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SUMMARY

Synchronous interfaces provide a new input modality for wearable devices requiring

minimal user learning and calibration. We present SeeSaw, a synchronous gesture inter-

face for commodity smartwatches to support rapid, one-handed input with no additional

hardware. Our algorithm introduces methods for minimizing false-trigger events while

facilitating fast and expressive input. Results from a live evaluation of the system as a one-

handed notification response gesture show comparable speed and accuracy to two-handed

touch-based interfaces on smartwatches. The SeeSaw input interaction is also evaluated as

an input interface for smartwatches and head-worn display systems, showing that the in-

terface enables rapid and accurate interaction. Thus, we find that the SeeSaw synchronous

gesture offers a compelling alternative to existing input methods on wearable computers.

Finally, a suite of demo applications are presented to show SeeSaw’s support of binary,

multi-target, and activation input.
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CHAPTER 1

INTRODUCTION

Wearable devices such as smartwatches and head-mounted computers provide convenient,

readily available access to content. However, a primary obstacle for the widespread adop-

tion of wearables is the lack of input techniques appropriate for the types of interactions

common with these devices. Just as the keyboard and mouse are not suitable for smart-

phones, existing technologies such as the touchscreen and voice-based commands are not

ideal for many wearable devices. Touch interfaces are hindered by problems of finger

occlusion on small form-factor devices, especially smartwatches[1]. Meanwhile, voice in-

teractions can be effective for issuing commands and inputting text but are not discrete and

not socially acceptable. An effective input modality for wearable devices supports microin-

teractions with fast access time while maintaining an acceptable level of expressiveness[2].

Synchronous interfaces have been explored to address some of the shortcomings with

traditional gesture-based interactions, including their memorizability and intuitiveness. In-

stead of expressing user intent by performing multiple discrete gestures, a single motion is

performed in synchrony with the target stimulus. Thus, minimal user learning and mem-

orization is required[3]. This concept has been explored recently for smartwatch input

and multi-user systems, using eye-gaze tracking, camera-based hand motion tracking, and

magnetic ring motion correlation [1, 3, 4, 5]. However, these systems currently require ad-

ditional external hardware, making it unsuitable for use on many commodity smartwatches.

In this work, we present SeeSaw, a rapid, one-handed synchronous gesture interface that

supports expressive and subtle input on commodity smartwatches with no extra hardware.

SeeSaw is a synchronous gesture interface that uses only the gyroscope sensor present

on smartwatches. The resulting synchronous gestures can be performed with the user’s

wrist and hand and require no additional hardware or software modification. The system is
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also designed to facilitate subtle interaction, minimizing attention to the user when interact-

ing with the wearable computer. Results from user evaluations show one-handed dismissal

speed of 4.5s - 5.5s for smartwatch-only interaction and 3.6s for HWD interaction. We

show that SeeSaw enables effective interaction with wearable computers in many com-

mon use-cases and provides a compelling alternate input modality to replace or augment

traditional touch interfaces.
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CHAPTER 2

RELATED WORK

Many wearable computers, especially smartwatches and head-worn computers, are primar-

ily meant to facilitate quick microinteractions between the user and the wearable system[6,

2]. Despite this, the default input modalities included with most smartwatches and head

mounted computers, mainly the touch-screen and speech to text input systems, do not fully

meet these requirements, as many contexts impose constraints on two-handed input and

social acceptability. Thus, much research has been done to explore alternative input modal-

ities for these devices.

2.1 One-handed Input

One-handed input is preferable in many everyday use scenarios where the user’s second

hand is occupied, or a more discreet mode of interaction is needed. Serendipity is an

example of such a finger gesture recognition system capable of recognizing 5 fine-motor

gestures[7]. To expand the capabilities of gesture recognition systems, additional soft-

ware and hardware modifications are often introduced to allow for a larger gesture set and

higher detection accuracy. The ViBand input system uses a custom smartwatch software

kernel to allow for increased sampling from sensors, which enables more accurate and ex-

pressive user input and the ability to sense external objects through touch[8]. Hardware

modifications are also possible, as demonstrated by numerous projects such as WristWhirl,

WristFlex and Tomo, that allow for a larger gesture set and continuous input[9, 10, 11].
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2.2 Rhythmic Input

While many discrete gesture recognition systems rely on classifying windows of sensor

input, rhythmic patterns rely on the temporal dimension to recognize user intent. Often,

this results in an intuitive and easy to use input system. This is shown by the Whack gesture

system, an input modality for mobile devices that allows users to whack their mobile phone

with the open palm or heel of the hand in rhythmic succession to show intent[12]. Ghomi

explores the optimal vocabulary size of the rhythmic patterns and feedback method, finding

that a 30-pattern vocabulary can be recognized with a 94% recognition rate[13]. In addition

to discrete selection tasks, rhythmic patterns have also been applied to search filtering. By

allowing users to tap a song’s rhythm on the device touchscreen or body, the Finding My

Beat system is able to filter a musical library to find songs that match the user’s input[14].

2.3 Synchronous Gesture Interfaces

Synchronous gestures are similar to rhythmic patterns in that they both allow the user to

express intent over time, but in the case of synchronous gestures, the stimulus is presented

to the user indicating the expected gesture or pattern[15]. Motion correlation has been

implemented successfully in many camera-based systems, often allowing for robust, multi-

user selection on large displays[15, 4, 16]. Recently, synchronous gestures have also been

explored using smooth pursuit tracking, allowing users to interact using gaze. AmbiGaze

is such a system that allows users to interact with ambient devices and trigger correspond-

ing actions by performing correlation with relative eye movement[17]. Orbits is another

smooth pursuit based tracking system used to interact with smartwatches with high accu-

racy[1]. However, pursuit tracking requires the use of specialized eye-tracking hardware

and may interfere with the user’s ability to comfortably view on-screen content. FingOr-

bits seeks to replace pursuit-tracking with finger movement by using a specially-designed

thumb ring[3]. The FingOrbits system is implemented using an IMU and contact micro-
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phone connected to a laptop running a FFT-based detection algorithm. Recent work by

Reyes et al. has investigated removing the need for additional external powered hardware

for synchronous gesture interfaces by constructing a thumb ring with a passive rare-earth

magnet, showing viable accuracy and speed for notification response applications on smart-

watches[5]. While all of these input interactions show the effectiveness and advantages of

synchronous gesture interfaces, they all require external hardware and are thus not suitable

for out-of-the-box operation with commodity smartwatches.

2.4 Subtle Interfaces

In addition, the usability of gesture systems often depend on their social acceptability, as

interfaces often require users to adopt disruptive or embarrassing behaviors to interact with

the system[18]. Research has shown that gestures that were subtle or utilized everyday

movements were more likely to be socially acceptable[18]. Some gesture systems aim to

minimize the motion required to trigger the system. An example that uses this approach

measures the electromyographic (EMG) signal, allowing for subtle and intimate interac-

tion[19]. Another approach for facilitating subtle interaction is requiring movement of un-

seen or hidden body parts such as the inside of the mouth or the jaw and inner ear. Systems

like Bitey shows that tooth click gestures are viable for subtle interaction[20] while Stick

it in your ear shows that an Outer Ear Interface (OIE) can be constructed for a variety of

applications such as gesture detection, jaw movement, and even heart rate monitoring[21].

Finally, subtle gesture systems can be created by disguising gestures as everyday activities

such as foot/table tapping or scratching one’s nose. Prior work shows that gestures such as

table tapping and foot tapping have social acceptability in public settings[18], and the Itchy

Nose interface is able to facilitate accurate, subtle gestures using EOG sensors[22].
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CHAPTER 3

INTERFACE DESIGN

3.1 Gesture Interaction

The SeeSaw input interaction is a synchronous gesture interface that allows users to per-

form input through synchronous wrist rotations. The primary input interaction used by

SeeSaw is a repetitive back and forth tilting of the wrist in a sinusoidal motion. When a

stimulus signal is provided, it is rendered as a flashing target where the brightness of the

target corresponds to the stimulus signal or as a haptic vibration. Syncing with a target is

achieved by tilting the wrist away from the body when the target is illuminated and tilting

the wrist back towards the body when the target is dimmed (Figure 3.1). When a haptic

stimulus is used, the user times the tilting motion so that the vibration occurs when the wrist

is away from the body. The user is able to provide both a positive and negative response to

the stimulus by performing the synchronous gesture in-sync or out-of-sync. SeeSaw also

supports detecting sinusoidal synchronous gestures without a stimulus. These gestures are

performed by repeatedly tilting the wrist inward and outward at a constant frequency.

3.2 User Interface

3.2.1 Binary Input

Many microinteractions are meant to be fast and simple. Examples of these interactions

include notification dismissal and basic navigation. These Tasks that require only binary

input can be easily integrated with the synchronous gesture interface by assigning both

selections to a pair of synchronous elements with alternating blinking patterns so that the

correlation value and direction from a single detector can be used to determine intent.
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Figure 3.1: SeeSaw Wrist-Tilting Gesture Interaction

3.2.2 Multi-Target Selection

While binary selection is sufficient for most notification-type microinteractions, its expres-

siveness is too limited for most application input. To enable multi-target selection, the

application designer can organize UI elements into control groups consisting of pairs of

related controls and introduce a separate gesture to cycle or switch between control groups.

Another approach is to use two separate detectors to construct a blinking cursor interface.

One detector is used to navigate a list of items and move a blinking cursor on a selection

while the other detector is used to confirm a selection.

Figure 3.2: Multi-Target Selection using Control Groups (Left) and Blinking Cursor
(Right)
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3.2.3 Activation Gesture

Activation gestures are used by application designers to enable or activate new controls

or interaction modes. While it is possible to have an always-visible blinking element for

activation gestures, it is impractical due to the limited screen space available on most smart-

watches and wearable displays. Alternatively, designers can embed the synchronous stim-

ulus in existing UI elements (i.e. blinking cursor in a digital clock watch-face) or allow

users to perform a 1Hz gesture without any UI stimulus.
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CHAPTER 4

TECHNICAL IMPLEMENTATION

The SeeSaw algorithm is a motion correlation algorithm designed to facilitate rapid syn-

chronous gesture detection and to minimize false-triggering. The current implementation

is written as a Java library that can be included in Android apps for live use and on the

desktop for programmers to perform offline analysis for activity-dependent frequency tun-

ing. In addition to its gesture detection capabilities, the library provides mechanisms for

providing live user feedback. The SeeSaw gesture detection algorithm is implemented as a

multi-stage pipeline where sensor input from the smartwatch is processed in multiple steps:

Signal Preprocessing, Synchrony Detection, Lag Adjustment, and Output Processing (Fig-

ure 4.1).

4.1 Signal Preprocessing

4.1.1 Feature Extraction

The primary gesture interaction for SeeSaw involves repeatedly tilting the smartwatch back

and forth along a single axis. This implies the existence of a dominant axis of rotation

affected by the wrist motion. Because the dominant axis of rotation is closely aligned with

the gyroscopic x-axis of the smartwatch used for testing (Figure 4.2), the x-component of

the gyroscope is used as the gesture detection feature. For smartwatches or other devices

that use an alternate sensor layout, it is possible to identify the dominant axis or artificially

construct one using Principal Component Analysis (PCA).

The samples are stored in a sliding window, XW . The length of the sliding window is

set to 1.5 s using results from previous work on synchronous gestures and through empirical

testing [5]. Given knowledge of the gesture motion and the dominant axis, it is possible
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to prevent false triggering by ensuring at least a factor αmin of the total variance between

all 3 orthogonal axes is from the dominant axis, σx ≥ αminσtotal. The variance factor,

αmin = 0.4 is set empirically. Knowledge of the gesture is also used to set additional

bounds, σmin = 0, σminactivation = 1, σmax = 12.

4.1.2 Resampling

Timestamps from non-realtime operating systems installed on most commodity smart-

watches do not guarantee even or consistent timings. To account for the possibility of

data overflow or underflow and to transform the sensor readings into a more useful time-

series representation, the sensor values are first resampled. Readings are requested from

the gyroscope sensor at 100 Hz and are downsampled to 10 Hz using an interval-based sub-

sampler. The subsampler stores incoming readings in a buffer and returns the mean value

every 100 ms. Upon emitting an output, the subsampler’s buffer is cleared.

4.1.3 Signal Detrending

To minimize the effects of sensor drift, environmental noise, and external low-frequency

movement, a detrending procedure is applied to the signal. Linear regression is performed

on the samples in the current window to compute a line of best fit, y = mx+ b. The best-fit

line is then subtracted from each sample, resulting in a zero-centered signal with no overall

temporal correlation.

4.2 Synchrony Detection

SeeSaw supports gesture detection both with and without a stimulus. While both modes

of operation rely on motion correlation, the algorithm can choose to correlate the sensor

signal with itself or a reference signal depending on the context.

Including a stimulus is useful for notification gestures, command gestures, and more

expressive input. The stimulus allows the user to provide a positive or negative response

10



by performing the synchronous gesture in-phase or out-of-phase. Multiple stimuli can be

used to construct more complex application interfaces.

The algorithm is also able to function without a stimulus by performing autocorre-

lation. Simple repetitive synchronous gestures can be recognized by detecting temporal

self-similarity within the sensor data. This allows the synchronous gesture interface to be

used for activation gestures or initiation gestures.

4.2.1 With Stimulus

Most synchronous gesture interfaces require a stimulus to be presented to the user in order

to determine intent. These stimuli include rotating, blinking, or oscillating visual elements

that correspond to different available input choices [1, 5, 23]. Complex synchronous ges-

ture interfaces for multi-user and many-target applications have explored the use of geo-

metric shapes or paths as stimuli. However, it has also been shown that simple stimuli

are necessary for providing fast, expressive input for smartwatches [5]. SeeSaw provides a

similar mode of interaction by displaying flashing targets on the screen that can each accept

two responses.

While the synchrony detection algorithm does not require that the reference signal be

periodic, I choose to use a periodic sinusoidal wave due to its simplicity and performability.

Thus, the reference signal is defined completely by its amplitude, A, period, T , and starting

timestamp, t0. The signal is generated using the simple harmonic motion model.

x(t) = A sin (ωt+ ϕ) ,ω =
2π

T
,ϕ = arcsinA−1 − ωt0 (4.1)

The synchrony detection is based on correlation, so the signal amplitude, A, does not affect

detector output and is set to a constant value of 1.

The Pearson correlation coefficient, ρ, is chosen as a measurement of similarity between

11



the reference signal and motion signal.

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
(4.2)

The Pearson correlation coefficient measures the linear correlation between X , and Y , as a

value between -1 (total negative correlation) and 1 (total positive linear correlation). This

property allows the correlation coefficient to be easily thresholded to detect gestures with

a certain accuracy or speed. A positive response is registered when ρX,Y ≥ ρthresh and a

negative response is registered when ρX,Y ≤ −ρthresh.

4.2.2 Without Stimulus

Without the presence of a stimulus signal, the algorithm lacks a reference signal to compute

motion correlation. When an explicit stimulus is not provided, the algorithm assumes a

simple, periodic synchronous gesture modeled by Equation 4.1 will be performed as an

activation gesture.

The autocorrelation function is used to detect the presence of a synchronous gesture by

calculating the correlation of a signal with itself at various time shifts. Similar to Equation

4.2, the autocorrelation function is normalized so that its output is bounded between -1 and

1.

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(4.3)

The output of the autocorrelation function is sampled at the expected signal period, T .

Under the assumption that synchronous gesture is periodic and its motion is well-modeled

by simple harmonic motion, R(T ), will return a high value for signals of period T when

compared to noise. Thus, R(T ) is thresholded such that an activation event is triggered

when R(T ) ≥ Rthresh.

12



4.3 Lag Adjustment

To account for display latency and human response speed for stimulus-based syncing, lag

adjustment is performed on the reference signal. Lag adjustment involves determining the

time delay between the reference signal and the motion signal and regenerating a better-

aligned signal for correlation. Previous work has shown that time delay analysis using

cross-correlation has been successfully used to measure and correct for these lag factors

[5]. However, the standard formulation, which finds the maximum of the cross-correlation

function, does not account for negative responses where the user intentionally performs

the synchronous gesture out of phase. Furthermore, constraints are introduced to limit the

range of possible time-shifts to plausible values, prevent an increase in the false positive

rate, and reduce computation time.

τdelay = argmax
t,−n≤t≤n

(|(f ? g)(t)|) (4.4)

The time delay is used to generate a adjusted reference signal by adjusting the offset term,

ϕ, in Equation 4.1. The new offset shifts the reference to generate facilitate better align-

ment. ϕ′ = arcsinA−1 − ω(t0 + τdelay).

To further minimize the false positive rate, a separate sliding window is kept of lag

adjustments made to the previous |XW |
2

windows of sensor data. An additional condition

for syncing is added to ensure the lag adjustments are correcting for input lag instead of

external noise, σ2
τ ≤ σ2

max. The size of the lag adjustment window and value of σ2
max =

2000 are made empirically.

4.4 Output Processing

The synchrony detection algorithms described in Section 4.2 is triggered when the corre-

lation output of the motion signal reaches a certain threshold. To prevent false-triggering

caused by unintentional or momentary movements, the correlation output is further pro-
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cessed before being compared to the thresholds.

Exponential Weighted Moving Average (EWMA) is used to smooth the correlation

output to remove short-term fluctuations. EWMA is a type of moving average that applies

exponentially decreasing weights to preceding terms in a time-series. It is widely used in

computer science for measuring metrics such as CPU utilization and network latency.

St =


Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

(4.5)

EWMA is chosen due to its infinite impulse response, simplicity, and low computational

cost relative to signal filters. The decay factor, α = 0.35, is set empirically.
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Figure 4.1: SeeSaw System Overview Diagram
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Figure 4.2: SeeSaw Dominant Axis Visualization
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CHAPTER 5

SMARTWATCH-ONLY EVALUATION

In this section we describe the evaluation of SeeSaw as an interaction for applications

installed and displayed on the smartwatch.

5.1 Smartwatch-Only System

A commodity Sony Smartwatch 3 SWR50 Android smartwatch is used for development

and testing. The smartwatch features a quad-core 1.2 GHz ARM processor, 512 MB of

RAM, and a 9 DoF IMU. Android 6.0.1 and Android Wear 1.5 was installed on the device.

The SeeSaw synchronous gesture detector was implemented as an Android library which

was used to construct Java applications that ran unmodified on the default operating system.

5.2 Evaluation

5.2.1 User Study - Frequency Tuning

The usability of the synchronous interface is largely dependent on the user’s ability to

accurately and consistently sync with the desired targets. Previous work has shown that 1

Hz is the optimal frequency for synchronous gestures performed with the thumb [5]. The

SeeSaw interaction involves a larger motion performed using a different body part. To

determine the optimal frequency for the syncing stimulus, a study is conducted comparing

the effectiveness of three frequencies while performing two distraction tasks.

The study was conducted with 6 participants (5M/1F, ages 19-26) in our institution’s

usability lab. Participants were compensated $10 for the study, which lasted approximately

90 minutes. The frequency tuning study was a within-subjects study with a total of 6 exper-

imental conditions with three frequencies (1 Hz, 1.25 Hz, and 1.67 Hz) and two activities
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(sitting and walking), similar to the study design previously conducted by Reyes et al. [5].

During the sitting condition, participants drive a car in a driving simulator with a Logitech

steering wheel, and during the walking condition, participants are asked to walk along a

fixed path. Experimental conditions are balanced between participants using a 6x6 Latin

square. Participants were asked to dismiss incoming notifications as quickly as possible

while wearing the smartwatch on their dominant hand to increase noise motion and vari-

ation. The smartwatch was set to provide both visual and haptic stimuli to allow users to

react to notifications using their preferred modality. During the study, the trigger threshold

was set to a high value ρthresh = 0.85 to avoid early false-triggering. For each frequency,

the participant was given a prep session consisting of 25 notifications without any distrac-

tion. At the end of the study, participants filled out a NASA TLX assessment for each

of the 3 frequencies. Participants are also asked about the level of driving (less cognitive

load from distraction task) and asked to rate the level of musical experience that they have

(improved rhythmic ability).

Table 5.1: Stimulus Frequency Notification Dismissal

1 Hz 1.25 Hz 1.67 Hz

Overall Dismissed 60% 55% 60%
Overall Time 4.5s 5.5s 4.9s

Drive/Music Dismissed 70% 74% 73%
Drive/Music Time 4.7s 5.2s 5.2s

No D/M Dismissed 12% 14% 26%
No D/M Time 6.0s 5.5s 5.6s

We evaluate each frequency by the user dismissal rate, average dismissal speed, and task

load. There was not a strong relationship between notification dismissal rate (r1 = 60%,

r1.25 = 55%, r1.67 = 66%), and the mean notification dismissal times for the dismissed

notifications was similar (t1 = 4.6s, t1.25 = 5.5s, t1.67 = 4.9s). Among the 4 participants

who had either driving or musical experience, the mean dismissal rates was much higher

(r1exp = 70%, r1.25exp = 74%, r1.67exp = 73%), but the mean dismissal time was similar
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Figure 5.1: Stimulus Frequency NASA TLX

(t1exp = 4.7s, t1.25exp = 5.2s, t1.67exp = 5.2s). The best-performing participant, P2, who

had both driving and musical experience, performed much better than average in terms

of notification dismissal rate (r1P2 = 91%, r1.25P2 = 87%, r1.67P2 = 97%) but not for

dismissal speed (t1P2 = 4.2s, t1.25P2 = 5.7s, t1.67P2 = 4.7s). 2 participants had neither

driving nor musical experience and performed much more poorly in terms of dismissal rate

(r1nexp = 12%, r1.25nexp = 14%, r1.67nexp = 26%) and dismissal speed (t1nexp = 6.0s,

t1.25nexp = 5.5s, t1.67nexp = 5.6s). The worst performing participant, P4, dismissed 0% of

1 Hz notifications, 0% of 1.25 Hz notifications, and 35% of 1.67 Hz notifications at 5.8 s

(r1.67P4 = 35%, t1.67P4 = 5.8s). P4 mentioned that he/she found the task of syncing to the

rhythmic stimulus very difficult, even during the prep sessions.

The results from the NASA TLX assessment are shown in Figure 5.1. The overall

TLX showed that participants generally perceived slower frequencies to be less cognitively
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demanding (M1 = 43, M1.25 = 63, M1.67 = 66). Mainly, participants found that slower

frequencies induced less temporal demand (M1T = 11.6, M1.25T = 12.8, M1.67T = 20.9).

Thus, the 1 Hz frequency is chosen for subsequent studies.

5.2.2 User Study - Gesture Comparison

A within-subjects study was conducted with a total of 4 experimental conditions (balanced

by 4x4 Latin Square) to compare the synchronous gesture with a traditional swipe gesture

in a semi-controlled environment. Similar to the frequency tuning study, participants per-

formed two distraction tasks while dismissing incoming notifications - driving a car with

a Logitech steering wheel in a driving simulator and walking while holding a filled cup of

water. Participants are given a prep session of 25 notifications before each syncing session

for them to become accustomed to a novel gestural input while performing the distraction

task. The system is evaluated by its accuracy and detection speed in notification response

scenarios with 12 participants (7M/5F, ages 20-26) in our institution’s usability lab. The

trigger threshold was set to a high value (ρthresh = 0.85) to enable post-hoc analysis of

lower thresholds and to avoid early false-triggering. All participants were paid $10 to

complete the study, which lasted approximately one hour. Following participation in the

notification response study, participants are asked to complete a NASA TLX assessment

for both the syncing gesture and the swiping gesture.

The results of the notification response evaluation for each activity are shown in Figure

5.2 and 5.3 in contour plots showing the relationship between the precision (true-positive

rate), time, and correlation threshold. The average time for the swiping gesture is shown

as a black dotted line. Noise data is collected from the smartwatch during both activities

when the user was not dismissing a notification.

Most participants found that notification dismissal with both gestures was more difficult

during the sitting condition, due to the driving task. Swiping took 9.2% longer (tsit = 2.81s,

twalk = 2.57s) and it took more time to reach the same accuracy for the syncing gesture.
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Figure 5.2: Sitting Precision vs Threshold vs Sync Time

However, the detector’s false positive rate was much lower for the sitting condition (Figure

5.5), as the user did not perform any periodic motion. Using a threshold of ρsit = 0.57 with

a false positive rate of 22 per hour, notifications can be dismissed in 4 seconds with 85%

accuracy. While users found it easier to dismiss notifications while walking due to the less

cognitively demanding distraction task and the availability of gaze attention, the motion of

walking and swinging arms introduced many more false positives. Using a threshold of

ρwalk = 0.73 with a false positive rate of 37 per hour, notifications can be dismissed in 5.5

seconds with 85% accuracy.

Compared to the swiping gesture, the syncing gesture had a slightly higher overall

score on the NASA TLX assessment (Msw = 44.2, Msy = 50.7). Notably, users found

that swiping was less mentally (MswM = 3.2, MsyM = 8.9) and temporally demanding

(MswT = 6.0, MsyT = 11.1), but was less physically demanding (MswP = 14.3, MsyP =

21



Figure 5.3: Walking Precision vs Threshold vs Sync Time

7.3). Other dimensions were similar for both gestures. For users with more rhythmic

ability (through playing musical instruments) or experience with the synchronous gesture,

we hypothesize that the gesture will require less overall concentration.

5.2.3 Discussion - Smartwatch Only Interaction

We evaluate the SeeSaw interface in a best-case sitting activity with little movement and

a worst-case walking activity with large amounts of periodic movement. Results show

that using different correlation thresholds, the SeeSaw detector can be used for rapid, one-

handed, and gaze-free notification dismissal for both. A simple pose-detector using the

smartwatch orientation can be used to determine the current activity and adjust the correla-

tion threshold value.

While the swipe gesture was faster for both tasks, this can be attributed to most users’
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Figure 5.4: Gesture Comparison NASA TLX

Figure 5.5: False Positive Rate for Correlation
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familiarity with the gesture and touch-screen interfaces. SeeSaw is able to address many

limitations of traditional systems. Sometimes, when holding the cup of water while walk-

ing, participants spilled some of the water from the cup. The amount of water spilled by

each participant was not recorded, but when water was spilled on the touchscreen, partici-

pants noted that the accuracy of the swipe applications suffered dramatically. Participants

who became familiarized with the haptic stimulus were able to dismiss notifications with-

out needing to change focus to the watch screen. Overall, the SeeSaw interaction provides

an effective alternative to traditional swipe interfaces on smartwatches. SeeSaw can be

used to replace or augment touch-interfaces for notification-style applications and micro-

interactions.
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CHAPTER 6

SMARTWATCH & HWD EVALUATION

In this section we describe the evaluation of SeeSaw as an interaction for head-worn dis-

plays (HWD).

6.1 Smartwatch & HWD System

A smartwatch & HWD system is constructed to allow applications on a head-worn com-

puter to receive input from a smartwatch. A Sony Smartwatch 3 SWR50 smartwatch is

used to collect and process sensor data, and a Google Glass is used as a head-worn display

(Figure 6.1). Data and commands are sent wirelessly between the devices using a UDP

connection. A flashing stimulus is displayed on the HWD and the user moves the wrist in

sync to dismiss the notification. Sensor data is collected and processed on the watch using

the autocorrelation algorithm. Once the threshold is reached, the smartwatch sends a signal

to the HWD application.

Figure 6.1: SeeSaw Interface for HWD
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6.2 Evaluation

6.2.1 User Study - Notification Response

A total of 6 expert participants were recruited from the pool of participants in the watch-

only notification response study. The notification response study for HWD interaction

took around 45 minutes and participants were paid $10. The study was conducted with

the sitting/driving condition used in the previous frequency tuning and gesture comparison

studies, and participants were given two sessions of 30 notifications randomly triggered

every 20 seconds. The first session was used for practice and familiarization with the

system while the second was used for evaluation. The trigger threshold was set to ρthresh =

0.8 to avoid early false-triggering.

Table 6.1: Smartwatch & HWD Notification Dismissal

HWD Dismissed HWD Time

P1 93.3 % 2.7s
P2 90.0 % 3.2s
P3 93.3 % 3.5s
P4 100 % 4.7s
P5 100 % 3.2s
P6 93.3 % 4.0s

Overall 95.0 % 3.6s

Table 6.1 shows the notification dismissal rate and mean dismissal time for the study.

All participants achieved over 90% accuracy on notification dismissal, and the overall mean

dismissal time is around 1 second less than the smartwatch-only system. Although the

system was only evaluated for the sitting condition, noise data collected from both activities

from the gesture comparison study was used to calculate the false positive rate for different

thresholds (Figure 6.2).
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Figure 6.2: False Positive Rate for Autocorrelation

6.2.2 Discussion - Smartwatch & HWD Interaction

Overall, the smartwatch & HWD setup is very effective for rapid notification dismissal

and one-handed interaction. The notification response evaluation shows a high dismissal

rate of 95% and mean dismissal speed of 3.57 s. The fastest participant, P1, dismissed

notifications more quickly than the mean swipe dismissal time from the previous study

(tglassP1 = 2.69s, tswipe = 2.81s).

Some participants reported that the addition of a HWD was not helpful for performing

the repetitive wrist-tilting gesture, but that it helped them notice and respond to notifica-

tions faster. Other participants commented that the addition of the HWD display made the

syncing gesture easier, as tilting the wrist did not move the visual stimulus away, out of

view.

Unlike the stimulus correlation algorithm used for the smartwatch-only interaction, the

smartwatch & HWD system uses autocorrelation. While this is less expressive and does

not support binary selection by syncing in-phase and out-of-phase, it is still sufficient for

notification dismissal and has some notable advantages. The correlation algorithm relies on
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little or no latency between the stimulus rendering and sensor processing. Since the stim-

ulus and data are processed on two different devices, the additional network delay could

worsen performance. The no-stimulus autocorrelation algorithm correlates a window of

sensor data with the previous window, stored on the same device. Moreover, the autocor-

relation algorithm was more forgiving in the range of motions it accepted, as it does not

require the users to tilt their wrist in a smooth, sinusoidal motion and allows any periodic

movement - even gross and abrupt jerks, to reach a high threshold.
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CHAPTER 7

CONCLUSION

7.1 Limitations and Future Work

SeeSaw is well-suited as a complementary input method for smartwatches and HWDs.

Depending on the activity and environmental noise, the SeeSaw detector system is able

to achieve different levels of precision and false-positive rate. During the user studies

conducted, the detector was set to trigger at a constant threshold. Additional work can be

done by building a pose-detector or activity recognizer that could dynamically adjust the

triggering threshold. This would be aided by evaluating the detector across a wider range

of noise data from an in-the-wild data set.

Moreover, we intend to explore the use of the autocorrelation algorithm for smartwatch-

only notification dismissal, given the good performance and low false positive rate of the

algorithm for the smartwatch & HWD system. The expressivity of the HWD system can

also be extended using the correlation algorithm.

A primary advantage of the syncing gesture is its ability to be performed subtly with

one-hand. In addition to evaluating the gesture’s effectiveness in different scenarios by ex-

amining the false positive data, we intend to explore the social acceptability of the gestures

in different scenarios using a user perception study or a social acceptability rating scale.

Finally, we intend to further explore the usefulness of SeeSaw as an activation gesture by

pursing its application as a gaze-free interaction. We intend to explore gaze-free interac-

tion by using a user-defined stimulus signal that allows users to simultaneously define the

gesture stimulus on body part and perform the syncing motion on another. We hypothesize

that the resulting gesture interaction will require lower concentration and achieve higher

accuracy.
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7.2 Conclusion

In this paper, we presented SeeSaw, a synchronous input interface for smartwatches that en-

ables rapid, one-handed input for commodity smartwatches without any hardware or soft-

ware modifications. In contrast to many gesture interfaces that detect user intent through

gesture classification, the synchronous gesture interface uses flashing or vibrating stimuli

to allow users to select UI elements or respond to notifications. We evaluated SeeSaw as a

smartwatch-only interaction and found that users were able to dismiss incoming notifica-

tions from 4.5s - 5.5s using the one-handed, gaze-free interaction. During our evaluation of

the smartwatch and HWD system, we found SeeSaw to provide excellent accuracy (95%)

and dismissal speed (3.6s) with a low false positive rate. Finally, we demonstrate the inte-

gration of SeeSaw in a suite of example applications.
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APPENDIX A

DEMONSTRATION APPLICATIONS

We present a suite of demonstration applications to showcase the capabilities of the See-

Saw synchronous gesture interface. In particular, we categorize common smartwatch inter-

actions into three main categories, as described in Section 3.2 and create applications for

each case using the SeeSaw interface. The applications included are inspired by demon-

strations by prior work in motion correlation and synchronous gesture interfaces[1, 5].

Figure A.1: Demo Applications for Binary Input (Left), Multi-Target Input (Center), and
Activation (Right)

A.1 Binary Input

Dismiss Phone Call: This phone call dismissal application simulates an incoming call noti-

fication and allows the user to take the call by opening a calling app on a paired smartphone

or to dismiss the call by sending it to voicemail. A pair of flashing icons allows the user to

use a notification gesture to select an option. Ignoring the notification for a certain amount

of time triggers the default behavior of sending the call to voicemail.

Text Viewer: In addition to allowing users to react to simple notifications, binary se-
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lection is sufficient for displaying and navigating text content and basic media. In this

application, a text viewer application displays a large block of text inside of a scrollable

text element. A pair of flashing targets is displayed vertically on the application scrollbar.

Scrolling up or down is achieved by syncing wrist movement to either of these targets as

a command gesture. Text navigation can also be implemented by mapping the Next Page

and Previous Page commands to each target, for a potentially more intuitive ”page flip”

metaphor.

A.2 Multi-Target Selection

Music Player: A music player application is created with four controls - Play/Pause, Next

Song, Volume Up, and Volume Down. Similar to the the Text Viewer application, command

gestures are used to control the application, but a single pair of flashing elements is only

able accommodate a maximum of two controls. In this case, controls in the music player are

organized into two control groups arranged in a cross - the playback group (Play/Pause and

Next Song) and the volume group (Volume Up and Volume Down). A separate wrist-flick

gesture, which is integrated into the Android operating system, is used to toggle between

these two control groups. The location of the flashing targets are used to indicate the control

group that is currently enabled.

Application Menu: An application menu allows the user to launch an application or

perform an operation from a list of commands. The menu contains four controls (Browser,

Phone, Contacts, and SMS) that are vertically arranged in a list. A cursor blinking at 0.5

Hz is used to indicate the item in the list that is currently selected. To confirm the current

selection, the user performs a synchronous gesture using the blinking cursor as a stimulus.

A separate pair of flashing elements (1 Hz) is displayed vertically on the application sidebar.

Similar to the Text Viewer application, moving the cursor is achieved by syncing to either

of these two targets.
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A.3 Activation Gesture

Voice Assistant Activation: Many smartphones and smartwatches feature voice assistants

that allow users to interact with applications using spoken natural language. A major draw-

back of voice assistants is their need for an ”always listening” feature to detect certain trig-

ger phrases. This privacy concern can be addressed by replacing the voice based activation

mechanism used by most voice assistants with a synchronous gesture interface. Further-

more, an activation mechanism based on a synchronous gesture interface would consume

less energy, as a much lower sampling rate is required. The Voice Assistant Activation

application features a watch face that serves as the default screen for the smartwatch. Per-

forming a synchronous gesture at 1 Hz at the default screen will launch the default voice

assistant application and cause the device to begin listening for speech input.

Application Menu Activation: The Application Menu Activation demo shows that is

possible to construct a fast, one-handed workflow for smartwatches using a synchronous

gesture interface. Similar to the Voice Assistant Activation application, the Application

Menu Activation application features a watch face that is used as the smartwatch’s default

screen. Performing a synchronous gesture at 1 Hz launches the Application Menu which

also uses a synchronous gesture interfaces to launch applications on the smartwatch or a

smartphone.
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