typically more confident.
Similarly, large vertical gaps between successive merges tend to indicate a natural
partitioning.

merge refinement. This step addresses a common problem with quantized data that

occurs when data exists very close to a quantization boundary. In this case, two

values that are similar in the continuous domain may be assigned different symbols.

As a simple, one dimensional example, consider the values 0.99 and 1.01 with a quan-

tization boundary at 1.0. The two values will be assigned different symbols, even

though they are quite close in the continuous space. Merging resolves such problems

by combining clusters based on their similarity in the continuous domain. Like split-

ting, merging proceeds via agglomerative clustering, but this time the clustering is

performed over the seed motifs rather than within their occurrences. As in the split-

ting case, two seed motifs are merged if the are very similar relative to a user-specified

threshold.

Next, affix detection looks for pairs of seed motifs in which the occurrences of one

30

Figure 5: A dendrogram showing a motif that should not be split. Note how the
final merge accounts for a relatively small amount of the total distance (compare to
Figure 4).

motif always closely follow the occurrence of another. This can occur if the user-

specified query length is short relative to the actual motif length. In such cases, a

single motif can be identified multiple times, each time corresponding to a different

portion of the full motif. For instance if the system is analyzing audio data and a

duration of 250ms is used, the algorithm may detect the first syllable of “seven” (i.e.,

“sev”) separately from the second (“en”). These multiple detections are considered

incorrect since maximal motifs are desired. The affix detection refinement step seeks

to locate these cases and then fixes them by extending one motif to include the other.

The final refinement step deals with temporal extension. This is the primary

method used by the algorithm to adapt the motif length to fit the data when the

user-specified query length is too small. For each seed motif, the parameters of a

left-right HMM are estimated from the motif occurrences, and the set of variances in

the observation distributions are extracted. The variance of the frame that precedes

each occurrence is then compared to the mean of this set, and if it is comparable (or

31

Figure 6: A dendrogram showing the results of motif clustering. Two motif pairs
should be merged (Motifs 4 & 5 and 6 & 7).

smaller), the motif is extended to include the preceding frame. An identical procedure

attempts to extend the motif forward in time, and in both cases, temporal extension

continues until the variance of the next frame is too large or until the next frame is

part of another motif.

3.2.3 Motif Modeling and Occurrence Detection

The final phase of the algorithm builds a probabilistic temporal model for each of

the refined seed motifs, and then uses the models to detect all of the occurrences

in the original time series. Left-right HMMs are used due to their history of good

performance for speech and gesture recognition (e.g., [87, 78]) and because a simple

modification of the Viterbi alignment algorithm provides an efficient motif detection

method.

The approach taken in this phase is to iteratively find the as yet undetected

subsequence with the highest probability given the set of motif models. There are

O(T 2) subsequences, where T is the length of the longest time series, which means that

the näıve approach of scoring each subsequence relative to each model is impractical

even for medium-length data sets. We can adapt the Viterbi alignment algorithm,

32

Figure 7: By modifying the standard Viterbi alignment algorithm, we can find
the best subsequence in linear time. k∗ is the optimal subsequence length, which is
found by tracing backward along “parent pointers” exactly as in the standard Viterbi
algorithm.

however, to compute all of the needed probabilities with a single pass over the data,

rather than with a single pass over each of the O(T 2) subsequences.

The Viterbi alignment algorithm builds a trellis that stores the probability that

each frame of data was generated in a particular state of the model assuming that

the model explains all of the data starting with the first frame. In a trellis build

for a left-right model, the top row gives the probability for the first state, while

the bottom row gives the probability of the last state. Each column represents one

frame of data. Typically, only the first column is initialized and then a dynamic

programming algorithm is used to compute the probabilities in the rest of the trellis.

In my approach, however, we fill in the first row as well as the first column, initializing

each of the nodes along the top row as if the model started in the current frame (i.e.,

b1(Ot) rather than δt−1(1) · a11 · b1(Ot))
1. The rest of the trellis is then computed

using the standard method, but now the bottom row corresponds to the probability

of being in the end state given that we started at any previous frame, rather than the

first frame specifically. By scanning the bottom for a maximum, the end of the high

probability subsequence can be detected in linear time.

1I adopt the notation of [79]: bi(Ot) is the probability of the tth observation in the ith state. δt(i)
is the probability of being in the ith state at time t given the observations up to that time. Finally,
aij is the transition probability from state i to state j.

33

To find the first frame of the detected subsequence, one must simply trace back-

ward from the last frame by following the “parent pointers” just as in the standard

Viterbi algorithm [79]. This procedure is possible because the trellis is annotated by

the dynamic programming algorithm that computes the internal probabilities of the

trellis after the first column, as well as the top row in the modified version, has been

initialized. For each trellis node corresponding to state j and observation frame t,

the recursive equation δt(j) = [max
i

δt−1aij] · bj(Ot) is computed. The value of i that

maximizes δt−1aij for each node gives the index of the parent node which precedes

the current node on the optimal path. By recording this value, it is possible to trace

backward from the most likely end state to recover the optimal path.

This optimization works for two reasons. First, the use of a left-right topology

ensures that any match starts with the first state (the top row of the trellis) and ends

in the last state (the bottom row). Second, each model is constructed such that the

transition probability from the first to the second state is equal to one (a12 = 1.0),

while all other transitions from the first state are zero (a1i = 0.0, ∀i : i 6= 2).

The procedure of initializing each trellis node along the top row to b1(Ot) makes

sense given this transition constraint, since it ensures that the probability of being

in state 1 at time t is based solely on the observation distribution for that state,

and not on any self-transitions from the first state to itself. Similarly, the first state

can not be reached from any other state since the left-right topology requires that

aij = 0, ∀i : i < j.

Given the above procedure, the motif occurrences can be enumerated in descending

order of likelihood. At each iteration, the modified Viterbi algorithm is executed for

each model, and the maximum end state probability is stored. The full occurrence

location can be recovered given the end location and parent node annotations. Then,

that segment is removed from the search region and the modified Viterbi algorithm

is used to recompute the state probabilities for the regions that remain after the

34

detected occurrence is removed (note that the values do not need to be recomputed

for the other time series since those sequences will not be affected by the detected

segment).

All that remains is to determine when the next best occurrence is not a valid

occurrence. Two criteria are used to make this determination. The first is to simply

check the length of the next best occurrence and compare it to the user-specified query

length. If it is too small relative to a user-specified minimum, then it is assumed to be

invalid and the search for valid occurrences is ended. The second criterion compares

the likelihood of the next best occurrence to the distribution of likelihoods of the seed

occurrences used for training. Specifically, each occurrence is given a score equal to

(1+e−(`−µ)/σ)−1, where ` is the likelihood of the occurrence and µ and σ are the mean

and standard deviation of the likelihoods of the seed occurrences. Thus, the scoring

function is a sigmoid normalized by the standard deviation of the seed likelihoods,

which allows a single stopping threshold to be applied to all of the motifs.

3.3 Discovery Using Local Discretization

Whereas global discretization methods convert each real-valued time series into a

single string, local methods operate over relatively short windows. These windows

may overlap and are individually normalized, which typically leads to the assignment

of different symbols for the same frame when it is analyzed in the context of different

windows. The benefit of local methods is that they can be more robust to noisy data,

are typically more efficient to compute, and are more easily applied to streaming data

since they do not require that all of the data be processed in batch. The remainder

of this section describes an existing method that uses local discretization and then

introduces my enhancement that improves modeling flexibility and often improves

overall motif accuracy by automatically estimating a difficult to specify parameter

that governs motif occurrence detection.

35

Figure 8: Three consecutive subsequences of length w from a 1D time series. The
three subsequences are all very similar but are considered trivial matches since they
overlap.

3.3.1 Local Discretization and Random Projection

This approach to activity discovery builds on the work of Chiu et al. [10]. Chiu’s

algorithm works as follows:

1. Extract all subsequences of a given length n from the time series using a sliding

window (see Figure 8).

2. Convert each subsequence to a symbolic word using SAX with length w and with

a unique symbols.

3. Build a collision matrix by comparing the strings via several iterations of random

projection.

4. Select motif seeds as the two subsequences corresponding to the largest entry in

the collision matrix.

5. Extract motifs by detecting other windows in the neighborhood of each seed. The

neighborhood is defined as the space within a fixed distance R of either seed.

Subsequence Discretization: Each subsequence of the data is discretized using

the SAX method developed by Lin et al. [50]. SAX is a local quantization method

36

Figure 9: A real-valued, 1D signal is converted into a SAX string (edacb) using five
PAA segments (bounded by the vertical dotted lines) and five SAX symbols.

that first computes a piecewise aggregate approximation (PAA) [35] of the normal-

ized window data and then converts each PAA segment into a symbol. Normalization

ensures that the subsequence has zero mean and unit variance. The PAA algorithm

represents a sequence by dividing it into equal length temporal segments and then

storing the mean within each segment. The final SAX quantization is based on pre-

computed breakpoints that divide the data range into equiprobable regions assuming

an underlying standard normal distribution. Each PAA segment is represented by

the symbol of the corresponding bin (see Figure 9).

Building the Collision Matrix: Once each subsequence has been converted to a

SAX string, the similarity between each pair is efficiently estimated using the random

projection method introduced by Buhler and Tompa [8]. The key insight is that while

direct comparison is infeasible since there are O(T 2) pairs of fixed-length subsequences

given T strings, similar sequences can be identified in O(I ·T) time using I iterations of

random projection (see Figure 11). Each iteration involves selecting a random subset

of the string positions and building a hash table with the corresponding characters.

After all strings are hashed, collisions (equivalent projections from different strings)

are taken as evidence of similarity and the corresponding positions in a collision

matrix are incremented.

37

Figure 10: Depiction of the results of local discretization using four symbols when
applied to a univariate signal. In general, the sliding window can have more or less
overlap and can be applied to multivariate time series.

Using random projection to estimate similarity has several important properties.

First, it is effective in the presence of shot noise. Even if some of the symbols are dras-

tically different, when random projection does not select these positions, the string

will still appear similar. Second, although the collision matrix could require O(T 2)

time and space in the worst case, realistic data sets typically produce a linear num-

ber of non-zero entries leading to linear time and space requirements when a sparse

matrix is used. Furthermore, the complexity can be controlled online by dynamically

adapting the parameters used for the discretization (the alphabet size and number of

PAA bins) and for random projection (dimensionality of the subspace) [38].

Selecting Seed Motif Occurrences: Once the collision matrix is built, seed motif

occurrences are extracted by locating the maximal entries in the matrix. Each entry

corresponds to a pair of subsequences that can be used as seeds to find the other

occurrences of the motif. Some restrictions are placed on the seed pair: (1) the

distance between the seeds must be less than R, (2) they must not temporally overlap

38

Figure 11: (a) For each iteration of random projection, a subset of string positions
are selected (here, positions one and three). (b,c) The remaining symbols are hashed,
and (d) equivalent projections are tallied in a collision matrix.

previously identified occurrences, and (3) they must not overlap each other, which

can lead to a trivial match and potentially to meaningless patterns [37] (see Figure 8).

Locating Additional Motif Occurrences: The final step of the discovery al-

gorithm is to locate all other occurrences of the motif identified by the seed loca-

tions. This is achieved by scanning the original subsequences and selecting those

within the neighborhood of the seeds (i.e., min(d(wi, seed1), d(wi, seed2)) ≤ R, where

wi : i ∈ {1..T} represents each of the original subsequences).

Table 1: User-Specified Parameters for Chiu’s Algorithm

Symbol Description
n window length
w number of PAA segments (string length)
a SAX alphabet size
R radius of motif neighborhood

39

Discussion: Chiu’s approach works very well despite the assumption that all mo-

tifs and all motif occurrences have the same length. It is, however, quite sensitive

to the various user-specified parameters summarized in Table 1. In particular, the

neighborhood radius, R, is vital for accurate motif discovery, yet it is very difficult to

specify since it depends on the domain, the distance metric, the motif length, and the

features selected for processing. However, if good parameter values can be specified,

the algorithm is extremely fast due to the simplicity of each step. For example, dur-

ing experimentation, this algorithm would often finish detecting all of the motifs and

the corresponding occurrences before the global discretization approach had finished

estimating the parameters of the Gaussian mixture model used for quantization.

Occurrence detection using the hypersphere model as is used by this algorithm is

relatively straightforward because it is only a linear time operation once the models

are specified. However, the problem of multiple detections must still be addressed.

This problem arises because the subsequences that overlap a valid occurrence are

typically quite similar and thus are likely to also be within the neighborhood of the

corresponding motif. The issue is similar to that of trivial matches for unsuper-

vised analysis but is much more well known due to the long history of research into

supervised modeling and detection in temporal and spatial domains. A standard

solution is to perform non-maxima suppression, which applies a post-process to the

detected occurrences and removes any that are not considered to be the best matches

within a local area. In the context of pattern discovery using a hypersphere model,

non-maxima suppression requires the detection of overlapping occurrences and the

removal of the one that is farther from the pattern’s seeds.

This approach to non-maxima suppression can lead to issues when there are mul-

tiple, overlapping occurrences. The problem arises because the algorithm is greedy

and local, whereas the desired objective function is a more complicated combination

40

of occurrence quality as well as frequency. The MDL criterion used by the suffix tree-

based algorithm presented previously, for instance, is an attempt to capture this more

complex objective function, as is the use of density in the discretization-free approach

described in the next section. Furthermore, the more complete analysis required to

avoid the problems associated with a greedy selection process is intractable. In light

of this problem, and due to some experimentation that demonstrated that the overall

effect on accuracy was minimal, the implementation used to generate the results in

Chapter 4 uses a simple linear scan to detect occurrences. Whenever a subsequence is

encountered that is within the neighborhood of the current pattern, that subsequence

is marked as an occurrence and the search continues after the end of the subsequence.

Chiu et al.’s motif discovery algorithm was developed in part as a response to

his co-authors’ research concerning trivial matches and the issues that they cause for

subsequence clustering [37]. Their definition of a trivial match is any subsequence

that is less than R units from the base subsequence and for which there is no inter-

vening subsequence that is more than R units away. More formally, a subsequence

wj is a trivial match of a base subsequence wi iff: d(wi, wj) ≤ R & @k : |i − k| <

|j − k| & d(wi, wk) > R. The requirement adopted in this work, namely that mo-

tif occurrences can not temporally overlap, effectively addresses the issue of trivial

matches but is somewhat more restrictive than the original definition.

3.3.2 Automatic Neighborhood Estimation

The primary restriction of the pattern discovery algorithm developed by Chiu et al. is

the assumption of a fixed, user-specified neighborhood radius. The fact that the radius

is user-specified adds to the knowledge burden on the user, but it is the assumption

that all motifs have the same neighborhood size that is most restrictive (see Figure 12).

In order to address this issue, I developed an algorithm for automatically estimating

the neighborhood radius for each pattern independently by analyzing the potential

41

Figure 12: A single neighborhood radius may not be able to capture the extent of
different patterns (left). When the radius is allowed to vary, however, each pattern can
adapt to more accurately separate valid occurrences from other subsequence (right).

occurrences given the seed instances of each motif.

Because the radius is not used during the local discretization and random pro-

jection phase, that part of the algorithm proceeds as usual. Once a pair of motif

seeds has been selected, the distance from each subsequence to the closer of the two

seeds is computed using the original, real-valued data. Next, the smallest portion of

the distances are selected for further analysis (note that such order statistics can be

found in linear time using partitioning methods [16]). In the experiments presented

in Chapter 4, the smallest 10% are used based on the assumption that 10% is a very

loose upper bound on the number of motif occurrences. The empirical results show

that the precise size of the portion only has a minor impact on the final estimate (see

Figure 32).

Finally, to determine the appropriate neighborhood radius, the algorithm sorts

the distances and seeks a “knee in the curve.” The knee corresponds to the change

from distances within the motif to those outside, which corresponds to an inflection

point of the curve. Inflection points can only occur at a zero crossing of the second

derivative, which is also an optimum of the first derivative. Thus, estimating the

radius is equivalent to finding the maximum of the derivative (see Figure 13), and

42

Figure 13: The radius of each motif neighborhood is estimated from the distance
between each potential member and the motif seeds (left). It is equated with the
inflection point, which is estimated by the weighted mean of the derivative of the
distances (center). The result is automatic motif-specific neighborhood sizes (right).

because we can directly compute the discrete first derivative, no assumptions about

the parametric form of the distance curve are necessary.

The inherent undersampling of the true distribution of motif occurrences causes

the observed distances to be quite noisy. Therefore, the maximum is estimated as the

weighted mean of the derivative. This procedure is summarized below:

1. Calculate the minimum distance from each subsequence, wi : i ∈ {1..T}, to a motif

seed:

di = min(d(wi, seed1), d(wi, seed2))

2. Compute, vk, the kth order statistic for k = T
10

3. Select the k smallest distances: di : di ≤ vk

4. Sort the distances in ascending order

5. Calculate the discrete first derivative: d′i = di+1 − di

6. Treat the derivative as weighted votes for the best radius and compute the expected

value:

E(i) = (
∑

i d
′
i · (i + 1

2
))/(

∑
i d

′
i)

43

Figure 14: The density-based algorithm tries to locate high density regions by
finding those data points with the nearest kth-nearest neighbor.

The inclusion of this algorithm to automatically estimate the neighborhood radius

for each motif is the primary difference relative to the original method of Chiu et al.

3.4 Density-based Discovery without Discretization

The third approach to motif discovery that I have designed and evaluated avoids

discretizing the time series data yet maintains an expected run time that is sub-

quadratic in the number of data points [58]. This method frames the motif discovery

problem as one of locating high-density regions in the space of all subsequences. Since

motifs are sets of subsequences with high intra-motif similarity, the specific meaning

of “high intra-motif similarity” can be contextually defined by equating it with regions

of high density relative to a particular data set. Density captures two key aspects of

a motif: high similarity (i.e., multiple subsequences within a small volume of space)

and high frequency (i.e., many occurrences within that region).

3.4.1 Efficiently Locating Density Modes

One of the most efficient and robust methods for locating density modes (local max-

ima of the density surface) is the mean shift procedure, especially when the approach

is accelerated using dual-tree methods [14, 93]. This non-parametric algorithm itera-

tively locates modes by computing a vector aligned with the local gradient and then

44

updating the mode estimate. This update is performed efficiently by noting that the

mean of local data points, weighted by an appropriate kernel, points in the direction

of the local gradient. The mean shift procedure was used by Denton to find density

modes in fixed-length, univariate time series subsequences [18]. One drawback of this

method, however, is that the bandwidth of the weight kernel must be estimated from

the data to find a single satisfactory bandwidth or to estimate a data-adaptive band-

width that varies over the data points [81, 15]. In either case, this is a computationally

intensive task.

In our discovery algorithm, we use a computationally simpler method that approx-

imates the local density by using the distance to the kth-nearest neighbor [54, 85].

For a given value of k, a smaller distance implies a higher density since the same

number of points lie within a smaller volume of space (see Figure 14). After esti-

mating the density at each point, we keep only the local maxima, which we define

as those subsequences that have higher density than all of their k-nearest neighbors

(see Figure 15). Although a näıve implementation of all-points k-nearest neighbor

search requires O(n2) distance calculations, numerous methods have been proposed

for building spatial indexes that reduce this to O(n log n) and dual-tree and approx-

imate methods typically provide even better performance [39, 53, 23].

3.4.2 Greedy Mixture Learning for Motif Selection

While the density-based procedure will identify candidate motifs seeds, it will neither

detect all of the occurrences of each motif nor will it reliably select an accurate set of

motifs. Incomplete motifs arise because there may be motif occurrences beyond the

local maxima and its k-nearest neighbors. Our approach addresses these problems

by learning a hidden Markov model from each candidate motif (i.e., a local density

maxima and its k-nearest neighbors) and letting the motif models compete to explain

the time series data.

45

Figure 15: After computing the k-nearest neighbors for each subsequence and es-
timating the surrounding density, only those subsequence that are local maxima are
kept as candidate motif seeds.

Although traditional parameter estimation methods for HMMs, such as the Baum-

Welch algorithm, typically fail when applied to so few training examples, a simple con-

struction algorithm is sufficient to capture the characteristics of each motif. Deficien-

cies in the resulting model are countered by the competitive continuous recognition

framework and by full parameter re-estimation using all identified motif occurrences

after all motifs have been identified.

The HMM construction algorithm builds a model with a left-right state topology.

The number of states is set to half of the number of frames in each subsequence (this

value is specified by the user as the subsequence length), and each training sequence

is divided into equal-length, overlapping segments which are used to estimate the

parameters for the Gaussian observation distribution for each state (see Figure 18).

This procedure avoids segment boundary aliasing through redundant, overlapping

states, and allows the model to adapt to motif occurrences with different lengths due

to the state self-transitions and “skip” transitions.

46

Figure 16: A hierarchical HMM can be used to learn the parameters of the motif
models [68] but leads to a difficult optimization problem with many local minima.

Figure 17: In a greedy mixture learning framework, models are added incrementally.
While this approach leads to multiple learning problems, each problem is much simpler
than in the full hierarchical model case. [5, 58]

In traditional applications, mixture components jointly explain the data by sharing

responsibility for each data point (i.e., p(x) =
∑N

i=1 wi p(x|θi), where θi represents

the parameters of the ith component and wi is the weight given to that component

constrained by
∑N

i=1 wi = 1). The learning problem is to estimate the parameters, θi,

and the weights, wi that maximize the total data likelihood. In the general case, the

learning problem also includes estimation of the number of components in the mixture,

typically using a Bayesian framework or some other model complexity penalty to

prevent the trivial maximum-likelihood solution of having one mixture component

47

Figure 18: Illustration of HMM construction. Each sequence in the training set is
divided into equal-sized, overlapping segments from which the Gaussian observation
distribution of each state is estimated. Self-transitions for each state (not shown)
allow the model to adapt to long occurrences, while the skip states allow it to map
to shorter occurrences.

per data point.

In the context of pattern discovery, as posed here, motif occurrences do not overlap

temporally, and so only one mixture component is used to explain each frame of data.

The set of components must then jointly explain the full data set by accounting for

different temporal data segments. The pattern recognition community has developed

efficient algorithms for solving such problems, principally for the purpose of contin-

uous speech recognition [99]. In typical speech systems, each word is modeled by a

HMM (commonly this is a composite model built from HMMs representing the rele-

vant phonemes) and then each utterance is recognized by finding the mapping from

word HMMs to the speech signal that maximizes the log-likelihood of the utterance

given the set of models [29, 78]. In our algorithm, HMMs constructed from motif

seeds (i.e., a local maximum in density space along with its k-nearest neighbors) take

the place of the word models.

In this approach, the motif candidates compete within a greedy mixture learning

framework [5, 91]. The mixture is comprised of different motif models that jointly

explain the entire time series data set, and which iteratively grows as additional

motifs are discovered. The mixture is initialized with a single HMM that represents

the “background” model by capturing global statistics of the data. The background

model used in all of the experiments presented here is a one state HMM with a three

48

component Gaussian mixture model as its observation distribution. The parameters

of the Gaussian mixture model are estimated from all of the frames from the time

series data and then the variance is artificially inflated by a factor of three to avoid

interfering with the motif models. This model is similar to other robust maximum-

likelihood approaches in that the high variance background model assigns a small but

non-negligible probability to all data points, thus allowing the real model to ignore

outliers [12, 62].

Candidate motifs are greedily selected by measuring the information gain corre-

sponding to adding each candidate motif model to the mixture. The information gain

is calculated as the difference between the conditional log-likelihood of the time series

data when the candidate model is included and when it is left out of the mixture.

After each iteration, the motif that provides the largest information gain is selected

and permanently added to the mixture.

The benefits of using a HMM-based continuous recognition system for motif oc-

currence detection are numerous. First we do not need to directly estimate the motif

neighborhood size as was required by previous methods (e.g., [10, 59, 89]). Second,

the motif models are free to shrink or stretch to account for non-linear time warping

and variable length motif occurrences in the data, whereas the existing approaches

are restricted to fixed-length subsequences. Third, the fitting procedure locates all

of the motif occurrences given the models and also simplifies the process of pruning

redundant or spurious motif seeds. The pruning is possible because redundant motifs

will lead to low information gain due to a previous motif already providing a good

model for the relevant data segments, while spurious motifs simply will not map to

many segments. Finally, because all of the frames of the time series are explained

by either a motif model or the background model, there is no bias toward short oc-

currences. This bias often arises in systems which identify motif occurrences using

maximum likelihood and do not model the non-motif data frames as was the case in

49

Algorithm 1 Density-based Motif Discovery

Input: Time series data (S), subsequence length (w), number of nearest neighbors to use
(k), distance measure

Output: Set of discovered motifs including motif models and occurrence locations

1. Collect all subsequences, Si of length w from the input data S

2. Locate the k-nearest neighbors for each subsequence: knn(Si) = Si,1..k

3. Estimate the density for each subsequence: den(Si) ∝ 1/dist(Si, Si,k)

4. Identify local maxima according to density: maxima(Si) = Si :
∀Si,j den(Si) > den(Si,j)

5. Initialize the set of motif HMMs with a single background model: H = {bg}

6. For each motif seed in maxima(Si):

(a) Construct seedi, a HMM learned from the ith density maxima and its
k-nearest neighbors

(b) Fit the existing models plus the seed model (H ∪ seedi) to the time
series data

7. Greedily select the best motif seed:
m = arg max

i
log p(S|H ∪ seedi)

8. Test for stopping criteria for H ∪ seedm; if test fails set H = H ∪ seedm and
goto Step 6

9. Re-estimate motif models in H and return H/{bg}

the global discretization algorithm presented in Section 3.2.

Algorithm 1 gives an overview of the density-based approach to motif discovery.

Steps 1 through 4 locate potential pattern occurrences that together form an over-

complete set of candidate motifs corresponding to subsequences located near high

density regions. Selection of motifs via temporal greedy mixture learning is performed

in steps 5 through 8.

The final component of the greedy mixture learning approach is responsible for

detecting when to stop adding motifs to the mixture model (Step 8). The stopping

50

criteria is often one of the most difficult aspects of an unsupervised algorithm to

design. Many methods use criteria that rely on user-specified thresholds or assump-

tions about the data generation process. For instance, the methods of Chiu et al. [10],

Minnen et al. [59], and Tanaka and Uehara [89] search for additional motifs until no

pair of subsequences lie within the same neighborhood. Denton’s method [18], on

the other hand, continues searching until no subsequence lies in a region with density

above a threshold estimated from the assumed random-walk noise model.

In contrast, the approach presented here uses the density estimate of each motif,

computed after all occurrences have been detected, to determine when to stop. The

algorithm is similar to the process used to estimate the neighborhood radius in the

algorithm presented in the previous section. It searches for a local minimum in the

smoothed derivative of the motif densities, which corresponds to an inflection point in

the curve representing the motif densities. This inflection point marks the transition

from well-supported motifs (high density) to spurious motifs (low density). Despite

its heuristic origin, the empirical results validate the usefulness of this metric and

show that the approach provides stable results even if the number of motifs is not

estimated perfectly.

Once the algorithm estimates the total number of motifs, the model parameters for

all valid motifs are iteratively re-estimated (step 9 of algorithm 1). The re-estimation

process uses the familiar Baum-Welch algorithm and uses all of the segments matched

by the model for training data.

3.5 RP-GML: Random Projection with Greedy Mixture Learn-
ing

As the results presented in Chapter 4 demonstrate, the density-based algorithm dis-

covers much more accurate patterns than the global or local discretization approaches.

The filter stage of that algorithm, however, runs more slowly than that of the local

discretization even though both have sub-quadratic asymptotic complexity. In order

51

to investigate whether the improved performance is due to the filtering algorithm

(i.e., local discretization vs. density estimation) or due to the pattern model (i.e.,

hypersphere model vs. greedy mixture learning with HMMs), I developed a hybrid

method that combines the local discretization filter with the HMM motif model.

The filtering phase in the hybrid algorithm is the same as in the approach pre-

sented in Section 3.3, except that the final motif selection during each iteration is

determined by a maximum-likelihood score. In other words, instead of simply choos-

ing the largest entry in the collision matrix and using seed pair distance to break

ties, the top N entries (ranked by collision value and then by seed pair distance) are

passed on to the second phase. For each seed, an HMM is initialized and its effect on

the overall data likelihood is computed as in the density-based approach. The model

that leads to the largest increase in data likelihood is selected as the most reliable

pattern and is permanently added to the mixture model.

The stopping criterion used in this hybrid algorithm is similar to that for the local

discretization algorithm despite the change in motif model. The discovery process

continues to search for additional patterns until either there are no more entries in

the collision matrix with values higher than what is expected for random data or until

there are no more unexplained frames in the time series data.

52

CHAPTER IV

EMPIRICAL RESULTS

In order to evaluate the performance of the motif discovery algorithms presented in

the previous chapter, as well as to compare them to existing methods, each algorithm

was executed on a variety of data sets drawn from different domains and using dif-

ferent sensing modalities. Because this research is not focused on discovery within a

single domain (e.g., biological sequences or human speech), the goal was to evaluate

the performance across many domains to get a better picture of each algorithm’s

performance. This broader evaluation should help predict how the algorithms will

generalize to new data sets.

Currently, there are no standard data sets used within the data mining or ma-

chine learning communities to evaluate motif discovery algorithms. In fact, there is

little agreement on the precise definition of the problem, and the wide variation in

assumptions used by different researchers to help them focus on specific aspects of

the overall discovery problem make comparisons very difficult. In the existing litera-

ture, new algorithms are typically evaluated by presenting example motifs discovered

in a small number of data sets. Occasionally, a previous algorithm is shown to fail

to detect a recurring pattern that would likely be identified by a human analyst, or

algorithms are compared by their run time characteristics with less attention paid to

the specific patterns that are detected.

4.1 Evaluation Methods

In this research, algorithms are evaluated in terms of both the accuracy of the detected

patterns and relative to their run time characteristics. Measuring the accuracy of the

53

detected patterns is difficult because the discovery process is fundamentally unsuper-

vised and so in general there is no labeled data that can be used to test the learned

models. Broadly, there are three approaches that can be adopted to evaluate a dis-

covery algorithm: expert analysis, evaluation on a primary task, and correspondence

with expected/known patterns.

4.1.1 Expert Analysis of Discovered Patterns

This approach to evaluation relies on an analysis of the discovered patterns by an

expert who can reliably assess the quality of each pattern. The exact nature of the

evaluation can vary from objective measurements of internal pattern agreement to

a qualitative assessment based on the expert’s understanding of the domain. For

instance, when analyzing speech data, a fluent speaker can listen to the utterances

collected within a particular pattern and determine which word or phrase, if any,

dominates the set. The motif can then be scored in terms of its precision, which

corresponds to the homogeneity of the utterances that were grouped together. While

a more homogeneous motif is preferable, this kind of analysis does not account for false

negatives (i.e., a measure of the recall rate or number of occurrences that should have

been included but were incorrectly left out) and thus gives an incomplete indication

of performance.

In other domains, it may not be as straightforward to provide a well-established

label for each motif occurrence. Instead, a domain expert may need to interpret

each pattern and provide either subjective labels for each occurrence or estimate the

overall motif quality based. This assessment may be based on how well the motif can

be explained using the established models used in the domain, or it could be based

on the expert’s personal experiences working with other, related data sets. This kind

of evaluation may even include additional investigation of the underlying phenomena

through other means such as direct statistical analysis or even further laboratory

54

experimentation.

4.1.2 Effect on Primary Task

In many situations, the motifs detected by the unsupervised pattern discovery algo-

rithm are intended to be used as the basis for further analysis. The motifs thus serve

as primitives or temporal features that are the input to a system that reasons, plans,

or classifies at a higher level of abstraction. In these cases, the accuracy of the motifs

relative to some external set of clusters, patterns, or perceptual concepts may not

matter per se, but rather the patterns are important only insofar as they support the

goals of the higher-level reasoning system, which can be considered the primary task

to which the motif discovery is subordinate.

To evaluate the discovery (sub)system when used in a hierarchical framework, one

should measure the effect on the performance of the primary task rather than impose

a metric on the motifs directly. One potential downside of this approach is that the

evaluation becomes dependent on both the data set, which is always the case, and also

the goal of the primary task. So whereas before one might conclude that a particular

algorithm performs well for speech analysis but not for discovery in GPS traces, the

indirect evaluation proposed here may only support the more restricted conclusion

that the algorithm is well-suited for pattern discovery that supports continuous speech

recognition but not word spotting.

4.1.3 Correspondence to Expected Patterns

A third approach for evaluating motif discovery systems, and the one that is used in

this research, is to compare the agreement between the discovered patterns and a set

of expected patterns. The underlying assumption of this evaluation method is that

the user or some other domain expert is sufficiently confident about a set of patterns

in the data set that it is considered an error if the discovery system fails to detect

those patterns. Thus the system is scored based on how well the discovered patterns

55

match the expected patterns, which is a similar procedure to supervised evaluation.

There are, however, two key differences. First, in the supervised case, the automated

system knows the labels associated with each class while the unsupervised system

does not, and second, the discovery system may detect additional patterns which

were not expected but which are nonetheless valid patterns.

To understand the first issue, consider an audio data set consisting of English

speech in which the user can hear repetitions of the words “one,” “two,” and “three.”

When the discovery system analyzes the data, however, it will output sets of occur-

rences labeled “Motif 1,” “Motif 2,” etc.. The evaluation subsystem must figure out

which, if any, of the motifs correspond to each of the expected utterances. Given

a measure of similarity between each motif and each word, this correspondence cal-

culation can be efficiently solved with the the Hungarian algorithm, also called the

Kuhn-Munkres algorithm, which solves the assignment problem in O(n3) time [42, 67].

All that is left is to specify the similarity measure between a motif and an expected

pattern. This measure has two components, one that measures the similarity between

a particular motif occurrence and a single pattern instance, while the second uses

that information to measure the similarity between the two sets. Many options are

available for each component. In this research, a relatively simple approach is adopted,

which nonetheless captures a notion of similarity that makes sense given the common

application of a discovery system as a tool to help researchers locate and focus on

patterns in their data. Specifically, a discovered occurrence and expected instance are

considered to match if there is any temporal overlap between them. The similarity

between a motif (a set of occurrences) and an expected pattern (a set of instances) is

then computed as the maximum number of matches provided that no motif occurrence

can match multiple instances or vice-versa.

Detecting overlap between two segments is straightforward. Given that each seg-

ment is parameterized by the tuple (s = 〈series index〉, a = 〈first frame〉, b = 〈last

56

frame〉), two segments, segi and segj overlap when:

(si = sj) ∧ (ai ≤ bj) ∧ (aj ≤ bi)

The best possible mapping, that is the assignment of motif occurrences to pattern

instances that leads to the maximum number of valid matches, can then be computed

using a simple search. Note that a more nuanced similarity metric would take in to

account the amount of overlap, while a strict metric would require a minimum level

of overlap for a pair to be considered a match. The strictest metric would require an

exact match, that is (si = sj)∧ (ai = aj)∧ (bi = bj), however such precise discovery is

essentially impossible and is not required for a system to be broadly useful [65, 66].

The second major issue for correspondence-based evaluation is how to handle ex-

tra discovered patterns that do not match any of the expected patterns. A strict

evaluation would consider such detection to be false positives, which negatively ef-

fect the overall accuracy score. However, when manually investigating some of the

additional patterns detected in real data sets, it was often determined that they re-

ferred to valid patterns that simply weren’t predicted by the domain expert. For

example, the first unexpected pattern detected in many cases represented a version

of silence appropriate for the domain. As such, in the evaluation results presented in

this chapter, additional patterns are ignored and thus do not improve nor reduce the

performance scores.

4.1.4 Evaluation Metrics

A variety of methods have been developed in the pattern recognition and information

retrieval communities for quantifying and presenting performance statistics. Graph-

ical summaries such as receiver operator curves (ROCs) depict performance over a

range of parameter values [20], while segment error tables (SETs) [94] and error di-

vision diagrams (EDDs) [60] are tailored to temporal event recognition tasks. Other

approaches try to summarize the results with a single number, which allows easy

57

comparison between different methods at the expense of providing a more complete

picture of the performance.

In this research, accuracy and F-measure (specifically, the F1-measure) are used to

provide a quantitative summary of discovery performance. Accuracy measures how

well the detected occurrences from a particular system match the expected, labeled

instances. The evaluation of a temporal recognition or discovery system is somewhat

more complicated than that of a traditional instance-based classification algorithm

and combines several basic statistics:

• N – total number of true occurrences

• C – number of correct detections

• I – number of insertion errors (detections that do not match a true occurrence)

• D – number of deletion errors (true occurrences that were not detected)

• S – number of substitution errors (true occurrences of one class that were in-

correctly detected as some other class)

• E – number of “extra” detections (detections that are occurrences of a discov-

ered pattern that does not correspond to any of the expected patterns)

The primary departure from traditional accuracy calculations is the inclusion of

the E statistic. In supervised classification, every test instance or detection is labeled

with one from a set of predetermined labels. In the context of discovery, however, the

system can detect additional patterns beyond those anticipated. All such detections

increase the value of E. Note that E is different from I in that E detections are

from an extra class (a pattern that was not expected), while I detections are from an

expected class but do not correspond to a true occurrence. Finally, in the formulation

used here, the extra detections are ignored and so E does not affect the final accuracy,

although it could reduce the accuracy if a different, stricter formulation were adopted.

58

Accuracy is calculated from the above statistics from this simple formula:

acc =
C − I

N

Note that this formula does actually account for all of the different error types

(except for E as noted above) since N = C + D + S. Because the accuracy score

penalizes for insertion, deletion, and substitution errors, and because the number of

insertion errors is bounded by the data not by the number of true occurrences, the

accuracy measure can be negative whenever C > I.

The F-measure, on the other hand, is a bounded score of performance that ranges

between zero (the worst possible performance) and one (the best possible perfor-

mance) in all cases. The F-measure combines the notion of recall and precision,

evaluation metrics typically used to summarize the performance of information re-

trieval algorithms. Given a discovered motif that corresponds to an expected pattern,

recall measures the fraction of the true occurrences that were detected, while preci-

sion measures the fraction of the detected occurrences that are correct. Both of these

measures vary between zero and one, but note that either can be maximized in a fairly

trivial and useless way. For example, a recall rate of 100% can be easily reached, at

least for a single pattern by “detecting” every possible segment. In that case, all of the

correct occurrences will be matched, but so will a huge number of incorrect segments.

Similarly, precision can be maximized by finding a single correct occurrence.

The F-measure attempts to mitigate the deficiencies of the individual recall and

precision measures by combining them. Specifically, the F-measure is computed as:

F =
2 · precision · recall

precision + recall

while the more general formula

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall

59

(with β ≥ 0) can be used if either recall or precision should be weighted more heavily

in the combined score. Note that when β = 1, Fβ = F1 = F , and the precision and

recall are weighted equally.

A complementary issue to the specific evaluation metric used to summarize results

is which aspect of the results is actually analyzed. In the discussion so far, the analysis

has been over the correspondence between the discovered motifs and the expected

patterns at the level of the occurrence. Each occurrence is a temporally contiguous

segment that has a particular start time, duration, and label. Performance is then

measured as a function of the correspondence between the discovered and expected

intervals, which is often called event-level analysis.

An alternative to this approach is to calculate the performance metric in terms

of the individual samples, which is often called frame-level analysis. In this case,

each frame is given a ground truth label based on the expectations of the domain

expert, and also by the discovery system depending on which motif occurs at that

particular time. Note that there is typically an implicit label for those frames that do

not occur during a motif. The primary benefit of performing a frame-level analysis is

that it avoids the complications involved in matching events. Because each frame is

inspected independently, there is no ambiguity involved in determining whether the

label provided by the discovery system matches the expected label. Note, however,

that using a frame-level analysis does not preclude the need to determine which motif

best corresponds to which ground truth label.

The main problem with using a frame-level analysis to summarize the performance

of an algorithm is that it can give misleading results for real-world applications. A

typical scenario calls for discovery or detection of a particular pattern so that the user

can further investigate the underlying process at the relevant times to figure out what

causes the pattern. In such cases, identifying the precise start and end time of each

60

Figure 19: Synthetic data set that illustrates variable-length motifs. Each image
represents a random string drawn from the alphabet {zgwxfpmik} and is corrupted
by white noise. The “time series” frames correspond to features extracted from a
vertical bar that slides across the image and measures the intensity of the underlying
pixels.

occurrence is not particularly important. Completely missing an occurrence or incor-

rectly detecting a false occurrence, however, significantly undermines the usefulness

of the system. Frame-level analysis will penalize systems for even the smallest error

in the occurrence boundaries but will not penalize more severely for actual insertion

or deletion errors. Frame-level analysis truly counts the number of mis-labeled frames

and does not take the context into account. Therefore, it is often preferable to avoid

using frame-level analysis to measure overall system performance but instead rely on

event-level analysis or other, more nuanced summaries such as the SETs or EDDs

mentioned previously [60, 94].

4.2 Optical Character Recognition

The first data set used for evaluation is made up of synthetically generated images

containing different characters (see Figure 19). The goal of this data set is to provide a

relatively easy discovery task suitable for testing the ability of different algorithms to

locate motifs with widely varying lengths (e.g., the character “i” is quite narrow while

a “w” is several times wider). In total, 50 images were generated, each containing

eight characters drawn from the alphabet {zgwxfpmik}. The characters are rendered

with black letters on a white background using a basic serif font, and then the entire

61

Figure 20: Accuracy results for the five algorithms compared in this research on the
OCR data set. The two algorithms that model motifs using HMMs selected using a
competitive learning framework perform the best due to their relative robustness to
variable motif lengths.

image is corrupted by a small amount of monochromatic Gaussian noise. To convert

the images into time series suitable for processing by our algorithm, a virtual sensor

is used that scans the image from left to right. At each position, the virtual sensor

extracts a multivariate descriptor based on the underlying pixel values. The sensor

sees several pixel columns at each position and divides the vertical dimension into

several bins. The sensor reading for each bin corresponds to the underlying pixels’

mean intensity on a scale from zero (black) to one (white). Overall, the data set

contains 50 sequences with 6,522 total frames and 15 dimensions. There are 400

total characters with roughly 44 examples of each of the nine possible characters.

The characters vary in width from eight to 26 frames with an average length of 15.9

frames.

The graph in Figure 20 shows the performance of the five algorithms on the

rendered character data. Throughout this chapter, the following names are used to

62

refer to the algorithms described previously:

• GlobalDisc – the global discretization approach that uses suffix trees to detect

patterns (described in Section 3.2)

• LocalDisc – the local discretization method that uses random projection to

detect potential patterns and a fixed radius for motif neighborhoods (described

in Section 3.3)

• AdaptLD – the adaptive version of the local discretization algorithm, which

estimates the proper neighborhood radius from the data (described in Sec-

tion 3.3.2)

• Density – the discovery algorithm that looks for local density maxima to iden-

tify candidate motifs and then uses a greedy mixture learning framework to

select valid patterns (described in Section 3.4)

• RP-GML – the hybrid algorithm that combines random projection and greedy

mixture learning (i.e., the first phase from the LocalDisc algorithm and the

second phase from Density; described in Section 3.5)

The results highlight the importance of explicitly supporting variable-length mo-

tifs. This data set was constructed to be very easy. There are no outliers, no temporal

distortion, and minimal noise in the data set. Both methods that rely solely on fixed

length subsequences (LocalDisc and AdaptLD) score poorly (44.0% and 54.0%, re-

spectively) due to their inability to simultaneously model the very short motifs (such

as i and f) and the long motifs (e.g., m and w). Although the GlobalDisc method

does support variable-length motif discovery, it performed even worse (34.5%). This

poor result is likely due to difficulty in accurately modeling the range of virtual sensor

readings with a small, global alphabet. The density-based method performed surpris-

ingly well (89.0%) considering it relies on a search across fixed length subsequences to

63

Figure 21: Accuracy of the AdaptLD (orange) and LocalDisc (blue) methods on the
rendered character data across a range of parameter values. The parameters represent
the window length and the number of PAA segments used. In each case, the accuracy
reported is the maximum achieved via manual, supervised search across the relevant
neighborhood size parameter.

find motif seeds. A major advantage of this method over LocalDisc and AdaptLD is

that it does detect variable-length motif occurrences since the motif models can grow

and shrink to fit the data1. Finally, the hybrid algorithm has an accuracy between

that of the density-based approach and the local-discretization algorithms. This re-

sult implies that the HMM-based motif model is, in fact, superior to the hypersphere

model, but that the random projection algorithm is not providing candidate patterns

that are as accurate as those selected by the density-based algorithm.

Figure 21 provides a more detailed view of the performance of the AdaptLD and

LocalDisc methods on the rendered character data set, shown using orange and blue

bars, respectively. The graph shows accuracy over several runs using different param-

eter settings. In both cases, the first parameter represents the window length (ranging

from 12 to 20 frames) while the second parameter represents the number of PAA seg-

ments used to compute the local discretization (ranging from 3-5 segments). In all of

1Preliminary experiments using a variant of the density-based algorithm that explicitly searches
over variable-length subsequences shows accuracy over 99% at the expense of slower run time.

64

Figure 22: Accuracy of the LocalDisc method on the rendered character data
across a range of neighborhood radius values. The reported accuracy is the maximum
achieved after manually searching for the best settings for the other parameters. Note
that values around 330 were more densely sampled after identifying that as a likely
region to contain the maximum accuracy setting.

these trials, three SAX symbols were used for discretization. Additional experiments

were performed using other parameter combinations and exploring different choices

for the number of SAX symbols, but all other combinations led to results with lower

accuracy.

Finally, Figure 22 shows the performance of the LocalDisc method over a range

of neighborhood radius values using the best parameter settings from Figure 21.

During experimentation, a wide range of values were tried, and the values around 320

were sampled more densely after that region appeared to be a promising region for

a performance peak. The conclusion from these graphs is that that the low accuracy

rates of the local discretization methods is not due to poor parameter choices. Instead,

it is due to an algorithmic shortcoming, likely corresponding to the fixed-length motif

assumption that does not hold for this data set.

65

Figure 23: Accuracy results for the five evaluated algorithms on the TIDIGITS
speech data set. This data set highlights the shortcomings of the GlobalDisc algo-
rithm, which has a negative accuracy and thus is not visible on the graph.

4.3 Speech

The second data set used for evaluation purposes comes from the publicly avail-

able TIDIGITS data set, which contains audio recordings of spoken digits, origi-

nally intended to help evaluate automated telephone dialing speech recognition sys-

tems [44, 45]. For the purposes of evaluating the discovery algorithms considered

here, analysis was performed on a subset of the available data consisting of 77 phrases

composed of spoken digits from a single speaker. The data contains 11 classes (zero

through nine plus “oh”) and 253 total digit utterances or roughly 23 occurrences of

each digit. The raw waveforms were transformed by extracting Mel frequency cep-

stral coefficients (MFCCs) over a range from zero to 4kHz using a frame period of

10ms and a window size of 25ms, which are all standard parameter choices for MFCC

features in the speech recognition community. This feature extraction process leads

to a final data set containing 11,917 frames.

All of the evaluated algorithms performed well on the TIDIGITS data set except

for the GlobalDisc method. In that case, the algorithm actually has a negative

66

Figure 24: Graph of accuracy vs. number of discovered motifs for the TIDIGITS
data set. The algorithm automatically selected 15 motifs for the TIDIGITS data
(truth: 11 + background).

accuracy due to the detection of more false motifs occurrences than true ones (i.e.,

a very large number of insertion errors). The poor performance is likely due to the

difficulty of modeling the complex MFCCs in a relatively high dimensional space

with a small set of discrete symbols. The quantization can induce insertion errors

by representing a large region of space by a single symbol. Increasing the number

of symbols can mitigate this problem, but that solution can easily lead to over-

segmentation, which can cause the algorithm to separate a single pattern into multiple

ones due to relatively small variations.

The best parameter setting for the adaptive local discretization method found 11

motifs with an overall accuracy of 68.0%, while the LocalDisc algorithm also found

the 11 true motifs but with a slightly higher overall accuracy of 71.5%. Figure 23

summarizes these results, and Figure 25 shows two sequences from the data set with

several correctly detected utterances of “one” highlighted. The lower performance of

the adaptive algorithm is due to a difficulty in accurately estimating the neighborhood

67

Figure 25: Two sequences from the spoken digits data set showing all 13 features.
The highlighted segments represent occurrences of one of the discovered motifs, which
corresponds to the utterance “one.”

radius. The estimation procedure requires a fairly distinct jump in distance separating

true motif occurrences and non-motif segments, which corresponds to the assumption

of fairly well-isolated motifs. The MFCC features in the speech domain can lead to

a much more gradual shift, which could cause imprecise radius estimation and thus

lower overall accuracy due to the resulting insertion (if the radius is over-estimated)

or deletion errors (if it is under-estimated).

Figure 24 provides more information about the performance of the density-based

discovery algorithm on the TIDIGITS data set. The algorithm overestimates the

number of motifs (15 instead of 11) but the extra motifs did not interfere with the

identification of the 11 spoken digits. Instead, they correspond to silence and other

repeated noises that do not correspond to English words. The overall accuracy of

the algorithm is 91.7%, which is significantly better than the other methods (as

summarized in Figure 23).

The two accuracy curves shown in Figure 24 correspond to two variations of the

density-based discovery algorithm. The blue curve corresponds to the performance of

the “constructed models,” which gives the accuracy of the set of motif models as ini-

tialized from the k-nearest neighbors. The green curve corresponds to the performance

of the “re-estimated models.” In this variation, each motif model is re-estimated us-

ing the Baum-Welch algorithm based on all of the segments that are matched by the

68

Figure 26: Two XSens MT9 inertial sensors and a modified glove used to mount a
sensor on a subject’s wrist. The MT9 measures acceleration and rate-of-rotation in
three axes at 100Hz.

original, constructed model. In other words, the constructed models are added to

the overall mixture model until the stopping criterion is reached. Then, all segments

that correspond to each constructed motif model are extracted as training data. In

the final step, each motif model is re-estimated using the corresponding training data

and the updated mixture model is fit to the data. When too few motifs have been

discovered, they often match extra, incorrect segments, which leads to a poor model

parameters after re-estimation. This effect results in a lower accuracy rate for the re-

estimated model version in the early stages of the discovery process. Once the system

approaches and possibly exceeds the correct number of motifs, re-estimation can have

a beneficial effect and lead to more accurate motif models. However, the improvement

in accuracy is relatively small, and so it may not be worthwhile to re-estimate the

models for time-critical applications.

4.4 Exercise via On-Body Inertial Sensors

The exercise data set consists of accelerometer and gyroscope readings from an on-

body sensor that captured a mock exercise routine comprised of six different dumbbell

69

Figure 27: A visualization showing the raw accelerometer and gyroscope data from
one sequence in the top portion and the quantized data from all 32 sequences in the
bottom portion. The apparent regularity in the data is an artifact of orderly collection
and does not help the discovery algorithm.

exercises (back row, flat curl, twist curl, shoulder press, shoulder extension,

and tricep extension). An XSens MT9 inertial motion sensor was attached to the

subject’s wrist by fitting it into a pouch sewn to the back of a thin glove (see Fig-

ure 26). The MT9 sensor was sampled at 100Hz and recorded three-axis accelerometer

and gyroscope readings. In total, 32 sequences were captured with a total of 166,582

frames resulting in 27 minutes and 46 seconds of data. For the experiment, however,

the data was down-sampled to 12.5Hz leading to 20,711 frames. Given the expecta-

tion that each exercise is a different motif, the data set contains six motifs and 864

total repetitions or roughly 144 occurrences of each exercise.

For the GlobalDisc algorithm, the six-dimensional frames were quantized using

a mixture of 10 Gaussian distributions as described in Section 3.2.1. Figure 27 shows

the raw data for one of the sequences as well as the quantized representation of all 32

sequences. Each of the exercises shows up clearly in the color-coded representation of

the quantized data. Note that the apparent block structure is due to the uniformity

of the collection process. For the methods that use the hypersphere motif model

70

Figure 28: Sample occurrences of the six motifs discovered in the exercise data
set showing the three-axis accelerometer readings. Each column corresponds to a
different discovered dumbbell exercise.

(LocalDisc and AdaptLD), the dynamic time warp (DTW) distance was used with

a Sakoe-Chiba band of 10%, which follows standard practice in the field, although

some authors argue that a smaller, less flexible band is actually preferable in many

situations [80].

All of the evaluated algorithms correctly discover the six motifs with high accuracy

(see Figure 29 for a summary and Figure 28 for example motifs). As with the OCR

data set, the HMM-based motif models outperformed the hypersphere models, and

the greedy mixture learning approach (used by the Density and RP-GML algorithms)

achieve higher accuracy than the direct detection method used by the GlobalDisc

method.

The GlobalDisc algorithm successfully locates 96.3% of the occurrences, which

corresponds to finding 832 of the 864 occurrences. It also locates 51 false occurrences

(insertion errors) in addition to missing 32 real occurrences (deletion errors), but there

are no substitution errors. Overall, the algorithm achieves an accuracy of 86.7% and

precision of 88.4%.

The lack of substitution errors is likely due to the fact that the exercises are

very distinct in the continuous domain. Note, however, that the flat curl and

twist curl exercises were confused in the discrete domain, but the two motifs were

71

Figure 29: Accuracy results for the five evaluated algorithms on the exercise data
set. Note that the graph starts at 75% accuracy. Although all of the algorithms
perform well, using HMMs as motif models provides better accuracy results than
using the hypersphere model in all cases.

then automatically split from two conflated motifs into four homogeneous ones during

refinement. The algorithm then detected the need to merge the four motifs into two

homogeneous clusters that correctly represented the two exercises.

Figure 31 shows the result of running the LocalDisc algorithm over a range of

values for the neighborhood radius. The two curves represent two different choices

for the distance metric: a straightforward sum of squared error (SSE) calculation

and dynamic time warping (DTW). The accuracy rate of the two metrics peaks at

different values. This result is expected because the user-specified threshold is given

in terms of raw distances. More importantly, although performance is fairly smooth

around the peaks, there are large fluctuations that correspond to instabilities in the

algorithm (e.g., around 5.0 and 6.0 for the SSE metric).

The performance of the AdaptLD algorithm is shown in Figure 32. The event-based

accuracy is measured across a range of estimation portion sizes, which determines how

much data is used to estimate the neighborhood radius for each motif. Specifically,

72

Figure 30: Graph of accuracy vs. number of discovered motifs for the exercise data
set. The density-based algorithm automatically selects seven motifs for the exercise
data (truth: six + background).

each portion size corresponds to the percentage of the distances, after sorting in in-

creasing order, that is used to locate a knee in the distance curve and thus determine

the neighborhood size. In addition to allowing different neighborhood sizes for dif-

ferent motifs, the portion size parameter is intended to be easier to specify than the

distance threshold used by the LocalDisc algorithm because it does not directly de-

pend on the underlying distance metric. Th graph in Figure 32, however, shows that

the relationship between accuracy and portion size does still depend on the distance

metric but the overall range is much smaller, performance stays high across a wider

region, and performance is more stable.

For all of the other experiments performed in this section, the DTW distance

metric was used with a value of 10.0% for the portion size because this choice led

to high accuracy rates and is in the central part of a stable region. Similarly, the

LocalDisc algorithm also uses the DTW distance metric. In this case, a radius

of 9.25 was used since it was found to yield the best performance. Given these

73

Figure 31: Graph showing the accuracy rate of the LocalDisc algorithm for a range
of radii. Performance based on both the DTW and a straightforward squared error
distance metric are included.

optimized parameter settings, the AdaptLD algorithm achieves an accuracy rate of

91.7% compared to 83.9% for LocalDisc, which corresponds to a 48.4% reduction in

error.

The density-based and hybrid algorithms perform similarly and both achieve

higher accuracy rates than the earlier methods (97.0% accuracy vs. 91.7% for the

AdaptLD method). Figure 30 shows the performance of the density-based algorithm as

the number of allowed motifs is increased. The exercise data set contains six expected

motifs, and so accuracy is poor when the number of discovered motifs is artificially

capped at values smaller than six since some true patterns are necessarily left unde-

tected. Note that the algorithm automatically estimates that there are seven motifs.

After manually analyzing the discovered patterns, it is clear that they correspond

to the six expected motifs (i.e., the actual exercises) with one additional motif that

models a rest state.

For a more detailed summary of the performance of the algorithms on the exercise

data, see Figure 33. This set of graphs shows four measures of performance for the

different discovery algorithms. Each graph includes a confidence interval set at a

74

Figure 32: Graph showing the accuracy rate of the AdaptLD algorithm for a range
of analysis proportions. Performance based on both the DTW and a straightforward
squared error distance metric are included.

distance of one standard deviation from the mean performance level. These results

were compiled from 16 separate trials where each trial used a bootstrap sample of 24

randomly selected sequences taken from the full set of 32 sequences in the exercise

data set. The discovery algorithm was run independently for each trial, and then the

mean and variance of the performance across the trials was computed. The graphs

reinforce the results depicted in Figure 29, while the confidence interval gives more

information about the variation in performance for different subsets of the data.

Furthermore, the variation can be used to assess the significance of the accuracy

differences by using a one-sided t-test2. The significance tests found that all of the

differences are statistically significant with very small p-value with the lone exception

of the improvement of RP-GML over AdaptLD where p = 0.0335. Although much less

significant than the other performance differences, it is still sufficient to be considered

statistically significant at the widely-used level of p = 0.05. Refer to Table 2 for a

2Specifically, we used the version of the t-test that allows for different variances; see Section 14.2
of [77] for details.

75

Figure 33: Each of the four graphs shows performance (accuracy, precision, recall,
and f-measure) for a different algorithm. The results were averaged over 16 trials, each
composed of 24 sequences randomly sampled from the 32 sequences in the exercise
data set. The confidence interval corresponds to +/- one standard deviation across
the 16 trials.

summary of all of the significance levels.

4.5 American Sign Language

The American Sign Language (ASL) data set is made up of 500 signed sentences

captured by a head-mounted video camera that recorded 320x240 images at 10Hz (see

Figure 34). The data was collected as part of a sign language recognition research

project by Starner, Weaver, and Pentland [87]. Each frame of video was independently

analyzed to detect skin-colored blobs that were classified as the left hand, right hand,

or combined hands. The hand blobs were analyzed in order to compute an 8D feature

vector that includes the centroid of the blob, mass, primary angle, eccentricity, the

76

Figure 34: The ASL video was captured using a hat-mounted video camera (left)
that captured a top-down, wide-angle view of the signer’s hands (right).

length of the principal component, and the differential between the location in the

current frame and the previous one. The analysis was performed separately for each

hand, leading to a 16D feature vector, and when the hands were merged, the single

set of features were recorded for both the left and right hands.

For the purposes of evaluating the discovery algorithms, the original features were

left unchanged except for normalization to ensure that each feature had a similar

range. For instance, the mass of the blobs is typically quite high since there were a

relatively large number of pixels in each frame, while the angle and other statistics

are typically quite small.

Each of the 500 sentences contains a single five word phrase composed from a vo-

cabulary of 40 signs. While the words in each sentence are known, the precise bound-

aries between them were never manually labeled. Thus, the expected labels were

Table 2: Significance Levels for Accuracy Difference on the Exercise Data

LocalDisc AdaptLD Density
AdaptLD 4.316e-4 – –

Density 3.689e-9 7.167e-8 –
RP-GML 1.70e-5 0.0335 1.76e-3

77

Figure 35: Performance of the hybrid algorithm on the ASL data set. The four
curves provide the event and frame-based performance rates according to both the
accuracy and F-measure statistics. The event-based accuracy (blue curve) is compa-
rable to Figures 24 and 30.

learned from the known sentence structure and a supervised detection process. The

algorithm simultaneously learns a HMM for each sign while adjusting the boundaries

to best fit the data. Although this procedure is imperfect, it does provide reasonably

accurate occurrence boundaries that are sufficient for the event-based evaluation that

is used here.

Although the final accuracy rate on this data set is only 30%, achieving this rate is

actually quite difficult on the ASL data set. First, there are a large number of signs,

and the algorithm does a reasonable job by detecting 22 of the 40 real signs and only

locating 19 additional patterns. Furthermore, the 10Hz sampling rate of the video

78

Figure 36: Six dimensional shuttle telemetry data with the discovered pattern high-
lighted (only the first three dimensions are shown)

does not provide much data for each sign, which typically lasts for around one second.

The view of the camera is also not ideal for sign understanding as the language was

designed for face-to-face communication instead of top-down interpretation.

4.6 Other Domains

In order to demonstrate the generality of the motif discovery algorithms, the methods

were applied to data sets from other domains where the ground truth labels are

unknown. The first two data sets have been used to demonstrate the performance of

other methods in the the data mining community and are publicly available through

the UCR Time Series Data Mining Archive [36]. The first data set represents shuttle

telemetry data in which the algorithm discovers a single motif with two occurrences

(see Figure 36). Although I am not able to directly interpret this motif due to a

lack of domain knowledge, this result does match what was reported by other motif

discovery researchers [10, 89].

The second data set is also taken from the UCR archive and represents a record-

ing from a fetal ECG. The data has 2,500 frames and eight dimensions. Here, the

algorithm finds two motifs corresponding to the thirteen occurrences of the heartbeat

(see Figure 37) and then the “silence” between them.

Next, we analyzed data collected by a body-worn GPS unit. The data was orig-

inally collected as part of a research effort to automatically learn significant places

79

Figure 37: The primary motif discovered in the 8D fetal ECG data (the first four
dimensions are shown)

in the wearer’s daily life as described in Section 2.5. Here, the goal is to analyze

the GPS paths instead of trying to cluster static locations heuristically selected as

probable destinations. The primary difficulty in analyzing GPS data is the extreme

level of variation in the duration of the paths encountered. For instance, a subject

may drive to work (20 minutes), walk to the cafeteria (2 minutes), take a weekend

get-a-way (a 3 hour drive), or drive to a conference (8 hours). Although the Density

and RP-GML algorithms do allow for some temporal variation, neither supports the

amount of variation found in GPS data. As such, the results of applying the discovery

algorithm are not surprising: it did detect recurring routes, but it is clear that they

are partial paths (see Figure 38 for an example).

Section 4.3 described the results of an experiment with speech data. The TIDIG-

ITS data set was used, which is made up of high-quality recordings in a controlled

environment and which has a small, known vocabulary. In this section, we describe

additional experiments with more complex, realistic speech data. The first data set

is a political lecture recorded at MIT. The recording is over 97 minutes long and has

585,982 samples after standard MFCC and log-energy features are extracted. The

analysis first segments the data set by detecting silent regions using a conservative

threshold on the log-energy feature. Then, the RP-GML algorithm is applied to the 12

80

Figure 38: Two recurring paths in the GPS data. Left: a common driven route along
the highway; Right: a recurring walking route between buildings on the Georgia Tech
campus
.

MFCC features.

Because we do not have a transcript of the lecture and did not manually label

the repeated words and phrases, there is no quantitative evaluation of the overall

performance. Instead, a qualitative assessment follows. The first observation is that

the algorithm was able to discover repeated words and phrases. For example, the

bottom row of Figure 39 shows a spectrogram of three occurrences of a discovered

motif that corresponds to the phrase “United States.” The spectrogram is a matrix

where each entry corresponds to the power in a certain frequency range at a particular

time. Time progresses from left to right, while the frequency bands increase from the

bottom to the top of the image. Each entry is color-coded according to the energy

level, where the progression moves from yellow (low power), through blue, and finally

to red. Although the discovery algorithm analyzes the raw MFCC features directly,

the spectrogram provides a useful visualization that makes the similarity clear.

Although not as extreme as with the GPS data, the limited ability of the RP-GML

algorithm to model motifs of different lengths complicated the analysis of this audio

81

data. For instance, when a relatively short duration was specified (e.g., 800ms), the

system would typically find short words and parts of words, while longer durations

(around 1,500ms) would find word phrases. Without the ability to search at multiple

time scales or to temporally extend the initial matches (as discussed in Section 6.4),

the system was unable to locate both short words and longer phrases.

In addition to words, the system also detects other repeated noises. For exam-

ple, it detected recurring disfluencies such as when the speaker said “um,” as well as

instances when the audience was clapping. In the case of clapping, a typical human

listener might only identify a single, relatively long period of clapping, but the discov-

ery algorithm does not model such fluid patterns that have no well-defined duration.

Instead, if it encounters five seconds of clapping with the analysis duration set to one

second, it will likely interpret the data as five separate instances of clapping. This

distinction between patterns with relatively stable durations and those that are highly

variable arises quite often in the context of gesture and activity recognition. For ex-

ample, a sign or other command gesture has a well-defined duration, while walking,

waving, or shaking hands are periodic and may extend arbitrarily long (although so-

cial norms may impose a practical limit for waving and shaking). When both kinds of

gestures are expected, they can be modeled by extracting appropriate features (often

wavelet or Fourier coefficients are used) or by explicitly learning models that capture

the repetitive nature of the gesture, such as an HMM with a left-right topology except

for a single additional transition from the last state back to the first. None of the

discovery algorithms discussed in this work support both kinds of patterns, although

some other methods that seek to model broader classes of activity are able to discover

“fluent” patterns (e.g., [68] and [30]).

One problem that arose when analyzing the lecture data was that the learned

motif models would match to far more segments than there were real occurrences

of the dominant utterance (i.e., there were a large number of insertion errors). In

82

Figure 39: The top row shows spectrograms for three occurrences of the discovered
word “California” in a recording of Joni Mitchell’s song California, while the bottom
row shows spectrograms for occurrences of the phrase “United States” in a recorded
political lecture.

many of the discovered patterns, the first few detected occurrences, when sorted by

distance from the seed occurrences or by probability given the learned motif model,

would correspond to the same utterance. After the first few occurrences, however, the

utterances would change to similar sounding but different words, and then finally into

phrases that had no obvious similarity to the original phrase. I believe this problem

is due to a poor background HMM, which is far too simple to yield a reasonable

model for the regions of audio that were not yet modeled by other motif HMMs.

When analyzing the TIDIGITS data, however, this problem was avoided because the

recording was very clean, the vocabulary was small, and the overall data set was

relatively short. In general, then, a better background model is needed to achieve

high accuracy rates on realistic speech data with discovery algorithms that use a

competitive learning framework.

In addition to the lecture data, we also analyzed musical audio recordings. The

motivation for this domain was to investigate how the system would handle audio

data with continuous high volume. In particular, some audio analysis methods have

a practical requirement that the data be pre-segmented in order to maintain effi-

ciency. This requirement is reasonable for relatively clean speech recordings due to

the natural, frequent pauses that occur when speaking. The primary benefit of the

volume-based segmentation is that the processed signal will typically be split into

many relatively short time series (e.g., on the order of two seconds each), which

83

means that algorithms with a quadratic complexity can be applied to each short seg-

ment while maintaining an overall complexity that is sub-quadratic. Such methods

break down, however, if the pre-segmentation is not possible. Although we did not

perform a full quantitative evaluation, the RP-GML algorithm did run efficiently on

music data where pre-segmentation is not possible. The top row of Figure 39 shows

three examples of the word “California” from Joni Mitchell’s song by the same name.

As with the “United States” example from the lecture data, the similarity between

the three occurrences is clear from the spectrogram. Interestingly, one can also see

the large amount of energy in the high frequencies, a trait for which Joni Mitchell

singing is well-known.

84

CHAPTER V

SUBDIMENSIONAL DISCOVERY

The motif discovery algorithms discussed in previous chapters have made an implicit

assumption that all of the features in the time series data are relevant to each pat-

tern. For the many univariate discovery algorithms that have been developed, this

assumption is trivially accurate, but for the multivariate algorithms considered in

this research, the assumption may be overly restrictive. To address this shortcom-

ing, this chapter presents the problem of subdimensional motif discovery, and then a

subdimensional algorithm is described that relaxes the previous assumption of global

feature relevance.

Figure 40 provides a graphical depiction of four categories that successively re-

duce the assumptions about how the motifs relate to the features in the time series

data. All of the algorithms presented in Chapter 3 address the problem depicted in

Figure 40a where all of the features are relevant to all of the patterns. The first gen-

eralization is depicted in Figure 40b where some features are irrelevant. This effect is

global, however, so it would suffice to detect the irrelevant dimensions and then run

a traditional algorithm on only the relevant subset. Figure 40c removes the global

relevancy assumption. Thus, the subset of the features that are included in each

pattern is determined on a per-motif basis. The motifs can not temporally overlap,

however. The final generalization, shown in Figure 40d, relaxes the temporal exclu-

sion assumption and permits motifs to occur simultaneously so long as their relevant

features are disjoint.

Subdimensional motifs arise in many circumstances. For example, in a distributed

sensor system, patterns may arise independently in spatially separated sets of sensors.

85

Figure 40: Four categories of multidimensional patterns: (a) “all-dimensional” pat-
terns include all of the features, (b) a subset of the dimensions are relevant to all
patterns, (c) each motif can have a different subset of relevant dimensions, and (d)
feature relevance depends on the motifs and the patterns can temporally overlap if
they include disjoint features.

In many cases, the independent subsets may not be obvious to the system engineer

at design time, thus motivating the simultaneous discovery of statistically significant

temporal patterns along with the relevant features. For computer vision applications,

even though the individual photo sites are physically quite close, a wide field of

view may allow the camera to capture activities that occur in different areas in the

environment. The relevant regions in the video may vary over time and be difficult

to predetermine even if the camera location is fixed. When analyzing data collected

by on-body sensor systems or motion capture rigs, subdimensional motifs may arise

when a recurring pattern generated by one part of the body, say the right arm, is

decoupled from the behavior of other limbs or from other biometric sensors. As a

final example, subdimensional motifs may arise when analyzing financial indicators

in which different patterns involve disparate subsets of the underlying securities.

The main benefit of subdimensional motif discovery algorithms is that these meth-

ods can find patterns that would remain hidden to typical “all-dimensional” multivari-

ate algorithms. The ability to automatically detect the relevance of each dimension

86

Figure 41: A three-dimensional signal with two subdimensional motifs. The first
motif only spans dimensions two and three, while the second motif spans dimensions
one and two.

on a per-motif basis allows great flexibility and provides data mining practitioners

with the freedom to include additional features, indicators, or sensors without re-

quiring them to be a part of every pattern. Subdimensional discovery also provides

robustness to noisy or otherwise uninformative or distracting sensor channels.

5.1 Subdimensional Discovery Algorithm

The algorithm presented in this chapter addresses the subdimensional discovery prob-

lem up to the level of generality depicted in Figure 40c. The approach builds on the

basic algorithm used in the LocalDisc and AdaptLD algorithms presented in Sec-

tion 3.3. The algorithm starts with the same SAX-based local discretization method

and uses random projection with a collision matrix to detect similar regions of the

given time series data. However, where the earlier algorithms concatenated the SAX

words generated in each dimension before applying random projection, the subdimen-

sional algorithm projects the words separately. Then the corresponding entry in the

collision matrix is incremented for each dimension that matches instead of at most

once. This change can be understood as a switch from a logical AND policy in the

all-dimensional case (i.e., all dimensions must match to qualify as a collision) to a

87

Figure 42: A feature is considered relevant to a particular seed motif if the seed dis-
tance in that dimension has high probability under the CDF estimated from random
samples from the overall data set.

logical OR policy (i.e., a collision occurs if any of the dimensions match).

This change in how the random projection algorithm is applied to the SAX data

has two important effects. First and foremost, the collision matrix entries will now

represent similarity across arbitrary subsets of the data features, which was the pri-

mary goal. The downside, however, is that the collision matrix can easily become

dense, and thus have quadratic time and space complexity, since it is much more

likely for two subsequences to collide under the OR-based policy. To combat the

increase in complexity, the subdimensional algorithm automatically monitors the col-

lision matrix and halts any searches that appear to be leading to a dense matrix.

Upon detection, the algorithm adapts the discretization and projection parameters

to reduce the number of collisions. For instance, it will increase the number of dis-

crete symbols, which corresponds to dividing the real-valued data into smaller, more

precise divisions, thus leading to a smaller chance of a match between two different

regions.

The OR-based collision matrix policy allows the algorithm to detect similar subse-

quences even if some of the features do not match. It does not provide information

about which features are actually relevant, however. To make this determination,

the algorithm must analyze the subsequences that correspond to large entries in the

collision matrix. Feature relevance is determined independently for each dimension.

When the neighborhood radius for each motif is automatically estimated, as in the

88

AdaptLD algorithm, each feature distance in a candidate seed is compared to the

overall data distribution. As a pre-processing step, the algorithm randomly samples

subsequences from the data set and estimates the overall distribution of pair-wise

distances for each dimension (see Figure 42). Then, during the discovery process, the

distance between corresponding dimensions in a candidate seed motif is computed and

compared to the estimated distribution. If the probability of the distance is large,

then it was likely to have arisen randomly and so the dimension is probably irrelevant.

If, on the other hand, the probability is low, then it is considered surprising and thus

relevant. The classification is determined by a user-specified probability threshold,

and the probability is computed via the cumulative distribution function (CDF) for

the density estimate. In the experiments presented in Section 5.2, a Gaussian distri-

bution was used to model the distribution of distances in each dimension, and the

threshold was set so that relevant distances were smaller than 80% of the random

distances: ∫ d

−∞
p(x) dx ≤ 0.2

where d is the distance in question and p(x) is the distribution of distances in the

overall data set. For the Gaussian case, we have:∫ d

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx =
1

2

(
1 + erf

(
d− µ

σ
√

2

))
Note that in the general case a non-parametric kernel density estimate is straightfor-

ward to implement and can provide a more accurate model than the Gaussian model

that proved sufficient here.

When the subdimensional algorithm is given a fixed neighborhood radius as in

the LocalDisc algorithm, dimension relevance is much simpler to compute. In this

case, no distance distribution is needed. Instead, the distance between the two sub-

sequences in the candidate seed pair in each dimension are sorted in ascending order.

They are then greedily selected until the total, multidimensional distance exceeds

89

the user-specified threshold. Then the subset of dimensions that do not exceed the

threshold are deemed relevant. In both the fixed and estimated radius case, the rest

of the algorithm proceeds in the same way that the corresponding “all-dimensional”

version does, except that the various computations are only performed across the

relevant dimensions (see Algorithm 2 for details).

5.2 Empirical Results

To evaluate the subdimensional discovery algorithm, experiments were run with both

synthetic data that contained planted motifs and with the exercise data described in

Section 4.4. The goal of the evaluation was to characterize the empirical performance

of the algorithm in terms of its run time and its accuracy in light of different kinds

and different amounts of irrelevant data.

5.2.1 Computational Complexity on Synthetic Data

To facilitate empirical complexity analysis, experiments were run with synthetic time

series data with planted motifs. The data and motifs were generated to have similar

statistics and to avoid discontinuities at the motif boundaries (see Figure 41 as a

short example). The benefit of using synthetic data is that we have complete control

over the duration of the overall data set, the length and frequency of the motifs, and

the scale and number of irrelevant dimensions.

For the case of a single planted motif, Figure 43 shows how the subdimensional

algorithm scales as the length of the time series, T , increases (Figure 43a) and as the

length of the motif, M , increases when T is held fixed (Figure 43b). The algorithm is

able to accurately locate the planted motif in all cases, and, importantly, it correctly

identifies the irrelevant dimension. From Figure 43a, we see that the time required

to locate the planted motif scales linearly with the length of the time series. The

dynamic time warp (DTW) distance has a much larger constant factor, however, due

to the higher complexity of that distance measure compared to the sum of absolute

90

Figure 43: The basic subdimensional discovery algorithm scales linearly with both
(a) the size of the time series data and with (b) the length of the motifs. However,
the dynamic time warp distance measure scales quadratically with the length of the
sequences being compared and so it leads to an O(T 2) complexity as the motif length
approaches the overall data length as shown in (b).

differences (i.e., the L1-norm for sequences).

The behavior is different as the motif length increases (Figure 43b). When the

L1 distance metric is used, the algorithm still scales linearly, but when the DTW

distance measure is used, the computation time scales quadratically. This is not

surprising since DTW is itself quadratic in M even when warping constraints are

used (in all of the experiments, we used a 10% Sakoe-Chiba band). In typical cases

of motif discovery, however, M � T , and so linear dependence on T still dominates

the overall run time.

These experiments show the computation time in (wall-clock) seconds and were

run on an Intel Core 2 E6400 CPU operating at 2.13GHz. They were not imple-

mented using a multi-threaded algorithm, however, and thus did not take advantage

of the dual-core CPU. The algorithm was written in Java and only minimal effort

was made to optimize the implementation beyond using data structures that support

the expected algorithmic time and space complexity (e.g., sparse matrices and array-

based sequence storage). As such, the graphs of execution time are intended to show

relative performance and should not be taken as an accurate measure of the optimal

91

Figure 44: Graph showing event-based accuracy as the amount of noise increases in
a single irrelevant dimension. The subdimensional algorithm can detect and ignore
the noise, while the all-dimensional algorithms are disrupted.

run time of the algorithm.

5.2.2 Exercise Data with Irrelevant Features

The experiments in this section evaluate the ability of the subdimensional motif dis-

covery algorithm to detect multivariate motifs in the exercise data set (described

in Section 4.4). Two sets of experiments were run. In the first, the exercise data

was modified by adding increasingly large amounts of noise to a single distracting

noise dimension, while in the second, the data was augmented with many additional

irrelevant dimensions, each with a moderate amount of noise.

Figure 44 shows the results of the first experiment in which a single dimension of

92

Figure 45: Graph showing event-based accuracy as the number of noisy, irrelevant
dimensions increases. The subdimensional algorithm is negatively effected but not
with the same severity as the all-dimensional methods.

noise was added to the six dimensional exercise data. With no additional noise di-

mension, the subdimensional algorithm achieve roughly 80% accuracy while the fixed

radius all-dimensional algorithm performs slightly worse (74.2%) and the automatic

radius estimation version performs substantially better (91.7%). As the scale of the

noise in the extra dimension increases, however, the accuracy of both all-dimensional

systems quickly falls, while accuracy of the subdimensional algorithms remains rel-

atively unchanged. Note that this behavior is expected as the all-dimensional algo-

rithms try to locate motifs that include the (increasingly overwhelming) noise dimen-

sion, while the subdimensional algorithm simply recognizes the irrelevance of that

dimension and then only searches for motif occurrences that span the six remaining

dimensions that contain valid sensor data.

In the second experiment, instead of increasing the scale of the noise, the number

of irrelevant dimensions is increased (see Figure 47 for an example with three irrele-

vant dimension). The noise level in each additional dimension was set to correspond

93

Figure 46: Event-based accuracy for the subdimensional algorithm applied to the
exercise data set for eight different similarity measures.

to a value of four in Figure 44, which gives a signal amplitude similar to the real sen-

sor data. The effect that additional noise dimensions have on accuracy is shown in

Figure 45. The graph shows that the performance of both the all-dimensional and sub-

dimensional algorithms decrease with extra noise dimensions, but the all-dimensional

algorithm decreases much more rapidly. Ideally, the subdimensional algorithm would

detect all of the additional noise dimensions as irrelevant and performance would stay

level as it did in the previous experiment. Instead, the performance drops as extra

dimensions are added. This behavior is likely caused by the algorithm discovering

incidental patterns in the random dimensions which are counted as errors by the eval-

uation framework. The random patterns that arise here are not actually surprising

because the probability of an unintentional pattern increases as the number of noise

dimensions increases. The solution is to move to the discovery model represented

in Figure 40d where motifs can temporally overlap if they use disjoint feature sets.

Under this model, the incidental patterns may still be detected, but they would not

disrupt the detection of the real patterns in the actual sensor data.

Finally, Figure 46 shows the accuracy achieved by the subdimensional discovery

algorithm on the exercise data for different choices of the distance measure. The

results show that calculating the mean distance between two sequences (i.e., the

average distance between the constituent frames) gives better performance than using

94

Figure 47: Three discovered occurrences of the twist curl exercise. The top row
shows the relevant dimensions while the bottom row shows the irrelevant (noise)
dimensions.

the maximum distance across the sequences. For both choices (mean and max) the

dynamic time warp distance provides higher accuracy than the temporally uniform

Lp-norms. However, the difference is quite small when the mean distance is computed

(78.2% vs. 77.3% for L1 distance and 80.6% vs. 79.7% for the L2-norm). In some

domains, the use of the L1-norm is preferred over the Euclidean distance because

it provides additional robustness due to the more conservative penalty on outliers.

For this problem, however, the performance is quite similar between the two distance

measures with the L1-norm achieving a slightly higher accuracy in both the direct

and DTW cases. Because the DTW distance measure does not perform significantly

better in terms of the detection rate, it is probably a worse choice than a direct, non-

time warped metric, which is much more computationally efficient (see Figure 43).

However, this result is highly domain-dependent and so it should be verified for

other data sets and not considered to be a generally applicable preference. Also,

the uniform scaling distance developed by Yankov et al. (described in Section 2.4) is

an intermediate choice that is more efficient than the full DTW calculation but more

sensitive than the direct norm [98].

95

Algorithm 2 Subdimensional Motif Discovery

Input: Time series data (S), subsequence length (w), word length (m), maximum number
of random projection iterations (maxrp), threshold for dimension relevance (threshrel),
and a distance measure (D(·, ·))

Output: Set of discovered motifs including occurrence locations and relevant dimensions

1. Collect all subsequences, si, of length w from the time series S: si = 〈Si, .., Si+w−1〉 :
1 ≤ i ≤ |S| − w + 1

2. Compute p̂(D) ≈ p(D(si,d, sj,d)), an estimate of the distribution over the distance
between all non-trivial matches for each dimension, d, by random sampling

3. Search for values of α (alphabet size) and c (projection dimensionality) that lead to
a sparse collision matrix

4. Compute the SAX word of length m and alphabet size α for each dimension of each
subsequence

5. Build the collision matrix using random projection over the SAX words; number of
iterations = min(

(
m
c

)
,maxrp)

6. Enumerate the motifs based on the collision matrix

(a) Find the best collision matrix entry (ẋ1, ẋ2)

i. Find the largest entry in the collision matrix and extract the set of all
collisions with this value: X = {(x1

1, x
2
1), (x

1
2, x

2
2), ..., (x

1
|X|, x

2
|X|)}

ii. Compute the distance between the subsequences x1
j and x2

j in each collision,
1 ≤ j ≤ |X|, and dimension, d: distj,d = D(sx1

j ,d, sx2
j ,d)

iii. Determine which dimensions are relevant:
rel(d) = I(

∫ distj,d

−∞ p̂(D)) < threshrel)
iv. Select the collision with smallest average distance per relevant dimension:

(x1
j , x

2
j) : j = arg min

j
(

P
d distj,d·rel(d)P

d rel(d))

(b) Estimate the neighborhood radius, R, using only the relevant dimensions

(c) Locate all other occurrences of this motif: min(D(sẋ1 , si), D(sẋ2 , si)) ≤ R

(d) Remove subsequences that would constitute trivial matches with the occurrences
of this motif

96

CHAPTER VI

DISCUSSION

Chapter 3 described five all-dimensional discovery algorithms, while Chapter 4 pre-

sented the results of several experiments that compared the performance of these

algorithms in terms of their ability to “discover” known patterns in both real and

synthetic time series data. One of the primary research goals in developing the dif-

ferent algorithms (four of which were developed as part of this research, while one

acts as a baseline and is essentially unchanged from Chiu et al.’s research [10]) was

to explore different data representations used in the filtering phase of the general

two-phase approach to efficient discovery.

To summarize, the different representations include (see Section 3.1 for details):

1. Global Discretization (GlobalDisc) – The real-valued, multivariate data is

discretized such that each sample is replaced with a single symbol. A speed-up is

achieved because comparing two symbols is fast and unequivocal. Furthermore,

the string-processing community has developed highly efficient data structures

for searching for recurring patterns in strings [24].

2. Local Discretization (LocalDisc, AdaptLD, RP-GML) – Each frame in the real-

valued, multivariate time series data is contextually replaced with a symbol

based on the surrounding data. When different local windows are considered,

the frame may be replaced with different symbols. This representation precludes

the use of string-processing methods, but researchers have developed random

projection methods that can efficiently locate approximate matches despite the

symbol multiplicity [10, 8]. The primary advantages of this approach over global

discretization is that the actual discretization is much faster (primarily because

97

it is only based on the local data instead of the entire data set) and that the

representation is more nuanced.

3. No Discretization (Density) – Although both discretization methods admit

very fast search procedures, a discretization-free approach was developed for

comparison. In theory, the discretization is necessarily an approximation to the

original signal and so should introduce some error in the search. The goal of the

discretization-free filtering algorithm is to avoid these errors while maintaining

sub-quadratic asymptotic complexity as well as fast real-world performance.

This goal was achieved by equating motifs with high-density regions in subse-

quence space and then using a fast, dual-tree based kNN algorithm to directly

estimate the density around each observed subsequence.

The performance of the various algorithms is difficult to summarize due to the

use of many user-specified parameters and the multiple performance criteria (e.g.,

accuracy, efficiency, and parameter sensitivity). For instance, in terms of detection

accuracy, the Density algorithm consistently performs at least as well as the other

methods. However, its run time is also much slower than the local discretization

algorithms, which might be critical for some applications.

Overall, the GlobalDisc algorithm performs worse than the other approaches in

terms of both accuracy and run time. For both criteria, the primary culprit is the

global discretization itself. In terms of computational complexity, the EM algorithm

for learning the Gaussian mixture parameters scales linearly in the size of the data,

however it may still require many passes through the entire data set if many iterations

are needed for reasonable convergence. The implementation used in the experiments

did not take advantage of any spatial partition data structures to accelerate the learn-

ing so that improvement may be one approach to ameliorating the problem. Other

common discretization methods such as vector quantization via the k-means algorithm

98

have similar shortcomings, though that does not mean that all global clustering and

discretization algorithms are too slow. Nonetheless, the resulting accuracy is quite

poor for complex, high-dimensional data sets likely due to the intrinsic difficulty in

computing a global discretization that captures the important differences in the data

while avoiding unwanted boundary effects.

The AdaptLD algorithm includes automatic neighborhood estimation for each dis-

covered motif, whereas the original LocalDisc method uses a fixed, user-specified

parameter. This change provides two important improvements: (1) a reduction in

the number of parameters that must be manually specified and tuned, and (2) a more

sensitive motif model. The AdaptLD algorithm does lead to more accurate results in

some cases, but this improvement is not universal, even amongst the handful of do-

mains explored here. The adaptive algorithm is strictly broader in its representational

power since it could always estimate the neighborhood size of all discovered patterns

to be equivalent to the fixed value provided to the LocalDisc version. In practice,

however, the estimation algorithm is not robust enough to select values that lead to

overall accuracy rates that are optimal or even consistently better than those achieved

after tuning the LocalDisc algorithm. The adaptive algorithm may be useful to give

a baseline value for the user, however. In some situations, the data analyst may have

no idea what radius to specify to the LocalDisc algorithm. One option is to manually

explore the results of different values, but this can lead to many iterations each of

which includes a slow, manual inspection of the discovered motifs. The automatic

estimation procedure may not always provide the best radius estimates, but it may

be helpful to use it as a pre-processing step to provide the appropriate scale for the

radius value to be used with the LocalDisc method.

Although the automatic neighborhood estimation procedure does not always out-

perform the fixed radius algorithm, it may still be preferred in some situations. For

instance, the algorithm requires far less manual tuning and so it may give superior

99

results when only a small amount of analysis time is available. Furthermore, all of the

results presented for the LocalDisc algorithm in Chapter 4 are for the best accuracy

rates achieved after exploring a wide range of parameter values within a supervised

framework. The rationale is that the evaluation should reflect the performance of the

algorithm itself and not the experimenter’s ability to choose good parameter values.

Although the tuning was automated in this case by using the (supervised) evaluation

framework, in a real-world situation it is not unreasonable to assume that a user

would have to try a range of parameter values and manually inspect the results from

each run to select the best patterns. This use-case is facilitated by the extremely fast

run time of the LocalDisc algorithm as it is by far the fastest method. However, to

achieve the accuracy results presented here, it was often necessary to try dozens of

parameter values, which led to a total run time, aggregated across all of the runs, that

exceeded that of a single run of the AdaptLD algorithm. Thus, the adaptive algorithm

often found a reasonable set of patterns much faster than the LocalDisc method,

and it is certainly easier to use since the results are much less sensitive to the portion

size parameter than to the radius size in LocalDisc (see Figures 31 and 32).

6.1 Feature Selection

A core aspect of all learning tasks is the selection of useful features. The importance

of working with appropriate features is no less important for discovery tasks than

it is in other areas of machine learning. The subdimensional discovery algorithm

addresses one aspect of the problem, specifically, the case where there are some useful

features but many others that should be ignored. Neither the subdimensional nor

the all-dimensional algorithms developed as part of this research address the broader

problem of extracting features from the raw data that are better suited for motif

discovery. Instead, the algorithms rely on the user to pre-process the data and submit

useful features as input.

100

Clearly, one can make the discovery process trivial by generating sufficiently dis-

criminative features. In an attempt to avoid undermining the claim that it is the

algorithm that is doing the learning rather than the system designer or user, the ex-

periments presented in Chapter 4 used either raw sensor values or generic, community-

accepted features. For instance, for the exercise data, the six dimensional feature vec-

tor was composed of the raw accelerometer and gyroscope readings. For the speech

data, however, the raw waveform was transformed into multivariate samples com-

posed of MFCCs. Although MFCCs are the result of intense research in the speech

recognition community to generate features that aid the recognition task, they were

deemed acceptable for these experience because they have become a standard pre-

processing step for audio and were not adjusted or tailored to the discovery task in

any way. In fact, the TIDIGITs data set was not processed by the author but was

sent to a colleague who specializes in speech recognition with the request to extract

“standard features for the field.” Similarly, no specialized processing of the ASL

video was performed. Instead, the features were taken from the original recognition

experiments as calculated in 1995. The only additional calculation was the generic

application of a normalization step to remove any bias for the naturally larger features

(e.g., blob mass) over those that are smaller (e.g., orientation angle).

A natural question that arises is how one might go about extracting features that

facilitate discovery. The task is quite difficult because in an unsupervised learning

problem there are few constraints and little information on which to base the trans-

formation. However, given a global objective function (discussed in more detail in

Section 6.2), at least the system can score the overall process. This score may not

directly provide information about how to manipulate the raw data to create useful

features, but it can help rank the quality of the discovered patterns given different

feature extraction methods. The ranking, then, provides the necessary information

to select the best option and may also help guide the search for good features away

101

from those transformations that hide or mask the embedded patterns.

6.2 Global Optimization

One design decision that affects each discovery algorithm but which has not yet

been discussed is the global objective function that the algorithm seeks to optimize.

Algorithms can be classified first by whether or not there is an overarching objective

function and second by what form it takes and how it is optimized. Neither the

LocalDisc nor the AdaptLD algorithms have a global objective function. Instead,

these algorithms attempt to directly detect the recurring patterns and do not try to

model the non-pattern data.

The GlobalDisc algorithm takes an intermediate position. The first phase in-

cludes a criterion based on minimum description length (MDL), which can be seen

as a kind of objective function that directly tries to balance explanatory power with

model complexity. Once motifs are detected in the discrete domain, however, the al-

gorithm learns an HMM and then attempts to detect additional occurrences without

modeling the entire data set.

Finally, the Density and RP-GML algorithms explicitly seek to maximize the total

data likelihood. These algorithms learn generative models (HMMs) for each recurring

pattern as well as for the non-pattern background frames. The assumption is that

the closer the discovered motifs come to matching the “true” patterns in the under-

lying process, the better the motif models will fit the data. The shortcoming of this

approach is that there is no model complexity penalty built in to the formulation. In

a maximum likelihood framework that learns a mixture model, one can always learn

trivial maxima by centering a model on a data point and letting the variance go to

zero. Thus the model becomes a Dirac impulse that gives infinite probability to the

data point over which it is centered. Typically, local maxima in the likelihood pre-

vent algorithms from reaching such trivial parameter settings so long as reasonable

102

initial parameter values are given. However, it is still the case that the likelihood can

always be increased by adding more mixture components, at least until the number of

components equals the number of data points. The Density and RP-GML algorithms

avoid learning such large models through a heuristic stopping criterion, but a more

principled approach based on a global model complexity penalty would be preferable.

6.3 Unsupervised to Supervised Learning Spectrum

The discovery algorithms presented in Chapter 3 take a fairly extreme position along

the spectrum ranging from highly unsupervised algorithms at one end to tightly su-

pervised learning methods at the other. While it is important to explore the feasibility

and limitations of such strictly unsupervised algorithms, my research is not intended

to make the argument that unsupervised methods are always the best choice or even

that they are broadly applicable in real-world scenarios.

Instead, the intended argument is that unsupervised algorithms can find mean-

ingful and useful recurring patterns in realistic data sets, even if very little domain

knowledge is available. In a real world situation, reliable domain knowledge can and

should be provided to the discovery algorithm, and the models and learning algo-

rithms should be tailored to the known constraints of the data. However, a central

tenet and motivation of this research is that “reliable domain knowledge” and “known

constraints” may be much harder to acquire and far less common than often assumed.

Unsupervised algorithms can help test, generate, and adapt the user’s understand-

ing of a domain, and so the algorithms can play an important role in the process of

building a detection or analysis system, even if the final version is not learned solely

through unsupervised discovery.

6.4 Variable-Length Patterns

Many motif discovery algorithms assume that all motifs, and all of the occurrences

of each motif, have a fixed temporal duration [10, 18, 88, 75]. Several proposals

103

have been made for ways of relaxing this assumption and allowing the detection of

variable-length motifs:

• Run-Length Encoding – Although neither proposal in this category is truly

run-length compression, both use the idea of detecting variable-length motifs

by modifying a basic, fixed-length algorithm to be invariant to repetition of cer-

tain symbols in a discrete representation. For instance, Tanaka, Iwamoto, and

Uehara developed an algorithm that assigns a different symbol to each unique

SAX word and then combines runs of a single symbol [89]. When symbolic pat-

terns are detected in the resulting string, each occurrence may have a different

length due to the merging. Using a similar approach, the global discretization

algorithm presented in Section 3.2 modifies the raw symbol string by replac-

ing contiguous runs of a particular symbol with a single instance [57]. While

the RLE approach to variable-length motif discovery does relax the restriction

imposed by earlier methods, it is still far from the general case of allowing for

motifs with arbitrary duration. This shortcoming is due to the fact that the

pattern length in the compressed representation is still fixed.

• Maximal Repeating Patterns – The global discretization algorithm actu-

ally combines two methods to detect variable-length patterns. The RLE-like

approach described above accounts for small, local temporal warping, while the

overall search procedure accounts for patterns with fundamentally different du-

rations. The search uses suffix trees to find maximal repeating patterns, which

are repeating substrings in the data with maximal extent. Here, maximal means

that if any of the occurrences were extended, they would then include different

symbols and thus no longer match. To account for the fact that there may be

N matches with length P but only M matches with length Q (where M < N

and Q > P), the algorithm uses an MDL framework for pattern selection. This

104

approach is actually fully general with respect to locating variable-length mo-

tifs, but the requirement that the time series data be represented with a single

string composed from a global alphabet restricts the representational power too

much to be useful in some complex domains as discussed at the beginning of

this chapter.

• Temporally Flexible Models – Several algorithms use probabilistic temporal

models that inherently model occurrences with a range of durations [69, 57, 58].

These models do not fully address the variable-length pattern restriction, but at

least they allow for variable-length occurrences. The models are used to detect

occurrences by maximizing the data likelihood. This optimization can either be

performed locally and independently (as in [69] and [57]) or within a competi-

tive framework that also models the non-motif data (as in [58]). The primary

drawback of the local, independent approach is that the basic models are biased

toward shorter occurrences since every frame will typically reduce the overall

likelihood. Accounting for this bias is possible, but doing so efficiently is quite

difficult. The Viterbi algorithm, along with the variations used in the discovery

literature, depends on a dynamic programming (DP) solution for efficiency. DP

approaches require that the answers to subproblems are not affected by broader

problems, but counteracting the bias typically requires incorporating the total

match length, which breaks the optimal substructure property. One of the ad-

vantages of the competitive framework is to modify the overall computation in

a way that reduces the bias. In that framework, all of the data must be modeled

and so the motif model will match a frame if it assigns higher likelihood than

any other motif model or the background model. Thus the need for a heuristic

approach to counteract the short match bias is removed. The downside, how-

ever, is that a motif model may match a segment of the data that is not a real

occurrence simply because the other motifs and the background model are even

105

worse. This problem is very difficult to combat since it essentially requires a

very accurate background model, which is rarely possible.

• Temporally Flexible Distance Measures – Yankov et al. developed an

approach for detecting variable-length motif occurrences that relates to the use

of temporally flexible models [98]. Instead of using a probabilistic temporal

model, however, they adopted a distance measure that explicitly searches for

the best match over a small range of durations by uniformly warping the query

instance [40]. Note that this is different than a typical DTW formulation, which

allows local, non-linear warping but generally does not allow the query to match

to a shorter or longer version of the given target sequence (though see Park and

Glass’ segmental DTW [71]). The primary shortcoming of the uniform scaling

approach is the same as that for the model-based warping method, specifically

that it finds variable-length occurrences but does not address the restriction of

fixed-length patterns.

• Temporal Pattern Extension – The final alternative that has been proposed

in the discovery literature is the temporal extension of already-discovered pat-

terns [69, 71, 57]. In this approach, a fixed-length discovery algorithm is used

to locate base patterns, and then each pattern is analyzed to see if it should be

temporally extended, thereby adding adjacent frames to the motif. Oates uses

a statistical test based on the probability of the already-detected occurrences

given the current, fixed-length model along with a user-specified confidence level

to determine when a pattern should be extended [69]. The global discretiza-

tion algorithm analyzes the real-valued data and compares the variance of the

aligned frames within each pattern to that of the adjacent frames to iteratively

extend each motif (see Section 3.2.2 for details). Finally, Park et al. use a

different method where the region around each seed pair is analyzed to find

106

the length-constrained minimum average (LCMA) within the segmental DTW

matrix [71]. The exact occurrence location and duration is then adjusted to

correspond to the contiguous region that has the lowest average deviation. This

broader analysis is possible due to the development of a O(N log L) algorithm

(where N is the total segment length and L is the minimum length of the

minimum average region) for computing the LCMA segment [52].

Although this approach is one of the most promising for locating variable-length

motifs, there are two major problems. First, as argued by Yankov et al., such

methods require that the base algorithm search for patterns that have the small-

est expected duration [98]. This search may be highly inefficient and lead to

many false matches if the final patterns are often longer than the minimum

duration. Second, all of the proposed temporal extension algorithms require a

user-specified parameter. Although the various authors demonstrate improved

results on some data sets, our experiments with the data sets described in Chap-

ter 4 were mixed. It was often difficult to specify parameter values that improved

accuracy and closer inspection showed that within a single data set, a particular

parameter value might improve the accuracy of some patterns while reducing

performance on others. Thus, this approach warrants additional research, but

the current proposals appear to be too sensitive to be broadly applicable for

variable-length motif discovery.

6.5 Run-Time Performance

All of the algorithms discussed in Chapter 3 meet the overall run-time goal of sub-

quadratic complexity in the length of the input data. The absolute run-time and con-

stant coefficients, however, vary dramatically between the different methods. Broadly,

each algorithm embodies a different trade-off between run-time and sophistication,

where simpler methods run much more quickly, but often at the expense of modeling

107

Figure 48: Run-time of a single run of each of the five algorithms on the exercise
data set. Note the logarithmic time scale.

power, generality, or parameter complexity.

Figure 48 summarizes the run-time performance of the five discovery algorithms

on the exercise data set. The values represent the time required to complete the

discovery task for a single run using optimized parameters. In other words, the values

do not include the time required to search for the best parameter values, which can be

significant in some cases. To generate the graphs, each algorithm was executed three

times, and the graph shows the mean run-time along with a one standard deviation

confidence interval. The experiment was run on the same machine used to generate

timing results for the subdimensional algorithm, an Intel Core 2 E6400 CPU operating

at 2.13GHz with an implementation in Java.

The graph shows a clear ranking of the algorithms in terms of their expected run-

time: LocalDisc, AdaptLD, RP-GML, GlobalDisc, and then Density. A logarithmic

scale was required for the temporal axis to account for the wide disparity between

the run-time of the different methods. For instance, LocalDisc requires around

1,200ms to process the exercise data, while AdaptLD uses approximately 1,900ms.

This difference is relatively large when viewed as an increase of over 50%, but we can

see that both algorithms are more than 36 times faster than the next most efficient

108

method.

The RP-GML and GlobalDisc algorithms have similar run times (approximately

69 seconds and 85 seconds, respectively, a difference of around 23%). The RP-GML

method yields much higher accuracy rates, however, and so it is the preferred method

between the two. Across all of the domains explored in Chapter 4, the Density

algorithm consistently yields the highest accuracy rates. It is now clear that this

performance comes at a cost, as this method requires over 245 seconds to analyze the

exercise data, which is roughly 3.5 times slower than the RP-GML method and over

200 times slower than the LocalDisc algorithm.

The use of manually optimized parameters to perform the run-time test skews the

results. In real world scenarios, the manual tuning can be a very time consuming pro-

cess, especially if verification of the discovered patterns requires extensive inspection

of the data or additional experimental validation. Even for the exercise data, where

manually labeled patterns are used to assess detection performance, the LocalDisc

method required over 30 trials to find the best parameters. Thus, even though the

AdaptLD method is over 50% slower than the LocalDisc method, the fact that it

required far fewer trials to find near-optimal parameter values means that in practice

it was on par or even slightly faster than the LocalDisc algorithm. The Density

and RP-GML methods tend to be even more stable, but the corresponding reduction

in the number of trials was not sufficient to compensate for their dramatically slower

run-time.

The use of manually optimized parameters affects the run-time characteristics in

another way as well. Because the algorithms assume that all patterns are temporally

disjoint, each time a motif is discovered, its occurrences can be “removed” from

the data set. This process reduces the amount of data that must be analyzed in

subsequent iterations. In general, this effect is consistent across the different methods,

but poor parameter choices can have a dramatic effect. For instance, for methods that

109

use the hypersphere motif model, a very large neighborhood size will lead to many

false positives (insertion errors), which means that much more data will be removed

in each iteration than is actually warranted. In extreme cases, a large neighborhood

size will lead to far fewer motifs, which can speed up the overall discovery process.

Similarly, if the neighborhood size is too small, there will be a large number of false

negatives (deletion errors), which can lead to many additional discovery iterations

and thus a much longer overall run-time.

6.6 Pattern Hallucination

One can find patterns in any data set. Without some external, objective criterion,

there is no guarantee that discovered patterns are “real” in the sense that they cor-

respond to some underlying process or aberration with desirable properties. In Sec-

tion 7.5, I will discuss the idea of motif ranking that attempts to capture the relative

amount of support a particular pattern has within a data set. Using such a function,

a discovery system can order the detected patterns according to how surprising they

are or how confident the system is that they did not arise randomly.

One common approach to differentiating between “real” and spurious patterns is

to assume a background model for the data. Then, one can compare the probability

of a particular pattern and its associated occurrences under that model. There may

be some threshold that specifies a lower-bound on the probability of a real pattern

under the background model, or one can compare the background probability to

that of a learned model and reject those patterns with a relatively poor ratio. For

instance, Denton uses a random walk background model to infer a threshold in order

to detect interesting recurrences [18]. Similarly, Chiu et al. compute the probability

of a particular symbol sequence using a uniform model and reject potential matches

with a similarity that fails to rise above the predicted level [10].

110

The competitive framework described in Section 3.4.2 incorporates a model-based

method for rejecting spurious patterns that is related to those of Denton and Chiu et al.

Before any motif models are added to the mixture, the algorithm learns the pa-

rameters of a background model. In the experiments of Chapter 4, a three-state,

fully-connected HMM with Gaussian observation distributions was used. This model

provides a baseline probability for each frame in the time series data, and, because

of the overall structure of the competitive learning framework, motif models are only

included in the final output if they lead to a higher probability than the background

model for some segments.

The generic mixture model used as the baseline explanation in the experiments

was sufficient to prevent the motif models from generating too many insertion errors.

However, a more precise model, or even a set of background models, may be required

in other domains. The framework supports such inclusion, although the generalized

Viterbi algorithm currently used to fit the models may need to be adapted.

In order to further investigate the use of a tailored background model to help avoid

false pattern detections, a series of experiments with synthetic data were performed.

The experiments are divided into three categories. In the first category, random walk

data was generated with no motifs. In the second category, a single recurrence was

planted in the random walk data, while the third category is simply the exercise data.

In each case, the RP-GML algorithm is used, and the probability of potential motifs

are compared under the learned motif model, the random walk data model, and the

generic three-state mixture model used in the other experiments. The expectation

is that real patterns should have much higher probability under the learned model

compared to either of the two background models.

In order to generate random walk data with a model that works with the existing

discovery system, a HMM with a hand-crafted topology was built (see Figure 49).

The model always starts in the state to the far left, which has a Gaussian observation

111

Figure 49: The HMM topology used to generate the random walk data (self-
transitions are not shown)

Figure 50: Graph showing a segment from the random walk data generated to test
spurious pattern suppression.

distribution centered at zero. It can then transition to either “arm,” where each

state has a Gaussian with its mean shifted in either the positive (upper arm) or

negative (lower arm) direction. For the experiments, the HMM was built with 33

states, which includes the zero state in the center and 16 states for each arm. The

state transitions are also biased so that it is slightly more likely to move toward the

zero state than farther away in the positive or negative direction. This bias helps the

model from being “stuck” at the end of the arm, which corresponds to an artificial

bound on the range of the generated data. Overall, the model is similar to a first-

order autoregressive process with a parameter slightly less than one (see Figure 50

for an example).

112

Figure 51: Graph showing a pair of similar subsequences detected by the discovery
system in the random walk data. Although the sequences are visually similar, the
random walk model still provides a higher probability than the learned model, thus
allowing the proposed pattern to be rejected as spurious.

The first experiment involves data sampled from the random walk HMM. When

the generating model is used as the background model, the discovery algorithm gen-

erates several candidate motifs, but none are actually matched by the motif models.

In other words, the algorithm initializes a HMM for each potential motif, but in each

case, the background model gives a higher probability to the relevant subsequences

and so no occurrences are detected. On the other hand, when the standard three-

state background model is used, the algorithm does find some motifs (see Figure 51).

In each case, there is a clear similarity between the occurrences detected, and the

learned model does give higher probability than the three-state background model.

When a post-analysis is applied to the motif occurrences, however, it is clear that the

learned models are no better (and certainly not significantly better) than the random

walk model.

Three trials were run with pure random walk data. The only difference between

them is the amount of data generated. The first trial included 10,000 frames, the

second had 20,000, while the third had 100,000. Theoretically, it is more likely for a

spurious pattern to arise in a larger data set, and so we wanted to avoid an artificial

113

null result that might have resulted if only small data sets were analyzed. We found no

significant difference in the results across the three data sets, however. In each case,

the random walk model yielded higher probabilities than the three-state background

model and the learned motif models.

In the second experiment, the same random walk HMM was used to generate

synthetic data and a single pattern with two occurrences was planted in the data.

This data is similar to that used to empirically evaluate the computational complexity

of the subdimensional algorithm as described in Section 5.2.1. The expected result

is the same as in that case, namely that the algorithm will find the planted motif

and no others. Importantly, the probability of the planted motif given the learned

model should be higher than either the generic background model or the random walk

model.

The result of the experiment matches the expectation. When either the three-state

or random walk model was used as the background model, the discovery algorithm

detected the planted motif. Furthermore, in both cases, the learned model yielded

a significantly higher probability than the others. Specifically, when the three-state

model was used as the background model, the two planted occurrences had a log-

likelihood of -25.5 and -32.3 under the learned model but only -126.2 and -125.1 under

the random walk model. When the random walk model was used as the background

model, the algorithm found slightly different boundaries, which gave a log-likelihood

of -8.2 and -9.0 for the learned model but only -120.12 and -120.07 for the random

walk model. In both cases, the log-likelihood under the generic, three-state model

was less than -300.

The results for the second potential motif detected by the discovery algorithm is

similar to the previous experiment where there were no actual patterns. For these

occurrences, the random walk model model gave log-likelihood values of -158.5 and

-155.0, while the learned model gave -166.1 and -162.3. Thus, this pattern, along with

114

the other potential detections that have similar probabilities, can be rejected. Note

that the three-state model again yielded a much smaller likelihood.

In the final experiment, the random walk model was applied to the results of

the hybrid discovery algorithm when applied to the exercise data set. In this case,

all of the discovered motifs had a higher probability under the learned model than

under the random walk or three-state models. In fact, none of the likelihoods were

even close (the most similar had a log-likelihood around -122 for the learned model

compared to -190 for the random walk model). This implies that either the random

walk model is a poor choice for a baseline or that none of the patterns are spurious.

Further, manual investigation revealed that the detected patterns beyond the six

expected exercises and a seventh rest state were, in fact, interpretable. For instance,

after detecting the actual exercises, the algorithm found four motifs that always oc-

curred just before one of the exercises. As such, they can be interpreted as a kind

of prefix or preparatory movement that serves as a transition from the rest state to

the start of a new exercise. The subsequent motifs are somewhat harder to interpret,

but can be summarized as a post-exercise transition (the pattern only occurred after

the tricep and shoulder press exercises) and then a completion pattern, which only

occurred after a shoulder press at the very end of a sequence.

6.7 Overlapping Patterns

A basic assumption made by all of the discovery algorithms developed in this work is

that the patterns in a data set are temporally disjoint. This assumption is incorpo-

rated into both the traditional, “all-dimensional” algorithms described in Chapter 3

as well as the subdimensional algorithm presented in Chapter 5. The assumption,

however, is not required for efficient pattern discovery. In fact, the original formu-

lation of the LocalDisc algorithm by Chiu et al. allowed for partially overlapping

patterns [10]. The problem of trivial matches was avoided by using a more precise

115

testing mechanism based on the hypersphere motif model as described in Section 3.3.1.

Several questions naturally arise due to the assumption of temporally disjoint

patterns. First, what happens when an algorithm that makes this assumption is

applied to data in which the real patterns do, in fact, overlap? Second, how frequently

should we expect the patterns to overlap in real data sets, and third, how can the

discovery algorithms presented here be enhanced to support the proper detection of

overlapping patterns?

The answer to the first question depends on the amount of overlap and on the

frequency of each overlapping pair of patterns. The behavior will depend on the

relative frequency of the combination. Consider two patterns, A and B, such that a

long prefix of B overlaps a long suffix of A. There are four main cases based on how

frequently each component occurs independently:

1. Neither A nor B frequently occur outside of the combination AB

2. A, but not B, frequently occurs outside of AB

3. B, but not A, frequently occurs outside of AB

4. Both A and B frequently occur independently and only sometimes occur to-

gether as the combination AB.

In the first case, the algorithm will simply detect the combination AB as a single

pattern. There is little supporting evidence in the data from which the algorithm can

infer that the combination should be decomposed. Presumably, the fact that there

are actually two distinct patterns is only known due to external domain knowledge

or other semantic information. Since the discovery algorithm does not have access

to such information, it will have no way of knowing that the pattern AB should be

divided.

The second and third cases are symmetric and so only the second case will be

discussed explicitly. Because A frequently occurs outside of the combination, the

116

algorithm will likely detect it as an independent pattern. It will then detect B as just

the suffix of AB if the overlap is small or may identify the two patterns as A and AB

if the overlap is large. In the latter case, the large amount of overlap causes the “tail”

of AB to have too short a duration to be independently discovered.

The final case is similar to the previous situation except that both A and B will

be independently discovered. Then, AB may still be identified as a separate pattern

if the overlap is high. Otherwise, the discovery algorithm should be able to detect the

separate A and B patterns in the combined AB occurrences. The small overlapping

region will be included in one or the other pattern depending on the local noise and

the variance learned by the motif models.

With regard to how common overlapping patterns are in real data sets, a definitive

answer is difficult to provide since the question is inherently empirical. A common

case for overlapping patterns is when there is co-articulation (or the appropriate gen-

eralization for data sets outside of the speech domain) between consecutive patterns.

For instance, an English speaker may blur the boundaries of two adjacent words as

in the transition between “want” and “to” in the phrase, “I want to go to the store.”

Similarly, a signer may blur the end of one gesture with the beginning of the next

sign. Co-articulation effects that only have a short duration are probably quite com-

mon, but this case is also the least disruptive to algorithms that make the disjoint

assumption.

Finally, adapting the discovery algorithms to remove the disjoint pattern assump-

tion is relatively easy given a procedure to detect trivial matches. The key limitation

in the current implementation is that after a motif is detected, the algorithm removes

all of the data frames “explained” by the motif occurrences from the list of “unex-

plained” frames. This change precludes further processing of those frames, which

ensures that no future motif will overlap the one that was just detected.

117

If the algorithm does not remove the relevant frames from the analysis list, then it

can detect overlapping motifs in future iterations, but it will also likely detect false or

duplicate patterns due to trivial matches. The solution is to store more detailed infor-

mation about each frame and then to remove a smaller number of frames around each

occurrence. Instead of keeping track of which frames have been explained by a motif

and which have not, the discovery system will need to store whether or not a particu-

lar frame is a valid starting location for motif occurrences. Clearly, the first frame of

a detected occurrence is no longer valid as it would lead to a duplicate detection. In

addition, all frames surrounding it should be marked as invalid if the corresponding

occurrences would constitute trivial matches. By only removing the offending frames

from the list of potential starting points for future pattern occurrences, the system

can avoid trivial matches while still allowing overlap.

For those algorithms that do not use the hypersphere motif model, a new defini-

tion of a trivial match is needed. By analogy, a viable definition based on probabilistic

temporal models could be developed as follows:

Given an occurrence Oi starting at frame i with motif model λM

and background model λB, a subsequence Oj starting at frame j is

a trivial match of Oi iff:

¬∃k : ((i < k < j) ∨ (j < k < i)) ∧ p(Ok|λB) > p(Ok|λM)

In other words, if there is a model for one occurrence, another subsequence is a trivial

match if there is no subsequence between the two that is more probable under the

background model than under the relevant motif model.

A final complication arises from the Viterbi-based model fitting method used by

the Density and RP-GML methods. An efficient implementation of the algorithm

is based on a dynamic programming formulation, which depends on the restriction

that each frame of data is explained by a single model. It is not clear how to relax

118

this restriction while maintaining the desired run-time characteristics. Adapting this

aspect of the discovery algorithm to allow overlapping patterns is an open research

problem, but one can still use a pure search-based approach as in the LocalDisc and

AdaptLD algorithms.

119

CHAPTER VII

FUTURE WORK AND CONCLUSIONS

The development of unsupervised recurring pattern detection algorithms for multi-

variate, real-valued signals is a relatively unexplored research area and so it is not

surprising that there are many open issues that warrant further investigation. The

most obvious direction is to try to improve the algorithms presented here in terms

of their basic goals, specifically to reduce the overall run time, to improve detection

accuracy, and to remove or automatically estimate the user-specified parameters re-

quired by the various methods. The remainder of this chapter outlines several other

research directions that can help improve the basic algorithms and broaden their

applicability.

7.1 Online Discovery

All of the methods presented here are batch algorithms. In other words, the analysis

takes place after all of the data has been collected rather than in an online fashion

either as the data is collected or in a one-pass, sequential manner. While this approach

makes sense in many situations, it can cause problems for massive data sets that

do not fit into main memory or for streaming data that is never fully collected.

The memory constraint is an issue because retrieving data from a hard drive or

other inexpensive mass storage devices is orders of magnitudes slower than accessing

data in main memory. The need to continually retrieve different parts of the data

from secondary storage means that a low complexity algorithm may actually run

more slowly than a simpler algorithm with a worse asymptotic bound. This effect is

especially pronounced if the simpler algorithm accesses the data in a manner that is

more efficient for the underlying medium. For instance, data can be retrieved more

120

quickly from a traditional hard drive when it is accessed sequentially rather than in

a random fashion that requires the drive head to seek more often.

Catalano et al. developed an online recurring pattern discovery algorithm for

real-valued signals [9]. To my knowledge it is the only online algorithm of its kind.

The approach is very efficient but relies on a limited memory both for efficiency

reasons and to allow online processing (see Section 2.4 for a brief summary of their

algorithm). Improvements could be made by improving the temporal range over

which the algorithm can detect repeated patterns and by incorporating online feature

selection to allow subdimensional discovery.

7.2 Coarse-to-Fine Processing

It should be possible to realize efficiency gains in the discovery algorithm with only

a very small accuracy penalty by utilizing a coarse-to-fine processing strategy. Such

methods are often used in image processing and other signal processing areas to

accelerate search algorithms, typically via early rejection schemes. Note that in the

context of multivariate pattern discovery, the coarse-to-fine approach can be applied

in two ways. First, the temporal sampling rate can be downsampled to produce a

“pyramid” of signals at successively lower sampling frequencies. Then, the similarity

between two segments can be estimated from the signal at a lower sampling rate,

potentially detecting poor matches without analyzing the full data set.

The second approach is to embed the multivariate samples into a lower-dimensional

space. For instance, one can compute the principal components of the signal, treat-

ing each sample as a separate data point and then reconstruct a low-dimensional

approximation from the top few components. Similarly, other dimensionality reduc-

tion methods such as Isomap, locally-linear embedding, manifold sculpting, random

projection, or any of the other variations proposed in the literature could be used.

The goal is the same as for temporal downsampling: if two segments are sufficiently

121

different in the low-dimensional space then they do not need to be compared in

the original, high-dimensional space. Although this approach only gives a constant

speed-up, since the maximal reduction is from the original D dimension down to one,

it may be possible to combine this method with other speed-up techniques to give a

non-negligible boost to the real-world performance.

7.3 Higher-level Learning & Feedback

The typical output of motif discovery algorithms is a list of motifs including a model

for each pattern and a list of occurrences in the given time series data. In a suc-

cessful application of pattern discovery for structured activity data, the motifs will

correspond to the primitive actions that make up the activity. Thus, one should be

able to analyze the temporal relationships between the motifs to uncover the higher-

level structure of the underlying activity. For instance, for speech data, the motifs

will likely correspond to the words in the language, while the temporal relationships

provide information about the grammar.

The additional information contained in the higher-level structure can be very

helpful for forming a complete understanding of the data, and it is especially useful

if the learning system intends to use the discovered primitives as the basis for future

planning or inference. The temporal relationships can indicate causal relationships

or at least significant temporal correlations, and knowledge of these correlations can

extend the horizon over which the system can accurately reason and predict.

If the discovery system is able to infer reliable temporal relationships between

different motifs, it may also be able to use that information to improve the base

pattern detection. For example, if the system observes that Motif 9 typically follows

Motif 2 and it detects an unpaired occurrence of Motif 2, it can allocate more

resources to the search or can relax the detection threshold for a subsequent Motif

9. Of course more complex relationships are also possible, and the entire process can

122

be wrapped in an iterative loop that alternates between detecting motifs using the

current estimate of the higher-level structure and then re-estimating the structure

from the detected motifs.

Another benefit of inferring higher-level structure as part of the discovery process

is that it can alleviate the confusion of multi-part motifs. For example, consider the

flat curl and twist curl movements from the exercise data set. Both of these

exercises start with the same motion but then diverge mid-way through due to the

rotation in the forearm in the twist curl exercise. A discovery system could rea-

sonably detect the two parts separately, especially if the system is designed to allow

large variations in the motif duration. The first half of the exercises has much bet-

ter support since it occurs roughly twice as often as either individual exercise. The

same situation occurs in speech data with multi-syllabic words. A discovery system

could detect common word parts instead of individual words. Similarly, it could err

on the side of extension and detect common phrases. If the system discovers a hi-

erarchy of motifs and temporal relationships between them, then this confusion is

reduced since the hierarchy encodes the information that pattern subparts have a

strong correspondence.

7.4 Automatic Timescale Estimation

The user-specified parameter that is most difficult to specify yet is required by all of

the motif discovery algorithms is the one that controls temporal scale. The various

algorithms differ with regard to how much deviation is allowed in the duration of

a pattern before the algorithm becomes unable to detect it, but almost all of them

rely on the user-specified time scale parameter to some extent. The sole exception

is the global discretization algorithm (see Section 3.2) which avoids the time scale

parameter by using a suffix tree that can efficiently find recurring patterns of any

length. That approach is plagued by other shortcomings, however, and so it is not a

123

general solution.

One approach to automatically estimating the best time scale for analysis and to

detect patterns at multiple time scales is to use a temporal multiresolution analysis

as discussed in the previous section. At each temporal resolution, the algorithm can

search for recurring patterns and notify the user. A more powerful unsupervised

algorithm would globally rank the patterns (see the next section for details on motif

ranking) in an effort to avoid overwhelming the user with redundant, overlapping

patterns.

7.5 Motif Ranking

Motif ranking is the process of calculating the relative support of two motifs or other-

wise assessing their “interestingness.” When pattern discovery is tied to a particular

domain, as in the discovery of motifs in nucleotide sequences in bioinformatics, this

problem can be addressed by applying domain knowledge. For more general data

mining, such domain knowledge is not available and so a different solution is needed.

Researchers have adopted various approaches that implicitly sort the motifs without

explicitly investigating the effects of the implicit ranking function. For instance, the

LocalDisc method addresses the problem by making simplifying assumptions about

the form of a motif and greedily detecting motifs according to their similarity as

measured by the collision matrix, which does not directly depend on each pattern’s

support.

In some cases, the relative ranking of two motifs is very clear. For instance, if

Motif 1 has 35 occurrences with an average similarity of 1.4 while Motif 2 has 47

occurrence with an average similarity of 1.1, Motif 2 clearly has higher support and

thus should be ranked above Motif 1. Note that the concept of subsequence density

as a single measure of support captures exactly this relationship. The situation be-

comes more complicated when the base measures diverge, for instance if one motif has

124

more occurrences but lower similarity than another. The inclusion of variable-length

motifs also complicates motif ranking. Although it is clear that if two motifs have

otherwise similar characteristics, the one with longer duration should be preferred,

the best interaction between duration, similarity, and number of occurrences for motif

ranking is unknown.

It is unlikely that a solution to the motif ranking problems exists that is optimal in

all cases, and little research has investigated methods customized for specific domains.

One approach is to develop a formula that aligns closely with human judgement to

help provide a general purpose baseline. In the field of computer vision, researchers

have developed mathematical models of human surprise in an effort to understand and

simulate the human visual attention mechanism [32]. An interesting research direction

is to investigate ways of adapting this work to estimate the surprise associated with

a particular motif given the data set in which it is embedded. This framework may

improve our understanding of the relationship between existing methods and aid in

the development of new algorithms designed around explicit ranking functions.

7.6 Interactive Discovery

As discussed in Section 6.3, there exists a spectrum ranging from unsupervised algo-

rithms with minimal bias to supervised algorithms that take advantage of extensive

domain knowledge and training data. One intermediate approach that has received

relatively little attention is interactive discovery. In such a system, the system begins

the discovery process and can solicit feedback and suggestions from the user when

needed. The user can also view intermediate results as they are computed and can

correct mistakes or guide the system toward other solutions.

The goal of an interactive discovery system is to utilize the strengths and avoid

the weaknesses of both the automated algorithm and the human user. Typically, the

user has some idea of the kinds of patterns that may arise or can at least identify

125

Figure 52: Interface for manually adjusting the threshold for removing “silence” in
the time series data. The interface supports both a constant and locally linear silence
model.

corrections, uninteresting repetitions, or subtle patterns that an automated algorithm

may have difficulty detecting. Conversely, computational systems lack extensive ex-

perience in the world and the common sense that naturally arises in humans due to

that experience. They do not, however, suffer from fatigue, boredom, or technical

imprecision and thus can be much more efficient at analyzing massive data sets and

carrying out straightforward calculations.

The idea of interactive learning has been previously explored for supervised learn-

ing tasks [95, 21]. For instance, Fails and Olsen developed an interactive system for

computer vision that learns to segment hands over cluttered backgrounds by detect-

ing skin-colored pixels [21]. The system starts with a very small training set and then

iterates between learning a classifier and asking the user for additional training ex-

amples. The key insight is that the user is not required to provide extensive training

data nor carefully selected examples. Instead, the training data and thus the classifier

is continually refined in each iteration, and the user is aided because the system will

126

Figure 53: Graphical interface for interactive motif discovery. This display shows
sample occurrences, the occurrence distance graph and associated threshold, pre-
viously discovered patterns, and a dendrogram summarizing the relative similarity
between the patterns.

classify all of the pixels and present a visual display of the results. The user can then

focus on just the mistakes made by the classifier and make a quick annotation that

drives the next round of learning.

Within the data mining and visual analytics communities, many systems have

been developed to allow large-scale data visualization, interactive queries, and sum-

marization. I am not aware of any interactive systems for the kind of temporal pattern

discovery explored in this research, however. I have implemented a preliminary in-

terface for exploring the different approaches to interactive discovery (see Figures 52

and 53). This interface provides a visualization of the data being analyzed, the pat-

terns detected, and the similarity between those patterns. It also allows the user to

directly manipulate the pattern boundaries, which facilitates variable-length motif

detection, and it provides a mechanism for merging patterns that were erroneously

detected as distinct motifs.

127

The interface is designed to be as domain independent as possible, but it does

allow the incorporation of custom modules that are tailored to the kind of data being

analyzed. For example, there is an interactive map component that renders GPS

traces, a video component that can render multiple video segments side-by-side to

facilitate a visual assessment of similarity, and an audio component that shows the

spectrogram of a segment and allows playback.

Initial experiments with the exercise data set show that higher accuracy rates can

be achieved using the interactive system compared to a fully unsupervised algorithm.

This result is not surprising given that the unsupervised algorithm already performs

well and considering that the data set is relatively simple. Additional experiments

are needed to evaluate the usefulness of the interface with different data sets, different

domains, and with users with varying levels of familiarity with both the tool and the

data.

7.7 Predictive Motifs

In this research, a motif has been defined as a set of similar subsequences embedded

in time series data. Typically, a discovery algorithm will also learn a model that

captures the salient features of the set so that additional occurrences can be detected

in new time series. It is assumed that motifs with high similarity are unlikely to

arise randomly and thus will provide insight into the underlying phenomena and

will be useful for prediction or planning. The discovery algorithms presented here

and elsewhere in the literature, however, do not guarantee that the motifs are useful

nor is any notion of predictive power built in to the overall search or optimization

procedures.

For some applications, a more useful tool would explicitly search for patterns

that help make predictions about upcoming observations. A simple way to detect

such patterns is to run a standard discovery algorithm and then test each motif to

128

determine its predictive power. This approach may prove to be quite inefficient,

however, if most of the discovered patterns turn out to provide little information

about future data. A more interesting and challenging approach would incorporate

the predictive requirement into the search procedure itself.

7.8 Transfer Learning

Transfer learning is a form of machine learning in which a solution for one problem

is used to help find a solution for another problem more quickly than would be

possible with a direct search. For pattern discovery, ideas from transfer learning can

be applied by analyzing data in one domain and learning useful parameter values that

can be used for future analysis in related domains. For instance, the typical word

duration and the number of temporal bins needed to analyze speech data within a

local discretization framework may be relatively stable across speakers and across

languages. Thus, after performing a “blind” search on several base speech data sets,

the discovery system can save the best parameter values and then use them to guide

the search on future speech data. This approach becomes even more useful if the

base data sets are manually annotated so that the parameters can be revised under

supervision. The goal is that the analysis of future speech data sets would require

less time since the parameters would not need to be adapted and that they would be

more accurate.

7.9 Conclusions

In this dissertation, we have explored several approaches to real-valued, multivariate

motif discovery. Two variations were investigated. In the “all-dimensional” case,

several algorithms were developed to efficiently detect unknown recurring patterns

when all of the dimensions in the time series data were relevant to the patterns.

Broadly, the algorithms first run a fast, coarse analysis to detect candidate patterns,

and then perform a more detailed analysis to select the patterns with the best support.

129

Three approaches for the coarse analysis were analyzed: global discretization, local

discretization, and a real-valued density-based method. The experiments indicated

that the global discretization could be very brittle, the density-based approach was

the most accurate, while the local-discretization provided a nice trade-off between

execution speed and detection accuracy.

In addition, two motif models were evaluated: a prototype-based hypersphere

detector and a HMM-based model. For data sets with relatively dense patterns

or for those with simple non-pattern regions, the HMM-based model used within

a competitive framework led to higher accuracy rates than the hypersphere model.

Detecting patterns using the hypersphere model lead to better results, however, when

the background data was complex. In those situations, the background HMM was

too general, which led to false positive errors when the motif models gave higher

likelihood scores to non-pattern regions than the background model.

The second pattern discovery variation explored in this dissertation is the subdi-

mensional version. Subdimensional discovery requires that the algorithm determine

which dimensions of the time series data are relevant to each pattern. An exten-

sion of the AdaptLD algorithm was developed that is able to detect patterns despite

distracting features and can then determine which features are relevant.

The discovery algorithms and associated experiments presented here demonstrate

that unsupervised detection of recurring temporal patterns can be both fast and

accurate across many different domains. There is still much research that needs to

be done to broaden the applicability of discovery algorithms and make them easier

to use and less sensitive to the given parameters. The methods developed as part of

this research, however, represent a step forward for multivariate time series analysis.

130

REFERENCES

[1] Alon, J., Sclaro, S., Kollios, G., and Pavlovic, V., “Discovering clus-
ters in motion time-series data,” in IEEE Computer Vision and Pattern Recog-
nition Conference, 2003.

[2] Ashbrook, D. and Starner, T., “Using GPS to learn significant locations
and predict movement across multiple users,” in Personal and Ubiquitous Com-
puting, pp. 275–286, October 2003.

[3] Bailey, T. and Elkan, C., “Fitting a mixture model by expectation maxi-
mization to discover motifs in biopolymers,” in Second International Conference
on Intelligent Systems for Molecular Biology, pp. 28–36, AAAI Press, 1994.

[4] Black, M. and Jepson, A., “Recognizing temporal trajectories using the con-
densation algorithm,” in 3rd IEEE Int. Conf. on Automatic Face and Gesture
Recognition, pp. 16–21, April 1998.

[5] Blekas, K., Fotiadis, D., and Likas, A., “Greedy mixture learning for
multiple motif discovery in biological sequences,” Bionformatics, vol. 19, no. 5,
2003.

[6] Bobick, A. F. and Wilson, A. D., “A state based approach to the repre-
sentation and recognition of gesture,” IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), vol. 19, pp. 1325–1337, December 1997.

[7] Brand, M., Oliver, N., and Pentland, A., “Coupled hidden markov mod-
els for complex action recognition,” in Computer Vision and Pattern Recogni-
tion, 1997.

[8] Buhler, J. and Tompa, M., “Finding motifs using random projections,” in
International Conference on Computational Biology, pp. 69–76, 2001.

[9] Catalano, J., Armstrong, T., and Oates, T., “Discovering patterns in
real-valued time series,” in Proc. of the Tenth European Conf. on Principles
and Practice of Knowledge Discovery in Databases (PKDD), September 2006.

[10] Chiu, B., Keogh, E., and Lonardi, S., “Probabilistic disovery of time series
motifs,” in Conf. on Knowledge Discovery in Data, pp. 493–498, 2003.

[11] Clarkson, B. and Pentland, A., “Unsupervised clustering of ambulatory
audio and video,” in ICASSP, 1999.

131

[12] Cleveland, W., “Robust locally weighted regression and smoothing scatter-
plots,” Journal of the American Statistical Association, vol. 74, pp. 829–836,
December 1979.

[13] Cohen, P. R., Oates, J. T., and Beal, C. R., “Robots that learn mean-
ings,” in submitted to First Joint Conference on Autonomous Agents and Mul-
tiagent Systems, 2002.

[14] Comaniciu, D. and Meer, P., “Mean shift: A robust approach toward fea-
ture space analysis,” IEEE Transactions On Pattern Analysis And Machine
Intelligence, vol. 24, pp. 603–619, May 2002.

[15] Comaniciu, D., Ramesh, V., and Meer, P., “The variable bandwidth mean
shift and Data-Driven scale selection,” in IEEE Int. Conf. Computer Vision,
pp. 438–445, July 2001.

[16] Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms.
The MIT Press, 1997.

[17] d’Avella, A. and Bizzi, E., “Shared and specific muscle synergies in natural
motor behaviors,” Proc. of the National Academy of Science of the United States
of America, vol. 102, no. 8, pp. 3076–3081, 2005.

[18] Denton, A., “Kernel-density-based clustering of time series subsequences us-
ing a continuous random-walk noise model,” in Proceedings of the Fifth IEEE
International Conference on Data Mining, November 2005.

[19] Doucet, A., de Freitas, N., and Gordon, N., Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[20] Duda, R., Hart, P., and Stork, D., Pattern Classification, 2nd ed. John
Wiley & Sons, Inc., 2001.

[21] Fails, J. A. and Olsen, Jr., D. R., “Interactive machine learning,” in 8th
International Conference on Intelligent User Interfaces, pp. 39–45, ACM, 2003.

[22] Gaffney, S. and Smyth, P., “Joint probabilistic curve clustering and align-
ment,” in Advances in Neural Information Processing, vol. 17, 2004.

[23] Gray, A. G. and Moore, A. W., “Very fast multivariate kernel density
estimation via computational geometry,” in Proc. of the ASA Joint Statistical
Meeting, 2003.

[24] Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cmbridge University Press, 1997.

[25] Hamid, R., Maddi, S., Bobick, A., and Essa, I., “Structure from statistics
- unsupervised activity analysis using suffix trees,” in Proc. of Int. Conf. on
Computer Vision, 2007.

132

[26] Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., and Cole-
man, G., “Detection and explanation of anomalous activities: Representing
activities as bags of even n-grams,” in Computer Vision and Pattern Recogni-
tion, June 2005.

[27] Hamid, R., Maddi, S., Johnson, A., Bobick, A., Essa, I., and Isbell,
C., “Unsupervised activity discovery and characterization from event-streams,”
in Uncertainty in Artificial Intelligence, July 2005.

[28] Hand, D. J. and Bolton, R. J., “Pattern discovery and detection: A unified
statistical methodology,” Journal of Applied Statistics, vol. 31, no. 8, pp. 885–
924, 2004.

[29] HTK, “HTK Speech Recognition Toolkit. Machine Intelligence Laboratory,
Cambridge University. http://htk.eng.cam.ac.uk,” 2007.

[30] Huynh, T. and Schiele, B., “Unsupervised discovery of structure in activity
data using multiple eigenspaces,” in 2nd International Workshop on Location-
and Context-Awareness (LoCA), Springer, May 2006.

[31] Isard, M. and Blake, A., “CONDENSATION – conditional density prop-
agation for visual tracking,” Int. Journal on Computer Vision, vol. 29, no. 1,
pp. 5–28, 1998.

[32] Itti, L. and Baldi, P., “A principled approach to detecting surprising events
in video,” in Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), (San Siego, CA), pp. 631–637, June 2005.

[33] Ivanov, Y. and Bobick, A., “Recognition of visual activities and interactions
by stochastic parsing,” PAMI, vol. 22, pp. 852–872, August 2000.

[34] Jensen, K., Styczynski, M. P., Rigoutsos, I., and Stephanopoulos,
G., “A generic motif discovery algorithm for sequential data,” Bioinformatics,
vol. 22, no. 1, pp. 21–28, 2006.

[35] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S., “Di-
mensionality reduction for fast similarity search in large time series databases,”
Journal of Knowledge and Information Systems, vol. 3, no. 3, pp. 263–286, 2000.

[36] Keogh, E. and Folias, T., “UCR time series data mining archive,” 2002.

[37] Keogh, E., Lin, J., and Truppel, W., “Clustering of time series subse-
quences is meaningless: Implications for past and future research,” in ICDM,
pp. 115–122, 2003.

[38] Keogh, E., “Personal communication,” 2006.

[39] Keogh, E. and Ratanamahatana, C. A., “Exact indexing of dynamic time
warping,” Knowledge and Information Systems, vol. 7, no. 3, pp. 358–386, 2005.

133

[40] Keogh, E., “Efficiently finding arbitrarily scaled patterns in massive time
series databases,” in Principles and Practice of Knowledge Discovery, pp. 253–
265, 2003.

[41] Ketkar, N., Holder, L., Cook, D., Shah, R., and Coble, J., “Subdue:
Compression-based frequent pattern discovery in graph data,” in ACM KDD
Workshop on Open-Source Data Mining, August 2005.

[42] Kuhn, H. W., “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[43] Lafferty, J., McCallum, A., and Pereira, F., “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,” in Int.
Conf on Machine Learning, 2001.

[44] Leonard, R. G., “A database for speaker-independent digit recognition,” in
Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
pp. 328–331, March 1984.

[45] Leonard, R. G. and Doddington, G., “TIDIG-
ITS Linguistic Data Consortium, Philadelphia
(http://www.ldc.upenn.edu/catalog/catalogentry.jsp?catalogid=ldc93s10),”
1993.

[46] Leonardis, A., Bischof, H., and Maver, J., “Multiple eigenspaces,” Pat-
tern Recognition, vol. 35, no. 11, pp. 2613–2627, 2002.

[47] Lester, J., Choudhury, T., Kern, N., Borriello, G., and Hannaford,
B., “A hybrid discriminative-generative approach for modeling hman activi-
ties,” in Proc. of Int. Joint Conf. on Artificial Intelligence, July 2005.

[48] Liao, L., Choudhury, T., Fox, D., and Kautz, H., “Training conditional
random fields using virtual evidence boosting,” in International Joint Confer-
ence on Artificial Intelligence, January 2007.

[49] Liao, T. W., “Clustering of time series data - a survey,” Pattern Recognition,
vol. 38, no. 11, pp. 1857–1874, 2005.

[50] Lin, J., Keogh, E., Lonardi, S., and Chiu, B., “A symbolic representation
of time series, with implications for streaming algorithms,” in 8th ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
June 2003.

[51] Lin, J., Vlachos, M., Keogh, E., and Gunopulos, D., “Iterative incre-
mental clustering of time series,” in Int. Conf. on Extending Database Technol-
ogy, pp. 106–122, 2004.

134

[52] Lin, Y.-L., Jiang, T., and Chao, K.-M., “Efficient algorithms for locat-
ing the length-constrained heaviest segments with applications to biomolecular
sequence analysis,” Journal of Computer and System Sciences, vol. 65, pp. 570–
586, January 2002.

[53] Liu, T., Fast Nonparametric Machine Learning Algorithms for High-
dimensional Massive Data and Applications. PhD thesis, Carnegie Mellon Uni-
versity, 2006.

[54] Loftsgaarden, D. and Quesenberry, C., “A nonparametric estimate of a
multivariate density function,” The Annals of Mathematical Statistics, vol. 36,
pp. 1049–1051, 1965.

[55] Lukowicz, P., Ward, J., Junker, H., Stäger, M., Tröster, G.,
Atrash, A., and Starner, T., “Recognizing workshop activity using body
worn microphones and accelerometers,” in Pervasive Computing, pp. 18–22,
2004.

[56] Minnen, D., Essa, I., and Starner, T., “Expectation grammars: Leverag-
ing high-level expectations for activity recognition,” in Computer Vision and
Pattern Recognition, June 2003.

[57] Minnen, D., Starner, T., Essa, I., and Isbell, C., “Discovering char-
acteristic actions from on-body sensor data,” in To appear in Int. Symp. on
Wearable Computers (ISWC), October 2006.

[58] Minnen, D., Starner, T., Essa, I., and Isbell, C., “Discovering multivari-
ate motifs using subsequence density estimation,” in AAAI Conf. on Artificial
Intelligence, July 2007.

[59] Minnen, D., Starner, T., Isbell, C., and Essa, I., “Improving activity
disocvery with automatic neighborhood estimation,” in Submitted to Int. Joint
Conf. on Artificial Intelligence IJCAI, January 2007.

[60] Minnen, D., Westeyn, T., Starner, T., Ward, J., and Lukowicz, P.,
“Performance metrics and evaluation issues for continuous activity recognition,”
in Performance Metrics for Intelligent Systems, August 2006.

[61] Minnen, D. and Wren, C., “Finding temporal patterns by data decompo-
sition,” in Sixth Int. Conf. on Automatic Face and Gesture Recognition, May
2004.

[62] Moore, A., “Predicting real-valued outputs: an introduction to regression,”
2003.

[63] Moore, D., Essa, I., and Hayes, M., “Context management for human
activity recognition,” in Proc. of Audio and Vision-based Person Authentication
1999, 1999.

135

[64] Moore, D., Essa, I., and Hayes, M., “Exploiting human actions and object
context for recognition tasks,” in ICCV’99, pp. 80–86, 1999.

[65] Mörchen, F., “A better tool than allen’s relations for expressing temporal
knowledge in interval data,” in Proc. of Temporal Data Mining Workshop at
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2006.

[66] Mörchen, F. and Ultsch, A., “Efficient mining of understandable patterns
from multivariate interval time series,” Data Mining and Knowledge Discovery,
vol. 15, no. 2, pp. 181–215, 2007.

[67] Munkres, J., “Algorithms for the assignment and transportation problems,”
Journal of the Society of Industrial and Applied Mathematics, vol. 5, pp. 32–38,
March 1957.

[68] Naphade, M. and Huang, T., “Discovering recurrent events in video using
unsupervised methods,” in IEEE Int. Conf. on Image Processing, September
2002.

[69] Oates, T., “PERUSE: An unsupervised algorithm for finding recurring pat-
terns in time series,” in Int. Conf. on Data Mining, pp. 330–337, 2002.

[70] Oates, T., Firoiu, L., and Cohen, P. R., Sequence Learning: Paradigms,
Algorithms and Applications, ch. Using Dynamic Time Warping to Bootstrap
HMM-Based Clustering of Time Series. Springer-Verlag, 2000.

[71] Park, A., Unsupervised Pattern Discovery in Speech: Applications to Word
Acquisition and Speaker Segmentation. PhD thesis, Massachusetts Institute of
Technology, 2006.

[72] Park, A. and Glass, J. R., “Towards unsupervised pattern discovery in
speech,” in Proc. of the IEEE Automatic Speech Recognition and Understanding
Workshop, December 2005.

[73] Park, A. and Glass, J. R., “Unsupervised word acquisition from speech
using pattern discovery,” in IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, May 2006.

[74] Parry, R. M. and Essa, I., “Blind source separation using repetitive struc-
ture,” in International Conference on Digital Audio Effects, (Madrid), pp. 143–
148, September 2005.

[75] Patel, P., Keogh, E., Lin, J., and Lonardi, S., “Mining motifs in massive
time series databases,” in Int. Conf. on Data Mining, pp. 370–377, 2002.

[76] Patterson, D., Liao, L., Fox, D., and Kautz, H., “Inferring high-level
behavior from low-level sensors,” in 5th International Conference on Ubiquitous
Computing, October 2003.

136

[77] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling,
W. T., Numerical REcipes in C: The Art of Scientific Computing. Cambridge
University Press, 1992.

[78] Rabiner, L. and Juang, B.-H., Fundamentals of Speech Recognition. Signal
Processing Series, Prentice Hall, 1993.

[79] Rabiner, L., “A tutorial on hidden markov models and selected applications
in speech recognition,” Readings in speech recognition, pp. 267–296, 1990.

[80] Ratanamahatana, C. and Keogh, E., “Three myths about dynamic time
warping,” in SIAM Int. Conf. on Data Mining, pp. 506–510, 2005.

[81] Sain, S., “Multivariate locally adaptive density estimation,” tech. rep., De-
partment of Statistical Science, Southern Methodist University, 1999.

[82] Schlenzig, J., Hunter, E., and Jain, R., “Recursive identification of ges-
ture inputs using hidden markov models,” in WACV94, pp. 187–194, 1994.

[83] Shashanka, M., Raj, B., and Smaragdis, P., “Probabilistic latent variable
model for sparse decompositions of nonnegative data,” To appear: Trans. on
Pattern Analysis and Machine Intelligence, 2007.

[84] Shi, Y., Huang, Y., Minnen, D., Bobick, A., and Essa, I., “Propagation
networks for recognition of partially ordered sequential action,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, (Washington DC, USA),
pp. II862–870, IEEE Computer Society, June 2004.

[85] Silverman, B., Density Estimation. London: Chapman and Hall, 1986.

[86] Smaragdis, P. and Raj, B., “Shift-invariant probabilistic latent component
analysis,” To appear: Journal of Machine Learning Research, 2007.

[87] Starner, T., Weaver, J., and Pentland, A., “Real-time american sign
language recognition using desk and wearable computer based video,” PAMI,
vol. 20, pp. 1371–1375, December 1998.

[88] Tanaka, Y. and Uehara, K., “Discover motifs in multi-dimensional time-
series using the principal component analysis and the MDL principle,” in In-
ternational Conference on Machine Learning and Data Mining, pp. 252–265,
2003.

[89] Tanaka, Y., Iwamoto, K., and Uehara, K., “Discovery of time-series mo-
tif from multi-dimensional data based on mdl principle,” Machine Learning,
vol. 58, no. 2-3, pp. 269–300, 2005.

[90] Ukkonen., E., “Constructing suffix-trees on-line in linear time,” Algorithms,
vol. 1, no. 92, pp. 484–492, 1992.

137

[91] Vlassis, N. and Likas, A., “A greedy EM algorithm for Gaussian mixture
learning,” Neural Processing Letters, vol. 15, February 2002.

[92] Vogler, C. and Metaxas, D., “ASL recognition based on a coupling between
hmms and 3d motion analysis,” in ICCV98, pp. 363–369, 1998.

[93] Wang, P., Lee, D., Gray, A., and Rehg, J. M., “Fast mean shift with
accurate and stable convergence,” in AI and Statistics, March 2007.

[94] Ward, J. A., Lukowicz, P., and Tröster, G., “Evaluating performance
in continuous context recognition using event-driven error characterisation,” in
Int. Workshop on Location and Context-Awareness, pp. 239–255, 2006.

[95] Ware, M., Frank, E., Holmes, G., Hall, M., and Witten, I. H., “Inter-
active machine learning: letting users build classifiers,” Int. J. Hum.-Comput.
Stud., vol. 55, no. 3, pp. 281–292, 2001.

[96] Xie, L., Change, S.-F., Divakaran, A., and Sun, H., Unsupervised Mining
of Statistical Temporal Structures in Video, ch. 10. Kluwer Academic Publishers,
2003.

[97] Yamato, J., Ohya, J., and Ishii, K., “Recognizing human action in time-
sequential images using a hidden Markov model,” in CVPR1992, pp. 379–385,
1994.

[98] Yankov, D., Keogh, E., Medina, J., Chiu, B., and Zordan, V., “Detect-
ing motifs under uniform scaling,” in ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, August 2007.

[99] Young, S., Russell, N., and Thornton, J., “Token passing: a simple
conceptual model for connected speech recognition systems,” Tech. Rep. 38,
Cambridge University, 1989.

[100] Zhong, H., Shi, J., and Visontai, M., “Detecting unusual activity in video,”
in Computer Vision and Pattern Recognition, June 2004.

138

