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SUMMARY

A new procedure is developed for synthesis of certain rational,
positive-real functlons as driving-point Impedances in a structure com-
prising a cascade of elementary sections. The procedure utillzes an
elementary cascade section deseribed by a compact open-circuit impedance
matrix having elements that are suitably chosen fourth-degree rational
functions of the complex frequency variable. Under certalin conditions
the cascade sectlon, which i1s not lossless in general, is reallzable
in an unbalanced two-terminal ~pair network containing nelther ldeal
transformers nor mutual inductances, The locations of the zeros of
transmission through the cascade section play an important role in the
synthesis procedure; however, they are related to fhe driving-point im-
pedance to be synthesized and may not be chosen arbitrarily.

Equivalént clrcults for the cascade section are derived to make
evident certaln properties of fthe section,

Although the cascade synthesis procedure is not applicable to all
ratlonal, posltive-real Impedance functlons, 1t includes techniques
vhich, in prineiple, willl determlne whether one step of the procedure
may be effected.

An advantage of the cascade synthesis procedure in cases where it

is appllcable is that only one remainder impedance function is required.



CHAPTER I

INTROCDUCTICN

Brief statement of the problem.--This study concerns a method for synthe-
sls of certaln rational, positive-real functions as driving-point imr
pedances in a structure comprising a cascade of elementary sectlons, with-
out the use of mutual inductive coupling.

The basic approach to this problem is to specify the form of an
elementary cascade section and to determine its parameters so that re-
moval of the cascade sectlon leaves a remainder impedanee function that
is positive~real and simpler than the given driving-point impedance.

Each cascade section realizes one or more pairs of zeros of trans-
mission; however, these transmission zeros are not independent of the
glven impedance function.

Background of the cascade synthesis problam.--The origin of this problem

concerns the propertles of the available synthesis methods for RLC two-
terminal impedances, i.e., driving-point impedances containing resistors,
inductors, and cepacitors. The earliest general method was announced

in 1931 by Brune.l This methed is characterized by a cascade network
structure in which the number of elements required 1s approximately pro-

portional to the degree of the driving-point impedance function., PBrune's

lO. Brune, "Synthesis of a finite two-terminal network whose
driving-point impedance is a prescribed function of frequency,” Journal
of Mathematics and Physies, vol. 10, pp. 191-236; 1931.




method has the disadvantage that it may require the use of unity-coupled
coils,

Eighteen years after Brune's method was published, a driving-point
impedance synthesls procedure involving no transformers or mutual in-
ductances was developed by Bott and Duffin.2 This method is characterized
by a tree-like network structure in which the number of elements required
may lnerease exponentially with the degree of the glven Impedance funetion.

Other methods of synthesis are available; however, they usually
poasess to some extent the undesired features of the Brune or Bott-Duffin
procedures, i.e., either mutual inductences or large numbers of redundant
elements are required, Thus, an important theoretical problem 1s to in-
vestigate means of transformerless synthesis requiring fewer redundant
elements than the Bott-Duffin technique or its recent variants.5 This
problem assumes a greater significance as the degree of the glven driving-
point impedance increases, This prcblem has heen discussed by DarlingtonlL

and has been Ilnvestigated recently by Kim.5 Kim's yesults, which are

2R. Bott and R. J. Duffin, "Impedance synthesis without use of
transformers,” Journal of Applied Physics, vol. 20, p. 816; August, 1949.

5R. M. Foster, "Passive network synthesis,” Proceedings of the
Symposium on Modern Network Synthesis, Polytechnic Institute of Brooklyn,

vol. 5, pp. 3-9; April, 1955.

l'LS., Derlington, "A survey of network realization techniques,”
IRE Transactions on Circuit Theory, vol. CT-2, pp. 201-297; December,
1955,

5Wan Hee Kim, "A new method of driving-point function synthesis,”
Interim Technical Report No. 1, Contract No. DA-11-022-ORD-1983, Engi-
neering Experiment Station, University of Illinois; Urbana, Illinois;
April, 1956.




obtained by topological methods, include non-series-parallel networks with
fewer elements than the corresponding Brune netwerks.

The considerations outlined above indicate the desirability of a
transformerless synthesis procedure in which the number of elements re-
quired is approximately proportional to the degree of the given impedance
funetion. This requirement suggests the use of a cascade type of net-
work structure. A caescade synthesis method employing no ideal trans-
formers or mutual inductances has heen developed by Guillemin.6 How-
ever, Guillemin's method, which is based on a lossless cascade section,
is not directly applicable to minimum funetions. In common with the
procedure to be presented here, Guillemin's method has the limitation
that 1t cannot be applied to sll positive-real impedance funetions.

General spproach,--The basic requirements pertinent to the cascade syn-

thesis problem concern a single cascade section, shown in Fig. 1. Re-
garded as a two-terminal-palr network, the cascade section dencted by =z

in Fig. 1 1s described by its cpen-clrcuit impedance matrix

Z z
z = zll zlE (1)
21 22
in which
B p = Ty (2)

for the bilateral networks considered here, A simple calculation shows

that the eguation

6

E. A. Guillemin, "New methods of driving-point and transfer im-
pedance synthesis,” Proceedings of the Symposium on Modern Network
Synthesis, Polytechnic Institute of Brooklyn, vol. 5, pp. 13l-1L4; April,
1955.




(2) - Zy) (25 + 2;) = zfe (3)

governs the relation between the iwo-terminal impedances Zl and 22 of
Fig. 1. The impedance function Zl(s) may be referred to as the "datum”
impedance function and 22(5) as the "remainder” impedance function,

In order for one step of a cascade synthesis procedure to be ef-
fected, 1t is necessary to select an appropriate open-circuit impedance
matrix z for the cascade sectlon, The approach employed here involves
initially the specification of the matrix z in terms of certain parame-
ters and subsequently the determination of these parameters so that the
remainder impedance function,Zg(s), is positive-real and simpler than
the datum impedance function, zl(s). After an appropriate open-circuit
impedance matrix has been obtained, it remalins to develop a means of
reglizing the cascade section represented by the matrix, This realira-
tion can be effected without the use of mutwal inductive coupling under
certain conditions which are derived in a later sectlon of this report.

Although the synthesls method to be deseribed here does not inelude
a complete specificetion of the defining characteristics of the function
class or the network class for which the cascade synthesis procedure is
applicable, it is possible at a glven stage in the development to de-

termine whether a single cascade section can be removed.
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Figure 1. Cascade Section and Remainder Impedance.
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CHAPTER TT
PRELTMINARY CONSIDERATIONS

Reduction of positive-real functions to minimum functions.--The datum

impedance functions to he considered in succeeding chapters will general-
ly be assumed to be minimum functions of the complex freguency variable
g, 1l.e,, rational, positive-real funetions that are minimm-reactive,

7

minimum-susceptive, and minimum-real.’ For convenlence, the complex
frequency varieble will usually be normalized so that a zero of the real
part of the datum lmpedance funection falls at s = J1, Thus, 1f the datum
impedance function is denoted by zl(s), the value of Zl(Jl) will be
imaginary and non-zero.

The process of reduclng a given rational, positive-real impedance
function to a minimum function 1s well-known in network synthesis theory
and will not he discussed in detail here. However, it will be useful to
conslder two ways to effect the reduction to minimum-reality of a rational,
positive-real funetion which 1s already minimum-reactive and minimum-
susceptive.

One methed for reduction to minimum~reality involves the transfor-
mation of the given impedance function Z(s) into another function Zl(t)

by means of a billinear transformation of the complex frequency variable

8 into another varilable t. The bilinear transformation relating t and s

TD. F. Tuttle, Jr., "Network Synthesis,” John Wiley and Sons, Inc.,
New York, N.Y., pp. 368-381; 1958.



may be written as

as + b (LI-)

t = es + d '

where &, b, ¢, and d are real, non-negative constants. An appropriate
(not necessarily unique) choice of the constants a, b, ¢, and & produces
a function Zl(t) thet is minimum-real. Subsequent realization of ;l(t)
by & method employing no mutual inductance implies realimation of Z(s)

if each Inductor and capacitor in the network for Zl(t) is replaced by
the proper RL or RC network. This method, which is not new, 1s discussed
by NiJenhuisB and Westcott.9 It may be employed 1n conjunction with the
synthesis technique to be described here in order to avold the use of
many lossless elements in the cascade sectlons.

A second method for reductlon Lo minimum-reslity involves a bllinesr
transformation of the impedance plane, rather than the frequency plane.
Mathematically this procedure strongly resembles the first method; how-
ever the interpretation of the transformetion in terms of an electric
network is different. In this method the given impedance funmction Z(s)
is reduced to minimum-reality by the removal of a cascade sectlon con-
taining only resistors. Thus, the reduction may be represented as in
Fig. 2, where the open-cireuit impedance matrix »r, describing the cascade

section as a two-terminal-pair network, has real, positive elements, rij’

8
W. Nijenhuis, "Impedance synthesis distributing available loss in
the reactance elements,” Phillips Research Reports, vol. 5, pp. 288-302;

14950.

9J. H. Westcott, "Driving-point impedance synthesis using maximally
lossy elements,” Proceedings of the Symposium on Modern Network Synthesis,
Polytechnic Institute of Brooklyn, vol.5, pp. 63-18; April, 1955.




and a non-negative determinant, d{r). The relation between the impedance

functions Z(s) and Zl(s) implied by Fig. 2 may be expressed as

e (5)
Some pertinent properties of thils well-known transformation are shown
In Fig. 3, The image of the imaginary axis of the Zl-plane is & circle

B in the Z-plane, lying in the right half-plane (but possibly tangent to
the imaginary axis). Let K be the locus of Z{(s) for imaginery vsiues of
s, and let Ki be the Z -plane image of this locus. Then Zl(s) is clearly
minimum-real 1f K lies tangent to, but not outside of, E, For a given
impedance function Z(s) and the corresponding locus K, any circle centered
on the positive real axis which encloses and is tangent to K, but lies
within the right half-plane, defines two of the three constants reqguired
to determine the open~circuit impedance matrix r, In its simplest form
this method consists of the conventional subtraction of an appropriate
real , positive constant from Z(s) or 1ts reciprocal. The somewhat more
general form of this method is discussed here because of a later aspplica-
tion.

A modification of the Brune procegs.--The synthesgls as a driving-point

impedance of a minimum funetion, say Zl(s), was first effected by Brune,l
using & cascade network structure like that shown in Figs. 4 and 5.10 The

Brune network represented in these figures is realizable in the form of

c
. Element values in all figures are given in terms of ohms, henrys,
gand farads, except that admittances are denoted by the letter Y.
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Fig. 5 (with the use of unity-coupled coils) if the real constants L and
(0 = 1) have the same sign. It realizes Zl(s) 1f the parameters L and o
are properly chosen. The cholee of the parameters L and o depends only
upon the value of Zl(s) and its first derivative at the frequencies of
the transmission zercs of the Brune network. These transmisslon zeros
must be chosen to coinelde with a palr of lmaginary-axis zeros of the
real part of Zl(s). It is assumed in Figs. 4 and 5 and in the develop-

ment to follow that the transmission zeros fall at s = + Jl. Let

Jx (6)

z,(31) = Jx;

and

[}

Z(31) = ¢! (1)

where X 1s non-zero.ll Then it may be shown,12 that ri is a real, posi-

tilve constant subject to the inequallty

rl > |xl| R (8)

and that the paremeters L and a should be determined by the eguations

L. = xl (9)

and
t
rl + xl

S

o = (10)

if ZE(S) is to be a positive-real funetion of lower degree than Zl(s).

llPrimes are used to denote differentiation.

12
Tuttle, op. eit., pp. SL3-53k.
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Consideration of Fig. 5 shows that the parameter a, when regarded as
a property of Zi(s) determined by (10),13 fixes the turns ratio of the
transformer in the Brune network. Thus this constant, which is positive
by virtue of (%3),:"}“L plays an important role in the Brune synthesis pro-
cedure, The value of o is greater than unity if L 1s pesitive and less

than unity 1f L is negative, since (8) implies that

rt -
L nh™x"
@ -1 2 (11)
is positive.
Suppose that
x, =L <0, (12)

1

g0 that & series inductor can be removed from Zl(s) Lo leave a positive-

real remainder function Za(S)’ where
z,(s) = Z(s) - Ls (13)
and

2 (+ ) =0, (14)

After removal of the serles lnductor, the positive-real remainder ad-

mittance l/Za(s) has & pole peir at s = + J1 with & residue of

13N’umbers enclosed 1n parentheses refeer to designated methematicsl

expressions. When prefixed by A, the numbers refer to expressions in the
appendix.

lhThe trivial case where r{ = | xl[ is easily disposed of, See
Tuttle, Op. Cit., Pc 5180
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= 2 (1) STy - x 2L

K
. 1 1

at each pole. Thus, a positive-real admittance of the form

y = o (16)
5 +1

mey be removed from l/Za(s) to leave a positive-real remainder admittance

if and only if

o -1
0 < 2K < 2K =T . (17)

Let the constant B be defined by the eguaticn

K = -1 | (18)

Then (17) will be satisfied if and only if
L>B>a . (19)

The remainder impedance after removal of the admittance given by (16) is

Zb(s) ST 1 ZKs ! (20)

a 52 + 1

This impedance function has a simple pole at infinity; its regidue in that

pole is made evident by the equation

o 2 (8)
Lim b _ L
5= 00 5 - (21)
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The remainder impedance after removal of the pole at infinity from Zb(s) is
7 (s) =2.(s) +Zs . (22)
o] Zb B

This impedance function 1s a positive-real function of s having the same
degree as Zl(s) unless B is chosen equal to .

If

x, =L>0, {23)

essentlally the same result can be proved by using the dual form of the

15

Erune network. In this case, Zc(s) is positive-real and has the same

degree as Zl(s) 1f and only if
1<p<a. (24)

If B is chosen equal to a, Zc(s) 1s positive-real and of degree lower than
Zl(s).
The relation between Zl(s) and Zc(s) is 1llustrated by Figs. 4 and

5 if Z., and a in these figures are replaced by Zc and 8, respectively.

2
To state the result of this section concisely, let the constant a de-

termined from (10) be called the "Brune charscteristic™ of the datum im-

pedance st the frequency of its reasi-part zero., TFurther, let g, the

turpns ratio of a Brune section satisfying (9), be called the “character-

istic"” of the Brune section. Then, 1f « is the Brune characteristic of

Zl(s), a Brune section having any characteristic, B, lying in the interval

lSThe desired result may also be proved without reference to the
sign of L by manipulation of the Brune network itself or by consideration
of the relation between the even parts of Zl(s) and Zc(s).



1k

between 1 and o (open a2t o and closed at 1) may be removed from Zl(s) to
leave B remainder impedance that 1s positive-real and of the same degree
as Zl(s). Since (a - 1) and (B - 1) have the same sign for values of 8
in the interval stated, the Brune sectlion is 1tself reallzable also, The
remainder lmpedance function Zc(s) 15 a mlnimum function satisfylng the

equation

L
z,(41) = 5 (25)

If B is chosen equal to unity, the Brune section degenerstes to a direct
connection and the remainder impedance becomes identical with Zl(s). If
B 18 chosen equsl to a, the resulting cascade sectlon and remalnder im-

pedance become those obtalned with the normsl Brune procedure.
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CHAPTER IIT

SELECTION OF THE CASCADE SECTION

Algebralc requirements.--Consider again the network structure Indicated

by Fig. 1 and methematically characterized by (1). The egquation

-4
2, Il - 4(2)
b=ty % Tz, -Z (26)
n -4 1174

where d(z) is the determinant of the matrix z, 1s easily derived from
(1). Let zlz(s) be & transfer impedsnce function having zeros at

s = + JL and at two additional points in the complex frequency plane
(s-plane). Either these additional points will be conjugate complex
points or they will both be real., Suppose alsc that each element of the
second-order square matrix z 1s a fourth-degree impedance function, i.e.,
each ziJ(s) has (the same) four poles in the s-plane. Poles of ZQ(S) are
generated by the poles of ;lE (or 222) and the zeros of le - Zi’ unless
cancellations ocecur in (26). Thus, if Zl(s) has degree n, Ze(s) has de-
gree n + 8, However, if d(z) has only simple poles at the poles of 2y 5

%, will not contain the poles of z (berring some special circumstances).

12 |
In this case the matrix z 1s sald to be compact.l6 Only compact z-matrices

will be admitted henceforth; thus, the degree of 22 will be n + &4,

lsThis terminology was introduced by Dasher in reference to RC two-
terminal -pair networks, See B, J. Dasher, "Synthesis of RC trangfer
funetions as unblanced two terminel-pair networks," Technical Report No.
215, Research Laboratory of Electronics, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts; November, 1951.
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Poles of Z2 produced by zeros of Zyy - Zl may also be reduced in

number if the equation

2, % % (27)

1e satisfied at some or all of the zeros of z .. If {27) is satisfied
at a palr of zeros of 212’ the degree of Z2 is reduced by two. An ad-

ditional reduction by two 1s obtalned when

t - ¥
= Zl (28)
at the same pair of zeros of zl2’ If the pair of zeros is a conlugate
complex pair, satisfaction of (27) or {28) at one member of the pair
implies 1ts satisfactlon at the otker member, since Zi, Z., and Zij
are all real for real values of s. Thus, by employing a cascade

section having e compact z-matrix, and by requiring that
2, (31) = Z, (§1) (29)

and

Zil(Jl) =21 (J1) (30)

a remainder impedance, Z., of degree n is obtained. A remalinder impedance

2
of degree n - 2 is obtained if (27) is satisfied at the additional zeros

In thls event the additional zeros of z may be referred to as

Zrp* 12

"surplus™ transmission zeros, since the loaded transfer impedance,

of

212
+ 7 ? (51-)

is not zero at the additional zeros of Zl2'
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Mathematical description of the cascade section.--In keeping with the com-

pactness requirement discussed above, and in order to provide transmission
zeros at 8 = + jl, let the elements of the open-circuit impedance matrix

deseribing the cascade section be

1
2, T+ e (zT + czR) s (32)
2, == (2 -2) =2 (33)
12 1+c T R 21
and
z
1 R
Zop =T 45 (Ep tTS) (34)
where
__L b2T52+(b—l)2s+bT
Zp % - 1 E (35)
8 + bTs + b
and
- L aERse+(a-l)25+aR (36)
‘T a-1 2 :

8 + aRs + a

The real constant ¢ is assumed to satisfy the inequality

c >0, (37)

and a, b, L, T, and R are real non-negative constants subject to the in-

egqualities

20 (38)



and

e

o
]
=
v
o

The impedance functions zT(s) and zR(

second-degree functions such that

z2n(31) = 2p(J1) = JL ,
1 _r¢b +1
ZT(Jl) = L(b — l) ’
and
21(J1) = L&) .

It is evident that (33) and (40) imply that

Zl2('Jl) =0,

The transfer ilmpedance function zle(s) may be expressed in factored

form as
z, (8) = abL, (%) (9232‘“913*90)
12 (1+c)(a-1) (b-1) (52+st+b)(32+aRs+a)
where
8,="bT - aR + =R - 2 T,

o= [EFhesh m ]

18

(39)

8) are positive-resl, minimum-real,

(40)

(k1)

(42)

(43)

(45)

(45)

(46)
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and
6, =al - bR +R - T. (47)
It 1s interesting to note that 61 vanishes 1f
a=b (48)
or if
Rr = (29 (49)

In either of these cases the surplus ftransmission zeros, defined by the

zeros of

2
o(s) = 8,87 + 68 + 6 5 (50)

fall on the imaginary axis of the complex frequency plane. If (48) is
satisfied, then 92 and 90 are equal and the surplus zeros of transmission
occur at s = + Jl. The asymptotle case in which R aspproaches zero and

‘T approaches infinity, but in such a way that the product RT remalns
finite, 1s also interesting, since these conditions correspond to a loss-
less cascade section. Of course the transmission zeros must be on the
imaginary axis of the s-plane in this case, since each ziJ(s) is of
fourth degree, and one pair of zeros of ;lg(s) is already constrained to

fall at 5 = + Jil. The transfer impedance function that results from the

limiting process is

(52 + 1)(s° + a/b)

) Lb
o 21203) = TG o(s2 + 2) - ()
T—

RT = positive constant



In the general case, whether the cascade section is lossy or loss-
less, (1) implies that the surplus transmission zeros must not lie in the

+ Z

right-half s-plane. Otherwise 2z s which must be positive-real if

22 2
ZE(S) is to be positive-real, would have at least one zero in the right-
helf s-plane, This situation is impossible; therefore, a necessary con-
dition for a positive-real remainder impedance function is that &{s) have
no right-half plane roots (unless (27) and (28) should both be satisfied

0, »

&t the surplus iransmission zeros). This requirement means that 92, ]

and 80 must have the same sign,
Since the two special cases where R = O and 1/T = 0 will be ex-
rloited later in order to simplify the realization of the cascade section,

it is appropriate to determine the locations of the surplus transmission

zeros 1n these cases, IT
R=0, (52)

the roots of 8(s) are determined by

2 . a (b - 1)(b - a) a _
8 +bl: Tab sty =0 (53)
The conditicn barring right-half plane surplus zeros is thus
(6 - 1)(b-a) >0 . (54)

Because (38) and (39) require that (a - 1) and (b - 1) have the same

sign, 1t 1s ¢lear that

b >a (55)



or

b<a (56)

is required, accordingly as L 1s posltive or negative, respectively. Siml-

larly, for
%=0, (57)
the surplus zeros are defined by
52+E[a-b:| RS+E=0, {58)
b a -1 b

and the condition barring right-half plane zeros is

ea-b>g, (59)

Thus the necessary requirement is

a>b (60)
or

a<hb, (61)

accordingly as L is positive or negatiﬁe, reapectively.

Determination of constants.--In order to determine the appropriate values

of the constants which enter as parameters in the mathematical description
of the cascade section, it is necessary to return to (29) and (30), re-

lating =z and Zl' Previous equations concerning z ) and the no-

11 1.(e
tations introduced in Chapter II allow (29) and (30) to be written as
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x, =L (62)
and
y _ L B +1 g +'1
r-l+cl:(b-l)+c(a-l):| ’ (65_)

Implicit in these eguations is the requirement that the datum impedance
function Zl(s) be & minimum function with real-part zeros at = = + JL.

In view of the discussion in Chapter II, this requirement is not re-

strictive., From (10) of Chapter II it may be deduced that

r!
Ei=a+l . (611-)
1

This equation and (62) may be employed to reduce (63) to the form

(1 +e)(E1E) = (259 + (32D (65)
or to
c= EFEDEED . (66)

Equations {62) and (66) may be considered as solutions for the constants
L and e 1f suitable values for the parameters a and b can be found.

The constant ¢ fixes the impedance level disparity between right
and left sides of the quasi-symmetric network which will be used to rea-
lize the z-matrix of the cascade section. It will be seen later that a
non-negative value of ¢ is necessary in order for the reallzation process

to succeed., Therefore, it is important to cobserve that ¢ is non-negative
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if a and b lie on opposite sides of a on the real 1line. BStated another
way, since (a - 1) and (b - 1) have the seme sign, ¢ will be non-nega-

tive if
a<a<hb (67)

or 1if

a>a>b. (68)

If neither (67) nor (68) is satisfled, a negative value of ¢ results
from (66). The inequalities of (67) and (68) will also prove pertinent
to the problem of realizing the cascade section in an unbalanced network
without mutual inductance and to the requirement that the remainder im-

pedance function be positive-real,
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CHAPTER 1V

UNBALANCED FORM OF THE CASCADE SECTION

Procedure for realizing the cascade section.--The cascade network repre-

sented by the matrix z, with elements given by {32)-(34), can be realized
in an unbalanced form by the following procedure 1if each step of the
17

procedure succeeds:

A symmetric two-terminal-pair network is constructed having

“och ~ ZT (69)
and

Zseh = %R’ (70)
where Zoch and Zioh represent, respectlvely, the open-circult and short-

¢ircuit impedances of half of the bisected symmetric network. This con-
struction may be accomplished by realizing first a symmetric lattice net-

work with horizontal arms equal in impedance toc z and diagonal arms

sch

equal in impedance to Zo The lattice network 1s then unbelanced in a

ch’
step-by-step wmanner. The resulting symmetric two-terminal-pair network
is bisected, the right half 1s multiplied in impedance level by the

constant 1/c, and the network is re-connected at the bisection plane.

lTThe procedure outlined here was given by Dasher, in connection
with RC transfer function synthesis. It is treated in greater detall by
Guillemin. See Dasher, op. cit., pp. 11-23% and E, A. Guillemin, "Synthe-
sis of Passive Networks," John Wiley and Sons, Inc., New York, N.Y.,
pp. 207-210; 1957.
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Network configuration.--The symmetric lattice network employed as an in-

termediste stage in the unbalancing process is shown in Fig. 6. In the
case where L 1s positive, Zq &Y be represented by the Bott-Duffin net-
vork of Fig. 7. The Bott-Duffin network for 2p MAY be obtained from

Fig. 7 by substituting a for b and R for T.18 The parameters Lb and Cb

are given by

LboTe

L, = (71)
b (b - 1) [b2T2 + {b - 1)2]

end

b -1

= . T2
LA 4 (b - 1)7) (72)

C

The lattice network of ¥Fig. 6 may be represented as the parallel
combination of the two component lattice networks of Figs. 8 and 9. The
parameters La and Ca in these figures are defined analogously to Lb and
C,; expressions for them may be obtained from (71) end (72) by substi-
tuting a for b and R for T.l9 Component lattice network I has an un-

balanced representation 1f

L, > L, (73)
and
TL RL
b -1 2 a-1 -* (74)
18
The Bott-Duffin network for Zr 1s also shown in Fig. 32 in the
appendix,

lgEXpressions for L, and C, are also given by (A6) and (A7) in the
appendix.
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Figure 7. Botfi-Duffin Network for ZT’ L>0.



Pigure 8. Component Lattice Network I, L > 0.
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Component lattice network II has an unbalanced representation if

b2T2L > a2R2L

: (75)
(b-1% 7 (a-2)°%
2
o > jzlle ) (76)
and
c >C . Yup

If the unbalanced forms of the two component lattice networks are bi-
sected and the Impedance level of the right helf of each is multiplied
by 1/¢, the two component networks of Figs. 10 and 11 result. The two-
terminal -pair network formed by the parallel combination of the compo-
nent-networks of Plgs. 10 and 11 is the desired unbalanced form of the
cascade section deseribed by the matrix z. The configuration of this
network 1s shown in Fig. 12. O0Of course alternate forms of the final
network may be obtalned through the use of Tee-Pi transformations and
two-terminal network equivalences.

The final network described above requires a total of 23 elements,
of which 6 are resistors, The number of elements required is reduced

te 11 reactors and 2 resistors if elther of the restrictions

R =0 (78)

or

1/7 =0 (79)
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Filgure 10. Component Network I, L > O.
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is enforced.20 Primary attention will be given here and in succeeding
chapters to the two cases where R and T are chosen to satisfy (78) or
(79). However certain mathematical relations concerning the unbalanced
form of the general cascade section are dlscussed in the Appendix,

It may be shownEl that satisfaction of elther of the inegualities

4 L
a-1) (-3 o p,_1)2. (a.1)%50 (80)
202 22 - ( ) (a =
or
v°1% - 6% > (a - 1)% - (b-1)2%>0 (81)

is o sufficient condition for transformerless rezlization of the cascade
section when L is positive.22 Inequality (80) implies (73)-(77), as

well as

b >a (82)
and

T >R, (83)
Similarly, (81) implies (73)-(77), a5 well as

a>b . i (84)

2OEquation (78) should more properly be considered as a short no-
tation for a limiting proecess, i.e., the limits of the various eclement
values of the cascade section are to be taken as T approaches infinity,

2:I‘See appendix.

221t.is assumed that a > 1 and b > 1,
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The choice R = 0 leads to the cascade section shown in Fig. 13.

In this case it is evident from (80) that (82) is a sufficilent condition
for realization of the cascade section in the form shown by Fig. 13.

Similarly, the choice 1/T = 0O, i.e., T approaches infinlty, leads
to the cascade section shown in Fig. 14, In this case (81) reduces to
(83), which 1s thus a sufficient condition for realization in the form
shown by Fig. 14.

The development of a network representation of the matrix z fol-
lows an analogous pattern when L is negative. Again the general net-
work contains 23 elements, and speclalization to the two cases R =0
and 1/T = O reduces the number of elements required to 13. If R =0,
(84) becomes a sufficient condition for realization of the cascade
section shown in Fig. 15. If 1/T =0, (82) is a sufficient condition
for reeslization in the form shown by Fig. 16. Further details concern-
ing realization of the cascade sectlon when L is negative are contained
in the Appendix,.

A lossless cascade zection results from the limiting process in
which R approaches zero and RT remains finite and non-zero, In this
case the cascade section assumes the form shown in Fig. 17 or Fig. 18
as L is positive or negative, respectively., The lossless cascade section
has certaln specisl properties, some of which are discussed in Chapter

VII.
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CHAPTER V

REMOVAL, OF THE CASCADE SECTION

A pseudo-Brune develcpment of the cascade section.--In Chapter IV an un-

balanced two-terminal-pair network realizing the open-circuit impedance
matrix of the cascade section was developed. In order to control the
characteristics of the remainder impedance in a step-by-step manner, it
is expedient to develop another network representation of the cascade
section. This representation, which resembles a cascade of two Brune
sections, may be referred to as a "pseudo-Brune development” of the
cascade section,

The procedure for obtaining the pseudo-Brune development of the
cascade section follows the general pattern outlined in Chapter IV, ex-
cept that z_ and ZR are represented by their Brune networks. The Brune

T

network for Zn is shown by Fig. 3 in the appendix; the Brune network

for 2 TOEY be obtained from Fig. 30 by substituting b for a and T for R.

The symmetric lattice network of Fig. 6, containing ZT and ZR as

diagonal -arm and horizontel-arm impedahces, 1is egulvalent as a two-
terminal -pair network to the network shown in Fig. 19. This network is

obtained by removal of common series and shunt impedances from ZT and

Z The two-terminal impedance ZO is given by

RI

(B2(EDrs® + (£ - 1% + ZED)R

_ L b a1
Zo(s) ~ a~b 2 . 2 - b)Rs ;8 - (85)
b'a - 1 b



L - L/p - L/b L

Figure 19. Reduction of the Symmetric Lattice Network.
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The symmetric lattice internsl to the circuit of Fig. 19 may be represent-
ed as a two-terminal -pair network by a Tee network. With the use of this
representation, the complete network may be bisected. If the right half
of the network i1s then multiplied in impedance level by the factor 1/c
and the network is re-connected at the bisection plane, the cascade
secticn shown in Pig. 20 results, This representation is called the
pseudo-Brune development of the cascade section sinece it contailns two
Brune sections in cascade, separated by a Tee network., The left and
right Brune sectlons have characteristies b and 1/b, respectively.

A procedure dual to that outlined above permits an alternate pseudo-
Brune development of the cascade sectlon in which the Brune sections have
characteristics a and 1/a. In this procedure it is convenient to employ
the dusl forms of the Brume networks for 2 and Zpe Thus Zp is repre-
sented as in Fig. 31 in the Appendix, and the representation for Z is
obtained from the network for e by substituting b for a and T for R.

The alternate pseudo-Brune development of the cascade section is shown

in Fig. 21, where YO is an admittance given by the equation

ay2(b-a)(b-1) 2 ,a 972, 8 (b-a)(b-1)
¥ (s) = B (G Ty e (g L) e+ Py
o L{b-a) s2 . (%) [b-;;%b-I) o4 B

b

. (86)

Location of surplus transmisSion zeres.--It may be seen from Figs. 20 and

21 that the pseudo-Brune development makes evident the transmission zeros
of the cascade section. In fact, the surplus transmission zeros are

¢learly the roots of
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7(s) = g (87)
or
Y (s) = 222 (88)

The two cases corresponding to the restrictions R = 0 and 1/T = 0
are of interest here since the number of elements required in the trans-
formerless realization is reduced by these restrietions. Moreover, as
will be seen below, these cases allow some simplificaticn in determining
whether remcval of the cascade section from the datum lmpedance leaves a
positlve-real remainder Impedance function, Thus, except for the dis-
cussion of certain special cases in Chapter VI, one of the restrictions
R =0 or 1/T = 0 will always be imposed in this and succeeding chapters.
The restriction 1/T = O causes the Tee network between the Brune sections
of Fig. 20 to reduce to a single series impedance of (1 + l/c)ZO(s), as
shown by Fig, 22. BSimllarly, for R = C the PLi network between the Brune
sections of Fig. 21 reduces to a single shunt admittance of {1 + c)YO(s),
as shown by Fig. 23. In Figs. 22 and 23 the networks denoted by B(a)
and B(b) represent Brune sections with characteristics a and b, respec-
tively, while %B(a) and %B(b) repregsent the geometrical images of B{a)
and B(b) multiplied in impedance level by l/e.

It is indicated by Figs. 22 and 23 that the cascade section may be
regarded as transforming the datum impedance Zl(s) into the remainder
impedance 22(5) by the following series of three steps:

(1) A modified Brune section is removed from Zl(s) to produce the
impedance function Zu(s), which is positive-real and has the same degree

ag Zl(s) if the conditions outlined in Chapter II are satisfied.
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Flgure 22, Transformatlion from Datum Impzdance
t0 Remainder Impsdance, 1/T = O.
O— —(O—
- B(a) Z | (L4c)¥ Z éB(a.)
z'II. u v v c
Oo— -~
Figure 23. Transformastion from Datum Jmpedance
to Remalnder Impedance, R = (.
Table 1. Necessary Conditions for Realizability.
Ror L/T Conditlon
L> R= G b>a>e>1
L > /T =0 a>a>b>1
L R=20 b<a<a<l
L /1 =0 a<a<b<l




b7

(2) A series impedance or shunt admittance is removed from Zu(s) or
its reciprocal. If the surplus transmission zeros of the cascade section
can be located properly, this step produces an impedsnce function Zv(s)
of the same degree as Zu(s). When the condition R = O is imposed, both
(88) and Fig. 23 show that the surplus trensmission zeros are simply the
poles of Yo(s). Thus Zv(s) has the same degree as zu(s) if the poles of
YO(S) are constrained to be zeros of Zu(s). It should be ¢hserved that
the locations of these zeros are functions of the parameter a. Similar-
ly, when 1/T = 0 is required, (87) and Fig. 22 show that the surplus
transmission zeros are the poles of Zo(s). Thus Zv(s) has the same de-
gree as Zu(s) if the poles of Zo(s) are also poles of Zu(s). In either
of the two cases R =0 or l/T = 0, the proper choice of the poles of
Yo(s) or Zo(s) insures that (27} 1s satisfied at the surplus transmission
zeros. Thus, 1f the parameters I end o of the cascade section are de-
termined according to (62) and (66), the remainder impedance Zz(s) must
be lower in degree than Zl(s) by two.

(3) Impedance function Z,(s) is obtained from Zv(s) by the removal
of a second Brune section. Since Zi(s), Zu(s), and Zv(s) have the same
degree, 1t i1s clear that this step must effect a reduction in degree by

two in transforming from Zv(s) to Z.(s). Therefore, the second Brune

2
section must be identicel with the Brune section that would be obtalned
if Zv(s) were synthesized by the Brune procedure. Evidently, Zv(s) must
have real-part zeros at s = + Jl. Moreover, Zu(s) and Zo(s) also have
real-part zeros at these frequencies. 8ince the transformation from
Zv(s) to Z2(s) is effected by the conventionsl Brune process, 22(8) is

positive-real if Zv(s) is positive-real.
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Requirements for a positive-real remainder impedance.--The usefulness of

the pseudo-Brune development of the cascade section is that it allows
step-by-step control of the remainder function at each stage in the re-
moval of the cascade sectlon. If each of the three steps outlined in
the previous sectlon produces a positive-real remainder impedance, the
cascade synthesis procedure succeeds, provided that the cascade section
is 1tself realizable.

Removal of the cascade sectlion from the datum impedance Zl(s) will
leave & posltive-real remsinder impedance function 22(5) lower 1n degree
by two than Zl(s) if the following three conditions are satisfied:

{1) The pertinent inequality in Table 1 is satisfled. The inequali-
ties shown in this table are necessary and sufficient condltions for ¢
to be non-negative and Zu(s) to be positive-real. They are sufficient
conditions for realization of the cascade sectlon without the use of
mutual induetlive coupling.

(2) The poles of Z, or ¥ _ are contained in Z or l/Zu, &8 appropri-

ate.
(3) The inequality
Re {Zu(jw) - (1 +1/e) Zo(Jm)} >0 (89)
or
Re {2/2,000) = @+ ) ¥} 20, (50)

as appropriate, 1s satisfied for all real values of w.
That condition (1) is necessary and sufficient for a non-negative
value of ¢ and a positive-real impedance funection Zu(S) has been shown in

Chapters II and III, It has alsc heen shown in Chapter IV that conditibn
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(1) is sufficlent to allow realization of the cascade section without the
use of mutusl inductive coupling. Since conditions (2) and (3) are in-
terdependent, they must be considered together in determining whether re-
moval of the cascade section is possible. The principle of duality al-
lows the arbitrary cholce of the case where 1/T = 0 in the discussion to
follow, because inversion of Zl(s) is equivalent to choosing the case
where R = 0.

The transformation from 2,(s) to Zu(s) msy be written as

2
(1 + 2p(s) - L(E5H)sa(s)

Z (8) = (91)

e eedale) - 5 E)se(s)

where P(s) and Q(s) are the n-th degree numerator and denominetor poly-

nomials of

2,(s) =3ty - (92)

The impedance function Zu(s) given by (91) is also a quotient of poly-
nomials, say Pb and Qb. These polynomisls have degree n + 2. However,
the degree of Zu(s) 1s only n, since P, and Qb have the common fector

b
(52 +1). Thus Zu(s) may be written as

z(s) == = —5——2 =2 | (93)

Of course, if b is chosen equal to a, Pu and Qu alsc have a common

factor (52 +1). This possibility is considered in Chapter VI and will



not be discussed here. Upon writing

P(s) (94)

B
+
P

fl
=

Qs) =my + ny (95)

where m and m, are even and By and n, are odd polynomials, the even

2
part of Zl(s) may be written as

2

i B (96)

-n2
2

=B {z} -

I'\)I\)I\)

It may be shown that the even-part zeros of Zl(s) are preserved in Zu(s)
unless b = a, Moreover, examinstion of (91) and (93) shows that
P(0) = P (0) (97)

and

Q(0)

Q) . (98)

Thus the even part of Zu(s) may be written as

M, Ev{} %(s) Qt}ns) . (99)

The transformetion from Zu(s) to Zv(s) is
zv(s) = zu(s) -1+ l/c)Zo(S) . {100)

Since the poles of Zo(s) are the surplus transmission zeros, it must be

required that the quadratic polynomial
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2 &:,a - b 8

s + ¢ E"?_I) Rs + = {101)
be a factor of Qu(s). Let
q(s) = (s° + ps + q) B(s) , (102)

where B(s) is a polynomial of degree n - 2. Then parameters a, b, and R

must be constrained to satisfy the equations

Z=a (103)
and
DRy . (104)
From these equations it 1s evident that
a8 = gb (105)

and that (1L + 1/c) ZO(S) may be written as

2 2
(12/e) 2(e) = &AL [pqs52++(;;11 = p] o

The parameter ¢ has been eliminated from the right member of this equa-
tion by the use of {66).
Let

tis
uls

(1 +1/e) Z(s) = , (107)

where

2
t(s) = by + ty 8+ tes (108)
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and

2 2
u(s) = u +ws+us =q+psts . (109)

Then the even part of (1 + 1/e) Zo(s) is given by

M pgL{a - 1) l: Jse + 1)2 :I . (110)

o Tgb - Ly(a - b) u(s} * ui-s)

Since

B(s) = Q,(s) - uls) ,

it is clear that Mb can also be written as

_ __palla - 1) (s + 1)° B(s) + B(-s)
M, = Tab - L {a - by [ Q,(s) - q,(-s) ) (111)

Moreover, since even-part zeros of a positive-real function which lie on
the imaginary axis of the complex frequency plane must be even in order,
Mu may be expressed as

_ (2 £ 1) a(s) ¢+ A(-s)

W O R ) B

(112)

where A(s) has no right-half-plane roots., Thus the even part of Zv(s) is

) (524 1)% B(v,- &9
, = o 1z,} - W) - o) (113)
where
(b, -52) = A(s)-Al-s) - R L) pey.p(os) . (114)

(gb - 1){a - D)
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Now Zv(s) is regular in the right half-plane 1f Zu(s) is positive-
real. Moreover, the even part of Zv(s) will be non-negative on the imagi-
nary axis if @{b, x) is non-negative for all real, positive values of x.

Thus the inequality
(b, x) >0 for x >0 (115)

is a necessary requirement if Zv(s) (and thereby Ze(s), also) is to be
positive-real. This requirement 1s also sufficient if Zu(s) is positive-
real, unless Zo has Jj-axis poles. This possibility, which is excluded
from consideration here, is discussed in Chapter VII. An alternate form
of {115) is

2

B( Jw)
em) ! =t

paL(a - 1)

(gb - 1)(a - b) s (116)

vhere w is real.
At thils point the problem of determining whether removal of a cas-
cade section is possible reduces to determining whether a value of b

can be found for which {115) is satisfied and
b >a>hb>1 (117)

or

gh<a<b<l {118)

1s satisfied, accordingly as L > 0 or L € 0, respectively. These con-
ditlons cannot be satisfied for all datum impedance funetlons. How-
ever, they can be satisfied for certain datum impedance functions, In

cases where an appropriate value of b can be determined, the cascade
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sectlon can be removed to leave a remainder impedance function of degree
n - 2. Moreover, the conditions mentioned above also permlt the reali-
zation of the cascade section without the use of mutual inductive coup-
ling.

The difficulty of selecting an appropriate value for b inereases
with the degree of the datum impedance, since the quantities p and gq
are multiple-valued functions of b. The number of branches of these
functions clearly increases wilth increasing n. This difficulty appears
to be 2 fundsmental limitation imposed by algebraic considerations. It
may be observed that the transformation from Zl(s) to Zu(s) is actually
a zero-shifting procedure. BSince the surplus transmission zeros are re-
quired to be roots of the equation

2
z,(s) =Bt Do) (119)

it is possible to plot the locus of possible transmission zeros by
plotting the locus of the rcoots of (119) as b varies between 1 and a.
For b = 1, the roots of (119) are simply the poles of Zl(s). For b = a,
(119) has one pair of roots at s = + jl. A typlcal root-locus diagram
for (119) i1s shown in Fig. 24 for a fourth-degree datum impedance
funetion.

In prineiple, a direct approach to determining whether an appropri-
ate value of b exists for a given datum impedance function can be formu-
lated. Such an approach involves minimizing @(b, %) with respect to x
to obtain s function ¢o(b). This minimization process is complicated by

the functional dependence of p and ¢ on b. In general, no explicit
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Figure 24, ILocus of Surplus Transmission Zeros,
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closed algebraic solution for p and g in terms of b is possible. Never-
theless, the function ﬁo(b) exists in an abstract sense, and the roots

of the equation
g () =0 (120)

define the end-points of the intervals in which b must lie if (115) is

satisfied. Similarly, the eguation

ad = o (121)

also defines the end-points of the intervals in which b must lie in
order to satisfy (117) or (118). If, for a chosen branch of the functions
relating p and ¢ to b, the intervals defined above have any common sub-
intervals lying between b = 1 and b = «, the remainder impedance function
is positive-real and the cascade section is realizable without the use
of mutual inductive coupling for velues of b within such a common sub-
interval. 1In general, the existence of one appropriate value for b im-
plies the existence of an appropriate range of values of b. However,
under certain circumstances discussed below and in Chapter VII, only
discrete values of b are appropriate, Also, as indicated above, there
may be no values of b for which the cascade synthesis procedure succeeds.
The discussion above indicates that 1t is possible, in principle,
to determine whether one step of the cascade synthesis procedure can suc-
ceed and to determine an appropriate range of values of b in this case,
After removal of one cascade section and subsequent redvuction of the re-
mainder impedance to & minimum function, it is necesgsary to test again

to determine whether another cascade section can be removed., It should
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be ohserved that the synthesis of a second-degree minimum funetion by the
method discussed here reduces Lo the conventional Bott-Duffin synthesis.
Thus, nothing is gained by employing the method unless the degree cof

the detum impedance is greater than two.

One specisl case concerning the properties of the function ¢(b, x)
which has not been discussed above is the case where p or q is zero.
Since A(s) * A(-s) is non-negative for all Imaginary values of s, @(b,x)
will be non-negative if p or q is zerc. However, if q is zero, 1t is
evident from Fig. 22 that-Zl(s) must have & pole at 8 = 0. If p is
zero, Zo(s) has poles at 62 = ~g. Impedance functicn Zu(s) mist also
have poles at &% = -q. Thus 6 = -q must be a root of (119), and Zl(s)
must have real-part zeros at s = fj\/ja_ (as well as s = + J1). Con-
versely, if Zl(s) has zeros of real part at s = + on, then A(s) is zero
there, and p must vanish if (115) is to be satisfied, unless B(jwo) or
g should coincidentally vanish. In order that Zv(s) (and thereby ZE(S),
also) be positive-real, the resulting poles of Zo(s) on the j-axis of
the complex frequency plane and the j-axis poles of Zu(s) must coinecide.
Thus q must be chosen equal o wi . The case where p = 0 is discussed

further in Chapiter VII.
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CHAPTER VI
SPECTAL CASES

Special values of the parameters a and b.--Certain cases involving special

values of the parameters a and b have been cmitted from consideration in
previous chapters to avoid unduly lengthening the exposition of the
general case. A discussion of these special cases includes the conside-
ration of the limiting case where b or a approaches unity and of the case
where & and b are equal. The analysis of both of the cases mentioned ap-
pears to yleld some insight into the general properties of the cascade
section., Moreover, the cascade sectlon 1s reduced in complexity in the
first case. Thus, the consequences of allowing b or a to approach unity
and of setting a and b equal are discussed in this chapter. |

The case where b or a approaches unity.--Reference to (65) or (66) shows

that allowing b to approach unity implles that ¢ approaches infinity.

However, (66) may be written as

(b -1 =(a-1) E=D), (122)

and this equation indicates that the produet (b - l)ec may be considered

to remain finite and non-zerg as b - 1 approaches zero, In fact, fronm

(122),

Ele(b - 1)e = (a - 1)(E23) . (223)
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The quantity o - 1 cannot venish if the datum impedance funetion Zl(s)
is a minimum function. Similarly, a - 1 canncot approach zero simul-
taneously with b - 1 unless L also approaches zero, which violates (62)
if Zl(s) is & minimum function. The possibility that a = o vanishes
is considered in the next section. Thus the right member of (123) may
be assumed to be finlte and non-zero.

Since ¢ approaches infinity as b approaches unity, the elements of

the z-matrix of the cascade sectlon approach

Lim 2y, =2, + 2p (12h)
b= 1
Iim z. ., = z_ , (125)
bo1 2 L
and
Lim z.. = z_ , (126}
o 1 22 L
where
2, = Lim (ZT/C) . (127)
b= 1
The last limit is
Lim L{a - a) b2Ts2 + (b - l)2 5 + b7
L T bolTa- 1)(s - 1) ) (128)
s 4+ bTs + b
or
; = ba - a) 752 4 T (129)
L™ Ta- 1 -1) 7 ‘ 9

s +Ts + 1

Thus (124)-(126) represent the network of Fig. 25.



L{a - a)

(@ - 1)(a - 1)

{o-1)(a - 1)

Lia - )

TL{a - &)

(@~1)(a - 1)

Figure 25.

Cascade Section as b —1.
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The quantities L and o - 1 have the same sign; hence, the circuit

elements in Pig. 25 are realizahle if Zp is positive-real and

=120 | (130)
This inequality requires that
a > a (131)
or
a<a (132)

accordingly as o - 1 1s positive or negative, respectively.

From Fig. 25 the procedure for testing to determine whether allowing
b to approach unity permits the removal of a cascade section from the
datum impedance Zl(s) is evident., The series impedance ZR is first re-
moved from Zl(s), thereby shifting a pair of zeros of impedance to s =

+ Ji. An impedance function

Z, = Z, - 2z (133)

v

results from this step. The reciprocal of Zv has poles at s = + Jl.

These poles, with appropriate residues, are realized by the series IC

circuit in Fig. 25, since (30) is satisfied by the limit of = 1 given

1

by (124). Tt may be seen from Fig. 25 that there is no advantage to

be gained by considering a non-zero value of 1/T when b approaches unity.
The selection of Zp in the special case b -1 1s similar to the se-

lection of Zo discussed in Chapter V. The impedance function ZR(S) is

completely determined by the parameter I, and the locations of the poles
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of zR(s). In order that removal of the cascade section produce a re-
mainder impedance of lower degree than Zl(s) the poles of ZR(S) must be
contained in Zl(s). Thus, & set of possible impedance functions zR(s)
may be determined from the locations of the poles of Zl(s). The cascade
synthesis procedure succeeds for the case where b -1 if one of these
impedance functions ZR(S) allows the simultaneous satisfaction of (130)

and the Inequality
Re {Zv(,ja))} >0, (134)

where & 1s real,

The special case where a approaches unity reswits 1n a cascade
section dual in form to the network of Fig. 25. Hence, the details of
this case need not be discussed. However, it should be observed that

a relation such as
2
R=K(a -1)" , (135)

where K is a non-negative constant, must be employed in the limiting pro-
cess to cause R to approach zero as (& - 1)2.

The cage where a and b are equal.--If the parameters a and b are arbi-

trarily assumed to satisfy the equation

a="> 3 (156)

the relstion expressed by (65) becomes

1+ ) (EED = L+ )3T = (1 + o) (1. (137)

This equation 1s consistent for non-negative values of ¢ only if
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a3 =a=b. (138)

Thus, (136) and (137) imply (138), and (137) cannot be used to determine
¢, However, it is possible to determine an appropriate value of ¢ by a
procedure to be given bhelow. It may be observed here that the arbitrary
choice of a = a or b = a also leads to {138),

It was shown in Chapter III that the restriction imposed by (136)
causes the surplus transmission zeros of the cascade section to fall
at s = + Jl. Hence 212(8) has second-order zeras at s = + J1 in the
special case consldered here.

Reference to (85) and Fig. 20 shows that the pseudo-Brune develop-
ment of the cascade section assumes the form shown by Fig. 26 when

a =a = b, The resistances r_ and r, in Fig. 26 are given by

1l e

r, = o (139)
and
L(T - R) __ . (140)

2T+ o) - 1)

In the notation of Chapter II and Fig. 2 the following identifications

maey also be written:

rl = rll - I‘12 3 (lll-l)

To = Fip o (142)
and

r/e=r__-r . (143)



Figure 26. Pseudo~Brune Development for a = b = o« .
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The real constants r , and r are the open-circuit impedance param-

11’ f12 22
eters of the Tee network internal to the cireuit of Fig. 26. From (81)
if L >0 or from (Aih) if L < 0 it may be seen that the cascade section

has an unbalanced transformerless reslizsatlon if

T>R>0 (144)

and

c >0, (145)

The last inequality must be appended because 1t is no longer insured by
the choice of a and b, The inequality in (144) is eguivalent to requir-
ing rl and r2 t¢ be non-negative.

Examination of Fig. 26 makes evident a procedure which may be used
tc determine the parameters ¢, R, and T and toc determine whether a cas-
cade section with a = @ = b can be removed from the datum impedance
Zl(s). The remainder impedance 22(8) is obtained from Zl(s) by a series
of transformations beginning with the transformation from Zl(s) to Zu(s).
The impedance function Zu(s) is obtained from Zl(s) by the removal of a
conventional Brune section., Thus, if Zl(s) is a minimum function of de-

gree n, zu(s) is a positive-real function of degree n - 2. Fig. 26 indi-

cates that
Zv(jl) = - jL/ac . (146)

Eence, the transformation from Zu(s) to Zv(s) by the Tee network of re-
sistors r., r2, and rl/c must produce a minimum-real function Zv(s).

Such a reductlion to minimum-reality has been discussed in Chapter II.



66

The addition of some pertinent gecmetrical details to the Z-plane contours
in Fig. 3 of that chapter results in Fig. 27. In this figure, only the
portion of the circle E lying in the upper half of the complex plane need
be shown. Obviously, Z(s) of Fig. 3 must be identified with Zu(s) of
Fig. 27.

The location and radius of the cirele E, which is the locus of Zu
for which Zv is imaginary, fix two of the three constants needed to de=-
termine the open-circuit impedance matrix r having elements rll’ r12’
and PO The impedance function Zv(s) will be positive-real if K, which
is the locus of Zu(jm) for w real, lies inside of or tangent tc E. 8Since
points where K and E are tangent correspond to values of jw for which
Zv(Jm) 15 imaginary, (146} implies that E must be chosen to be tangent
to K at 5 = JL. Let 6 be the angle of inclination of the tangent to K

at 5 = jl. Then @ is determined by

oX Re {z&( ,jl)}

_ , (147)
“Tm Z&(Jl)}

tan @ =

81!-:%151¢

w=1
where Ru and Xu are the real and imaginary parts of Zu’ respectively.

The center of the eircle E lies at an abscissa of

F=R +X teno, (148)

where

R+ JX =2 (J1) . (3149)

The intersecticns of the circle E with the real axis occur at abscissae
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- an
Zu plane

Figure 27. Locus of Zu(.jm).



of A and B, where

e
I

F - |X0/cos 8| {150)

and

ws)
1

F + |Xo/cos el . (151)

These intersections are related to the open-cireuit impedance parame-

ters by the eguations

A= ar)/r,, (152)
and
B=ry, {153)
where
) =r v, - 2. {(154)
11" 22 12
The relation between Zv(s) and Zu(s) may be written as
r..2 (s) - a(r)
22 1
z (s) = . (155)
v STIRENC)
This equation may be combined with (146) to yield
22 g " ZufjiT ac

The substitution of (14%9), (152), and (153) into (156) results in

R+ X, - A N
T2 | 3o, - | T Y (257)
=] o
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or
X +3(B-R)
_ L o fa]
T "% | E-R - X ‘ (158)
o] 0
This equation reduces to
er,, = D, (159)
where
X R - B
L o} L, o

gince the expression in the brackets in (158) is real. Because or,, must

be non-negative, an obvious necessary condition for the success of the
cascade synthesis procedure with a = & = b is that L and XO have opposite
signs.

The parameters r » and c may be determined from the equa-

117 T127 Teo
tions developed above. The solution of (141), (143), (152), (153), and

(159} results in

r; =B, {161)
Top = D/e , (162}
= (B- A (163)

and

c=1+M+ /M4 M2 , {164)

where
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2

B-D
M= 554 : (165)

The parameter ¢ given by {164) is a solution of the equation

c2—2(l+M)c+l=O. (166)

Since M is non-negative if D is positive, this solution has two real,
non-negative solutions for ¢. In general, one sclution of (166) is
greater than unity and the other soclution is less than unity. One root
of (166) 1s an extraneous value of c¢; it is necessary tc select the

root for ¢ so that

c<lif B> D (167)
and

e >11if BLKD, (168)

The Tee network of resistors internsl to the circuit of Fig. 26 has
positive elements and the cascade section has a transformerless reali-

zation if
D>(B=~A)c>0, (169)

as may be verified from {161)-{163).

The impedance function Zv(s) is positive-real if the locus K lies
within or tangent to the circle E in the Zu-plane. The positive-reality
of Zv(s) is a necessary condition for & positive-real remainder impedance
Ze(s). This regquirement obviously cannot always be satlsfied. In a
given numerical case, 1t might be necessary to test Zv(s) for positive-

reality directly from (155),
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Ir Zv(s) is now assumed to be positive-real, a sufficient condition
for positive-reality of ZQ(S) may be stated by use of the reswlts in
Chapter IT. Let $ be defined by

Z3(31) - 3 (50)
B = ] L)
zI(31) + 92, (31)

(170)

Then the discussion of Chepter II indicates that 22(5) will be positive-

real and of no greater degree than Zv(s) if

1<l/a<B (171)
or

1>1/a>B (172)

accordingly as L 1s negative or positive, respectively., Since knowledge

of Z&(jl) is necessary in determining A, B, ete., the equation

2
ro, 2%s)
Z(s) = 22U (173)

may be convenlently employed in calculating B.

The preceding discussion indicates that the transformation from
Zl(s) to Zu(s) is the only degree-reducing step in the transformation
from Zl(s) o 22(5)’ unless by coincidence af = 1. The transformation
from Zu(s) to Zv(s) serves only to shift an even-part zero to s = Jl.
Clearly, this process will not always succeed, However, the conditions
cutlined above may be applied at a given stage in the synthesis of a
driving-point impedance to determine whether a cascade sectlion with

a = o = b can be removed from the datum impedance, These conditions may



be summarized as follows:
(1) Inequality (169) must be satisfied.
(2) Inequality (171) or (172) must be satisfied.

(3) Impedance function Zv(s) must be positive-real.

72
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CHAPTER VIT
THE LOSSLESS CASE

Conditions for removal of the cascade section.--It was shown in Chapter

V that the surplus transmission zeros of the cascade section must lie
at s = + jw_ if the datum impedence function Zl(s) has real-part zeros
at these fregquencies. Tt was also shown in Chapter III that & lossless
cascade section fulfills this requirement. The conditions for removal
of the cascade section in this case are somewhat simpler than in the
general case, Moreover, examinatlon of the lossless case discussed here
may help to give a qualitative insight into the conditions necessary for
removal of a cascade section in the lossy case.

It has been indicated before that the cascade section represented
by the open-circuit.impédance matrix z becomes & lossless network in the
1imiting case where R and 1/T approasch zero. The impedance functions

z_ and z_ reduce to reactance functions given by

T R
2
_L{vs® 4+ 1
o = M (1)
and

z_ = ELE_:_ELE (175)

R 52+a

A bridged~-Tee network realizing the lossless cascade section without

transformers has already been given in Chapter IV by Fig. 17 or 18, as
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appropriate. One of the networks of Figs. 17 and 18 will always be rea-
lizable if a - 1 and b - 1 have the same sign as @ - 1 and the constant
¢ is non-negative., A non-negative value of c¢ results from (66) if (67)
or (68) is satisfied, i.e., if a and b lie on opposite sides of o and on
the same slide of unity on the real line,

Since both of the conditions R = 0 and 1/T = O are imposed in the
lossless case, the two cases discussed in Chapter V, namely R = O and
1/T = 0, lose their identity. However, it is still possible to repre-
sent the cascade section by a pseudo-Brune development. In fact, two
such developments are possible and may be obtained directly from (174)
and {175) or by the application of limiting techniques to (85), (86), and
Yes, 20 and 21, Either procedure leads ic networks having the form of

Pig, 22 or Pig. 23, with

7 (s) = &= b)s (176)
o' b2(52 + a/b)
and
Y (s) - —2(b-sle (177)
bL{s" + a/b)

The surplus transmission zeros of the cascade section lie at

8 =

'+

a/v , the locations of the poles of Zo(s) or Yo(s). Thus,
if Zl(s) has real-part zeros at s = + Ju (in addition to those at

s = + Jl),25 the parameters a and b must be constrained by the relation

a/b = o - (180)

25Tt 1s assumed that w, #1.
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In order that z 1= Zl et the surplus transmission zeros, the equation

1
L bS2 + 1 _ ( 8
%b TIys - Alde) (281)

or

ﬂ;#ﬁ = zl(on) (182)
s+ a
must be satisfied. Since (180)-(182) are not independent equations,
(182) may be discarded, Thus, (180) and (181) fix the following unique

values for a and b:

1] ]
¥
= Oel\JI—'

b = (183)
and
2
a8 = ahb R (18%)
where
Zl(Jab) = jabx . (185)

In deriving the conditions for successful removal of a cascade
section in the lossless case it is convenient to meke use of the equiva-
lent cireuits of Flg. 22 or Fig. 23 in somewhat the same manner as that
employed in Chapter V. Although these two circuits are egquivalent in
the lossless case, it is expedient for analytical purposes to select

the eircuit for which Zu( s) 1is positive-real. The circuit of Fig. 22
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should be selected, therefore, if

a>a>b>1 (186)

or

a<a<b<l, (187)

b>a>a>1 (188)

or

b<a<a<l. (189)

If, for & given datum impedance function, none of the inequalities (186)-
{189) is satisfied, the transformerless cascade synthesis procedure does
not succeed when the even-part zeros of Zl(s) at s = + jaB are identi-
fied with the surplus transmlssion zeros.

The inequalities expressed by (186)-{189) are sufficient conditions
for realizabllity of the cascade section. The relation between Zu and
Zv in Fig. 22 or Fig. 23 must now be examined to determine the conditions
under which Zé(s) 1s positive-real. As in the lossy case discussed in
Chapter V, 22( s) will be positive-real if Zv(s) is positive-real., It will
be assumed in the following discussion that .(186) or (187) is satisfied,
and attention will be directed to the pseudo-Brune development of Fig.
22. The case where Fig, 23 is appropriate may be regarded as the dual
of the case discussed here,

The conditicns expressed by (186)-(189) involve the value of Zl(s)
at s = Jw_, but they do not involve the derivative of Zl(s) at that fre-

quency. However, it is necessary to consider the derivative of Zl(s) at
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8 = jaB in evaluating the residues of Zu at the surplus transmission zeros.

The relatlon bhelween Zu and Z_. may be wrltten as

1
2
W
12
2, = = Wy + g (190)
u 22 wll - Zl 2
where
W.. = —2& {bs + 1/s) (191)
11 b -1 ?
W = —=— (5 +1/s) (192)
12 -1 ?
and
L
Thus the residue of Zu(s) at s = Jo_ is
WfE(Jub) ( h)
K = - . 19
Wilfjwo) Z]'_(,J(.DO) ’

and an expansion of Zu(s) in partial fractions would contain the term

2Ks
5 - (195)

5 + W
o]

Let ¥ be the Brune characteristic of Zl(s) at 8 = jub, i.e., let

Z;_(,jmo) + X

) - X (196)

Then
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_ oyt
Zi(JQE) = X(,}r - l) , (197)
and caleulation of 2K from (194) yields

2 2
- 2L(ad - 1)

£K = bo- L . (198)
- 1 1
(a-1) [ &5 - &) ]

The impedance function Zv(s) is related to Zu(s) by

z,(s) = 2.(s) - (1 +3/e)z(s) . (199)

Hence, Zv(s) is regular in the right half s-plane if Zu(s) is positive-
real., But Zu(s) is positive-real if (186) or (187) is satisfied. More-
over Re {?V(Juﬂ}-is non-negative for real values of w if Zu(s) is posi-
tive-real, since ZO(S) represents the impedance of a lossless network.
Therefore, Zv(s) will be positive-real if the residue of Zu(s) at s =
Jw_ is not less than the residue of (1L + 1 c)Zo(s) at the same pole,

1,e., if

oK > {1 +c¢){a - DL (200)
2z 5 .
cb
The right member of (200) is non-negative by virtue of (186) or (187).

After some manipulation, (200) may be reduced to

2 o - 1

I I, Sa-0b’
(b-1) (29 - =P 7F

(201)
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where it is assumed that (186) or (187) is valid. The steps leading from
(200) to (201) do not change the algebraic sign of either member of the
inequality. If (186) or {187) is satisfied, zu(s) is positive-real, and
2K must be non-negative. Since the right member of (200) is also non-

negative, {201) may also be written as

b -1 + 1 a + 1 a -D
E3H 1D - EEpr i . (202)

The inequality expressed by (202) is a necessary and sufficient
condition for obtaining & positive-resl remainder impedance function
when (186) or (187) is satisfied. When (188) or (189) 1is satisfied,
the inversion of Zl(s) results in a function such that (186) or (187)
is satisfied, If none of the conditions given by (186)-(189) is satis-
fied, or if (202) or its analogue in the dual case is not fulfilled,
the cascade synthesis procedure does not succeed.

It may be observed from the preceding discussion that the conditions
which determine whether a lossless cascade section may be removed from a
given datum impedance are inequalitles among various constants, rather
than funetions of frequency. Thus, the procedure of testing a datum
impedance to determine whether a cascade section of the form discussed
in this thesis may be removed is somewhat simpler when the datum impedance
funetion has two real-part zeros on the Jw-axis of the complex freguency
plane than in the general case when the procedure of Chapter V must be
employed, If desired, it is always possible to produce the doubly mini-
mum-real conditlon reguired for a lossless cascade section by the removal

in series or parallel of an appropriate second-degree minimum function.



This reduction process can be effected without increasing the degree of
the driving-point impedance function by proper selection of the poles of
the second-degree minimum functiomn.

Equivalence to cascade Brune sections.--It is the purpose of thls section

to discuss the equivalence of the cascade section in the lossless case

to a two-terminal -pair network conslsting of two Brune sections in c¢as-
cade., Although such an equivalence cffers no advantage in the practical
reglization of driving-point impedances, the ecquivalent circult contain-
ing Brune sections is an aid to understanding the conditions necessary
for success of the cascade synthesis procedure of this thesis,

The lossless cascade section described by the open-circuit impedance

matrix having elements given by (32)-{34) and (174)-(175) is equivalent
as a two-terminal-pair network to the circuit of Fig, 28 if the parame-

ters of Fig. 28 are related to the parameters of the matrix z by the

equations
N = %%r% , (203)
aui - a/b , (204)
and

calb - 1) + bla -
* = c(b - 13 + (é - l%l ‘ (205)

The parameter o  is again the (angular) frequency of the surplus trans-
mission zero. Since o given by (205) is a solution of (64), it must be
equated with the Brune characteristic of the datum impedsnce at 5 = Jjl

if the cascade sectlion is to be employed for synthesls purposes.
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Similarly, L in Fig, 28 is the same parasmeter as the constant L occurring
in earlier discussions.

The parameters a, b, and ¢ of (32)-(3%) and (174)-{(175) are also

related uniquely to the parameters N, wo, and a of Fig. 28 by the equa-
tions

i+ wiN
8 = al——) (206)
o 1+ miN
v=— (o) (207)
w
o
and
1 a - 1
C=—'§"-(b_l). (208)
abN

Examination shows that the two cascade Brune sections in Fig. 28
are realizsable if

(209)
and

(210)
The parameter N always satisfies (210) when 2 and b are non-negative and

the basic inequalities given by (37)-(39) are valid. Computation of
o - 1 from {205} yields

T G 1)&}-+11/c) )

L+ cfb - li

(211)
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Figure 28, Equivalert Tircuit for lLozsless
Cascade Section.



83

which indicates that (37)-(39) alsc imply (209). Thus, the equivalent
circuit of Fig. 28 is always realizable (using unity-coupled coils) when
the cascade section fulfills the conditions outlined in Chapter III.
However, {209) and (210) are not sufficient conditions for the realiza-
tion of the cascade sectlion without the use of mutual inductive coupling.
The networks of Figs. 17 and 18 demonstrate that the cascade section
is realizable without transformers when a, b, and ¢ are non-negsative
constants such that a - 1 and b - 1 have the same sign as o - 1, It is
evident from (208) that c 1s non-negative if (210) 1s satisfied and
a -1 and b - 1 have the same sign. Hence, in view of (211), the cas-
cade section equivalent to the ecirecuit of Fig. 28 is realizable without

transformers if (210) is satisfied and

{a - 1) +N(au>§ - 1)

2 - i - S >0 . (212)
(a,/mo - 1) + N(a ~ 1)
Since this inequality can also be written as
2 48 -1
o (=—=3) >0 (213)

it is evident that a2 - 1 and b - 1 have the same sign if and only if a
does not lie within 1 andcqi on the real line. This condition may be
related to the sign of the constant X/L by noting that (27), (32), and

(33) imply that the equation

Z =% (21k)
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must be satisfied at s = + J1 and at 5 = + Jmo. But Im zé} does not
change sign betwveen w = 1 and ® = @_ 1f (213) is valid. Hence Im Zl(jli}
and Im {?l(me)}-have the same sign if and only if (213) is satisfied.

Therefore, the inequality
X/L >0 (215)

is equivalent to (213) or (212).

The synthesis by Brune's procedure of a doubly minimum-resl datum
impedance function will result in a network contalning only certain ele-
ments equal to those in Flg. 28, except in rather special circumstances,
Let Pig. 29 represent the network resulting from the completion of two
eycles in the Brune synthesis of a doubly minimum-real datum impedance
funetion Zl(s). When the datum impedance funetion possesses real-part
zeros at 3 = + Jl and s = + Jab, where W, is real, two Brune develop-
ments of the datum lmpedance are possible. It is assumed in Fig, 29
that a Brune section associated with the resl-part zeros at s = + JL is
removed from the datum impedance first. Thls selection will bhe seen to
correspcnd to placing the surplus transmission zeros of the cascade
section at s = + Jab, rather than at s = + J1.

From Pig. 29 it is evident that (210) will not slways be satisfied.

In fact, comparison of Pigs. 28 and 29 shows that the parameter N must

be fixed by

- L¥/a (216)

=
i

or

N = - oaM/I . (217)
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z,(s) - z,

Figure 29. Brune Synthasis of Zl(sj,
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Since o is non-negative, N satisfies (210) if
-ML>0, (218)

i.e., if M and L have opposite signs.

Let it now be assumed that (210) and (212) are satisfied, so that
the cascade section is realizable without transformers. Then further
comparison of Figs. 28 and 29 and the discussion in Chapter II allows a
necessary and sufficient conditlon for positlive-reality of the remainder
impedance Zg(s) to be stated. This condition is that ZE(S)’ the re-
mainder Impedance after removal of & lossless cascade section with param-
eters given by (206)-(208) from the doubly minimum-real datum impedance

Zl(s), will be positive-real if

1<1l/a<B (219)

or

1>1/a>8 . (220}

The condition expressed by (219) or {220) is actually a relation

between the characteristics, i.e., the turns ratios, of the Brune sectlons
resulting from two eycles in the conventional Brune synthesis of Zl(s).
If (219) or (220) 1s to be satisfied it is necessary that one Brune
gsectlion have a step-up actlon and the other section a step-down action
as 8 approaches infinity. This necessary condition is equivalent to
(210).

The discussion above indicates that the satisfaction of (215) and

{219} or (220) allows one step in the cascade synthesis of a doubly
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minimum-real function to be effected. Hence, these conditions may be
considered as alternatives to the conditions stated in the first section
of this chapter.

In the preceding discussion it has been assumed that the real-part
zeros orf Zl(s) at s = + me have been identified with the surplus trans-
mission zeros of the cascade section. However, a frequency-scaling
transformation will ellow the roles of the real-part zeros at s = + Ji
and s = + Jmo to be interchanged. When this procedure leads to¢ the
successful removal of a cascade section, 1t may be employed to obtain
a different network realizing the datum impedance function. It might
alsc be employed when the first identification of the surplus trans-
mission zero does not permlt the cascade synthesis procedure to suec-
ceed. However, it is evident that the failure to satisfy (215) cannot
be relleved by this device, Moreover, when the datum impedance is a
doubly minimum-real function of fourth degree it may be shown that the
conditions allowing the succesasful removal of a lossless cascade section
are Invariant to an interchange of the roles of the real-part zeros at
8 =+ Jl and s = :—Jag.

Comparison with the lossy case.--The results of this chapter are appli-

cable to the case of a lossless cascade sectlon and a doubly minimum-real
datum impedance function. However, they may be used to provide a quali-
tative Insight into the conditions for casecade synthesis of certain datum
impedance functions having only one pair of real-part zeros on the jo-
axis of the complex frequency plane. In particular, if the datum im-
pedance Zl(s) has real-part zeros at s = + jl and a relative minimm of

real part at & = jw_, the synthesis of Zl(s) by the Brune procedure may
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lead to a network consisting of a cascade of two Brune sections separated
by a series or shunt resistor and terminated by a remalnder impedance,
If the real part of ;l(jwo) is sufficiently small in comparison with the
general impedance level of Zl(s), it is reasonable to expect the trans-
misgion zercs cof the second Brune section to lie relatively close to

8 =+ jab. It is also tc be expected that the series resistance or
shunt conductance hetween the two Brune sections will be relatively
small. If these conditions obtain, 1t 1s likely in many cases that a
test based on disregarding the series resistance or shunt conductance
will determine whether or not one step of the cascade synthesis pro-
cedure should be expected to succeed. Moreover, it is reasonable in
such & case to suppose that the range of values of & and b for which
the exact criteria of Chepter V are fulfilled will aliow the approxi-

mate satisfaction of (204), These conjectures have been verified to a

certaln extent by numerical examples,
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CHAPTER VIII
EVALUATICN OF THE METHOD

Digcudsion,--The primary theoretical considerations pertinent to the prob-~
lem of transformerless cascade synthesls using the cascade section pro-
posed In this thesis have been dilscussed in preceding chapters. In par-
tieular, Chapters I through V form a treatment of this problem in the
general case, while certain special cases have been examined in Chapters
VI and VII. However, there remain some general remarks concerning the
synthesls procedure described here, These remarks primarily deal with
the applicability of the procedure.

It should be observed first that the method of driving-point im-
pedance synthesis proposed here is not general, i.,e.,, it is not uni-
versally applicable to rational positive-real impedance functions. In
fact, the datum impedance functions to which the method is applicable
are required a priori to be minimum functions. However, this requirement
is not unduly restrictive, since the conventlonsl presmble to the Brune
synthesls procedure may be used to reduce a glven driving-point impedance
function to & minimum function, without the use of transformers. In
addition, the methods of the first section in Chapter II may be utilized
to perform the last step in such a reduction. Presumably, this reductlon
might be executed in a manner calculated to influence favorably the
realization procedure at later stages. This possibility has not been

exploited in conjunction with the synthesis procedure presented here
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because of what appear to be formidable mathematical difficulitiez. How-
ever, 1t is obvious that the well-known predistortion technique reviewed
briefly in Chapter II, used with the present procedure, affords the
possibility of avoiding the necessity for perfect lossless elements,
except in the case where the datum impedance slready is minimum-real.

In the latfer case, it is clear that there can be no power dissipation
and that all lossy elements in any network realizing the datum impedance
must be effectively decoupled from the input terminals at the {steady-
state) frequency of the real-part zero.

A set of more subtle restrictions on the datum impedance arises
&8 a result of the requirement that the cascade section to be removed
at a given stage must be realizable without the use of transformers or
mutual inductive ccupling and the requirement that the remainder im-
pedance function be positive-real and of lower degree than the datum im-
pedance functlon, These restrictions have been set forth in Chapters IV
and V for the general case. However, the discussion in Chapter V of the
requirement that the remainder impedance function be positive-real does
not include a treatment of the computational problems associsted with
this requirement. Aside from these difficulties, it should be observed
that the tests outlined in Chapter V are applicable at each minimum-
functlion stage in the synthesis of & driving-peoint impedance.

The special cases discussed in Chapters VI and VII occur in essen-
tially different ways. The lossless cascade section discussed in
Chapter VII is applicable when the datum impedance function has two
pairs of real-part zeros on the jw-axis of the complex freguency plane.

It must be employed in this case and only in this case. In contrast,
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one step of cascade synthesis using the special techniques of Chapter VI
may always be attempted, except when the technique of Chapter VII ap-
plies. When such an attempt succeeds in the special case where the
parameter a or b approaches unity, a saving in the number of elements
required is effected, by comparison with the general case, However, the
special case where the parameters a, b, and o are equal requires the
use of a large number of elements. This case has been discussed pri-
marily because of 1ts theoretical interest,

The conditions that govern the possibllity of success in the special
synthesis procedures of Chapter VI are somewhat simpler than their coun-
ter-parts in the general case, Thus, 1t may be advantageous in & glven
numerical example to attempt tc remove a cascade section of the special
form before resorting to the more tedious general conditions of Chapter
V. Similarly, it is also possible to forece the datum impedance to he
doubly minimum-real, and thus to permit the use of the simpler criteria
of Chapter VII to determine whether removal of s cascade section may be
effected. As discussed in Chapter VII, the eriteria governing the possi-
bility of removing a cascade section in the lossless case also may pro-
vide qualitative guldance 1n applying the exact conditions of Chapter V
in the general case.

Precise mathematicel statements defining a function class and net-
work eclass for which the cascade synthesis procedure discussed here is
universally applicable would serve to complete the theory associaied
with the particular form of the cascade section employed. However, al-
though such definitions of the function class and network class are

absent, the cascade synthesis procedure of this thesls demonstrates that
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a synthesis in cascade sections without mutual inductance can be employed
in certain cases, including instances where the datum impedance is repre-
sented by & singly or doubly minimum-real function. Moreover, when the
cascade synthesis procedure succeeds at a given stage, the degree of the
driving-point impedance function 1s reduced without the creation of more
than one remainder impedance function. Thus, it is conceivable that the
successful application of the cascade synthesis procedure at an early
stage in the transformeriess synthesis of a driving-point impedance may
reduce significantly the number of network elements required.
Conclusions.--A new cascade synthesis procedure appropriate to certain
rational positive-real driving-point impedance functions has been de-
veloped. The procedure makes use of an elementary cascade section des-
eribed by a compact open-circuit impedance matrix having elements that
are suitably chosen fourth-degree rational functions of the complex fre-
gquency variable, Under certain conditions developed above, the cascade
section, which i1s not lossless in general, is realizable in an unbalanced
two-terminal -pair network utilizing neither ideal transformers nor mutual
inductive coupling. The locations of the zeros of transmission through
the cascade section play an impertant role in the synthesis procedure;
however, they are related to the driving-point impedsnce to be synthe-
sized and may not be chosen arbitrarily.

Bquivalent eircults for the cascade section have been derived to
make evident certain properties of the cascade section.

The class of impedance functions for which the synthesis procedure
is applicable is a gub-class of the class of minimum functions. Although

the cascade synthesis procedure is not always applicable, it lncludes
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technigues which, 1n principle, allow & determination of whether one
step of the procedure may be effected. In certain special cases, the
criterie for success of the cascade synthesis procedure reduce to in-
equalities among certailn constants, In general, however, the criteria
for successful removal of a cascade section involve inequalities con-
taining functions of more than one variable.

An advantage of the caascade synthesis procedure in cases vhere it
is applicable is that the degree of the driving-point impedance funection
is reduced by removal of the cascade section without the creation of
more than cne remainder impedance function.

The cascade synthesls procedure reduces to the Boti-Duffin synthe-
sis method when applied to the synthesis of second-degree minimum func-
tions as driving-point impedaneces. Thus, nothing is gained by applica-
tion of the new method unless the driving-point impedance to be synthe-

sized 1s of at least third degree.
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APPENDIX

Properties of second-degree minimum functions,--In this section some well-

known properties of second-degree minimum functions are collected for
reference purposes, using the notations and terminology employed in the
earlier sections of this report.

The most general second-degree minimum function may be written as

-

L a2R52 + (a - L)Q s + aR
i(s) = (a1)
a -1 2
8" + aRs + a
if the frequency scale is normalized so0 that
Z{j1) = JL . (A2)
Parameters a, L, and R in (Al) must satisfy the inegqualities
R>0, (a3)
a>o0, (A4)
and
k>0 (5)

a -1

in order that Z(s) be positive-real.eh The function given by (Al) may

be realized as a driving-point impedance by the Brune networks shown in

24
The conditions R = 0 and a = O lead to reactance networks.
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Figs. 30 and 31 and by one of the Bott-Duffin networks of Figs. 32 and
33. The network of Fig. 32 is appropriate if L > O and that of Fig. 35
is appropriate 1f L < 0. The parameters in Flg. 32 which have not al-

ready been defined are given by

2
L = La R (A6)
& Aa - 1) [aeR2 + (a - 1)2]
and
o = a-1 . (A7)

& Ila%R% 4 (& - 1)°]

Similarly, the new LE. and CB. in Fig. 33 are given by

3.2
L - S’ _ (48)
® (a-1) [&°R" + (a - 1)7]

and

afa - 1)
C = . A9
8 L[azR2 + (a - 1)2] (49)

In either of the Bott-Duffin networks, the terminal pair X may be open-
clrcuited, short-circuited, or termineted by any arbltrary impedance.

Realization of the cascade section.--Certain details pertinent to the

problem of realizing the ecascade section, which are omitted from Chapter
IV in order to avoid digressions, are considered here, These matters
include the discussion of sufficient conditions for an unbalanced reall-
zation of the cascade section and a more complete exposition of the un-

balanelng process for the case where L < 0.
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Figure 30. Becond-Degree Rrune Network.
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Figure 3l.. Second-Degree Brune Network.
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Flgure 32. Becond-Degree Bott-Duffin Network, L > 0.
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Figure 33. ©OSecond-Degree Bott-Duffin Network, L < 0.
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Consider first the case where I, > 0., 1t is stated in Chapter IV
that the satisfaction of either (80) or (8l) is a suffieient condition
for the transformerless realization of the cascade section when L,

(a - 1), and (b - 1) are non~negative. The proof of these sufficient
conditions consists of a demonstration that (80) and (81) each imply
{73)-(76). Tt will be shown here that (80) also implies (82) and (83).

The basic inequality (80) is

L 4
(a é;él - ibbéT? > -1 (a-1%30. (a10)

The last part of this relation implies

b-1>a-1 (A11)
or
b>a, (a12)
which is also (82). It is obvious that
521, (413)
which implies
=% > ahF (AL1)

since (a - 1) and (b - 1) are non-negative. The first part of (AlO) im-

plies

b2T2 > aERE

> . (a25)
(b - 1)* " (a - 1)*
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Combination of (All) and (Al5) yields

2 2
T R Alé)
(b -1)°7 (a-1)° (

v

or, since L > O,

TL
b_lza_l? (AlT)

which is also {74)}. Relations (All} and (Al7) imply

T>R, (A18)

which 1s also (83). The inequalities of (Al2) and (Al7) imply

beTL > aeRL

b-1~a-1 "' (419)

which 1s also (76). Since L > 0, (Al7) and (Al9) mey be combined to

yield

b2T2L > aEREL

s (A20)
(b - 177 (a-1)°

which 1s also (75). The inequalities of (A11), (Al2), and (Al9) imply

bETE a 2
b—l+m2&-l+a_l (AEl)
or, since L > O,
¢ b -1 < 2 - L =C (A22)

b 2.2

i L[b°T + (b - 1)2] - L[a2R2 + (a - 1)2] &
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which is also {77). Rewriting (AlO) results in

L 4
(b -1)°+ LE_%_%l_ < (a-1)%4 iﬂ—:*%l— : (a23)
T a2R
Combination of (All) and (A23) yields
1 (5-1)% 4 [CEDM P (a-1)% + (a1)* (A2k)
b-1 ) = Ta-1) 2p2
or
[ .22 2 22 2
(b1) | Bl o (e | ERt{asD)T ) ()
bT aR
Since L > 0,
22 2_2
L, Lb T > La R =L, (A26)

T (b1) 632 + (b-1)3] T (al)[aRE 4 (a-1)F] ®

vhich is also (73). Thus (80) implies (73)-(77), (82), and (83). A
proof of the sufficiency of (81) is not given here, since it is quite
similar to the proof for (80).

Now consider the case where L < O, The symmetric lattice network
from which the cascade section may be derived is shown in Fig. 6. The
horizontal-arm impedance z

R
of Fig. 33. The Boti-Duffin network for the diagonal-arm impedance z

may be represented by the Bott-Duffin network
T
may be obtalned from Flg., 33 by substituting b for a and T for R,

The lattice network of Fig. 6 may be represented as the parallel

combination of the two component lattice networks of Figs. 34 and 35,
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Figure 3k. Component Lattice Network I, L < O,

/¢,

Flgure 35. Component Lattice Network II, L < O,
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The parameters Lb and Cb in these figures are given by

3 2
LI (a27)

L. =
b (b - 1) [b2T2 + (b - 1)2]

and

b(k - 1)
e = . (A28)
b L[b2T2 + (b - 1)2]

The parameters La and Ca are defined analogously to Lb and Cb; expres-
sions for them are given in (A7) and (A8). Component lattice network I

has an unbslanced realizatioh if
L, 2L (A29)

and

2
b, >a.2PJ_.

P-1%8-1 ° (A20)

Component lattice network II has an unbalanced representation if

- b2T2L > = a2R2L

> , (A31)
(b -1)° 7 (a - 1)°
TL _RL
T 2T (a32)
and
c,>¢, - (A33)

If the unbalanced forms of the two component lattlce networks are

bigected and the impedance level of the right half of each network is
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multiplied by l/c, the two component networks of Figs. 36 and 37 result.
The two-terminal-pair network formed by the parallel combination of the
component networks of Figs. 36 and 37 is the desired unbalanced form of
the cascade section. The configuration of this network is shown in Fig.
28, As in the case where L > O, alternate forms of the final network
are possible.

In a manner analogous to that applied when L > O, it may be shown

that the satisfaction of elther of the inequalities

SR x A2 b2y (A3k4)
(1-a)_l‘ ) (l-b)h>(l-b)2_(1'a) >0 (A35)
3432 the -~ b

is a sufficient condition for transformerless reslization of the cascade
section when L < O. Condition (A34) implies (A29)-(43%3), as well as

b>a (A36)
and

T>R . (A3T)

Similarly, (A35) implies (A29)-{433), as well as

a>b . (438)

The Tinal network described above requires a total of 23 elements,

of which 6 are resistors. The number of elements required is again
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Figure 36,

Component Network I, L < 0.
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reduced to 11 reactors and 2 resistors if either of the two restrictions

R=0 (A39)

and

/T =0 (a40)

is enforced. The choice R = 0 leads to the cascade section shown in
Fig. 15. In this case it is evident from (A35) that (A38) or (84%), is
g sufficient condition for realization of the cascade sectlon in the
form shown by Fig. 15. Similarly, if the choice 1/T = O is made, (A3h)
shows that {(A3%6), or (82), is a sufficient condition for reslization of
the cascade section in the form shown by Fig. 16.

Numerical examples.--The following numerical examples illustrate the

cascade synthesis procedure:

(1) Consider the fourth-degree minimum function

z. (s) = 6L§§su + 52.08s5

1 sJ+ + 1.9635 + 11.1232 + 8.64s + 2,2

+ 35.9232 + 18.2ks + 16. (Al1)

2

for which
Zl(jl) = J2 {(Ah2)
and

a =2 . (Ah‘i)

For this datum impedance, the locus of the roots of {119) are shown in

Fig. 24. The function Zv(s) obtained by (100) is positive-real for
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b = 1.7 if the surplus transmission zeros are chosen to correspond to the
upper branch of the locus in Fig. 24. The parameters of the cascade

section corresponding to this value of b are

L=2, (ALL)
1/7 =0, {A45)
R = 0.039090607 , (A46)
a = 5.9656356 (ALT)
b = 1,7000000 , {a48)
and
¢ = 0.5366427h (A49)
The remainder impedance is
2
ZE(S) - 4,95554095° + 2.8537204s + 15.855733 ) (450)

52 + 0.061897579s + 3.2000000

The network realizing Zl(s) is shown in Fig. 39.

The computaticons necessary in performing the numerical work for this
example were carried out to elght significant figures., Of ccurse, this
procedure does not insure eight figure accuracy.

(2) Let the minimum function

b 3 2
Zl(S) _ Le 4+-th§ + 82; + 68s + 32 (A51)
168 + 98” + 663”7 + 32s + 32

be the datum impedance function to be realirzed. This function is doubly

minimum-real , and the method of Chapter VII 1is therefore appropriate,



28,500

M,
1.,6045 79iﬁ72
—/
A
| |
1
0.035087
2,0000 0.045083 1.073%3
o—4+ T T e AN — SRAR"
117°8.2 605,45
—
0.00088635 0.00L6517
1.8588
Zl—-—}

Flgure 39, Network Realizing Zl(s) of Exemple (1).
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From the equations

ja (A52)

Z, (1)
and

- J2g , (A53)

z, (32)

it is evident that {215) cannot be satisfied., Thus, the cascade syn-
thesis procedure of Chapter VII cannot be applied successfully.

(3) Consider the doubly minimum-real function

ho MpE e e
for which
w, = 2, {A55)
L =2, (A56)
a =2, (A5T7)
and
X = 25/2. (A58}

From (183), (184), and (66) the parameters

8/7 , (A59)

o
]

a = 32/7, (460)

Q
"

25/3 (A61)
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may be obtained. Since a - 1, b - 1, and @ - 1 have the same sign and ¢
is positive, the cascade section is realizable in the network shown by

Fig. 17. From (196), y may be calculated to be
y = 146/121 (462)

end computation shows that (202) is satisfied. Alternately, the

parameter B of Flg. 29 may be calculated to be

B = l/J"' ) (A65)

and (220) is satisfied, Thus the cascade synthesis procedure is suc-

cessful in this case. The remainder impedance is given by

s2 + 38 + 2
22(5) =3 5 . {A6%)
125~ + 28 + 6
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