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SUMMARY 

 

Laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2), a multi-copper-

containing oxidoreductase enzyme, is able to catalyze the oxidation of various low-

molecular weight compounds, specifically, phenols and anilines, while concomitantly 

reducing molecular oxygen to water. Moreover, due to their high stability, selectivity for 

phenolic substructures, and mild reaction conditions, laccases are attractive for fine 

chemical synthesis. In this study, new green domino syntheses were developed by 

conducting reactions in an aqueous medium, an environmentally-friendly solvent, and 

using laccase as a biocatalyst. 

The first study presents a work on the synthesis of naphthoquinones in the 

aqueous medium. Herein, laccase was used to oxidize o- and p-benzenediols to generate 

o- and p-benzoquinones in situ. These quinones then underwent Diels-Alder and 

oxidation reactions to generate napthoquinone products. This reaction system can yield 

naphthoquinones in up to 80% yield depending on the structure of the starting 

hydroquinone and diene. 

The next part of this thesis reports the cascade synthesis of benzofuran derivatives 

from the reaction of catechols and 1,3-dicarbonyl compounds via oxidation-Michael 

addition in the presence of laccase and Sc(OTf)3/SDS in an aqueous medium. Depending 

on the substrates, one-pot yields of benzofurans averaged 50-79%. In the absence of 

Sc(OTf)3, these yields decreased to 45-65%. Hence, the use of Lewis acid was critical for 

efficient synthesis of the desired compounds. From an environmental concern, this 

system still produced a hazardous waste from the transition metal catalyst. Therefore, the 
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development of alternative methodologies to replace the lanthanide metal catalyst in this 

synthesis is a high priority to enhance the overall green chemistry aspect. As a 

consequence, lipase was used as a catalyst to replace Sc(OTf)3 for the synthesis of 

benzofuran derivatives. The laccase/lipase co-catalytic system provides the benzofuran 

products in a good yield. In addition, this catalytic system was also able to catalyze the 

reaction of anilines and catechol.  

Besides its application in organic synthesis, laccase also has an application in 

fiber modification. Therefore, in the last part of this thesis, laccase was applied to the 

modification of high-lignin softwood kraft pulp. This modification demonstrates the 

potential of laccase-facilitated grafting of amino acids to high lignin content pulps to 

improve their physical properties in paper products which resulted from the increase of 

carboxylic acid group of the fibers. A unique two-stage laccase grafting protocol was 

developed. Fibers were first treated with laccase, followed by grafting reactions with 

amino acids. The bulk acid group content was measured, and a variety of amino acids, 

including glycine, phenylalanine, serine, arginine, histidine, alanine, and aspartic acid, 

were examined. The effects of laccase dosage and amino acids on fiber modification were 

studied. In this study, histidine provided the best yield of acid groups on pulp fiber and 

was used in the preparation of handsheets for physical strength testing. Laccase-histidine-

treated pulp showed an increase in the strength properties of the resulting paper. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

 In recent years, the use of natural catalysts, enzymes, in the development of 

organic synthesis reactions has received a steadily increasing amount of attention due to 

their synthetic, economical, and, especially, environmental advantages [1,2]. The 

enzymes are able to promote reactions under very mild conditions of temperature, pH, 

and pressure. Moreover, to address the challenges of green chemistry, the possibility of 

using water to replace the hazardous classical organic solvents in enzyme-catalyzed 

reactions is another advantage. In addition to its environmental benefits, the use of water 

as a solvent is both inexpensive and safe. The main purpose of this dissertation is to 

create environmentally-friendly synthetic procedures by conducting the reactions in an 

aqueous medium in the presence of a biocatalyst.  

 The main biocatalyst used in this dissertation is laccase. Laccase 

(benzenediol:oxygen oxidoreductase, EC 1.10.3.2), a multi-copper-containing 

oxidoreductase enzyme, is able to catalyze the oxidation of various low-molecular weight 

compounds, including benzenediols, aminophenols, polyphenols, polyamines, and lignin-

related molecules, while concomitantly reducing molecular oxygen to water [3-10]. 

Because of its high stability, selectivity for phenolic substructures, and mild reaction 

conditions, laccase is attractive for fine chemical synthesis [11-19]. Therefore, interest in 

the potential use of laccase in organic synthesis has recently increased. Laccase also finds 

a wide variety of industry applications, including food, pulp and paper, textile, cosmetics, 

and nanobiotechnology industries [20,21]. Recently, laccase applications have shifted 

toward fiber modification. Laccase has been reported to catalyze biografting of a variety 
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of substrates to technical lignins and lignin-rich cellulosic fibers [22-31]. Therefore, the 

utilizing of laccase in green synthetic chemistry and in fiber modification was the main 

focus of this research study. 

 In this dissertation, the synthesis of p-naphthoquinones and related structures via 

Diels-Alder reaction of p-quinone generated by laccase and dienes in an aqueous media 

was investigated. This study is described in Chapter 4. Chapter 5 further explores the 

laccase-triggered Diels-Alder reaction of 1,2-hydroquinone and dienes for the synthesis 

of o-naphthoquinones. Next, the cascade synthesis of benzofuran derivatives is 

investigated in Chapter 6. This synthesis was conducted from the reaction of catechols 

and 1,3-dicarbonyl compounds via oxidation-Michael addition in the presence of laccase 

and Sc(OTf)3/SDS under air at room temperature in aqueous media. However, from an 

environmental perspective, this system still produces a hazardous waste from the 

transitional metal catalyst. Therefore, the development of alternative methodologies to 

replace the lanthanide metal catalyst in this synthesis is a high priority in order to 

enhance the overall green chemistry aspect of this one-pot synthetic reaction. As a 

consequence, the enzyme named lipase was used as an alternative catalyst in conjunction 

with laccase for the synthesis of benzofuran derivatives. In addition, this laccase/lipase 

co-catalytic system was further investigated to catalyze the Michael addition of anilines 

and catechols. The details of these studies are described in Chapter 7. 

 In addition, laccase also finds an application in fiber modification. In the last part 

of this research study, Chapter 8, laccase was applied to the modification of high-lignin 

softwood kraft pulp. This modification demonstrates the potential of laccase-facilitated 

grafting of amino acids to high lignin content pulps to improve their physical properties 
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in paper products by increasing the carboxylic acid group of the fibers. Finally, some 

overall conclusions and recommendations for future work complete the document. 

 

 

 

1.2 Objectives 

 

 Recently, the increasing concern for the environment and for safe chemical 

procedures requires the development of new green synthetic methods. Therefore, the 

focus of this research is to develop new environmentally-friendly synthetic chemistry for 

the synthesis of a wide variety of compounds. To address the challenges of green 

chemistry, this study focuses on using a safer chemical, the enzyme laccase, in catalytic 

amount, using an environmentally-benign solvent, water, and conducting the reaction at 

ambient temperature. The major objectives of this research are summarized as follows: 

 Determine the potential use of laccase in organic synthesis  

 Develop new green chemistry synthesis by using a green reagent and  a 

green solvent, which are laccase and water, respectively. 

 

 Besides green synthetic applications, this study also investigated the application 

of laccase in a new green procedure for modifying lignin-rich cellulosic fibers in an 

aqueous medium. The major objectives of this fiber modification research are 

summarized as follows: 

 Evaluate the feasibility of a system utilizing laccase to graft amino 

acids with lignin-rich cellulosic fibers. 

 Develop a new green procedure for fiber modification. 
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 Determine conditions where the laccase-facilitated grafting system is 

the most effective for modifying fibers. 

 Evaluate the effect of laccase-facilitated grafting treatment on paper 

strength properties. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1   Green Chemistry 

 

2.1.1   Definition of Green Chemistry 

Green chemistry, also called sustainable chemistry, is a chemical philosophy 

encouraging the design of products and processes that reduce or eliminate the use and 

generation of hazardous substances. The U.S. Presidential Green Chemistry Challenge, 

March 1995, defines green chemistry as, 

“the use of chemistry for source reduction or pollution prevention, the highest tier 

of the risk management hierarchy as described in the Pollution Act of 1990. More 

specifically, green chemistry is the design of chemical products and processes that are 

more environmentally benign” 

 

2.1.2 Twelve Principles of Green Chemistry 

Green chemistry is a highly effective approach to pollution prevention because it 

applies innovative scientific solutions to real-world environmental situations. The 12 

Principles of Green Chemistry, originally published by Paul Anastas and John Warner in 

Green Chemistry: Theory and Practice [32]. These principles help to explain what the 

definition means in practice. The principles cover such concepts as: 

 the design of processes to maximize the amount of raw material that ends up in 

the product;  

http://www.epa.gov/greenchemistry/pubs/principles.html�
http://www.epa.gov/greenchemistry/pubs/principles.html�
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 the use of safe, environment-benign substances, including solvents, whenever 

possible;  

 the design of energy efficient processes;  

 the best form of waste disposal: do not create it in the first place.  

The 12 principles are [32]: 

1. Prevent waste: Design chemical syntheses to prevent waste, leaving no waste to 

treat or clean up.  

2. Design safer chemicals and products: Design chemical products to be fully 

effective, yet have little or no toxicity.  

3. Design less hazardous chemical syntheses: Design syntheses to use and generate 

substances with little or no toxicity to humans and the environment.  

4. Use renewable feedstock: Use raw materials and feedstock that are renewable 

rather than depleting. Renewable feedstock are often made from agricultural 

products or are the wastes of other processes; depleting feedstock are made from 

fossil fuels (petroleum, natural gas, or coal) or are mined.  

5. Use catalysts, not stoichiometric reagents: Minimize waste by using catalytic 

reactions. Catalysts are used in small amounts and can carry out a single reaction 

many times. They are preferable to stoichiometric reagents, which are used in 

excess and work only once.  

6. Avoid chemical derivatives: Avoid using blocking or protecting groups or any 

temporary modifications if possible. Derivatives use additional reagents and 

generate waste.  

http://en.wikipedia.org/wiki/Chemical_synthesis�
http://en.wikipedia.org/wiki/Waste�
http://en.wikipedia.org/wiki/Waste_treatment�
http://en.wikipedia.org/wiki/Chemical�
http://en.wikipedia.org/wiki/Toxicity�
http://en.wikipedia.org/wiki/Environment_%28biology%29�
http://en.wikipedia.org/wiki/Renewable�
http://en.wikipedia.org/wiki/Raw_materials�
http://en.wikipedia.org/wiki/Depletion�
http://en.wikipedia.org/wiki/Agriculture�
http://en.wikipedia.org/wiki/Fossil_fuels�
http://en.wikipedia.org/wiki/Petroleum�
http://en.wikipedia.org/wiki/Natural_gas�
http://en.wikipedia.org/wiki/Coal�
http://en.wikipedia.org/wiki/Mining�
http://en.wikipedia.org/wiki/Catalyst�
http://en.wikipedia.org/wiki/Stoichiometric�
http://en.wikipedia.org/wiki/Reagent�
http://en.wikipedia.org/wiki/Catalysis�
http://en.wikipedia.org/wiki/Catalysis�
http://en.wikipedia.org/wiki/Catalyst�
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7. Maximize atom economy: Design syntheses so that the final product contains the 

maximum proportion of the starting materials. There should be few, if any, 

wasted atoms.  

8. Use safer solvents and reaction conditions: Avoid using solvents, separation 

agents, or other auxiliary chemicals. If these chemicals are necessary, use 

innocuous chemicals. If a solvent is necessary, water is a good medium as well as 

certain eco-friendly solvents that do not contribute to smog formation or destroy 

the ozone.  

9. Increase energy efficiency: Run chemical reactions at ambient temperature and 

pressure whenever possible.  

10. Design chemicals and products to degrade after use: Design chemical products to 

break down to innocuous substances after use so that they do not accumulate in 

the environment.  

11. Analyze in real time to prevent pollution: Include in-process real-time monitoring 

and control during syntheses to minimize or eliminate the formation of 

byproducts.  

12. Minimize the potential for accidents: Design chemicals and their forms (solid, 

liquid, or gas) to minimize the potential for chemical accidents including 

explosions, fires, and releases to the environment.  

 

 

 

 

http://en.wikipedia.org/wiki/Atom_economy�
http://en.wikipedia.org/wiki/Solvent�
http://en.wikipedia.org/wiki/Reaction�
http://en.wikipedia.org/wiki/Separation_of_mixture�
http://en.wikipedia.org/wiki/Energy_efficiency�
http://en.wikipedia.org/wiki/Ambient_temperature�
http://en.wikipedia.org/wiki/Atmospheric_pressure�
http://en.wikipedia.org/wiki/Biodegradation�
http://en.wikipedia.org/wiki/Pollution�
http://en.wikipedia.org/wiki/Solid�
http://en.wikipedia.org/wiki/Liquid�
http://en.wikipedia.org/wiki/Gas�
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2.2   Water as Solvent in Organic Synthesis 

In order to move toward sustainable technologies, developing more benign 

synthetic procedures in chemical synthesis is important. This development can be 

achieved by several approaches, including reducing the amount of waste, the energy 

usage, and the use of volatile, toxic and flammable solvents. Therefore, many alternative 

solvents have been proposed to replace classical organic solvents. The most well-known 

of these alternate reaction media are listed below [33]: 

 Use of water as solvents 

 Reactions under solventless/solvent-free conditions 

 Supercritical carbon dioxide (31.1 ºC, 73 atm) 

 Supercritical water (374 ºC, 218 atm) 

 Room-temperature ionic liquids 

Herein, the use of water as a reaction media is the main focus of this thesis. The 

use of water as a medium for organic reaction is one of the finest solutions to the problem 

of solvent toxicity and disposal. Water is the cheapest, safest and most non-toxic solvent 

in the world. In addition, many surprising discoveries, such as an increase of reaction 

rates and reaction selectivity, have been made when using water as a reaction medium. 

The use of an aqueous medium affords both advantages and disadvantages, some of 

which are listed below [34]: 

Advantages: 

 Inflammable and anhydrous solvents are not needed 

 Economical saving 

 Abundant, cheap, not toxic and environmental friendly 
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 Protection-deprotection of functional groups such as OH, COOH may not 

be necessary 

 Water-soluble compounds can be used directly without derivatization 

 pH control 

 Preferred solvent for enzyme catalyzed reactions 

 Possibility of using additives such as mineral salts, surfactants, 

cyclodextrins 

 Possibility of isolating products by decanting or filtration 

Disadvantages: 

 Not inert  

 High boiling point 

 Problems isolating highly water-soluble products 

 Carbocarbon acid (pKa > 17) and water-sensitive reagents cannot be used 

In the early 1980s, Breslow and Rideout were the first to show that Diels-Alder 

reactions were greatly accelerated in water [35]. This discovery triggered a more 

widespread interest toward the development of organic reaction in water. In the past 20-

30 years, the potential benefits of using aqueous media have been recognized, and 

reactions including pericyclic, Michael additions, condensation, oxidation, reduction and 

organometallic reactions have been reported [36-41]. Among the organic reactions 

investigated in aqueous medium, the pericyclic reactions, especially Diels-Alder reaction, 

has been the most widely studied [34,38,42,43]. The following section highlights some 

Diels-Alder reactions that can be performed successfully in water. 
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2.2.1 Diels-Alder Reactions  

The Diels-Alder reaction is a [4 + 2] cycloaddition in which a diene (4-π 

component) reacts with a dienophile (2- π component) to provide a six-membered ring. 

Bond-forming and bond-breaking processes are concerted in the six-membered transition 

state (Figure 1). Most dienophiles are of the form –C=C−Ζ or Z−C=C−Z’, where Z and 

Z’ are electron-withdrawing groups, such as CHO, COR, COOH, COCl, COAr, CN, 

NO2, Ar, CH2OH, CH2Cl, CH2NH2, CH2CN, CH2COOH, halogen, PO(OEt)2, or C=C 

[44]. Particularly common nucleophile are maleic anhydride and quinones. The Diels-

Alder reactions with quinones will be discuss in detail in the next section. When one or 

more heteroatoms are present in the diene and/or dienophile framework, the 

cycloaddition is called a hetero-Diels-Alder reaction.  The Diels-Alder reaction is of great 

value in synthetic organic chemistry because it creates the very useful cyclohexene ring.  

 

 

 

 

 

Figure 1. Diels-Alder reaction of 1,3-butadiene with ethylene. 
 

 

The reactivity, regiochemistry, and stereochemistry of the Diels-Alder reaction 

can be explained by frontier molecular orbital theory (FMO). As applied to cycloaddition 

reactions the rule is that reactions are allowed only when all overlaps between the highest 

occupied molecular orbital (HOMO) of one component and the lowest unoccupied 

+

Diene Dienophile
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molecular orbital (LUMO) of the other are in phase such that a positive lobe overlaps 

only with another positive lobe and a negative lobe only with another negative lobe. 

These orbitals are the closest in energy [44]. Figure 2 illustrates the molecular orbitals of 

alkenes and conjugated dienes, and the two dominant orbital interactions of symmetry 

allowed Diels-Alder cycloaddition.  

The reactivity of a Diels-Alder reaction depends on the energy difference between 

HOMO and LUMO of the two components [43]. The lower the energy difference, the 

lower is the transition state energy of the reaction. The energy level of both HOMO and 

LUMO depends on the substituents. Electron-withdrawing groups lower their energy, 

while electron donating groups increase their energy. For normal electron-demand Diels-

Alder reaction, the reaction is controlled by HOMO of diene and LUMO of dieneophile 

(Figure 2). Therefore, the reactions are accelerated by electron-donating substituents in 

the diene and by electron-withdrawing substituents in the dienophile. In contrast, the 

inverse electron-demand Diels-Alder reaction is controlled by LUMO of diene and 

HOMO of dienophile (Figure 2). Therefore, the reactions are accelerated by electron-

withdrawing groups in the diene and by electron-donating groups in the dienophlie. 
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Figure 2. Schematic drawing of the molecular orbitals of alkenes and conjugated dienes 
and the orbital interaction for normal and inverse electron demand Diels-Alder reactions. 
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In addition, the regioselectivity of the Diels-Alder reaction can also be explained 

by FMO theory. The regiochemistry is controlled by the orbital coefficients of the atoms 

forming the σ-bonds. The σ-bonds form in such the way that the orbitals that have larger 

coeffients (larger lobes in Figure 3) overlap together. The regioselective is increased 

when the difference between the orbital coefficents of the two end atoms of diene and 

two atoms of dienophile increase [43]. 

 

 

 

 

 

 

 

 

 

Figure 3. Example of the regioselectivity of normal electron-demand Diels-Alder 
reaction controlled by the orbital coefficients of the atoms forming the σ-bonds.[43] 
 
 
 
 The FMO theory can be used to explain the stereochemistry of the Diels-Alder 

reaction. The Diels-Alder reactions are suprafacial reactions and have two suprafacial 

approached named endo and exo. In endo approach, the bulkier sides of diene and 

dienophile lie one above the other. In exo approach, the bulkier side of one component is 

under the small side of the other. Therefore, the exo addition mode is expected to be 

preferred because of less steric repulsive interactions than in the endo approach. 

EW

HOMO

LUMO
ED

ED

EW

+

ED
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EW = electron-withdrawing substituent
ED = electron-donating substituent
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However, it appears that the endo adduct is usually the major product. This endo 

preference can be explained by the FMO theory that the endo approach is kinetically 

favored because of the additional nonbonding interaction called “secondary orbital 

interaction” which stabilizes the endo transition state by lowering the trasition state 

energy (Figure 4)[43]. This secondary orbital interaction can not be formed in the exo 

approach.  

 

 

 

 

 

 

 

Figure 4. The endo and exo approach of the Diels-Alder reaction between piperylene and 
acrolein and the secondary orbital interaction in the endo transition state.[43] 
 
 
 

The main part of this dissertation focuses on the chemistry of quinonoid 

compounds. Therfore, the next section will be discussed about the Diels-Alder reaction of 

quinonoid compounds. Then, the Diels-Alder reactions carried out in the water under 

conventional conditions of temperature and pressure will be illustrated next. 
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2.2.1.1   Quinone Diels-Alder Reaction 

 The quinone Diels-Alder (QDA) reaction (Figure 5) is a useful synthetic pathway 

and many studies showed that the QDA adducts can be used as suitable starting points for 

the synthesis of a wide variety of natural compounds, many of which are highly 

functionalized. 

  

 

 

 

 

Figure 5. The quinone Diels-Alder (QDA) reaction.  
 
 
 
 An elegant example of the significance of QDA reactions in synthetic organic 

chemistry was shown by R. B. Woodward in 1952. Woodward et al. created the route to 

syntheis the steroids cortisone and cholesterol by using the QDA adduct of 2-methoxy-5-

methyl-p-benzoquinone and butadiene as a precursor for this synthesis. The bicyclic 

adduct was formed via the intermediacy of endo transition state as illustrated in Figure 6.  
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Figure 6. A quinone-based Diels-Alder reaction as the key step in the total synthesis of 
the steroid hormones cortisone and cholesterol. 
 
 
 
 Many studies have been reported the Diels-Alder reaction of quinonoid 

compounds and several of these studies were reviewed by K. T. Finley [45]. Examples of 

uncatalyzed and catalyzed quinone Diels-Alder reaction are summarized in Table 1. 
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Table 1.  The examples of uncatalyzed and catalyzed quinone Diels-Alder reaction. 
 

Reaction Reference
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Table 1. (Continued) 
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Table 1. (Continued) 
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compounds [58-60]. For example, a QDA reaction was used to construct the tricyclic 

framework for the total synthesis of forskolin derivative [61]. The tricyclic carbon 

skeleton of the analogue of forskolin was generated via a Diels-Alder cycloaddition 

between a quinone and a vinyl cyclohexene as illustrated in Figure 7. 

 

 

 

 

 

Figure 7. A Diels-Alder reaction of quinone and a vinyl cyclohexene as the key step in 
the total synthesis of forskolin derivative.[61] 
 
 
 
 Recently, the Nicolaou group reported the use of Mikami’s catalyst ((S)-BINOL-

TiCl2) in the total synthesis of the unique terpenoid (-)-colombiasin A [62,63]. The first 

step of this synthesis involved a selective asymmetric Diels-Alder reaction of 

Danishefsky-type diene and quinone in the presence of the Mikami catalyst (30 mol%) as 

shown in Figure 8. After many steps, (-)-colombiasin A was received in 32% overall 

yield. White and Choi extended the versatility of this Mikami’s catalyst in their total 

synthesis of (-)-ibogamine [64]. In this study, the Diels-Alder reaction of 1,4-

benoquinone and 1,3-diene catalyzed by Mikami’s catalyst was used as the key step in an 

asymmetric synthesis leading to the alkaloid (-)-ibogamine (Figure 9). The preparation of 

(-)-ibogamine was preceeded in 14 steps from 1,4-benzoquinone and the final product 

was received in 10% overall yield.  
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Figure 8. A Diels-Alder reaction of Danishefsky-type diene and quinone in the presence 
of the Mikami’s catalyst for the total synthesis of (-)-colombiasin A.[62,63] 
 

 

 

 

 

 

Figure 9. A Diels-Alder reaction of 1,3-diene and 1,4-benzoquinone in the presence of 
the Mikami’s catalyst as a key step for the total synthesis of ibogamine.[64] 
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 Most recently, Jocobsen et al. [65] reported the application of the Cr-catalyzed 

asymmetric quinone Diels-Alder Reaction for the total syntheses of (-)-colombiasin A 

and (-)-elisapterosin B. The QDA adduct was used as a precursor for these syntheses. The 

synthesis of (-)-colombiasin A was accomplished in 11.5% overall yield as summarized 

in Figure 10. 
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Figure 10.  Cr-catalyzed asymmetric quinone Diels-Alder reaction as a key step for the 
total syntheses of (-)-colombiasin A and (-)-Elisapterosin B.[65] 
 

 

2.2.1.2   Uncatalyzed Diels-Alder Reaction in Aqueous Medium 

 In 1931, Diels and Alder provided the first report of an uncatalyzed aqueous 

Diels-Alder reaction of furan and maleic anhydride [66,67]. However, the first kinetic 

study of acceleration of Diels-Alder reaction in water was studied by Rideout and 
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Breslow in 1980 [35]. In this study, they discovered that the reaction between 

cyclopentadiene and methyl vinyl ketone in water was 740 times faster than in the apolar 

hydrocarbon isooctane (Figure 11). By adding lithium chloride (salting-out agent) the 

reaction rate increased 2.5 times further. The authors suggested that this unusual 

acceleration in water was attributed to the polarity of the medium and hydrophobic 

interaction (hydrophobic packing of diene and dienophile). The presence of lithium 

chloride increased the reaction rate because the salt made the apolar reactants less soluble 

in water and in so doing it enhanced the hydrophobic interaction. 

 

 

 

 

 

 

 

 

 
Figure 11. Diels-Alder reaction between cyclopentadiene and methyl vinyl ketone in 
water and organic solvents.[35] 
 
 
 
 Several experimental studies [68-71] and computer simulations [72] seem to 

indicate that the rate enhancement of the aqueous Diels-Alder reactions are due to the 

enforced hydrophobic interactions and hydrogen bonding interactions. The term 

“enforced” is used to stress the fact that the association of the nonpolar reagents is driven 
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by the reaction and only enhanced by water. For instance, Engberts and his co-workers 

[71] reported a kinetic study of a Diels-Alder reaction of 2,3-dimethyl-1,3-butadiene and 

with N-methyl-, N-ethyl-, N-propyl-, and N-butylmaleimide in different solvents. These 

reactions were accelerated in water relative to organic solvents as a result of enhanced 

hydrogen bonding and enforced hydrophobic interactions during the activation process. 

In addition, the acceleration increased as the hydrophobic character of the alkyl chain of 

the dienophile increased (Figure 12). 

 

 

 
 

 

 

Figure 12. Relative reaction rate (kwater/ kn-hexane) of Diels-Alder reaction between 2,3-
dimethyl-1,3-butadiene and  N-alkylmaleimides.[71] 
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acrylate, ethyl acrylate and butyl acrylate both in water and room temperature ionic 

liquids (RTILs). They found that these Diels-Alder reaction in water are faster than in 

RTILs. The reduction of reaction rate in RTILs can be attributed to the absence of 

hydrophobic interactions and weaker hydrogen bonding in RTILs. 

 

  

 

 

 

 

 

 

 
 
 
Figure 13. Diels-Alder reaction between trans,trans-2,4-hexadienyl acetate and N-
propylmaleimide under various conditions.[38] 
 
 
 
 Beside the rate enhancement, the enhancement of endo/exo selectivity of the 

aqueous Diles-Alder reaction was also observed. Breslow et al. [74] also noted that the 

endo addition of the reaction of cyclopentadiene with methyl vinyl ketone is more 

favored when the reaction is carried out in water than when it is performed in organic 

solvents (Figure 11).  The endo preference in water were explained by the need to 

minimize the transition state surface area in aqueous medium, thus favoring the more 

compact endo transition state more than the extended exo transition state. Another 
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example is the study of Grieco and his co-workers [75]. They examined the Diels-Alder 

reaction between the α,β-unsaturated ketoaldehyde and ethyl 4-methyl-3,5-hexadienoate 

(R = Et) in water and in hydrocarbon solvents (Figure 14). They found that the reaction 

rate was doubled and both the reaction yield and the endo selectivity was enhanced when 

conducting the reaction in aqueous medium. The best result was observed when 

conducting the reaction of diene sodium carboxylate (R = Na). The reaction was 

completed in 5 hours and the endo adduct is 75% of the diastereoisomeric reaction 

mixture. In 1993, Paul et al. [76] applied this Diels-Alder reaction as a key step in the 

synthesis of chaparrinone and other quassinoids (naturally occurring substances with 

antileukemic activity). Recently, Utley et al. [77] reported the efficient formation of the 

endo-Diels-Alder adducts of the reaction between ortho-quinodimethanes, generated 

cathodically in aqueous electrolyte, and N-methylmaleimide. 

 

 

 

 

 

 

 

 

 

 
Figure 14. Diels-Alder reaction between α,β-unsaturated ketoaldehyde and ethyl 4-
methyl-3,5-hexadienoate.[75] 
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 Several studies have been reported the hetero Diels-Alder cycloadditions in 

aqueous medium. For example, Kibayashi et al. explored the Diels-Alder reactions of the 

nitroso moiety of the N-acylnitroso, a powerful dienophile, with a diene in water. The N-

acylnitroso compounds were generated in situ by periodate oxidation and then reacted 

with dienes to form the Diels-Alder adducts. This N-acylnitroso compounds can be 

trapped rapidly, especially in an intramolecular reaction such as the reaction of the in 

situ-generated N-acylnitroso compound in Figure 15 that immediately cyclized to cis and 

trans-1,2-oxainolactams [78]. Kibayashi et al. also used this acylnitroso approach in the 

syntheses of (-)-swainsonine and (-)-pumiliotoxin [79]. 

 

 

 
 
  

 

 

 

 

 

 

Figure 15. Intramolecular hetero Diles-Alder reaction of N-acylnitroso compound.[78] 
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 Lubineau and coworkers [80,81] have shown that glyoxylic acid, pyruvaldehyde, 

and glyoxal were shown to react with cyclic or non-cyclic dienes via the aqueous hetero 

Diels-Alder reaction to give the corresponding cycloadducts and/or α-hydroxy γ-lactones 

in a good yield. Moreover, they also used this approach to prepare key starting 

compounds for the enantioselective synthesis of 3-deoxy-D-manno-2-octulosonic acid 

[82] and ketodeoxyheptulosonic acid derivatives [83]. Lubineau et al. have done the 

extensive work in the studied of the aqueous Diels-Alder reactions to prepare optically 

active oligosaccharides [84,85]. Some examples of Lubineau’s work are summarized in  

Table 2. Another example for intramolecular hetero-Diels-Alder reaction in water was 

reported by Grieco and Kaufman [86]. They examined the intramolecular Diels-Alder 

reaction of iminium ions in polar media such as 5.0 M lithium perchlorate-diethyl ether 

and water. In hot water, the tricyclic amine product can be obtained as the exclusive 

diastereomer in 80% yield (Figure 16). They suggested that water appears to be the polar 

solvent of choice for this reaction system because the use of lithium perchlorate-diethyl 

ether as polar solvent led to some major problems. These problems occurred from the fact 

that weak acid (lithium perchlorate) in highly polar media become strong acids and 

protonation of the tethered dienes with concomitant diene isomerization is competitive 

with cycloaddition. 
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Table 2. Example of the hetero Diels-Alder reactions studied by Lubineau et al. 
 

Reactions Reference

 

[80] 

 

[81] 

 

[82] 

 

[83] 

 

[85] 

 

 

+
H COOH

O

H2O, pH 1
40 oC, 1.5 h

O

H

H

H

O +

O

H

H

H

O

73:27
83%

+
H COOH

O

100 oC, 1.5 h
97%

H2O O

COOH

O

COOH

+

64:36

+
H COONa

O

HO

HO

3. Ac2O/pyridine
54%

1. H2O
2. MeOH/H+ O

CO2CH3

AcO

AcO

O

HO

HO

COOH

OH

HO

OH

+
H COONa

O

HO

1. H2O, 100 oC

2. H+/CH2N2

O

CO2CH3

OH

O
CO2CH3

OCH3

AcO

OAc

OH

O
HO

HO
OH

H

OH

+
H COONa

O 1. H2O, 140 oC, 48 h
2. MeOH, Dowex-50 (H+)
3. Ac2O-pyridine

68%

O
AcO

AcO

OAc

H

OAc

O CO2Me

O

OH

HO
HO

HO
O

OH



 30

 

 

 

 

 

Figure 16. Intramolecular imino-Diels-Alder reactions.[86] 
 

 

2.2.1.3   Lewis-Acid-Catalyzed Diels-Alder Reaction in Aqueous Medium 

 In recent years, a number of water-tolerant Lewis acids have been used to catalyze 

various Diels-Alder reactiond in aqueous medium [34]. In 1993, Kobayashi [55] reported 

the use of scandium trifate, Sc(OTf)3 for the Diels-Alder reaction in aqueous medium. 

This catalyst was stable in water and easily recovered to reused. Many other Lewis acids 

have been reported to catalyze Diles-Alder reactions in water. Engberts [87,88] reported 

the use of aqua-complexing agents including Co(NO3)2.6H2O, Ni(NO3)2.6H2O, 

Cu(NO3)2.3H2O, and  Zn(NO3)2.4H2O as Lewis acid catalysts for Diels-Alder reaction in 

aqueous medium. The Diels-Alder reactions performing in aqueous medium in the 

presence of these metal catalysts were faster than the aqueous reactions without the 

catalysts, and Cu2+ ion showed to be the best catalyst in this study. However, the catalysts 

worked efficiently only if they formed a chelate with the dienophile, and complexation 

with α-amino acids (see Figure 17) which induces asymmetry in the Diels-Alder reaction 

as in the copper-catalyed the reaction of 3-phenyl-1-(2-pyridyl)-2-propen-1-one with 

cyclopentadiene (Figure 18) [89]. This cycloaddition occurs endo-stereoselectively in 3 

days with high yield and with acceptable enantioselectivity (ee = 74%). Therefore, this is 

NTFA N
H

H

80%

H2O, 70 oC



 31

the first enantioselective Lewis acid-cataltzed Diels-Alder reaction in water. Recently, 

Engberts and Mubofu [90] reported a comparative study of specific acid catalysis 

(hydrochloric acid) and Lewis acid (i.e. copper (II) nitrate) catalysis of Diels–Alder 

reactions in aqueous medium. They found that the reaction rate is 40 times faster with 

copper catalysis than with hydrochloric acid catalysis at equimolar amounts of copper(II) 

nitrate and hydrochloric acid and under the same reaction conditions. 

 

 

 

 

 

Figure 17. Complexation of Cu(L-abrine) catalyst and 3-phenyl-1-(2-pyridyl)-2-propen-
1-one.[89] 
 

 

 

 

 

 

 

 

 

Figure 18.  The enantioselectivity of copper (L-arabine) catalyzed Diels-Alder reactions 
of 3-phenyl-1-(2-pyridyl)-2-propen-1-one with cyclopentadiene.[89] 
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 Many studies have now used water-tolerant Lewis acid, lanthanide triflates 

(Ln(OTf)3) [91] together with Bi(OTf)3 [92], Sc(OTf)3 [93] and In(OTf)3 [94,95] to 

catalyze the Diels-Alder reactions in water. For example, Wang et al. [96] studied the use 

of Ln(OTf)3 to catalyze the aqueous aza-Diels-Alder reaction of an aldehyde and amine 

hydrochloride with diene. Figure 19 shows a representative reaction of this study. The 

product (endo + exo) was isolated in only 4% yield when no Ln(OTf)3 was added. 

However, the yield of the product was increased to 64% when the lanthanide catalyst was 

added. 

 

 

 

 

Figure 19. The aqueous aza-Diels-Alder reaction using lanthanide triflate.[96] 
 
 
 
 Lanthanide triflates were also shown to catalyze imino Diels-Alder reactions of 

imines with dienes or alkenes which were developed by Kobayashi and his co-workers 

[97]. Here, they reported a three-component coupling reactions between aldehydes, 

amines, and dienes or alkenes which were successfully carried out by using lanthanide 

triflate as a catalyst to afford pyridine and quinoline derivatives in high yields (Figure 

20). Recently, Taguchi et al. [95] developed indium(III) triflate catalyzed intramolecular 

Diels-Alder reaction of ester-tethered 1,7,9-decatrienoates in aqueous media. This 

reaction gave the cycloadducts in good yield with perfect endo-selectivity and In(OTf)3 is 

recyclable without troublesome purification. 
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Figure 20. Yb(OTf)3-catalyzed Diels-Alder reaction between N-benzylideneaniline as 
azadiene and cyclopentadiene.[97] 
 
 
 

Lewis acid/surfactant combined catalysts (LASCs) such as M(DS)n, M(DCS)n, 

[98,99] and Cu(dDP)2 [100] (M = lanthanides, Sc, Yb, Cu, Zn, Ag, Mn, Co; n = 1, 2, 3; 

DS = dodecylsulfate, DCS = dodecanesulfonate, dDP = 5,5-di-n-dodecyl-2-hydroxy-

1,3,2-dioxaphosphorinan-2-one) have recently been prepared. However, reports on their 

catalytic ability in Diels-Alder reactions are discrepant. 

 Indium trichloride [101,102] and methylrhenium trioxide [103] are also water-

tolerant Lewis acids, and have been reported to catalyze Diels-Alder cycloadditions in 

water. Some examples of these catalyst in the cycloaddition of methyl vinyl ketone and 

1,3-cyclohexadiene are illustrated in Figure 21. 
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Figure 21. The Diels-Alder reaction of methyl vinyl ketone and 1,3-cyclohexadiene 
catalyzed by indium trichloride or methylrhenium trioxide.[101,103] 
 
 
 
 Recently, Nishikido et al. [104] reported fluorous reverse-phase silica gel 

(FRPSG)-supported Lewis acids catalyzed Diels-Alder reactions in water, and the 

FRPSG-supported Lewis acids could be recycled by simple filtration after the reaction. 

Yu et al. [105] examined the use of water-soluble organotungsten Lewis acid, [OP(2-

py)3W(CO)(NO)2](BF4)2 to catalyze Diels-Alder reactions under conventional heating or 

microwave heating conditions. The cycloaddition reactions were efficiently conducted in 

either water or in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate. 

Most recently, Litz [106] reported Flextyl PTM, a novel Ti(IV) performance catalyst, 

catalyzed the aqueous Diels-Alder reaction of 1,3-cyclohaxadiene with 1,4-

benzoquinone. The catalyst improved conversion by 22% versus the uncatalyzed  

reaction. 
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2.3   Biocatalysis 

2.3.1   Enzymes 

 Enzymes are natural catalysts that accelerate the rate of reactions. Like all 

catalysts, enzymes work by lowering the activation energy (Ea or ΔG‡) for a reaction, 

thus dramatically increasing the rate of the reaction. Enzymes are composed of one or 

more polypeptides organized in a specific three-dimensional structure through 

interactions between the functional groups on the amino acid constituents. These 

interactions include ionic bonding, covalent bonding, hydrogen bonding, and van der 

waal’s forces. Some of the outstanding features of the enzymes include high substrate 

specificity, specificity in promoting only one biochemical reaction with their substrate 

ensuring synthesis of a specific biomolecular product without the concomitant production 

of by products, stereospecificity, and regeospecificity, which they express in catalysis. 

 

2.3.1.1   Nomenclature and Classification 

 An enzyme’s name is often derived from its substrate or the chemical reaction it 

catalyzes, with the word ending in “ase”. For identification purpose, the International 

Union of Biochemistry and Molecular Biology have developed a nomenclature for the 

enzymes. Every enzyme has a four-digit number in the general form EC A.B.C.D, where  

EC stands for ‘Enzyme Commission’; the following properties are encoded: 

     A      indicates to which of the six main divisions (classes) the enzyme belongs, 

     B      stands for the subclass, indicating the substrate class or the type of transferred    

              molecule, 

     C      indicates the nature of the co-substrate, 
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     D      is the individual enzyme number. 

 Enzymes have been classified into six categories according to the type of reaction 

they catalyze. These six classes of enzymes are listed below: 

 Class 1 – Oxidoreductases: catalyze oxidation/reduction reactions, 

 Class 2 – Transferases: transfer a functional group such as methyl or phosphate 

group, 

 Class 3 – Hydrolases: catalyze the hydrolysis of C-O, C-N, O-P and C-S bonds, 

 Class 4 – Lyases: catalyze the addition or removal of some chemical groups of 

substrate by mechanism other than oxidation, reduction, or hydrolysis, 

 Class 5 – Isomerases: catalyze isomerization changes within a single molecule, 

 Class 6 – Ligases: catalyze the joining together of two compounds coupled with 

the hydrolysis of a diphosphate bond in ATP or a similar triphosphate. 

 

2.3.1.2   Enzyme Mechanism 

 Enzymes are three-dimensional proteins that possess an “active site”. At the 

active site, specific amino acids interact with the substrate, and the tranfornation of 

substrate take places. In order to understand enzyme catalysis, some models have been 

proposed. 

 
2.3.1.2.1   ‘Lock-and-Key’ Mechanism 

 In 1894, Emil Fischer [107] developed the first proposal for a general mechanism 

of enzymatic action. He hypothesized that an enzyme and its substrate form a complex 

very much like a “lock and key”; therefore, each enzyme is very substrate specific and its 

structure is completely rigid. However, this model can not explain why many enzymes do 
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act on large substrates, while they are inactive on smaller counterparts. Moreover, this 

hypothesis can not explain why many enzymes can convert a variety of nonnatural 

compounds besides their natural substrates [108]. Thus, another model had to be 

developed. 

 
2.3.1.2.2   Induced-Fit Mechanism 

 Daniel Koshland [109] suggested a modification to the lock and key model that 

the enzymes are not entirely rigid but rather represent delicate and soft structures. During 

the formation of the enzyme-substrate complex, the enzyme can change its conformation 

under the influence of the substrate structure so as to wrap itself around its guest (Figure 

22). This phenomenon was denoted as the ‘Induced Fit’. The induced fit theory states a) 

precise orientation of catalytic groups is required for enzyme action b) the substrate 

causes changes in the amino acids at the active site c) the changes in the catalytic 

structure caused by a substrate will bring the catalytic groups into proper alignment 

whereas a non-substrate will not achieve this. 

 

 

 
 
 
 
 
 

Figure 22. The induced fit mechanism for enzyme catalysis. 
 
 
 
 
 
 
 

Enzyme Substrate

Active Site

Enzyme Substrate
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2.3.1.3   Enzyme Kinetics  

 The rate at which an enzyme converts substrate to products is referred to as its 

“activity”.  When a smaller amount of enzyme can convert a greater amount of substrate 

it is said to be more “active”. The reaction kinetics have been characterized for many 

enzymes.  Enzymatic activity is the productivity of the enzyme defined under strict 

standard conditions. Michaelis and Menten [110] used a simple unimolecular reaction to 

extract relationships used for predicting the kinetic properties of enzymes (Equation 1). 

The symbols that describe the reaction are E=Enzyme and S=Substrate.  The reaction 

described by Michaelis and Menten proceeds in three phases.  The initial or stationary 

phase is an important phase as it is at this point where substrate and enzyme come 

together for the intimate contact at the enzyme active site for the reaction. The second 

phase of the enzyme reaction is the steady state where the enzyme is assumed to be 

completely saturated with substrate and the rate of the reaction is dependant on the 

amount of enzyme (E) or enzyme-substrate complex (ES). According to Michaelis 

Menten (M-M) kinetics, the rate-limiting step is the conversion from ES to the product 

(P).  The Michaelis Menten relationship is stated in Equation 1. 

 

V= Vmax [S]/[S]+Km 
 
      

E + S ES E + P 

 
Equation 1. The Michaelis-Menten Equation (V=reaction velocity; Vmax = maximum 
reaction velocity; [S] = substrate concentration; Km = michaelis-menten constant; E = 
enzyme; S = substrate, P = product). 
 
 
 

k1 

k2 

k3 
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Km is the M-M constant and k3 is the turnover constant.  These factors are 

important for gauging the efficiency of an enzyme-substrate system.  Km is the 

concentration of substrate required for an enzyme to reach one-half of its maximum 

velocity or Vmax.  Essentially, Km is an indicator of the sensitivity or affinity of a 

particular enzyme for a certain substrate (Figure 23).  

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 23. The graphical definition of the Km and Vmax Parameters in the Michaelis 
Menten Equation 
 

The turnover number is the rate at which the enzyme-substrate complex is 

converted to the product, which indicates the ability of the enzyme to convert substrate 

into product.  Since k3 is the rate of formation of the product and Km is the affinity of the 

enzyme for the reactants, the value k3/Km is usually a measure of the total enzyme 

productivity [111], therefore, achieving a maximum velocity at a low substrate 

concentration is ideal.  Eventually the substrate concentration becomes limiting, and the 

reaction reaches its asymptotic limit [111] (Figure 23).  Kinetic units can be elucidated by 

a relationship derived by Lineweaver and Burk (Equation 2). 
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1/V=1/Vmax+Km/Vmax x1/[S] 

Equation 2. Lineweaver and Burk equation for determining Km and Vmax 
 

Plotting the reciprocal of reaction rate vs. the reciprocal substrate concentration 

allows one to obtain 1/Vmax at the y-intercept and -1/Km at the x-intercept.  

 

2.3.1.4   Advantages and Disadvantages of Biocatalyst 

2.3.1.4.1   Advantages of Biocatalysts [108] 

 Enzymes are very efficient catalysts: Compare to the nonenzymatic reactions, the 

rates of enzyme-mediated processes are accelerated by a factor of 108-1010. 

 Enzymes are environmentally benign reagents. 

 Enzymes act under mild conditions: Enzymes act in a range of about pH 5-8, and 

in a temperature range of 20-40 ºC. This minimizes problems of undesired side 

reactions. However, there are some thermostable enzymes that can be performed 

at high temperature. 

 Enzymes are compatible with each other: Several biocatalytic reactions can be 

carried out in a reaction cascade in one reactor because enzymes normally 

function under the same or similar conditions. 

 Enzymes are not bound to their natural role: Enzymes can catalyze a variety of 

nonnatural substrates and often they are not required to work in water. 

 Enzymes can catalyze a broad spectrum of reactions. 

 Enzymes display selectivity: Three major types of selectivity are chemoselectivity, 

regioselectivity and diastereoselectivity, and enantioselectivity. 

 Valuable resource for green chemistry 
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2.3.1.4.2   Disadvantages of Biocatalysts [108] 

 Enzymes are provided by nature in only one enantiomeric form. 

 Enzymes require narrow operation parameters: If a reaction proceeds too slow 

under given parameter of temperature and pH, there is only a narrow operational 

window for alteration. High temperature and extreme pH lead to deactivation of 

the enzymes. 

 Enzymes display their highest catalytic activity in water. 

 Some Enzymes are bound to their natural cofactors such as NAD(P)H, and 

chemical energy (ATP) : These cofactors are relatively unstable molecules and 

are prohibitively expensive to use in stoichiometric amounts. 

 Enzymes are prone to inhibition phenomena: Many enzymatic reactions are 

prone to substrate- or product-inhibition, which causes the enzyme to cease to 

work at higher substrate and/or product concentrations, a factor which limits the 

efficiency of the process. 

 Enzymes may cause auto-immune responses including allergies 

 

2.3.2   Enzymes in Domino Reactions 

 Domino or cascade reactions involve two or more bond-forming transformations, 

which take place under the same reaction conditions, without adding additional reagents 

and catalysts, and in which the subsequent reactions result as a consequence of the 

functionality formed by bond formation or fragmentation in the previous step all 

occurring in one-pot [112]. The domino reaction is often proceeded via highly reactive 

intermediates.  
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 In recent years, the availability of enzymes has increased. Therefore, the use of 

enzymes in the development of domino reaction has also increased in address the 

challenges of Green Chemistry. Many studies involve enzyme-initiated domino reactions 

have been reported [1,113-115]. Emzyme-initiated domino reactions follow a common 

reaction sequence. Firstly, the enzyme modifies a group (‘trigger’ group) in the starting 

material, generating a reactive intermediate that can undergo a subsequent domino 

reaction consisting of a (i) fragmentation, (ii) rearrangement, (iii) cyclization such as 

Diels-Alder reaction, or (iv) an intramolecular substitution affecting cyclization. 

 

2.3.2.1   Enzyme-Triggered Diels-Alder Reaction 

 The first successful combination of an enzymatic with a nonenzymatic 

transformation within a domino process was reported by Waldmann et al. in 1996 

[116,117]. They reported the synthesis of highly functionalized bicycle[2.2.2]octenes by 

a tyrosinase-initiated hydroxylation-oxidation of phenols followed by a Diels-Alder (DA) 

reaction with electron rich dienophiles (see Figure 24). These studies, conducted in 

chloroform in the presence of oxygen, provided a unique three-step one-pot reaction of 

bicyclic DA products in high yields with the key intermediate being reactive ortho-

quinones. 
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Figure 24. A cascade reaction involving o-quinones obtained by an enzyme-initiated 
hydroxylation-oxidation sequence combined with a Diels-Alder reaction.[116,117] 
 
 
 
 Kita and his co-worker [118,119] reported the first one-pot synthesis of optically 

active 7-oxabicyclo[2.2.1]heptenes catalyzed by lipase, the hydrolase enzyme that act on 

carboxylic ester bonds. As illustrated in Figure 25, the first step of this reaction was the 

kinetic resolution of racemic furfuryl alcohol derivatives via acyl transfer catalyzed by 

lipase. The next step was the intramolecular Diels-Alder reaction of the intermediate to 

provide 7-oxabicyclo[2.2.1]heptene derivatives.  Most recently these authors reported the 

use of a lipase and a ruthenium catalyst to prepare polysubstituted decalines with high 

optical and chemical yields from racemic alcohols [120].   
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Figure 25. Lipase catalyzed-domino reaction in the one-pot synthesis of optically active 
7-oxabicyclo[2.2.1]heptenes (* represents chiral center).[118,119] 
 
 
 
 
2.3.2.2   Enzyme-Triggered Rearrangement 

 
 Skeleton rearrangements are a special class of reactions in organic synthesis 

because they often lead to products of exceptional structure. β-Glucosidase has been 

reported to initiate rearrangement of multifloroside by the Shen group [121]. 

Multifloroside was subjected to β-glucosidase in acetate buffer. The domino process 

started by enzymatic cleavage of a glycoside, and then a rearrangement subsequently 

took place to generate jasmolactone analogues as the final products in a rather low yield 

(10-20%) (Figure 26).   
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Figure 26. β-Glucosidase-triggered rearrangement of multifloroside in aqueous 
medium.[121] 
 

 An unusual enzyme-triggered asymmetric rearrangement was observed by Ohno 

and his co-workers when they attempted to hydrolyze the asymmetric tricyclic diester in 

an asymmetric fashion using porcine liver esterase [122]. First, a hemiester was form by 

hydrolysis and then immediately underwent a Meinwald rearrangement to furnish the 

final bicycle[3.1.0]hexane framework (Figure 27). 
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Figure 27. The synthesis of bicycle[3.1.0]hexane compound via enzyme-triggered 
Meinwald rearrangement.[122]  
 
 
 
 During the development of a new method for the synthesis of paclitaxel, an 

unexpected enzymatic dehydration-initiated rearrangement was discovered by Kim et al. 

[123]. The 7-triehtylsilyl derivative of 10-deacetylbaccatine III served as a precursor for 

this cascade reaction (Figure 28). In the presence of trichloroacetic anhydride as the acyl 

donor, this precursor was acylated by Rhizopus delemar lipase at the 13-hydroxy group, 

and underwent the dehydration-rearrangement to form the tricyclic diterpene 

intermediate. After a prolonged reaction time, the intermediate underwent a second 

dehydration to form the final product.  
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Figure 28. Enzymatic dehydration-initiated Rearrangement of paclitaxel precursors.[123]  
 
 
 
2.3.2.3   Enzyme-Triggered Fragmentation 

 The Schaap group [124] presented the use of aryl esterase to catalyze the cleavage 

of a naphthyl acetate-substituted dioxetane in aqueous buffer at ambient temperature. The 

1,2-dioxetane moiety of the naphtyl acetate was cleaved via hydrolysis by porcine liver 

esterase, thus generating the free intermediate naphtholate anion which subsequently 

underwent fragmentation reaction to form the naphthol methyl ester and admantone with 

the concurrent chemiluminescence (Figure 29). 
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Figure 29. Ester hydolysis-initiated dioxetane fragmentation.[124] 

 
 
 
 During the synthesis of N-Ras lipopeptides, Waldmann et al. [125] developed a 

new protecting group for amino, hydroxyl, and carboxy moieties containing a p-

acetoxybenzyloxycarbonyl group. In this study, lipase was first used to cleave the acetate 

group of the p-acetoxybenzyloxycarbonyl moiety to liberate the phenolate anion. Then, 

this intermediate anion underwent a fragmentation to generate a quinone methide with 

liberation of the desired products. This strategy was also applicable to solid-phase 

synthesis. The aromatic moiety that was to build the scaffold was linked on to a 

macroscopic polymeric carrier via a spacer-arm which acted as an enzymatically labile 

anchoring group [126]. This method is useful for combinatorial chemistry and parallel 

synthesis for the production of compound libraries attached to polymeric supports. 

 

2.3.2.4   Enzyme-Triggered Intramolecular Substitution Affecting Cyclization    

 Enzyme-triggered intramolecular substitution affecting Cyclization reactions 

normally start with the enzymatic hydrolysis of an ester or epoxide to form the 
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hydroxylate or hydroxyl group which acts as a nucleophile to attack an electrophile via 

intramolecular SN2 reaction in the second step. As in the work of Tamm et al., they 

conducted the asymmetric hydrolysis of meso-epoxy diester using porcine liver esterase 

in aqueous medium (Figure 30) [127]. In this cascade reaction, carboxylate anion was 

liberated by enzymatic hydrolysis of the more accessible (equatorial) carboxy ester. This 

carboxylate anion acted as nucleophile and attacked the epoxide moiety to generate the 

corresponding hydroxyl γ-lactone. Due to a conformation change of the intermediate 

during lactone formation, the remaining axial ester moiety was converted into the more 

accessible equatorial ester which could be additionally hydrolyzed by the esterase. This 

led to the formation of the final chiral product in 96% ee. 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Enzymatic liberation of carboxylate anoin for the formation of γ-lactone.[127] 
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 Another example of enzymatic hydrolysis of ester to liberate the carboxylate 

anion was reported by Williams et al [128]. In this study, the diepoxide underwent bis-

cyclization by the pig liver esterase, with stereospecific opening of each epoxide ring in a 

5-exo-tet manner to form the final product. The reaction mechanism is summarized in 

Figure 31. 

 

 

 

 

 

 

 

 

 

Figure 31. Enzyme-initiated a tree-step SN2 cascade reaction of the diepoxide 
compound.[128] 
 
 
 
 An alcoholic group generated from the enzymatic hydrolysis of ester or epoxide 

can also act as nucleophile in a cascade reaction. For example, the ester moiety of a 

diasteromeric mixture of (±)-epoxy ester was hydrolyzed by a crude immobilized enzyme 

preparation (NOVO SP 409), or whole lyophilized cells of Rhodococcus reythropolis 

NCIMB 11540 to generate the corresponding intermediate alcohol (Figure 32). The 

alcohol immediately opened the epoxide in an SN2 fashion to furnish the corresponding 

diastereomeric tetrahydrofuran derivatives [129]. 
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Figure 32. Cyclisation of a diasteromeric mixture of (±)-epoxy ester initiated by 
enzymatic generated hydroxyl group.[129] 
 
 
 
 In the following example, the diol nucleophile was generated by emzymatic 

hydrolysis of an epoxide to initiate a cascade reaction. For instance, the biohydrolysis of 

(±)-2,3-disubstituted cis-chloroalkyl-epoxides (Figure 33) [130]. First, bacterial epoxide 

hydrolases (Mycobacterium paraffinicum NCIMB 10420) hydrolyzed the racemic 

epoxide to form the corresponding diol which underwent spontaneous ring closure to 

yield the final cyclic product. This synthetic strategy has been used in asymmetric 

synthesis of many bioactive compounds [131-133]. 

  

 

 

 

 

 

 

Figure 33. Epoxide hydrolases-initiated cyclisation of haloalkyl-oxiranes.[130] 
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 The enzyme triggered cyclisation of bis-epoxides using bacterial epoxide 

hydrolase was investigated by Faber and his co-workers [134]. In this study, the 

tetrahydrofuran products were generated through two secondary pathways as illustrated 

in Figure 34. The products contain four stereogenic centers which constitute the central 

core of bioactive Annonaceous acetogenins. 

 

 

 

 

 

 

 

 

 
 
 

Figure 34. Enzyme-triggered transformation of meso-bis-epoxides.[134] 
 
 
 
 
2.3.2.5   Enzyme-Triggered Other Type of Reactions 

 In 2005, the Kita group [135] developed a lipase-catalyzed domino kinetic 

resolution of α-hydroxynitrone intramolecular 1,3-dipolar cycloaddition reactions which 

successfully applied in the asymmetric total synthesis of (-)-rosmarinecine (Figure 35). 
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Figure 35. Enzyme-catalyzed intramolecular 1,3-dipolar cycloaddition reaction.[135] 

 
 
 
 Another recent development reported by Faber et al. [136] is a biocatalytic 

hydrogen-transfer reduction of halo ketones into enantiopure epoxides. The enzyme used 

in this study is either Rhodococcus ruber as lyophilized cell catalyst or an alcohol 

dehydrogenase prepared from Pseudomonas fluorescens DSM 50106 (PF-ADH). 
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sialylated antigen T-epitope [141], fluoroshikimic acids [142], cefazolin [143,144], and 

aromatic D-amino acid [145]. 

 Sheldon and his co-workers [146] reported a two step, one pot enzymatic 

synthesis of cephalexin from D-phenylglycine nitrile in 2002. Two enzymes which are 

nitrile hydratase and penicillin G acylase were used in this approach. First, the D-

phenylglycine was hydrated by nitrile hydratase to form the corresponding amide which 

subsequently underwent acylation reaction with 7-aminodesaacetoxycephalosporanic acid 

(7-ADCA) by penicillin G acylase to generate cephalexin (Figure 36). 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Two enzymetic reactions for the synthesis of cephalexin.[146] 
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presence of galactose oxidase, catalase, rhamnulose-1-phosphate aldolase, and acid 

phosphatase (Figure 37). 

 

 

 

 
Figure 37. Four enzyme system for domino synthesis of L-fructose.[147] 

 
 
 
 Most recently, Kroutil et al. [148] reported the one pot, two step, two enzyme 

cascade reaction for the synthesis of enantiopure epoxide. In this study, enantiopure (R)- 

and (S)-epoxides were obtained by the reaction which combined either (R)- or (S)-

selective alcohol dehydrogenase with  a non-selective halohydrin dehalogenase. First, the 

pro-chiral α-chloro ketone was streoselectively reduced to the halohydrins as an 

intermediate by alcohol dehydrogenase, and then the intermediate was converted to 

epoxide by a non-enantioselective halohydrin dehalogenase (Figure 38). 

 

 

 

 
 
 

Figure 38. Two enzyme system for the synthesis of enantiopure epoxide.[148] 
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2.4   Laccase 
 
2.4.1   Distribution in Nature 
 
 Laccase (EC 1.10.3.2, p-diphenol:oxygen oxidoreductase)  is an enzyme 

belonging to the family of multicopper blue oxidase which typically found in plant and 

fungi. Laccase can catalyze the oxidation of a variety of compounds including ortho and 

para-diphenols, polyphenols, aminophenols, polyamines, lignins, aryldiamines, and a 

number of inorganic ions, while reducing  molecular dioxygen to water [12,149-152].  

 Laccase was first discover by Yoshida in 1883 in the sap of lacquer tree Rhus 

vernicifera [153] and the enzyme has been characterized in great detail later in 2001 by 

Huttermann et al. [154]. However, the report of laccase in other plant species is more 

limited and partially characterized. These laccases include laccases form Rhus 

succedanea [155], Acer pseudoplatanus [156], Pinus taeda [157,158], Populus 

euramericana [159], Liriodendron tulipifera [160], Nicotiana tobacco [161], Lolium 

perenne [162], and Zea mays [163]. In plant, laccase participates in the formation of 

polymer lignin via radical-based mechanisms [156,164,165]. 

 A few year later after the discovery of the plant laccase by Yoshida, fungal 

laccases were discovered by Bertrand in 1896 [166]. The majority of laccases 

characterized so far were isolated from fungi, and the reports of their presence in more 

and more fungal species have been published [167,168]. Up to now, more than 100 

laccases have been purified from fungi, and laccase from the wood-rotting white-rot 

basidiomycetes were the most enzyme purified. The wood rotting fungi that produce 

laccase are Trametes versicolor, T. hirsute (C. hirsutus), T. ochracea, T. villosa, T. 

gallica, Cerrena maxima, Coriolopsis polyzona, Lentinus tigrinus, Pleurotus eryngii, etc. 
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Laccases have several roles in fungi including lignin degradation, morphogenesis, fungal 

plant-pathogen/host interaction, and stress defence [8,167,168]. 

 There are also some reports about laccase activity in bacteria [169,170]. 

Moreover, proteins with features typical of laccases have recently been identified in 

insects [171]. 

 

2.4.2   Laccase Structure 

 Laccases are glycoproteins which often occur as isoenzymes that oligomerize to 

form multimeric complexes. The molecular weight of the monomer ranges from about 50 

to 130 kD. The carbohydrate moiety of laccases consisting of mannose, N-

acetylglucosamine, and galactose ranges from 10 to 45% of the protein mass in laccases. 

This carbohydrate moiety is believed to be responsible for the stability of the enzyme 

[3,152]. 

 For the catalytic activity, the active site of laccases contains four copper atoms 

which are one type-1 (T1) copper and a tree-nuclear cluster (T2/T3) consisting of one 

type-2 (T2) and two type-3 (T3) coppers. T1 copper atom is located at the distance of 

about 12 Å from the T2/T3 site, and T2 copper atom is located at the distance of about 4 

Å from T3 copper atoms [172-174]. The T1 copper has a trigonal coordination with two 

histidine and one cysteine, and the axial ligand of T1 is methionine in the bacterial 

(CotA) [173] and leucine or phenylalanine in fungal laccases. The T1 copper confers the 

typical blue color to multicopper proteins due to the strong absorption around 600 nm. 

This intense absorption caused by the covalent copper-cysteine bond. Moreover, type-1 

copper is the site where substrate oxidation takes place because of its high redox potential 
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of ca. +790 mV. Type-2 copper is coordinated by two histidines and type-3 coppers are 

coordinated by six histidines. Type-2 copper shows only weak absorption in the visible 

region and reveals paramagnetic properties in electron paramagnetic resonance (EPR) 

studies. While type-3 coppers, a binuclear copper site with copper paired 

antiferromagnetically through a hydroxyl bridge, exhibit the absence of an EPR signal. 

The T3 site can be characterized by electron absorption at 330 nm (oxidized form) 

[155,175,176]. In addition, the trinuclear cluster (T2/T3 site) is where the reduction of 

molecular oxygen and release of water takes place. Figure 39 illustrated a scheme of 

active site of laccase CotA from Bacillus subtilis. 

 

 

 

 

 

 

 

 

   

 

Figure 39. Active site of laccase CotA from Bacillus subtilis (adapted from Enguita et al. 
[173]). 
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versicolor [179,180], Pycnoporus cinnabarinus [181], Melanocarpus albomyces [182] 

and Rigidoporus lignosus [174]. Moreover, the three-dimensional structure of laccase 

CotA from endospores of Bacillus subtilis has also recently been published [173,183]. 

 

2.4.3   Catalytic Mechanism and Properties 

 Laccase catalysis is proposed to comprised three major steps [155,184,185]: 

1. Type-1 copper is reduced by accepting electrons from the reducing substrate. 

2. Electrons are transferred ~13 Å from type-1 copper to the trinuclear T2/T3 

cluster. 

3. Molecular oxygen is activated and reduced to water at the trinuclear T2/T3 

cluster. 

Figure 40 shows the catalytic cycle of laccase showing the mechanism of four-

electron reduction of a dioxygen molecule to water at the enzyme copper sites [186]. 

Dioxygen molecule interacts with the completely reduced trinuclear cluster (T2/T3) via a 

2e- process (k ≈ 2 × 106 M-1s-1) to produce the peroxide intermediate which contains the 

dioxygen anion [187]. One oxygen atom of the dioxygen anion bound with the T2 and T3 

copper ions and the other oxygen atom coordinated with another copper ion of T3. Then, 

the peroxide intermediate undergoes a second 2e- process (k > 305 s-1) [172], and the 

peroxide O-O bond is splitted to produce a native intermediate which is a fully oxidized 

form with the three copper centers in the trinuclear site mutually bridged by the product 

of full O2 reduction with at least one Cu-Cu distance of 3.3 Å. This native intermediate 

form of lacccase was confirmed by the combination of Cu K-edge x-ray spectroscopy 

(XAS) and magnetic circular dichorism (MCD) studied by Solomon et al. [150]. 
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Moreover, a combination of model studies and calculations has further demonstrated that 

the three copper centers in the trinuclear cluster are all bridged by a μ3-oxo ligand [188]. 

This structure has a single μ3-oxo ligand bridging all three coppers at the center of the 

cluster, with the second oxygen atom from O2 either remaining bound or dissociated from 

the trinuclear site as shown in the native intermediate structure in Figure 40. This μ3-oxo 

bridged structure of the native intermediate provides a relatively stable structure that 

serves as the thermodynamic driving force for the 4e- process of O2 reduction, and also 

provides efficient electron transfer (ET) pathways from T1 site to all of the copper 

centers in the trinuclear cluster [188]. This efficient ET pathways lead to the fast 

reduction of the fully oxidized trinuclear cluster in the native intermediate to generate the 

fully reduced site in the reduce form for further turnover with O2. The native intermediate 

can slowly convert to a completely oxidized form called “resting” laccase which has the 

T2 copper isolated from the couple-binuclear T3 centers. The decay of the native 

intermediate to the resting enzyme proceeds via successive proton-assisted steps as 

illustrated in Figure 41 [189]. The first proton binds at μ3-oxo center and then the second 

proton binds at T3 OH- bridge. Finally, the three copper centers in the trinuclear cluster 

are uncoupled to form the resting form of laccase. The slow decay of the native 

intermediate is due to the rearrangement of the μ3-oxo-bridge, the rate limiting step, from 

inside to outside of the cluster. The T1 site of this resting laccase can be reduced by a 

substrate. However, the electron-transfer rate onto the trinuclear cluster (T2/T3) is too 

low to be significant for catalysis [150,155].  

 

 



 61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Catalytic cycle of laccase showing the mechanism of four-electron reduction 
of a dioxygen molecule to water at the enzyme copper sites (adapted form Shleev et al. 
and Solomon et al. [186,188]). 
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Figure 41. Proposed decay mechanism of the native intermediate to the resting 
laccase.[189] 
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which produces a free radical, and reduce oxygen to water. The simplify scheme of 

laccase-catalyzed redox cycles for substrate oxidation and the example of the oxidation of 

hydroquinone by laccase are illustrated in Figure 42. 
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Figure 42. (a) Scheme of laccase-catalyzed redox cycles for substrate oxidation; (b) The 
example of the oxidation of hydroquinone by laccase. 
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higher pH to a limit. The limit for increasing the pH during substrate oxidation results 

from the balance between the redox potential difference between the substrate and the 

inhibition of the T2/T3 copper site by the binding of OH- ion [198,199]. The pH optimum 

of plant laccases for substrates that are donors of hydrogen atoms was different from that 

of fungal laccases. For example, laccase from Rhus vernicifera exhibited maximal 

activity in neutral and weak alkaline solution [198].  

 The optimal temperature of laccases usually do not differ from other extracellular 

ligninolytic enzymes with in the range from 50º to 70 ºC [168]. However, there are a few 

Laccase(ox)

Laccase(red)

H2O

O2

Substrate(red)

Substrate(ox)

(a)

OH

OH

OH

O

4 4
Laccase

O2

O

O

+

OH

OH

2H2O

non-enzymatic
oxidization

2 2

(b)

dimerization or
poymeriation

Dimers or Oligomers or Polymers

Or



 64

enzymes with the optima below 35 ºC such as the laccase from G. lucidum with the 

highest activity at 25 ºC [200]. 

 A wide spectrum of compounds has been described to inhibit laccase. These 

inhibitors include small inorganic anions such as azide, cyanide, fluoride and hydroxide. 

These ions bind with the T2/T3 site and this prevents the electron transfer from T1 site 

onto T2/T3 site and inhibits the enzymatic activity [198,201]. Other inhibitors such as 

metal ion (Hg+), fatty acids, quaternary ammonium detergents, have been shown to either 

replace or chelate the copper centers, or de nature the protein [149].  

 

2.4.4   Laccases in Organic Synthesis 

 Due to the catalytic and electrocatalytic properties of laccases, laccases have 

received much attention from researcher in last decades as well as have shown the 

potential of their wide application in several industrial and biotechnological processes 

[21,152]. Moreover, laccases also pose the possibility of their application in fine organic 

synthesis because of their ability to oxidize a variety of compounds [4]. The redox 

potential of laccase is in the range of 0.5 to 0.8 mV (vs. normal hydrogen electrode 

[NHE]) [198]. In the reactions where the substrate to be oxidized has a higher redox 

potential than laccase or the substrate is too large to penetrate into the enzyme active site, 

the presence of so-called ‘chemical mediator’ may be required to facilitate the reaction. 

First, the mediator reacts with the laccase to form a strongly oxidizing intermediate. 

Then, this oxidized mediator interacts with the bulky or high redox-potential substrate. 

The mediators that are widely used such as N-hydroxybenzotriazole (HBT), 2,2’-

azinobis-(3-ethylbenzylthiozoline-6-sulphate) (ABTS), Violuric acid (VA), 3-
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Hydroxyanthanilic acid (HAA), and 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) 

(Figure 43) [9,202]. However, this section will focus only on the laccase-catalyzed 

reaction in the absence of mediators.  

 

 

 

 

 

 

 

 

 

Figure 43. Chemical structure of laccase mediators. 
 

 

2.4.4.1   Laccase-Catalyzed Oxidation Reaction 
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aniline. Recently, the product of the oxidation of 2,6-dimethoxyphenol by Rhus laccase 

was determined for the first time by Wan et al. The reaction was conducted in water-

organic solvent system. They found that only one product, 3,3’,5,5’- tetramethoxy,1,1’-

biphenyl-4,4’-diol (Figure 44), was produced [206].  

 

 

 

 

 

Figure 44. Stucture of 3,3’,5,5’- tetramethoxy,1,1’-biphenyl-4,4’-diol produced by 
laccase catalyzed the oxidation of 2,6-dimethoxyphenol.[206] 
 

 
 Monolignols including isoeugenol, coniferyl alcohol, and ferulic acid have also 

been investigated for the laccase-catalyzed oxidation reactions. Chen and his co-workers 

[208] studied the oxidation of isoeugenol and coniferyl alcohol by laccase from Rhus 

vernicifera (tree) and Pycnoporus coccineus (fungus) in acetone-water (1:1, v/v). The 

rate of Pycnoporus laccase-catalyazed oxidation of isoeugenol and coniferyl alcohol is 

approximately 3 to 7 times faster than the rate of Rhus laccased-catalyzed oxidation. The 

rate of the oxidation depends on the nature of both monolignol and laccase (Figure 45).  
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Figure 45. Dimer and tetramer products from the oxidation of isoeugenol alcohol by 
laccase.[208] 
 
 
 
 Nishida and Fukuzumi [209] examined the transformation of ferulic acid by white 

rot fungus, Trametes versicolor, in a medium containing glucose and ethanol under 

aerobic condition. The ferulic acid was transformed into coniferyl alcohol, 

coniferylaldehyde, dihydroconiferyl alcohol, vanillic acid, vanillyl alcohol, 2-

methoxyhydroquinone and 2-methoxyquinone. Falconnier et al. [210] also reported the 

biotransformation of ferulic acid to vanillin by the white rot fungus Pycnoporus 

cinnabarinus I-937  (Figure 46).  
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Figure 46. Biotransformation of ferulic acid by laccase.[210] 
 
 
 
  

 

 

 

 

     

Figure 47. The synthesis of bis-lactone lignans.[211] 
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as food colorants. However, this yellow compound is still in progress to elucidate the 

structure. Moreover, the synthesis of bis-lactone lignan was reported to perform via the 

transformation of sinapinic acid and ferulic acid by laccase in biphasic system (Figure 

47) [211] .   

 Azo dyes, the largest group of colorants used in industry are able to oxidize by 

laccase [213-215]. Renganathan and Chivukula [213] examined the oxidation of phenolic 

azo dyes catalyzed by laccase from Pyricularia oryzae. Laccase oxidized azo dyes to 4-

sulfonylhydroperoxide, quinone compound, and other products (Figure 48). This study 

suggests that laccase oxidation can result in the detoxification of azo dyes. Most recently, 

Rehorek et. al. [214] reported a simultaneous combination of laccase and ultrasound 

treatment in acetate buffer (pH 4.5) at 40 ºC for the degradation of azo dyes such as acid 

oranges and direct blue dyes. The degradation process was monitor by UV-Vis 

spectrometry and HPLC analysis. Compare to laccase or ultrasound treatment, the 

stimultaneous treatment with laccase and ultrasound showed at least the same or higher 

degradation rates of the azo dyes. Besides the degradation of azo dyes, laccase was also 

reported to catalyze the formation of azo dyes by oxidative coupling between o-, m-, and 

p-methoxyphenols and 3-methyl-2-benzothiazolinene hydrazone [216]. 

 

 

 

 

 

Figure 48. The oxidation of phenolic azo dyes by laccase.[213] 
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 The transformation of other compounds such as steroid hormones [6,217,218], 

alkaloids [219], flavonols [220], procyanidin B-2 [221], and N-(2-alkylamino-4-

phenylimidazol-1-yl)-acetamides [17] have been reported. The examples of these studies 

are summarized in Table 3. 

 

 

 

Table 3. Some examples of laccase mediated transformation of natural compounds. 
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Table 3. (Continued) 
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Table 3. (Continued)  
 

[17] 

 
 

 

2.4.4.1.2   Lacccase-Catalyzed Oxidative Deprotection Reactions 

 Moreover, the use of laccase in oxidative deprotection for peptide synthesis has 

been developed. A method to remove phenylhydrazide protecting group of both α- and γ-

carboxyl group by laccase have been proposed by Semenov et. al. [222]. The deblocking 

method was performed under mild condition in aqueous medium and pH 7.0 in the 

presence of oxygen. Therefore, this deprotection method lead to non-oxidative 

modification without destruction of amino acid side chains. Recently, Rutjes and his co-

workers [223] reported the oxidative deprotection of p-methoxyphenyl (PMP)-protected 

amines by laccase under mildly acidic condition (Figure 49). In addition, they found that 

the use of mediators lead to an extension of the substrate scope and increase reaction rate. 
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Figure 49. The oxidative deprotection of p-methoxyphenyl (PMP)-protected amines by 
laccase.[223]   
 
 
 
 
2.4.4.1.3   Laccase-Catalyzed Oxidative Coupling for the Synthesis of the Pharmaceutical 

Importance Compounds 

 Laccase have been reported to use for the synthesis of the pharmaceutical 

importance compounds by oxidative coupling of the desired substrates to form the 

corresponding dimer products. Some of the phenoxazinone chormophores having 

antibiotic activity have successfully been synthesized via laccase-catalyzed oxidative 

coupling reactions [224-227]. The synthesis of these phenoxazinone chormophores 

involved the formation of aminophenoxy radicals by oxidation of o-aminophenols by 

laccase at the first step. These radicals then underwent coupling and cyclocondensation 

reaction to form the corresponding products. However, the reaction mechanism of this 

synthesis is still under investigation. For example, actinocin, chormophore of 

actinomycin antibiotics, was synthesized by laccase mediated oxidation of 4-methyl-3-

hydroxyanthranilic acid (4-M-3-HAA) (Figure 50) [224]. Laccase used in this study was 

immobilized in polyacrylamide gel. The reaction proceeded successfully in aqueous 

medium and in 60% acetonitrile.  
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Figure 50. The synthesis of actinocin by laccase mediated oxidation of 4-methyl-3-
hydroxyanthranilic acid.[224]  
 
 
 
 Recently, Giurg et. al. [225] reported the synthesis of 2-amino-3H-phenoxazin-3-

one including actinocin, cinnabarinic acid, and questiomycin A by the catalytic oxidative 

cycloaddition of o-aminophenols. These reactions were conducted in the presence of 

laccase and oxygen in aqueous medium (Figure 51). 

 

 

 

 

 

 

 

 
Figure 51. The synthesis of 2-amino-3H-phenoxazin-3-ones by the laccase catalyzed 
oxidative cycloaddition of o-aminophenols.[225] 
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 The sulfonate analogue of cinnabarinic acid was recently synthesized by laccase 

mediated the oxidative dimerization of 3-hydroxyorthanilic acid (Figure 52) [226].  

 

 

 

 

 

Figure 52. The synthesis of the sulfonate analogue of cinnabarinic acid by laccase 
mediated the oxidative dimerization of 3-hydroxyorthanilic acid.[226] 
 
 
 
 Forti and his co-workers [5] reported the transformation of trans-resveratrol 

(3,5,4’-trihydroxystilbene) by laccase from Myceliophtora thermophyla and from 

Trametes pubescens to generate the dehydrodimer product that has an antioxidant 

properties (Figure 53). 

 

 

 

 

 

 

 

Figure 53.  The transformation of trans-resveratrol (3,5,4’-trihydroxystilbene) by 
laccase.[5] 
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Figure 54. The oxidation of a seires of hydroxystilbenes by laccase.[228] 
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 These authors recently reported the oxidation of a series of hydroxystilbenes, 

analogues of the phytoalexin resveratrol by laccase from Trametes pubescens in ethyl 

acetate/acetate buffer system [228]. In this study, three different dimeric product were 

identified with the main product usually being 4-O-α-β-5 dimers. These products were 

proposed to be generated via radical-radical coupling dimerization reactions (Figure 54). 

 Other biological active compounds have already been prepared. Antioxidant 

gelatin-catechin conjugates have already been synthesized by the laccase-catalyzed 

oxidation of catechin in the presence of gelatin in an aqueous medium [229]. Moreover, 

the dimerization of Penicillin X [230], totarol [231], flavonolignan silybin [232], and 

salicylic ester [13] by laccase have already been reported. 

 

  

2.4.4.1.4   Laccase-Catalyzed Oxidative Cross-coupling Reactions 

Laccases show to catalyze the oxidative cross-coupling reaction between different 

molecules. Oxidative coupling of hydroquinone and mithramicine [233] or (+)-catechin 

[16] have been examined. In the study of the cross coupling reaction between 

hydroquinone and (+)-catechin, Rhus vernicifera laccase catalyzed the formation of two 

new catechin-hydroquinone adducts (Figure 55). In this study, hydroquinone served as 

both a shuttle oxidant and a reactant during laccase oxidations.  
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Figure 55. Laccase catalyzed the formation of catechin-hydroquinone adducts.[16] 
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 Schauer et al. [15] reported the derivatization of the natural compound 3-(3,4-

dihydroxyphenyl)-propionic acid (dihydrocaffeic acid) via N-coupling reaction with 

amines in the presence of laccase and oxygen in aqueous medium. The products of these 

reactions were formed by a R-NH2 attack of a cation radical of dihydrocaffeic acid 

(Figure 56). Later, they also studied laccase catalyzed a heteromolecular coupling of 

dihydrocaffeic acid with 4-aminobenzoic acid in different reactor [234]. 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 56. Laccase catalyzed N-coupling of dihydrocaffeic acid and amines.[15] 
 
 
 
 A recent example of laccase catalyzed cross-coupling reaction is the synthesis of 

Tinuvin, the benzotriazol base UV-absorber [235]. Laccase from Trametes hirsute was 

used to catalyze the coupling reaction of 3-(3-tert-butyl-4-htdroxyphenyl)propionic acid 

methylester to 1H-benzotriazole (Figure 57). This cross-coupling reaction occurred when 

1H-benzotriazole was applied in four-fold molar excess.  
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Figure 57. The synthesis of Tinuvin by a laccase-catalyzed reaction.[235] 

 
 
 
 Another recent example is the formation of protein-oligosaccharide conjugates 

[236]. The formation of hetero-cross-coupling between tyrosine side chain of α-casein 

and phenolic acid of hydrolyzed oat spelt xylan was catalyzed by laccase from Trametes 

hirsula. This study shows another use of laccase in the modification of the biopolymer. 

 

 

2.4.4.2   Laccase-Mediated Formation of Intermediate Quinones in Organic Synthesis 

 In this section, all reactions proceeded via the quinonoid intermediates of laccase 

substrates. Laccase first oxidized the phenolic substrate to form phenolic radical which 

further underwent nonenzymatic oxidation to generate quinonoid intermediate. The 

quinonoid intermediate then reacted with other compounds to provide the corresponding 

product (Figure 58).   
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Figure 58. Mechanism of laccase mediated the formation of quinonoid intermediate for 
Michael addition reaction. 
 

 

 Many studies of laccase-catalyzed synthesis of aminoquinones have been reported 

[11,18,237]. Aminoquinones were synthesized by nuclear amination of p-hydroquinones 

with primary aromatic amines in the presence of fungal laccase. The mechanism of these 

reactions is likely to be proposed via Michael addition of primary amine to the quinoniod 

intermediate (Figure 59a). In addition, this strategy also used to derivatize unprotected 

amino acid L-tryptophane (Figure 59c) [238]. The laccase-catalyzed amination was also 

used in the synthesis of bioactive compounds such as β-lactam antibiotic cephalosporins 

(Figure 59d) [239] and novel penicellins (Figure 59e) [240]. Recently, Manda et al. [241] 

showed that the quinonoid intermediate of laccase substrate can react with solvent such 

as water, methanol, and other alcohols to form the C-O bond cross-coupling products 

(Figure 59b). Besides laccase-catalyzed amination of p-hydroquinone, Laccase-catalyzed 

amination of o-hydroquinone, such as laccase mediated Michael addition of 15N-

sulfapyridine to protocatechuic acid, have also been reported [242]. 
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Figure 59. Laccase mediated amination reaction.[11,238-241] 
 
 

OH

OH

N
H

OH

O

2
Laccase

OH

O

N
H

OH

O

2
Nonenzymatic

Oxidation

O

O

N
H

OH

O OH

OH

N
H

OH

O

+

O

O

N
H

OH

O

H2N COOH

O

O

R

N
H

COOH

R=CONHCH2CH2OH

H2O or MeOH

O

O

N
H

OH

O

OHor (OMe)

N
H

OH

H2N

O

H
N

OH

N
H

O

O

O

R

R=CONHCH2CH2OH

NH2

O

H
N

N

S
H

O

COOH

CH3HO

Cefadoxil

O

O

NH

O

H
N

N

S
H

O

COOH

CH3HO

N
H

OH

O

NH2

O

H
N

N

H

O
HO

S

COOH
(H)

O

O

N
H

OH

O

NH

O

H
N

N

H

O
HO

S

COOH
(H)

+

+

+

+

+

(a)

(b)

(c)

(d)

(e)

Acetatebuffer pH5, rt
70%

Laccase

Acetatebuffer pH5, rt
Laccase

70%

Acetatebuffer pH5.6, rt
Laccase

88%

Acetatebuffer pH5.6, rt
Laccase

98%

Acetatebuffer pH5, rt
Laccase



 83

 Laccase-mediated formation of intermediate quinone can be used in the domino 

reaction. For example, Bhalerao et al. [243] reported laccase catalyzed one step synthesis 

of 3-substituted-1,2,4-triazolo(4,3-β)(4,1,2)benzothiadiazine-8-ones (Figure 60). 

 

 

 

 

 

 
 
Figure 60. The synthesis of 3-substituted-1,2,4-triazolo(4,3-β)(4,1,2)benzothiadiazine-8-
ones by laccase mediated reaction of 5-substituted-4-amino-3-mercapto-1,2,4-triazoles 
and hydroquinone.[243] 
 
 
 
 Recently, Leutbecher et al. [19] studied the synthesis of O-heterocycles via 

laccase-catalyzed domino reaction between 4-hydroxy-6-methyl-2H-pyran-2-ones with 

catechols. Moreover, Laccase initiated domino reaction of cyclohexane-1,3-diones with 

catechols for the synthesis of 3,4-dihydro-7,8-dihydroxy-2H-dibenzofuran-1-ones has 

been developed (Figure 61) [244]. The products yield ranging from 70% to 97%.  
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Figure 61. Laccase initiated domino reaction of cyclohexane-1,3-diones with 
catechols.[244] 
 

 

2.4.4.3   Laccase-Catalyzed Polymerization Reaction 

 Laccases have shown to catalyze polymerization reaction of many compounds 

including acrylamide [245], 2-hydroxydibenzofuran [246], phenolic pollutants [247], 1-

naphtol [248,249], catechol [250], 4-cholroguaicol [251], Bisphenol A [252], and aniline 

[253-255]. Some examples of these laccase catalyzed polymerization are shown in Table 

4. 
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Table 4. Substrates, reaction conditions, and products from laccase catalyzed 
polymerization reactions.  
 

Substrate Reaction 
condition Products Reference

Acrylamide 
 

Laccase, 
water,  

65 ºC, 4 h 

Polyacrylamide  
(MW > 6 × 105) [245] 

2-hydroxydibenzofuran 
 

Laccase, 
acetate buffer 
pH 5, 30 ºC,  

3 h 

Dimers such as 
 
 
 
 
 
 
 
 
 
+ Trimers and Oligomers 

[246] 

1-naphthol 
 

Laccase, 
acetone-

acetate buffer 
pH 5, 25 ºC 

Orange colored  
poly(1-naphtol) 

Average MW = 4920 Da 
[248] 

Bisphenol A 
 

Laccase, 
phosphate 

buffer pH 6, 
rt, 4 days 

Dimer 
 
 
 
 
 
 
 
and  Oligomers 

[252] 
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Table 4. (Continued)    
Aniline + Sulfonated 
polystyrene (SPS) 
 

Laccase, 
Citrate-

phosphate 
buffer  

pH 3.5-4.4, 
20 ºC 

SPS-polyaniline complex [255] 

 
 

 

 

 In addition, many natural or artificial natural products have been synthesized by 

laccase-catalyzed polymerization reaction. Kobayashi and his co-workers developed a 

method for the preparation of artificial urushi [256-258]. Urushi is an insoluble polymeric 

film formed by the crosslinking of urushiol monomer whose structure is a catechol 

derivative with unsaturated hydrocarbon chain consisting of monoenes, dienes, and 

trienes at 3-, or 4-position of catechol. The artificial urushi in this study was prepared by 

laccase-catalyzed crosslinking of new urushiol analogues under mild conditions without 

the use of organic solvents (Figure 62). 
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Figure 62. The synthesis of artificial urushi by laccase-catalyzed polymerization of 
urushiol analogues.[258]  
 
 
 
 Rutin is one of the most famous glycosides of flavanoid widely present in many 

plants and has been reported to have biological activities including antioxidant, 

antihypertensive, antiinflammatory, and antihemorrhagic activities. Therefore, Kobayashi 

et al. [14] synthesized poly(rutin) by laccase-catalyzed oxidative polymerization of rutin 

to amplify the antioxidant activity of rutin. 

 

 

 

 

 

 

 

 

 
Figure 63. Structure of Rutin. 
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 These authors also synthesized poly(catechin) [259], a new class of flavonoid 

polymers, via the polymerization of catechin by laccase in a mixture of acetone-acetate 

buffer solvent. Poly(catechin) exhibited greatly amplified superoxide scavenging activity 

and xanthine oxidase inhibitory activity compared with catechin. Moreover, Burton and 

Ncanana [260] recently reported laccase-catalyzed polymerization of 8-hydroxyquinoline 

to yield an antioxidant aromatic polymer (Figure 64). Eisenman et al. [261] reported the 

use of Cryptococcus neoformans laccase to catalyzed the synthesis of melanin from both 

D- and L-3,4-dihydroxyphenylalanine (DOPA). 

 

 

 

 

 

 
Figure 64. The structure of poly(8-hydroxyquinoline).[260] 

 
 
 
 
2.4.5   Laccase in Fiber Modification  

 Enzyme facilitated lignocellulosic fiber modification is recently a growing field of 

research and interest [262]. Enzyme technology offers an environmentally friendly 

method for modifying the fibers. Moreover, enzymatic treatment conditions are often 

milder and less damaging to the fiber than chemical treatment. Laccase is one of the 

enzymes used for the surface modification of lignocellulosic fibers [20,263,264]. 
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 Fibers often have a set of their own properties. These properties, such as water-

binding capability, flexibility, rigidity, hydrophilicity, hydrophobicity, and the ability to 

adhere to themselves and to other materials, depend on the structure and the composition 

of the major components of the fiber which are cellulose, hemicellulose, and lignin [263]. 

Altering these fiber properties is a tremendous opportunity to produce a new value-added 

material from this renewable resource. 

 The first part of this section will discuss the chemical composition and structure 

of the lignocellulosic fibers. Next, the recent development in fiber modification by 

laccase will be discussed. 

 

2.4.5.1   Lignocellulosic Fibers 

2.4.5.1.1   Chemical Composition  

 The three main natural polymers of lignocellulosic fibers are cellulose, 

hemicellulose, and lignin.  

 Cellulose is a straight-chain polysaccharide composed of D-glucose repeating 

units which are linked together by β-1,4-glycosidic linkages at the C1 and C4 positions as 

shown in Figure 65 [265]. The degree of polymerization (DP) of cellulose in native wood 

is around 10,000 but can decrease to less than 2000 after pulping [266]. The numerous 

hydroxyl groups on the chain backbone of cellulose macromolecules lead to the 

formation of both intermolecular and intramolecular hydrogen bonds. These hydrogen 

bonds stiffen the straight chain and promote aggregation, forming a crystalline structure 

[267]. Bundles of cellulose molecules are aggregated together in the form of microfibrils 
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with regions of high order (crystalline regions), and regions of low order (amorphous 

regions). Microfibrils build up and form fibrils which form cellulose fibers.  

 

 

 

 

 

Figure 65. Chemical structure of cellulose.[265] 
 
 
 
 Cellulose has six crystalline polymorphs of which cellulose I and II are the most 

commonly found [265,268]. Cellulose I, the native form produced in plant and other 

organisms, is composed of parallel cellulose chains forming dense, highly hydrogen 

bonded sheets. Natural cellulose I exists as two crystal phases, named Iα and Iβ. The 

relative amount of Iα and Iβ depends on their origins. For example, some algae and 

bacterial cellulose tend to be rich in Iα while cotton, wood, and ramie fiberstend to be rich 

in Iβ [269,270]. Recently, Langan et al. [271,272] studied the crystal structure and 

hydrogen-bonding system in cellulose Iα and Iβ  from using synchrotron X-ray and 

neutron fiber diffraction. They found that cellulose Iα and Iβ  can both be described as 

dense, highly hydrogen bonded sheets of parallel chains organized in sheet packed in a 

“parallel-up” fashion. These two allomorphs show no hint of intersheet O-H···O hydrogen 

bonding.The main difference between Iα and Iβ  is the stacking of these sheets which is 

displaced in the chain direction. The second sheet of both allomorphs is shifted in the 

“up” direction by about c/4 relative to the first sheet. The third sheet in Iα is also shifted 
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up by about c/4 with respect to the second sheet, but in Iβ, it is shifted in “down” direction 

by about c/4 relative to the second sheet. Therefore, there is a relative difference of about 

c/2 in the position of the third sheet with respect to the second sheet in Iα and Iβ . These 

authors also proposed that the most likely route for solid-state conversion of cellulose Iα 

→ Iβ is the relative slippage by c/2 at the interface of the second and third sheets. They 

also indicated that weak C-H···O hydrogen bonding also contributes to cellulose crystal 

cohesion in both Iα and Iβ. There are more C-H···O inter-sheet bonds in Iβ than in Iα. This 

contributes to the stability of Iβ over Iα.  

 Cellulose II consists of antiparallel cellulose chains that are arrange into less 

dense sheets and shows to have hydrogen bonding  both within sheets and between sheets 

[273].  

 Hemicelluloses are branched heteropolysaccharides consisting of a number of 

different sugar building units including glucose, xylose, mannose, galactose, and 

arabinose (Figure 66). Hemicellulose is an amorphous polymer and this is attributed to 

the low degree of polymerization (DP = 50-300), and the branch structure. Hemicellulose 

is very hydrophilic, soluble in alkali, and easily hydrolyzed in acids [274]. The 

proportions and the composition of hemicellulose vary from one species to another. 

Hemicellulose content is typically 20-30% in softwood and 25-35% in hardwood [275]. 

Table 5 summarizes the DP and percentage of the major hemicelluloses in softwoods and 

hardwoods. Galactoglucomannans and arabinoglucuronoxylan are the two main 

hemicelluloses in softwood (Figure 67) while glucuronoxylan is the main hemicellulose 

in hardwood [276].  

 

http://en.wikipedia.org/wiki/Xylose�
http://en.wikipedia.org/wiki/Mannose�
http://en.wikipedia.org/wiki/Galactose�
http://en.wikipedia.org/wiki/Arabinose�
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Table 5. The degree of polymerization and percentage of the major hemicelluloses in 
softwoods and hardwoods.[277] 
 

Hemicellulose type Percentage in 
wood (%) 

Degree of 
polymerization 

(DP) 
Galactoglucomannans 11-25 100 Softwoods Arabinoglucuronoxylan 7-10 100 
Glucuronoxylan 15-30 200 Hardwoods Glucomannan 2-5 200 

 
 

 

 

 

  

 

 

 

 

 

 

 
Figure 66. Sugar monomers in hemicellulose. 
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Figure 67. Structure of hemicelluloses in softwood.[276] 

 
 
 
 Lignin, the second most abundant natural polymer on earth, is a complex aromatic 

polymer most commonly derived from wood and an integral part of the cell walls of 

plants. Lignin is totally amorphous and hydrophobic in nature. It gives rigidity to the 

plants. Lignin macromolecule is a crosslinked three-dimentional phenolic polymer made 

up of hydroxyphenylpropane units [278]. Due to the difficulty in isolating lignin without 

modification, the original structure of native lignin is not yet known. However, numerous 

information from lignin degradation products and model compound studies provides the 

evidence that lignin formation originates from the polymerization of three different 

hydroxyphenylpropane units known as monolignols. These monolignols are sinapyl, 

coniferyl, and p-coumaryl alcohol as illustrated in Figure 68 [279]. 
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Figure 68. The structure of monolignols.[279] 
 
 

 The polymerization of lignin is believed to proceed via the formation and 

subsequent coupling of phenoxy radicals [278,280]. Figure 69 illustrates five main 

resonance structures of the phenoxy radical which will undergo coupling reaction to form 

a wide variety of linkages. The phenylpropane units are linked by C-C and C-O bonds. 

Eight common interunit linkages in lignin are shown in Figure 70 [279]. Table 6 shows 

the percentage of linkages found in hardwood and softwood lignin. The β-O-4 ether 

linkage is the most abundant linkage in lignin, approximately 50% of total linkages in 

softwood lignin. In addition, functional groups, including hydroxyl, methoxyl, and 

carbonyl groups, have been identified in lignin. 
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Figure 69. Resonance structures of lignin precursors.[278] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70. Structure of eight different lignin linkages.[281-283] 
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Table 6. The percentage of different lignin linkages in hardwood and softwood.[279,284] 
 

Percentage found in wood (%) 
Type Name 

Hardwood Softwood 
β-O-4 β-aryl ether 60 45 - 50 
α-O-4 α-aryl ether 7 6 - 8 
β-5 Phenylcoumaran 6 9 - 12 
5-5’ Biphenyl and Dibenzodioxocins 7 18 - 25 
4-O-5 Diphenyl ether 5 4 - 8 
β-1 1,2-diphenylpropane 7 7 - 10 
β-β β-β linked structures 3 3 
 
 
 
 
2.4.5.1.2   The Effect of Kraft Pulping on Fiber Composition 

 The major chemical pulping process in North America is the kraft process. The 

objective of any chemical pulping process is to remove enough lignin from cellulosic 

fibers to produce a pulp suitable for the manufacture of paper and other related products. 

In a conventional kraft cook, the wood chips are treated with an aqueous solution of 

sodium hydroxide (NaOH) and sodium sulfide (Na2S), known as white liquor, in a large 

pressure vessel called a digester. The white liquor and the wood chips are then heated to a 

cooking temperature of about 170 ºC, typically reached after 1 – 1.5 hours. This allows 

the cooking liquor to impregnate the chips. The cook is then maintained at the cooking 

temperature for about 2 hours. Then, the contents are discharged into a blow tank to 

disintergrate the softened chips into fibers [285]. During the kraft pulping treatment, the 

hydroxide (OH-) and hydrosulfide anion (SH-), presenting in the pulping liquor, react 

with the lignin. This reaction causes the lignin polymer to fragment into smaller 

water/alkali-soluble fragment which are then dissolved as phenolate or carboxylate ions. 

Hemicellulose and some cellulose are also chemically attacked and dissolve to some 
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extent. Typically, approximately 90% of lignin, 50% of the hemicellulose and 10% of 

cellulose is removed in kraft pulping process [285]. 

 The degradation of lignin during kraft pulping mainly proceeds through the 

cleavage of ether linkages, with a concomitant generation of free phenolic hydroxyl 

groups. The liberation of these phenolic hydroxyl group results in an increase of 

hydrophilicity of the lignin and the lignin fragments. As a consequence, the solubility of 

lignin in the pulping liquor is increased. However, the carbon-carbon linkages are more 

stable and tend to remain after the pulping process. At the end of kraft pulping, the 

remaining or residual  lignin content is typically about 4-5% (by weight) [280,285].  

 Chakar and Ragauskas [280] recently reviewed the softwood kraft lignin process 

chemistry. Two main lignin reactions, which are degradation and condensation reactions, 

occur during kraft pulping. The major degradation reactions are the cleavage of α-aryl 

and β-aryl ether bonds [286]. α-Aryl lingkages are shown in Figure 71. The quinone 

methide intermediate is formed after the α-aryl bond cleavage. This quinone methide 

intermediate can react with SH- to generate a benzyl mercaptide structure. Then, the 

mercaptide anion attacks the β-carbon to yield a thiirane intermediate and eliminates the 

β-aryloxy group as illustrated in Figure 71. In addition, the terminal hydroxymethyl 

group of the quinone methide intermediate can be eliminated as formaldehyde to yield an 

alkali-stable enol ether (Figure 71) [287,288]. The cleavage of the β-aryl ether bond is 

summarized in Figure 72. This cleavage involves the attack of an ionized hydroxyl group 

present on the α- or γ-crabon. 
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Figure 71. Alkaline cleavage of α-aryl ether bond, sulfidolytic cleavage of β-aryl ether 
bonds in phenolic arylpropane units, and conversion into enol-ether units of quinone 
methide intermediates.[280] 
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Figure 72. β-aryl ether bond cleavage in nonphenolic arylpropane unit.[280] 
  
 

 During the kraft pulping, the quinone methide intermediate acts as an acceptor 

which can react with necleophiles such as SH-, OH-, and lignin nucleophiles (e.g., 

carbanions from phenolic structures). Therefore, these nucleophiles compete for quinone 

methide intermediates. The condensation reaction proceeds via Michael addition between 

quinone methide intermediate and phenolated ion, followed by the abstraction of a proton 

and rearomatization to form the corresponding product. However, when the structures 

contain a good leaving group, such as an aroxyl group, at the β-carbon, the cleavage of β-

aryl ether linkages will predominate over condensation reactions [280]. Figure 73 

summarizes the proposed competitive addition of these necleophiles. 
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Figure 73. Competitive addition of external (SH-) and internal (phenolate ion) 
nucleophiles to quinone methide intermediates.[280] 
 
 
 
 Moreover, the carboxylic acid group content of the residual lignin is affected by 

the kraft pulping process. Froass, Ragauskas, and Jiang [289] reported that the carboxylic 

acid group content of the lignin increases as delignification proceeds. The enhancement 

of carboxylic groups in residual lignin after kraft pulping is also reported by Jiang and 

Argyropoulos [290]. This enhancement is accompanied by a decrease in the amount of 

aliphatic hydroxyl groups. 

 Polysaccharides, including hemicellulose and cellulose, are also degraded during 

the kraft process. The hemicellulose content is reduced by approximately 40%. The 
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converts the reducing end group to a stable carboxylic acid group [276]. Therefore, it can 

be assumed that virtually all carbohydrate end groups have been converted to carboxylic 

acids at the end of kraft pulping. Figure 74 summarized the peeling and stopping 

reactions of polysaccharides during kraft pulping.  

  10% of cellulose is removed during the kraft pulping process. This low loss of 

cellulose is due to the low accesssability of OH- into the crystalline region of the 

cellulose. In addition, about 90% of the extractives in wood are removed [285]. Table 7 

shows yield values for individual wood composition after kraft pulping of Scots pine 

(Pinus sylvestris, softwood) and birch (Betula verrucosa, hardwood). 
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Figure 74. Scheme illustrates peeling and stopping reactions of polysaccharides during 
kraft pulping. [291] 
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Table 7. Yield values for individual pulp components after kraft pulping of Scots pine (a 
softwood) and birch (a hardwood).[292] 
 

Yield (%, on dry-wood basis) 

Pine Birch Wood Component 

Original After pulping Original After pulping 
Cellulose 39 35 40 34 
Glucomannan 17 4 3 1 
Xylan 8 5 30 16 
Other carbohydrates and various 
components 5 - 4 - 

Sum of carbohydrates 67 44 74 51 
Lignin 27 3 20 2 
Pitch 4 0.5 3 0.5 
Sum of components (yield) 100 47 100 53 
 
 

2.4.5.1.3   Structure of Lignocelluosic Fibers 

 Lignocellulosic fibers are composed of hollow cellulose fibrils held together by a 

lignin and hemicellulose matrix. The cell wall of a fiber has a complex, layered structure 

as illustrated in Figure 75. The hollow center of the fiber called lumen, and the sublayers 

of the cell wall consisting of a thin primary wall and a thicker secondary wall. The 

primary wall has a lower amount of cellulose and a higher amount of lignin compared to 

the secondary wall. Cellulose microfibrils from the primary wall are organized in a loose 

network almost perpendicular to the cell axis. The secondary wall is made up of three 

layers, S1, S2, and S3 [293]. The secondary wall’s microfibrils have a parallel 

arrangement. Each layer of the secondary wall has a different microfibrillar angle, the 

angle between the fiber axis and the microfibrils. The microfibrillar angle in S1, S2, and 

S3 layers are 50-70º, 10-30º, and 60-90º, respectively [293]. The microfibrils, providing 

mechanical strength to the fiber, are made up of 30-100 cellulose molecules in extended 
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chain conformation. The thick S2 layer determines the mechanical properties of the fiber.  

The amorphous phase in the cell wall consists of hemicellulose, lignin, and in some cases 

pectin. The hemicellulose molecules are bonded with cellulose microfibrils by hydrogen 

bonding. This cellulose-hemicellulose network is believed to be the main structure 

component of the fiber cell. The compound that binds the two adjacent primary walls 

together is called the middle lamella. The middle lamella (ML) is primarily composed of 

lignin that holds the fibers together in the wood ultrastructure. The length of typical 

softwood fibers is approximately 2.5-7.0 mm and the width is approximately 25-50 μm. 

Typical hardwood fibers are approximately 0.8-1.6 mm long and 14-40 μm wide.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 75. A softwood tracheid (fiber) cell wall structure (Adapted from Coté [294]). 

 
 
 
 



 105

2.4.5.2   Laccase Application in Fiber Modification 

 Recently, laccase research studies have shifted toward fiber modification. 

Lignocellulosic fibers compose of lignin, the macro phenoxylic structure which can be 

oxidized by laccase to form the phenoxylic radical in the fibers. These radicals appear to 

undergo polymerization with each other or undergo coupling reaction with other 

compounds. Therefore, they have been used to graft a variety of substrates onto the fiber 

which leads to the alteration of fiber surface. Moreover, depending on the grafting 

materials, the properties of the modified fibers can be designed to suit the end product.  

 Laccases have been applied for bonding of fiberborads, particle boards, paper 

boards, and kraft-liner board [295-298]. The auto adhesion of wood fiber and particles 

has been achieved using laccase for activation of the surface lignin. Laccase first oxidized 

lignin at the surface fibers to generate the lignin phenoxy radicals. These radicals then 

underwent the crosslinking reaction to form a crosslinked-network of lignin between 

fibers. Laccase-catalyzed polymerization of lignin through cross-linking of lignin 

phenoxy radicals led to the bonding and strength enhancement of lignocellulosic 

materials. Recently, the internal bonding of particle boards was improved by laccase-

catalyzed funtionalization with 4-hydroxy-3-methoxybenzylurea [299].  In this study, 4-

hydroxy-3-methoxybenzylurea was used as a functional compound to graft with spruce 

wood particle by laccase. The presence of the urea group in this funtionalized wood 

particle led to crosslinking between the funtionalized wood particles and resin in 

subsequent glueing processes (Figure 76), which improved the strength properties of the 

particle boards. 
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Figure 76. Laccase catalyzed grafting of lignin with 4-hydroxy-3-methoxybenzylurea, 
followed by chemical crosslinking to urea/formaldehyde (UF) resin in the subsequent 
glueing process.[299] 
 

 

 Besides catalyzing auto cross-linking between lignin, laccases have been used to 

catalyze the grafting reaction of various materials onto technical lignin. For example, 

guaiacol sulfonate has been grafted onto lignin by laccase resulting in an increase of the 

water solubility of lignin [22]. This reaction was initiated by an oxidation of lignin and 

guaiacol sulfonate by using laccase to generate phenoxy radicals of both components. 

These radicals then underwent the coupling reaction with each other to form guaiacol 

sulfonate-grafted lignin.  Huttermann et al. reported that the lignin phenoxy radicals 
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formed by the laccase catalyzed oxidation reaction are so active that they can also react 

with nucleophlies such as cellulose and starch. Therefore, this study shows that 

carbohydrate can be covalently bonded with lignin via the laccase catalyzed reaction of 

lignin with cellulose [23]. Moreover, Mai et al. reported many studies involving the 

grafting of lignin with synthetic polymers derived from acrylic and acrylamide to create a 

new class of engineering plastics [24-27]. The presence of both laccase and peroxides 

such as dioxane peroxides were essential in the copolymerization of acrylamide and 

acrylic with lignin. In addition, the results from many experiments, such as solubility 

testing, elemental analysis, UV-Vis, FT-IR, and 13C-CPMAS spectroscopy, provided 

evidence of grafting. In case of acrylamide-lignin copolymer, when freeze-dried this 

copolymer appeared as homogeneous fibril-like particulates. The proposed mechanism of 

the enzymatical grafting is illustrated in Figure 77. 
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Figure 77. Proposed mechanism of chemoenymatically induced graft copolymerization 
between lignin and acrylamide. [25] 
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 In addition, lignocellulosic fibers have been reported to be grafted with a variety 

of low molecular weight compounds. Chandra et al. modified high-lignin softwood kraft 

pulp by grafting with phenolic acids (Figure 78), including 4-hydroxyphenylacetic acid 

(PAA) [30], 4-hydroxybenzoic acid (4-HBA) [31], and gallic acid [29], in the presence of 

laccase. The grafting of these phenolic acids was performed in water (pH 4.5) at 45 ºC for 

2-4 hours and resulted in an increase of carboxylic acid groups, water retention, tensile 

strength, and burst strength of the resulting paper. Table 8 summarizes some of the paper 

strength test results of the phenolic-grafted pulp experiments. The strength increases were 

due to the improvement of hydrogen bonding between fibers and the cross-linking 

between phenoxy radicals within the sheet.  

 

 

 

 

 

 

 

Figure 78. Phenolic acids for the modification of high kappa pulp. 
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Table 8. Paper strength test result for high lignin kraft pulp treated with laccase and 
phenolic acids. 
 

Treatment 

 
 
Physical properties of paper Control Laccase 

Phenolic 
acid 

Laccase + 
Phenolic 

acid 
4-Hydroxybenzoic acid (4-HBA)-treated experiment [31] 

Apparent density (g/cm3) 0.43 0.44 0.42 0.47 
Burst index (kPa.m2/g) 2.38 2.39 2.42 2.95 
Tensile index (N.m/g) 36.65 38.87 36.98 42.10 
     

4-Hydroxyphenylacetic acid (PAA)-treated experiment [30] 
Apparent density (g/cm3) 0.38 0.39 0.38 0.39 
Burst index (kPa.m2/g) 1.76 2.10 1.76 2.16 
Tensile index (N.m/g) 31.40 33.46 30.56 34.54 
     

Gallic acid-treated experiment [29] 
Apparent density (g/cm3) 0.41 0.42 0.42 0.43 
Burst index (kPa.m2/g) 2.46 2.40 2.41 2.68 
Tensile index (N.m/g) 33.9 33.8 34.0 40.3 
Wet tensile index (N.m/g) 1.38 1.74 1.21 2.26 
 
 
 
 
 
 Viikari et al. [28] reported the modification of the fiber surfaces of 

thermomechanical pulp (TMP) by laccase and tyramine via a two-stage functionalization 

method. This method consists of an enzymatic activation of fiber surfaces followed by 

the addition of radicalized compounds that react preferentially through radical coupling. 

The degree of bonding in this study was determined by electron spectroscopy for 

chemical analysis (ESCA) which showed an increase in nitrogen content which 

originated from nitrogen in tyramine. The results showed that the nitrogen content of 

laccase-tyramine treated unbleached and bleached TMP increased to 0.6% and 1.5%, 

respectively. In addition, the FTIR spectra of tyramine-grafted samples indicated the 
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formation of ether linkages at 1060 cm-1. Therefore, the authors suggest that tyramine 

was bond by ether linkage to the pulp. The proposed structure of the modified fiber is 

illustrated in Figure 79. The mechanism was suggested to start with one electron 

oxidation of the phenolic hydroxyl groups of both lignin and tyramine to generate the 

corresponding radicals. These radicals then react via a radical coupling reaction to form 

the corresponding tyramine-bonded lignin (Figure 80). 

 

 

 

 

 

 

 
Figure 79. The proposed structure of the modified TMP with tyramine by laccase.[28] 
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Figure 80. Proposed mechanism for grafting of tyramine to lignin by laccase.[28] 
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 Lignin itself has also been reported to be grafted onto lignocellulosic fibers. For 

example, an ultra-filtered lignin isolated from kraft black liquor was linked with kraft 

liner pulp and chemi-thermo-mechanical pulp by laccase from Trametes pubescens. This 

modification provided more than a twofold increase in wet strength of kraft liner pulp 

[303].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 81. Laccase catalyzed Coupling reaction of aminized cellulose with 
catechol.[302] 
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2.4.6   Conclusions  

 Due to their high stability, selectivity for phenolic substructures, and mild 

reaction conditions used in laccase-catalyzed reactions, laccases are attractive for fine 

chemical synthesis and numerous synthetic processes have now been reported. A number 

of the laccase catalyzed reactions provide routes for the synthesis of biologically active 

compounds that have pharmaceutical significance. Moreover, the use of laccase as a 

biocatalyst in the synthetic methods is primarily used to develop more environmentally 

friendly processes when compared to the usual chemical-based synthetic processes that 

involve the use or disposal of harzardous chemicals. The laccase catalytic processes 

produce water as the sole-by product, and therefore could be ecologically friendlier. For 

example, the chemical synthesis of phenoxazine derivatives involves the condensation of 

the highly toxic, nitroso compounds, at elevated temperatures. Therefore, laccase was 

used instead of chemical reagent to catalyze the synthesis of phenoxazines in water at 

ambient temperature to provide greener synthetic method [225,226].  

The laccase-catalyzed reactions are comparable to the chemical routes regarding 

to reaction rate, purity of the products, stability of the products in the reaction medium, 

and yields. For example, the formation of products from the nuclear amination reaction-

catalyzed by laccase is comparable with reaction using sodium iodate as oxidant [237]. 

However, there are still some disadvantages of using laccase in the organic synthesis 

including the presence of buffer salts and protein in reaction medium makes the isolation 

process more difficult, the price of laccase is more expensive than chemical reagents, and 

the requirement of sufficient amount of oxygen for the catalytic system. 
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 Apart from the use of laccase in organic synthesis, laccase-assisted modification 

of wood also has potential in the area of the forest products industry. The main benefits 

of laccase-catalyzed biografting of molecules to wood fibers are probably the absence of 

harmful solvents and chemicals and the mild reaction conditions. Due to the versatility, 

non-toxicity, and mild application conditions of laccase technology, laccase is likely to 

remain the subject of intensive investigations in many areas of biocatalyst applications. 

 

 

2.5   Lipases 

2.5.1   A General Account 

 Lipases (EC 3.1.1.3, triacylglycerol hydrolase) belong to the family of hydrolases 

that act on carboxylic ester bonds. Their physiological role is to catalyze the hydrolysis of 

triglycerides to diglycerides, monoglycerides, fatty acids, and glycerols. They can also 

catalyze the formation of acylglycerols from free fatty acids and glycerol (Figure 82) 

[304-306]. 

 

 

 

 

 

 

 

Figure 82. Lipase-catalyzed reactions of triacylglycerols.[307] 
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 Lipases are widely found in animals, plants, and microorganisms [308,309]. 

Currently, several lipases are commercially available. The majority of commercial lipases 

are produced by fungi, yeast, and bacteria because of the ease of cultivating these 

microorganisms on a large scale. In general, lipases are extracellular-acidic 

glycoproteins. The molecular size of lipases is between 20 and 60 kDa [304]. Structural 

characteristic include an α/β-hydrolase fold and a nucleophilic elbow where the catalytic 

serine is located [307,310]. In addition, most lipases contain a ‘lid’ which is a helical 

oligopeptide that shields the active site. This lid will open to provide free access for the 

substrate when the enzyme interacts with a hydrophobic interface such as a lipid droplet. 

Therefore, lipase changes into an activated form by substrate activation at the lipid-water 

interface. This phenomenon is called interfacial activation and is unique structural 

characteristic of this class of enzymes [304,311].  

 Lipases can be classified into three major groups according to their ability to 

hydrolyze glycerides [304]. The first group is termed as 1,3-specific because they can 

hydrolyze only the terminal positions of triglycerides. Since their substrate range is not 

limited to triglycerides, this group can be regarded as lipases capable of hydrolyzing 

primary and to a small extent secondary esters. Lipases in this group include lipases of 

Rhizopus and Rhizomucor. The second lipase group can be termed as nonspecific because 

they can hydrolyze both primary and secondary esters. The last group consists of those 

few lipases that are positionally nonspecific but show fatty acid selectivity, cleaving only 

ester bonds wherein the fatty acid is of particular type. In addition, lipases may also 

exhibit chain length specificity.  
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 In general, most animal lipases exhibit pH optima on the alkaline side, pH 8.0 - 

9.0, while most microbial lipases show maximum stability in the neutral pH range [312]. 

Most lipases are optimally active at temperatures between 30 and 40 ºC [304]. Usually, 

animal and plants lipases are less thermostable than the microbial extracellular lipases 

[313].  

 The broad synthetic potential of lipases is largely because they possess broad 

substrate specificity and tolerate organic solvents. Substrates other than triglycerides 

include aliphatic, alicyclic, bicylic, and aromatic esters. Moreover, a wide range of 

thioesters and activated amines can also be substrates for lipases. Lipases can be 

employed for a variety of reactions such as esterification, interesterification, acidolysis, 

alcoholysis, and aminolysis (Figure 83) [304,307,311,314-317]. In addition, lipases do 

not require cofactors, and usually exhibit high chemoselectivity, regioselectivity, and 

enantioselectivity. These properties make lipases the most versatile biocatalyst. Besides 

the application of lipases in synthetic chemistry, the application of lipases are also found 

in the detergent, food, leather, textile, oil and fat, cosmetic, paper and pharmaceutical 

industries [305,318,319].  
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Figure 83. Examples of lipase-catalyzed reactions.[304] 
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 Besides catalyzing the reactions in Figure 83 above, lipases are reported to 

catalyze the Michael addition reaction, the 1,4-addition of a nucleophile to an α,β-

unsaturated carbonyl compound. The proposed mechanism reported to involve the 

stabilization of the negative charge of the transition states in the oxyanion hole of the 

active site, and the His-Asp pair serves as a proton shutter. The following section will 

focus on the Michael reaction catalyzed by lipases. 

 

2.5.2   Lipase-Catalyzed Michael Reaction 

 In 1986, Kitazume et al. [320] showed the possibility of hydrolases including 

lipase from Candida cylindracea to catalyze Michael addition reactions. In this study, 

optically active aliphatic and heterocyclic compounds possessing a trifluoromethyl group 

were synthesized via an enzymatic chiral Michael addition reaction of 2-

(fluoromethyl)propenoic acid. The reactions were conducted in buffer solution pH 8.0 

(Na2HPO4 and KH2PO4 solution) at 40 ºC and yielded the chiral products in the range of 

40 to 90 % (Figure 84).  
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Figure 84. Asymmetric Michael addition reaction of 2-(trifluoromethyl)propenoic acid 
catalyzed by lipase from Candida cylindracea (* represents chiral center).[320] 
 
 
 
 Torre et al. [321] has reported that lipase B from Candida antractica (CAL-B) can 

catalyze a Michael addition of a secondary cyclic and non-cyclic amine to acrylonitrile. 

The reactions were conducted in toluene at 30 ºC. In the presence of CAL-B, the rate of 

the reactions were up to 100-fold faster than the reaction in absence of the biocatalyst. 

The proposed mechanism of this process is summarized in Figure 85. The mechanism 

starts with the accommodation of acrylonitrile in the active site. Then, the conjugated 

addition of the necleophile leads to a zwiterionic intermediate stabilized by both the 

oxyanion hole and the His-Asp pair. This His-Asp pair catayzes proton transference from 

the incoming nucleophile to the α-carbon. Finally, a new acrylonitrile molecule shifts the 

final product, leading to a new catalytic cycle. 
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Figure 85.  Proposed mechanism of lipase catalyzed Michael addition of pyrrolidine and 
acrylonitrile.[321] 
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 Recently, Dai and his co-workers [322] showed the ability of lipase M from 

Mucor javanicus in the synthesis of pyrimidine derivatives containing a branched sugar 

which may possess potential antitumor and antivirus activities. In this study, lipase M 

catalyzed the Michael addition reaction of pyrimidine with disaccharide acrylate in 

pyridine at 50 ºC for 72 hours to obtain the final products in yields from 56 to 75%. In 

addition, the study of hydrolase-catalyzed Michael addition of imidazole derivatives to 

acrylic monomers in organic medium has also been investigated [323]. A variety of 

hydrolases were used as catalysts in this study and the reactions were conducted in 

organic solvents at 50 ºC for 24 hours. All hydrolases were found to be able to catalyze 

this Michael addition reaction and lipase M showed to be the most efficient hydrolase 

with  the percent conversion close to 100% after 24 hours. Figure 86 illustrates some 

results of this study. 

 

 

 

 

 

 

 

 

Figure 86. Michael addition of imidazole and methyl acrylate catalyzed by a variety of 
hydrolases.[323] 
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 Berglund et al. exhibited the possibility of ultilizing the mutant, C. Antarctica B 

Ser105Ala, to catalyze the Michael addition of thiol and amine nucleophiles to α,β-

unsaturated carbonyl compounds in organic solvent [324]. The mutant enzyme was 

designed by the substitution of Ser 105 to Alanine in the active-site of C. Antarctica 

lipase B. This mutation led to a change in the catalytic mechanism of the enzyme. 

According to turnover numbers from kinetic studies, the Ser105Ala mutant of C. 

Antarctica lipase B was more efficient than the wild-type enzyme, C. Antarctica lipase B, 

for the catalysis of the Michael type reaction. Recently, they also studied the use of this 

Ser105Ala mutant of C. Antarctica lipase B in the catalysis of carbon-carbon bond 

formation between 1,3-dicarbonyls and α,β-unsaturated carbonyl compounds (Figure 87) 

[325]. The ability of wild-type and Ser105Ala mutant of C. Antarctica lipase B to 

catalyze this Michael reaction was investigated under solvent free conditions. The results 

showed that the reactions proceeded approximately 1.3 to 830 times faster with the 

mutant than with the wild-type enzyme. In addition, the uncatalyzed reaction, without 

enzyme, demonstrated a very low reaction rate. This indicates that the enzyme catalyzed 

the Michael addition reactions. 

  

   

 
 
 
 
 
Figure 87. Michael addition of acetylacetone to acrolein catalyzed by a C. Antarctica 
lipase B Mutant.[325]  
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CHAPTER 3 

EXPERIMENTAL MATERIALS AND PROCEDURES 

 

 

3.1   Materials 

 

3.1.1   Chemicals 

 All chemicals, except 2-methoxyhydroquinone, were obtained from Aldrich. 2-

Methoxyhydroquinone was obtained from TCI America. All chemicals were used as 

received without further purification. Solvents, including ethyl acetate, hexane, petroleum 

ether, and acetone, were obtained from VWR and used as received without further 

purification. Water in all experiments was deionized water. 

 

3.1.2   Enzymes 

 Laccase (EC 1.10.3.2) used in this study was donated by Novozymes 

(Franklinton, North Carolina). The laccase (NOVO NS51002) was isolated from the 

white-rot fungus Trametes villosa and expressed in an Aspergillus host. Lipases were 

purchased from Aldrich. Unit definition of each lipase is different depending on the 

method that Aldrich used to measure lipase activity. All enzymes were kept frozen until 

use. 

 
3.1.2.1   Enzyme Assay 

Laccase activity was determined by oxidation of 2,2’-azinobis-(3-ethylbenzyl thiozoline-

6-sulphonate) (ABTS) [326].The assay mixture contained 25 μM ABTS, 0.10 M sodium 
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acetate (pH 5.0), and a suitable amount of enzyme. The oxidation of ABTS was followed 

by an absorbance increase at 420 nm (ε420 = 3.6 x 104 M-1cm-1) (see Figure 88 and  

Figure 89). Enzyme activity was expressed in units (U = μmol of ABTS oxidized per 

minutes). 
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Figure 88.  Graph illustrates the absorbance increase of laccase-oxidized ABTS at 420 
nm.  
 

 

 

 

 

 

 

 

 
Figure 89. Picture illustrates the changing in color of ABTS (in water) after adding 
laccase. The color changes from bright green to dark green. 
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3.1.3   Pulp 

 A commercial linerboard softwood kraft pulp (17% of lignin content, kappa 

number is 113) was obtained from a southeastern U.S.A manufacturing facility. The 

lignin content of the kraft pulps was determined by KMnO4 titration of the pulp following 

TAPPI method T-236 [327] and expressed as a “kappa number”. This value is an indirect 

measurement of lignin content (% lignin content = 0.15 x kappa number). The pulp was 

exhaustively washed until the filtrate was pH neutral and colorless. Pulp was air dried 

and soxhlet extracted (see Figure 90) for 24 hours with acetone with subsequent washing 

with water prior to all treatments. 

 

 

  

 

 

 

 

 

 

 

Figure 90. Photograph of the equipment set for soxhlet extraction. 
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3.2   Experimental Procedures for the Use of Laccase  

in Organic Synthesis 

 

3.2.1    General Information 

 All reactions were monitored by TLC. TLC was performed on aluminum sheets 

precoated with silica gel 60 F254 (EMD Chemicals). Melting point was measured using 

electrothermal MEL-TEMP instrument.  

 Column chromatography was performed on Combiflash Companion instrument 

(Teledyne Isco company) (Figure 91). The Combiflash Companion is a flash 

chromatography system which provides a fully automated system from solvent injection 

to product collection. Columns used with this instrument are pre-packed columns 

(RediSep columns). RediSep normal-phase silica flash columns were used in this study. 

The column size is 12 g or 40 g, depending on sample size. The linear gradient elution 

was used to separate mixture of the products and the flow rate is 25 – 40 ml/min.  

 

 

 

 

 

 

 

 

Figure 91. Picture of Combiflash Companion instrument (Teledyne Isco company) with 
40 g RediSep normal-phase silica flash columns 

http://www.isco.com/products/products3.asp?PL=101201010�
http://www.isco.com/products/products3.asp?PL=101201010�
http://www.isco.com/products/products3.asp?PL=101201010�
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3.2.2   Analytical Analysis Procedures 

3.2.2.1   1H-NMR Characterization of the Products 

 1H-NMR spectra were recorded on a Bruker Advance/DMX-400 instrument 

operating at 400 MHz. The qualitative 1H experiments were performed using using a 90o 

pulse and 3.0 s delay. The acquisitions were performed at room temperature with 24 – 

120 scans and a 1 Hz line broadening.  

 

3.2.2.2   13C-NMR Characterization of the Products 

 13C NMR spectra were recorded on a Bruker Advance/DMX-400 instrument 

operating at 100 MHz. Acquisition was performed using a 90o pulse with a gate-

decoupling pulse sequence and 2.0 s delay between repetitions. The acquisitions were 

performed at room temperature with 400 - 4000 scans and a 10 Hz line broadening. 

 

3.2.2.3   Fourier Transform Infrared (FTIR) Spectroscopy 

 Fourier Transform Infrared (FTIR) transmission spectra were collected for each of 

the samples in the solid state using a Magna-IR System 550 (Nicolet Instrument 

Corporation). Number of scans was 64 for each sample. Pellets were formed by pressing 

mixtures of 3 mg of dry sample and 500 mg of dry spectroscopy grade potassium 

bromide (KBr) at 15000 psi for 3 min. under vacuum.  

 

3.2.2.4   Mass Spectroscopy 

 Mass and high resolution mass spectra were carried out in The Georgia Institute 

of Technology Bioanalytical Mass Spectrometry Facility. The mass analysis was 
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performed in VG instruments 70SE. The VG-70SE is capable of high resolution (~ 

50,000 at 10% valley) and accurate mass measurement (< 5 ppm) analyses. It is equipped 

with a dedicated GC and is capable of ionization via electron impact (EI) and chemical 

ionization (CI) for analysis of low molecular mass (< 700 Da), non-polar, volatile 

molecules.  

 

3.2.2.5   UV/Vis for Enzyme Activity Measurement 

 Laccase activity was measured using a Perkin-Elmer Lambda 900 UV/vis 

spectrometer (Perkin Elmer, Waltham, MA, USA) equipped for measuring liquid 

samples. The Ultraviolet-visible (UV/vis) absorbtion spectra were scan at 420 nm for 5 

minutes. The example spectrum is shown in Figure 88. 

 

3.2.3  General Procedure of the Synthesis of 1,4-Naphthoquinones and Related 

Structures. (Chapter 4) 

 Oxygen was bubbled to a stirred solution of 30 ml of 0.10M acetate buffer (pH 

4.5) and laccase (100 U) at 70 °C for 30 minutes. Next, p-hydroquinone (1.00 mmol) and 

diene (2.00 mmol) were added into the reaction mixture, and stirred under air, at 70 °C 

(Figure 92). In the first three hours of the reaction, 100 U of laccase was added each hour. 

After 24 hours of the reaction, the reaction mixture was extracted by EtOAc (3 x 30 ml). 

The organic phase was combined, dried over MgSO4, and evaporated. The resulting 

crude products were purified by Combiflash Companion instrument using Redisep 

normal-phase silica column. Ethyl acetate and hexane (linear gradient: 0 – 30% EtOAc) 
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were used as an eluent to obtain the products. Products were characterized by 1H-NMR, 

13C NMR and MS. 

 

 

                          

Figure 92. The reaction setting of the synthesis of 1,4-naphthoquinones and related 
structures via laccase-catalyzed Diels-Alder reaction. 
 
 
 
3.2.4  General Procedure of the Synthesis of o-Naphthoquinones. (Chapter 5) 

 In a 250-mL round-bottom flask, 20 ml of cold 0.10M acetate buffer pH 4.5 and 

diene (10.00 mmol) were mixed together.   The flask was then placed in an ice bath over 

a stirring plate.  Next, 1.00 mmol of catechol dissolved in 20 mL of 0.10M acetate buffer, 

and laccase (100U) were added to the flask drop-wise.  In the next three hours of the 

reaction, 100 U of laccase was added each per hour.The reaction was then stirred under 

room temperature. After 24 hours of the reaction, the reaction mixture was extracted by 

EtOAc (3 × 30 ml). The organic phase was combined, dried over MgSO4, and 

evaporated. The resulting crude products were purified by Combiflash Companion 
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instrument using Redisep normal-phase silica column. Ethyl acetate and petroleum ether 

(linear gradient: 0 – 30% ethyl acetate) were used as an eluent to obtain the product. 

Products were characterized by 1H-NMR, 13C NMR and MS. 

 

3.2.5   General Procedure of the Synthesis of Benzofuran Derivatives via Laccase-

Oxidation-Michael Addition. (Chapter 6) 

 In a 250-mL round-bottom flask, 30 ml of 0.10 M phosphate buffer pH 7.0 and 

catechol (1.00 mmol) were mixed together. Next, 100 U of lacase was added to reaction 

mixture and then, 1,3-dicarbonyl compound (2.00 mmol), Sc(OTf)3 (0.20 mmol, 0.0984 

g), SDS (0.20 mmol, 0.0576g), and laccase (100 U) were added. The reaction was then 

stirred under air at room temperature for 1-4 hours.  After the reaction was finished, the 

reaction mixture was then filtrated and washed with water to collect the precipitate 

product. If the product did not precipitate, the reaction mixture was extracted by EtOAc 

(3 × 30 ml). The organic phase was combined, dried over MgSO4, and evaporated. The 

resulting crude products were purified by Combiflash Companion instrument using 

Redisep normal-phase silica column. Ethyl acetate and petroleum ether (linear gradient: 0 

– 20% ethyl acetate) were used as an eluent to obtain the benzofuran product. Products 

were characterized by 1H-NMR, 13C NMR and MS. 
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3.2.6   General Procedure of the Synthesis of Benzofuran Derivatives Using Laccase-

Lipase Co-Catalytic System. (Chapter 7) 

 In a 250-mL round-bottom flask, 30 ml of 0.10 M phosphate buffer pH 7.0 and 

catechol (1.00 mmol) were mixed together. Next, 100 U of laccase was added to reaction 

mixture and then, 1,3-dicarbonyl compound (2.00 mmol) and 924 U of lipase PS were 

added. The reaction was then stirred under air at room temperature for 4 hours.  After the 

reaction was completed, the reaction mixture was extracted by EtOAc (3 × 30 ml). The 

organic phase was combined, dried over MgSO4, and evaporated. The resulting crude 

products were purified by Combiflash Companion instrument using Redisep normal-

phase silica column. EtOAc and petroleum ether (linear gradient: 0 – 20% ethyl acetate) 

were used as an eluent to obtain the benzofuran product. Products were characterized by 

1H-NMR, 13C NMR and MS. 

 

3.2.7   General Procedure for the Reaction of Catechols and Anilines Catalyzed by 

Laccase-Lipase Co-Catalytic System. (Chapter 7) 

 In a 250-mL round-bottom flask, 30 ml of 0.10 M phosphate buffer pH 7.0 and 

catechol (1.00 mmol) were mixed together. Next, 100 U of laccase was added to reaction 

mixture and then, aniline (2.00 mmol) and 924 U of lipase PS were added. The reaction 

was then stirred under air at room temperature for 3.5 hours.  After the reaction was 

finished, the reaction mixture was filtered to collect the solid red color product. Products 

were characterized by 1H-NMR, 13C NMR and MS. 
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3.3 Experimental Procedures for the Use of Laccase in Fiber Modification 

  

3.3.1   Pulp Treatment 

 Laccase (80 U/1g pulp) and an amino acid (3.2 mmol/1g pulp) were added with 

stirring to a 5% consistency [mass pulp/(mass pulp + water)] aqueous suspension of 

linerboard pulp buffered to pH 7 with 0.10 M sodium phosphate solution.  The resulting 

slurry was stirred for 4 h at room temperature and then left stand 20 h.  After treatment, 

the pulp sample was filtered, washed with deionized water until the filtrate was colorless 

and air-dried. Typically, pulp mass recovery was 95% (on oven dried weight basis). 

 

3.3.2   Bulk Acid Group Measurement 

 Conductrometric titration for bulk acids was based on the work of Katz [328]. In 

brief, pulp (1.50 g o.d.) was stirred in 300.00 ml of 0.10 M HCl for 1 hour followed by 

rinsing in a fine fritted funnel with deionized water. The sample was then re-suspended in 

250.00 ml of 1 mM NaCl solution, spiked with 1.50 ml of 0.10 M HCl and titrated 

against 0.05 M NaOH at 0.25 ml increments in an atmosphere of nitrogen, recording the 

conductivity at each increment. The titration data was plotted as conductivity vs. volume 

of NaOH to determine the milli-equivalent of acid groups per g of pulp (Figure 93).  

Trend lines were added in Excel in order to draw lines through each linear region on the 

graph. A line across the “flat” portion of the curve was plotted too. The intersections of 

the left trendline and the right trendline with the flat line were obtained, and their X-axis 

values are represented by A and B (Figure 93). The carboxylic acid content of pulp fibers 
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is obtained using Equation 3. The reported results were the average of two measurements 

which typically differed by less than 3%. 

 

RCOOH content = (B – A) × 5 mmol/ 100 g o.d. pulp         
                                                                   w 
 
                 where w is the oven dried (o.d.) weight of the pulp sample in grams. 
 

Equation 3. The equation used to calculate for the carboxylic content of pulp fibers. 
 
 
 
 
 

    

Acid Group Content Measurement
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Figure 93. The titration data plotted as conductivity vs. volume of NaOH for the 
calculation of carboxyl group (RCOOH) content using conductivity method. 
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3.3.3   Pulp Refining and Handsheet Formation 

 Treated pulps and control were disintegrated for 30,000 revolutions (Figure 94) 

and then were refined in a PFI mill (Figure 95) for 3,000 revolutions according to TAPPI 

Standard T 248 [327]. Handsheets were formed according to TAPPI Standard T 205 

[327] (Figure 96) and TAPPI conditioned (23 ˚C, 50% relative humidity) for at least 24 

hours before physical testing. 

 

 

 

 

 

 

 

  

 

Figure 94.  Picture of instrument used for pulp disintegration. 
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Figure 95. The PFI mill for the laboratory refining of pulp. 
 
 
 
 
 

 
 
Figure 96. Handsheet making apparatus (left) and handsheet made from liner board 
softwood kraft pulp (right). 
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3.3.4   Paper Physical Tests 

 Apparent density, tensile strength, tearing resistance, and wet tensile strength 

were determine according to TAPPI methods T 210, T 494, T 414, and T 456 [327]. 

Apparent density was measured using a Lorenzten and Wettre caliper gauge. Tensile 

testing was carried out on an Lorentzen and Wettre Alwetron tensile tester, and wet 

tensile testing was measured on an Instron tester connected to a data analysis system 

running Test Works Software (Figure 97). Tear tests were performed on an Elmendorf 

tearing tester (Figure 98).  

 

  

Figure 97. Tensile testers a) an Lorentzen and Wettre Alwetron tensile tester; b) an 
Instron tensile tester. 
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Figure 98. An Elmendorf tearing tester. 
 
 
 
 
3.3.5 Nitrogen Analysis 

Nitrogen analysis was performed on oven dry samples (24 hours, 105oC) by 

elemental microanalysis at Huffman Laboratories, Inc., Golden, CO. The results are 

reported on a dried sample basis. 

Nitrogen is determined on a Thermo Flash analyzer. The technique is the classical 

Dumas method, with thermal conductivity detection. The method is described in ASTM 

D5373 (coal) and ASTM D5291 (petroleum products). 

Weighed samples are combusted in oxygen at 950°C.  The combustion products, 

including N and NOx, are swept with a helium carrier gas through combustion catalysts, 

scrubbers, and through a tube filled with reduced copper.  The copper removes excess 

oxygen and reduces NOx to N2.  The N2 is then separated from other gases on a 

chromatography column and measured with the thermal conductivity detection.  
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Precision is usually given as ± 0.3% absolute or 3% relative whichever is larger. 

 The detection limit can be lowered by using larger samples.  For organic materials 

0.02% can be obtained.  Lower detection levels can be obtained for samples consisting 

largely of inert materials such as soils.  

 
3.3.6 Scanning Electron Microscope (SEM) 
 
 The SEM pictures of handsheets were taken using a Hitachi S-800 FE-SEM. The 

handsheet sample was stuck on the SEM sample holding stub by the conductive double 

side sticky carbon film and then was coated with alloy of Au/Pt prior to analysis.  

 
 
 



 140

CHAPTER 4 

ONE-POT SYNTHESIS OF 1,4-NAPHTHOQUINONES AND 

RELATED STRUCTURES WITH LACCASEi 

 

4.1 Introduction 

 

 The most abundant and available resource on the planet, one in which 

biochemical processes take place, is the aqueous medium, water. Recently, water has 

begun to be regarded as an environmentally friendly solvent in organic chemistry. In 

addition to its environmental benefits, the use of water as a solvent is both inexpensive 

and safe. In recent decades, the study of the organic reactions in aqueous solvent has 

accelerated and many, often, surprising discoveries have been made [36-38,41,329]. 

Breslow and Rideout [35] were the first to show the beneficial effects of water on the 

reactivity and selectivity of Diels-Alder reaction, quantitatively. This discovery 

stimulated further research in this area. Shortly after, several studies showed that many 

chemical reactions (such as pericyclic, condensation, oxidation, and reduction reactions) 

could be conducted efficiently in the aqueous medium [41,330-335].  

 Among the organic reactions investigated in the aqueous medium, the most 

widely studied reaction is the Diels-Alder reaction [34,43], a powerful tool frequently 

                                                 

 
 
i This manuscript was published in [Green Chemistry, 2007, 9, 475-480]- Reproduced by permission of 
The Royal Society of Chemistry (RSC). It is entitled as “One-pot synthesis of 1,4-naphthoquinones and 
related structures with laccase”. The other author is Dr. Arthur J. Ragauskas from the School of Chemistry 
and Biochemistry at the Georgia Institute of Technology. 
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employed to synthesize six-membered ring systems and one of the most useful reactions 

for introducing structural complexity in (total) synthesis [336-339]. The Diels-Alder 

reaction has many useful variations, one of which is its use in the synthesis of 

anthraquinones and naphthoquinones [340,341]. Naphthoquinones have attracted 

considerable attention in total synthesis because of their wide spectrum of biological 

activities, such as antitumor [342,343], wound healing [344], anti-inflammatory [344], 

and antimicrobial [345] and antiparasitic activities [346,347]. Another useful application 

of the Diels-Alder reaction is the quinone Diels-Alder (QDA) reaction (Figure 99) 

[56,61,65,348,349]. In this reaction, quinones are employed as dienophiles, which 

normally possess electron-withdrawing groups. This classed of quinones are usually 

unstable and difficult to isolate. To overcome these difficulties, many studies have 

focused on the Diels-Alder reaction of in situ-generated quinones [350-352]. Herein, we 

report the use of the enzyme, laccase, used in the in situ generation of quinones. 

 Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) are multi-copper-

containing oxidoreductase enzymes widely distributed in plants and fungi. They are able 

to catalyze the oxidation of various low-molecular weight compounds, specifically, 

phenols and anilines; while concomitantly, reducing molecular oxygen to water [3-

7,149,167]. Moreover, due to their high stability, selectivity for phenolic substructures, 

and mild reaction conditions used in laccase-catalyzed reactions, laccases are attractive 

for fine chemical synthesis. Therefore, interest in the potential use of these enzymes in 

organic synthesis has recently increased [11,13]. Indeed, a number of laccase-catalyzed 

reactions has been reported [11-19]. Recently, laccase was examined in the field of 

enzyme-initiated domino reaction chemistry. For example, utilizing their well known 
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propensity to oxidize phenolics, Lalk et al. [11] reported a laccase catalyzed a nuclear 

animation tandem reaction. These studies have demonstrated the synthetic research 

capabilities of this oxidative enzyme. 

 

 

 

 

 

 

 

Figure 99. The Quinone Diels-Alder (QDA) reaction. 

 

 

 This study presents work on the synthesis of 1,4-naphthoquinones and related 

structures in the aqueous medium. In this procedure, para-quinone, generated in situ from 

the oxidation of para-hydroquinone by laccase, underwent the quinone Diels-Alder 

reaction with a diene, and then the Diels-Alder adduct was converted directly into 

dihydro 1,4-naphthoquinone. Upon extended treatment, this initial product was further 

oxidized to naphthoquinone as summarized in Figure 100. The effects of a laccase dose 

and temperature on these reactions, with the reaction of 2-methoxyhydroquinone (1a) and 

2,3-dimethyl-1,3-butadiene (2a) as a model system, are reported here. This study also 

investigated the sensitivity of this reaction system to a variety of para-hydroquinones and 

dienes. 
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Figure 100. The proposed reaction pathway of laccase-catalyzed Diels-Alder reaction of 
2-methoxyhydroquinone (1a) and 2,3-dimethyl-1,3-butadiene (2a). 
 

 

 

 

 

4.2   Experimental Section 

 

4.2.1   Materials 

 2-Methoxyhydroquinone was obtained from TCI America. Other hydroquinones, 

dienes, and reagents were obtained from Aldrich. All chemicals were used as received. 

Laccase (EC 1.10.3.2) from Trametes Villosa was donated by Novo Nordisk  Biochem, 

North Carolina.  
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4.2.2   Enzyme Assay 

 Laccase activity measurement is described in Chapter 3 (Experimental Materials 

and Procedures). 

 

4.2.3 General Procedure for the Study of the Effect of Laccase Dose and 

Temperature 

 Oxygen was bubbled to a stirred solution of 30 ml of 0.10M acetate buffer (pH 

4.5) and laccase (¼ of the total amount of laccase used in this reaction) at a desired 

temperature for 30 minutes. Next, 2-methoxyhydroquinone (1a) (1.00 mmol) and 2,3-

dimethyl-1,3-butadiene (2a) (2.00 mmol) were added to the reaction mixture, and stirred 

under air. In the first three hours of the reaction, ¼ of the total amount of laccase was 

added each hour. After the reaction reached the desired reaction time, the reaction 

mixture was extracted by EtOAc (3 x 30 ml). The organic phase was combined, dried 

over MgSO4, and evaporated. Then the quantitative analyses of 3a and 4a were 

determined by 1H-NMR spectroscopy of the crude mixture using 10 μl of 

pentrafluorobenzaldehyde as an internal standard and using 0.5 ml of CDCl3 as a NMR 

solvent. The example 1H-NMR spectrum is illustrated in Figure 101. Peak at 5.87 ppm 

(C-H) is used to calculate yield of compound 3a and peak at 7.77 ppm (C-H aromatic) is 

used to calculate yield of compound 4a. 
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Figure 101. 1H-MNR spectrum of crude mixture from the laccased-catalyzed reaction of 
of 2-methoxyhydroquinone (1a) and 2,3-dimethyl-1,3-butadiene (2a). Peaks of 
compound 3a are illustrated in blue boxes. Peaks of compound 4a are illustrated in red 
boxes. Peak of pentafluorobenzaldehyde is illustrated in green box. 
 

 

4.2.4   General Procedure of the Synthesis of 1,4-Naphthoquinones and Related 

Structures. 

 The detail of the reaction procedure is described in Chapter 3 (Experimental 

Materials and Procedures). 
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4.2.5   Product Characterization 

 Products 3a, 3b, 3c, 3d, 4a, 4b, 4c, 4d, 4e, 4g, and 4h have been previously 

reported and characterized. Compounds 3e, 3g, and 4f have also been previously reported 

but without proper spectral characterization. Structures 3f and 3h are, to the best of our 

knowledge, new compounds. The NMR spectra of 3f and 3h were shown in Appendix 

A.1. All known products provided satisfactory analytical and spectroscopic data 

corresponding to the reported literature values. 

5,8-Dihydro-2-methoxy-6,7-dimethyl-1,4-naphthoquinone (3a) 

Yellow crystal; mp 134-136 °C (from EtOH) (lit. [353], 133-135 °C); 1H NMR (400 

MHz; CDCl3): δ 1.73 (s, 6H), 3.02 (s, 4H), 3.81 (s, 3H), 5.87 (s, 1H); 13C NMR (100 

MHz, CDCl3): δ 18.1, 18.1, 30.3, 30.7, 56.1, 106.9, 121.7, 137.5, 140.2, 158.4, 181.7, 

187.1; m/z (EI) 218 (M+, 33%), 216 (100), 201 (38), 187 (40), 175 (35), 159 (9), 145 

(10), 117 (32), 91 (12), 69 (15), 51 (6), 39 (4); m/z (EI) 218.09211 (C13H14O3 requires 

218.09429). 

5,8-Dihydro-2-methoxy-5,7-dimethyl-1,4-naphthoquinone (3b) 

Orange-yellow crystalline solid; mp 118-119 °C (from EtOH) (lit. [354], 118.5-120.5 

°C); 1H NMR (400 MHz; CDCl3): δ 1.16 (d, J = 6.9 Hz), 1.80 (s, 3H), 2.93 (md, J = 

23.4 Hz, 1H), 3.15 (md, J = 23.4 Hz, 1H), 3.29 (m, 1H), 3.81 (s, 3H), 5.47 (m, 1H), 

5.88 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 19.7, 20.9, 24.7, 32.8, 56.1, 106.8, 

116.7, 136.3, 140.2, 142.5, 158.5, 181.4, 187.0; m/z (EI) 218 (M+, 63%), 203 (100), 

175 (73), 133 (12), 119 (54), 91 (24), 69 (20), 51 (5); m/z (EI) 218.09108 (C13H14O3 

requires 218.09429). 



 147

5,8-Dihydro-2-methoxy-5,8-dimethyl-1,4-naphthoquinone (3c) 

Orange plates; mp 109-110 °C (from EtOH) (lit. [355], 110-112 °C); 1H NMR (400 

MHz; CDCl3): δ 1.16 (s, 3H), 1.18 (s, 3H), 3.36-3.37 (m, 2H), 3.81 (s, 3H), 5.75 (m, 

2H), 5.86 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 22.5, 23.0, 29.2, 29.4, 56.0, 107.1, 

128.7, 142.1, 144.6, 158.2, 181.5, 186.6; m/z (EI) 218 (M+, 52%), 203 (100), 175 

(84), 133 (14), 119 (66), 91 (33), 69 (26), 39 (6); m/z (EI) 218.09397 (C13H14O3 

requires 218.09429). 

5,8-Dihydro-2,6,7-trimethyl-1,4-naphthoquinone (3d) 

Yellow needles; mp 88-89 °C (from EtOH) (lit. [356], 87-89 °C); 1H NMR (400 

MHz; CDCl3): δ 1.72 (s, 6H), 2.04(s, 3H), 2.99 (s, 4H), 6.54 (s, 1H); 13C NMR (100 

MHz, CDCl3): δ 15.8, 18.2, 20.2, 30.5, 30.7, 121.8, 121.9, 133.0, 133.0, 139.5, 145.6, 

187.3, 187.5; m/z (EI) 202 (M+, 100%), 187 (36), 159 (67), 119 (27), 91 (18), 39 (9); 

m/z (EI) 202.10014 (C13H14O2 requires 202.09938). 

5,8-Dihydro-2,5,8-trimethyl-1,4-naphthoquinone (3e) 

Yellow liquid; 1H NMR (400 MHz; CDCl3): δ 1.25 (d, J = 2.2 Hz, 3H), 1.26 (d, J = 

2.2 Hz, 3H), 2.10 (s, 3H),  3.43 (m, 2H), 5.83 (d, J = 2.7, 2H), 6.61(s, 1H); 13C NMR 

(100 MHz, CDCl3): δ 15.7, 22.8, 22.8, 29.3, 29.5, 128.8, 128.9, 133.2, 144.0, 144.1, 

145.4, 186.9, 187.3; m/z (EI) 202 (M+, 100%), 187 (79), 159 (41), 119 (56), 91 (26), 

39 (7); m/z (EI) 202.09985 (C13H14O2 requires 202.09938). 

1,4-Dihydro-6-methoxy-1,4-ethanonaphthalene-5,8-dione (3f) 

Yellow needles; mp 123-124 °C (from EtOH); 1H NMR (400 MHz; CDCl3): δ 1.35 

(d, J = 6.8 Hz, 2H), 1.49 (d, J = 8 Hz, 2H), 3.80 (s, 3H), 4.34 (br s, 1H), 4.37 (br s, 
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1H), 5.76 (s, 1H), 6.39 ( br s, 2H); 13C NMR (100 MHz, CDCl3): δ 24.4, 33.4, 33.7, 

56.2, 105.9, 133.5, 133.7, 146.0, 149.2, 158.5, 178.1, 183.7; νmax/cm-1 3055, 2938, 

2869, 1668, 1642, 1624, 1598, 1582, 1452, 1380, 1224, 1135, 1013, 868, 818; m/z 

216 (M+, 21%), 188 (100, M - CH2CH2), 173 (39), 158 (52), 130 (14), 102 (28), 89 

(33), 69 (14), 51 (8); m/z (EI) 216.08073 (C13H12O3 requires 216.07864). 

1,4-Dihydro-6-methyl-1,4-ethanonaphthalene-5,8-dione (3g) 

Yellow needles; mp 81-82 °C (from EtOH) (lit. [357], 83-84 °C); 1H NMR (400 

MHz; CDCl3): δ 1.34 (m, 2H), 1.47 (m, 2H), 2.03 (d, J = 1.6 Hz, 3H), 4.31 (br m, 

1H), 4.35 (br m, 1H), 6.38 (dd, J = 2.7 Hz, 3.8 Hz, 2H), 6.44 (q, J = 1.6 Hz, 1H); 13C 

NMR (100 MHz, CDCl3): δ 15.7, 24.5, 33.5, 33.7, 132.1, 133.6, 133.7, 144.8, 148.1, 

148.1, 183.9, 184.1; m/z (EI) 200 (M+, 14%), 172 (100, M - CH2CH2), 144 (27), 116 

(14), 104 (18), 76 (10), 39 (3); m/z (EI) 200.08399 (C13H12O2 requires 200.08373). 

1,4-Dihydro-6-bromo-1,4-ethanonaphthalene-5,8-dione (3h) 

Orange crystals; mp 104-106 °C (from EtOH); 1H NMR (400 MHz; CDCl3): δ 1.39 (d, 

J = 8.5 Hz, 2H), 1.53 (d, J = 8 Hz, 2H), 4.35 (br m, 1H), 4.44 (br m, 1H), 6.42 (t, J = 

3.4 Hz, 2H), 7.15 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 24.5, 24.6, 33.9, 34.8, 

133.5, 133.7, 136.7, 137.0, 147.9, 148.9, 175.8, 181.1; ; νmax/cm-1 3043, 2998, 2935, 

2869, 1660, 1645, 1627, 1571, 1445, 1331, 1302, 1263, 1233, 1051, 892, 777; m/z 

(EI) 266 (M + 2, 9%), 264 (M+, 9%), 238 (82), 236 (80), 185 (10), 157 (100), 129 

(41), 101 (21), 76 (11), 51 (7); m/z (EI) 263.97755 (C12H9O2Br requires 263.97859). 
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2-Methoxy-6,7-dimethyl-1,4-naphthoquinone (4a) 

Yellow crystal; mp 165-167 °C (from EtOH) (lit. [358], 169-171 °C); 1H NMR (400 

MHz; CDCl3): δ 2.36 (s, 6H), 3.87 (s, 3H), 6.06 (s, 1H), 7.77 (s, 1H), 7.82 (s, 1H); 

13C NMR (100 MHz, CDCl3): δ 19.9, 20.2, 56.3, 109.5, 127.1, 127.6, 128.9, 129.9, 

142.9, 144.2, 160.2, 180.2, 185.1; m/z (EI) 216 (M+, 100%), 201 (33), 187 (38), 186 

(27), 158 (8), 145 (8), 130 (15), 117 (25), 103 (5), 91 (5), 69 (4), 51 (4), 39 (3); m/z 

(EI) 216.07925 (C13H12O3 requires 216.07864). 

2-Methoxy-5,7-dimethyl-1,4-naphthoquinone (4b) 

Yellow powder; mp 149-151 °C (from EtOH) (lit. [354], 146-148 °C); 1H NMR (400 

MHz; CDCl3): δ 2.40 (s, 3H), 2.62 (s, 3H), 3.87 (s, 3H), 6.07 (s, 1H), 7.45 (s, 1H), 

7.85 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 17.0, 21.2, 56.2, 107.9, 124.1, 128.6, 

131.6, 134.8, 140.3, 144.2, 160.8, 181.9, 184.7; m/z (EI) 216 (M+, 100%), 201 (73), 

186 (8), 128 (7), 117 (27), 103 (4), 91 (4), 77 (5), 63 (4), 51 (4), 39 (2); m/z (EI) 

216.07918 (C13H12O3 requires 216.07864). 

2,6,7-Trimethoxy-1,4-naphthoquinone (4c) 

Golden yellow solid; mp 232-234 °C (lit. [359], 234-235 °C); 1H NMR (400 MHz; 

CDCl3): δ 3.90 (s, 3H), 4.04 (s, 6H), 6.07 (s, 1H), 7.51 (s, 1H), 7.54(s, 1H); 13C NMR 

(100 MHz, CDCl3): δ 56.3, 56.5, 107.7, 108.1, 109.0, 125.4, 126.9, 152.9, 153.8, 

160.3, 179.4, 184.5; m/z (EI) 248 (M+, 100%), 233 (10), 219 (37), 205 (6), 177 (17), 

162 (10), 149 (28), 134 (6), 119 (6), 93 (3), 69 (6), 63 (3); m/z (EI) 248.06705 

(C13H12O5 requires 248.06847). 
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2-Methoxy-1,4-naphthoquinone (4d) 

Yellow solid; mp 179-182 °C (lit. [360], 178-182 °C); 1H NMR (400 MHz; CDCl3): δ 

3.93 (s, 3H), 6.18 (s, 1H), 7.71-7.75 (m,2H), 8.06-8.13 (m, 2H); 13C NMR (100 MHz, 

CDCl3): δ 56.4, 109.8, 126.1, 126.6, 130.9, 131.9,  133.3, 134.3, 160.4, 180.0, 184.7; 

m/z (EI) 188 (M+, 100%), 173 (40), 158 (36), 102 (40), 89 (52), 76 (20), 69 (10), 50 

(10), 39 (2); m/z (EI) 188.04625 (C11H8O3 requires 188.04734). 

2,6,7-Trimethyl-1,4-naphthoquinone (4e) 

Yellow solid; mp 104-105 °C (lit. [361], 105-106 °C); 1H NMR (400 MHz; CDCl3): δ 

2.18 (s, 3H), 2.40(s, 6H),6.77 (s, 1H), 7.78 (s, 1H), 7.82 (s, 1H); 13C NMR (100 MHz, 

CDCl3): δ 16.4, 16.4, 20.1, 127.0, 127.5, 130.1, 130.2, 135.4, 143.3, 143.3, 147.8, 

185.3, 185.7; m/z (EI) 200 (M+, 100%), 185 (11), 172 (36), 157 (16), 144 (9), 132 ( 

27), 115 (4), 104 (10), 77 (6), 63 (4), 51 (5), 39 (4); m/z (EI) 200.08187 (C13H12O2 

requires 200.08373). 

2-Methyl-6,7-dimethoxy-1,4-naphthoquinone (4f) 

Orange-yellow solid; mp 211-212 °C (lit. [362], 211-212.5 °C); 1H NMR (400 MHz; 

CDCl3): δ 2.16 (s, 3H), 4.01 (s, 6H), 6.73 (s, 1H), 7.47 (s, 1H), 7.51 (s, 1H); 13C NMR 

(100 MHz, CDCl3): δ 16.5, 56.5, 56.5, 107.5, 108.0, 111.4, 126.9, 127.1, 135.2, 

147.7, 153.2, 184.6, 185.1; m/z (EI) 232 (M+, 100%), 202 (31), 189 (19), 136 (12), 93 

(7), 39 (8); m/z (EI) 232.08528 (C13H12O4 requires 232.07356). 

2-methyl-1,4-naphthoquinone (menadione) (4g) 

Bright yellow solid; mp 104-105 °C (lit. [360], 103-104 °C); 1H NMR (400 MHz; 

CDCl3): δ 2.17 (s, 3H), 6.83 (s, 1H), 7.71-7.73 (m, 2H), 8.03-8.09 (m, 2H); 13C NMR 
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(100 MHz, CDCl3): δ 16.4, 126.0, 126.4, 132.0, 132.1, 133.5, 133.5, 135.5, 148.1, 

184.9, 185.4; m/z (EI) 172 (M+, 100%), 144 (23), 115 (24), 104 (34), 76 (22), 50 (9); 

m/z (EI) 172.05149 (C11H8O2 requires 172.05243). 

2-Bromo-6,7-dimethyl-1,4-naphthoquinone (4h) 

Yellow solid; mp 156-158 °C (lit. [363], 156-159 °C); 1H NMR (400 MHz; CDCl3): δ 

2.42 (s, 6H), 7.45 (s, 1H), 7.82 (s, 1H), 7.91(s,1H); 13C NMR (100 MHz, CDCl3): δ 20.2, 

127.8, 128.8, 129.6, 139.9, 140.1, 144.1, 144.5, 177.9, 182.6; m/z (EI) 266 (M+ + 2, 

77%), 264 (M+, 77%), 185 (100), 157 (53), 128 (25), 103 (7), 77 (9), 51 (9), 39 (3); m/z 

(EI) 263.97489 (C12H9O2Br requires 263.97859). 
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4.3   Results and Discussion 

 

4.3.1   Preliminary Study of the Reaction System 

 Laccase-catalyzed reaction of 1,4-benzoquinones and dienes was initially 

investigated by using 1a and 2a as the model reagents and laccase as an oxidizing 

agent. Laccase first converted 1a to 2-methoxy-1,4-benzoquinone, and then the 

quinone reacted with diene 2a via the Diels-Alder reaction. The Diels-Alder adducts 

then underwent further oxidation to generate 5,8-dihydro-2-methoxy-6,7-dimethyl-

1,4-naphthoquinone (3a) and 2-methoxy-6,7-dimethyl-1,4-naphthoquinone (4a). 

 In this preliminary study, the total amount of laccase used in the reaction was 

1000 U/ 1g substrate, and the equivalence ratio of 2-methoxy hydroquinone and 2,3-

dimethyl-1,3- butadiene was 1:2, to enhance the likelyhood that no in situ-generated 

2-methoxy benzoquinone remained to further oxidize the Diels-Alder adducts. The 

reaction was conducted in 0.10M acetate buffer pH 4.5, in the presence of oxygen at 

50 °C, for 24 hours (Figure 102). A pH of 4.5 was chosen for this reaction system 

because many studies have shown that this pH is the optimum pH for laccase activity 

in the formation of quinone, as in the work of Ishihara, and Leonowicz et al. and 

Ragauskas [364-366]. In this reaction system, vigorous stir was required to disperse 

2a, which is slightly dissolved in water, in an emulsion to increase the reaction rate 

between the in situ-generated quinone and 2a. Moreover, the hydrophobic interactions 

between relatively apolar quinone and 2a forced them into close proximity and favour 

the Diels-Alder reaction products. 
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Figure 102. The preliminary reaction system for laccase-catalyzed aqueous Diels-Alder 
reaction of 2-methoxyhydroquinone (1a) and 2,3-dimethyl-1,3-butadiene (2a). 
  

 

 In the preliminary study, we examined the effect of oxygen on the formation 

of the products. We found that the quantity of oxygen affected the reaction. When an 

excessive amount of oxygen, such as bubbling oxygen throughout the reaction or 

pressurizing with oxygen at 9.9974 × 105 N/m2 (145 psi), was used, the main product 

was 2-methoxy-1,4-benzoquinone (26%) and very small amounts of 3a and 4a were 

generated. In contrast, stirring the reaction under air generated 3a (13%) and 4a 

(45%). However, we also found that bubbling oxygen for 30 minutes into a 

laccase/buffer solution before adding all the reagents and gradually adding  ¼ of the 

laccase (250 U/1g substrate) at the beginning of each of the first four hours of the 24-

hour reaction improved the yield of 3a and 4a to 15% and 50%, respectively. After 
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this reaction procedure was examined, the control reaction adding no laccase was 

studied. The result showed that when no laccase was added to the system, no desired 

products were obtained. Therefore, the oxidizing agent, laccase,  must be added to 

generate 2-methoxy-1,4-benzoquinone in situ. This quinone then underwent further 

reaction with diene to generate 3a and 4a. 

 

4.3.2   The Effect of Laccase Dose 

 After the preliminary study, the next approach was to optimize the reaction 

conditions. The optimization was studied by investigating the effects of laccase dose 

and temperature. The laccase doses used in these experiments were 500, 1000, 2000, 

and  4000 U/ 1 g of 1a. The reaction was conducted at 50 °C. The method for this 

study is described in the experimental section. The quantitative study of 3a and 4a 

was measured by 1H-NMR spectroscopy using tetrafluorobenzaldehyde as an internal 

standard. Figure 103 shows the results of the study. 
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Figure 103. The effect of laccase dose on the formation of compound 3a and 4a. The 
percent yield of 3a and 4a was measured by 1H-NMR spectroscopy. 
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 According to Figure 103, the amount of laccase in the reaction affected the 

formation of 3a and 4a. When the amount of laccase used in the reaction was increased 

from 500 to 4000 U/ 1g substrate, the percent yield of 3a and 4a at the end of the reaction 

(24 hours) also increased from 15% to 34% and from 47% to 60%, respectively. In 

addition, the formation of 3a sharply increased in the first three hours, and then decreased 

gradually throughout the reaction. In contrast, the formation of 4a increased slightly in 

the first two hours and then gradually increased after the third hour of the reaction. The 

explanation of this result is that the formation of 3a was predominant at the beginning of 

the reaction, and upon further treatment, some of 3a was gradually oxidized to generate 

4a, leading to the continual increase in the yield of 4a at the longer reaction time. The 

proposed reaction pathway is summarized in Figure 100. The first step was the oxidation 

of 1a by laccase to form 2-methoxy benzoquinone and then this quinone underwent the 

Diels-Alder reaction with 2a to generate the Diels-Alder adduct. The Diels-Alder adduct 

was then oxidized by either laccase or quinone in the reaction solution to generate 3a and 

upon further treatment, 3a was oxidized to 4a. To confirm the proposed reaction 

pathway, we stirred 3a in 0.10M acetate buffer, pH 4.5 at 70 ˚C for 24 hours, with either 

laccase (4000 U/1g of 3a) or with 2-methoxybenzoquinone (model quinone) (1equiv.). 

The results show that the percent conversion of 3a to 4a was 35% and 16% with laccase 

and 2-methoxybenzoquinone respectively. Therefore, these results show that both laccase 

and quinone in the reaction solution can oxidize 3a to generate 4a. However, laccase 

appears to be a better oxidizing agent than the quinone in this reaction system. 
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4.3.3   The Effect of Temperature 

 As demonstrated in the previous section, laccase dose has an influence on the 

formation of compounds 3a and 4a. The more laccase we used, the more products we 

obtained. Another factor that should affect the reaction is temperature. Thus, the 

experiment was conducted at different temperatures, including 25 °C, 50 °C, 70 °C, 

and 100 °C. The reaction procedure was the same as that used before except 4000 U/ 

1g of 1a was used. Figure 104 illustrates the effect of temperature on the reaction. 

 It is obvious that when 4a was formed, its yield increased when the 

temperature of the reaction increased. For example, at the end of the reaction, the 

percent yield of 4a was 17%, 60%, and 87% for the reaction at 25 °C, 50 °C, and 70 

°C, respectively. In contrast, the formation of 3a exhibited a different response to 

temperatures. For the reaction at 50 °C and 70 °C, the amount of 3a sharply increased 

in the first two hours, and then decreased after the second hour. However, the 

decrease at 70 °C was faster than that at 50 °C because a higher temperature can more 

easily accelerate the conversion of 3a to 4a. For the reaction at 25 °C, the formation 

of 3a gradually increased throughout the reaction. Moreover, we found that 2-

methoxy-6,7-dimethyl-4a,5,8,8a-tetrahydro-1,4-naphthoquinone, the Diels-Alder 

adduct, was the main product of the reaction at 25 °C, instead of 3a and 4a. 

Therefore, this reaction best underwent the quinone Diels-Alder reaction to generate 

the Diels-Alder adduct at a low temperature, and upon further treatment, the Diels-

Alder adduct was slowly converted to 3a, and only a small amount of 4a was 

obtained. For the reaction at 100 °C, no products were obtained because, at this high 

temperature, laccase was denatured. 
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Figure 104. The effect of temperature on the formation of compound 3a and 4a. The 
percent yield of 3a and 4a was measured by 1H-NMR spectroscopy. (No products were 
obtained at 100 °C.) 
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4.3.4   The Reaction of p-Hydroquinones and Dienes 

 From the optimization experiments, we chose to conduct the reaction with 

4000 U of laccase/1g substrate at 70 °C for 24 hours to investigate the reaction of 

various para-hydroquinones and dienes as shown in Table 9. 

 In this experiment, three different p-hydroquinones, in which R1 represented 

the OMe, Me, and Br groups, were used and conducted with a variety of dienes. The 

data in Table 9 shows that in most cases, 1,4-naphthoquinone products (4) were 

obtained as major products, and only small amounts or none of dihydro 1,4-

naphthoquinone products (3) were obtained. However, when dienes have alkyl groups 

at R2 and R5 (e.g., 2c and 2f), only 3-type products were formed. In addition, when R1 

is the OMe group, the yield of products was higher than when R1 is the Me or Br 

groups. Although quinones with a Br substituent, a strong electron-withdrawing 

group, have been proven to be very reactive dienophiles for the Diels-Alder reaction, 

it produced a lower yield of the products than quinones with an OMe substituent, an 

electron-donating group. This result can be explained by the substrate affinity of 

laccase, which varies, depending on the substituents and their recipocal positions on 

the aromatic ring. Therefore, p-hydroquinones that have higher affinity to laccase are 

more easily oxidized, and generate higher amounts of the starting quinone that react 

with diene in the first step of the reaction. In this case, p-hydroquinones with the Br 

substituent have lower affinity to laccase than p-hydroquinones with OMe. This result 

agrees with that of a study that reported the high affinity of the phenolic compounds 

bearing the methoxyl group to laccase [367]. In addition, substituents also have effect 

on redox potential of hydroquinone starting material. Xu [198] showed that the 
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electron-withdrawing substituents reduce the electron density at the phenoxy group 

and increase redox potential of molecule, thus making it more difficult to be oxidized 

and less reactive in surrendering electron to the substrate pocket in laccase. In 

contrast, the presence of the electron-donating substituents results in the reduction in 

redox potential. Therefore, in this study, p-hydroquinone with the OMe group is more 

easily oxidized than that with the Br group. 
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Table 9. The reaction of p-hydroquinones and dienesa. 
 

p-Hydroquinone Diene Yield of Products (%)b 

    

1a: R1 = OMe 2a: R2 = R5 = H, R3 = R4 = Me 3a (10%) 4a (60%) 

1a 2b: R2 = R4 = H, R3 = R5 = Me 3b (9%) 4b (55%) 

1a 2c: R3 = R4 = H, R2 = R5 = Me 3c (46%) - 

1a 2d: R2 = R5 = H,  
      R3 = R4 = OMe - 4c (12%) 

1a 2e: R3 = R4 = R5 = H,  
      R2 = OMe - 4d (79%),  

R2 =H 
1b: R1 = Me 2a 3d (20%) 4e (22%) 

1b 2c 3e (19%) - 

1b 2d - 4f (4.28%)c 

1b 2e - 4g (40%),  
R2 = H 

1c: R1 = Br 2a - 4h (21%) 

1a 
 
2f:  

             
3f (64%) 
 

- 

1b 2f 3g (49%) - 

1c 2f 3h (51%) - 

aReaction conditions: The reaction of p-hydroquinone (1 equiv.) and diene (2 equiv.) was 
stirred with laccase (4000U/1g substrate) in 0.10M acetate buffer pH 4.5 at 70 ˚C for 24 
hours. bYield of isolated products was calculated base on the amount of 1,4-
benzoquinone starting materials. cFound 26% of methylbenzoquinone as another product. 
 

 

 

OH

OH

R1

1

R2
R3

R4
R5

2

O

O

R1

R2
R3

R4
R5

3

R1

R2
R3

R4
R5

O

O
4



 162

4.4   Conclusions 

 

 Here, we reported a new green chemistry synthesis of 1,4-naphthoquinones 

and related structures by using both a nonhazardous oxidizing agent, laccase, and the 

environmentally benign solvent, water. This study also shows another potential use of 

laccase as an oxidizing agent in organic synthesis. Moreover, the reaction system we 

used in this study produced the 1,4-naphthoquinone products in high yield. However, 

the reactivity of the reaction depends on the substrate specificity of laccase and the 

reactivity of both generated quinones and dienes. For instance, the presence of the 

electron-donating substituents, such as OMe group, results in the reduction in redox 

potential and makes p-hydroquinone more easily oxidized. Therefore, in this study, 

methoxy-hydroquinone provided higher yield of the product than methyl- or bromo-

hydroquinone. In addition, both temperature and laccase dose effect on the formation 

the corresponding products. Therefore, the reaction condition have to be controlled to 

obtain the desired products.  
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CHAPTER 5 

LACCASE-GENERATED QUINONES IN 1,2-NAPHTHOQUINONE 

SYNTHESIS VIA DIELS-ALDER REACTIONii 

 

 

5.1 Introduction 

  

 The combination of enzymatic with nonenzymatic transformations for tandem 

reactions was first reported by Waldmann and co-workers in 1998 [117]. They reported 

the synthesis of highly functionalized bicycle[2.2.2]octenes by a tyrosinase-initiated 

hydroxylation-oxidation of phenols followed by a Diels-Alder (DA) reaction with 

electron rich dienophiles (see Figure 105). These studies, conducted in chloroform, 

provided a unique three-step one-pot reaction of bicyclic DA products in high yields with 

the key intermediate being reactive ortho-quinones. The applicability of enzyme 

catalyzed domino reactions in green chemistry has only recently been fully appreciated.   

 

 

 

                                                 

 
 
ii This manuscript was published in Tetrahedron Letters, 2007, 48, 2983-2987. It is entitled as “Laccase-
generated quinones in naphthoquinone synthesis via Diels-Alder reaction”. The other authors are Abdullah 
Zettili from Department of Physical and Earth Science, School of Chemistry at Jacksonville State 
University and Dr. Arthur J. Ragauskas from the School of Chemistry and Biochemistry at the Georgia 
Institute of Technology. This chapter is reproduced with the kind permission of from [Tetrahedron Letters]. 
Copyright © 2007 Elsevier Science. 
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Figure 105. The example of enzyme-initiated reaction cascade reported by Waldmann 
and co-workers.[117] 
 

 

In the previous Chapter, the successful synthesis of p-naphthoquinones via 

laccase-catalyzed Diels-Alder reaction between in situ-generated p-quinones and dienes 

in aqueous medium was described. To broaden substrate spectrum for this laccase-

catalyed Diels-Alder reaction system, this Chapter further investigated the use of this 

reaction system for the synthesis of o-naphthoquinones. In this study, a series of 

substituted o-naphthoquinones were synthesized via an aqueous cascade reaction between 

acyclic dienes and in-situ generated o-quinones.  The ortho-quinones were synthesized in 

situ by the oxidation of the corresponding o-benzohydroquinone by laccase. The initial 

Diels-Alder adduct was shown to undergo further oxidization by laccase and/or quinone 

to yield the desired o-naphthoquinones (see Figure 106).  
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Figure 106. Laccase-initiated cascade synthesis of substitute o-naphthoquinones via 
aqueous Diels-Alder reaction. 
 

 

 Therefore, this Chapter summarizes our interests in the use of laccase for the 

synthesis of substituted o-napthoquinones. Naphthoquinones are naturally occurring 

compounds which have attracted interest in total synthesis because of their wide range of 

biological activity including antitumor [342,343,368], wound healing [344], anti-

inflmmatory [344], and antimicrobial [345] and antiparasitic activities [346,347]. 
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5.2   Experimental Section 

 

5.2.1   Enzyme Assay 

 Laccase activity measurement is described in Chapter 3 (Experimental Materials 

and Procedures). 

 

5.2.2 General Procedure of the Synthesis of o-Naphthoquinones 

 The detail of the reaction procedure is described in Chapter 3 (Experimental 

Materials and Procedures). 

 

5.2.3   Typical Experimental Procedure for p-Naphthoquinone Synthesis 

 p-Hydroquinone (1.00 mmol), 1-acetoxy-1,3-butadiene (2.00 mmol), and laccase 

(100 U) were stirred in 40 ml of 0.10M acetate buffer pH 4.5 under air at 55 °C. In the 

next three hours of the reaction, 100 U of laccase was added each per hour. After 24 

hours of the reaction, the reaction mixture was extracted by EtOAc (3 × 30 ml). The 

organic phase was combined, dried over MgSO4, and evaporated. The resulting crude 

products were purified by Combiflash Companion instrument using Redisep normal-

phase silica column. Ethyl acetate and petroleum ether (linear gradient: 0 – 20% ethyl 

acetate) were used as an eluent to obtain the products. 
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5.2.4   Product Characterization 

 Most compounds have been previously reported and characterized except the two 

compounds which are 4,7,8-trimethyl-1,2-naphthoquinone (6e) and 4-methyl-6,7-

dimethoxy-1,2-naphthoquinone (6f). The NMR spectra of compound 6e and 6f are shown 

in Appendix A.2. All known products provided satisfactory analytical and spectroscopic 

data corresponding to the reported literature values. 

 

6,7-Dimethyl-1,2-naphthoquinone (6a) 

Orange-red needles: mp 147-148 °C (lit. [369],146-147 °C); 1H NMR (CDCl3, 400 MHz) 

δ  2.32 (s, 3H, CH3), 2.34 (s, 3H, CH3), 6.33 (d, J = 10 Hz, 1H, CH), 7.09 (s, 1H, Ar), 

7.35 (d, J = 10 Hz, 1H, CH), 7.84 (s, 1H, Ar); 13C NMR (CDCl3, 100 MHz) δ 19.6, 20.2, 

127.0, 129.5, 131.3, 131.6, 132.7, 140.1, 145.6, 146.0, 178.9, 181.3. 

4,6,7-Trimethyl-1,2-naphthoquinone (6b) 

Orange needles; mp. 119 °C (decomp.) (lit. [369],120 °C (decomp.); 1H NMR (CDCl3, 

400 MHz) δ 2.33 (s, 3H, CH3), 2.36 (s, 3H, CH3), 2.37 (s, 3H, CH3), 6.31 (s, 1H, CH), 

7.25 (s, 1H, Ar), 7.88 (s, 1H, Ar); 13C NMR (CDCl3, 100 MHz) δ 19.5, 20.6, 20.6, 126.8, 

127.9, 129.1, 131.3, 133.4, 139.9, 145.4, 154.1, 179.7, 180.9; MS (EI) m/z 200 (M+, 

100%), 172 (76), 157 (35), 128 (20), 91 (4), 77 (5), 51 (5); HRMS (EI) calcd for 

C13H12O2 requires 200.08373, found 200.08264. 

3-Methoxy-6,7-dimethyl-1,2-naphthoquinone (6c) 

Maroon needles: mp 230-232 °C (lit. [369],231-233 °C); 1H NMR (CDCl3, 400 MHz) δ  

2.26 (s, 3H, CH3), 2.3 (s, 3H, CH3), 3.81 (s, 3H, OCH3), 6.35 (s, 1H, CH), 6.96 (s, 1H, 

Ar), 7.75 (s, 1H, Ar); 13C NMR (CDCl3, 100 MHz) δ 19.3, 20.3, 55.6, 110.5, 115.1, 
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120.9, 130.0, 131.8, 136.4, 137.2, 151.3,176.7, 178.2; MS (EI) m/z 216 (M+, 80%), 188 

(100), 173 (38), 159 (34), 145 (41), 117 (93), 91 (16), 57 (11), 51 (9); HRMS (EI) calcd 

for C13H12O3 requires 216.07864, found 216.07910. 

4-t-Butyl-6,7-dimethyl-1,2-naphthoquinone (6d) 

Orange crystals [370]: 1H NMR (CDCl3, 400 MHz) δ 1.46 (s, 9H, t-Bu), 2.27 (s, 3H, 

CH3), 2.35 (s.3H, CH3), 6.38 (s, 1H, CH), 7.67 (s, 1H, Ar), 7.87 (s, 1H, Ar); 13C NMR 

(CDCl3, 100 MHz) δ  19.3, 20.9, 30.9, 36.8, 124.4, 130.0, 130.8, 132.1, 138.8,144.5, 

164.6, 179.8, 182.3. 

4,7,8-Trimethyl-1,2-naphthoquinone (6e) 

Orange solid; mp. 118 °C (decomp.); 1H NMR (CDCl3, 400 MHz) δ 2.36 (s, 3H, CH3), 

2.37 (s, 3H, CH3) 2.59 (s, 3H, CH3), 6.32 (s, 1H, CH), 7.29 (d, J = 8 Hz, 1H, Ar), 7.41 (d, 

J = 8 Hz, 1H, Ar); 13C NMR (CDCl3, 100 MHz) δ 17.6, 20.9, 21.2, 124.5, 126.3, 129.8, 

134.8, 135.6, 141.8, 144.1, 154.9, 181.6, 183.5; MS (EI) m/z 200 (M+, 31%), 172 (100), 

157 (22), 141(11), 129 (38), 115 (12), 102 (4), 77 (7), 63 (7), 51 (8), 44 (27); HRMS (EI) 

calcd for C13H12O2 requires 200.0837, found: 200.0840. 

4-Methyl-6,7-dimethoxy-1,2-naphthoquinone (6f) 

Red needles: mp. 124 °C (decomp.); 1H NMR (CDCl3, 400 MHz) δ 2.37 (s, 3H, CH3), 

3.97 (s, 3H, OCH3), 4.03 (s, 3H, OCH3), 6.25 (s, 1H, CH), 6.92 (s, 1H, Ar), 7.61 (s, 1H, 

Ar); 13C NMR (CDCl3, 100 MHz) δ 20.7, 56.3, 108.7, 112.0, 125.2, 125.9, 130.8, 150.5, 

153.2, 154.6, 178.3, 181.0; MS (EI) m/z 232 (M+, 54%), 204 (100), 189 (37), 175 (4), 161 

(9), 133 (9), 118 (8), 105 (12), 77 (5), 63 (7), 39 (6); HRMS (EI) calcd for C13H12O4 

requires 232.07356, found 232.07343. 
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4-Methyl-1,2-naphthoquinone (6g) 

Orange needles: mp. 110 °C (decomp.) (lit. [371] ,109 °C (decomp.); 1H NMR (CDCl3, 

400 MHz) δ  2.40 (s, 3H, CH3), 6.38 (s, 1H, CH), 7.53 (d and t, 2H, Ar), 7.70 (t, J = 8 Hz, 

1H, Ar), 8.09 (d, J = 8 Hz, 1H, Ar); 13C NMR (CDCl3, 100 MHz) δ  20.5, 78.69, 126.3, 

127.3, 129.7, 130.6, 131.0, 135.4, 153.7, 179.5, 180.3; MS (EI) m/z 172 (M+, 4%), 144 

(100), 129 (4), 115 (71), 101 (4), 89 (7), 63 (7), 57 (6), 39 (5); HRMS (EI) calcd for 

C11H8O2 requires 172.05243, found 172.05172. 

1,4-Naphthoquinone (7a) 

Yellow-brownish solid: mp. 127-128 °C (lit. [372] , 128 °C); 1H NMR (CDCl3, 400 

MHz) δ  6.98 (s, 2H, CH), 7.75 (m, 2H, Ar), 8.07 (m, 2H, Ar); 13C NMR (CDCl3, 100 

MHz) δ  126.4, 131.8, 133.9, 138.6, 185.0. 

2-Methyl-1,4-naphthoquinone(menadione) (7b) 

Bright yellow solid: mp. 104-105 °C (lit. [360] ,103-104 °C); 1H NMR (CDCl3, 400 

MHz) δ  2.17 (s, 3 H, CH3), 6.83 (s, 1H, CH), 7.71-7.73 ( m, 2H, Ar), 8.03-8.09 (m, 2H, 

Ar); 13C NMR (CDCl3, 100 MHz) δ  16.4, 126.0, 126.4, 132.0, 132.1, 133.5(x2), 135.5, 

148.1, 184.9, 185.4; MS (EI) m/z 172 (M+, 100%), 144 (23), 115 (24), 104 (34), 76 (22), 

50 (9);  HRMS (EI) calcd for C11H8O2 requires 172.05243, found 172.05149. 

2-Methoxy-1,4-naphthoquinone (7c) 

Yellow needles: mp. 179-182 °C (lit. [373], 178-182 °C); 1H NMR (CDCl3, 400 MHz) 

δ 3.93 (s, 3H, OCH3), 6.18 (s, 1H, CH), 7.73 (dq, J = 1 Hz and 7 Hz, 2H, Ar), 8.06 (dd, J 

= 1 Hz and 7 Hz, 1H, Ar), 8.11 (dd, J = 1 Hz and 7 Hz, 1H, Ar); 13C NMR (CDCl3, 100 

MHz) δ  56.4, 109.8, 126.1, 126.6, 130.9, 131.9,  133.3, 134.3, 160.4, 180.0, 184.7; MS 
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(EI) m/z 188 (M+, 100%), 173 (40), 158 (36), 102 (40), 89 (52), 76 (20), 69 (10), 50 (10), 

39 (2); HRMS (EI) calcd for C11H8O3 requires 188.04734, found 188.04625. 

2-Bromo-1,4-naphthoquinone (7d) 

Yellow powder: mp.130-131 °C (lit. [374], 130-132 °C); 1H NMR (CDCl3, 400 MHz) 

δ  7.52 (s, 1H, CH), 7.75-7.80 (m, 2H, Ar), 8.09 (m, 1H, Ar), 8.16 (m, 1H, Ar); 13C NMR 

(CDCl3, 100 MHz) δ  126.8, 127.7, 130.8, 131.6, 134.0, 134.3, 140.0, 140.3, 177.8, 

182.3. 

2-Chloro-1,4-naphthoquinone (7e) 

Yellow solid: mp. 112-113 °C (lit. [375], 112-113 °C); 1H NMR (CDCl3, 400 MHz) δ  

7.23 (s, 1H, CH), 7.75-7.82 (m, 2H, Ar), 8.09 (m, 1H, Ar), 8.17 (m, 1H, Ar); 13C NMR 

(CDCl3, 100 MHz) δ  126.7,127.5, 131.3, 131.7, 134.1, 134.5, 135.9, 146.3, 177.9, 182.7. 
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5.3   Results and Discussion 

 

 Initially, we focused our attention on the reaction of laccase with 1,2-catechols 

yielding the corresponding o-quinones which have an interesting reactivity profile in 

cycloaddition reactions [376], and have been used in o-naphthoquinone synthesis. In a 

preliminary study, the reaction of catechol (5a) and 2,3-dimethyl-1,3-butadiene (2a) in 

the presence of laccase was investigated. As summarized in Table 10, optimal yields of 

6,7-dimethyl-1,2-naphthoquinone (6a) was achieved when the reaction was conducted 

with 1 equivalence of 1 and 10 equivalence of 2 in the presence of laccase in 0.1 M 

acetate buffer pH 4.5 at 3 ˚C for the first two hour of the reaction. The reaction mixture 

was then warmed to room temperature and stirred for another 22 hours. 

 

Table 10. Preliminary study of the laccase-catalyzed reaction of catechol (5a) and 2,3-
dimethyl-1,3-butadiene (2a) in aqueous medium 
 
 
 
 
 
 
 
 
 

Entry 5a : 2a (equiv.) Temperature  Yielda of 6a (%) 

1 1:10 3 °C (2 h), RT 47 
2 1:10 RT. 10 
3 1:10 60 °C No product formed 
4 1:5 3 °C (2 h), RT 8 
5 1:15 3 °C (2 h), RT 32 
aIsolated yield. 
 

OH

OH
Laccase

0.1M acetate buffer pH 4.5
24 hours

O

O

2a5a 6a
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 An excess of the diene was required to overcome the intrinsic instability of the o-

benzoquinone as it will undergo competing decomposition, dimerization, and  

polymerization if insufficient diene is present for the Diels-Alder reaction [369]. In 

addition, the reaction temperature and medium were shown to have an effect on the 

reaction outcome. For example, if the reaction was preformed at room temperature or 60 

˚C the yield of 6a was diminished to only 10 and 0 %, respectively. This result was 

attributed an increase in the rate of decomposition and polymerization of the in-situ 

generated o-quinone. Therefore, we retarded the rate of decomposition and 

polymerization by maintaining the initial reaction temperature to 3 ˚C for the first two 

hours and then allowing the reaction mixture warm to room temperature.  This cascade 

reaction system provided 47 % of 6a. Next, we examined whether the increase of reactant 

solublility by replacing acetate buffer solvent with organic or biphasic organic/water 

solvent can enhance the reaction. The results of these experiments are summarized in 

Table 11 . The reaction performed in aqueous acetate buffer at pH 4.5, generally known 

to be the optimum pH for laccase activity in the formation of quinone [364-366], 

provided the best result (see Table 11). The lower percent yield in other solvent systems 

was due to a decrease of laccase activity in organic and aqueous-organic mixed solvent 

[377,378]. Moreover, the Diels-Alder reaction has shown to exhibit higher reactivity and 

selectivity in aqueous medium than in organic solvent [35]. Interestingly, the use of a 1:1 

acetate buffer/chloroform medium, provided the aromatized DA adduct (5,8-dihydro-6,7-

dimethyl-1,2-naphthoquinone) instead of fully oxidized product (6a). 
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Table 11.   Solvent effect on the laccase-catalyzed reaction of catechol (5a) and 2,3-
dimethyl-1,3-butadiene (2a)a 
 

Entry Solvent Yieldb of 6a (%) 

1 0.1 M Acetate buffer pH 4.5 47 

2 Water 18 

3 5% Aqueous PEG 2000 25 

4 p-Dioxane 0 

5 1:1 p-Dioxane/acetate buffer  8 

6 1:1 Ethylene Glycol/acetate buffer  15 

7 1:1 MeOH/acetate buffer 18 

8 1:1 Chloroform/acetate buffer 0% of 6a 
 
27% of  
 

aReaction conditions: 5a (1equiv) and 2a (10equiv.) was stirred with laccase (4000U/1g 
substrate) in solvent at 3 °C for 2 hours and then stirred at room temperature for another 
22 hours. 
bIsolated yield. 
 

 

 After developing the optimum reaction conditions, the reaction of a variety of 

catechol substrates with diene 2a were examined by using the procedure for the synthesis 

of o-naphthoquinones in the experimental section and these results are summarized in 

Table 12. The results show that the reaction depended on the reactivity of the in situ-

generated o-quinones. The very high reactivity quinones, such as 3-methoxy-1,2-

benzoquinone and 4-chloro-1,2-benzoquinone, which have rich electron donating group 

(OMe) and strong electron withdrawing group (Cl), respectively,  did not provide good 

yields of the o-naphthoquinone product (entries 4 and 5). These quinones preferently 

OH
HO
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underwent dimerization and polymerization. For example, in-situ synthesis 3-methoxy-

1,2-benzoquinone by laccase from the corresponding hydroquinone  yielded 32% of the 

undesired product, which was generated by the decarbonylation and oxidation of the 

dimerization intermediate, and only 11% of naphthoquinone product. Besides the 

reactivity of the in situ-generated quinones, steric factor also affected the formation of the 

product. Quinones with bulky groups provided very low yield of the products such as 4-

tert-butyl-1,2-benzoquinone yielded only 14% product for 4 day reaction, and  3,5-di-tert-

butyl-1,2-benzoquinone gave no product but 97% of it remaining in the reaction solution 

(entries 6 and 7). From Table 12, the in-situ generated o-quinones with moderate 

reactivity clearly exhibited higher yields of the o-naphthoquinone adduct (entries 1-3), 

and 4-methyl-1,2-benzoquinone provided the highest yield (57%) in this reaction system 

(entry 2).  
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Table 12. The study of laccase-catalyzed reaction of 2a with a variety of catechol 
substrates in aqueous medium 
 
 
 

 

 

 

Entry Catechol Product Yielda  (%) 

1 
  

6a  47 

2 

  
 
6b  57 

3 

  
 
6a  28 

4 

 
 

 
 
6c  

 
11 
and 32% of  

5 

 

- no product formed 

6b 

  
 
6d  

 
14 
and 15% of  

7 

 

- 

 
no product formed 
97%  of quinone 

aIsolated yield; b96 hour reaction. 
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 The versatility of this system for a variety of dienes was investigated by using 4-

methylcatechol as starting material to generate 4-methyl-1,2-benzoquinone in situ. Table 

13 demonstrates that many dienes can be used to react with 4-methyl-1,2-benzoquinone 

to generate o-naphthoquinone products in moderate to high yield. Optimal results were 

achieved when 1-methoxy-1,3-butadiene and 1-acetoxy-1,3-butadiene were used as diene 

reagent (entries 4 and 5). Both dienes provided very high yields of the product, and only 

2 equivalence of 1-acetoxy-1,3-butadiene was needed. This high yielding reaction can be 

attributed to the elimination of the methoxy or acetoxy group that ‘pushed’ the reaction 

forward to the product. The proposed mechanism of the elimination of the methoxy or 

acetoxy is illustrated in Figure 107. During the Diels-Alder reaction step, the steric effect 

of the substituent make the reaction occurred only at the less substituent side. 
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Table 13.  The study of laccase-catalyzed reaction of 4-methylcatechol with a variety of 
dienes in aqueous medium 
 

 

 

 

 

Entry Diene Product Yielda  (%) 

1 

  
 
6b  57 

2 

  
 
6e  71 

3 

  
 
6f  10 

4 

  
 
6g  77  

5b 

  
 
6g 76  

6 

 

- no product formed 

aIsolated yield; bOnly 2 equivalence of 1-acetoxy-1,3-butadiene was used. 
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Figure 107. The proposed mechanism for the elimination of methoxy or acetoxy from the 
reaction of 4-methyl-1,2-benzoquinone and  1-methoxy-1,3-butadiene or 1-acetoxy-1,3-
butadiene in the presence of laccase in aqueous medium. 
 
 
 

In this study, we also conducted p-naphthoquinone synthesis by using a variety of 

1,4-benzohydroquinones as a substrate for laccase to generate 1,4-benzoquinone in situ. 

As the result of o-quinone reaction above, the reactive 1-acetoxy-1,3-butadiene was 

chosen for this study. However, we found that the reaction of these less reactive p-

benzoquinones gave very low yield of the desired product at low temperature. Therefore, 

the reaction was conducted at 55 °C for p-naphthoquinone synthesis, and 1 equivalence 

of 1,4-benzohydroquinone and 2 equivalence of diene were used (Table 14). The 

procedure for p-naphthoquinone synthesis is summarized in the experimental section. 

The results in Table 14 show that this reaction system can be used for a one-pot synthesis 

of p-naphthoquinones in excellent overall yield. 
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Table 14. The study of laccase-catalyzed reaction of 1-acetoxy-1,3-butadiene with a 
variety of 1,4-benzohydroquinone in aqueous medium at 55 oC 
 

 

 

 

 

 

Entry R1 Product Yielda  (%) 
1 H 7a 67 
2 CH3 7b 75 
3 OCH3 7c 81 
4 Br 7d 67 
5 Cl 7e 69 
aIsolated yield. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

OH

Laccase

0.1M acetate buffer pH 4.5
55 oC, 24 hours
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5.4   Conclusions 

 

 In summary, an efficient green chemistry synthesis of o-naphthoquinone using 

laccase as an oxidant in aqueous medium was developed. In this reaction, laccase was 

used to oxidize o-diphenols to generate o-quinones in situ which further underwent Diels-

Alder reaction and oxidation to form o-napthoquinone product. Due to the high reactivity 

of the in situ-generated o-quinones, the reactions have to conduct at low temperature (3 

oC to room temperature) to retard the side reactions, dimerization and polymerization. 

This reaction system can yield o-naphthoquinones up to 77% depending on the exact 

structure of the starting hydroquinone and diene. The reactions of 1-methoxy-1,3-

butadiene and 1-acetoxy-1,3-butadiene provided very high yields of the product. This 

high yielding reaction can be attributed to the elimination of the methoxy or acetoxy 

group that ‘pushed’ the reaction forward to the product. In addition, this study also shows 

that the reaction of the reactive 1-acetoxy-1,3-butadiene and 1,4-hydroquinones catalyzed 

by laccase provided the yield of the corresponding p-naphthoquinones up to 80%. 
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CHAPTER 6 

CASCADE SYNTHESIS OF BENZOFURAN DERIVATIVES VIA 

LACCASE OXIDATION−MICHAEL ADDITIONiii 

 

 

6.1 Introduction 

 

 The provious Chapters reported the green cascade syntheses of p- and o-

naphthoquinone derivatives via Diels-Alder reaction catalyzed by laccase in aqueous 

medium [379,380]. These reactions provided the satified results for the sythesis of 

corresponding naphthoquinone products. To demonstrate another synthetic research 

capability of laccase, herein, this Chapter presents the first laccase-catalyzed carbon-

carbon bond formation via oxidation-Michael addition for the cascade synthesis of 

benzofuran derivatives. Benzofurans have attracted much attention due to their broad 

spectrum of pharmacological activities [381-386] such as, anticancer, antimicrobial, 

antioxidant, and anti-HIV-1 activities.  Therefore, the syntheses of benzofuran derivatives 

have been extensively investigated [387-391]. Most of these synthetic methods involve 

the formation of an annellated furan ring by the intramolecular cyclization of benzene 

                                                 

 
 
iii This manuscript was published in Tetrahedron, 2007, 63, 10958-10962. It is entitled as “Cascade 
synthesis of benzofuran derivatives via laccase oxidation-Michael addition”. The other authors are Dr. 
Leslie Gelbaum and Dr. Arthur J. Ragauskas from the School of Chemistry and Biochemistry at the 
Georgia Institute of Technology. This chapter is reproduced with the kind permission of from 
[Tetrahedron]. Copyright © 2007 Elsevier Ltd. 
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derivatives. These procedures involve either multi-steps, rigorous reaction conditions, or 

expensive reagents. Recently, Nematollahi et al. [392-395] and Bu et al. [396] reported 

the one-pot synthesis of polyhydroxylated benzofurans via the oxidation of catechols by 

an electrochemical method or sodium iodate, respectively, in the presence of 1,3-

dicarbonyl compounds. Nevertheless, using biocatalysis in the preparation of 

polyhydroxylated benzofurans has never been reported. This study reports the first study 

at accomplishing this synthesis via a biocatalyst. 

 In this procedure, ortho-quinones, generated in situ from the oxidation of 

catechols by laccase, underwent the Michael addition reaction with 1,3-dicarbonyl 

compounds, and then, underwent intramolecular cyclization to benzofuran derivatives 

(see Figure 108). In addition, this study investigated the reaction system in the presence 

of either Lewis acid or Lewis base to improve reaction condition, and documented the 

recyclability of the catalytic system. 
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6.2 Experimental Section 

 

6.2.1   General Information 

 All chemicals were obtained from Aldrich and used as received without further 

purification. Laccase (EC 1.10.3.2) from Trametes Villosa was donated by Novo Nordisk  

Biochem, North Carolina. 1H and 13C NMR spectra were recorded on a Bruker-400 

spectrometer operating at 400 MHz for 1H and 100 MHz for 13C. For HMBC correlations, 

the experiment was operated in a Bruker-DRX 500 spectrometer. Column 

chromatography was performed on Combiflash Companion instrument (Teledyne Isco 

company) using RediSep normal-phase flash columns. TLC was performed on aluminum 

sheets precoated with silica gel 60 F254 (EMD Chemicals). Mass spectra were carried 

out in The Georgia Institute of Technology Bioanalytical Mass Spectrometry Facility. 

 

6.2.2   Enzyme Assay 

 Laccase activity measurement is described in Chapter 3 (Experimental Materials 

and Procedures). 

 

6.2.3  General Procedure of the Synthesis of Benzofuran Derivatives via Laccase-

Oxidation-Michael Addition. 

 The detail of the reaction procedure is described in Chapter 3 (Experimental 

Materials and Procedures). 

 

 

http://www.isco.com/products/products3.asp?PL=101201010�
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6.2.4   Product Characterization  

  Products 9a [394], 9b [396], and 9c [394] are known compounds, and their 1H-

NMR and 13C NMR data are consistent with those in literature. Structure 9d is, to the best 

of our knowledge, new compounds and its NMR spectra are shown in Appendix A.3. 

 

3-Acetyl-5,6-dihydroxy-2-methylbenzofuran (9a) 

White solid; mp. 238-239 ˚C (lit. [394], 236-238 ˚C); 1H NMR (DMSO-d6, 400 MHz) δ 

2.51(s, 3H, CH3), 2.67 (s, 3H, CH3), 6.92 (s, 1H, Ar-H), 7.35 (s, 1H, Ar-H), 9.03 (br s, 

1H, OH), 9.10 (br s, 1H, OH); 13C NMR (DMSO-d6, 100 MHz) δ 15.2, 30.7, 97.7, 106.3, 

117.1, 117.2, 143.4, 144.1, 146.9, 160.6, 193.8; MS (EI) m/z 206(M+, 92%), 191 (100), 

163 (36), 135 (14), 95 (6), 89 (4), 63 (4), 53 (3), 43 (19); HRMS (EI) 

206.05838(C11H10O4 requires 206.05791). 

Ethyl-5,6-dihydroxy-2-methyl-3-benzofuran carboxylate (9b) 

White solid; mp. 180-182 ˚C (lit. [396,397], 180-182 ˚C); 1H NMR (DMSO-d6, 400 

MHz) δ 1.34 (t, J = 7 Hz, 3H, CH3), 2.62 ( s, 3H, CH3), 4.27 (q, J = 7 Hz, 2H, CH2), 

6.91(s, 1H, Ar-H), 7.22 (s, 1H, Ar-H), 9.03 ( br s, 1H, OH), 9.11 (br s, 1H, OH); 13C 

NMR (DMSO-d6, 100 MHz) δ 14.1, 14.3, 59.8, 97.8, 105.9, 108.1, 116.9, 143.4, 144.2, 

147.1, 161.1, 163.8; MS (EI) m/z 236(M+, 92%), 207 (100), 191 (33), 93 (4), 43 (6); 

HRMS (EI) 236.07061 (C12H12O5 requires 236.06847). 

3-Acetyl-5,6-dihydroxy-2,7-dimethylbenzofuran (9c) 

White solid; mp. 218-220 ˚C (lit. [394], 217-219 ˚C); 1H NMR (DMSO-d6, 400 MHz) δ 

2.24 (s, 3H, CH3), 2.49 (s, 3H, CH3), 2.68 (s, 3H, CH3), 7.22 (s, 1H, Ar-H), 8.41 (br s, 

1H, OH), 9.28 (br s, 1H, OH); 13C NMR (DMSO-d6, 100 MHz) δ 8.9, 15.3, 30.7, 103.2, 
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107.1, 116.2, 117.4, 141.8, 143.1, 146.5, 160.5, 193.9; MS (EI) m/z 220(M+, 85%), 205 

(100), 177(21), 149 (4), 102 (5), 43 (13); HRMS (EI) 220.07490 (C12H12O4 requires 

220.07356). 

Ethyl-5,6-dihydroxy-2,7-dimethyl-3-benzofuran carboxylate (9d).  

White-yellow solid; mp. 183-185 ˚C; 1H NMR (DMSO-d6, 400 MHz) δ 1.35 (t, J = 7 Hz, 

3H, CH3), 2.25 (s, 3H, CH3), 2.66 (s, 3H, CH3), 4.29 (q, J = 7 Hz, 2H, CH2), 7.13 (s, 1H, 

Ar-H), 8.42 (s, 1H, OH), 9.31 (s, 1H, OH); 13C NMR (DMSO-d6, 100 MHz) δ 8.9, 14.2, 

14.2, 59.8, 102.8, 107.2, 108.3, 115.9, 141.9, 143.0, 146.7, 161.0, 163.9; MS (EI) m/z 

250(M+, 98%), 221 (100), 176(11), 93 (4), 43 (7); HRMS (EI) 250.08453(C13H14O5 

requires 250.08412). 
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6.3 Results and Discussion 

 

6.3.1   Preliminary Study and the Effect of pH on the Reaction System 

 In a preliminary study, the reaction of 3-methylcatechol (5b) and acetylacetone 

(8a) in the presence of laccase was investigated. The reaction was carried out under air at 

room temperature (23 ˚C) in the aqueous buffer solution for 4 hours. This reaction system 

was chosen to be a model reaction for this study because the product, 3-acetyl-5,6-

dihydroxy-2,7-dimethylbenzofuran (9c), gradually precipitated during the reaction and 

was easy to recover by filtration after the reaction.  

 The effect of pH on this reaction system was initially studied. As summarized in 

Table 15, the optimal yields of 9c were achieved when the reaction was conducted at pH 

7.0. At pH 4.5, no product formed because this low pH was not basic enough to 

deprotonate alpha-proton from acetylacetone to facilitate the Michael addition reaction 

with the in situ generated o-quinone. At a higher pH value of 8.0, only a small yield of 9c 

was received due to laccase activity which was dramatically decreased at this pH 

[199,366]. Therefore, only a small amount of starting catechol was oxidized and reacted 

subsequently with acetylacetone. Moreover, the ratio of 5b and 8a also affected the yield 

of 9c. The result shows that the yield of 9c increased when using 5b and 8a in 1:2 ratio 

(entry 2). 
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Table 15. The effect of pH on the laccase-catalyzed reaction of 3-methylcatechol (5b) 
and acetylacetone (8a) 
 

 

 

 

 

Entry Solvent/ pH 5b:8a (equiv) Yielda of 9c (%) 

1 0.1 M Phosphate buffer pH 7.0 1:1 46 

2 0.1 M Phosphate buffer pH 7.0 1:2 64 

3 0.1 M Acetate buffer pH 4.5 1:2 0 

4 0.1 M Phosphate buffer pH 8.0 1:2 6 
aIsolated yield. 
 

 

6.3.2   The Effect of Lewis Bases on the Reaction System 

 After this preliminary study, the next phase was to improve the yield of the 

product by enhancing Michael-addition step. Traditionally, Michael reactions are 

catalyzed by strong bases such as alkali metal, alkoxides or hydroxides [398]. However, 

these strongly basic conditions can lead to a number of side- and subsequent reactions, 

and especially for this reaction system, the in situ-generated o-quinones are easily 

decomposed in the presence of hydroxides [376]. Recently, Xia et al. [399] reported the 

use of a Lewis base to catalyze Michael addition of azide ion to cyclic enones in water. 

Herein, adding Lewis base to the catalyzed Michael addition step was investigated. Table 

16 reveals that the best yield of 9c was obtained when using pyridine as Lewis base in 

phosphate buffer pH 7.0, and the ratio of 5b:8a: pyridine was 1:2:1. While the use of 

OH
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O O O OH
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stronger Lewis acid such as 4-dimethylaminopyridine (DMAP) and 1,4-

diazabicyclo[2.2.2]octane (DABCO) provided only a low yield of the product. Although 

the use of pyridine gave the best result for this reaction system, the yield of the product 

(54%, entry 3) was still much lower than the yield of the product (64%, Table 15, entry 2) 

accomplished without pyridine. According to these results, adding basic reagents into this 

reaction did not enhance the reaction efficiency, especially, when a strong base was used.  

 

 

Table 16. The effect of Lewis bases on the laccase-catalyzed reaction of 3-
methylcatechol (5b) and acetylacetone (8a) 
 
 
 

 

 

 

Entry Lewis bases Solvent 5b: 8a: Lewis base 
(equiv) 

Yielda of 9c 
(%) 

1 Pyridine Water 1: 2: 0.5 33 

2 Pyridine 0.1 M Phosphate buffer 
pH 7.0 

1: 2: 0.5 40 

3 Pyridine 0.1 M Phosphate buffer 
pH 7.0 

1: 2: 1 54 

4 DMAP 0.1 M Phosphate buffer 
pH 7.0 

1: 2: 1 9 

5 DABCO 0.1 M Phosphate buffer 
pH 7.0 

1: 2: 1 13 

aIsolated yield. 
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6.3.3   The Effect of Lewis Acids on the Reaction System 

 In order to circumvent the alkaline conditions above, we decided to investigate 

the reaction in the presence of a Lewis acid as an alternative method. Lewis acid-

catalyzed Michael reactions have been developed, allowing the reaction to be carried out 

under milder conditions with high efficiency [400]. Our studies focus on the use of water 

as reaction medium to avoid the use of organic solvents which have become an 

environmental concern. Studies by Kobayashi et al. have showed that the rare earth metal 

triflates (Sc(OTf)3, Yb(OTf)3, etc.) can be used as Lewis acid catalyst in water-containing 

solvents [401,402]. Therefore, we examined a variety of Lewis acids including the water-

compatible Lewis acid, Sc(OTf)3 and Yb(OTf)3, for the synthesis of 9c. The reaction was 

carried out under the optimal condition in the preliminary study (Table 15, entry 2) but 

Lewis acids were varied. The results of this Lewis acid study is summarized in Table 17. 

The results show that the water-stable Lewis acid, Sc(OTf)3 and Yb(OTf)3 can enhance 

Michael addition step for this reaction system and provided a very good yield of 9c. 

Sc(OTf)3 showed better result than Yb(OTf)3. However, we have to use 0.2 equiv of 

Sc(OTf)3 to obtain the highest yield of 9c (74%, entry 2) because using only 0.1 equiv of 

Sc(OTf)3 did not have any effect on the reaction yield (63%, entry 1) when compared to 

the reaction without Sc(OTf)3 (64%, Table 15, entry 2).  

 As we conducted the reaction in aqueous medium, the main drawback was the 

low solubility of organic substances. To overcome this problem, a small amount of 

surfactant, sodium dodecyl sulfate (SDS, 20 mol %) was used to improve the solubility, 

and the result shows a small increase of product yield from 74% to 76% (Table 17, entry 
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3). This result agrees with Kobayashi’s work on the study of surfactant-aided Lewis acid 

catalysis in aqueous aldol reaction [403]. 

 
 
 
Table 17. The effect of Lewis acids on the laccase-catalyzed reaction of 3-
methylcatechol (5b) and acetylacetone (8a) 
 
 
 
 

 

 

 

Entry Lewis acid 5b: 8a: Lewis acid (equiv) Yielda of 9c (%) 

1 Sc(OTf)3 1: 2: 0.1 63 
2 Sc(OTf)3 1: 2: 0.2 74 
3 Sc(OTf)3/ SDS 1: 2: 0.2 76 
4 Yb(OTf)3 1: 2: 0.2 72 
5 InCl3.4H2O 1: 2: 0.2 71 
6 CuCl2 1: 2: 0.2 49 
aIsolated yield 
 

 

 

6.3.4   The Synthesis of Benzofuran Derivatives 

 After successfully conducting the optimization experiments described above, we 

chose to conduct further synthesis of benzofuran derivatives by introducing 1 mmol of 

substituted catechols and 2 mmol of 1,3-dicarbonyl compounds in 0.1M phosphate buffer 

(pH 7.0), in the presence of laccase, 20 mol% of Sc(OTf)3, and 20 mol% of SDS under 

air at room temperature. The proposed reaction pathway of this catalytic system is 

OH
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illustrated in Figure 108, and the result of the reaction of various catechols and 1,3-

dicarbonyl compounds are  summarized in Table 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 108. Proposed mechanism of laccase/Sc(OTf)3 catalytic system for the synthesis 
of 3-acetyl-5,6-dihydroxy-2,7-dimethylbenzofuran (9c). 
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Table 18. The study of the laccase/Sc(OTf)3-catalyzed reaction of catechols and 1,3-
dicarbonyl compounds for benzofuran synthesis 
 

 

 

 

Entry    

1 5a: R1 = R2 = H 8a: R3 = R5 = Me, R4 = H 9a (68%) 
2 5a 8b: R3 = R5 = Me, R4 = Cl 9a (66%)b 
3 5a 8c: R3 = Me, R4 = Cl, R5 = OEt 9b (46%)b 
4 5b: R1 = Me, R2 = H 8a 9c (76%) 
5 5b 8b 9c (79%)b 
6 5b 8c 9d (48%)b 
7 5c: R1 = OMe, R2 = H 8a - 
8 5d: R1 = F, R2 = H 8a - 
9 5e: R1 = H, R2 = Cl 8a 9a (9%) 
10 5f: R1 = H, R2 = COOH 8a 9a (11%) 
aIsolated yield; bReaction time is 1 hour. 
 

 

 The data in Table 18 show that the reaction depends on the reactivity of the in 

situ-generated o-quinones. The very reactivity quinones, such as 3-methoxy-1,2-

benzoquinone and 3-fluoro-1,2-benzoquinone, which have rich electron donating group 

(OMe) or a strong electron withdrawing group (F), respectively, did not provided any 

desired products (entries 7 and 8). This reactivity pattern may be caused by side reactions 

of these highly reactive quinones. In contrast, the reaction of catechols, such as 3-
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methylcatechol and catechol with laccase generated moderately reactive quinones that 

gave excellent yields of the corresponding benzofuran products as shown in entries 1-6. 

Moreover, the reactivity of 1,3-dicarbonyl compounds also have an effect on the reaction. 

When we used 1,3-dicarbonyl compounds that had an electron withdrawing group (Cl) at 

alpha-position, the reaction time was only 1 hour. The shorter reaction time caused by the 

increase of alpha-proton acidity of these 1,3-dicarbonyl compounds that make it easier to 

deprotonate and ready to react with in situ-generated o-quinone in the reacion solution. 

Besides 3-substituted catechols, 4-substituted catechols, such as 4-chlorocatechol and 

3,4-dihydroxy benzoic acid, can also be used for the synthesis of polyhydroxylated 

benzofurans (entries 9 and 10).  However, the yield of the product is low. 

 In addition, we observed that this reaction system gave only one isomer from 

potential products that could occur. This could be explained by the existence of a 

substituent at the C-3 position of catechols that probably causes the Michael acceptors, in 

situ generated o-quinones, to be attacked by 1,3-dicarbonyl compounds only at less 

hindered C-5 position to yield the observed product (see Figure 108). Most of the 

products from this study are known compounds. Only product 9d is unknown. Therefore, 

the structure of 9d was confirmed by the 1H NMR, 13C NMR and HMBC correlations as 

shown in Table 19. 
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Table 19. 1H and 13C assignment and HMBC correlations for compound 9da 
 

 

 

 

 

 

Carbon 13C (δ) 1H (δ) 1H-13C Correlations 

2a 14.2 2.66, s, 3H C2, C3 
4 102.8 7.13, s, 1H C3, C5, C6, C7a 
8 8.9 2.25, s, 3H C6, C7, C7a 
2’ 59.8 4.29, q, 2H (7) C1’, C3’ 
3’ 14.2 1.35, t, 3H (7) C2’ 
OH (5)  9.31, s, 1H C4, C5 
OH (6)  8.42, s, 1H C6, C7 
aMeasure in DMSO-d6 at 125 (13C) or 500 MHz (1H, J (Hz) values in parentheses). 
Chemical shifts are expressed in δ(ppm). The HMBC spectrum is shown in Appendix 
A.3. 
 

 

6.3.5   The Recyclability of the Laccase/Sc(OTf)3-Catalytic System 

 Next, we examined the recyclability of the two-component catalytic system, 

laccase/Sc(OTf)3, for the synthesis of benzofuran 3a by the reaction of 5b and 8a in 0.10 

M phosphate buffer pH 7.0 and 20 mol% SDS. Due to the product 9c precipitated during 

the reaction, we can directly reuse this catalytic system after product filtration. The 

results shown in Table 20 demonstrate that this catalytic system was readily recyclable 

for three runs, with approximately a 10% drop of the product yield/reaction. 
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Table 20. Recycling of the laccase/Sc(OTf)3 catalytic system for the synthesis of 3-
acetyl-5,6-dihydroxy-2,7-dimethylbenzofuran (9c) 
 

 

 

 

 

 

 

 

Run Yielda  of 9c (%) 

1 76 
2 62 
3 51 
 aIsolated yield. 
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6.4 Conclusions 

 

 In conclusion, this study provides an efficient green chemistry synthesis of 

benzofuran derivatives from the reaction of catechols and β-dicarbonyl compounds using 

a catalytic system of laccase and Sc(OTf)3 in surfactant aqueous medium. This reaction is 

regioselective providing only one isomer product and the first example of a two 

component catalytic system employing laccase and a lanthanide Lewis acid catalyst. The 

yield of the products from reaction depended on both the reactivity of catechols and β-

dicarbonyl compounds. For this reaction system, catechols with moderate reactivity yield 

benzofuran products in excellent yield. In addition, the newly developed catalytic system 

could also be recycled and reused for two additional runs, with only a minor drop in 

product yields. 
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CHAPTER 7 

CO-CATALYTIC ENZYME SYSTEM FOR THE MICHAEL 

ADDITION REACTION OF IN SITU-GENERATED  

ORTHO-QUINONESiv 

 

 

7.1 Introduction 

 

 In recent years, the advances in genomics and biotechnology have dramatically 

broadened the availability of low-cost enzymes.  In turn, this has increased the potential 

application of enzymes for organic synthesis while also addressing the challenges of 

green chemistry [32]. A growing field of interest in this field is the application of 

enzyme-initiated domino reactions [1,113-115].   Under optimized reaction conditions it 

has been shown that several biocatalytic reactions can be carried out in a single reactor 

[137-146]. For example, Kroutil and his co-workers [148] recently developed the one pot, 

two step, two enzyme cascade reaction for the synthesis of enantiopure epoxide. Herein, 

we report on the use of two enzymes, laccase and lipase, in the domino reaction of in 

situ-generated o-quinones followed by enzyme catalyzed Michael addition.  

                                                 

 
 
iv This manuscript was submitted to European Journal of Organic Chemistry, 2008. It is entitled as “Co-
catalytic enzyme system for the Michael addition reaction of in situ-generated ortho-quinones”. The other 
author is Dr. Arthur J. Ragauskas from the School of Chemistry and Biochemistry at the Georgia Institute 
of Technology 
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Although lipases (triacylglycerol hydrolase, EC 3.1.1.3) have been known to 

catalyze the hydrolysis and the synthesis of esters formed from alcohols and acids 

[304,305,318], recent studies have reported the ability of lipases to catalyze Michael 

addition reactions [321,322,325]. For example, Torre et al. [321] provided the initial 

demonstration that lipase was able to catalyze the Michael addition of secondary amines 

to acrylonitrile. This reaction is clearly different from the natural process this enzyme is 

usually associated with.  Berglund et al. [325] has reported the Michael addition of 1,3-

dicarbonyl compounds to α,β-unsaturated carbonyl compounds catalyzed by a C. 

antarctica lipase B mutant.  Moreover, Wang et al. [322] recently established that lipase 

M from Mucor javanicus was able to catalyze the Michael addition reaction of 

pyrimidine with a disaccharide acrylate.  

 According to Chapter 6, an aqueous cascade synthesis of benzofuran derivatives 

from the reaction of catechols and 1,3-dicarbonyl compounds via an oxidation-Michael 

addition sequence catalyzed by laccase and Sc(OTf)3/SDS was successfully developed 

[404]. Depending on the exact substrates, one-pot yields of benzofurans averaged 50-

79% and in the absence of Sc(OTf)3, these yields decreased to 45-65%. Hence, the use of 

an aqueous Lewis acid was critical for efficient synthesis of the desired compounds. In 

regards to environmental concern, this system still produces some hazardous waste from 

the metal catalyst. Therefore, the development of alternative methodologies to replace the 

lanthanide metal catalyst in this synthesis is a high priority to enhance the overall green 

chemistry aspect of this one-pot synthetic reaction. This Chapter presents the use of 

enzyme, lipase, as an alternative catalyst in conjunction with laccase for the synthesis of 

benzofuran derivatives. In addition, in this study, this lipase/laccase co-catalytic system 
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was also used to catalyze the Michael addition of in situ-generated o-quinones and 

aromatic amines.  

   

  

 

7.2   Experimental Section 

 

7.2.1   General Information 

 All chemicals were used as received without further purification. Laccase (EC 

1.10.3.2) from Trametes villosa was donated by Novo Nordisk Biochem, North Carolina. 

Lipases were purchased from Aldrich. Unit definition of each lipase is different 

depending on the method that Aldrich used to measure lipase activity. The enzymes were 

kept frozen until used. 1H and 13C NMR spectra were recorded on a Bruker-400 

spectrometer operating at 400 MHz for 1H and 100 MHz for 13C in d6-DMSO or CDCl3 

using tetramethylsilane (TMS) as the internal standard. All reactions were monitored by 

TLC. TLC was performed on aluminum sheets precoated with silica gel 60 F254 (EMD 

Chemicals). Column chromatography was performed on Combiflash Companion 

instrument (Teledyne Isco company) using RediSep normal-phase flash columns. Mass 

spectra were carried out in The Georgia Institute of Technology Bioanalytical Mass 

Spectrometry Facility.  

 

 

 

http://www.isco.com/products/products3.asp?PL=101201010�
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7.2.2   Enzyme Assay 

 Laccase activity measurement is described in Chapter 3 (Experimental Materials 

and Procedures). 

 

7.2.3   General Procedure of the Synthesis of Benzofuran Derivatives Using Laccase-

Lipase Co-Catalytic System. 

 The detail of the reaction procedure is described in Chapter 3 (Experimental 

Materials and Procedures). 

 

7.2.4   Procedure for the Study of the Reaction of 5a and 8a (with and without 

Lipase PS) 

 In a 250-mL round-bottom flask, 40 ml of 0.10 M phosphate buffer pH 7.0 and 5a 

(2 mmol, 0.2202 g) were mixed together. Next, 200 U of laccase was added to reaction 

mixture and then, 8a (0.4004 g, 410 μl, 4 mmol ) and 1848 U of lipase PS (or no lipase) 

were added. The reaction was then stirred at room temperature in a flask open to the 

atmosphere for 4.5 h. A 3 ml aliquot of the reaction mixture was taken every 30 minutes 

during the reaction and extracted with 10 ml of EtOAc. The organic phase was then dried 

over MgSO4, filtered and concentrated under reduced pressure. The resulting crude 

product was submitted to quantitative 1H NMR analysis to measure the formation of 

product 9a using 0.5 ml of 0.20 M 1,3,5-trioxane in d6-DMSO as internal standard. 

Figure 109 illustrates 1H-NMR spectra of the crude mixture that show the formation of 

product 9a during the reaction.  Ar-H peaks of 9a are used to calculate the yield of 9a. 
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Figure 109. 1H-NMR of crude mixture from the laccase-catalyzed the reaction of 5a and 
8a with and without lipase. These spectra demonstrate the formation of 9a and the 
decrease of starting material 5a during the reaction. 
 

 

7.2.5   General Procedure for the Reaction of Catechols and Anilines Catalyzed by 

Laccase-Lipase Co-Catalytic System. 

 The detail of the reaction procedure is described in Chapter 3 (Experimental 

Materials and Procedures). 
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7.2.6   Product Characterization 

 Compond 9a [394], 9b [395],  9c [394], 9d [404], and 11a [405] are known 

compounds and our 1H and 13C NMR data are consistent with those in the literature. 

Structure 11b, 11c, and  11d are, to the best of our knowledge, new compounds. 1H and 

13C assignments and HMBC correlation for compound 11b, 11c, and 11d are summarized 

in Table 21. These NMR spectra are shown in Appendix A.4. 

 
Compound 11a 

Red solid: Yield: 87 mg (30%). m.p. 193-195 ºC. 1H NMR (400 MHz, CDCl3): δ = 8.59 

(br s, 1H, OH), 7.55 (br s, 1H, OH), 7.42 (t, J = 9 Hz, 4 H, 4 × CH arom.), 7.22 (t, J = 9 

Hz, 2 H, 2 × CH arom.), 7.12 (br s, 4 H, 4 × CH arom.), 6.10 (s, 2 H, 2 × CH) ppm. 13C 

NMR (100 MHz, CDCl3): δ = 96.0, 121.9, 125.7, 129.4 ppm. MS (EI): m/z = 290 (M+, 

70%), 261 (26), 144 (15), 77 (23), 51 (8). HRMS (EI): calcd. for C18H14N2O2 290.1055; 

found 290.1038. 

Compound 11b 

Red solid. Yield: 129.5 mg (37%). m.p. 161-162 ºC. 1H NMR (400 MHz, CDCl3): δ = 

8.50 (br s, 1 H, OH), 7.56 (br s, 1 H, OH), 7.08 (d, J = 7 Hz, 4 H, 4 × CH arom.), 6.94 (d, 

J = 8 Hz, 4 H, 4 × CH arom.), 6.07 (s, 2 H, 2 × CH), 3.84 (s, 6 H, 2 × OCH3) ppm. 13C 

NMR (100 MHz, CDCl3): δ = 157.4, 151.9, 135.3, 123.9, 114.2, 95.1, 55.1 ppm. IR 

(KBr): υmax = 3293 (s), 3246 (s), 3040 (w), 2834 (w), 1739 (w), 1654 (w), 1606 (s), 1580 

(s), 1525 (s), 1511 (s), 1411 (s), 1330 (m), 1286 (m), 1244 (s), 1217 (s), 1199 (s), 1173 

(m), 1033 (m), 840 (m)cm-1. MS (EI): m/z = 350 (M+, 86%),  319 (100),  291 (12), 174 

(15), 146 (12), 92 (7), 77 (9). HRMS (EI): calcd. for C20H18N2O4 350.1266; found 

350.1247. 



 203

Compound 11c 

Red solid. Yield: 182.6 mg (51%). m.p. 219-221 ºC. 1H NMR (400 MHz, DMSO-d6): δ = 

9.24 (br s, 2 H, 2 × OH), 7.44 (d, J = 7 Hz, 4 H, 4 × CH arom.), 7.19 (br s, 4 H, 4 × CH 

arom.), 5.81 (s, 2 H, 2 × CH) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 152.0, 142.6, 

129.1, 128.9, 123.7, 97.5 ppm. IR (KBr): νmax = 3298 (s), 3031 (w), 1736 (w), 1660 (w), 

1606 (m), 1573 (s), 1536 (s), 1493 (s), 1480 (s), 1415 (s), 1334 (s), 1221 (s), 1188 (s), 

1087 (m), 1007 (m), 830 (m) cm-1. MS (EI): m/z = 358 (M+, 42%),  323 (80), 288 (8), 178 

(18), 144 (15), 127 (100), 84 (57), 65 (18), 49 (75). HRMS (EI): calcd. for 

C18H12N2O2Cl2 358.0275; found 358.0266. 

Compound 11d  

Red solid. Yield: 159 mg (50%). m.p. 194-196 ºC. 1H NMR (400 MHz, CDCl3): δ = 8.55 

(br s, 1 H, OH), 7.55 (br s, 1 H, OH), 7.20 (d, J = 7 Hz, 4 H, 4 × CH arom.), 7.02 (br s, 4 

H, 4 × CH arom.), 6.09 (s, 2 H, 2 × CH), 2.37 (s, 6 H, 2 × CH3) ppm. 13C NMR (100 

MHz, CDCl3): δ = 152.2, 135.5, 129.9, 122.0, 95.7, 20.9 ppm. IR (KBr): νmax = 3297 (s), 

3031 (w), 2917 (w), 1739 (m), 1663 (w), 1600 (s), 1572 (s), 1533 (s), 1511 (s), 1488 (s), 

1413 (s), 1337 (s), 1219 (s), 1189 (s), 1153 (s), 897 (m), 814 (m), 732 (m) cm-1. MS (EI): 

m/z = 318 (M+, 42%), 303 (100), 275 (15), 158 (13), 130 (8), 91 (14), 65 (8), 49 (11). 

HRMS (EI): calcd. for C20H18N2O2 318.1368; found 318.1348. 
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Table 21. 1H and 13C assignments and HMBC correlation for compound 11b, 11c, and 
11d.a 
 
 

 

 

 

Compound 11b 
Carbonb 13C (δ) 1H (δ) 1H-13C correlation 
2, 2’ 95.1 6.07, s, 2H C3, C3’ 
5, 5’, 9, 9’ 123.9 7.08, d, 4H (7) C4, C4’, C6, C6’, C7, C7’, C8, C8’ 
6, 6’, 8, 8’ 114.2 6.94, d, 4H (8) C4, C4’, C5, C5’, C7, C7’, C9, C9’ 
10, 10’ 55.1 3.84, s, 6H C7, C7’ 
OH (1, 1’)  7.56, br s, 1H 

8.50, br s, 1H 
 

 

Compound 11c 
Carbonc 13C (δ) 1H (δ) 1H-13C correlation 
2, 2’ 97.5 5.81, s, 2H C3, C3’ 
5, 5’, 9, 9’ 129.1 7.44, d, 4H (7) C4, C4’, C6, C6’, C8, C8’ 
6, 6’, 8, 8’ 123.7 7.19, br s, 4H  C5, C5’, C7, C7’, C9, C9’ 
OH (1, 1’)  9.24, br s, 2H  

 

Compound 11d 
Carbond 13C (δ) 1H (δ) 1H-13C correlation 
2, 2’ 95.7 6.09, s, 2H C3, C3’ 
5, 5’, 9, 9’ 122.0 7.02, br s, 4H  C6, C6’, C7, C7’, C8, C8’ 
6, 6’, 8, 8’ 129.9 7.20, d, 4H (7) C5, C5’, C9, C9’, C10, C10’ 
10, 10’ 20.9 2.37, s, 6H C6, C6’, C7, C7’, C8, C8’ 
OH (1, 1’)  7.55, br s, 1H 

8.55, br s, 1H 
 

aMeasure in CDCl3 or DMSO-d6 at 100 MHz (13C) or 400 MHz (1H, J (Hz) values in 
parentheses). Chemical shifts are express in δ (ppm); bCompound 11b: 13C (δ) of C-3/3’, 
C-4/4’ and C7/7’ = 151.9, 135.3, and 157.4 ppm; cCompound 11c: 13C (δ) of C-3/3’, C-
4/4’ and C7/7’ = 152.0, 142.6, and 128.9 ppm; dCompound 11d: 13C (δ) of C-3/3’ and 
C7/7’ = 152.2 and 135.5 ppm. 
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7.3   Results and Discussion 
 

 
7.3.1   Laccase-Lipase Co-Catalytic System for the Reaction of Catechols and 1,3-

Dicarbonyl Compounds 

 In this study, laccase first catalyzed the oxidation of catechols to the 

corresponding o-quinones which were reacted in-situ with 1,3-dicarbonyl compounds via 

a Michael addition reaction. The Michael addition step was catalyzed by lipase and the 

resulting addition product undergoes a subsequent intramolecular cyclization to form 

benzofuran derivative products (see Figure 110). 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 110. Proposed reaction pathway of laccase/lipase catalytic system for the 
synthesis of compound 9a. 
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 In our initial studies, the reaction of catechol (5a) and acetylacetone (8a) in the 

presence of laccase and lipase from Candida rugosa (lipase CR, 60,000U/mg) was 

investigated. The reaction was carried out under atmospheric conditions at room 

temperature (23 ˚C) in an aqueous buffered solution for 4 hours. We found that the 

optimal yield of the product (9a) of 60% was achieved when conducting the reaction of 

5a and 8a in 1:2 molar ratio at pH 7.0, and using 100 U of laccase and 10 mg (600,000 

U) of lipase CR per 1 mmol of 5a. Because of the high activity of in situ-generated 

quinone, some side products (e.g. from the polymerization of the quinone) were also 

observed but in this study we did not separate and indentify them. For the control reaction 

when no laccase and lipase was added, no product was formed.  When this reaction was 

preformed using only lipase no product was formed, and in the presence of laccase only, 

the product 9a was formed in only 33% yield. 

 After this preliminary study, the next phase was to examine a variety of lipases 

for this reaction system. The esterases studied included lipase CR (60,000U/mg), lipase 

from Pseudomonas cepacia (lipase PS, 46.2U/mg), and lipase B Candida antarctica 

(CALB, 10.8U/mg).  The activity of these lipases was measured by Aldrich methods 

which are different for each lipase. The catalytic properties of these lipases were 

investigated by reacting 8a with catechols, 5a and 3-methylcatechol (5b), in the presence 

of laccase, as summarized in Table 22.  This study established that the optimal amount of 

each lipase to provide the highest yield of the product was different. The optimal amount 

of lipase CR, lipase PS and CALB for the reaction conditions used was 600,000 U, 924 

U, and 54 U per 1 mmol of catechol, respectively. The data in Table 22 shows that the 

yield of the product usually increased when lipase was added to the reaction. Lipase PS 
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and lipase CR gave a high yield of the products for both reactions while CALB was good 

only for reaction 2.  In addition, lipase PS activity used in the reaction was much less 

than of lipase CR. Therefore, lipase PS was chosen for further study. In order to verify 

whether the lipase reaction is indeed catalyzed by the active site of lipase PS and not by 

the protein, the reactions using inactivated lipase PS were conducted. The results in Table 

22 show that the inactivated lipase PS showed no catalytic activity for these reactions. 

 
 
 
Table 22. Reaction of catechol (5a) and acetylacetone (8a) in the presence of laccase 
with a variety of lipases. 
 
 
 
 
 
 
 
 
 

Lipase Yield (%)a 

No lipase 33 
Inactivated lipase from Pseudomonas cepacia  31 
Lipase from Candida rugosa (Lipase CR) 60 
Lipase from Pseudomonas cepacia (Lipase PS) 58 
Lipase B Candida antarctica (CALB) 41 

aIsolated yield. 
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Table 22. (Continued) 
 
 
 
 

 

 

Lipase Yield (%)a 

No Lipase 53 
Inactivated lipase from Pseudomonas cepacia 50 
Lipase from Candida rugosa (Lipase CR) 56 
Lipase from Pseudomonas cepacia (Lipase PS) 60 
Lipase B Candida antarctica (CALB) 62 

aIsolated yield. 
 
 

 To further define the catalytic benefits of lipase PS, the reaction of 5a and 8a in 

the presence of laccase with and without lipase PS were carried out. Sample aliquots 

were taken every 30 minutes during the reaction and a quantitative analysis of product 9a 

was measured by 1H-NMR spectroscopy using 1,3,5-trioxane as an internal standard. The 

calculated yield of the product 9a is higher than the isolated yield shown in Table 22 in 

both cases (with and without lipase PS). This can be explained by the losing of product 

yield during the isolation process. However, in the end of reaction, the yield difference 

between the reaction with and without lipase is about the same which is approximately 

25%. Figure 111 shows that in the beginning of the reaction, the rate and yield of 9a from 

both reactions were almost the same. This can be explained by the predominance of 

laccase-catalyzed oxidation of catechol at the beginning of the reaction. At this stage, 

catechol was gradually oxidized by laccase which led to a low concentration of o-

OH

OH O O O OH

OH

O

+
Laccase, Lipase

Phosphate Buffer pH 7.0
rt, 4h

5b 8a 9c

(2)
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quinone. After 2 hours of the reaction (when the concentration of laccase-generated 

quinone was high enough), the reaction with lipase PS was predominant and provided a 

higher rate of the reaction and higher yield of the product than the reaction without lipase 

PS. Therefore, lipase PS can enhance the overall yield for this reaction system. 
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Figure 111.  The formation of compound 9a from the reaction of 5a and 8a in the 
presence of laccase. The percent  yield of 9a was measured by 1H-NMR spectroscopy. 
  

 

 Following these optimization studies, we evaluated the breadth of this laccase-

lipase co-catalytic system for the synthesis of benzofuran derivatives using a variety of 

catechols and 1,3 dicarbonyl compounds. The results summarized in Table 23 clearly 

suggest that the inactivated lipase has no catalytic effect on the reactions. In addition, the 

reactivity of the 1,3-dicarbonyl compound employed also has an effect on efficiency of 
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this two-enzyme system. When we used 1,3-dicarbonyl compounds that had an electron 

withdrawing group (Cl) at the alpha-position, the reaction was complete in 1.5-2 hours. 

The shorter reaction time was ascribed to the increased acidity of the alpha-proton of 

these substituted 1,3-dicarbonyl compounds. The proposed mechanism of the elimination 

of Cl atom is illustrated in Figure 112. Besides 3-substituted catechols, 4-substituted 

catechols, such as 4- chlorocatechol, can also be used for the synthesis of 

polyhydroxylated benzofurans (entry 11).  However, the yield of the product is low. In 

addition, we observed that this reaction system gave only one isomer form of the possible 

benzofuran products. 

 Next, we examined the recyclability of this two-enzyme catalytic system for the 

synthesis of benzofuran 9c. The product 9c is relatively insoluble in the aqueous reaction 

mixture and readily precipitates out of solution.  Simple filtration of the product mixture 

facilitates reuse of the lipase/laccase reaction system. The results shown in Table 24 

demonstrate that this catalytic system can be reused for a second reaction, but for the 

third treatment only a low yield of the product was formed. The decrease of product yield 

after the third experiment resulted from the presence of laccase inhibitor, Cl-, in the 

reaction mixture that led to the decrase of laccase activity [198]. 
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Table 23. The study of the laccase/lipase catalyzed reaction of catechols and 1,3-
dicarbonyl compounds in aqueous medium 
 

 

 

 
 

Entry    

1 5a: R1 = R2 = H 8a: R3 = R5 = Me, R4 = H 9a (58%) 
   9a (31%)b 
2 5a 8b: R3 = R5 = Me, R4 = Cl 9a (51%)c 
   9a (40%)b 
3 5a 8c: R3 = Me, R4 = H, R5 = OEt 9b (11%) 
4 5a 8d: R3 = Me, R4 = Cl, R5 = OEt 9b (53%)c 
   9b (26%)b 
5 5b: R1 = Me, R2 = H 8a 9c (60%) 
   9c (50%)b 
6 5b 8b 9c (72%)c 
   9c (52%)b 
7 5b 8c 9d (13%) 
8 5b 8d 9d (66%)c 
   9d (39%)b 
9 5c: R1 = OMe, R2 = H 8a - 
10 5d: R1 = F, R2 = H 8a - 
11 5e: R1 = H, R2 = Cl 8a 9a (8%) 
aIsolated yield; bIsolated yield from the reaction using inactivated lipase PS; cReaction 
time is 1.5-2 hours. 
 

 

 

R1

OH

OH

R3 R5

O O O

R1

OH

OH

R3

R5
O

+
Laccase, Lipase PS

0.1M Phosphate buffer pH 7
rt, 4 hR2 R4

R1

OH
OH

5

Catechol

R2

R3 R5

O O

8
R4

1,3-Dicarbonyl compound

O

R1

OH

OH

R3

R5
O

9

Product (%yield)a



 212

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 112. The proposed mechanism of the elimination of Cl atom from the 
laccase/lipase catalyzed reaction of catechol and 8b in aqueous medium. 
 
 
 
 
Table 24. Recycling of the laccase/lipase co-catalytic system for the synthesis of 3-
acetyl-5,6-dihydroxy-2,7-dimethylbenzofuran (9c) 
 

 

 

 

 

Run Yielda of 9c (%) 
1 72 
2 62 
3 5 

 aIsolated Yield. 
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7.3.2   Laccase-Lipase Co-Catalytic System for the Reaction of Catechols and 

Anilines 

 Next, we explored the feasibility of the laccase-lipase co-catalytic system for the 

reaction between catechol and aromatic amines, anilines.  Lalk and his co-worker have 

demonstrated the ability to synthesize aminoquinones by laccase initiated oxidation of p-

hydroxyquinones followed by Michael addition of primary aromatic amines in a good to 

excellent yields [11]. In contrast, herein, this nuclear animation reaction with the reactive 

1,2-catechols was reported to yield the corresponding products less than 35%. In the 

presence of lipase, we had hypothesized that thus enzyme could catalyze the Michael 

addition step of the reaction between the laccase-generated o-quinone and anilines 

thereby improving the overall yields. We first conducted the reaction of catechol (5a) and 

aniline (10) in the presence of laccase, with or without lipase PS, in phosphate buffer pH 

7.0 at room temperature for 3.5 hours. The ratio of catechol and aniline was 1 to 2, and 

100U of laccase and 924U of lipase per 1 mmol of catechol were used. An insoluble red 

color product precipitated out of solution during the reaction. Therefore, the product was 

readily collected by filtration completion of reaction. The results show that the yield of 

the reaction with lipase PS increased by ~30% when compare to the yield of the reaction 

without lipase PS. Next, the amount of lipase PS used in the reaction was increased from 

924U to 1848U per 1 mmol of catechol to study the effect of lipase dose on the reaction 

system. This result suggests that the increase of lipase dose did not provide a significant 

improvement for this reaction system (Table 25). Characterization of the product by 

NMR and mass spectrum indicated that the product was composed of a 1:2 ratio of 1,2-

benzoquinone and aniline (M+/Z = 290). Moreover, the product was not a quinone 
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structure because the carbonyl carbon signal was not observed in 13C-NMR spectrum. 

The proposed reaction pathway for this reaction and the structure of product (11a) was 

illustrated in Figure 113. Compound 11a are known compounds and our 1H and 13C 

NMR data are consistent with those in the literature [405]. In our and literature’s 13C-

NMR spectrum, peak of carbon that connect to nitrogen atom is not observed. This may 

be due to the effect of nitrogen atom that broaden the peak and make it too weak to 

observe. 

 After the preliminary study, the reaction between catechol and other anilines was 

conducted. The results of these studies are summarized in Table 25. The reaction of 

catechol and anilines in the presence of laccase and lipase PS provided a higher yield 

than the reaction in presence of laccase only. The yield of the product in the reaction with 

lipase PS increased up to 70% compare to the reaction without lipase PS (Table 25, Entry 

4). Therefore, the overall yield of the product of this reaction system can be enhanced by 

lipase PS. 
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Figure 113. Proposed reaction pathway of laccase/lipase catalytic system for the reaction 
between catechol (5a) and aniline (10). 
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Table 25. Reactions of catechol and anilines in the presence of laccase,with (or without) 
lipase PS in aqueous medium. 
 

 

 

 

 

 

 

Yielda of Product (%) 
Entry R1 

Without Lipase With Lipase 

1 H 23 30 
2 H 23  28b 
3 OCH3 25 37 
4 Cl 30 51 
5 CH3 32 50 
a Isolated yield; b Used 1848U of lipase PS. 
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7.4 Conclusions 

 

 In conclusion, this study demonstrates the potential of using lipase to catalyze 

Michael addition reaction, and presents a new co-catalytic enzymatic system employing 

laccase and lipase for green chemistry synthesis. Lipase was found to catalyze the 

addition reaction between laccase-generated o-quinones and 1,3-dicarbonyl compounds 

in aqueous medium. In this reaction, the catalytic system of laccase and lipase PS was 

regioselective, providing only one isomer product and is the first example of a two 

enzyme catalytic system for the synthesis of benzofurans. The yields of the products from 

reaction depend on the reactivity of the starting catechols and β-dicarbonyl compounds. 

Based on our experimental results, catechols with moderate reactivity yield benzofuran 

products in excellent yield. Moreover, lipase was also shown to catalyze the addition 

reaction between laccase-generated o-quinone and aromatic amines. In the presence of 

lipase and laccase, the yield of the final products increased in the range from 30 to 70% 

when compared to the reaction in the presence of laccase alone. Therefore, this paper 

illustrates a unique aqueous-based two-enzyme system for green chemistry synthesis and 

future applications are under study. 
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CHAPTER 8 

MODIFICATION OF HIGH-LIGNIN CONTENT SOFTWOOD 

KRAFT PULP WITH LACCASE AND AMINO ACIDSv 

 

 

8.1 Introduction 

 

 The interest in modifying cellulosic fibers especially with the assistance of 

enzymes is a growing field of research and interest [262]. A variety of enzymes are 

available for the surface modification of lignocellulosics fibers [263,264]. Compared to 

chemical treatments which involve harsh reaction conditions, loss of desirable 

components, and potential use of hazardous chemicals, enzymatic treatment conditions 

are often milder, less damaging to the fiber, and are environmentally friendly. Enzymatic 

surface modifications of fibers can be accomplished with glucohydrolysis and oxidative 

enzymes [263]. One of these oxidoreductases is laccase (benzenediol :oxygen 

oxidoreductase, EC 1.10.3.2) which is a multi-copper-containing oxidoreductase enzyme 

widely distributed in plants and fungi [3]. The majority of fungi that produce laccase 

belong to the class of white rot fungi involved in lignin degradation and can mineralize 

this substrate. Laccase can catalyze the oxidation of various substrates including phenols, 

                                                 

 
 
vThis manuscript was accepted for publication in Enzyme and Microbial Technology, 2008. It is entitled as 
“Modification of high-lignin content softwood kraft pulp with laccase and amino acids”. The other author 
is Dr. Arthur J. Ragauskas from the School of Chemistry and Biochemistry at the Georgia Institute of 
Technology 
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benzenediols, aminophenols, polyphenols, polyamines, and lignin-related molecules, with 

concomitant reduction of oxygen to water [4-10]. 

 Laccase applications in pulp and paper technology have been reported for 

biopulping, biobleaching, deinking, mill process water and effluent treatment, and fiber 

modification [20]. Recently, laccase research studies have shifted toward fiber 

modification. Laccase has been used to catalyze biografting of a variety of substrates to 

technical lignins. For example, Lund and Ragauskas demonstrated that laccase catalyzed 

the grafting of guaiacol sulfonate to lignin which enhanced its water solubility [22]. 

Huttermann et al. reported that laccase can catalyze the reaction of lignin with cellulose 

yielding a product in which the lignin was covalently bounded to cellulose [23]. 

Furthermore, Mai et al. grafted lignin with synthetic polymers derived from acrylic and 

acrylamide to create a new class of engineered plastics [24-27]. In addition, laccase has 

been shown to have the potential to biograft low-molecular-weight compounds to lignin-

rich cellulosic fibers. Viikari et al. [28] recently modified the fiber surfaces of 

thermomechanical pulp (TMP) by laccase and tyramine. This modification is a two-stage 

functionalization method consisting of enzymatic activation of fiber surfaces followed by 

addition of radicalized compounds reacting preferentially by radical coupling. Chandra et 

al. reported the grafting of phenolic acids, including 4-hydroxyphenylacetic acid (PAA) 

[30], 4-hydroxybenzoic acid (4-HBA) [31], and gallic acid [29] to high-lignin content 

softwood kraft fibers.  The grafting of these charged phenolics via a laccase generated 

phenolate radical was shown to lead to improved tensile and burst strength for the 

resulting paper. The paper strength improvements were ascribed to the capacity of 

carboxyl groups to promote fiber-fiber bonding and fiber swelling [406-412].   
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 Laccase is also attractive for fine chemical synthesis because of its high stability, 

selectivity for phenolic substructures, and mild reaction conditions [11-

14,18,19,244,366,379,380,404,413].  For instance, Michałek and Szarkowska [413] 

studied the reaction between laccase generated p-quinones and amino acids to produce 

quinone-amino acid complexes.  The propensity of laccase to catalyze the oxidation 

polyphenolic has been reported by Chakar and Ragauskas [366] and  Lalk et al. [11] has 

reported a laccase catalyzed nuclear animation reaction with p-diphenols and aromatic 

amines. According to the studies in Chapter 4-7, laccase has also been shown to initiate a 

cascade synthesis of naphthoquinone derivatives via Diels-Alder reaction between 

benzenediols and dienes [379,380] as well as the synthesis of benzofuran derivatives via 

oxidation-Michael addition between o-benzenediols and 1,3-dicarbonyl compounds 

[404]. Based on these results, it was apparent that laccase can be employed to generate 

reactive quinoidal structures in lignin-rich fibers that could then be reacted with amino 

acids to generate enhanced fiber charge as shown in Figure 114. This Chapter examines 

the optimal grafting conditions with respect to fiber charge and its impact on sheet 

strength properties. 
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Figure 114. Propose mechanism for the grafting treatment of high-lignin content 
softwood kraft pulp with laccase and amino acids. 
 

 

 

8.2 Experimental Section 

 

8.2.1   Materials 

 All chemicals were obtained from Aldrich and used as received without further 

purification. Laccase (EC 1.10.3.2) from Trametes villosa was donated by Novo Nordisk 

Biochem, North Carolina and frozen till used. A commercial linerboard softwood kraft 

pulp (17% of lignin content) was obtained from a southeastern U.S.A manufacturing 

facility.  The pulp was exhaustively washed until the filtrate was pH neutral and 

colorless. Pulp was air dried and soxhlet extracted for 24 hours with acetone with 

subsequent washing with water prior to all treatments. 
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8.2.2   Enzyme Assay 

 Enzyme activity measurement is described in Chapter 3 (Experimental Materials 

and Procedures). 

 

8.2.3   Pulp Treatment 

 Laccase (80 U/1 o.d. g pulp) and an amino acid (3.2 mmol/1 o.d. g pulp) were 

added with stirring to a 5% consistency aqueous suspension of linerboard pulp buffered 

to pH 7 with 0.10 M sodium phosphate solution.  The resulting slurry was stirred for 4 h 

at room temperature and then left stand 20 h.  After treatment, the pulp sample was 

filtered, washed with deionized water until the filtrate was colorless and air-dried. 

Typically, pulp mass recovery was 95%. 

 

8.2.4   Bulk Acid Group Measurment 

 Conductrometric titration for bulk acids was based on the work of Katz [328]. In 

brief, pulp (1.50 g o.d.) was stirred in 300.00 ml of 0.10 M HCl for 1 hour followed by 

rinsing in a fine fritted funnel with deionized water. The sample was then re-suspended in 

250.00 ml of 1 mM NaCl solution, spiked with 1.50 ml of 0.10 M HCl and titrated 

against 0.05 M NaOH at 0.25 ml increments, recording the conductivity at each 

increment. The titration data was plotted as conductivity vs. volume to determine the 

milli-equivalent of acid groups per g of pulp. The reported results were the average of 

two measurements which typically differed by less than 3%. 
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8.2.5   Paper Testing 

 Treated pulps and control were disintegrated for 30,000 revolutions and then were 

refined for 3,000 revolutions according to TAPPI Standard T 248 [327]. Handsheets (3 g) 

were formed according to TAPPI Standard T 205 [327] and TAPPI conditioned (23 ˚C, 

50% relative humidity) for at least 24 hours before physical testing. 

 Apparent density, tensile strength, tearing resistance, and wet tensile strength 

were determine according to TAPPI methods T 210, T 494, T 414, and T 456 [327]. The 

results of each physical testing were the average of five measurements with error less 

than 3%. Nitrogen content was analyzed by elemental microanalysis (Huffman 

Laboratories, Inc., Golden, CO) and the results are reported on a dried sample basis. The 

SEM pictures of handsheets were taken using a Hitachi S-800 FE-SEM. The handsheet 

sample was stuck on the SEM sample holding stub by the conductive double sides sticky 

carbon film and then was coated with alloy of Au/Pt prior to analysis. 

 

 

 

8.3 Results and Discussion 

 

8.3.1   Preliminary Study of the Grafting Condition 

 To determine the optimal condition for the modification of the linerboard pulp, a 

preliminary study was conducted with laccase and glycine (Gly). In this modification, the 

linerboard pulp was first stirred at 5% consistency in a pH 7.0 phosphate buffer solution 

with laccase (80 U/1g pulp) and Gly (0.8 mmol/1g pulp) for 4 h at room temperature and 



 224

then left unstirred for an additional 20 h. The treated pulp was washed, filtered, air dried, 

and then analyzed for bulk fiber charge. The results of analysis for laccase-Gly treated 

pulp (Lac/Gly), laccase-treated pulp (Lac) Gly-treated pulp (Gly) and control pulp are 

shown in Fig. 2a. These results demonstrate that laccase treated pulp provided a higher 

yield of acid groups compared to the control pulp due to the oxidation of lignin by 

laccase. Gly-treated pulp gave the similar acid content compared to the control pulp. This 

result suggested that Gly itself did not react with the lignin in the pulp fibers under the 

reaction conditions employed. However, when the pulp was treated with both laccase and 

Gly, the treated pulp gave the highest yield of carboxyl groups. This increase of carboxyl 

groups indicated that laccase-treated fibers facilitated the grafting of Gly onto the fiber 

lignin. Then, to determine the effect of the treatment conditions on grafting, the pH of the 

treatment was changed from 7.0 to 4.5 which is known to be the optimal pH for laccase 

[365,366]. The result shows that the treatment at pH 4.5 provided a reduced content of 

acid groups than the treatment at pH 7.0. This was attributed to the higher pH 

requirements needed for Micheal addition of amino acids to lignin quinonoid compounds 

(Figure 115 (top)). The requirement of using higher pH, pH 7, for the Micheal addition 

catalyzed by laccase was also reported by Michałek et. al. [413] and Ragauskas et al. 

[404]. 
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Figure 115. (top) Bulk acid group content of control pulp, laccase treated pulp (Lac), 
glycine treated pulp (Gly), and laccase-glycine treated pulp (Lac/Gly) at different 
conditions (The control pulp, laccase treated pulp and Gly-treated pulp were treated in the 
same condition as laccase-Gly treated pulp but no laccase and Gly, no Gly, and no 
laccase, respectively); (bottom) bulk acid group content of pulps treated with laccase and 
different amount of glycine at pH 7.0 and room temperature. 
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The effect of the reaction temperature on this grafting procedure was also 

examined. The pulp was treated at pH 7.0 and at 45 ˚C instead of at room temperature. 

The result of this treatment showed that the increase in temperature did not increase the 

acid group content of the fibers (Figure 115(top)). Therefore, the optimal condition of 

this fiber modification was the treatment at pH 7.0 and at room temperature.  The effects 

of differing charges of Gly were also evaluated as shown in Figure 115(bottom).  These 

results shows that the pulp treated with 1.6 mmol of Gly showed similar amount of bulk 

acid content when compare with 0.8 mmol Gly-treated pulp. However, the acid content 

increased when the pulp was treated with 2.4 mmol and 3.2 mmol of Gly/1 g fiber.  

 

8.3.2   The Effect of Amino Acids on the Modifying Fibers 

 After this preliminary study, the next phase was to examine the effect of differing 

amino acids for laccase initiated fiber grafting.  Softwood linerboard kraft pulp was 

treated with laccase (80 U/1g pulp) and amino acid in phosphate buffer pH 7.0 at room 

temperature.  A variety of amino acids were used for this study including Gly, 

phenylalanine (Phe), serine (Ser), aspartic acid (Asp), histidine (His), arginine (Arg), and 

alanine (Ala). The properties of amino acids mainly depend on the pH of the surrounding 

environment. The amino acids can become more positively or negatively charged due to 

the loss and gain of protons (H+) at a given pH. In general, the pK values of the α-

carboxylic acid groups of amino acids lie in a small range around 2.2 so that above pH 

3.5 these groups are almost entirely in their carboxylate forms. The α-amino groups all 

have pK values near 9.4 and are therefore almost entirely in their ammonium ion forms 

below pH 8.0 [414]. Therfore, at the experimental pH (pH 7.0), both the carboxylic acid 
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and the amino groups of α-amino acids are ionized. When the amino acids have charged 

polar side chains, the pK values of the side chain groups have to be considered. In this 

study, histidine side chain, an imidazolium moiety (pK = 6.0), was deprotonated at pH 

7.0. Therfore, the histidine side chain can participate in the addition reaction with the 

laccase-oxidized fibers at this pH. The results illustrated in Figure 116a show that His 

gave the highest acid content compared to the other amino acids. This result was ascribed 

to the enhanced nucleophilic property of the nitrogen of imidazole side chain of His. 

Moreover, when considered the isoelectric point (pI) of the amino acids with nonpolar or 

uncharged side chains, including Gly (pI = 6.06), Ala (pI = 6.01), Phe (pI = 5.49), and 

Ser (pI = 5.68), their pI are all below 7. Therefore, at the pH above their pI (pH 7.0), 

some of ammonium ions of these amino acids were deprotonated which led to the 

liberation of some free amino groups that can react with the oxidized fibers. As a 

consequence, the acid groups of the fibers increased in some content after the treatment 

with these amino acids and laccase at pH 7.0 (Figure 116a). 

In addition, different amounts of each amino acid (i.e., 1.6, 2.4, and 3.2 mmol/1g 

pulp) were examined to find the optimal amount of amino acid for modifying fibers. The 

results in Figure 116a also indicate that the greater the amount of amino acid employed 

the greater increase in fiber charge for most amino acids. The acid group content reached 

the maximum yield when the amount of amino acids was 3.2 mmol/1g pulp. Therefore, 

3.2 mmol/1g pulp was chosen as an optimal amount of amino acids for this treatment 

system.  

 Next, the interaction between amino acids and pulp fibers was investigated. The 

pulp was treated with an amino acid (3.2 mmol/1g pulp) only and compared the acid 
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content with control pulp, laccase-treated pulp and laccase-amino acid treated pulp. 

Figure 116b demonstrates that the amino acid-treated pulp provided a 10-25% increase of 

carboxyl group content compared to control pulp. These results indicate that some of 

amino acid can react with pulp fibers presumably due to quinonoid structures present in 

kraft pulps [415]. However, the carboxyl group content of the amino acid treatments was 

still 11-20% less than of the laccase-amino acid treatments. Therefore, the highest acid 

group content was obtained when the linerboard pulp was treated with both laccase and 

amino acid. 
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Figure 116. Bulk acid group content of (a) linerboard pulps treated with a variety of 
amino acids in the presence of laccase (80 U/1g pulp); (b) linerboard pulps treated with a 
variety of amino acids (3.2 mmol/ 1g pulp) in the presence and absence of laccase. 
 

(a) 

(b) 
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8.3.3   The Effect of Laccase Dose 

 After optimizing the treatment condition, the next study was to determine the 

effect of laccase dose on the modifying fibers. The experiments were conducted by 

treating linerboard pulp with different amount of laccase which are 20, 40, 60, 80, and 

100U/1g pulp in the presence of His (3.2 mmol/1g pulp) in phosphate buffer pH 7.0 at 

room temperature. Figure 117 demonstrates that the carboxyl group content increased 

when the amount of laccase increased. The carboxyl group content reached the highest 

amount when the amount of laccase was 80 U/g pulp. Therefore, the optimal amount of 

laccase for this modification was 80 U/g pulp. 
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Figure 117. Bulk acid group content of linerboard pulps that were treated with histidine 
(3.2 mmol/ 1g pulp) and different amount of laccase. 
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8.3.4   Nitrogen Content of Laccase-His Treated Pulp 

 The laccase-His grafting treatment conditions which provided the best yield of 

bulk fiber acid groups were selected for further study. The linerboard pulp was treated 

with laccase and histidine using the optimal condition as described in experimental 

section 8.2.3. Then, the pulp samples were sent for nitrogen analysis. Nitrogen content of 

laccase-His treated pulp was measured and compare with nitrogen content of control and 

laccase treated pulp. The nitrogen content of laccase-His treated pulp was 120-140% 

higher than of control and laccase treated pulp as shown in Figure 118. These results 

show that His was bonded with pulp fibers after the grafting treatment which led to the 

increase of nitrogen content of the fibers. 
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Figure 118. Nitrogen content of control pulp, lacccase treated pulp (Lac), and laccase-
His treated pulp (Lac/His). 
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8.3.5   Paper Strength Properties 

 The objective of this section is to evaluate the effects of the laccase-amino acid 

grafting treatment on paper strength properties. The physical properties of handsheets 

made from laccase-His treated pulp were compared to the physical properties of the 

handsheets made from control pulp and laccase treated pulp. The results of the paper 

testing are illustrated in Figure 119. The strength properties of the handsheets were 

examined including tensile strength, tearing resistance, and wet tensile strength. These 

results indicate that the handsheets made from laccase-His treated pulp gave the highest 

strength properties in comparison to handsheets made from control and laccase treated 

pulp. The ratio of wet/dry strength is about 5.2 for the laccase-His treated pulp. Although 

it has been suggest that the minimum ratio of wet/dry strength about 15 is required for the 

wet-strength paper [416], this study is a good start for the modification of lignocellulosic 

fibers by laccase via oxidation-Michael addition. Therefore, in the future, the further 

investigation to improve the wet tensile strength of resulting paper for this modification 

system has to be conducted. The improvement of wet tensile strength of unbleached kraft 

pulp by the combination of lacccase with mediator and a heat treatment has been reported 

by Lund and Felby [297]. The wet/dry strength ratio of laccase, laccase-mediator, and 

laccase-mediator with heat treatment is 3.5, 6.7, and 14.7, respectively. This shows that 

heat treatment has a tremendous effect on the increase of wet strength property.  

Compared to Lund and Felby’s study, our wet/dry strength ratio is comparable to those 

results without heat treatment. Therefore, our fiber modification system could be further 

improved by using laccase in combination of mediator or heat treatment to increase the 

wet tensile strength of the modified fibers.     
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 Moreover, the images of the handsheet surface of the control, laccase treated, and 

laccase-His treated pulp were taken by the scanning electron microscope (SEM). SEM 

images in Figure 120 show that the laccase-His treated fibers are more collapse than 

control and laccase treated fibers which led to form better bonding between fibers in 

handsheet resulting in the increase of the paper strength of laccase-His treated pulp. 
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Figure 119. Physical paper properties of handsheets made from control pulp, laccase 
treated pulp (Lac), and laccase-histidine treated pulp (Lac/His); (a) tensile strength; (b) 
tear strength; (c) wet tensile strength. 
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Figure 120. Scanning electron microscope (SEM) images of handsheets made from (a) 
control pulp; (b) laccase treated pulp; (c) laccase-histidine treated pulp. 
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8.4 Conclusions 

 

 This study presents a new environmentally-friendly method for modifying lignin-

rich fibers. This modification employed laccase to oxidize lignin in the fibers, and then 

the carboxyl groups were introduced to pulp fibers by an addition reaction between the 

oxidized fibers and amino acids. The condition for this treatment was pH 7.0 at room 

temperature. Laccase-amino acid treatment of fibers resulted in an increase in carboxyl 

group content of the fibers that enhanced the strength properties of the resulting paper, 

including tensile strength, tearing resistance, and wet tensile strength. The SEM images 

show that the laccase-amino acid treated fibers are more collapse than control and 

laccase-treated fibers which led to form better bonding between fibers in handsheet. In 

this study, among the several different amino acids studied, the treatment of pulp with 

laccase and His provided the best result in increasing carboxyl group content and paper 

properties. The ability to use laccase selectively graft amino acids to lignin rich pulp 

fibers provides a new and unique fiber modification technology which will have many 

future opportunities. The improvement of this fiber modification system to increase the 

strength properties of the modified paper is under investigated. 
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CHAPTER 9 

OVERALL CONCLUSIONS 

 

 The original idea about using laccase for this study was inspired by various 

interesting applications of laccase as biocatalysts. Laccase has been known to have 

applications in many industrial areas, expecially in the pulp and paper industry. 

However, the applications of laccase have recently shifted toward fine chemical 

synthesis because of its high stability, selectivity for phenolic substructures, and mild 

reaction conditions. This study utilized the oxidative potential of laccase to convert 

hydroquinones to quinones in situ. Since the quinonoid compounds have a wide 

spectrum of chemistry, various possible reactions of the in situ-generated quinones 

can be investigated. First, the property of quinoniod compounds as good dienophiles 

for the Diels-Alder reactions attracted our interest. Moerover, many studies showed 

that the Diels-Alder reactions performed in an aqueous medium showed beneficial 

effects on the reaction rate, reactivity, and selectivity of Diels-Alder reaction. 

Therefore, the study of the laccase-triggered Diels-Alder reaction in aqueous media 

was conducted first. This reaction methodology provides a unique green chemistry 

synthesis. 

  In Chapter 4, the para-quinones were generated in situ by the laccase oxidation 

of the corresponding 1,4-hydroquinones and subsequently underwent the Diels-Alder 

reaction with dienes, and further oxidation to finally generate 1,4-naphthoquinones, in 

good yields. However, the reactivity of the reaction depends on the substrate specificity 

of laccase and the reactivity of both generated quinones and dienes. Temperature also has 
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an important impact on the formation of the final products. To obtain the 

naphthoquinones as major products, the reactions have to perform at 70 oC. At the lower 

temperature, 25 oC, the major products showed to be the Diels-Alder adducts. This 

successful synthesis of p-naphthoquinones catalyzed by laccase led to the further study of 

the laccase-triggered Diels-Alder reaction for o-naphthoquinones synthesis in Chapter 5. 

This study has to deal with the very reactive in situ-generated o-quinones that easily 

undergo dimerization and polymerization. Therefore, the reactions were conducted at a 

low temperature (3-25 oC) to lower the rate of those side reactions and a high excess of 

dienes were used to push the reaction toward Diels-Alder reaction. In addition, these 

reactions were carried out in an aqueous medium and yielded o-naphthoquinones up to 

80%, depending on the exact structure of the starting hydroquinone and diene. 

 Besides Diels-Alder reactions, Michael addition reactions of in situ-generated o-

quinones were also investigated. In Chapter 6, the cascade synthesis of benzofuran 

derivatives was conducted from the reaction of catechols and 1,3-dicarbonyl compounds 

via oxidation-Michael addition in the presence of laccase and Sc(OTf)3/SDS. In this 

procedure, ortho-quinones, generated in situ from the oxidation of catechols by laccase, 

underwent the Michael addition reaction with 1,3-dicarbonyl compounds, and then 

underwent intramolecular cyclization to benzofuran derivatives. This reaction was carried 

out under air at room temperature, in an aqueous medium, and provided benzofuran 

products in 50 – 79% yield. In addition, this reaction system showed recyclability. 

Although the use of an aqueous Lewis acid was critical for efficient synthesis of the 

desired compounds, this system still produced a hazardous waste from the transitional 

metal catalyst. Therefore, to enhance the overall green chemistry aspect, the use of lipase 
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as an alternative catalyst in conjunction with laccase as an alternative methodology for 

the synthesis of benzofuran derivatives was developed in Chapter 7. This laccase/lipase 

reaction system was carried out under air at room temperature, in an aqueous medium, 

and provided benzofuran products in good yields. Moreover, this laccase/lipase co-

catalytic system was also used to catalyze the Michael addition of in situ-generated o-

quinones and anilines. In the presence of lipase and laccase, the yield of the final 

products increased in the range from 30 to 70% when compare to the reaction in the 

presence of laccase alone. Therefore, this study illustrates a unique aqueous-based two-

enzyme system for green chemistry synthesis. 

 In the last phase of this research, the interest shifted toward another interesting 

application of laccase, which is fiber modification. Laccase has been reported to facilitate 

the grafting of a variety of compounds to lignin or lignocellulosic fibers. Chapter 8 

demonstrates the potential of laccase-facilitated grafting of amino acids to high lignin 

content pulps to improve their physical properties in paper products. These physical 

properties can be enhanced by increasing ionic fiber charges. In an effort to increase 

carboxylic acid groups, a unique two-stage laccase grafting protocol, in which fibers were 

initially treated with laccase followed by grafting reactions with amino acids was 

developed. The condition for this treatment was pH 7.0 at room temperature. In this 

study, a variety of amino acids, including glycine, phenylalanine, serine, arginine, 

histidine, alanine, and aspartic acid, were examined. The results show that histidine 

provided the best yield of acid groups on pulp fiber and was used for the preparation of 

handsheets for physical strength testing, including tensile, tear, and wet tensile strength 

properties. Laccase-histidine treated pulp showed an increase in strength properties of the 
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resulting paper. Moreover, this study presents a new environmentally-friendly method for 

modifying lignin-rich fibers. 
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CHAPTER 10 

RECOMMENDATIONS FOR FUTURE WORK 

 

Several other studies might be conducted to further explore other applications of 

laccase, both in organic synthesis and in fiber modification. Some particularly attractive 

options are as follows: 

 To address the environmental concern, immobilized laccase would be used 

in the reaction. The immobilized laccase could be reused and would 

reduce waste from the reaction. 

 The use of laccase alone in the reaction limits the scope of substrates. The 

addition of laccase mediators, such as ABTS, HBT, and TEMPO, into the 

reaction system would broaden the scope of the substrates and would lead 

to the discovery of new green synthetic chemistry. 

 According to this research, reaction conditions, such as temperature and 

pH, affect the formation of the reaction products. Therefore, conducting 

the reaction at different conditions could provide different final products 

and could lead to the discovery of new compounds.  

 Laccase could be used to facilitate the grafting of other compounds to 

high-lignin content pulp fibers to improve the properties of existing 

products and create new product platforms. 

 Future research programs should focus on large-scale laccase-biografting 

technology. 
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APPENDIX A 

NMR AND IR SPECTRA OF NEW COMPOUNDS 

 

A.1   NMR and IR Spectra of New Compounds in Chapter 4 

 

There are two new compounds obtained from the experiments in Chapter 4: 

 1,4-Dihydro-6-methoxy-1,4-ethanonaphthalene-5,8-dione (3f) 
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A.1.1  1H-NMR Spectrum of compound 3f 
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A.1.2   13C-NMR Spectrum of Compound 3f 
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A.1.3   IR Spectrum of Compound 3f 
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A.1.4   1H-NMR Spectrum of Compound 3h 
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A.1.5   13C-NMR Spectrum of Compound 3h 
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A.1.6   IR Spectrum of Compound 3h 
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A.2   Spectra of New Compounds in Chapter 5 

 

There are two new compounds obtained from the experiments in Chapter 5: 

 4,7,8-trimethyl-1,2-naphthoquinone (6e) 
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A.2.1   1H-NMR Spectrum of Compound 6e 
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A.2.2   13C-NMR Spectrum of Compound 6e 
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A.2.3   1H-NMR Spectrum of Compound 6f 
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A.2.4   13C-NMR Spectrum of Compound 6f 
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A.3   Spectra of New Compounds in Chapter 6 

 

There is one new compound obtained from the experiments in Chapter 6: 

 Ethyl-5,6-dihydroxy-2,7-dimethyl-3-benzofuran carboxylate (9d).  
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A.3.1   1H-NMR Spectrum of Compound 9d 
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A.3.2   13C-NMR Spectrum of Compound 9d 
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A.3.3   HSQC Spectrum of Coumpound 9d 
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A.3.4   HMBC Spectrum of Compound 9d 
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A.4   Spectra of New Compounds in Chapter 7 

 

There are three new compounds obtained from the experiments in Chapter 7: 

 Compound 11b 
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A.4.1   1H-NMR Spectrum of Compound 11b 
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A.4.2.   13C-NMR Spectrum of Compound 11b 
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A.4.3   HMQC Spectrum of Compound 11b 
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A.4.4   HMBC Spectrum of Compound 11b 
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A.4.5   1H-NMR Spectrum of Compound 11c 
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A.4.6   13C-NMR Spectrum of Compound 11c 
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A.4.7   HMQC Spectrum of Compound 11c 
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A.4.8   HMBC Spectrum of Compound 11c 
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A.4.9   1H-NMR Spectrum of Compound 11d 
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A.4.10   13C-NMR Spectrum of Compound 11d 
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A.4.11   HMQC Spectrum of Compound 11d 
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A.4.12   HMBC Spectrum of Compound 11d 
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A.4.13   IR Spectra of compound 11b, 11c and 11d 
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APPENDIX C 

TENSILE AND TEAR STRENGTH 

 

C.1   Tensile Strength  

 The tensile strength of paper sheets is especially complex as many variables play 

a role in controlling the magnitude of this property. Tensile strength is dependent on both 

the fiber strength properties and the bonding that occurs between fibers. The tensile 

strength theory that has attracted the most attention has been that of Page. The “Page” 

equation (Equation 4) was shown in a publication in 1969 [417] and remains a fixture in 

paper physics discussions. The equation represents a comprehensive account of the 

variables encountered in attempting to predict tensile strength from the properties of the 

fiber and for bonds between fibers. The equation (Equation 4) also attempts to calculate 

“bondstrength” from all of these variables affecting tensile strength 

 

   
 (1/T) = (9/8Z) + [(12g × C)/(P × l × b × RBA)] 
  
Where: 
l = fiber length (length) 
b = fiber-fiber bond strength (N/m2) 
RBA = relative bonded area (unit less) 
g = gravitational constant -(length/second2 = 9.8 m/s2) 
T = tensile breaking length (length) 
Z = zero span tensile (length) 
C = fiber coarseness (weight/length) 
P = fiber perimeter (length) 

 
Equation 4. The Page equation. 
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Equation 4 shows that the inverse of tensile strength should be linearly 

proportional to the inverse of fiber strength, fiber length, and RBA.  The tensile strength 

predictions of the Page equation are illustrated in Figure 121. 

 

 

 

 

 

 

 

 

 

Figure 121. Predictions from Page equation for tensile strength of paper vs. relative 
bonded area together with the qualitative effect of increasing fiber properties. 
 

 

The relative bonded area (RBA) in Page’s equation is a measure of the contact 

area between fibers in the sheet [417].This is measured by light scattering co-efficient or 

through nitrogen absorption measurements. Increases in bonded area can be achieved by 

increasing wet-pressing pressure. With subsequent testing of a strength property (such as 

tensile strength) and scattering coefficient, the sheet strength can be extrapolated to zero 

sheet strength. The result of this extrapolation is an estimate of the scattering coefficient 

of unbonded fibers (So) that can be used to calculate the relative bonded area [417]. 
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Equation 5 shows the relationship between relative bonded area and light scattering 

coefficient. 

 
 
RBA = (So-S)/So 
 
Where: 
So = scattering co-efficient of the unbonded sheet (m2/kg) 
S = scattering co-efficient for a paper sheet (m2/kg) 
 
Equation 5. Page’s equation for computing relative bonded area. 

 

 
In the Page equation, most of the variables are measurable except for b, the fiber 

to fiber bond strength or “shear strength” of the fiber bonds [417]. Once all of the 

measurable variables are obtained, the Page parameter ([1/T – 9/(8Z)]-1) can be plotted 

against the light scattering coefficient (S) (Equation 6). This plot can be used to obtain 

the bond strength (b) and the scattering coefficient of the unbound fibers (So) from the 

slope and intercept respectively. 

 

[(1/T) – (9/8Z)]-1 = b × [(1/ γ) – (S/( γ × So))] 
 
γ = [(12g × C)/ (P × l)] 
 
Equation 6. Parameters to plot for obtaining bond strength using the Page equation. 
 
 
 

The Page equation is only valid for sheets made with good formation, free from 

kinks or curls [418]. This is because sheets with poor formation fail earlier due to uneven 

concentrations of stress in areas of low basis weight. Kinks and curls cause changes in the 
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fiber length variable in the equation. The kinks and curls also decrease the number of 

load-bearing elements in the sheet. 

 In the physical testing of paper, tensile strength is determined by measuring the 

force required to break a narrow strip of paper where both the length of the strip and the 

rate of loading are closely specified [285]. The amount of stretch at rupture may be 

determined at the same time. Some modern testers provide a plot of the stress/strain curve 

and compute the area under the curve which is referred to as tensile energy absorption, a 

measure of paper toughness. These testers also provide for measurement of creep under 

various tensile loading. 

 

 

C.2   Wet Tensile Strength 

 Paper is a layered mat consisting of a network of cellulose fibers held together by 

intermolecular forces (van der Waals and hydrogen bonding) which are very sensitive to 

water. The extent of bonding steadily decreases as the water content of the paper 

increases. The water wets the fibers, and then, the bonds are broken leaving somewhere 

between 3% and 10% of the original dry strength (at 50% relative humidity). The residual 

strength of wet paper results from remaining covalent fiber-fiber bonds. Therefore, there 

is a need for paper products to retain some strength when subjected to high humidity or 

when soaked in water. Many applications have been developed to improve the wet 

strength of paper [416]. 

 The way to determine wet strength of the paper is to measure its burst or tensile 

strength when wet. There are useful Standard Methods for the determination of wet 
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strength (e.g. TAPPI Method T456), although many non-standard tests have been 

developed over the years. In the TAPPI Method, a strip of paper is completely wetted 

before applying a breaking force. The paper is immersed in water or, if it is too weak, it is 

mounted in the jaws of a tensile tester and wet midway over a distance of 2.54 cm. The 

load required to break the paper is then recorded. The result reported as percent wet 

strength (wet strength as a percentage of the dry strength). 

 

  

C.3   Tear Strength 

Tearing resistance is the total energy per tear length consumed when a specimen 

of a given geometry undergoes tearing. Tearing resistance therefore has the units of load 

and is sometimes called tear strength, although it is energy, not stress, that one measures. 

Tearing strength is normally determined with the Elmendorf apparatus which uses a 

falling pendulum to continue a tear in the paper sample when the force is applied 

perpendicular to the plane of the sheet; the loss of energy, measured by the height of 

swing of the pendulum, is related to the force required to continue the tear [285]. The 

Elmendorf tear test is recognized as a good measure of fiber strength within the sheet. 

Apparatus for carrying out in-plane tear testing is available, but the procedure is not 

widely utilized. In the in-plane tear measurement, load is applied in the plane of paper, 

often at a 2 x 6° angle as Figure 122(a) shows. In the out-of-plane tear test or Elmendorf 

tear of Figure 122(b), load is in the out-of-plane direction. 
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Figure 122. (a) The in-plane tear test; (b) the out-of-plane or Elmendorf tear test. 
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