
Designing Irregular Parallel Algorithms With Mutual

Exclusion and Lock-free Protocols

Guojing Cong

IBM T.J. Watson Research Center

Yorktown Heights, NY

David A. Bader�

College of Computing

Georgia Institute of Technology

February 25, 2006

Abstract

Irregular parallel algorithms pose a signi�cant challenge for achieving high perfor-

mance because of the diÆculty predicting memory access patterns or execution paths.

Within an irregular application, �ne-grained synchronization is one technique for man-

aging the coordination of work; but in practice the actual performance for irregular

problems depends on the input, the access pattern to shared data structures, the rel-

ative speed of processors, and the hardware support of synchronization primitives. In

this paper, we focus on lock-free and mutual exclusion protocols for handling �ne-

grained synchronization. Mutual exclusion and lock-free protocols have received a fair

amount of attention in coordinating accesses to shared data structures from concurrent

processes. Mutual exclusion o�ers a simple programming abstraction, while lock-free

data structures provide better fault tolerance and eliminate problems associated with

critical sections such as priority inversion and deadlock. These synchronization proto-

cols, however, are seldom used in parallel algorithm designs, especially for algorithms

under the SPMD paradigm, as their implementations are highly hardware dependent

and their costs are hard to characterize. Using graph-theoretic algorithms for illustra-

tive purposes, we show experimental results on two shared-memory multiprocessors,

the IBM pSeries 570 and the Sun Enterprise 4500, that irregular parallel algorithms

with eÆcient �ne-grained synchronization may yield good performance.

�This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR ACI-00-81404, DEB-99-
10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, DBI-0420513, ITR EF/BIO 03-31654; and DARPA
Contract NBCH30390004.

1

1 Introduction

Irregular problems are challenging to parallelize and to achieve high performance because

typically their memory access patterns or execution paths are not predictable a priori, and

straightforward data decompositions or load balancing techniques, such as those used for

regular problems, often are not eÆcient for these applications. Fine-grained synchronization,

a technique for managing the coordination of work within an irregular application, can be

implemented through lock-free protocols, system mutex locks, and spinlocks. However, �ne-

grained locks and lock-free protocols are seldomly employed in implementations of parallel

algorithms.

System mutex locks, widely used for interprocess synchronization due to their simple

programming abstractions, provide a common interface for synchronization, and the per-

formance depends on the implementation and the application scenario. User-de�ned spin-

locks are customizable; however, the disadvantages are that the user is exposed to low-level

hardware details and portability can be an issue. For large-scale application of locks in a

high-performance computing environment, spinlocks have the advantage of economic mem-

ory usage and simple instruction sequences. Each spinlock can be implemented using one

memory word, while a system mutex lock can take multiple words for its auxiliary data

structures, which exacerbates the problem with accessing memory.

Mutual exclusion locks have an inherent weakness in a (possibly heterogeneous and faulty)

distributed computing environment; that is, the crashing or delay of a process in a critical

section can cause deadlock or serious performance degradation of the system [30, 46]. Lock-

free data structures (sometimes called concurrent objects) were proposed to allow concurrent

accesses of parallel processes (or threads) while avoiding the problems of locks. In theory we

can coordinate any number of processors through lock-free protocols. In practice, however,

lock-free data structures are primarily used for fault-tolerance.

In this paper, we illustrate the performance of �ne-grained locks and lock-free protocols

using irregular applications such as those from graph theory, using large, sparse instances

on shared-memory multiprocessors. Graph abstractions are used in many computationally

challenging science and engineering problems. For instance, the minimum spanning tree

2

(MST) problem �nds a spanning tree of a connected graph G with the minimum sum of

edge weights. MST is one of the most studied combinatorial problems with practical ap-

plications in VLSI layout, wireless communication, and distributed networks [48, 59, 67],

recent problems in biology and medicine such as cancer detection [12, 37, 38, 47], medical

imaging [2], and proteomics [52, 23], and national security and bioterrorism such as de-

tecting the spread of toxins through populations in the case of biological/chemical warfare

[13], and is often a key step in other graph problems [50, 45, 58, 64]. Graph abstractions

are also used in data mining, determining gene function, clustering in semantic webs, and

security applications. For example, studies (e.g. [16, 39]) have shown that certain activities

are often suspicious not because of the characteristics of a single actor, but because of the

interactions among a group of actors. Interactions are modeled through a graph abstraction

where the entities are represented by vertices, and their interactions are the directed edges

in the graph. This graph may contain billions of vertices with degrees ranging from small

constants to thousands. Due to our interest in large graphs, we explore the performance of

graph applications that use a tremendous number (e.g., millions to billions) of �ne-grained

synchronizations.

Most theoretic parallel algorithmic models are either synchronous (e.g., PRAM [36]) or

for network-based systems (e.g., LogP [21] and BSP [61]) with no explicit support for �ne-

grained synchronization. In these models, coarse synchronization is performed through a

variety of mechanisms such as lock-step operation (as in PRAM), algorithm supersteps (as

in BSP) and collective synchronization primitives such as barriers (as in LogP), rather than

�ne-grained coordination of accesses to shared data structures. In practice, the performance

of parallel algorithms that use locks and lock-free protocols are highly dependent on the

parallel computer architecture and the contention among processors to shared regions.

In this paper we investigate the performance of �ne-grained synchronization on irregular

parallel algorithms using shared-memory multiprocessors. These high-performance parallel

systems typically have global access to large, shared memories and avoid the overhead of

explicit message passing. Fast parallel algorithms for irregular problems have been developed

for such systems. For instance, we have designed fast parallel graph algorithms and demon-

strated speedups compared with the best sequential implementation for problems such as ear

3

decomposition [9], tree contraction and expression evaluation [10], spanning tree [6, 8], rooted

spanning tree [20], and minimum spanning forest [7]. Many of these algorithms achieve good

speedups due to algorithmic techniques for eÆcient design and better cache performance. For

some of the instances, for example, arbitrary, sparse graphs, while we may be able to improve

the cache performance to a certain degree, there are no known general techniques for cache

performance optimization because the memory access pattern is largely determined by the

structure of the graph. Our prior studies have excluded certain design choices that involve

�ne-grained synchronizations. This paper investigates these design choices with lock-free

protocols and mutual exclusion. Our main results include novel applications of �ne-grained

synchronization where the performance beats the best previously-known parallel implemen-

tations.

The rest of the paper is organized as follows: Section 2 presents lock-free parallel al-

gorithms with an example of lock-free spanning tree algorithm; Section 3 presents parallel

algorithms with �ne-grained locks; Section 4 compares the performance of algorithms with

�ne-grained synchronizations with prior implementations; and Section 5 gives our conclusions

and future work.

2 Lock-free Parallel Algorithms

Lamport [42] �rst introduced lock-free synchronization to solve the concurrent readers and

writers problem and improve fault-tolerance. Before we present its application to the design

of parallel algorithms, we �rst give a brief review of lock-free protocols and some theoretic

results in Section 2.1. Section 2.2 summarizes prior results on lock-free parallel algorithms.

2.1 Lock-free Shared Data Structures

Early work on lock-free data structures focused on theoretical issues of the synchronization

protocols, for example, the power of various atomic primitives and impossibility results

[4, 14, 22, 24, 25, 28], by considering the simple consensus problem where n processes with

independent inputs communicate through a set of shared variables and eventually agree on

4

a common value. Herlihy [31] uni�ed much of the earlier theoretic results by introducing

the notion of consensus number of an object and de�ning a hierarchy on the concurrent

objects according to their consensus numbers. Consensus number measures the relative

power of an object to reach distributed consensus, and is the maximum number of processes

for which the object can solve the consensus problem. It is impossible to construct lock-

free implementations of many simple and useful data types using any combination of atomic

read, write, test&set, fetch&add, and memory-to-register swap, because these primitives have

consensus numbers either one or two. On the other hand, compare&swap and load-linked,

store-conditional have consensus numbers of in�nity, and hence are universal meaning that

they can be used to solve the consensus problem of any number of processes. Lock-free

algorithms and protocols are proposed for many commonly-used data structures, for example,

linked lists [63], queues [33, 43, 60], set [44], union-�nd sets [3], heaps [11], and binary

search trees [26, 62]; and also for the performance improvement of lock-free protocols [1, 11].

While lock-free data structures and algorithms are highly resilient to failures, unfortunately,

they seem to come at a cost of degraded performance. Herlihy et al. studied practical

issues and architectural support of implementing lock-free data structures [32, 30], and their

experiments with small priority queues show that lock-free implementations do not perform

as well as lock-based implementations. With 16 processors on an Encore Multimax, the

lock-free implementation, for a benchmark that enqueues and dequeues 1M elements, with

exponential back-o� to reduce contention is about 30% slower than the corresponding lock-

based implementation. (Note that throughout this paper, we use M to represent 220.)

LaMarca [41] developed an analytic model based on architectural observations to predict the

performance of lock-free synchronization protocols. His analysis and experimental results

show that the bene�ts of guaranteed progress come at the cost of decreased performance.

Shavit and Touitou [55] studied lock-free data structures through software transactional

memory, and their experimental results also show that on a simulated parallel machine

lock-free implementations are inferior to standard lock-based implementations.

5

2.2 Asynchronous Parallel Computation

Cole and Zajicek [19] �rst introduced lock-free protocols into parallel computing when they

proposed asynchronous PRAM (APRAM) as a more realistic parallel model than PRAM

because APRAM acknowledges the cost of global synchronization. Their goal was to design

APRAM algorithms with fault-resilience that perform better than straightforward simula-

tions of PRAM algorithms on APRAM by inserting barriers. A parallel connected compo-

nents algorithm without global synchronization was presented as an example. It turned out,

however, according to the research of lock-free data structures in distributed computing, that

it is impossible to implement many lock-free data structures on APRAM with only atomic

register read/write [4, 31]. Attiya et al. [5] proved a lower bound of logn time complexity of

any lock-free algorithm on a computational model that is essentially APRAM that achieves

approximate agreement among n processes in contrast to constant time of non-lock-free al-

gorithms. This suggests an
(logn) gap between lock-free and non-lock-free computation

models. Vishkin et al. introduced the \independence of order semantics (IOS)" that provides

lock-free programming on explicit multi-threading (XMT) [65].

2.3 Lock-free Protocols for Resolving Races among Processors

A parallel algorithm often divides into phases and in each phase certain operations are applied

to the input with each processor working on portions of the data structure. For irregular

problems there usually are overlaps among the portions of data structures partitioned onto

di�erent processors. Locks provide a mechanism for ensuring mutually exclusive access to

critical sections by multiple working processors. Fine-grained locking on the data structure

using system mutex locks can bring large memory overhead. What is worse is that many of

the locks are never acquired by more than one processor. Most of the time each processor is

working on distinct elements of the data structure due to the large problem size and relatively

small number of processors. Yet still extra work of locking and unlocking is performed for

each operation applied to the data structure, which may result in a large execution overhead

depending on the implementation of locks.

We consider the following problem. For a given input array A of size n, a certain operation

6

op from a set of operations is to be applied to the elements in A according to the conditions

speci�ed in the condition array C of size m with m � n. C (j) (1 � j � m) speci�es an

element A(i), a condition cond which may be a Boolean expression involving elements of A,

and an operation op; if cond is evaluated as true, operation op is applied to A(i). In case

multiple conditions in C for a certain element A(i) are satis�ed, there is a potential race

condition for all processors as applying the operation involves the evaluation of the condition

(which, in general, is not atomic). Depending on di�erent algorithms, either one operation

or a certain subset of the operations are applied. Here we consider the case when only one

arbitrary operation is applied.

A: 1 2 3 4 5 6

1, op1 2, op1 3, op2 3, op3 4, op2 5, op1 4, op2 6,op3 5, op2

P 1 P 2 3P
C:

Figure 1: Conicts when partitioning work among the processors. Here for simplicity we

assume every condition in C is true and they are not shown.

In Fig. 1, array C is partitioned onto three processors P1, P2, and P3. Processor P1 and

P2 will both work on A(3), and P2 and P3 will both work on A(4). To resolve the conicts

among processors, we can either sort array C, which is expensive, to move the conditions for

A(i) into consecutive locations and guarantee that only one processor works on A(i) or use

�ne-grained synchronization to coordinate multiple processors.

Here we show that lock-free protocols via atomic machine operations are an elegant

solution to the problem. When there is work partition overlap among processors, it suÆces

that the overlap is taken care of by one processor. If other processors can detect that the

overlap portion is already taken care of, they no longer need to apply the operations and can

abort. Atomic operations can be used to implement this \test-and-work" operation. As the

contention among processors is low, we expect the overhead of using atomic operations to be

small. Note that this is very di�erent from the access patterns to the shared data structures

in distributed computing; for example, two producers attempting to put more work into the

shared queues. Both producers must complete their operations, and when there is conict

they will retry until success.

7

To illustrate this point in a concrete manner, we consider the application of lock-free

protocols to the Shiloach-Vishkin parallel spanning tree algorithm [56, 57]. This algorithm is

representative of several connectivity algorithms that adapt the graft-and-shortcut approach,

and is implemented in prior experimental studies (e.g., see [29, 40, 34]). For graph G =

(V;E) with jV j = n and jEj = m, the algorithm achieves complexities of O(logn) time and

O((m+ n) logn) work under the arbitrary CRCW PRAM model.

The algorithm takes an edge list as input and starts with n isolated vertices and m

processors. Each processor Pi (1 � i � m) inspects edge ei = (vi1
; vi2

) and tries to graft

vertex vi1
to vi2

under the constraint that i1 < i2. Grafting creates k � 1 connected

components in the graph, and each of the k components is then shortcut to to a single

supervertex. Grafting and shortcutting are iteratively applied to the reduced graphs G0 =

(V 0; E 0) (where V 0 is the set of supervertices and E 0 is the set of edges among supervertices)

until only one supervertex is left. For a certain vertex v with multiple adjacent edges, there

can be multiple processors attempting to graft v to other smaller-labeled vertices. Yet only

one grafting is allowed, and we label the corresponding edge that causes the grafting as a

spanning tree edge. This is a partition conict problem.

Two-phase election is one method that can be used to resolve the conicts. The strategy

is to run a race among processors, where each processor that attempts to work on a vertex

v writes its processor id into a tag associated with v. After all the processors are done,

each processor checks the tag to see whether it is the winning processor. If so, the processor

continues with its operation, otherwise it aborts. A global barrier synchronization among

processors is used instead of a possibly large number of �ne-grained locks. The disadvantage

is that two runs are involved.

Another more natural solution to the work partition problem is to use lock-free atomic in-

structions. When a processor attempts to graft vertex v, it invokes the atomic compare&swap

operation to check on whether v has been inspected. If not, the atomic nature of the oper-

ation also ensures that other processors will not work on v again. The detailed description

of the algorithm is shown in Alg. 1, and inline assembly functions for compare&swap can be

found in Algs. 2 and 3 in Section 2.4.

8

Data : (1) EdgeList[1 : : : 2m]: edge list representation for graph G = (V;E),

jV j = n, jEj = m; each element of EdgeList has two �eld, v1 and v2 for the

two endpoints of an edge

(2) integer array D[1 : : : n] with D[i] = i

(3) integer array Flag[1 : : : n] with Flag[i] = 0

Result : a sequence of edges that are in the spanning tree

begin

n0 = n

while n0 6= 1 do

for k 1 to n0 in parallel do

i = EdgeList[k]:v1
j = EdgeList[k]:v2
if D[j] < D[i] and D[i] = D[D[i]] and compare&swap(&Flag[D[i]]; 0;PID) =

0 then

label edge EdgeList[k] to be in the spanning tree

D[D[i]] = D[j]

for i 1 to n0 in parallel do

while D[i] 6= D[D[i]] do

D[i] = D[D[i]]

n0 = the number of super-vertices
end

Algorithm 1: Parallel Lock-Free Spanning Tree Algorithm (span-lockfree)

9

2.4 Implementation of Compare&Swap

.inline compare&swap

cas [%o0], %o1, %o2

mov %o2, %o0

.end

Algorithm 2: The compare&swap function implementation on Sun Sparc.

As atomic instructions are generally not directly available to high level programming

languages, we show in Alg. 2 the design of an atomic compare&swap instruction in an inline

C function for Sun Sparc. In the example, [o0] stands for the address held in register o0.

On Sun Sparc, the cas instruction compares the word at memory address [o0] and the word

in register o1. If they are the same, then the word in register o2 and word are swapped;

otherwise no swapping is done but o2 still receives the value stored in [o0].

#pragma mc_func compare&swap { \

"7cc01828" /* cas_loop: lwarx 6,0,3 */ \

"7c043000" /* cmpw 4,6 */ \

"4082000c" /* bc 4,2,cas_exit */ \

"7ca0192d" /* stwcx. 5,0,3 */ \

"4082fff0" /* bc 4,2,cas_loop */ \

"7cc33378" /* cas_exit: or 3,6,6 */ \

}

#pragma reg_killed_by CASW gr0,gr3,gr4,gr5,gr6,cr0

Algorithm 3: The compare&swap function implementation using load-linked, store-

conditional on PowerPC

For the IBM PowerPC architecture, Alg. 3 demonstrates the compare&swap implemented

through load-linked, store-conditional instructions. Inline assembly is not directly supported

with IBM's native C compiler. Instead, the assembly code is �rst translated into machine

code and then linked. In the example, the comments show the corresponding assembly code

for the machine code.

In this example, the pair of instructions lwarx and stwcx. are used to implement a read-

10

modify-write operation to memory. Basically lwarx is a special load, and stwcx. a special

store. If the store from a processor is performed, then no other processor or mechanism has

modi�ed the target memory location between the time the lwarx instruction is executed and

the time the stwcx. instruction completes.

3 Parallel Algorithms with Fine-grained Mutual Ex-

clusion Locks

Mutual exclusion provides an intuitive way for coordinating synchronization in a parallel

program. For example, in the spanning algorithm in Section 2.3, we can also employ mutual

exclusion locks to resolve races among processors. Before a processor grafts a subtree that

is protected by critical sections, it �rst gains access to the data structure by acquiring locks,

which guarantees that a subtree is only grafted once. In Section 3.1 we discuss the design

and implementation of spinlocks for mutual exclusion.

To illustrate the use of mutex locks, in this section we present a new implementation

of the minimum spanning tree (MST) problem based on parallel Bor�uvka's algorithm that

outperforms all previous implementations. We next introduce parallel Bor�uvka's algorithm

and previous experimental results.

3.1 Implementation of Spinlocks

Implementations of spinlocks on Sun Sparc and IBM PowerPC are shown in Algs. 4 and 5,

respectively. Note that cas and load-linked,store-conditional are used. In addition, there

are also memory access synchronizing instructions. For example membar on Sparc and sync

on PowerPC, are employed to guarantee consistency in relaxed memory models which are

related to the implementation of synchronization primitives, but are largely outside the

scope of this paper. We refer interested readers to [66] and [35] for documentation on atomic

operations and memory synchronization operations.

11

.inline spin_lock

1:

mov 0,%o2

cas [%o0],%o2,%o1

tst %o1

be 3f

nop

2:

ld [%o0], %o2

tst %o2

bne 2b

nop

ba,a 1b

3:

membar #LoadLoad | #LoadStore

.end

.inline spin_unlock

membar #StoreStore

membar #LoadStore !RMO only

mov 0, %o1

st %o1,[%o0]

.end

Algorithm 4: The implementation of a spinlock on Sun Sparc.

12

#pragma mc_func spin_lock{ \

"7cc01828" /* TRY: lwarx 6, 0, 3 */ \

"2c060000" /* cmpwi 6,0 */ \

"4082fff8" /* bc 4,2,TRY */ \

"4c00012c" /* isync */ \

"7c80192d" /* stwcx. 4, 0, 3 */ \

"4082ffec" /* bc 4,2, TRY */ \

"4c00012c" /* isync ## instruction sync */ \

}

#pragma reg_killed_by spin_lock gr0, gr3, gr4, gr6

#pragma mc_func spin_unlock{ \

"7c0004ac" /* sync */ \

"38800000" /* addi 4, 0, 0 */ \

"90830000" /* stw 4,0(3) */ \

}

#pragma reg_killed_by spin_unlock gr0,gr3, gr4

Algorithm 5: The implementation of a spinlock on IBM PowerPC.

3.2 Parallel Bor�uvka's Algorithm

Given an undirected connected graph G with n vertices and m edges, the minimum spanning

tree problem �nds a spanning tree with the minimum sum of edge weights. In our previous

work [7], we studied the performance of di�erent variations of parallel Bor�uvka's algorithm.

Bor�uvka's algorithm is comprised of Bor�uvka iterations that are used in several parallel

MST algorithms (e.g., see [53, 54, 18, 17]). A Bor�uvka iteration is characterized by three

steps: �nd-min, connected-components and compact-graph. In �nd-min, for each vertex v

the incident edge with the smallest weight is labeled to be in the MST; connect-components

identi�es connected components of the induced graph with the labeled MST edges; compact-

graph compacts each connected component into a single supervertex, removes self-loops and

multiple edges, and re-labels the vertices for consistency.

Here we summarize each of the Bor�uvka algorithms. The major di�erence among them

is the input data structure and the implementation of compact-graph. The compact-graph

is the most expensive of the three steps. Bor-ALM takes an adjacency list as input and

13

compacts the graph using parallel sample sort plus sequential merge sort; Bor-FAL takes

our exible adjacency list as input and runs parallel sample sort on the vertices to compact

the graph. For most inputs, Bor-FAL is the fastest implementation. In the compact-graph

step, Bor-FAL merges each connected components into a single supervertex that combines

the adjacency list of all the vertices in the component. Bor-FAL does not attempt to remove

self-loops and multiple edges, and avoids runs of extensive sortings. Instead, self-loops and

multiple edges are �ltered out in the �nd-min step. Bor-FAL greatly reduces the number

of shared memory writes at the relatively small cost of an increased number of reads, and

proves to be eÆcient as predicted on current SMPs.

3.3 A New Implementation with Fine-grained Locks

Now we present an implementation with �ne-grained locks that further reduces the number

of memory writes. In fact the input edge list is not modi�ed at all in the new implementation,

and the compact-graph step is completely eliminated. The main idea is that instead of com-

pacting connected components, for each vertex there is now an associated label supervertex

showing to which supervertex it belongs. In each iteration all the vertices are partitioned as

evenly as possible among the processors. For each vertex v of its assigned partition, processor

p �nds the adjacent edge e with the smallest weight. If we compact connected components,

e would belong to the supervertex v0 of v in the new graph. Essentially processor p �nds the

adjacent edge with smallest weight for v0. As we do not compact graphs, the adjacent edges

for v0 are scattered among the adjacent edges of all vertices that share the same supervertex

v0, and di�erent processors may work on these edges simultaneously. Now the problem is that

these processors need to synchronize properly in order to �nd the edge with the minimum

weight. Again this is an example of the irregular work-partition problem. Fig. 2 illustrates

the speci�c problem for the MST case.

On the top in Fig. 2 is an input graph with six vertices. Suppose we have two processors

P1 and P2. Vertices 1, 2, and 3, are partitioned on to processor P1 and vertices 4, 5, and 6

are partitioned on to processor P2. It takes two iterations for Bor�uvka's algorithm to �nd

the MST. In the �rst iteration, the �nd-min step labels h1; 5i, h5; 3i, h2; 6i, and h6; 4i, to be

14

32 41

65

1 2 1

3 4

2

4

3
1’ 2’

1 2 3

2 1 21

5 6

4

Figure 2: Example of the race condition between two processors when Bor�uvka's algorithm

is used to solve the MST problem.

in the MST. connected-components �nds vertices 1, 3, and 5, in one component, and vertices

2, 4, and 6, in another component. The MST edges and components are shown in the middle

of Fig. 2. Vertices connected by dashed lines are in one component, and vertices connected

by solid lines are in the other component. At this time, vertices 1, 3, and 5, belong to

supervertex 10, and vertices 2, 4, and 6, belong to supervertex 20. In the second iteration,

processor P1 again inspects vertices 1, 2, and 3, and processor P2 inspects vertices 4, 5, and 6.

Previous MST edges h1; 5i, h5; 3i, h2; 6i and h6; 4i are found to be edges inside supervertices

and are ignored. On the bottom of Fig. 2 are the two supervertices with two edges between

them. Edges h1; 2i and h3; 4i are found by P1 to be the edges between supervertices 10 and

20, edge h3; 4i is found by P2 to be the edge between the two supervertices. For supervertex

20, P1 tries to label h1; 2i as the MST edge while P2 tries to label h3; 4i. This is a race

condition between the two processors, and locks are used in to ensure correctness. The

formal description of the algorithm is given in Alg. 6. Note that Alg. 6 describes the parallel

MST algorithm with generic locks. The locks in the algorithm can be either replaced by

system mutex locks or spinlocks.

Depending on which types of locks are used, we have two implementations,Bor-spinlock

with spinlocks and Bor-lock with system mutex locks. We compare their performance with

the best previous parallel implementations in Section 4.

15

Data : (1) graph G = (V;E) with adjacency list representation, jV j = n

(2) array D[1 : : : n] with D[i] = i

(3) array Min[1 : : : n] with Min[i] =MAXINT

(4) array Graft[1 : : : n] with Graft[i] = 0

Result : array EMST of size n� 1 with each element being a MST tree edge

begin

while not all D[i] have the same value do

for i 1 to n in parallel do

for each neighbor j of vertex i do

if D[i] 6= D[j] then

lock(D[i])

if Min[D[i]] < w(i; j) then

Min[D[i]] w(i; j)

Graft[D[i]] D[j]

Record/update edge e = hi; ji with the minimum weight
unlock(D[i])

for i 1 to n in parallel do

if Graft[i] 6= 0 then

D[i] Graft[i]

Graft[i] 0

Min[i] MAXINT

Retrieve the edge e that caused the grafting

Append e to the array EMST
for i 1 to n in parallel do

while D[i] 6= D[D[i]] do

D[i] D[D[i]]

end

Algorithm 6: Parallel Bor�uvka Minimum Spanning Tree Algorithm

16

4 Experimental Results

We ran our shared-memory implementations on two platforms, the Sun Enterprise 4500

(E4500) and IBM pSeries 570 (p570). They are both uniform-memory-access shared memory

parallel machines. The Sun Enterprise 4500 system has 14 UltraSPARC II processors and

14 GB of memory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and 4

Mbytes of external (L2) cache. The clock speed of each processor is 400 MHz. The IBM p570

has 16 IBM Power5 processors and 32 GB of memory, with 32 Kbytes L1 data cache, 1.92

Mbytes L2 cache. There is a L3 cache with 36 Mbytes per two processors. The processor

clock speed is 1.9 GHz.

Our graph generators include several employed in previous experimental studies of parallel

graph algorithms for related problems. For instance, mesh topologies are used in the con-

nected component studies of [27, 29, 34, 40], the random graphs are used by [15, 27, 29, 34],

and the geometric graphs are used by [15, 27, 29, 34, 40].

� Meshes: Mesh-based graphs are commonly used in physics-based simulations and com-

puter vision. The vertices of the graph are placed on a 2D or 3D mesh, with each vertex

connected to its neighbors. 2DC is a complete 2D mesh; 2D60 is a 2D mesh with

the probability of 60% for each edge to be present; and 3D40 is a 3D mesh with the

probability of 40% for each edge to be present.

� Random Graph: A random graph of n vertices and m edges is created by randomly

adding m unique edges to the vertex set. Several software packages generate random

graphs this way, including LEDA [49].

� Geometric Graphs: Each vertex has a �xed degree k. Geometric graphs are gener-

ated by randomly placing n vertices in a unit square and connecting each vertex with

its nearest k neighbors. Moret and Shapiro [51] use these in their empirical study of

sequential MST algorithms. AD3 (used by Krishnamurthy et al. in [40]) is a geometric

graph with k = 3.

For MST, uniformly random weights are associated with the edges.

17

Before discussing experimental results for spanning tree and MST algorithms in Sec-

tions 4.2 and 4.3, we show that for large data inputs, algorithms with �ne-grained synchro-

nizations do not incur serious contention among processors.

4.1 Contention Among Processors

With �ne-grained parallelism, contention may occur for access to critical sections or to

memory locations in shared data structures. The amount of contention is dependent on the

problem size, number of processors, memory access patterns, and execution times for regions

of the code. In this section, we investigate contention for our �ne-grained synchronization

methods and quantify the amount of contention in our graph theoretic example codes.

To measure contention, we record the number of times a spinlock spins before it gains

access to the shared data structure. For lock-free protocols it is diÆcult to measure the

actual contention. For example, if compare&swap is used to partition the workload, it is

impossible to tell whether the failure is due to contention from another contending processor

or due to the fact that the location has already been claimed before. However, inspecting how

spinlocks behave can give a good indication of the contention for lock-free implementations

as in both cases processors contend for the same shared data structures.

Figure 3: Contention among processors for span-spinlock and Bor-spinlock. The input

graphs are random graphs with n vertices and 4n edges.

18

Fig. 3 shows the contention among processors for the spanning tree and MST algorithms

with di�erent number of processors and sizes of inputs. The level of contention is represented

by success rate, which is calculated as the total number of locks acquired divided by the total

number of times the locks spin. The larger the success rate, the lower the contention level. We

see that contention level increases for a certain problem size with the number of processors.

This e�ect is more obvious when the input size is small, for example, with hundreds of

vertices. For large problem size, for example, millions of vertices, there is no clear di�erence

in contention for 2 and 16 processors. In our experiments, success rate is above 97% for

input sizes with more than 4096 vertices, and is above 99.98% for 1M vertices, regardless

the number of processors (between 2 and 16).

4.2 Spanning Tree Results

We compare the performance of the lock-free Shiloach-Vishkin spanning tree implementation

with four other implementations that di�er only in how the conicts are resolved. In Table 1

we briey describe the four implementations.

Implementation Description

span-2phase conicts are resolved by two-phase election

span-lock conicts are resolved using system mutex locks

span-lockfree no mutual exclusion, races are prevented by atomic updates

span-spinlock mutual exclusion by spinlocks using atomic operations

span-race no mutual exclusion, no attempt to prevent races

Table 1: Five implementations of Shiloach-Vishkin's parallel spanning tree algorithm.

Among the four implementations, span-race is not a correct implementation and does

not guarantee correct results. It is included as a baseline to show how much overhead is

involved with using lock-free protocols and spinlocks.

In Figs. 4{6 we plot the performance of our spanning tree algorithms using several graph

instances on Sun E4500, and in Figs. 7{9 we plot the corresponding performance using the

IBM p570. Note that we use larger instances on the IBM p570 than on the Sun E4500

because of the IBM's larger main memory. In these performance results, we see that span-

19

2phase, span-lockfree, and span-spinlock scale well with the number of processors, and

the execution time of span-lockfree and span-spinlock is roughly half of that of span-

2phase. It is interesting to note that span-lockfree, span-spinlock and span-race are

almost as fast as each other for various inputs, which suggests similar overhead for spinlocks

and lock-free protocols, and the overhead is negligible on both systems although the imple-

mentation of lock-free protocols and spinlocks use di�erent hardware atomic operations on

the two systems. The performance di�erences in these approaches is primarily due to the

nondeterminism inherent in the algorithm. For example, in Fig. 5, span-race runs slower

than span-lockfree or span-spinlock. This is due to races among processors that actually

incur one more round of iteration for span-race to �nd the spanning tree.

There is some di�erence in the performance of span-lock on the two platforms. The

scaling of span-lock on IBM p570 is better than on Sun E4500. This may be due to

the di�erent implementations of mutex locks on the two systems. The implementation of

system mutex locks usually adopts a hybrid approach, that is, the lock busy waits for a

while before yielding control to the operating system. Depending on the processor speed,

the cost of context switch, and the application scenario, the implementation of system mutex

lock chooses a judicious amount of time to busy wait. On the Sun E4500, the mutex lock

implementation is not particularly friendly for the access pattern to shared objects generated

by our algorithms.

4.3 MST Results

Performance results on Sun E4500 are shown in Figs. 10{12. These empirical results demon-

strate that Bor-FAL is the fastest implementation for sparse random graphs, and Bor-

ALM is the fastest implementation for meshes. From our results we see that with 12

processors Bor-spinlock beats both Bor-FAL and Bor-ALM, and performance of Bor-

spinlock scales well with the number of processors. In Figs. 10{12, performance of Bor-lock

is also plotted. Bor-lock is the same as Bor-spinlock except that system mutex locks are

used. Bor-lock does not scale with the number of processors. The performance of the best

sequential algorithms among the three candidates, Kruskal, Prim, and Bor�uvka, is plotted

20

Figure 4: The performance on Sun E4500 of the spanning tree implementations on an in-

stance of a random graph with 1M vertices and 4M edges. The vertical bars from left

to right are span-lock, span-2phase, span-lockfree, span-spinlock, and span-race,

respectively.

21

Figure 5: The performance on Sun E4500 of the spanning tree implementations on an in-

stance of a regular, complete 2D mesh graph with 1M vertices. The The vertical bars from

left to right are span-lock, span-2phase, span-lockfree, span-spinlock, and span-race,

respectively.

22

Figure 6: The performance on Sun E4500 of the spanning tree implementations on an in-

stance of AC3, a geometric graph where each vertex has �xed degree k = 3, with 1M

vertices. The vertical bars from left to right are span-lock, span-2phase, span-lockfree,

span-spinlock, and span-race, respectively.

23

Figure 7: The performance on IBM p570 of the spanning tree implementations on an instance

of random graph, with 1M vertices and 20M vertices. The vertical bars from left to right are

span-lock, span-2phase, span-lockfree, span-spinlock, and span-race, respectively.

24

Figure 8: The performance on IBM p570 of the spanning tree implementations on an instance

of 2DC, with 4M vertices. The vertical bars from left to right are span-lock, span-2phase,

span-lockfree, span-spinlock, and span-race, respectively.

25

Figure 9: The performance on IBM p570 of the spanning tree implementations on an instance

of AC3, a geometric graph where each vertex has �xed degree k = 3, with 4M vertices.

The vertical bars from left to right are span-lock, span-2phase, span-lockfree, span-

spinlock, and span-race, respectively.

26

as a horizontal line for each input graph. For all the input graphs shown in Figs. 10{

12, Bor-spinlock tends to perform better than the previous best implementations when

more processors are used. Note that a maximum speedup of 9.9 for 2D60 with 1M vertices

is achieved with Bor-spinlock at 12 processors. These performance results demonstrate

the potential advantage of spinlock-based implementations for large and irregular problems.

Aside from good performance, Bor-spinlock is also the simplest approach as it does not

involve sorting required by the other approaches.

Performance results on p575 are shown in Figs. 13{14. Compared with results on Sun

E4500, again Bor-lock scales better on IBM p570, yet there is still a big gap between

Bor-lock and Bor-spinlock due to the economic memory usage of spinlock and its simple

implementation.

5 Conclusions

In this paper we present novel applications of lock-free protocols and �ne-grained mutual

exclusion locks to parallel algorithms and show that these protocols can greatly improve the

performance of parallel algorithms for large, irregular problems. As there is currently no

direct support for invoking atomic instructions from most programming languages, our re-

sults suggest it necessary that there be orchestrated support for high performance algorithms

from the hardware architecture, operating system, and programming languages. Two graph

algorithms are discussed in this paper. In our future work, we will consider applying lock-

free protocols and �ne-grained locks to broader classes of irregular algorithms, for example,

algorithms for combinatorial optimization.

27

Figure 10: Comparison of the performance of Bor-spinlock on the Sun E4500 against the

previous implementations on random graphs with 1M vertices and 4M and 6M edges on the

top and bottom, respectively. The horizontal line in each graph shows the execution time of

the best sequential implementation.

28

Figure 11: Comparison of the performance of Bor-spinlock on the Sun E4500 against the

previous implementations on a random graph with 1M vertices and 10M edges (top) and

on a regular 2D mesh (bottom). The horizontal line in each graph shows the execution time

of the best sequential implementation.

29

Figure 12: Comparison of the performance of Bor-spinlock on the Sun E4500 against the

previous implementations on irregular meshes with 1M vertices: 2D60 (top) and 3D40

(bottom). The horizontal line in each graph shows the execution time of the best sequential

implementation.

30

Figure 13: Comparison of the performance of Bor-spinlock on the IBM p570 against the

previous implementations on irregular meshes with 1M vertices: random (top) and 2DC

(bottom). The horizontal line in each graph shows the execution time of the best sequential

implementation.

31

Figure 14: Comparison of the performance of Bor-spinlock on the IBM p570 against the

previous implementations on irregular meshes with 1M vertices: 2D60 (top) and 3D40

(bottom). The horizontal line in each graph shows the execution time of the best sequential

implementation.

32

References

[1] J. Alemany and E.W. Felton. Performance issues in non-blocking synchronization on

shared-memory multiprocessors. In Proc. 11th ACM Symp, on Principles of Distributed

Computing, pages 125{134, Vancouver, Canada, August 1992.

[2] L. An, Q.S. Xiang, and S. Chavez. A fast implementation of the minimum spanning

tree method for phase unwrapping. IEEE Trans. Med. Imaging, 19(8):805{808, 2000.

[3] R.J. Anderson and H. Woll. Wait-free parallel algorithms for the union-�nd problem.

In Proc. 23rd Ann. ACM Symp. on Theory of Computing (STOC), pages 370{380, New

Orleans, LA, May 1991.

[4] J. Aspnes and M. P. Herlihy. Wait-free data structures in the asynchronous PRAM

model. In Proc. 2nd Ann. Symp. Parallel Algorithms and Architectures (SPAA-90),

pages 340{349, Crete, Greece, July 1990.

[5] H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? Journal of the

ACM, 41(4):725{763, 1994.

[6] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric mul-

tiprocessors (SMPs). In Proc. Int'l Parallel and Distributed Processing Symp. (IPDPS

2004), Santa Fe, NM, April 2004.

[7] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the minimum

spanning forest of sparse graphs. In Proc. Int'l Parallel and Distributed Processing

Symp. (IPDPS 2004), Santa Fe, NM, April 2004.

[8] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric

multiprocessors (SMPs). Journal of Parallel and Distributed Computing, 65(9):994{

1006, 2005.

[9] D.A. Bader, A.K. Illendula, B. M.E. Moret, and N. Weisse-Bernstein. Using PRAM

algorithms on a uniform-memory-access shared-memory architecture. In G.S. Brodal,

D. Frigioni, and A. Marchetti-Spaccamela, editors, Proc. 5th Int'l Workshop on Algo-

rithm Engineering (WAE 2001), volume 2141 of Lecture Notes in Computer Science,

pages 129{144, �Arhus, Denmark, 2001. Springer-Verlag.

[10] D.A. Bader, S. Sreshta, and N. Weisse-Bernstein. Evaluating arithmetic expressions

using tree contraction: A fast and scalable parallel implementation for symmetric mul-

tiprocessors (SMPs). In S. Sahni, V.K. Prasanna, and U. Shukla, editors, Proc. 9th Int'l

Conf. on High Performance Computing (HiPC 2002), volume 2552 of Lecture Notes in

Computer Science, pages 63{75, Bangalore, India, December 2002. Springer-Verlag.

[11] G. Barnes. Wait-free algorithms for heaps. Technical Report TR-94-12-07, University

of Washington, Seattle, WA, 1994.

33

[12] M. Brinkhuis, G.A. Meijer, P.J. van Diest, L.T. Schuurmans, and J.P. Baak. Minimum

spanning tree analysis in advanced ovarian carcinoma. Anal. Quant. Cytol. Histol.,

19(3):194{201, 1997.

[13] C. Chen and S. Morris. Visualizing evolving networks: Minimum spanning trees ver-

sus path�nder networks. In IEEE Symp. on Information Visualization, Seattle, WA,

October 2003. to appear.

[14] B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous hard-

ware. In Proc. 6th ACM Symp. on Principles of Distributed Computing, pages 86{97,

Vancouver, Canada, August 1987.

[15] S. Chung and A. Condon. Parallel implementation of Bor�uvka's minimum spanning

tree algorithm. In Proc. 10th Int'l Parallel Processing Symp. (IPPS'96), pages 302{315,

April 1996.

[16] T. Co�man, S. Greenblatt, and S. Marcus. Graph-based technologies for intelligence

analysis. Communications of the ACM, 47(3):45{47, 2004.

[17] R. Cole, P.N. Klein, and R. E. Tarjan. Finding minimum spanning forests in logarithmic

time and linear work using random sampling. In Proc. 8th Ann. Symp. Parallel Algo-

rithms and Architectures (SPAA-96), pages 243{250, Newport, RI, June 1996. ACM.

[18] R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work parallel algorithm for �nding

minimum spanning trees. In Proc. 6th Ann. Symp. Parallel Algorithms and Architectures

(SPAA-94), pages 11{15, Newport, RI, June 1994. ACM.

[19] R. Cole and O. Zajicek. The APRAM: incorporating asynchrony into the PRAM model.

In Proc. 1st Ann. Symp. Parallel Algorithms and Architectures (SPAA-89), pages 169{

178, Santa Fe, NM, June 1989.

[20] G. Cong and D. A. Bader. The Euler tour technique and parallel rooted spanning tree.

In Proc. Int'l Conf. on Parallel Processing (ICPP), pages 448{457, Montreal, Canada,

August 2004.

[21] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-

ramonian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.

In 4th Symp. Principles and Practice of Parallel Programming, pages 1{12. ACM SIG-

PLAN, May 1993.

[22] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for

distributed consensus. Journal of the ACM, 34(1):77{97, 1987.

[23] J.C. Dore, J. Gilbert, E. Bignon, A. Crastes de Paulet, T. Ojasoo, M. Pons, J.P. Ray-

naud, and J.F. Miquel. Multivariate analysis by the minimum spanning tree method of

the structural determinants of diphenylethylenes and triphenylacrylonitriles implicated

in estrogen receptor binding, protein kinase C activity, and MCF7 cell proliferation. J.

Med. Chem., 35(3):573{583, 1992.

34

[24] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.

Journal of the ACM, 35(2):288{323, 1988.

[25] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2):374{382, 1985.

[26] K. Fraser. Practical lock-freedom. PhD thesis, King's College, University of Cambridge,

United Kingdom, September 2003.

[27] S. Goddard, S. Kumar, and J.F. Prins. Connected components algorithms for mesh-

connected parallel computers. In S. N. Bhatt, editor, Parallel Algorithms: 3rd DIMACS

Implementation Challenge October 17-19, 1994, volume 30 of DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science, pages 43{58. American Mathe-

matical Society, 1997.

[28] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuli�e, L. Rudolph, and M. Snir. The

NYU ultracomputer | designing a MIMD, shared-memory parallel machine. IEEE

Transactions on Computers, C-32(2):175{189, 1984.

[29] J. Greiner. A comparison of data-parallel algorithms for connected components. In

Proc. 6th Ann. Symp. Parallel Algorithms and Architectures (SPAA-94), pages 16{25,

Cape May, NJ, June 1994.

[30] M. Herlihy and J.E.B. Moss. Transactional memory: Architectural support for lock-free

data structures. In Proc. 20th Int'l Symp. on Computer Architecture, pages 289{300,

San Diego, CA, May 1993.

[31] M.P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and

Systems (TOPLAS), 13(1):124{149, 1991.

[32] M.P. Herlihy. A methodology for implementing highly concurrent data objects. ACM

Trans. on Programming Languages and Systems (TOPLAS), 15(5):745{770, 1993.

[33] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In Proc. 14th ACM

SIGACT-SIGPLAN Symp. on Principles of Programming Languages, pages 13{26, Mu-

nich, West Germany, January 1987.

[34] T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for

�nding connected components in graphs. In S. N. Bhatt, editor, Parallel Algorithms: 3rd

DIMACS Implementation Challenge October 17-19, 1994, volume 30 of DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, pages 23{41. American

Mathematical Society, 1997.

[35] IBM. Assembler Language Reference, AIX 4.3 books, 1 edition, 1997.

[36] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company,

New York, 1992.

35

[37] K. Kayser, S.D. Jacinto, G. Bohm, P. Frits, W.P. Kunze, A. Nehrlich, and H.J. Gabius.

Application of computer-assisted morphometry to the analysis of prenatal development

of human lung. Anat. Histol. Embryol., 26(2):135{139, 1997.

[38] K. Kayser, H. Stute, and M. Tacke. Minimum spanning tree, integrated optical density

and lymph node metastasis in bronchial carcinoma. Anal. Cell Pathol., 5(4):225{234,

1993.

[39] V.E. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43{52, 2002.

[40] A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and K. Yelick. Connected compo-

nents on distributed memory machines. In S. N. Bhatt, editor, Parallel Algorithms: 3rd

DIMACS Implementation Challenge October 17-19, 1994, volume 30 of DIMACS Se-

ries in Discrete Mathematics and Theoretical Computer Science, pages 1{21. American

Mathematical Society, 1997.

[41] A. LaMarca. A performance evaluation of lock-free synchronization protocols. In Proc.

13th Ann. ACM Symp. on Principles of Distributed Computing, pages 130{140, Los

Angeles, CA, August 1994.

[42] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806{

811, 1977.

[43] L. Lamport. Specifying concurrent program modules. ACM Trans. on Programming

Languages and Systems (TOPLAS), 5(2):190{222, 1983.

[44] V. Lanin and D. Shasha. Concurrent set manipulation without locking. In Proc. 7th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages

211{220, Austin, TX, March 1988.

[45] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and

st-numbering in graphs. Theoretical Computer Science, 47(3):277{296, 1986.

[46] H. Massalin and C. Pu. Threads and input/output in the synthesis kernel. In Proc.

12th ACM Symp. on Operating Systems Principles (SOSP), pages 191{201, Litch�eld

Park, AZ, December 1989.

[47] M. Matos, B.N. Raby, J.M. Zahm, M. Polette, P. Birembaut, and N. Bonnet. Cell

migration and proliferation are not discriminatory factors in the in vitro sociologic

behavior of bronchial epithelial cell lines. Cell Motility and the Cytoskeleton, 53(1):53{

65, 2002.

[48] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava. Coverage prob-

lems in wireless ad-hoc sensor networks. In Proc. INFOCOM '01, pages 1380{1387,

Anchorage, AK, April 2001. IEEE Press.

[49] K. Mehlhorn and S. N�aher. The LEDA Platform of Combinatorial and Geometric

Computing. Cambridge University Press, 1999.

36

[50] G. L. Miller and V. Ramachandran. EÆcient parallel ear decomposition with applica-

tions. Manuscript, UC Berkeley, MSRI, January 1986.

[51] B.M.E. Moret and H.D. Shapiro. An empirical assessment of algorithms for construct-

ing a minimal spanning tree. In DIMACS Monographs in Discrete Mathematics and

Theoretical Computer Science: Computational Support for Discrete Mathematics 15,

pages 99{117. American Mathematical Society, 1994.

[52] V. Olman, D. Xu, and Y. Xu. Identi�cation of regulatory binding sites using minimum

spanning trees. In Proc. 8th Paci�c Symp. Biocomputing (PSB 2003), pages 327{338,

Hawaii, 2003. World Scienti�c Pub.

[53] S. Pettie and V. Ramachandran. A randomized time-work optimal parallel algorithm

for �nding a minimum spanning forest. SIAM J. Comput., 31(6):1879{1895, 2002.

[54] C.K. Poon and V. Ramachandran. A randomized linear work EREW PRAM algorithm

to �nd a minimum spanning forest. In Proc. 8th Int'l Symp. Algorithms and Computa-

tion (ISAAC'97), volume 1350 of Lecture Notes in Computer Science, pages 212{222.

Springer-Verlag, 1997.

[55] N. Shavit and D. Touitou. Software transactional memory. In Proc. 14th Ann. ACM

Symp. on Principles of Distributed Computing, pages 204{213, Ottowa, Canada, August

1995.

[56] Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. J. Algs.,

3(1):57{67, 1982.

[57] R.E. Tarjan and J. Van Leeuwen. Worst-case analysis of set union algorithms. Journal

of the ACM, 31(2):245{281, 1984.

[58] R.E. Tarjan and U. Vishkin. An eÆcient parallel biconnectivity algorithm. SIAM J.

Computing, 14(4):862{874, 1985.

[59] Y.-C. Tseng, T.T.-Y. Juang, and M.-C. Du. Building a multicasting tree in a high-speed

network. IEEE Concurrency, 6(4):57{67, 1998.

[60] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent FIFO

queue for shared memory multiprocessor systems. In Proc. 13th Ann. Symp. Parallel

Algorithms and Architectures (SPAA-01), pages 134{143, Crete, Greece, September

2001.

[61] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103{111, 1990.

[62] J. Valois. Lock-free data structures. PhD thesis, Rensselaer Polytechnic Institute, Troy,

NY, May 1995.

37

[63] J.D. Valois. Lock-free linked lists using compare-and-swap. In Proc. 14th Ann. ACM

Symp. on Principles of Distributed Computing, pages 214{222, Ottowa, Canada, August

1995.

[64] U. Vishkin. On eÆcient parallel strong orientation. Information Processing Letters,

20(5):235{240, 1985.

[65] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman. Explicit multi-threading (XMT)

bridging models for instruction parallelism. In Proc. 10th Ann. Symp. Parallel Algo-

rithms and Architectures (SPAA-98), pages 140{151, Puerto Vallarta, Mexico, June

1998. ACM.

[66] D.L. Weaver and T. Germond, editors. The SPARC architecture manual, version 9.

Prentice Hall, 1994.

[67] S.Q. Zheng, J.S. Lim, and S.S. Iyengar. Routing using implicit connection graphs. In

9th Int'l Conf. on VLSI Design: VLSI in Mobile Communication, Bangalore, India,

January 1996. IEEE Computer Society Press.

38

