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SUMMARY 

A new procedure is developed for synthesis of certain rational, 

positive-real functions as driving-point impedances in a structure com

prising a cascade of elementary sections. The procedure utilizes an 

elementary cascade section described by a compact open-circuit impedance 

matrix having elements that are suitably chosen fourth-degree rational 

functions of the complex frequency variable. Under certain conditions 

the cascade section, which is not lossless in general, is realizable 

in an unbalanced two-terminal-pair network containing neither ideal 

transformers nor mutual inductances. Hie locations of the zeros of 

transmission through the cascade section play an important role in the 

synthesis procedure; however, they are related to the driving-point im

pedance to be synthesized and may not be chosen arbitrarily. 

Equivalent circuits for the cascade section are derived to make 

evident certain properties of the section,, 

Although the cascade synthesis procedure is not applicable to all 

rational, positive-real, impedance functions, it includes techniques 

which, in principle, will determine whether one step of the procedure 

may be effected. 

An advantage of the cascade synthesis procedure in cases where it 

is applicable is that only one remainder impedance function is required. 



1 

CHAPTER I 

INTRODUCTION 

Brief statement of the problem.--This study concerns a method for synthe

sis of certain rational, positive-real functions as driving-point im

pedances in a structure comprising a cascade of elementary sections, with

out the use of mutual inductive coupling„ 

The basic approach to this problem is to specify the form of an 

elementary cascade section and to determine its parameters so that re

moval of the cascade section leaves a remainder impedance function that 

is positive-real and simpler than the given driving-point impedance. 

Each cascade section realizes one or more pairs of zeros of trans

mission; however, these transmission zeros are not independent of the 

given impedance function. 

Background of the cascade synthesis problem.'—The origin of this problem 

concerns the properties of the available synthesis methods for RLC two-

terminal impedances, i.e., driving-point impedances containing resistors, 

inductors, and capacitors. The earliest general method was announced 

in 1931 by Brune. This method is characterized by a cascade network 

structure in which the number of elements required is approximately pro

portional to the degree of the driving-point impedance function. Brune's 

0. Brune, '"Synthesis of a finite two-terminal network whose 
driving-point impedance is a prescribed function of frequency," Journal 
of Mathematics and Physics, vol. 10, pp. 191-236; 1931. 



2 

method has the disadvantage that it may require the use of unity-coupled 

coils. 

Eighteen years after Brune*s method was published, a driving-point 

impedance synthesis procedure involving no transformers or mutual in-

2 
ductances was developed by Bott and Duffin. This method is characterized 

by a tree-like network structure in which the number of elements required 

may increase exponentially with the degree of the given impedance function. 

Other methods of synthesis are available; however, they usually 

possess to some extent the undesired features of the Brune or Bott-Duffin 

procedures, i.e., either mutual inductances or large numbers of redundant 

elements are required. Thus, an important theoretical problem is to in

vestigate means of transformerless synthesis requiring fewer redundant 

3 
elements than the Bott-Duffin technique or its recent variants. This 

problem assumes a greater significance as the degree of the given driving-

4 
point impedance increases. This problem has been discussed by Darlington 

and has been investigated recently by Kim. Kim's results, which are 

2 
R. Bott and Ra J« Duffin, "impedance synthesis without use of 

transformers," Journal of Applied Physics, vol. 20, p. 8l6; August, 19^9• 

R. Mo Foster, "Passive network synthesis," Proceedings of the 
Symposium on Modern Network Synthesis, Polytechnic Institute of Brooklyn, 
vol. 5, PP. 3-9; April, 1955. 

So Darlington, "A survey of network realization techniques," 
IRE Transactions on Circuit Theory, vol* GT-2, pp. 291-297'> December, 
1955. 

Wan Hee Kim, "A new method of driving-point function synthesis_," 
Interim Technical Report No. 1, Contract No. DA-11-022-0RD-1983, Engi
neering Experiment Station, University of Illinois; Urbana, Illinois; 
April-, 1956. 
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obtained by topological methods, include non-series-parallel networks with 

fewer elements than the corresponding Brune networks. 

The considerations outlined above indicate the desirability of a 

transformerless synthesis procedure in which the number of elements re

quired is approximately proportional to the degree of the given impedance 

function. This requirement suggests the use of a cascade type of net

work structure. A cascade synthesis method employing no ideal trans-

6 

formers or mutual inductances has been developed by Guillemin. How

ever, GuilleminTs method, which is based on a lossless cascade section, 

is not directly applicable to minimum functions. In. common with the 

procedure to be presented here, Guilleminfs method has the limitation 

that it cannot be applied to all positive-real impedance functions. 

General approach.—The basic requirements pertinent to the cascade syn

thesis problem concern a single cascade section, shown in Fig. 1. Re

garded as a two-terminal-pair network, the cascade section denoted by z 

in Figo 1 is described by its open-circuit impedance matrix 

z •- [ 
Zll 212 
Z21 Z22 

(1) 

in which 

Z12 = Z21 (2) 

for the bilateral networks considered here. A simple calculation shows 

that the equation 

E. A. Guillemin, "New methods of driving-point and transfer im
pedance synthesis," Proceedings of the Symposium on Modern Network 
Synthesis, Polytechnic Institute of Brooklyn, vol. 5> PP° 131-l^j April, 
1955-
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<zn " V (222 + z 2 } • 2i2 (3> 

governs the relation between the two-terminal impedances Ẑ  and Z of 

Fig. 1. The impedance function 7^ (s) may be referred to as the "datum" 

impedance function and Z (s) as the "remainder" impedance function. 

In order for one step of a cascade synthesis procedure to be ef

fected, it is necessary to select an appropriate open-circuit impedance 

matrix z for the cascade section. The approach employed here involves 

initially the specification of the matrix z in terms of certain parame

ters and subsequently the determination of these parameters so that the 

remainder impedance function, Z (s), is positive-real and simpler than 

the datum impedance function, Z (s) „ After an appropriate open-circuit 

impedance matrix has been obtained, it remains to develop a means of 

realizing the cascade section represented by the matrix. This realiza

tion can be effected without the use of mutual inductive coupling under 

certain conditions which are derived in a later section of this report. 

Although the synthesis method to be described here does not include 

a complete specification of the defining characteristics of the function 

class or the network class for which the cascade synthesis procedure is 

applicable, it is possible at a given stage in the development to de

termine whether a single cascade section can be removed. 
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Figure 1. Cascade Section and Remainder Impedance. 

1 
O 

Z(s) 

Figure 2. Reduction to Minimum-Reality. 

Z-plane iV p l ane 

Figure 3° Impedance Plane Transformation,, 
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CHAPTER II 

PRELIMINARY CONSIDERATIONS 

Reduction of positive-real functions to minimum functions.—The datum 

impedance functions to be considered in succeeding chapters will general

ly be assumed to be minimum functions of the complex frequency variable 

s, i.e., rational, positive-real functions that are minimum-reactive, 

7 
minimum-susceptive, and minimum-real. For convenience, the complex 

frequency variable will usually be normalized so that a zero of the real 

part of the datum impedance function falls at s = jl. Thus, if the datum 

impedance function is denoted by Z1(s), the value of Z, (jl) will be 

imaginary and non-zero. 

The process of reducing a given rational, positive-real impedance 

function to a minimum function is well-known in network synthesis theory 

and will not be discussed in detail here,, However, it will be useful to 

consider two ways to effect the reduction to minimum-reality of a rational, 

positive-real function which is already minimum-reactive and minimum-

susceptive o 

One method for reduction to minimum-reality involves the transfor

mation of the given impedance function Z(s) into another function Z1 (t) 

by means of a bilinear transformation of the complex frequency variable 

s into another variable t. The bilinear transformation relating t and s 

7 
D. F. Tuttle, Jr0, "Network Synthesis," John Wiley and Sons, Inc., 

New York, N.Y., pp. 368-38l; 1958. 
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may "be wri t ten as 

t = HJJ , w 
cs + d 

where a, b, c, and d are real, non-negative constants. An appropriate 

(not necessarily unique) choice of the constants a, b, c, and d produces 

a function Z_(t) that is minimum-real. Subsequent realization of Z (t) 

by a method employing no mutual inductance implies realisation of Z(s) 

if each inductor and capacitor in the network for Z^(t) is replaced by 

the proper RL or RC network. This method, which is not new, is discussed 

8 Q 
by Nijenhuis and Westcott. It may be employed in conjunction with the 

synthesis technique to be described here in order to avoid the use of 

many lossless elements in the cascade sections. 

A second method for reduction to minimum-reality involves a bilinear 

transformation of the impedance plane, rather than the frequency plane. 

Mathematically this procedure strongly resembles the first method; how

ever the interpretation of the transformation in terms of an electric 

network is different. In this method the given impedance function Z(s) 

is reduced to minimum-reality by the removal of a cascade section con

taining only resistors. Thus, the reduction may be represented as in 

Fig. 2, where the open-circuit impedance matrix r, describing the cascade 

section as a two-terminal-pair network, has real, positive elements, r.., 

Q 

W. Nijenhuis, "Impedance synthesis distributing available loss in 
the reactance elements," Phillips Research Reports, vol. 5> pp. 288-302; 
1950. 

Q 

J. H. Westcott, "Driving-point impedance synthesis using maximally 
lossy elements," Proceedings of the Symposium on Modern Network Synthesis, 
Polytechnic Institute of Brooklyn, vol.5, pp. "63-78; April, 1955-
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and a non-negative determinant, d(r). The relation between the impedance 

functions Z(s) and Z, (s) implied by Fig. 2 may be expressed as 

r Z(s) - d(r) 

*!<»> - \ - Z(s) ' (5) 

Some pertinent properties of this well-known transformation are shown 

in Fig. 3« The image of the imaginary axis of the Z -plane is a circle 

E in the Z-plane, lying in the right half-plane (but possibly tangent to 

the imaginary axis). Let K be the locus of Z(s) for imaginary values of 

s, and let IC be the Z -plane image of this locus. Then Z (s) is clearly 

minimum-real if K lies tangent to, but not outside of, E. For a given 

impedance function Z(s) and the corresponding locus K, any circle centered 

on the positive real axis which encloses and is tangent to K, but lies 

within the right half-plane, defines two of the three constants required 

to determine the open-circuit impedance matrix r. In its simplest form 

this method consists of the conventional subtraction of an appropriate 

real, positive constant from Z(s) or its reciprocal. The somewhat more 

general form of this method is discussed here because of a later applica

tion. 

A modification of the Brune process.--The synthesis as a driving-point 

impedance of a minimum function, say Z..(s), was first effected by Brune, 

using a cascade network structure like that shown in Figs, k and 5» The 

Brune network represented in these figures is realizable in the form of 

10 
Element values in all figures are given in terms of ohms, henrys, 

and farads, except that admittances are denoted by the letter Y. 



L - L/a 
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J Z2 Z2 

Z -» a - 1 
T 
i.1 

i 

a - 1 
T 
i.1 

vj 

Figure 5° Brune Network, 
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Fig. 5 (with the use of unity-coupled coils) if the real constants L and 

(a - l) have the same sign. It realizes 7. (s) if the parameters L and a 

are properly chosen. The choice of the parameters L and a depends only 

upon the value of Z- (s) and its first derivative at the frequencies of 

the transmission zeros of the Brune network,, These transmission zeros 

must be chosen to coincide with a pair of imaginary-axis zeros of the 

real part of Z (s). It is assumed in Figs, k and 5 &;nd in the develop

ment to follow that the transmission zeros fall at s = + jl. Let 

Z^CJI) = J^ (6) 

and 

Z«(jl) = r.» , (7) 

11 12 

where x.. is non-zero. Then it may be shown, that r* is a real, posi

tive constant subject to the inequality 

r£ > I*! I > (Q) 

and that the parameters L and a should be determined by the equations 

and 

L = x± (9) 

ri + Xl 
r i x i 

if Z (s) is to be a positive-real function of lower degree than Z (s) 

Primes are used to denote differentiation. 

12 
Tuttle, op^ cit., pp. 513-53^» 
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Consideration of Fig. 5 shows that the parameter a, when regarded as 

15 a property of Z (s) determined "by (10), fixes the turns ratio of the 

transformer in the Brune network. Thus this constant, which is positive 

"by virtue of (8), plays an important role in the Brune synthesis pro

cedure. The value of a is greater than unity if L is positive and less 

than unity if L is negative, since (8) implies that 

L iî  <*> a - 1 

is positive. 

Suppose that 

x. - L < 0 , (12) 

so that a series inductor can he removed from ZL(s) to leave a positive-

real remainder function Z (s), where 
El 

Za(s) = Z^(s) - Ls (13) 

and 

Z ( + Jl) = 0 . (14) 

After removal of the series inductor, the positive-real remainder ad

mittance l/Z (s) has a pole pair at s = + jl with a residue of 
EL •• 

13 
Numbers enclosed in parentheses refer to designated mathematical 

expressions. When prefixed by A, the numbers refer to expressions in the 
appendix. 

14 , , 
The trivial case where r* = | x | is easily disposed of. See 

Tuttle, op. cit., p. 5l8. 
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K
1 = zIT3iy = ^ = H i r i > 0 <«) 

at each pole. Thus, a positive-real admittance of the form 

y = - ~ (16) 
S + 1 

may "be removed from l/Z (s) to leave a positive-real remainder admittance 
a 

if and only if 

0 < 2K < 2KX = 2̂ -=-̂  . (17) 

Let the constant f3 be defined by the equation 

P - 1 2K = H_l^ . (18) 

Then (17) will be satisfied if and only if 

1 >. 0 > a . (19) 

The remainder impedance after removal of the admittance given by (l6) is 

VS> = I X 2Ks • (2°) 

^ " ? + X 

This impedance function has a simple pole at infinity; its residue in that 

pole is made evident by the equation 

Lim y S' = _L_ /21N 

s-» oo s -P 
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The remainder impedance after removal of the pole at infinity from Z, (s) is 

L Zc(s) = Z^s) + ^ s . (22) 

This impedance function is a positive-real function of s having the same 

degree as Z (s) unless f3 is chosen equal to a. 

If 

xx = L > 0 , (23) 

essentially the same result can be proved by using the dual form of the 

Brune network. In this case, Z (s) is positive-real and has the same 

degree as Z (s) if and only if 

1 < p < a . (24) 

If p is chosen equal to a, Z (s) is positive-real and of degree lower than 

Z^s). 

The relation between Z (s) and Z (s) is illustrated by Figs, k and 

5 if Zp and a in these figures are replaced by Z and (3, respectively. 

To state the result of this section concisely, let the constant a de

termined from (10) be called the "Brune characteristic" of the datum im

pedance at the frequency of its real-part zero. Further, let p, the 

turns ratio of a Brune section satisfying (9), be called the "character

istic" of the Brune section. Then, if a is the Brune characteristic of 

Z (s), a Brune section having any characteristic, 0, lying in the interval 

The desired result may also be proved without reference to the 
sign of L by manipulation of the Brune network itself or by consideration 
of the relation between the even parts of Z (s) and Z (s). 
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between 1 and a (open at a and closed at l) may be removed from Z (s) to 

leave a remainder impedance that is positive-real and of the same degree 

as Z (s). Since (a - l) and (f3 - l) have the same sign for values of £ 

in the interval stated, the Brune section is itself realizable also. The 

remainder impedance function Z (s) is a minimum function satisfying the 

equation 

zc(Ji) - J \ • (25) 

If p is chosen equal to unity, the Brune section degenerates to a direct 

connection and the remainder impedance becomes identical with Z (s). If 

f3 is chosen equal to a, the resulting cascade section and remainder im

pedance become those obtained with the normal Brune procedure. 
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CHAPTER III 

SELECTION OF THE CASCADE SECTION 

Algebraic requirements,—Consider again the network structure indicated 

by Fig. 1 and mathematically characterized by (l). The equation 

z2 z Z - d(z) 

** - - •* • ;^V J ^ r ' (26) 

where d(z) is the determinant of the matrix z, is easily derived from 

(l). Let z (s) be a transfer impedance function having zeros at 

s = + «jl and at two additional points in the complex frequency plane 

(s-plane). Either these additional points will be conjugate complex 

points or they will both be real. Suppose also that each element of the 

second-order square matrix z is a fourth-degree impedance function, i.e., 

each ZlJ(s) has (the same) four poles in the s-plane. Poles of ^ ( B ) are 

generated by the poles of z (or z ) and the zeros of z - Z , unless 

cancellations occur in (26). Thus, if Z (s) has degree n, Z (s) has de

gree n + 8. However, if d(z) has only simple poles at the poles of z , 

Zp will not contain the poles of z (barring some special circumstances). 
1 £ 

In this case the matrix z is said to be compact,, Only compact z-matrices 

will be admitted henceforth; thus, the degree of Zp will be n + k. 

This terminology was introduced by Dasher in reference to RC two-
terminal-pair networks. See B. J. Dasher, "Synthesis of RC transfer 
functions as unblanced two terminal-pair networks," Technical Report No. 
215, Research Laboratory of Electronics, Massachusetts Institute of Tech
nology, Cambridge, Massachusetts; November, 1951* 
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Poles of Z produced by zeros of z - Z may also be reduced in 

number if the equation 

zn - \ ^ 

is satisfied at some or all of the zeros of z . If (27) is satisfied 

at a pair of zeros of z , the degree of Z is reduced by two. An ad

ditional. reduction by two is obtained when 

z£,_ - %l (28) 

at the same pair of zeros of z . If the pair of zeros is a conjugate 

complex pair, satisfaction of (27) or (28) at one member of the pair 

implies its satisfaction at the other member, since 2L , Z , and z 

are all real for real values of s„ Thus, by employing a cascade 

section having a compact z-matrix, a.nd by requiring that 

and 

z^Jl) -Z^Jl) (29) 

Z11 ( J 1 ) * ^ ( J 1 ) ' ( 3 0 ) 

a remainder impedance, Z , of degree n is obtained. A remainder impedance 

of degree n - 2 is obtained if (27) is satisfied a-t the additional zeros 

of z . In this event the additional zeros of z may be referred to as 

"surplus" transmission zeros, since the loaded transfer impedance, 

is not zero at the additional zeros of z . 
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Mathematical description of the cascade section.--In keeping with the com

pactness requirement discussed above, and in order to provide transmission 

zeros at s = + jl, let the elements of the open-circuit impedance matrix 

describing the cascade section be 

1 (zm + czn) , 
11 1 + c x T R 

(32) 

( z m - z) = z „ , J12 1 + c v T R' 21 
(33) 

and 

1 / ^ Rv 
Z

22
 anr (z

T
 + ~} ' 

(3*0 

where 

z m = T b - 1 
b 2 T s 2 + (b - l ) 2 s + bT 

2 
s + bTs + b 

(35) 

and 

ZR a - 1 
a Rs + (a - l ) s + aR 

2 
s + aRs + a 

(56) 

The r e a l cons tan t c i s assumed t o s a t i s f y t he i n e q u a l i t y 

c > 0 , (37) 

and a, b, L, T, and R are real non-negative constants subject to the in

equalities 
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and 

b - 1 -
> 0 . (39) 

The impedance functions z (s) and z (s) are positive-real, minimum-real, 
i K 

second-degree functions such that 

zT(jl) = zR(jl) = JL , 

zj(jl) = L(fi-i) , 

(to) 

(M) 

and 

a + 1' 
R 
(Jl) = L(f^4) • 

a - 1' 
(̂ 2) 

It is evident that (33) and (40) imply that 

z12(«3l) = 0 (W 

The transfer impedance function z_0(s) may be expressed in factored 
12 

form as 

s12(8) = (l+o)(a-l)(b-l) 

(s2+i)(e2s
2+e1s+e0) 

(s +bTs+b)(s +aRs+a) 
, (*5) 

where 

9 0 = h T - a R + ~ R - - T , 
2 b a ' 

(W 

3l = (t-a) [(^)(^i).RT] , (W) 
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and 

6= aT - bR + R - T . (47) 

It is interesting to note that 0_ vanishes if 

a = b (48) 

or if 

RT= (^-a-
A)(~-) • (*9) 

In either of these cases the surplus transmission zeros, defined by the 

zeros of 

e(s) = e 2s
2 + exs + eQ , (50) 

fall on the imaginary axis of the complex frequency plane. If (48) is 

satisfied, then Q and 0 are equal and the surplus zeros of transmission 

occur at s = + jl. The asymptotic case in which R approaches zero and 

T approaches infinity, "but in such a way that the product RT remains 

finite, is also interesting, since these conditions correspond to a loss

less cascade section. Of course the transmission zeros must be on the 

imaginary axis of the s-plane in this case, since each z. . (s) is of 

fourth degree, and one pair of zeros of z p(s) is already constrained to 

fall at s = + jl. The transfer impedance function that results from the 

limiting process is 

£ m
0
 Z12 (S ) " (1 + c)(b - 1) 

T->00 

RT = posi t ive constant 

( s 2 + l ) ( s : " + a/b) 

s(s + a) 
(51) 



20 

In the general case, whether the cascade section is lossy or loss

less, (l) implies that the surplus transmission zeros must not lie in the 

right-half s-plane. Otherwise zpp + Zp, which must be positive-real if 

Z (s) is to be positive-real, would have at least one zero in the right-

half s-plane. This situation is impossible; therefore, a necessary con

dition for a positive-real remainder impedance function is that 0(s) have 

no right-half plane roots (unless (27) and (28) should both be satisfied 

at the surplus transmission zeros). This requirement means that 0 , 0 , 

and 0 must have the same sign. 

Since the two special cases where R = 0 and l/T = 0 will be ex

ploited later in order to simplify the realization of the cascade section, 

it is appropriate to determine the locations of the surplus transmission 

zeros in these cases. If 

R = 0 , (52) 

the roots of 0(s) are determined by 

2 a 
S + b 

p (b - l ) (b - a) 1 + a ( } 

|_ Tab J b WJJ 

The condition barring right-half plane surplus zeros is thus 

(b - l)(b - a) > 0 . (54) 

Because (38) and (39) require that (a - l) and (b - l) have the same 

sign, it is clear that 

b > a (55) 
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or 

b < a (56) 

is required, accordingly as L is positive or negative, respectively. Simi

larly, for 

5 - 0 , (57) 

the surplus zeros are defined by 

2 a I a - b s + ![ a - 1 
Rs + | = 0 , (58) 

and the condition barring right-half plane zeros is 

^ ~ > 0 . (59) 
a - 1 — 

Thus the necessary requirement is 

a > b (60) 

or 

a < b , (6l) 

accordingly as L is positive or negative, respectively. 

Petermination of constants.--In order to determine the appropriate values 

of the constants vhich enter as parameters in the mathematical description 

of the cascade section, it is necessary to return to (29) and (3®), re

lating z .. and Z.. • Previous equations concerning z , (s) and the no

tations introduced in Chapter II allow (29) and (30) to be written as 
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and 

r» = 
1 + c 

xx = L (62) 

[(f^)-(^T)] • («3) 

Implicit in these equations is the requirement that the datum impedance 

function Z, (s) be a minimum function with real-part zeros at s = + jl. 

In view of the discussion in Chapter II, this requirement is not re

strictive. From (10) of Chapter II it may be deduced that 

!i-i±i . (64) 
x a - 1 v ' 

This equation and (62) may be employed to reduce (6j>) to the form 

( 1 + c > ^ T > = ( m ) + c ^ «*> 

or to 

c . (S-^i) (5^2) . (66) 
b - 1 a - a 

Equations (62) and (66) may be considered as solutions for the constants 

L and c if suitable values for the parameters a and b can be found. 

The constant c fixes the impedance level disparity between right 

and left sides of the quasi-symmetric network which will be used to rea

lize the z-matrix of the cascade section. It will be seen later that a 

non-negative value of c is necessary in order for the realization process 

to succeed. Therefore, it is important to observe that c is non-negative 
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if a and b lie on opposite sides of a on the real line. Stated another 

way, since (a - l) and (b - l) have the same sign, c will be non-nega

tive if 

a < a < b (67) 

or if 

a > a > b . (68) 

If neither (67) nor (68) is satisfied, a negative value of c results 

from (66). The inequalities of (67) and (68) will also prove pertinent 

to the problem of realizing the cascade section in an unbalanced network 

without mutual inductance and to the requirement that the remainder im

pedance function be positive-real. 
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CHAPTER IV 

UNBALANCED FORM OF THE CASCADE SECTION 

Procedure for realizing the cascade section.--The cascade network repre

sented by the matrix z, with elements given by {^2)-{^>k), can be realized 

in an unbalanced form by the following procedure if each step of the 

procedure succeeds: 

A symmetric two-terminal-pair network is constructed having 

Z v, = zm (69) 
och T ' 

and 

z (70) 
sch " R > 

where z and z represent, respectively, the open-circuit and short-

circuit impedances of half of the bisected symmetric network. This con

struction may be accomplished by realizing first a symmetric lattice net

work with horizontal arms equal in impedance to z and diagonal arms 

equal in impedance to z . The lattice network is then unbalanced in a 

step-by-step manner. The resulting symmetric two-terminal-pair network 

is bisected, the right half is multiplied in impedance level by the 

constant l/c, and the network is re-connected at the bisection plane. 

17 
The procedure outlined here was given by Dasher, in connection 

with RC transfer function synthesis. It is treated in greater detail by 
Guillemin. See Dasher, op. cit., pp. 11-23 and E. A. Guillemin, "Synthe
sis of Passive Networks," John Wiley and Sons, Inc., New York, N.Y., 
pp. 207-210; 1957. 
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Network configuration.—The symmetric lattice network employed as an in

termediate stage in the unbalancing process is shown in Fig. 6. In the 

case where L is positive, z may be represented by the Bott-Duffin net

work of Fig. 7. The Bott-Duffin network for zR may be obtained from 
-1 Q 

Fig. 7 by substituting a for b and R for T. The parameters L, and C, 

are given by 

L. = y^f- 5- (71) 
b (b -1) t b ¥ + (b - i n 

and 

Cb = g g
 b " 1

 r • (72) 
b LtbV + (b - i n 

The lattice network of Fig. 6 may be represented as the parallel 

combination of the two component lattice networks of Figs. 8 and 9« The 

parameters L and C in these figures are defined analogously to L, and 

C, ; expressions for them may be obtained from (71) and (72) by substi-

19 

tuting a for b and R for T. y Component lattice network I has an un

balanced representation if 

Lb > La (73) 

and 

T L >^T • (74) b - 1 - a - 1 ' 

-1 O 

The Bott-Duffin network for zR is also shown in Fig. 32 in the 
appendix. 

Expressions for L and C are also given by (A6) and (A7) in the 
appendix. 
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Figure 6. Symmetric Lattice Network. 
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Figure 7. Bott-Duffin Network for z_, L > 0. 
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Figure 8, Component Lattice Network I, L > 0. 
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l/C 

/ b2T2L 
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O •O 

Figure 9« Component Lattice Network II, L > 0. 
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Component lattice network II has an unbalanced representation If 

^2 2 2 2 
b T L > a R L ( 7 5 ) 

(b - l ) 2 (a - l ) 2 

2 ~ ^ 
b - 1 - a - 1 

and 

b TL > a ^ ^ ( ? 6 ) 

C a > C b . (77) 

If the unbalanced forms of the two component lattice networks are bi

sected and the impedance level of the right half of each is multiplied 

by l/c, the two component networks of Figs. 10 and 11 result. The two-

terminal-pair network formed by the parallel combination of the compo

nent-networks of Figs. 10 and 11 is the desired unbalanced form of the 

cascade section described by the matrix z. The configuration of this 

network is shown in Fig. 12. Of course alternate forms of the final 

network may be obtained through the use of Tee-Pi transformations and 

two-terminal network equivalences. 

The final network described above requires a total of 23 elements, 

of which 6 are resistors. The number of elements required is reduced 

to 11 reactors and 2 resistors if either of the restrictions 

R = 0 (78) 

or 

1/T = 0 (79) 
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Figure 10. Component Network I, L > 0. 
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OQ 

is enforced. Primary attention will be given here and in succeeding 

chapters to the two cases where R and T are chosen to satisfy (78) or 

(79)• However certain mathematical relations concerning the unbalanced 
form of the general cascade section are discussed in the Appendix. 

21 
It may be shown that satisfaction of either of the inequalities 

li^.Ii^X^.^.ta^^O (80) 
aTT b T 

or 

b2T2 - a2R2 > (a - l ) 2 - (b - l ) 2 > 0 (8l) 

is a sufficient condition for transformerless realization of the cascade 

22 
section when L is positive. Inequality (80) implies (73)-(77), as 

well as 

b > a (82) 

and 

T > R . (83) 

Similarly, (8l) implies (73)-(77), as well as 

a > b . (84) 

20 
Equation (78) should more properly be considered as a short no

tation for a limiting process, i.e., the limits of the various element 
values of the cascade section are to be taken as T approaches infinity. 

21 
See appendix. 

It is assumed that a •> 1 and b > 1. 
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The choice R = 0 leads to the cascade section shown in Fig. 13• 

In this case it is evident from (80) that (82) is a sufficient condition 

for realization of the cascade section in the form shown by Fig. 13-

Similarly, the choice l/T = 0, i.e., T approaches infinity, leads 

to the cascade section shown in Fig. lK. In this case .(8l) reduces to 

(83), which is thus a sufficient condition for realization in the form 

shown by Fig. ik, 

The development of a network representation of the matrix z fol

lows an analogous pattern when L is negative. Again the general net

work contains 23 elements, and specialization to the two cases R = 0 

and l/T = 0 reduces the number of elements required to 13. If R = 0, 

(84) becomes a sufficient condition for realization of the cascade 

section shown in Fig. 15. If l/T = 0, (82) is a sufficient condition 

for realization in the form shown by Fig. l6. Further details concern

ing realization of the cascade section when L is negative are contained 

in the Appendix. 

A lossless cascade section results from the limiting process in 

which R approaches zero and RT remains finite and non-zero. In this 

case the cascade section assumes the form shown in Fig. 17 or Fig. 18 

as L is positive or negative, respectively. The lossless cascade section 

has certain special properties, some of which are discussed in Chapter 

VII. 
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CHAPTER V 

REMOVAL OF THE CASCADE SECTION 

A pseudo-Brune development of the cascade section.--In Chapter IV an un

balanced two-terminal-pair network realizing the open-circuit impedance 

matrix of the cascade section was developed. In order to control the 

characteristics of the remainder impedance in a step-by-step manner, it 

is expedient to develop another network representation of the cascade 

section. This representation, which resembles a cascade of two Brune 

sections, may be referred to as a "pseudo-Brune development" of the 

cascade section. 

The procedure for obtaining the pseudo-Brune development of the 

cascade section follows the general pattern outlined in Chapter IV, ex

cept that z and z are represented by their Brune networks. The Brune 

1 R 

network for z is shown by Fig, 30 in the appendix; the Brune network 
R 

for z may be obtained from Fig. 30 by substituting b for a and T for R, 

The symmetric lattice network of Fig. 6, containing z and z as 
1 R 

diagonal-arm and horizontal-arm impedances, is equivalent as a two-

terminal-pair network to the network shown in Fig. 19. This network is 

obtained by removal of common series and shunt impedances from z and 
z_. The two-terminal impedance Z is given by 
R o 

Z (s) = - \ 
o a-b 

/aN^,a-DN„ kf ,a ,'d a/a-Dv^ 
(-) (—r)Rs + (- - 1) s + -(—-)R vb va-lx vb ' b a-1' 

2 a,a - b\T-. a 
s + ( )RS + 

Va - 1 b 

(85) 



Figure 19. Reduction of the Symmetric Lattice Network. 
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The symmetric lattice internal to the circuit of Fig. 19 may be represent

ed as a two-terminal-pair network by a Tee network. With the use of this 

representation, the complete network may be bisected. If the right half 

of the network is then multiplied in impedance level by the factor l/c 

and the network is re-connected at the bisection plane, the cascade 

section shown in Fig. 20 results. This representation is called the 

pseudo-Brune development of the cascade section since it contains two 

Brune sections in cascade, separated by a Tee network. The left and 

right Brune sections have characteristics b and l/b, respectively. 

A procedure dual to that outlined above permits an alternate pseudo-

Brune development of the cascade section in which the Brune sections have 

characteristics a and l/a. In this procedure it is convenient to employ 

the dual forms of the Brune networks for zm and z_. Thus z^ is repre-

sented as in Fig. 31 in the Appendix, and the representation for z is 

obtained from the network for z by substituting b for a and T for R. 

The alternate pseudo-Brune development of the cascade section is shown 

in Fig. 21, where Y is an admittance given by the equation 

Yo ( s ) = I(b^0 

(a}2(b-a)(b-l) 2 fa .2 ,a} (b-a) (b-l) 
V Tab S +('b L) S + V Tab 

8 + V Tab + b 

. (86) 

Location of surplus transmission zeros.--It may be seen from Figs. 20 and 

21 that the pseudo-Brune development makes evident the transmission zeros 

of the cascade section. In fact, the surplus transmission zeros are 

clearly the roots of 



- L/ot 

nro-^—o 

Figure 20. Fseudo-Erune Development of the Cascade Section. 
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5̂ 

Zo(s) - Jk- (87) 

Y 0(B) - ̂  . (88) 

The two cases corresponding to the restrictions R = 0 and l/T = 0 

are of interest here since the number of elements required in the trans

formerless realization is reduced by these restrictions. Moreover, as 

will be seen below, these cases allow some simplification in determining 

whether removal of the cascade section from the datum impedance leaves a 

positive-real remainder impedance function. Thus, except for the dis

cussion of certain special cases in Chapter VI, one of the restrictions 

R = 0 or l/T = 0 will always be imposed in this and succeeding chapters. 

The restriction l/T = 0 causes the Tee network between the Brune sections 

of Fig. 20 to reduce to a single series impedance of (l + l/c)Z (s), as 

shown by Fig. 22. Similarly, for R = 0 the Pi network between the Brune 

sections of Fig. 21 reduces to a single shunt admittance of (l + c)Y (s), 

as shown by Fig. 23. In Figs. 22 and 23 the networks denoted by B(a) 

and B(b) represent Brune sections with characteristics a and b, respec

tively, while — B(a) and — B(b) represent the geometrical images of B(a) 

c c 

and B(b) multiplied in impedance level by l/c. 

It is indicated by Figs. 22 and 23 that the cascade section may be 

regarded as transforming the datum impedance Z (s) into the remainder 

impedance Zp(s) by the following series of three steps: 

(l) A modified Brune section is removed from Z (s) to produce the 

impedance function Z (s), which is positive-real and has the same degree 

as Z (s) if the conditions outlined in Chapter II are satisfied. 



Figure 22 „ Transformation from. Datum Impedance 
to Remainder Impedance, l/T - 0. 

Figure 23, Trang format ion from Datum. Impedance 
to Remainder Impedance., R = 0. 

Table 1. Necessary Conditions for Realizability, 

L R or l / T 

L > 0 R « 0 

L > 0 l / T » 0 

L < 0 R * 0 

L < C l / T « 0 

Condition 

b > a > a > 1 

a > a > b > 1 

b < a < a < 1 

a < a < b < 1 
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(2) A series impedance or shunt admittance is removed from Z (s) or 

its reciprocal. If the surplus transmission zeros of the cascade section 

can "be located properly, this step produces an impedance function Z (s) 

of the same degree as Z (s). When the condition R = 0 is imposed, both 

(88) and Fig. 23 show that the surplus transmission zeros are simply the 

poles of Y (s). Thus Z (s) has the same degree as Z (s) if the poles of 

Y (s) are constrained to be zeros of Z (s). It should be observed that 
o u 

the locations of these zeros are functions of the parameter a. Similar

ly, when l/T = 0 is required, (87) and Fig. 22 show that the surplus 

transmission zeros are the poles of Z (s). Thus Z (s) has the same de

gree as Z (s) if the poles of Z (s) are also poles of Z (s). In either 

of the two cases R = 0 or l/T = 0, the proper choice of the poles of 

Y (s) or Z (s) insures that (27) is satisfied at the surplus transmission 

zeros. Thus, if the parameters L and c of the cascade section are de

termined according to (62) and (66), the remainder impedance Zp(s) must 

be lower in degree than Z, (s) by two. 

(3) Impedance function Z2(s) is obtained from Z (s) by the removal 

of a second Brune section. Since Z_(s), Z (s), and Z (s) have the same 

degree, it is clear that this step must effect a reduction in degree by 

two in transforming from Z (s) to Z (s). Therefore, the second Brune 

section must be identical with the Brune section that would be obtained 

if Z (s) were synthesized by the Brune procedure. Evidently, Z (s) must 

have real-part zeros at s = + jl. Moreover, Z (s) and Z (s) also have 
- ' uv ' o 

real-part zeros at these frequencies. Since the transformation from 

Z (s) to Z (s) is effected by the conventional Brune process, Z (s) is 

positive-real if Z (s) is positive-real. 
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Requirements for a, positive-real remainder impedance.--The usefulness of 

the pseudo-Brune development of the cascade section is that it allows 

step-by-step control of the remainder function at each stage in the re

moval of the cascade section. If each of the three steps outlined in 

the previous section produces a positive-real remainder impedance, the 

cascade synthesis procedure succeeds, provided that the cascade section 

is itself realizable. 

Removal of the cascade section from the datum impedance Z. (s) will 

leave a positive-real remainder impedance function Z (s) lower in degree 

by two than Z. (s) if the following three conditions are satisfied: 

(1) The pertinent inequality in Table 1 is satisfied. The inequali

ties shown in this table are necessary and sufficient conditions for c 

to be non-negative and Z (s) to be positive-real. They are sufficient 

conditions for realization of the cascade section without the use of 

mutual inductive coupling. 

(2) The poles of Z or Y are contained in Z or l/Z , as appropri-
v ' * o o u ' u 

ate. 

(3) The inequality 

Re -jzj ja>) - (1 + 1/c) ZQ( ja>) \ > 0 (89) 

or 

Re |l/Zu(jaj) - (1 + c) Yo(ja>)j > 0 , (90) 

as appropriate, is satisfied for all real values of co. 

That condition (l) is necessary and sufficient for a non-negative 

value of c and a positive-real impedance function Z (s) has been shown in 

Chapters II and III. It has also been shown in Chapter IV that condition 
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(l) is sufficient to allow realization of the cascade section without the 

use of mutual inductive coupling. Since conditions (2) and (3) are in

terdependent, they must be considered together in determining whether re

moval of the cascade section is possible. The principle of duality al

lows the arbitrary choice of the case where l/T = 0 in the discussion to 

follow, because inversion of &. (s) is equivalent to choosing the case 

where R = 0. 

The transformation from Z-,(s) to Z (s) may be written as 

(1 + flf)p(B) - L ( ^ i ) s Q ( s ) 
Zu(s) = J2-5 F i 1 , (91) 

(1 + bS2)Q(S) - (^-i)BP(B) 

where P(s) and Q(s) are the n-th degree numerator and denominator poly

nomials of 

^(B) - §|} . (92) 

The impedance function Z (s) given by (91) is also a quotient of poly

nomials, say P and Q . These polynomials have degree n + 2. However, 

the degree of Z (s) is only n, since P and & have the common factor 

p 
(s + l ) . Thus Z (s) may be written as 

P v (s2 + i)p P 

( B a + l ) < ^ _ < 1 U 

common Of course, if b is chosen equal to a, P and Q also have a 

o 
factor (s + l ) . This possibility is considered in Chapter VI and will 
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not be discussed here. Upon writing 

P(s) = ̂  + n x (9*0 

and 

Q(s) = m2 + n2 , (95) 

where HL and m are even and n and n are odd polynomials, the even 

part of Z, (s) may be written as 

V2 " Va ^ = Ev \ h 2 * • (96) 
m 2 - n 2 

It may be shown that the even-part zeros of Zu. (s) are preserved in Z (s) 

unless b = a. Moreover, examination of (91) and (95) shows that 

P(0) = Pu(0) (97) 

and 

Q(0) = Qu(0) . (98) 

Thus the even part of Z (s) may be written as 

r -I m m - n n 

^^IV'^) -^ ' • (99) 

The transformation from Z (s) to Z (s) is 
u vv ' 

Zy(s) = Zu(s) - (1 + 1/C)ZQ(S) . (100) 

Since the poles of Z (s) are the surplus transmission zeros, it must be 

required that the quadratic polynomial 
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2 a/a - bx _ a 
s + -) Rs + -

b a - 1 b 

(101) 

be a factor of Vs> . Let 

Q^s) = (s + ps + q) B(s) (102) 

where B(s) is a polynomial of degree n - 2. Then parameters a, b, and R 

must be constrained to satisfy the equations 

t = q 

and 

a/a - ~bs _ 

b(r-rr)R - p 

(103) 

(104) 

From these equations it is evident that 

a = qb (105) 

and that (l + l/c) Z (s) may be written as 
o 

<1+1/=> Vs> - ( q & ( A 
2 2 

pqs + (q-l) s + p 
2 
s + ps + q 

(106) 

The parameter c has been eliminated from, the right member of this equa

tion by the use of (66). 

Let 

(1 + l/c) Z (s) = ̂ 4 > v ' ' oK ' u(s) ' (107) 

where 

t(s) = t + t_ s + t s' x ' o 1 2 
(108) 
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and 

u 
2 2 

(s) = u + u s + u s = q + ps + s (109) 

Then the even part of (l + l/c) Z (s) is given by 

M = 
pqL(a - l ) 

o (qb - l ) ( a - b) 

r isLaii] 
u(s) • u(-s) (110) 

Since 

B(s) = Qjs) . u(s) 

i t is clear that M can also be written as 
o 

mr P^Icc " l ) 
Mo " (qb - l ) ( a - b) 

(s2 + l ) 2 B(s) • B(-s) 
(HI) 

Moreover, since even-part zeros of a positive-real function which lie on 

the imaginary axis of the complex frequency plane must be even in order, 

M may be expressed as 

M = (s2 + I ) 2 A(s) ' A(-s) 
u Vs) • V"s) (112) 

where A(s) has no right-half-plane roots. Thus the even part of Z (s) is 

M = Ev <Z 
v v 

(s2
 + l ) 2 0(b,- s2) 

\w • V-S^ ' 
(113) 

where 

0(b, -s2) = A(B)-A(-B) - ( 9 ^ ( i ) ( a ^ b ) B(s)-B(-s) . (114) 
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Now Z (s) is regular in the right half-plane if Z (s) is positive-

real. Moreover, the even part of Z (s) will be non-negative on the imagi

nary axis if 0(b, x) is non-negative for all real, positive values of x. 

Thus the inequality 

0(b, x) > 0 for x > 0 (115) 

is a necessary requirement if Z (s) (and thereby Zp(s), also) is to be 

positive-real. This requirement is also sufficient if Z (s) is positive-

real, unless Z has j-axis poles. This possibility, which is excluded 

from consideration here, is discussed in Chapter VII. An alternate form 

of (115) is 

, 2 
B(JCD) pqL(a - 1) 

(qb - l)(a - b) A(jO) 
< 1 , (116) 

where GO is real. 

At this point the problem of determining whether removal of a cas

cade section is possible reduces to determining whether a value of b 

can be found for which (115) is satisfied and 

qb > a > b > 1 (117) 

or 

qb < a < b < 1 (ll8) 

is satisfied, accordingly as L > 0 or L < 0, respectively. These con

ditions cannot be satisfied for all datum impedance functions. How

ever, they can be satisfied for certain datum impedance functions. In 

cases where an appropriate value of b can be determined, the cascade 
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section can be removed to leave a remainder impedance function of degree 

n - 2. Moreover, the conditions mentioned above also permit the reali

zation of the cascade section without the use of mutual inductive coup

ling. 

The difficulty of selecting an appropriate value for b increases 

with the degree of the datum impedance, since the quantities p and q 

are multiple-valued functions of b. The number of branches of these 

functions clearly increases with increasing n. This difficulty appears 

to be a fundamental limitation imposed by algebraic considerations. It 

may be observed that the transformation from Z, (s) to Z (s) is actually 

a zero-shifting procedure. Since the surplus transmission zeros are re

quired to be roots of the equation 

¥ S >=H^T^< <*» 

it is possible to plot the locus of possible transmission zeros by 

plotting the locus of the roots of (119) as b varies between 1 and a. 

For b = 1, the roots of (119) are simply the poles of Z (s). For b = a, 

(119) has one pair of roots at s = + jl. A typical root-locus diagram 

for (119) Is shown in Fig. 2k for a fourth-degree datum impedance 

function. 

In principle, a direct approach to determining whether an appropri

ate value of b exists for a given datum impedance function can be formu

lated. Such an approach involves minimizing 0(b, x) with respect to x 

to obtain a function 0 (b). This minimization process is complicated by 

the functional dependence of p and q on b. In general, no explicit 
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-1 

Figure 2k„ Locus of Surplus Transmission Zeros 
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closed algebraic solution for p and q in terms of b is possible. Never

theless, the function 0 (b) exists in an abstract sense, and the roots 

of the equation 

0o(b) = 0 (120) 

define the end-points of the intervals in which b must lie if (115) is 

satisfied. Similarly, the equation 

qb = a (121) 

also defines the end-points of the intervals in which b must lie in 

order to satisfy (117) or (ll8). If, for a chosen branch of the functions 

relating p and q to b, the intervals defined above have any common sub-

intervals lying between b = 1 and b = a, the remainder impedance function 

is positive-real and the cascade section is realizable without the use 

of mutual inductive coupling for values of b within such a common sub-

interval. In general, the existence of one appropriate value for b im

plies the existence of an appropriate range of values of b. However, 

under certain circumstances discussed below and in Chapter VII, only 

discrete values of b are appropriate. Also, as indicated above, there 

may be no values of b for which the cascade synthesis procedure succeeds. 

The discussion above indicates that it is possible, in principle, 

to determine whether one step of the cascade synthesis procedure can suc

ceed and to determine an appropriate range of values of b in this case. 

After removal of one cascade section and subsequent reduction of the re

mainder impedance to a minimum function, it is necessary to test again 

to determine whether another cascade section can be removed. It should 
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be observed that the synthesis of a second-degree minimum function by the 

method discussed here reduces to the conventional Bott-Duffin synthesis. 

Thus, nothing is gained by employing the method unless the degree of 

the datum impedance is greater than two. 

One special case concerning the properties of the function 0(b, x) 

which has not been discussed above is the case where p or q is zero. 

Since A(s) • A(-s) is non-negative for all imaginary values of s, 0(b,x) 

will be non-negative if p or q is zero. However, if q is zero, it is 

evident from Fig. 22 that Z (s) must have a pole at s = 0. If p is 

o 
zero, Z (s) has poles at s = -q. Impedance function Z (s) must also 

2 2 
have poles at s = -q. Thus s = -q must be a root of (ll°0 > and Z.. (s) 

must have real-part zeros at s = +0-%/ q (as well as s = + jl) . Con

versely, if Z (s) has zeros of real part at s = + jco , then A(s) is zero 

there, and p must vanish if (115) is to be satisfied, unless B(jco ) or 

q should coincidentally vanish. In order that Z (s) (and thereby Z (s), 

also) be positive-real, the resulting poles of Z (s) on the j-axis of 

the complex frequency plane and the j-axis poles of Z (s) must coincide. 

2 
Thus q must be chosen equal to CD . The case where p = 0 is discussed 

o 
further in Chapter VII. 
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CHAPTER VI 

SPECIAL CASES 

Special values of the parameters a and t>.--Certain cases involving special 

values of the parameters a and b have been omitted from consideration in 

previous chapters to avoid unduly lengthening the exposition of the 

general case. A discussion of these special cases includes the conside

ration of the limiting case where b or a approaches unity and of the case 

where a and b are equal. The analysis of both of the cases mentioned ap

pears to yield some insight into the general properties of the cascade 

section. Moreover, the cascade section is reduced in complexity in the 

first case. Thus, the consequences of allowing b or a to approach unity 

and of setting a and b equal are discussed in this chapter, 

The case where t> or a approaches unity.--Reference to (65) or (66) shows 

that allowing b to approach unity implies that c approaches infinity. 

However, (66) may be written as 

(b - l)c - (a - 1) (p-£) , (122) 

and this equation indicates that the product (b - l)c may be considered 

to remain finite and non-zero as b - 1 approaches zero. In fact, from 

(122), 

Lim (b - l)c = (a - 1)(^H;) • (125) 
b-»l a " a 
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The quantity a - 1 cannot vanish if the datum impedance function Z. (s) 

is a minimum function. Similarly, a - 1 cannot approach zero simul

taneously with "b - 1 unless L also approaches zero, which violates (62) 

if ZL(S) is a minimum function. The possibility that a - a vanishes 

is considered in the next section. Thus the right member of (123) may 

be assumed to be finite and non-zero. 

Since c approaches infinity as b approaches unity, the elements of 

the z-matrix of the cascade section approach 

^im
1
 Zll = ZL + ZR ' 

b->l 
(12^) 

"*, Z12 " ZL ' b->l 
(125) 

and 

Lim z = z , 
b->l 

(126) 

where 

zL = Lim (zT/c) 
b->l 

(127) 

The last limit is 

- k-*-m L(a - q) 
ZL " b->l (a - l)(a - 1) 

b2Ts2 + (b - l ) 2 s + bT 
2 
s + bTs + b 

(128) 

or 

L(a - a) 
ZL " (q - l)(a - 1) 

Ts2 + T 
2 s + Ts + 1 

(129) 

Thus (124)-(126) represent the network of Fig. 25. 
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L(a - a) 
(a - l)(a - 1) 

L(a - a) 

O-

-O 

TL(a - a) 
(a - l)(a - 1) 

•O 

Figure 25» Cascade Section as b -»1. 
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The quantities L and a - 1 have the same sign; hence, the circuit 

elements in Fig. 25 are realizable if z_ is positive-real and 
n 

a - a 
a - 1 -

> 0 . (130) 

This inequality requires that 

a > a (131) 

or 

a < a (132) 

accordingly as a - 1 is positive or negative, respectively. 

From Fig. 25 the procedure for testing to determine whether allowing 

b to approach unity permits the removal of a cascade section from the 

datum impedance Z.. (s) is evident. The series impedance z is first re

moved from Z (s), thereby shifting a pair of zeros of impedance to s = 

+ jl. An impedance function 

\ - \ - ZR (133) 

results from this step. The reciprocal of Z has poles at s = + jl, 

These poles, with appropriate residues, are realized by the series LC 

circuit in Fig. 25; since (30) is satisfied by the limit of z .. given 

by (12^). It may be seen from Fig. 25 that there is no advantage to 

be gained by considering a non-zero value of l/T when b approaches unity. 

The selection of z in the special case b -»1 is similar to the se-
R 

lection of Z discussed in Chapter V. The impedance function z (s) is 

completely determined by the parameter L and the locations of the poles 
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of z„(s). In order that removal of the cascade section produce a re-
R 

mainder impedance of lower degree than Z (s) the poles of z_(s) must be 
1 K 

contained in Z (s). Thus, a set of possible impedance functions z (s) 

may be determined from the locations of the poles of Z (s). The cascade 

synthesis procedure succeeds for the case where b ->1 if one of these 

impedance functions z_(s) allows the simultaneous satisfaction of (130) 
n 

and the inequality 

Re |zv(jo))|> 0 , (13^) 

where a) is real. 

The special case where a approaches unity results in a cascade 

section dual in form to the network of Fig. 25. Hence, the details of 

this case need not be discussed. However, it should be observed that 

a relation such as 

R = K(a - I ) 2 , (135) 

where K is a non-negative constant, must be employed in the limiting pro-

o 
cess to cause R to approach zero as (a - l) . 

The case where a. and b are equal.--If the parameters a and b are arbi

trarily assumed to satisfy the equation 

a = b , (136) 

the relation expressed by (65) becomes 

(1 + c) ( l i i ) - (1 + o) (f-±-i) - (1 + 0) ( | -± - i ) . (137) 

This equation is consistent for non-negative values of c only if 
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a = a = b. (138) 

Thus, (136) and (137) imply (138), and (137) cannot be used to determine 

c. However, it is possible to determine an appropriate value of c by a 

procedure to be given below. It may be observed here that the arbitrary 

choice of a = a or b = a also leads to (138). 

It was shown in Chapter III that the restriction imposed by (136) 

causes the surplus transmission zeros of the cascade section to fall 

at s = + jl. Hence z (s) has second-order zeros at s = + jl in the 

special case considered here. 

Reference to (85) and Fig. 20 shows that the pseudo-Brune develop

ment of the cascade section assumes the form shown by Fig. 26 when 

a = a = b. The resistances r and r in Fig. 26 are given by 

r, - ^ r j (159) 

and 

r0 = . L^ Tw R ) , . (l40) 
2 (1 + c)(a - 1) v ' 

In the notation of Chapter II and Fig. 2 the following identifications 

may also be written: 

r± = r±1 - r12 , (l4l) 

r2 = r12 , (142) 

and 

r-j/c = r22 - r . (1^3) 



L/a 

o — 
L f=> 

\ - » a - 1 k> 

a -_1 1 

r /c - L/ac 

T - A A / V — o — ' " ^ P 

u 

L 

O-

Figure 26, Pseudo-Brune Development for a - b = a 
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The real constants r , r . and r are the open-circuit impedance param

eters of the Tee network internal to the circuit of Fig. 26. From (8l) 

if L > 0 or from (A3*0 if L < 0 it may be seen that the cascade section 

has an unbalanced transformerless realization if 

T > R > 0 (Ikk) 

and 

c > 0 . (1^5) 

The last inequality must be appended because it is no longer insured by 

the choice of a and b. The inequality in (ikk) is equivalent to requir

ing r and r to be non-negative. 

Examination of Fig. 26 makes evident a procedure which may be used 

to determine the parameters c, R, and T and to determine whether a cas

cade section with a = a = b can be removed from the datum impedance 

Z (s). The remainder impedance Z (s) is obtained from Z (s) by a series 

of transformations beginning with the transformation from Z, (s) to Z (s). 

The impedance function Z (s) is obtained from Z (s) by the removal of a 

conventional Brune section. Thus, if Z (s) is a minimum function of de

gree n, Z (s) is a positive-real function of degree n - 2. Fig. 26 indi

cates that 

Zy(jl) = - JL/oc . (Ik6) 

Hence, the transformation from Z (s) to Z (s) by the Tee network of re

sistors r , r , and r /c must produce a minimum-real function Z (s). 

Such a reduction to minimum-reality has been discussed in Chapter II. 
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The addition of some pertinent geometrical details to the Z-plane contours 

in Fig. 3 of that chapter results in Fig. 27. In this figure, only the 

portion of the circle E lying in the upper half of the complex plane need 

be shown. Obviously, Z(s) of Fig. 3 must be identified with Z (s) of 

Fig. 27. 

The location and radius of the circle E, which is the locus of Z 

' u 

for which Z is imaginary, fix two of the three constants needed to de

termine the open-circuit impedance matrix r having elements r , r , 

and r p. The impedance function Z (s) will be positive-real if K, which 
is the locus of Z (ja>) for oo real, lies inside of or tangent to E. Since 

u 

points where K and E are tangent correspond to values of jcx> for which 

Z (jco) is imaginary, (l46) implies that E must be chosen to be tangent 

to K at s = jl. Let 6 be the angle of inclination of the tangent to K 

at s = jl. Then 6 is determined by 

dX 
u 

OCO t a n e = ¥ " 
u 

bad 

Re -jZ^(jl) 

a> = l -**K(J1> 

(1**7) 

where R and X are the real and imaginary parts of Z , respectively. 

The center of the circle E lies at an abscissa of 

F = R + X tan 9 , (148) 
0 0 

where 

Ro + j Xo = Z u ( j l ) • {lk9) 

The intersections of the circle E with the real axis occur at abscissae 
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Figure 27 . Locus of Z (ja>). 
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of A and B, where 

A = F - |X /cos 1 o 
(150) 

and 

B = F + |X /cos 1 o 
(151) 

These intersections are related to the open-circuit impedance parame

ters by the equations 

A = d(r)/r 
22 

(152) 

and 

B - ru ' (153) 

where 

d(r) = r r - r (154) 

The relation between Z (s) and Z (s) may be written as 
v u 

rpp Z!, ( s ) " d ( r ) 

Zv ( s ) = *u - V> 
(155) 

This equation may be combined with (l46) to yield 

22 

Zu(jl) - d(r)/r22 

rll " Z u ( J 1 ) ac 
(156) 

The substitution of (1^9), (152), and (153) into (156) results in 

22 

R + jX - A 
o ° o 
B - R - jX 

o o 
- - J 

. L 

ac 
(157) 
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or 

cr 22 
L 
a 

Xo + J<B - Ro> 
A - Ro - JXo 

(158) 

This equation reduces to 

cr22 = D, (159) 

where 

D = 
X _ R - B 

r (T-^T-) = - (-2T—) , a A - R a v X 
(160) 

since the expression in the brackets in (15$) is real. Because cr must 

be non-negative, an obvious necessary condition for the success of the 

cascade synthesis procedure with a = a = b is that L and X have opposite 

signs. 

The parameters r , r , r 0o'
 anc^ c ma^ ^e determined from the equa

tions developed above. The solution of (l^l), (l^3) > (152), (153)* and 

(159) results in 

r±1 - B , 

r22 - D/c , 

12 
= ^/(B - A) D/c 

(161) 

(162) 

(163) 

and 

c = 1 + M + J2M. + M2 (164) 

where 
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« - * ^ • < * * 

The parameter c given by (l64) is a solution of the equation 

c2 - 2(1 + M) c + 1 = 0 . (166) 

Since M is non-negative if D is positive, this solution has two real, 

non-negative solutions for c. In general, one solution of (l66) is 

greater than unity and the other solution is less than unity. One root 

of (l66) is an extraneous value of c; it is necessary to select the 

root for c so that 

c < 1 if B > D (167) 

and 

c > 1 if B < D . (168) 

The Tee network of resistors internal to the circuit of Fig. 26 has 

positive elements and the cascade section has a transformerless reali

zation if 

D > (B - A) c > 0 , (169) 

as may "be verified from (l6l)-(l63). 

The impedance function Z (s) is positive-real if the locus K lies 

within or tangent to the circle E in the Z -plane. The positive-reality 

of Z (s) is a necessary condition for a positive-real remainder impedance 

Z (s)„ This requirement obviously cannot always be satisfied. In a 

given numerical case, it might be necessary to test Z (s) for positive-

reality directly from (155)« 
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If Z (s) is now assumed to be positive-real, a sufficient condition 

for positive-reality of Z (s) may be stated by use of the results in 

Chapter II. Let 0 be defined by 

Z'(jl) - JZ (jl) 

P - z;(ji) + JZY(JI) • (17°) 

Then the discussion of Chapter II indicates that Z (s) will be positive-

real and of no greater degree than Z (s) if 

1 < l/o, < 3 (171) 

or 

1 > l/o, > P (172) 

accordingly as L is negative or positive, respectively. Since knowledge 

of Z'(jl) is necessary in determining A, B, etc., the equation 

Z.(S) ,
 1 2 u (173) 

V <Zu - V 

may be conveniently employed in calculating (3. 

The preceding discussion indicates that the transformation from 

Z (s) to Z (s) is the only degree-reducing step in the transformation 

from Z (s) to Z (s), unless by coincidence a£ = 1. The transformation 

from Z (s) to Z (s) serves only to shift an even-part zero to s = jl. 

Clearly, this process will not always succeed. However, the conditions 

outlined above may be applied at a given stage in the synthesis of a 

driving-point impedance to determine whether a cascade section with 

a = a = b can be removed from the datum impedance. These conditions may 
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be summarized as follows: 

(1) Inequality (169) must be satisfied. 

(2) Inequality (171) or (172) must be satisfied. 

(3) Impedance function Z (s) must be positive-real. 
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CHAPTER VII 

THE LOSSLESS CASE 

Conditions for removal of the cascade section.--It was shown in Chapter 

V that the surplus transmission zeros of the cascade section must lie 

at s = + jtD if the datum impedance function Z^(s) has real-part zeros 

at these frequencies. It was also shown in Chapter III that a lossless 

cascade section fulfills this requirement. The conditions for removal 

of the cascade section in this case are somewhat simpler than in the 

general case. Moreover, examination of the lossless case discussed here 

may help to give a qualitative insight into the conditions necessary for 

removal of a cascade section in the lossy case. 

It has been indicated before that the cascade section represented 

by the open-circuit impedance matrix z becomes a lossless network in the 

limiting case where R and l/T approach zero. The impedance functions 

z and z reduce to reactance functions given by 

7 _ L ( b s + l) (17M 
ZT " (b - l)s U r 4 J 

and 

' R -
L ( | ~ l ) a • (175) 
s + a 

A bridged-Tee network realizing the lossless cascade section without 

transformers has already been given in Chapter IV by Fig. 17 or l8, as 
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appropriate. One of the networks of Figs. 17 and l8 will always be rea

lizable if a - 1 and b - 1 have the same sign as a - 1 and the constant 

c is non-negative. A non-negative value of c results from (66) if (67) 

or (68) is satisfied, i.e., if a and b lie on opposite sides of a and on 

the same side of unity on the real line. 

Since both of the conditions R = 0 and l/T = 0 are imposed in the 

lossless case, the two cases discussed in Chapter V, namely R = 0 and 

l/T = 0, lose their identity. However, it is still possible to repre

sent the cascade section by a pseudo-Brune development. In fact, two 

such developments are possible and may be obtained directly from (17*0 

and (175) or by the application of limiting techniques to (85), (86), and 

Figs. 20 and 21. Either procedure leads to networks having the form of 

Fig. 22 or Fig. 23, with 

Z0(s) = g
L(» " b ) s (176) 

b (s + a/b) 

and 

(fl) _ a(b - a)s _ ( 1 7 7 ) 
0 

bL(s + a/b) 

The surplus transmission zeros of the cascade section lie at 

s = + ^ a/b , the locations of the poles of Z (s) or Y (s). Thus, 

if Z (s) has real-part zeros at s = + jco (in addition to those at 

23 
s = + jl), the parameters a and b must be constrained by the relation 

a /b = CD2 . (180) 

23 
I t i s assumed t h a t co £ 1 . 

o ' 
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In order that z = Z at the surplus transmission zeros, the equation 

*f r r i# • V*»o> (181) 

or 

L(3 ' 1 ) s = ^(to ) (182) 
s + a 

must he satisfied. Since (l8o)-(l82) are not independent equations, 

(182) may be discarded. Thus, (l8o) and (l8l) fix the following unique 

values for a and b: 

X 1 
L " ^ 

b = = (183) 

I' 1 

and 

a = CD2b , (184) 
o 

where 

Z1(jo)o) = ja^X . (185) 

In deriving the conditions for successful removal of a cascade 

section in the lossless case it is convenient to make use of the equiva

lent circuits of Fig, 22 or Fig» 23 in somewhat the same manner as that 

employed in Chapter V. Although these two circuits are equivalent in 

the lossless case, it is expedient for analytical purposes to select 

the circuit for which Z (s) is positive-real. The circuit of Fig, 22 
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should "be selected, therefore, if 

a > a > b > 1 (186) 

or 

a < a < "b < 1 , (187) 

while the circuit of Fig. 23 should "be selected if 

b > a > a > 1 (188) 

or 

b < a < a < 1 . (189) 

If, for a given datum impedance function, none of the inequalities (186)-

(189) is satisfied, the transformerless cascade synthesis procedure does 

not succeed when the even-part zeros of Z (s) at s = + jo) are identi

fied with the surplus transmission zeros. 

The inequalities expressed by (l86)-(l89) are sufficient conditions 

for realizability of the cascade section. The relation between Z and 

Z in Fig. 22 or Fig. 23 must now be examined to determine the conditions 

under which Z (s) is positive-real. As in the lossy case discussed in 

Chapter V, Z (s) will be positive-real if Z (s) is positive-real. It will 

be assumed in the following discussion that (186) or (187) is satisfied, 

and attention will be directed to the pseudo-Brune development of Fig. 

22. The case where Fig. 23 is appropriate may be regarded as the dual 

of the case discussed here. 

The conditions expressed by (l86)-(l89) involve the value of Z (s) 

at s = jo) , but they do not involve the derivative of ZL (s) at that fre

quency. However, it is necessary to consider the derivative of Z (s) at 
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s = JCD in evaluating the residues of Z at the surplus transmission zeros 

The relation between Z and Z_ may be written as 
u 1 J 

W12 

where 

and 

W n = b^T ( b s + l / s ) ' ( 1 9 1 ) 

w12 = ^ T ( s + 1 / f l ) > (192) 

W 22 = b^T ( s / b + l / s ) ' ( 1 9 5 ) 

Thus t he r e s i d u e of Z (s) a t s = JCD i s 

wf2(J»0) 
K • ̂ jHTT^nSTT ' (19k) 

and an expansion of Z (s) in partial fractions would contain the term 

-2^-g • (195) 
S +00 

o 

Let 7 be the Brune characteristic of Z (s) at s = jco , i.e., let 

Z»(JCD, ) + X 
y = j(jo>°) - X ' ^ 

Then 
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+ l-Z ' ( j co ) = X ( ^ - ^ ) , (197) 
1 o 7 - 1 

and c a l c u l a t i o n of 2K from (19^) y i e l d s 

- 2L(o>2 - l ) 2 

o 

2K = ^ i = . (198) 

( a . 1} { ( i i i ) . (JL±1) } 

The impedance function Z (s) is related to Z (s) by 

Zy(s) = Zjs) - (1 + l/c)Zo(s) . (199) 

Hence, Z (s) is regular in the right half s-plane if Z (s) is positive-

real. But Z (s) is positive-real if (l86) or (187) is satisfied. More

over Re <Z (jo)) V is non-negative for real values of co if Z (s) is posi

tive-real, since Z (s) represents the impedance of a lossless network. 

Therefore, Z (s) will he positive-real if the residue of Z (s) at s = 
' v u 

jco i s not l e s s than t h e r e s i d u e of ( l + 1 c)Z (s) a t t h e same p o l e , 

i . e . , i f 

2 K > t 1 + C ) ( * ~ b ) L . (200) 
cb 

The right member of (200) is non-negative by virtue of (186) or (187). 

After some manipulation, (200) may be reduced to 

>^-^T , (201) 
— a - b ( * - i ) . i ( ^ ) - ( ^ ) ] 
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where it is assumed that (l86) or (187) is valid. The steps leading from 

(200) to (201) do not change the algebraic sign of either member of the 

inequality. If (l86) or (187) is satisfied, Z (s) is positive-real, and 

2K must be non-negative. Since the right member of (200) is also non-

negative, (201) may also be written as 

(H^ t(^)-(Hi)i<Sri • <2 0 2> 

The inequality expressed by (202) is a necessary and sufficient 

condition for obtaining a positive-real remainder impedance function 

when (186) or (187) is satisfied. When (l88) or (189) is satisfied, 

the inversion of Z (s) results in a function such that (l86) or (187) 

is satisfied. If none of the conditions given by (l86)-(l89) is satis

fied, or if (202) or its analogue in the dual case is not fulfilled, 

the cascade synthesis procedure does not succeed. 

It may be observed from the preceding discussion that the conditions 

which determine whether a lossless cascade section may be removed from a 

given datum impedance are inequalities among various constants, rather 

than functions of frequency. Thus, the procedure of testing a datum 

impedance to determine whether a cascade section of the form discussed 

in this thesis may be removed is somewhat simpler when the datum impedance 

function has two real-part zeros on the jco-axis of the complex frequency 

plane than in the general case when the procedure of Chapter V must be 

employed. If desired, it is always possible to produce the doubly mini

mum-real condition required for a lossless cascade section by the removal 

in series or parallel of an appropriate second-degree minimum function. 
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This reduction process can be effected without increasing the degree of 

the driving-point impedance function by proper selection of the poles of 

the second-degree minimum function. 

Equivalence to cascade Brune sections.--It is the purpose of this section 

to discuss the equivalence of the cascade section in the lossless case 

to a two-terminal-pair network consisting of two Brune sections in cas

cade. Although such an equivalence offers no advantage in the practical 

realization of driving-point impedances, the equivalent circuit contain

ing Brune sections is an aid to understanding the conditions necessary 

for success of the cascade synthesis procedure of this thesis. 

The lossless cascade section described by the open-circuit impedance 

matrix having elements given by (32)-(3̂ -) and (l7^)-(l75) is equivalent 

as a two-terminal-pair network to the circuit of Fig. 28 if the parame

ters of Fig. 28 are related to the parameters of the matrix z by the 

equations 

to2 = a/b , (20k) 

and 

ca(b - l) + b(a - l) / ™ ^ 

a = \ / I ,\ , ' . (205) b - 1) + (a - 1) 

The parameter <x> is again the (angular) frequency of the surplus trans

mission zero. Since a given by (205) is a solution of (6k), it must be 

equated with the Brune characteristic of the datum impedance at s = jl 

if the cascade section is to be employed for synthesis purposes. 
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Similarly, L in Fig. 28 is the same parameter as the constant L occurring 

in earlier discussions. 

The parameters a, b, and c of (32)-(3*0 and- (17*0-(175) a r e also 

related uniquely to the parameters N, GO , and a of Fig. 28 "by the equa

tions 

1 + co2N 
a = aC- j^ f . ) , (206) 

1 + Q32N 

* = -2 ( i r f -> > (£07) 

CD 
O 

and 

0 - - i - (f^r) • (208) 
co N 

o 

Examination shows that the two cascade Brune sections in Fig. 28 

are realizable if 

L > o (209) 
a - 1 -

and 

N > 0 . (210) 

The parameter N always satisfies (210) when a and b are non-negative and 

the basic inequalities given by (37)-(39) a**e valid. Computation of 

a - 1 from (205) yields 

a - l ^ - 1 ^ 1 V / C ) , (2U) 
1 + a ' ± 

c(b - 1) 
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which indicates that (37)-(39) also imply (209)• Thus, the equivalent 

circuit of Fig. 28 is always realizable (using unity-coupled coils) when 

the cascade section fulfills the conditions outlined in Chapter III. 

However, (209) and (210) are not sufficient conditions for the realiza

tion of the cascade section without the use of mutual inductive coupling. 

The networks of Figs. 17 and 18 demonstrate that the cascade section 

is realizable without transformers when a, b, and c are non-negative 

constants such that a - 1 and b - 1 have the same sign as a - 1. It is 

evident from. (208) that c is non-negative if (210) is satisfied and 

a - 1 and b - 1 have the same sign. Hence, in view of (21l), the cas

cade section equivalent to the circuit of Fig. 28 is realizable without 

transformers if (210) is satisfied and 

(a - 1) + N(aa> - l) 
a " X ° > 0 . (212) 
b " 1 (a/co2 - 1) + N(a - l) 

o 

Since this inequality can also be written as 

4 ^-^a) > o (a3) 
a - a) 

o 

it is evident that a - 1 and b - 1 have the same sign if and only if a 

2 
does not lie within 1 and co on the real line. This condition may be 

related to the sign of the constant X/L by noting that (27), (32), and 

(33) imply that the equation 

\ = zR (214) 
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must be s a t i s f i e d a t s = + j l and a t s = + ja> . But Im ^ z j does not 

change s ign between a> = 1 and as = as i f (213) i s v a l i d . Hence Im ~{Z ( j l ) 
o {_ 1 

and Im -\Zn (jo) ) >• have the same sign if and only if (213) is satisfied. I 1 °J 
Therefore, the inequality 

X/L > 0 (215) 

is equivalent to (213) or (212). 

The synthesis by Brune*s procedure of a doubly minimum-real datum 

impedance function will result in a network containing only certain ele

ments equal to those in Fig. 28, except in rather special circumstances. 

Let Fig. 29 represent the network resulting from the completion of two 

cycles in the Brune synthesis of a doubly minimum-real datum impedance 

function Z_(s). When the datum impedance function possesses real-part 

zeros at s = + jl and s = + ja> , where CD is real, two Brune develop-
- - o o 

ments of the datum impedance are possible. It is assumed in Fig, 29 

that a Brune section associated with the real-part zeros at s = + jl is 

removed from the datum impedance first. This selection will be seen to 

correspond to placing the surplus transmission zeros of the cascade 

section at s = + jo) , rather than at s = + jl. 

From Fig. 29 it is evident that (210) will not always be satisfied. 

In fact, comparison of Figs. 28 and 29 shows that the parameter N must 

be fixed by 

M = - LN/a (216) 

or 

N = - aM/L . (217) 
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Figure 29. Brune Synthesis of ^(s) 
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Since a is non-negative, N satisfies (210) if 

- M/L > 0 , (218) 

i.e., if M and L have opposite signs. 

Let it now be assumed that (210) and (212) are satisfied, so that 

the cascade section is realizable without transformers. Then further 

comparison of Figs. 28 and 29 and the discussion in Chapter II allows a 

necessary and sufficient condition for positive-reality of the remainder 

impedance Z (s) to he stated. This condition is that Z (s), the re

mainder impedance after removal of a lossless cascade section with param

eters given by (206)-(208) from the doubly minimum-real datum impedance 

Z (s), will be positive-real if 

1 < 1/a < p (219) 

or 

1 > 1/a > 3 . (220) 

The condition expressed by (219) or (220) is actually a relation 

between the characteristics, i.e., the turns ratios, of the Erune sections 

resulting from two cycles in the conventional Brune synthesis of Z (s). 

If (219) or (220) is to be satisfied it is necessary that one Brune 

section have a step-up action and the other section a step-down action 

as s approaches infinity. This necessary condition is equivalent to 

(210). 

The discussion above indicates that the satisfaction of (215) and 

(219) or (220) allows one step in the cascade synthesis of a doubly 
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minimum-real function to "be effected. Hence, these conditions may "be 

considered as alternatives to the conditions stated in the first section 

of this chapter. 

In the preceding discussion it has been assumed that the real-part 

zeros of Ẑ  (s) at s = + jco have been identified with the surplus trans

mission zeros of the cascade section. However, a frequency-scaling 

transformation will allow the roles of the real-part zeros at s = + jl 

and s = + jco to be interchanged. When this procedure leads to the 

successful removal of a cascade section, it may be employed to obtain 

a different network realizing the datum impedance function. It might 

also be employed when the first identification of the surplus trans

mission zero does not permit the cascade synthesis procedure to suc

ceed. However, it is evident that the failure to satisfy (215) cannot 

be relieved by this device. Moreover, when the datum impedance is a 

doubly minimum-real function of fourth degree it may be shown that the 

conditions allowing the successful removal of a lossless cascade section 

are invariant to an interchange of the roles of the real-part zeros at 

s = + jl and s = + jo) . 

Comparison with the lossy casett--The results of this chapter are appli

cable to the case of a lossless cascade section and a doubly minimum-real 

datum impedance function. However, they may be used to provide a quali

tative insight into the conditions for cascade synthesis of certain datum 

impedance functions having only one pair of real-part zeros on the JCD-

axis of the complex frequency plane. In particular, if the datum im

pedance Z-, (s) has real-part zeros at s = + jl and a relative minimum of 

real part at s ̂  jco , the synthesis of 2L (s) by the .Brune procedure may 
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lead to a network consisting of a cascade of two Brune sections separated 

"by a series or shunt resistor and terminated "by a remainder impedance. 

If the real part of Z. (joo ) is sufficiently small in comparison with the 

general impedance level of Z (s), it is reasonable to expect the trans

mission zeros of the second Brune section to lie relatively close to 

s = + jao . It is also to be expected that the series resistance or 
o 

shunt conductance between the two Brune sections will be relatively 

small. If these conditions obtain, it is likely in many cases that a 

test based on disregarding the series resistance or shunt conductance 

will determine whether or not one step of the cascade synthesis pro

cedure should be expected to succeed. Moreover, it is reasonable in 

such a case to suppose that the range of values of a and b for which 

the exact criteria of Chapter V are fulfilled will allow the approxi

mate satisfaction of (204). These conjectures have been verified to a 

certain extent by numerical examples. 
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CHAPTER VIII 

EVALUATION OF THE METHOD 

Discussion.--The primary theoretical considerations pertinent to the prob

lem of transformerless cascade synthesis using the cascade section pro

posed in this thesis have been discussed in preceding chapters. In par

ticular, Chapters I through V form a treatment of this problem in the 

general case, while certain special cases have been examined in Chapters 

VI and VII. However, there remain some general remarks concerning the 

synthesis procedure described here. These remarks primarily deal with 

the applicability of the procedure. 

It should be observed first that the method of driving-point im

pedance synthesis proposed here is not general, i.e., it is not uni

versally applicable to rational positive-real impedance functions. In 

fact, the datum impedance functions to which the method is applicable 

are required a priori to be minimum functions. However, this requirement 

is not unduly restrictive, since the conventional preamble to the Brune 

synthesis procedure may be used to reduce a given driving-point impedance 

function to a minimum function, without the use of transformers,, In 

addition, the methods of the first section in Chapter II may be utilized 

to perform the last step in such a reduction. Presumably, this reduction 

might be executed in a manner calculated to influence favorably the 

realization procedure at later stages. This possibility has not been 

exploited in conjunction with the synthesis procedure presented here 
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because of what appear to be formidable mathematical difficulties. How

ever, it is obvious that the well-known predistortion technique reviewed 

briefly in Chapter II, used with the present procedure, affords the 

possibility of avoiding the necessity for perfect lossless elements, 

except in the case where the datum impedance already is minimum-real. 

In the latter case, it is clear that there can be no power dissipation 

and that all lossy elements in any network realizing the datum impedance 

must be effectively decoupled from the input terminals at the (steady-

state) frequency of the real-part zero. 

A set of more subtle restrictions on the datum impedance arises 

as a result of the requirement that the cascade section to be removed 

at a given stage must be realizable without the use of transformers or 

mutual inductive coupling and the requirement that the remainder im

pedance function be positive-real and of lower degree than the datum im

pedance function. These restrictions have been set forth in Chapters IV 

and V for the general case. However, the discussion in Chapter V of the 

requirement that the remainder impedance function be positive-real does 

not include a treatment of the computational problems associated with 

this requirement. Aside from these difficulties, it should be observed 

that the tests outlined in Chapter V are applicable at each minimum-

function stage in the synthesis of a driving-point impedance. 

The special cases discussed in Chapters VI and. VII occur in essen

tially different ways. The lossless cascade section discussed in 

Chapter VII is applicable when the datum impedance function has two 

pairs of real-part zeros on the jco-axis of the complex frequency plane. 

It must be employed in this case and only in this case. In contrast, 
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one step of cascade synthesis using the special techniques of Chapter VI 

may always he attempted, except when the technique of Chapter VII ap

plies. When such an attempt succeeds in the special case where the 

parameter a or b approaches unity, a saving in the number of elements 

required is effected, by comparison with the general case. However, the 

special case where the parameters a, b, and a are equal requires the 

use of a large number of elements. This case has been discussed pri

marily because of its theoretical interest. 

The conditions that govern the possibility of success in the special 

synthesis procedures of Chapter VI are somewhat simpler than their coun

ter-parts in the general case. Thus, it may be advantageous in a given 

numerical example to attempt to remove a cascade section of the special 

form before resorting to the more tedious general conditions of Chapter 

V. Similarly, it is also possible to force the datum impedance to be 

doubly minimum-real, and thus to permit the use of the simpler criteria 

of Chapter VII to determine whether removal of a cascade section may be 

effected. As discussed in Chapter VII, the criteria governing the possi

bility of removing a cascade section in the lossless case also may pro

vide qualitative guidance in applying the exact conditions of Chapter V 

in the general case, 

Precise mathematical statements defining a function class and net

work class for which the cascade synthesis procedure discussed here is 

universally applicable would serve to complete the theory associated 

with the particular form of the cascade section employed. However, al

though such definitions of the function class and network class are 

absent, the cascade synthesis procedure of this thesis demonstrates that 
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a synthesis in cascade sections without mutual inductance can he employed 

in certain cases, including instances where the d.atum impedance is repre

sented by a singly or doubly minimum-real function. Moreover, when the 

cascade synthesis procedure succeeds at a given stage, the degree of the 

driving-point impedance function is reduced without the creation of more 

than one remainder impedance function. Thus, it is conceivable that the 

successful application of the cascade synthesis procedure at an early 

stage in the transformerless synthesis of a driving-point impedance may 

reduce significantly the number of network elements required. 

Conclusions.--A new cascade synthesis procedure appropriate to certain 

rational positive-real driving-point impedance functions has been de

veloped. The procedure makes use of an elementary cascade section des

cribed by a compact open-circuit impedance matrix having elements that 

are suitably chosen fourth-degree rational functions of the complex fre

quency variable. Under certain conditions developed above, the cascade 

section, which is not lossless in general, is realizable in an unbalanced 

two-terminal-pair network utilizing neither ideal transformers nor mutual 

inductive coupling. The locations of the zeros of transmission through 

the cascade section play an important role in the synthesis procedure; 

however, they are related to the driving-point impedance to be synthe

sized and may not be chosen arbitrarily. 

Equivalent circuits for the cascade section have been derived to 

make evident certain properties of the cascade section. 

The class of impedance functions for which the synthesis procedure 

is applicable is a sub-class of the class of minimum functions. Although 

the cascade synthesis procedure is not always applicable, it includes 
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techniques which, in principle, allow a determination of whether one 

step of the procedure may be effected. In certain special cases, the 

criteria for success of the cascade synthesis procedure reduce to in

equalities among certain constants. In general, however, the criteria 

for successful removal of a cascade section involve inequalities con

taining functions of more than one variable. 

An advantage of the cascade synthesis procedure in cases where it 

is applicable is that the degree of the driving-point impedance function 

is reduced by removal of the cascade section without the creation of 

more than one remainder impedance function. 

The cascade synthesis procedure reduces to the Bott-Duffin synthe

sis method when applied to the synthesis of second-degree minimum func

tions as driving-point impedances. Thus, nothing is gained by applica

tion of the new method unless the driving-point impedance to be synthe

sized is of at least third degree. 
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APPENDIX 

Properties of second-degree minimum functions.--In this section some well-

known properties of second-degree minimum functions are collected for 

reference purposes, using the notations and terminology employed in the 

earlier sections of this report. 

The most general second-degree minimum function may be written as 

Z(B) = 
a - 1 

2 2 2 
i Rs + (a - l) s + aR 

2 
s + aRs + a 

(Al) 

if the frequency scale is normalized so that 

Z(jl) = JL . (A2) 

Parameters a, L, and R in (Al) must satisfy the inequalities 

R > 0 , (A3) 

a > 0 , (A4) 

and 

a - 1 -
> 0 (A5) 

2k 
in order that Z(s) be positive-real. The function given by (Al) may 

be realized as a driving-point impedance by the Erune networks shown in 

2k 
The conditions R = 0 and a = 0 lead to reactance networks. 
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Figs. 30 and 31 and by one of the Bott-Duffin networks of Figs. 32 and 

33. The network of Fig. 32 is appropriate if L > 0 and that of Fig. 33 

is appropriate if L < 0. The parameters in Fig. 32 which have not al

ready been defined are given by 

L = ^ - (A6) 
a (a - 1) [ a T + (a - l)"] 

and 

C — 0 Q n . {A() 
L[a R + (a - l) ] 

Similarly, the new L and C in Fig. 33 are given by 
a a 

L = §¥^ r
 (A8) 

a (a - 1) [ a T + (a - l) ] 

and 

C a ( a " 1) (AQ) 

L[a R + (a - 1) J 

In either of the Bott-Duffin networks, the terminal pair X may be open-

circuited, short-circuited, or terminated by any arbitrary impedance. 

Realization of the cascade section.—Certain details pertinent to the 

problem of realizing the cascade section, which are omitted from Chapter 

IV in order to avoid digressions, are considered here. These matters 

include the discussion of sufficient conditions for an unbalanced reali

zation of the cascade section and a more complete exposition of the un

balancing process for the case where L < 0. 
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Consider first the case where L > 0. It is stated in Chapter IV 

that the satisfaction of either (80) or (8l) is a sufficient condition 

for the transformerless realization of the cascade section when L, 

(a - l), and (b - l) are non-negative. The proof of these sufficient 

conditions consists of a demonstration that (80) and (8l) each imply 

(73)-(76). It will be shown here that (80) also implies (82) and (83). 

The basic inequality (80) is 

i - | i ^ . i ^ l > („ . x)2 . (a . 1 }2 > 0 . (AlO) 
aTT b T 

The last part of this relation implies 

b - 1 > a - 1 (All) 

or 

b > a , (A12) 

which is also (82). It is obvious that 

X> - a. ' - I > - T > (A13) 

which implies 

( ^ ) 2 > ( ^ ) 2 , (A14) 

since (a - l) and (b - l) are non-negative. The first part of (AlO) im

plies 

^22 2 2 
^ ^ > 7 ^ • (A15) 
(b - 1) (a - 1) 
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Combination of (Alk) and (A15) yields 

2 2 
T > — ~ o (A16) 

(b - I ) 2 (a - I ) 2 

or, since L > 0, 

TL > ^ _ f ( A 1 7 ) 
b - 1 - a - 1 ' 

which is also (74). Relations (All) and (A17) imply 

T > R , (Al8) 

which is also (83). The inequalities of (A12) and (A17) imply 

b - 1 — a - 1 

which is also (76). Since L > 0, (A17) and (A19) may be combined to 

yield 

n_2m2T 2 „ 2 T 

b T L > a R L ( A 2 0 ) 
(b - I ) 2 (a - I ) 2 

which i s a l s o ( 7 5 ) . The i n e q u a l i t i e s of ( A l l ) , (A12), and (A19) imply 

, 2 2 2D2 
b - 1 + £-i-— > a - 1 + SJL_ . (A21) 

b - 1 — a - 1 v ' 

o r , s ince L > 0 , 

n = b - 1 < a " 1 n CA22") 
13 L [ b ¥ + (b - i n L [aV + (a - l )2] a 
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which is also (77) . Rewriting (A10) results in 

,^ nN2 (b - 1) . ( - 2 (a - l)' 
(b - 1) + ->—2~2 < (a - !) + —" 

b T 
2 p 2 

a R 
(A23) 

Combination of (All) and (A23) yields 

T^iy 
(b.X)2+ikli 

2 2 b T - T^iy 
/ nx2 (a-l) (a-1) + -* '-

a R 
(A24) 

or 

(•b-1) 
b2T2 + (b-1)2 

n 2 m 2 

b T 

< (a-l) 
a2R2 + (a-l)2 

2* 2 
a R 

(A25) 

Since L > 0, 

S = 
2 2 

Lb T > 
r 2 2 La R 

(b-l)[b2T2 + (b-1)2] (a-l)[a2R2 + (a-l)2] V 
(A26) 

which is also (73). Thus (80) implies (73)-(77), (82), and (83). A 

proof of the sufficiency of (8l) is not given here, since it is quite 

similar to the proof for (80). 

Now consider the case where L < 0. The symmetric lattice network 

from which the cascade section may be derived is shown in Fig. 6. The 

horizontal-arm impedance z may be represented by the Bott-Duffin network 
R 

of Fig. 33* The Bott-Duffin network for the diagonal-arm impedance z 

may be obtained from Fig. 33 by substituting b for a and T for R. 

The lattice network of Fig, 6 may be represented, as the parallel 

combination of the two component lattice networks of Figs. J>k and 35» 



Figure J>k» Component Lattice Network I, L < 0. 

Figure 35* Component Lattice Network II, L < 0. 



102 

The parameters L, and C, in these figures are given by 

and 

L b = — tP" 2" ^) 
b (b - 1 ) [ b V + (b - i n 

C. - p \ { h ~ ^ 2 . (A28) 
b L [ b ¥ + (b - i n 

The parameters L and C are defined analogously to L and C ; expres-
a a D D 

sions for them are given in (A7) and (A8). Component lattice network I 

has an unbalanced realization if 

L. > L (A29) 
b — a 

and 

£k_>£2L- . (Ajo) 
b - l - a - 1 

Component lattice network II has an unbalanced representation if 

,2m2T 2^2T - b T L >,- a R L 9 ( A 5 1 ) 

(b - l ) 2 (a - I ) 2 

TL ^ RL 
b - l - a - 1 

and 

>-£±i- , (A32) 

C > C . (A33) 
a — b 

If the unbalanced forms of the two component lattice networks are 

bisected and the impedance level of the right half of each network is 
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multiplied by l/c, the two component networks of Figs. 36 and 37 result. 

The two-terminal-pair network formed by the parallel combination of the 

component networks of Figs. 36 and 37 is the desired unbalanced form of 

the cascade section. The configuration of this network is shown in Fig. 

38. As in the case where L > 0, alternate forms of the final network 

are possible. 

In a manner analogous to that applied when L > 0, it may be shown 

that the satisfaction of either of the inequalities 

T2 . R 2 > (LjLJkf . ( i - p ) 2 > 0 (A34) 

or 

H4- - H^ > (^)2 - H** > 0 (A35) 
a R b T 

is a sufficient condition for transformerless realization of the cascade 

section when L < 0. Condition (A^>k) implies (A29)-(A33), as well as 

b > a (A36) 

and 

T > R . (A37) 

Similarly, (A35) implies (A29)-(A33), as well as 

a > b . (A38) 

The final network described above requires a total of 23 elements, 

of which 6 are resistors. The number of elements required is again 
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reduced to 11 reactors and 2 resistors if either of the two restrictions 

R = 0 (A59) 

and 

l/T = 0 (A40) 

is enforced. The choice R = 0 leads to the cascade section shown in 

Fig= 15. In this case it is evident from (A35) that (A38), or (84), is 

a sufficient condition for realization of the cascade section in the 

form shown by Fig. 15. Similarly, if the choice l/T = 0 is made, (A34) 

shows that (A36), or (82), is a sufficient condition for realization of 

the cascade section in the form shown by Fig. l6. 

Numerical examples.--The following numerical examples illustrate the 

cascade synthesis procedure: 

(l) Consider the fourth-degree minimum function 

z ( s ) = 6.56s + 52 .08s 3 + 33 .92s 2 + 18.24s + 16 . ^ (A i f ] j 
1 s + 1.96s5 + 11.12s2 + 8.64s + 3.2 

for which 

Z x ( j l ) = J2 (A42) 

and 

a = 2 . (A43) 

For this datum impedance, the locus of the roots of (119) are shown in 

Figo 24, The function Z (s) obtained by (100) is positive-real for 
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h =1.7 if the surplus transmission zeros are chosen to correspond to the 

upper branch of the locus in Fig. 24. The parameters of the cascade 

section corresponding to this value of b are 

L = 2 , (A44) 

1/T = 0 , (Al+5) 

R = 0.039090607 , (A46) 

a = 5.9656356 , (A47) 

b = 1.7000000 , (A48) 

and 

c = 0.53664274 . (A49) 

The remainder impedance i s 

z ( s ) = 4.9555409s2 + 2.8537204s + 15.855733 # ( A 5 0 ) 

2 s 2 + 0.06l897579s + 3.2000000 

The network realizing Z_(s) is shown in Fig. 39. 

The computations necessary in performing the numerical work for this 

example were carried out to eight significant figures. Of course, this 

procedure does not insure eight figure accuracy. 

(2) Let the minimum function 

Z. (s) = ̂  + 104s5 + 82f + 6 8 s + ^ (A51) 
16s4 + 95^ + 66s + 32s + 32 

be the datum impedance function to be realized. This function is doubly 

minimum-real, and the method of Chapter VII is therefore appropriate. 
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Figure 59. Network Realizing Z_(s) of Example (l). 



From the equations 

Z1(jl) = J2 (A52) 

and 

Z1(j2) = - J29 , (A53) 

it is evident that (215) cannot be satisfied. Thus, the cascade syn

thesis procedure of Chapter VII cannot be applied successfully. 

(3) Consider the doubly minimum-real function 

for which 

Ms) - ks' I ll6sl + lksl + 10ks + l2 , (A54) 
16s + 5s:) + 84s + 24s + 32 

o)Q = 2 , (A55) 

L = 2 , (A56) 

a = 2, (A5T) 

and 

X = 25/2 . (A58) 

From (183); (l84), and (66) the parameters 

b = 8/7 , (A59) 

a = 32/7, (A60) 

and 

c = 25/3 
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may be obtained. Since a - 1, b - 1^ and a - 1 have the same sign and c 

is positive, the cascade section is realizable in the network shown by 

Fig. 17. From (196), 7 may be calculated to be 

7 = 1^6/121 (A62) 

and computation shows that (202) is satisfied. Alternately, the 

parameter (3 of Fig. 29 may be calculated to be 

P = lA > (A63) 

and (220) is satisfied. Thus the cascade synthesis procedure is suc

cessful in this case. The remainder impedance is given by 

(A6k) Z2(s) = 3 
s + 3s + 2 

12s2 + 2s + 6 
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