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SUMMARY 

Particulate matter or atmospheric aerosols are liquid or solid particles suspended in the air. 

The contribution of organic nitrates to total organic aerosols is found to be substantial from 

measurements conducted at various ambient sites worldwide. Alkyl nitrates (AN) and 

peroxy nitrates (PN), are temporary NOx reservoirs in the troposphere, therefore 

understanding the formation and fate of organic nitrates is critical to determine global and 

regional distributions of NOx, its cycling and impact on O3 and secondary organic aerosol 

production. Accurately measuring AN and PN has been challenging because they exist in 

low concentrations and are structurally distinct. To measure total AN and PN, a thermal 

dissociation (TD) inlet is typically coupled with various NOy detection techniques such as 

Chemical Ionization Mass Spectrometry (TD-CIMS), Laser Induced Fluorescence (TD-

LIF), Cavity Ring-down Spectrometer (TD-CRDS) and Cavity Attenuated Phase Shift 

Spectroscopy (TD-CAPS). TD-CAPS is advantageous since the CAPS monitor is 

commercially available, easy to setup and use, and requires little maintenance. Ambient 

measurements by TD-CAPS have been recently conducted in a remote region. However, 

characterization of the instrument regarding interference from other atmospheric 

constituents is limited. The overall objective of the propose work is to develop TD-CAPS 

instrument that can measure total AN and PN in gas and particle phase by making use of 

the thermal decomposition of these compounds. The instrument consists of two quartz tube 

reactors at 563 K and 473 K (enabling decomposition of AN and PN, respectively, to NO2) 

and a reference channel that measures the ambient NO2. The NO2 concentration in each 

channel is measured by a CAPS monitor. The difference of NO2 between channels is used 



 xv 

to derive AN and PN concentration. We identified and quantified potential chemical 

interferences from side reactions due to presence of atmospheric constituents such as O3, 

NO and NO2 using isopropyl nitrate (IPN) and peroxy acetyl nitrate (PAN) as 

representative AN and PN compounds. We compare the accuracy of our tool with the 

accuracy of existing/established measuring instruments by producing secondary organic 

aerosol in Georgia Tech Environmental Chamber (GTEC) facility. Total gas phase and 

particle phase AN and PN are measured with the addition of Teflon filter and activated 

carbon denuder to the TD-CAPS inlet. Our results show that measurements of total 

particle-phase AN and PN made with the TD-CAPS correlate strongly with measurements 

by the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS).  The 

measurement of total gas phase AN and PN with TD-CAPS agrees with High-Resolution 

Time-of-Flight Chemical-Ionization Mass Spectrometer (HR-ToF-CIMS) after accounting 

for measurement uncertainties in each instrument. The direct measurements of gas-phase 

and particle-phase organic nitrates allow us to calculate their bulk partitioning coefficients, 

an important parameter determining SOA formation and AN/PN fate.   
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CHAPTER 1. INTRODUCTION 

1.1 Atmospheric organic aerosols  

Particulate matter or atmospheric aerosols are liquid or solid particles suspended in 

air.  They have significant impact on climate, air quality and human health. Depending on 

the properties, particulate matter impacts the climate directly by scattering or absorbing 

solar radiation. For instance, some constituents like sulfate scatters the radiation whereas 

some materials like soot absorbs the radiation. It also influences the climate indirectly by 

acting as cloud condensation nuclei (CCN) (Kanakidou et al. 2005). In 1990, the Clean Air 

Act was amended to require Environmental protection Agency (EPA) to set National 

Ambient Air Quality Standards (NAAQS) for pollutants harmful for public health and the 

environment. Particulate matter (PM) is one of the six criteria pollutants. The 24 hour 

average standard concentration for PM 2.5 (<2.5 µg/m3 ) and PM 10 (<10 µg/m3) are set 

as 35 µg/m3 and 150 µg/m3 respectively.(2016) Moreover, Global Burden of Disease Study 

(GBD 2015) showed that the ambient particulate matter pollution is 5th risk factor causing 

premature death (Pinault 2017). However, in order to fully understand the its effect climate, 

air quality and health, detailed studies are required to understand sources, loading, 

composition and properties of particulate matter.  

Organic aerosol (OA) is a major constituent of submicron particulate matter based 

on the ambient measurements such as from Aerosol Mass Spectrometer data  in 37 field 

campaigns in the midlatitudes of the northern hemisphere which shows SOA accounts for 
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64%-95% of total OA on average (Zhang et al. 2007). Organic aerosol is classified into 

two categories due to differences in how they are formed. Primary organic aerosol (POA) 

is emitted directly into the atmosphere such as biomass burning, cooking, and vehicle 

exhaust (Hildebrandt et al. 2011). Secondary organic aerosol (SOA) is formed by the 

condensation of low volatility products from the oxidation of volatile organic compounds 

(VOCs). (Figure 1.1) SOA can also be formed from reaction of compounds in the 

condensed phase.  (Robinson et al. 2007). A large fraction of organic aerosol is SOA 

therefore understanding their formation and fate is critical to address the scientific 

problems (Hallquist et al. 2009). The source of the VOC can be biogenic, mainly from 

vegetation and soil. Globally, ∼90% of total nonmethane VOC emissions is biogenic VOC 

emissions (∼1150 TgCyr−1) which  consists of 44% isoprene (C5H8) , 11% monoterpenes 

(C10H16), 22.5% other reactive VOC, and 22.5% other VOC (Goldstein and Galbally 2007; 

Guenther et al. 1995; Guenther et al. 2012). Large emissions of the C5H8, C10H16 along 

with sesquiterpenes (C15H24) and their high reactivity with main atmospheric oxidants 

ozone (O3), hydroxyl radical (OH) and nitrate radicals (NO3) makes these VOCs important 

precursors for gas phase oxidation and thus total SOA mass. VOC can be anthropogenic, 

that emissions are related to transportation, industries, businesses, homes is formed from 

the condensation of gas phase oxidation products (Takeuchi and Ng 2018).  

The contribution of organic nitrates to total OA is found to be substantial from 

measurements conducted at various field campaign sites in the different seasons (Ng et al. 

2017). Aircraft (SEAC4RS) and ground-base (SOAS) campaigns that are done in Southeast 

US in Summer 2013 gives information about the speciated and total organic nitrates 
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derived from the biogenic VOCs and their impact on NOx (Fisher et al. 2016; Lee et al. 

2016). A year later, particle phase organic nitrates are estimated to be 5–12 % based on 

High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) 

measurements in summer in the southeastern USA (Xu et al. 2015b).  Kiendler-Scharr et 

al. measured pON using AMS across Europe and compared observations with results from 

the European Air pollution and Dispersion-Inverse Model (EURAD-IM) chemistry 

transport model in to evaluate the regional extent of their results. (Kiendler-Scharr et al. 

2016) They concluded that 34% to 44% fraction of measured submicron aerosol nitrate is 

organic nitrate.  

 

Figure 1.1 Formation of secondary organic aerosol from oxidation of volatile organic 

compounds 

1.2 Formation and Fate of alkyl nitrates and peroxy nitrates 
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Organic nitrate is defined as compounds with molecular structure of RONO2 in some 

studies (Day et al. 2010; Rollins et al. 2009) whereas in some studies organic nitrate is used 

for compounds with a chemical formula of RONO2 and RO2NO2 (Lee et al. 2016). RONO2 

and RO2NO2 compounds are also called as alkyl nitrate and peroxy nitrate, respectively. 

The detailed and simplified formation mechanisms of major organic nitrate derived from 

biogenic VOCs have been reported in previous studies (Ng et al. 2017; Perring, Pusede and 

Cohen 2013; Roberts 1990). Figure 1.2 shows the organic nitrate formation in daytime and 

nighttime. During daytime, organic nitrate is formed from the reaction between organic 

peroxy radicals (RO2•), formed from the mainly OH oxidation of VOC, and NOx. OH 

radical reacts with saturated hydrocarbons (R-H) by H abstraction and produce R radical 

which immediate reacts with O2 to form RO2•. OH radical reacts with unsaturated 

hydrocarbons (R1=R2) by OH addition and produce R1(OH)-R2 radical which reacts with 

O2 to generate a peroxy radical R1(OH)-R2O2. The resulting peroxy radicals reacts with 

NO to produce RONO2 or RO radical depending on the abundance of VOC and NOx. 

Branching ratio, ratio of reaction rate of RONO2 to the total of RONO2 or RO production, 

is important to find out the efficiency of RONO2 production and is found to be between 

0.1-35%. Another mechanism proposed for RONO2 production is reaction of RO2 with 

NO. RO2 reacts with NO and forms an unstable peroxy nitrate which later decompose to 

RO and NO2 or forms RONO2 through unimolecular rearrangement. In the presence of 

NO2, RO2 reacts with NO2 to form RO2NO2. RO2NO2 can be classified into two groups 

depending on the structure of RO2. RO2NO2 that has acyl group next to the peroxy group, 

R’C(O)OO, is called peroxy acyl nitrates and also denoted as peroxycarboxylic nitric 
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anhydrides or PANs. Independent of the nature of R group, these compounds are thermally 

stable and have lifetimes can change from minutes at surface temperatures to months at 

upper troposphere. The other group of RO2NO2 that does not have acyl group next to the 

peroxy group, peroxycarboxylic structure, is called non-acyl peroxy nitrates. Their thermal 

lifetimes are shorter and only found in significant concentrations at colder regions of the 

atmosphere (Wooldridge et al. 2010a). During nighttime, RONO2 is formed from nitrate 

oxidation reactions. NO3 radical reacts with unsaturated hydrocarbons (R1=R2) by NO3 

addition and produce R1(ONO2)-R2 radical which reacts with O2 to generate a peroxy 

radical R1(ONO2)-R2O2. The peroxy radical later react with NO3, RO2 or HO2 to form 

RONO2. 

Laboratory studies shows that organic nitrate yield from OH oxidation of isoprene 

and α-pinene is 4-15% and 1-26% respectively. Organic nitrate yield from NO3 oxidation 

of various VOCs changes from 20-80%, 0.62-0.8% for isoprene 0.10-0.29% for α-pinene 

(Takeuchi and Ng 2018). 

 

Figure 1.2. Alkyl nitrate and peroxy nitrate formation 
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1.3 Motivation, Scope and Overview 

Alkyl nitrate (AN) and peroxy nitrate (PN) are temporary NOx reservoirs species in 

the troposphere. Formation of AN and PN terminates the chain reactions of ROx and NOx 

(NO + NO2) radicals; therefore the quantification of these nitrates is critical to 

understanding the global and regional distributions of NOx as well as it cycling and impact 

on ozone and SOA production (Bean and Hildebrandt Ruiz 2016; Perring, Pusede and 

Cohen 2013). 

Quantification of speciated and total AN and PN enables us to measure the rates of 

chemical, physiological and removal of AN, loss or release of NOx due to different 

formation and fate mechanisms of AN and PN which leads to more reliable predictions of 

O3 and SOA formation and thus more effective strategies for air quality control (Perring, 

Pusede and Cohen 2013). 

The work presented in Chapter 2 of this dissertation focuses on the development and 

characterization of Thermal Dissociation - Cavity Attenuated Phase Shift Spectroscopy 

(TD-CAPS), and comparison its performance with established instruments by producing 

secondary organic aerosols from oxidation of biogenic organic compounds in GTEC 

chamber facility. Chapter 3 summarizes the main findings of this dissertation and provides 

recommendations for future work.   
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CHAPTER 2. DEVELOPMENT AND CHARACTERIZATION OF 

TD-CAPS 

2.1 Background 

Nitrogen oxides (NOx, sum of NO and NO2) play a critical role in atmospheric 

oxidation capacity, air quality, climate, and human health. NOx levels impact the 

photochemical production and loss of ozone (O3) as well as secondary organic aerosol 

(SOA) formation through reactions with ROx radicals (ROx = RO2+RO+HO2+HO). 

Therefore, it is important to understand the atmospheric life cycle of NOx (Perring, Pusede 

and Cohen 2013; Roberts 1990). Figure 2.1 shows the species and the processes involved 

in the NOx cycle. The sum of reservoir or sink species that enables temporary or permanent 

storage of NOx is referred to as NOz (NOz = HNO3 + RO2NO2 + RONO2 + HONO + N2O5 

+ NO3
-) (Logan 1983). The sum of NOx and NOz is defined as NOy (total reactive nitrogen). 

A significant loss pathway for NOx is the formation of alkyl nitrate (AN) and peroxy nitrate 

(PN) with molecular structures of RONO2 and RO2NO2, respectively. The oxidation of 

volatile organic compounds (VOC) by atmospheric oxidants produces peroxy radicals 

(RO2). RO2 can follow different reaction pathways depending on the atmospheric 

conditions. The reaction of RO2 with NO2 and NO leads to the formation of PN and AN, 

respectively. PN species are thermally unstable at boundary layer temperatures and 

decompose back to RO2 and NO2 on a time scale of minutes, an exception being the longer-

lived peroxyacyl nitrate (PAN). The relative importance of AN species among NOy can be 

significant and depends on VOC and NOx emissions (Perring, Pusede and Cohen 2013). 
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For example, (Browne and Cohen 2012) showed that AN formation is significant when 

biogenic VOC emissions are high and NOx emissions are low. Owing to their semi-

volatile/low-volatility nature, AN can also undergo gas-particle partitioning and contribute 

to SOA. The contribution of organic nitrates (referring to alkyl nitrates) to organic aerosol 

(OA) was found to be substantial (up to 77% by mass) from field measurements conducted 

at multiple sites around the world (Day et al. 2010; Fry et al. 2013; Kiendler-Scharr et al. 

2016; Ng et al. 2017; Rollins et al. 2012; Rollins et al. 2013; Xu et al. 2015b). 

 

Figure 2.1 NOx cycle 

The formation of RONO2 and RO2NO2 terminates the chain reactions of ROx and 

NOx which affects the global and regional distributions of NOx and thus O3 production. 

This makes the quantification of organic nitrates critical in NOx and O3 budgets. RONO2 

and RO2NO2 consist of many structurally distinct compounds and are usually present in 

low concentrations, making their quantification challenging. In some studies, the measured 

total NOy has been found to exceed the sum of speciated reactive nitrogen compounds 



 

 

 

9 

(ΣNOy,i), suggesting that there are “missing” speciated reactive nitrogen species 

(Bradshaw, Sandholm and Talbot 1998; Buhr et al. 1990; Day et al. 2003; Fahey et al. 

1986; Sparks et al. 2019; Womack et al. 2017).  In general, RONO2 and RO2NO2 have the 

biggest uncertainties among all NOy species and therefore measurements of these 

compounds will provide improved constraints of their role in NOx cycling, O3 and SOA 

production, and new insights into the unmeasured fraction of NOy.  

Individual gas-phase AN species has been measured with a variety of 

instrumentation. In early field measurements, short chain (C3−C5) monofunctional AN 

were quantified with GC-ECD (Atlas 1988). Later, individual AN species were measured 

with GC-ECD and GC with mass spectrometric identification (GC−MS) (Luxenhofer et al. 

1996; Schneider et al. 1998), high-pressure liquid chromatography (HPLC) followed by 

GC−ECD and GC−MS (Kastler and Ballschmiter 1998), atmospheric pressure ionization 

mass spectrometry (API-MS) (Kwok et al. 1996), proton transfer reaction mass 

spectrometry (PTR-MS)(D'Anna et al. 2005), and chemical ionization mass spectrometry 

(CIMS)(Beaver et al. 2012). Mass spectrometry techniques such as PTR-MS and CIMS 

(D'Anna et al. 2005) can measure multi-functional AN, however quantification of 

individual nitrates is challenging due to lack of authentic standards. In term of gas-phase 

PN species, peroxyacyl nitrate (PAN) is the most abundant PN, accounting for 75-90% of 

measured PN, with atmospheric measurements dating back to the 1960s (Carrington 1960). 

Early measurements were conducted with Fourier transform infrared spectroscopy (FTIR) 

(Niki et al. 1978) and gas chromatography (GC) followed by conversion to NO and 

chemiluminescence detection. However, the most common measurement technique for 
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PAN and its structural analogues is GC followed by electron capture detection (GC-ECD) 

(Darley, Kettner and Stephens 1963; Roberts 1990).  

In 2002, Day and co-authors developed a method based on thermal dissociation (TD) 

of AN and PN to generate NO2 and subsequent detection of NO2 by laser-induced 

fluorescence (TD-LIF) (Day et al. 2002). This method differs from previous methods by 

measuring the sum of all AN and the sum of all PN as opposed to individual species. Since 

detection relies on the NO2 measurement rather than the associated organic fragment, 

multifunctional organic nitrates can be measured by this technique as well. Later, a TD 

inlet was coupled with other detection techniques such as chemical ionization mass 

spectrometry (TD-CIMS) (Slusher et al. 2004; Zheng et al. 2011), cavity ring-down 

spectroscopy (TD-CRDS) (Paul, Furgeson and Osthoff 2009; Thieser et al. 2016) and 

Cavity Attenuated Phase Shift Spectroscopy (TD-CAPS) (Sadanaga et al. 2016). A 

summary of ambient measurements in urban and remote areas and comparison between 

different instruments for PN has been given in previous studies (Roberts 1990; Wooldridge 

et al. 2010b). In general, Wooldridge et al. (2010) found good overall agreements between 

the TD-LIF measurements and measurements of individual PN species under various 

environmental conditions. These TD methods have the capability of measuring particle-

phase AN with modification to the instrument inlet such as the use of activated carbon 

denuders to remove gas phase species (Rollins et al. 2010). Total particle organic nitrates 

can also be quantified by aerosol mass spectrometry (AMS) by applying the following 

methods: NO+/NO2
+ ratio, positive matrix factorization (PMF), and by subtraction of 

inorganic nitrate concentration measured by independent method from the total particulate 
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nitrate concentration measured by the AMS (Farmer et al. 2010; Fry et al. 2009; Hao et al. 

2014; Jayne et al. 2000; Kiendler-Scharr et al. 2016; Schlag et al. 2016; Sun et al. 2012; 

Xu et al. 2015a; Xu et al. 2015b). Individual organic nitrates in the gas and particle phases 

can be measured by filter inlet for gases and aerosols coupled to high resolution time-of-

flight CIMS (FIGAERO-HR-ToF-CIMS) (Chen et al. 2020; Lee et al. 2016; Nah et al. 

2016; Ng et al. 2017; Takeuchi and Ng 2019). 

Out of all available total AN and total PN measurement techniques, an advantage of 

the TD-CAPS instrument is that the CAPS monitor is commercially available. It does not 

require frequent calibration, although it requires frequent baseline measurements. 

Sadanaga et al. (2016, 2019) reported the first use of TD-CAPS for ambient measurements 

of AN and PN at Suzu on the North Peninsula of Japan. They analyzed the seasonal 

variations and diurnal variations of AN and PN and concluded that variations are mainly 

governed by long-range transport in the cold season and by local photochemical production 

in the warm season. However, there is no characterization study to quantify the limits and 

strengths of this technique. 

In this work, we developed and characterized a TD-CAPS instrument to measure total 

gas-phase and particle-phase AN and PN. We used isopropyl nitrate (IPN) and 

peroxyacetyl nitrate (PAN) as representative AN and PN compounds to identify and 

quantify potential chemical interferences from side reactions due to the presence of O3, 

NO, and NO2. We derived correction factors for the reactions of these compounds over a 

wide range of concentrations representative of rural and urban environments as well as 
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laboratory chamber experiment conditions. Finally, we evaluated the performance the TD-

CAPS instrument by making measurements of organic nitrates produced from the oxidation 

of biogenic VOC in the Georgia Tech Environmental Chamber (GTEC) facility and 

compared our results from TD-CAPS with other instruments. 

2.2 Instrument Setup 

A schematic of the TD-CAPS instrument is shown in Figure 2.2. The instrument 

has three channels and a CAPS monitor (Aerodyne Research Inc.) to measure NO2. The 

reference channel measures the background NO2 at room temperature. The other two 

channels have quartz tube reactors that are heated to 653 K and 473 K, enabling 

decomposition of AN and PN respectively, generating NO2. The NO2 concentration in each 

channel is alternatively measured by the CAPS monitor via 3-way solenoid valves. The 

difference in the NO2 concentration between the channels enables AN and PN 

measurements as shown in Eq. ((2-1)) and (2-2).  

[AN]  =  [NO2]653K  −  [NO2]473K (2-1) 

[PN]  =  [NO2]473K  −  [NO2]𝑅𝑒𝑓 (2-2) 
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Figure 2.2 Thermal Dissociation - Cavity Attenuated Phase Shift Spectroscopy (TD-

CAPS) setup 

The quartz tube reactor has an inner diameter of 0.7 cm and a length of 28 cm. The 

quartz tube has heated and cooled segments. The first 12.8 cm of the quartz tube is housed 

inside an aluminum case, which is heated with cartridge heaters managed by a temperature 

controller (Omega CNi844-EIT) and insulated with FIBERFRAX. The remaining 15.2 cm 

of the quartz tube is cooled by fans placed around the tube. The quartz tube reactor is 

connected to the CAPS monitor by a Teflon tubing (0.4763 ID), where temperature of air 

further cools down to room temperature in this section.  A 0.91 L min-1 flow is maintained 

in all channels during measurements, matching the sampling flow rate of the CAPS 

monitor. Solenoid valves placed after the quartz tube enable continuous flow in the 

channels, preventing overheating of compounds when the channel is not in use. The 

residence time from the heater to detection is 2 seconds. 
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The temperature profiles of the AN channel (653 K) and the PN channel (473 K) 

are shown in Figure A. 1. The temperature of the heaters in each channel is set based on 

the temperature range in which AN and PN are expected to thermally dissociate to produce 

NO2 (Day et al. 2002). Thermogram measurements are conducted with representative AN 

and PN compounds, IPN and PAN, to validate that one mole of compound is fully 

dissociated to one mole of NO2. An IPN cylinder is prepared by diluting IPN vapor in 

nitrogen gas. PAN is produced in situ by photolysis of the acetone/air/CO mixture followed 

by reaction of NO. The amount of PAN generated is determined by the conversion 

efficiency of NO to NO2.  In our measurements, the conversion efficiency is about 90%, 

which is consistent with the literature (Flocke et al. 2005; Warneck and Zerbach 1992). 

The efficiency of thermal dissociation of IPN and PAN is shown at Figure A. 2, which 

shows complete thermal dissociations of IPN and PAN at the expected dissociation 

temperatures. These results are consistent with the model NO2 yields of AN and PN 

presented in (Day et al. 2002). 

A typical measurement sequence starts with a baseline measurement at each 

channel using zero air, followed by measurements at the reference channel, 653 K channel, 

473 K channel, and ends with another baseline measurement. The sampling duration in 

each channel is typically 5-10 minutes depending on the experiment. The duration is 

determined based on the time required to reach a stable measured NO2 concentration. The 

baseline measurements at the beginning and the end of the measurement capture the 

baseline drift during the experiment, which is typically about <1 ppb in a 12-hour 
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experiment and corrected by interpolation between the two baseline measurements. The 

equation below shows how the correction is applied to each measurement.  

[N𝑂2]channel_baseline_corrected 

= [N𝑂2]channel_reading  − [N𝑂2]baseline_interpolated 

(2-3) 

Before taking measurements, the CAPS monitor is calibrated with a 1.644 ppm 

standard of NO2/N2 gas (Airgas), diluted with zero air. The calibration factor is stable, 

which only varies between 0.93 and 1.1, consistent with the measurement principle of 

CAPS (Kebabian et al. 2008). 

The gas-phase and particle-phase AN and PN from the chamber are measured by the 

addition of a Teflon filter and an activated charcoal denuder to the TD-CAPS inlet. (Figure 

A. 3) A baseline is taken by sending excess zero air to the instrument. We use a 0.45 lpm 

sampling rate for the particle phase measurements, dilution rate of sampling/total flow 

0.44, to provide enough residence time in the denuder to remove gas phase components. 

The residence time in the denuder is 25.7 s. The multichannel activated carbon denuder is 

15 cm in length and 4 cm in diameter. Dilution with zero air is applied to the gas phase 

measurements to reduce the total flow required from the chamber to the instruments. For 

the CAPS, the dilution is a factor of 2. A total of five channels, 3 for the gas-phase and 2 

for the particle-phase, along with two CAPS monitors are used for this experiment. The 

sampling time for each channel is set to 2 minutes. 
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2.3 Characterization of Potential Chemical Interferences  

Based on previous studies on characterization of TD-LIF and TD-CRDS 

instruments (Day et al. 2002; Thieser et al. 2016), we use IPN and PAN to evaluate 

potential chemical interferences in the TD-CAPS instrument. These interferences arise 

from side reactions due to presence of atmospheric constituents like O3, NO, and NO2. 

Measurements are performed by mixing various concentrations of IPN and PAN with NOx 

(IPN+NO, IPN+NO2, PAN+NO, and PAN +NO2), and O3 with NOx (O3+NO and 

O3+NO2). Correction factors are derived for binary combinations of these compounds over 

a wide range of concentrations. The explored concentrations are representative of rural and 

urban environments as well as laboratory chamber reaction conditions.  

Several assumptions need to be made when applying the correction factors derived from 

these characterization experiments. The first assumption is that all AN and PN behave like 

the selected representative compounds, IPN and PAN. This assumption is likely to be valid 

since R group in the RONO2 and RO2NO2 has little effect on the activation energy and thus 

on the thermal dissociation rates of these compounds (Kirchner et al. 1999; Roberts 1990). 

The second assumption is that chemical interferences are additive. Here, chemical 

interferences are determined from binary systems and the overall interference is calculated 

from the addition of each interference. 

2.3.1 Chemical Interference for IPN due to Presence of NOx 

IPN decomposes only in the 653 K channel. Ideally, 1 ppb of IPN produces 1 ppb 

of NO2. However, deviations from the ideal case occur due to side-reaction of RO2 radicals 
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(produced from thermal decomposition of IPN) and HO2 (from subsequent reactions) with 

NO to make NO2 (Day et al., 2002, Thieser et al., 2016).  As seen in the reactions below, 

two additional NO2 molecules can be produced from radical reactions in addition to IPN 

thermal decomposition, assuming there is negligible wall loss of radicals.  

i-C3H7ONO2               i-C3H7O • + NO2                                                                                                                                                                  (R1) 

i-C3H7O • + O2           HO2 • + C3H6O                                                                             (R2)                                                                                                                                                                                          

i-C3H7O •         CH3O2 •  + CH3CHO                                                                             (R3)                                                                                                           

CH3O2 • + NO        CH3O • + NO2                                                                                  (R4)                                                                                                

CH3O • + O2              CHOH + HO2 •                                                                             (R5)                                                                                                                

HO2 • + NO        OH • + NO2                                                                                                                                      (R6)                                                                                                                                                         

We investigate chemical interference due to the presence of NO by adding NO to 

different concentrations of IPN systematically. The NO concentration is varied from 1 ppb 

to 174 ppb for IPN concentrations of 1.2, 5.8 and 11.4 ppb. Figure 2.3 shows the difference 

signal between the 653 K channel and reference channel divided by IPN concentration as 

a function of NO.  Normalizing the signal by IPN concentration shows that the 

overestimation of NO2 is dependent on IPN concentration, with a stronger dependence at 

low NO concentrations. 
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Figure 2.3 Measurements of the difference signal (sampling from the 653K – reference 

channel) over IPN concentration when adding different amounts of NO to IPN 

The correction factor is derived by fitting the experimental data with an exponential 

equation in the form of y0 + A*e (-NO/Tau)
 using IGOR Pro 6.37. y0 corresponds to the peak 

of the curve, which has a value of 3.2837. Tau determines the shape of the curve, which is 

dependent on the IPN concentration. It is defined as Tau=m*IPN + n, where m and n are 

constants. The experimental fit equation is as follows: 

𝑓(NO, IPN) = 3.2837 − 2.221 ∗ 𝑒
(−

[𝑵𝑶]
3.694∗[𝑰𝑷𝑵]+5.5597

)
    

(2-4) 

The observed overestimation is compared with the results reported for TD-LIF 

(Day et al. 2002) and TD-CRDS (Thieser et al. 2016). The degree of overestimation is 
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found to be higher in our study than in Day et al 2002. Day et al. 2002 used a quartz tube 

reactor with a temperature set point of 673 K and a residence time of 200-230 ms.  Their 

concentration of NO is up to 260 ppb for 4.9 ppb of NPN and the interference due to NO 

is about a factor 1.72. They concluded that the low residence time leads to incomplete 

conversion of NO to NO2 by ROx. Moreover, they operated the LIF cells at 2-4 Torr, which 

will reduce rate of the bimolecular reactions. In a later study (Wooldridge et al. 2010b), 

they modeled the effects of pressure on the degree of interference by reducing the pressure 

at different parts of the inlet. Although operating at low-pressure can result in smaller 

interference, the CAPS monitor requires operating at ambient pressure to maintain a good 

sensitivity. The lowest pressure recommended by Aerodyne is 560 Torr.  Reducing our 

sampling pressure to 580 Torr leads to a similar degree of interference, which is consistent 

with model predictions. Therefore, the instrument is operated at ambient pressure.  The 

degree of overestimation in our study is also compared to the values given by Thieser et al 

2016. At reactor set temperature of 723 K and 2 seconds of residence time (from heater to 

detector), they measured the interference due to NO for range of IPN concentrations of 

0.29-5.78 ppb. They added 0-9.2 ppb of NO and expressed the interference with the 

1+1.8(1- exp(-0.08*[NO])) equation. The degree of overestimation is found to be less than 

factor of 2 for that measured concentration range and similar to the degree of 

overestimation found in our study (≤ factor of 2). The interference expression in their study 

provides the estimate peak value of 2.8 at high NO concentrations and is less than the value 

that we obtained in the study. A possible reason for the differences in the interference could 

be the sampling history of the quartz tubing, which could affect wall loss of peroxy radicals 
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and consequently the degree of interference. Therefore, it is important to quantify the 

interference at the concentration range of IPN and NO that is interest of the subsequent 

measurement. The effect of radical wall loss is discussed in detail in Section 2.3.3.  

We also evaluate chemical interference due to presence of NO2 are explored by 

mixing NO2 (4.1- 120.7 ppb) and IPN (4.1 ppb to 120.7 ppb) systematically. Unlike the 

case for NO, Figure 2.4 shows that the chemical interferences due to addition of NO2 is 

insignificant. There is no dependency on IPN nor NO2. This trend is consistent with the 

behavior observed in Day et al. 2002 and Thieser et al. 2016.  

 

Figure 2.4 Measurements of the difference signal (sampling from the 653K – reference 

channel) over IPN concentration when adding different amounts of NO2 to IPN 
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2.3.2 Chemical Interference for PAN due to Presence of NOx  

PAN decomposition occurs at both 473 K channel and 653 K channel; therefore, 

the interference is investigated in both channels.  PAN thermally decomposes to NO2 and 

CH3C(O)O2. In the presence of NO, CH3C(O)O2 , CH3O2, and HO2 can react wtih NO to 

produce NO2. This leads to up to three additional NO2 molecules from side reactions. In 

the presence of NO2, recombination to PAN and reaction with CH3O2  are important NO2 

loss mechanisms. 

CH3C(O)O2 NO2                 CH3C(O)O2 • + NO2                                                                                                    (R7)                                                                                                                                              

CH3C(O)O2• + NO           CH3O2 • + NO2                                                                        (R8)                                                                                              

CH3O2 • + NO         CH3O •  + NO2                                                                                 (R9)                                                                                                         

CH3O •  + O2           HCHO + HO2 •                                                                             (R10)                                                                                        

HO2 • + NO        OH • + NO2                                                                                                                                   (R11)                                                                                                                                                       

NO is added to different concentration of PAN systematically to quantify the 

chemical interferences due to side reactions. NO concentration is changed from 3 ppb to 

183 ppb for PAN concentration of 1.4, 1.8, 2.7, and 3.7 ppb. Figure 2.5 shows the 

difference signal between the 473 K channel and reference channel (see Eq (2-2)) divided 

by PAN concentration as a function of NO. While the interference is dependent both on 

NO and PAN, the dependence on PAN is more observable for NO concentrations lower 
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than 50 ppb. The correction factor is derived by fitting the experimental data to the 

following equation:   

𝑓(NO, PAN) = 2.7046 − 1.665 ∗ 𝑒
(−

[𝐍𝐎]
2.229∗[𝐏𝐀𝐍]+3.0527

)
 

(2-5) 

 

Figure 2.5 Measurements of the difference signal (sampling from the 473K – reference 

channel) over PAN concentration when adding different amounts of NO to PAN. 

There is more interference in our work than the interference reported by Day et al 

2002, again likely due to a longer residence time in our study. In Thieser et al 2016, the 

overestimation increases to the factor of 2.7 as the NO concentration increases from 0-10.1 

ppb NO for 1.05 and 2.5 ppb of PAN. The interference is higher compared to our study 
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where it varies between the factor of 2-2.4 with PAN concentration at NO concentrations 

less than 14 ppb and the variation at the interference due to PAN concentration is  corrected 

by the addition of a PAN dependency to the experimental fit.  

In the 653 K channel, high concentrations of NO2 are measured with the addition 

of NO, which was not expected. The following two cases are analyzed to understand 

whether this interference is due to PAN or other radicals produced in the photochemical 

cell. In the first case, PAN is produced by sending 42 ccm of a 20 ppm acetone/CO/air 

mixture and 2 ccm of a 2ppm NO tank through the photochemical cell. The output is diluted 

with pure air to obtain 0.77 ppb of PAN and mixed with 0-50 ppb of NO to investigate the 

effect of NO on the PAN measurement. In the second case, the same flow rate of 

acetone/CO/air is sent to the photochemical cell following same dilution rate and addition 

of NO concentration range. Figure A. 4 shows the difference in NO2 for the two cases 

([NO2]acetone/CO/air +NO – [NO2]acetone/CO/air) which is found to be fluctuating at an average 

value of 0.74 ppb and does not show any trends within the uncertainty. This difference in 

NO2 gives the PAN concentration at 0 ppb of NO and PAN concentration with the possible 

interference at 5.6-56 ppb of NO. Since NO2 is kept constant (same as the initial PAN 

concentration) while increasing NO, no interference from NO is expected at 653 K channel. 

Since NO2 production from side products is only observed in the 653 K channel, the side 

products are probably alkyl nitrates. 

Chemical interference due to the presence of NO2 are explored by adding NO2 to 

PAN systematically. The NO2 concentration is varied from 4.1 ppb to 120.7 ppb for PAN 
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concentrations of 1.0, 1.7, 2.9, and 4.4 ppb. Figure 2.6 shows the difference signal between 

the 473 K channel and reference channel (see (2-2)) divided by PAN concentration as a 

function of NO2. As shown in the figure, there is no dependency on PAN concentration but 

there is dependence on NO2 concentration. The correction factor is expressed as follows: 

𝑓(NO2) = 0.715 + 0.284 ∗ 𝑒
(−
[𝑁𝑂2]
10.7

)
   

(2-6) 

 

 

Figure 2.6 Measurements of the difference signal (sampling from the 473K – reference 

channel) over PAN concentration when adding different amounts of NO2 to PAN. 

The interference in Day et al. 2002 is expressed by the time-dependent bimolecular reaction 

of the peroxyacyl radicals and NO2 where they estimated around a 4% underestimation for 
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1 ppb of PAN in the presence of 1 ppb of NO2. The interference is found to be smaller than 

that reported in Thieser at al 2016 which is underestimated up to factor of 0.4 at NO2 

concentrations lower than 18 ppb. 

2.3.3 Numerical Simulations and Peroxy Radical Wall Losses 

We constructed a kinetic box model to simulate and evaluate the experimental data 

and the reactions involved. The reactions rates are obtained primarily from the Master 

Chemical Mechanisms (MCM) v 3.3.1 (SI). The input of the box model simulations are 

reaction rates, temperature profile of each channel, residence time, and initial 

concentrations of the reactants. The simulations are run using Framework for 0-D 

Atmospheric Modeling (F0AM) v3.1. The results of the simulations are shown in Figures 

2.3 – 2.6 as dotted lines. For interference from IPN+NO (Figure 2.3), the kinetic box model 

results show higher variation at low NO concentration that is due to loss of NO2 from its 

reaction with OH at higher concentrations of IPN, and this loss mechanism becomes less 

significant as NO concentration increases. Moreover, at higher IPN concentration the 

model shows that relative importance of HO2 reaction with OH increases which reduces 

the amount of NO2 production from HO2+NO reaction. The Model qualitatively follows 

the NO and IPN dependency of NO2 production. The quantitative agreement can be 

reached by introducing wall-loss correction of CH3O2, HO2 and CH3C(O)O2 radicals. 

For interference from IPN+NO Although the model does not show IPN 

concentration effect as observed in measurements, dependency of NO2 in the 

measurements is found different from the model results where a strong decreasing trend is 
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observed with increasing NO2 due to combination reaction of i-C3H7O and NO2 in the 

absence of wall-loss affects. Therefore, wall-loss for the peroxy radicals needs to be 

introduced to match our measurements.  

The model follows the general trend of the measurements in the absence of wall-

loss. However, introducing the same wall-loss rates for CH3O2, HO2 and CH3C(O)O2 

improves the agreement. 

Model results shows a larger decrease in signal compared to the experiments in the 

absence of radical wall-loss. Therefore, wall-loss values need to be adjusted to match the 

experiments. 

Radical wall-losses for CH3O2, HO2 and CH3C(O)O2 are introduced for the kinetic 

box model to match the experimental data. CH3O2, HO2 and CH3C(O)O2 radicals are 

produced in IPN+NO, IPN+NO2, PAN+NO and PAN+NO2 cases. Therefore, these 3 wall-

loss values, kCH3O2, kHO2 and kCH3C(O)O2, are determined by minimizing the root mean square 

error (RMSE) of model output value and experimental data for each system. For example, 

for IPN+NO case: 

𝑅𝑀𝑆𝐸𝐼𝑃𝑁+𝑁𝑂 = √
∑ (𝑓(NO, IPN)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑓(NO, IPN)𝑚𝑜𝑑𝑒𝑙)2
𝑁
𝑖

𝑁
   

(2-7) 

where N is the number of measurements taken for that given system.  
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 Next, average of RMSE values are taken to select kCH3O2, kHO2 and kCH3C(O)O2 

values that fits best to the 4 cases. 

𝑅𝑀𝑆𝐸𝑎𝑣𝑔

= 
𝑅𝑀𝑆𝐸𝐼𝑃𝑁+𝑁𝑂 + 𝑅𝑀𝑆𝐸𝐼𝑃𝑁+𝑁𝑂2 + 𝑅𝑀𝑆𝐸𝑃𝐴𝑁+𝑁𝑂 + 𝑅𝑀𝑆𝐸𝑃𝐴𝑁+𝑁𝑂2

4
    

(2-8) 

 

The range of radical wall-loss values are as follows: kCH3O2 = 0.4-1 s-1, kHO2 = 8-14.26 s-1 

and kCH3C(O)O2 = 0.55 - 0.82 s-1
. The values for kCH3O2 and kCH3C(O)O2 are similar to the values 

reported in Thieser et al. where radical wall-loss values vary between 0.3 and 0.8 s-1. These 

values are also comparable to the peroxy radical loss observed in Wooldridge et al. which 

is 0.3 s-1 for quartz and 0.2 s-1 for Teflon tubing. They mention that wall-loss values are 

likely to change between quartz tubes and through environmental exposure. We also 

observed changes in radical wall-loss rates that depend on sampling history. 

2.3.4 NO2 Loss due to O3 Thermal Decomposition 

If the inlet stream contains O3, its thermal decomposition to O2 and O (3p). O (3p) 

atom either recombines with O2 or reacts with NO2, resulting in a loss of NO2.  

O3           O2 +O                                                                                                                                    (R12) 

O2 + O + M           O3 + M                                                                                                                      (R13) 

NO2 + O         NO+ O2                                                                                                                        (R14) 
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The reaction of O with O2 is instantaneous, therefore, a steady state expression can be 

written as:  

[O]𝑠𝑠  =  
k12 [O3]

k13[O2][M]
  

(2-9) 

The rate of NO2 loss can be written as:  

−
d[NO2]

dt
= 𝑘14 ∗ [NO2] ∗ [O]𝑠𝑠 

(2-10) 

When the [O]ss is substituted into Eq (2-10)  

−
d[NO2]

dt
= 𝑘′ ∗ [NO2] ∗ [O3] 

(2-11) 

where k’ is 
k14k12

k13[O2][M]
. Eq. (2-11) can further be simplified assuming of the change in  

[NO2] and [O3] is small, where t is the residence time.  

[NO2]𝐿𝑜𝑠𝑠 = k ∗ t ∗  [NO2] ∗ [O3] (2-12) 

We investigate this interference in the 653 K channel by mixing NO2 concentrations 

of 4.4, 13.8, 27.6, and 36.8 ppb with O3 concentrations of 22.4, 42.3, and 75.1 ppb. Figure 

2.7 shows the NO2 loss with the expression given by Eq. 10.  

𝑓(O3, NO2) = 0.00070574 ∗ [NO2] ∗ [O3]  + 0.11082  (2-13) 
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Figure 2.7 NO2 Measurements at 653 K channel when adding different amounts of 

NO2 to O3 

In the investigated concentration ranges, the chemical interference can be expressed 

as a linear fit. Figure A. 5 shows the how NO2 signal changes with different NO2 and O3 

concentrations. The influences of NO2 and O3 are different in different concentration 

ranges. At small NO2 concentrations, an increase in O3 concentration does not change the 

loss of NO2. As NO2 concentration increases, the effect of the O3 concentration change 

becomes significant. Both the absolute concentration and the difference between the 

measured NO2 and O3 affects the observed NO2 loss. Therefore, the expression above may 

not hold if the difference between the initial NO2 and O3 concentrations is large. In 
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addition, a large deviation from linear behavior is observed at high concentrations of NO2 

and O3 (Figure A. 6).  

Day et al 2002 and Thieser et al 2016 discussed the loss of NO2 due to its reaction 

with O (3p) atom produced from the thermal decomposition of O3. Day et al 2002 

investigated this loss at temperatures up to 873 K. At the residence times and the 

temperature of their reactor, they do not observe any change in NO2 concentration. On the 

other hand, Thieser at al 2016 observed that O3 thermal decomposition affects the NO2 

concentration and the interference can be quantified by a linear function of the product of 

NO2 and O3 with a slope of 7.34*10-4 which is similar to the slope we obtained in our study.  

NO2 loss in the 653 K channel is simulated using a kinetic box model with the 

addition of the thermal decomposition rate of O3 is used by Thieser et al 2016. As seen 

Figure 2.7, NO2 loss predicted by model is with much higher than the experimental data. 

Therefore, O wall-loss is introduced to match the model to the measurements. Wall-loss O 

is found to be 220 s-1. This value is within same order of magnitude as the one obtained by 

Thieser et al 2016 (70 s-1).  

2.3.5 NO2 Formation from O3 and NO 

The presence O3 can also result in NO2 production from the reaction of O3 and NO 

and interfere with the measurement. NO2 is produced from the reaction given below:  

NO + O3         NO2 + O2                                                                                          (R15) 

The rate of reaction can be written as  
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dNO2
dt

= 𝑘15 ∗ [NO] ∗ [O3]  
(2-14) 

This can be simplified at low conversion of [NO] and [O3] 

NO2(excess) = 𝑘15 ∗ t ∗  [NO] ∗ [O3]  (2-15) 

where t is the residence time. 

We use combinations of NO concentrations (20.3, 45.0, and 70.0 ppb) mixed with 

different O3 concentrations (21.6, 46.7, and 71.5 1 ppb) in order to quantify NO2 formation. 

Figure 2.8 shows NO2 production in the reference, 473 K, and 653 K channels plotted 

against the product of NO and O3 concentrations. Fitting the experimental data to Eq. 14 

yields the following equations:  

𝑓𝑟𝑒𝑓(O3, NO) = 0.00403 ∗ [NO] ∗ [O3]  + 1.736 (2-16) 

𝑓473(O3, NO) = 0.00442 ∗ [NO] ∗ [O3]  + 2.045  (2-17) 

𝑓653(O3, NO) = 0.00518 ∗ [NO] ∗ [O3]  + 6.051  (2-18) 
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Figure 2.8 NO2 Measurements at Reference channel, 473 K channel and 653 K 

channel when adding different amounts of NO to O3. 

The residence time for these characterization experiments is 8.5 s. The rate constant 

in the reference channel (kref) is calculated as 1.92*10-14 cm3 molecule-1 s-1, which is similar 

to the rate in the MCM v3.1.1 (1.73*10-14 cm3 molecule-1 s-1). Deviations from linear 

behavior are observed at 473 K and 653 K increasing with temperature. The reaction rate 

constants at 473 K (k473) and 653 K (k653) are calculated as 2.11*10-14 cm3 molecule-1 s-1 

and 2.48*10-14 cm3 molecule-1 s-1.  These rate constants are comparable to the values 

reported in Thieser et al. (2016). As discussed in the previous section, the expression for 

the correction of the chemical interference (Eq 15) may not be accurate if the 

concentrations of O3 and NO are very different from each other.  
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2.3.6 Expression of Correction Factors and the Total Uncertainty 

The equations for correcting PN and AN, using the correction factors developed in 

previous sections, are shown below: 

[PN] = 
[PN]

0
- (f473(O3, NO) - fref(O3, NO)) 

f(NO2) f(NO,PAN)
 

(2-19) 

   where [PN]0 = [NO2]473  −  [NO2]Ref is the uncorrected PN concentration, which is the 

difference in measured NO2 concentration between the 473 K channel and the reference 

channel.  

[AN]=
[AN]0 +  f(O3, NO2) −  (f653(O3, NO)-f473(O3, NO))  

f(NO, IPN)
   

(2-20) 

where [AN]0 = [NO2]653 −  [NO2]473 is the uncorrected AN concentration, which is the 

difference in measured NO2 concentration between the 653 K channel and the 473 K 

channel. 

 Since f (NO, PAN) and f (NO, IPN) are dependent on [PN]0 and [AN]0, [PN] and 

[AN] are solved iteratively.  

The parameters for the correction factors (Eqns (2-4), (2-5), (2-6), (2-7), (2-16), 

(2-17), (2-18)) are determined by fitting the experimental data to exponential or linear 

equations using IGOR Pro 6.37. The uncertainties associated with each parameter are one 

standard deviation of the values and listed in Error! Reference source not found..1. 
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Table 2-1 Summary of Fit Equations and Uncertainties 

System Fit Equation Parameter Uncertainty of 

Fit Equation 

IPN+NO 𝑓(NO, IPN) = 𝑦0 + A

∗ 𝑒
(−

[𝑁𝑂]
m∗[𝐼𝑃𝑁]+n

)
 

𝑦0= 3.2837 ± 

0.0984 

 

0.15 ± 0.03 

 
A = -2.221 ± 0.117 

m=3.694 ± 0.779 

n= 5.5597 ± 2.15 

PAN+NO 𝑓(NO, PAN) = 𝑦0 + A

∗ 𝑒
(−

[𝑁𝑂]
m∗[𝑃𝐴𝑁]+n

)
 

𝑦0= 2.7046 ± 

0.0247 

 

0.057 ± 0.037 

A = -1.665 ± 

0.0487 

m= 2.2229 ± 0.51 

n= 3.0527 ± 1 

PAN 

+NO2 

𝑓(NO2, PAN) = 𝑦0 + A

∗ e
(−
[NO2]
Tau

)
 

𝑦0= 0.715 ± 0.0176  

0.025 ± 0.013 A = 0.284 ± 0.0473 

Tau= 10.7 ± 3.63 
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NO2 +O3 𝑓(O3, NO2) = 𝑚 ∗ [NO2] ∗ [O3]  

+ 𝑛 

m=.0574*10-4 ± 

4.41*10-5 

 

n= 0.11082 ± 

0.0509 

NO +O3 𝑓𝑟𝑒𝑓(O3, NO) = 𝑚 ∗ [NO] ∗ [O3]  

+ 𝑛   

m= 0.004029 ± 

0.000113 

 

n= 1.7362 ± 0.415 

𝑓473(O3, NO) = 𝑚 ∗ [NO] ∗ [O3]  

+ 𝑛 

m= 0.004418 ± 

0.000134 

 

n= 2.0448 ± 0.493 

𝑓653(O3, NO) = 𝑚 ∗ [NO] ∗ [O3]  

+ 𝑛 

m= 0.005184 ± 

0.000317 

 

n= 6.0514 ± 1.16 

 

The detection limit is obtained by calculating the standard deviation (σ) for each 

channel using Allan variance analysis. Since the measurements are taken as a difference, 

we propagate the errors to obtain the detection limit of AN and PN measurements. Allan 

variance is defined as half of the square of the time average of the differences between 

consecutive readings of y, which is the NO2 concentration reading, sampled over the 

sampling period (T) (Allan 1966). 
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σ𝑦
2(𝑇) =

1

2
< (𝑦𝑛+1 − 𝑦𝑛)

2 >   
(2-21) 

The Allan variance (σ2) is calculated at two different NO2 concentrations by 

sending a continuous flow of zero air (0 ppb of NO2) or 17 ppb of NO2 through the TD-

CAPS instrument for over 8 hours. Figure 2.9 shows the time series of the NO2 

concentration and the Allan variance as a function of integration time. As the integration 

time increases, σ2 decreases. The detection limit (3σ precision) of the CAPS monitor is 

reported as 0.060 ppb (Kebabian et al. 2008). In our study, the detection limit (3σ precision) 

of a TD-CAPS reading is 0.143 and 0.145 for 0 and 17 ppb of NO2, respectively, at a 10 s 

integration time. The 3σ value did not change when going through the channels or when 

sampled directly from the CAPS. The value changes slightly with NO2 concentration. Our 

detection limit is higher than the value reported in (Kebabian et al. 2008), possibly due to 

wear and tear of the instrument. 

We use 3σ=0.144 for AN and PN measurements. Since AN and PN concentration 

are determined by taking the difference between two channels (Ch), the precision of AN 

and PN measurements becomes 0.19 after error propagation:  

σ𝐴𝑁,𝑃𝑁 = (Ch1 − Ch2) ± √σCh1
2 + σCh2

2                                                                   (Eq 21) 



 

 

 

37 

 

Figure 2.9 Detection Limit of TD-CAPS 

Monte Carlo Analysis is used to determine how well the experimental fit represents 

the data and total uncertainty. Monte Carlo Analysis is a computational technique that 

calculates the possible outcomes by repeatedly assigning range of values to any factor with 

an uncertainty, based on a probability distribution (Rubinstein and Kroese 2016). For our 

study, the uncertainty of each fit equation is calculated in the following steps. The fit 

parameters are assigned by generating normal random variables within the uncertainties 

shown in Table 2.1. For a given initial reactant concentration, such as IPN and NO, the 

standard deviation for the fit equation is obtained by running 10000 simulations. 10000 

runs were selected because the computational time is fast and increasing the number of 
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runs did not improve the results. The simulations produce a range of possible outcomes for 

the fit equation. The standard deviation for the fit is then calculated by taking the average 

of the standard deviation for the experimental data. The uncertainty of the fit parameters is 

given in Table 2.1. One standard deviation represents the IPN+NO, PAN+NO case well, 

whereas three times the standard deviation (3σ) includes the measurement points for the 

PAN+NO2 case. Therefore, the total uncertainty of the AN and PN channels is given as 

3σ. In all cases, the experimental fit represents the data within 20% uncertainty.  

The total uncertainty of the AN and PN channels is calculated as follows. The first 

step is to finalize the correction factors depending on the NO, NO2 and O3 concentrations. 

Second, we run the Monte Carlo simulation to calculate the uncertainty of AN and PN. 

Finally, the relative standard deviation of AN and PN is calculated by dividing the standard 

deviation by the mean PN from the simulation.  

𝑅𝑒𝑙𝑆𝑡𝑑𝐴𝑁(10000) = 𝑆𝑡𝑑𝐷𝑒𝑣𝐴𝑁/𝑀𝑒𝑎𝑛𝐴𝑁 (2-22) 

𝑅𝑒𝑙𝑆𝑡𝑑𝑃𝑁(10000) = 𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝑁/𝑀𝑒𝑎𝑛𝑃𝑁  (2-23) 

 The relative standard deviation of AN and PN due to presence of NO and NO2 is 

shown in Figure A. 7 and Figure A. 8. The uncertainty depends on AN0 and PN0. We use 

5 ppb of AN0 and PN0 for this example. The uncertainty in AN is higher at lower NO 

concentrations (<10 ppb) since the experimental fit is better at higher NO concentrations. 

The uncertainty does not change with NO2 concentration. This is expected since IPN does 

not vary with the addition of NO2. The uncertainty of PN does not show any clear trend 



 

 

 

39 

with the NO2 concentration due to the scattered experimental data observed with the 

addition of NO2 to PAN. In the case of NO, the uncertainty is higher for NO concentrations 

between 10-40 ppb. In this region, the chemical interference varies more with PAN and 

NO concentrations and causing the experimental fit to deviate from the experimental data.  

2.4 Chamber Experiment Measurements with TD-CAPS 

In order to evaluate the performance and further improve the TD-CAPS instrument, we 

measured secondary organic aerosol produced in the Georgia Tech Environmental 

Chamber (GTEC) facility (Boyd et al., 2015).  AN and PN are produced from 

photooxidation of α-pinene in the presence of NOx, using HONO as an OH precursor (SI) 

and measured by the TD-CAPS and other well-established instruments.  

Gas-phase AN and PN measured by TD-CAPS are compared with observations by the 

Filter Inlet for Gases and AEROsols (FIGAERO) High-Resolution Time-of-Flight 

Chemical-Ionization Mass Spectrometer (HR-ToF-CIMS) which provides real time 

molecular composition of species in both the gas- and particle-phase. Details of the 

operation of the instrument are given in (Sanchez et al. 2016). Gas-phase species were 

diluted with zero air in a 1:17 ratio right before the inlet. The instrument was calibrated 

with an organic nitrate standard, α-pinene hydroxy nitrate, to calculate the concentration 

of detected species. A conversion factor of 5.1-8 Hz/ppt is used to quantify the AN and PN 

produced in the chamber experiment. Other gas-phase measurements include O3 measured 

by an O3 analyzer (Teledyne T400) and NO concentrations measured using a 

Chemiluminescence NOx monitor (Teledyne 200EU). 
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Particle-phase organic nitrates measured by the TD-CAPS are compared with those 

measured by High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-

AMS). As the experiment was performed in dry conditions, all the nitrate signal is assumed 

to be from the organic nitrate (Takeuchi and Ng). Moreover, the collection efficiency is 

assumed to be 1. The collection efficiency can be calculated by using Scanning Mobility 

Particle Sizer (SMPS, TSI). The SMPS measures the total volume of aerosol and HR-ToF-

AMS measures the mass, therefore, using an aerosol density, the mass measurement can 

be converted to volume and directly compared to the SMPS measurement. However, the 

aerosol density can vary during the experiment so this method may not be accurate.  

2.4.1 TD-CAPS and HR-TOF-CIMS Comparison 

Since the O3 concentrations in this experiment are much lower than the NO and NO2 

concentrations, we do not need to apply the correction factors derived for O3+NO and 

O3+NO2 mixtures. Therefore, the equations used for correcting the gAN and gPN 

measurements are reduced to the following:  

[gAN] = 
[gAN]0  

f(NO, IPN)
  

(2-24) 

[gPN] = 
[gPN]0 

f(NO2) f(NO, PAN)
 

(2-25) 

We recommend that the characterization and chamber experiments to be performed 

within a short amount of time since the applied correction factors can change with the 

sampling history of the quartz tube. However, we do not have an IPN+NO measurement 
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close to the date of experiment. Therefore, we use average of the previous values to correct 

for this interference. Figure A. 9 shows two different curves, one converging at 2.1 and the 

other on 3.28. These were done at different times and the magnitude of the interference 

changed. We use the average of these two values and the uncertainty is calculated by taking 

the difference between the curves and the mean. In addition, Figure 2.10 shows that NO 

concentration increases to ~ 400 ppb within 1-2 minutes. This high concentration of NO 

makes the IPN dependency insignificant. Therefore, the correction is reduced to the 

following equation which we apply to the AN channel.  

𝑓(NO, IPN) = 2.69 ± 0.58 (2-26) 

 

Figure 2.10 NO, NO2 and O3 Time series at the chamber experiment where α-pinene 

is oxidized by HONO 
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The finalized fit equations (Eq 25 and Eq 26) represent the chamber experiment conditions 

and used to calculate gas phase AN (gAN) and PN (gPN). Total gas phase organic nitrate 

is obtained by adding gAN and gPN and then correcting for dilution. Once AN and PN 

concentrations are determined, the uncertainty of gAN and gPN is found using Monte Carlo 

Analysis by following the method described in Section 3.6. Eq. 24 is used to calculate the 

uncertainty of the AN channel. The uncertainty of gAN and gPN (3*σ) is 19 % and 47 %, 

respectively. The uncertainty of gAN from Eq (2-24)   is consistent with the uncertainty of 

the reduced fit function (Eq (2-26)) which is 21 %.   

The overall uncertainty of organic nitrate is calculated by propagating the error of the AN 

and PN measurements: 

[σgAN+gPN] = (√(σ𝑔𝐴𝑁)2 + (σ𝑔𝑃𝑁)2)    
(2-27) 

Figure 2.11 shows the time series of total gAN+gPN measured by TD-CAPS and 

sum of CxHyN1-2Oz measured by HR-TOF-CIMS. A scatter-plot of TD-CAPS vs HR-TOF-

CIMS, using the upper and lower sensitivities (8 Hz/ppt and 5.1 Hz/ppt), gives a slope of 

0.53 and 0.84, respectively (Figure 2.12). There is a good correlation between these two 

measurement techniques (R2 = 0.994). We calculate the sum of CxHyN1-2Oz concentration 

measured by HR-TOF-CIMS using only one standard compound. It is noted that the 

sensitivity of I--CIMS varies by orders of magnitude (Aljawhary, Lee and Abbatt 2013; 

Lee et al. 2014) and this compound may not be representative of all the  AN and PN 

products. In addition, CIMS is not sensitive to monofunctional AN with short carbon chains 

(Beaver et al. 2012), though we expect these compounds to contribute to the total ON 
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measured by the TD-CAPS. Beaver et al 2012 measured alkyl and multifunctional organic 

nitrates with TD-LIF (gas + particle phase) and CF3O
- -CIMS during at the BEARPEX 

field site. There the sum of individual nitrates measured by CF3O
- -CIMS was 85-91% of 

the total nitrates measured by TD-LIF which shows these instruments are in close 

agreement. 

 

Figure 2.11 Time series of gON obtained by TD-CAPS and CxHyN1-2Oz by FIGEARO-

CIMS 



 

 

 

44 

 

 

Figure 2.12  Scatter Plot of gON measured with TD-CAPS and FIGEARO-CIMS a)

 5.1 Hz/ppt  b) 8 Hz/ppt 

2.4.2 TD-CAPS and HR-TOF-AMS Comparison 
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Particle-phase measurements do not require any correction factors since gas species are 

removed by the charcoal denuder. Therefore, total particle alkyl nitrate and peroxy nitrate 

(pAN+pPN) is: 

pAN + pPN =  [NO2]653 K  −  [NO2]Reference (2-28) 

Figure 2.13 shows the time series and scatter plot of pAN+pPN measured by TD-CAPS 

and HR-TOF-AMS. These figures show a good agreement between the two measurement 

techniques. The slope of the scatter plot is 1.01 and R2 is 0.95. Potential loss mechanisms 

for particle-phase measurements are due to transmission efficiency of particles through the 

denuder and the efficiency of evaporation and conversion of the particle organic nitrates 

(Rollins et al. 2010). They calculated time required for complete evaporation of the 

particles using a model which integrates the Hertz-Knudsen. For evaporation coefficient of 

1 and particles with saturation concentration bigger than 10-5 μg/m-3 they found particles 

evaporate less than 10 ms. The residence time in our heater section is 0.8 seconds which 

should be sufficient for complete evaporation. They also calculated the evaporation in the 

denuder with residence time of 9.3 s due to removal of gas phase species which changes 

significantly with the saturation concentration (C*). Transmission efficiency is found 

>97% for C* < 1 and 88% for C*=10 with particles > 100 nm. They also found that 

significant particle loss may occur for particles of C* > 100. In our study, the residence 

time is 25.7 s which decreases the transmission efficiency to 91% for the particles with C* 

< 1 and 66% loss for the particles with C* equal to 10. Considering the loss of particles 

due to evaporation in the denuder, measured pON is underestimating the actual 
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concentration. Assuming collection efficiency of 1 for HR-TOF-AMS also gives the 

underestimated concentration. The actual concentration can be as high as two times of the 

measured concentration considering the collection efficiency calculated from SMPS and 

HR-TOF-AMS. 
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Figure 2.13 a)Time series of pON measured with TD-CAPS and AMS b) Scatter Plot 

of pON measured with TD-CAPS and AMS 

2.4.3 Partitioning Coefficient 

Direct measurements of gas and particle-phase organic nitrates enables us to 

calculate the bulk partitioning coefficient. Figure 2.14 shows that under typical ambient 

conditions, <40 μg/m3 of organic aerosol, <15 % of organic nitrates partition to the particle 

phase for these oxidation conditions (High-NOx, α-Pinene). This percentage is similar to 

the partitioning coefficient calculated for organic nitrates measured by (Bean and 

Hildebrandt Ruiz 2016) during laboratory experiments  where the partitioning coefficient 

increases  up to 20% as total organic concentration increases to 120 μg/m3. They used H2O2 

as the OH radical source and different NO:precursor ratios so their product distributions 

could be different from our study. Organic nitrate partitioning is also compared with the 
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values calculated by (Rollins et al. 2013) for organic nitrate measurements during the 

CalNex campaign where on average 21% of ΣANs are in the condensed phase at of <10 

μg/m3 of organic aerosol. 

 

Figure 2.14 Particle/Gas Ratio changing with the organic mass 
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CHAPTER 3. SUMMARY AND FUTURE WORK 

We have developed a TD-CAPS instrument to measure total AN and PN in the gas 

and particle phases. We characterized the instrument using IPN and PAN as representative 

AN and PN compounds and quantify chemical interferences from side reactions due to the 

presence of O3, NO, and NO2. Correction factors for binary mixtures of these compounds 

over a wide range of concentrations that are representative of rural /urban environments 

and laboratory chamber reaction conditions are derived. In order to evaluate the 

performance of the TD-CAPS, organic nitrates are produced from the photooxidation of α-

pinene in the GTEC facility. The uncertainty of gAN and gPN is found as 19% and 47 % 

under the experimental conditions. Gas-phase organic nitrates measured by TD-CAPS and 

HR-TOF-CIMS have a good correlation with an R2 of 0.994. Differences absolute 

concentrations likely due to different sensitivities and the uncertainties associated with 

each instrument. Particle-phase organic nitrates measured by the TD-CAPS and HR-TOF-

AMS are in good quantitative agreement and correlate well (R2 = 0.95).  

The measurement capabilities of the TD-CAPS are shown using a chamber 

experiment where the gAN and gPN concentrations are in the ppb range, the time variation 

of these species is low and RH < 5%, which prevents possible interferences from water 

vapor. In future work, we will explore gAN and gPN produced under conditions that 

represent daytime and night-time oxidation conditions. Further characterization 
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experiments are warranted to quantify possible interferences from other species such as 

HNO3 and N2O5.  For ambient measurements, where gAN and gPN are present at sub-ppb 

levels, the chemical interferences due to NOx need to be reduced significantly. One 

approach could be to reduce the residence time in the reactor to decrease the extent of the 

side reactions in the channels. Another approach is to reduce the number of the radicals 

that react with NOx by introducing glass beads in the reactors. These would increase the 

surface area inside the reactors enhancing radical wall-loss rates. In addition, 

characterization experiments can be performed with gas- and particle-phase organic nitrate 

standards to investigate whether more functionalized organic nitrates have similar 

interferences as the compounds we studied. Particle-phase measurements can be improved 

by quantification of particle losses in the denuder and of the efficiency of ON evaporation 

in the heaters. Finally, possible interferences from NH4NO3 need to be explored for 

ambient measurements.  
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 SUPPLEMENTARY FOR CHAPTER 2 

  

Figure A. 1 Temperature profiles of the heaters 

 

Figure A. 2 IPN and PAN Thermograms 
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Figure A. 3 Upper: Gas Phase TD-CAPS Setup Below: Particle Phase TD-CAPS 

Setup 
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Figure A. 4 Difference of NO2 production from photolysis of acetone/CO/air mixture 

from acetone/CO/air mixture with the presence of NO 
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Figure A. 5 NO2 Loss due to O3 thermal decomposition 

 

Figure A. 6 NO2 Loss due to O3 thermal decomposition where O3 concentration range 

is 109-288 ppb and NO2 concentration range is 75-196 ppb 
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Figure A. 7 Relative standard deviation of AN at 0-200 ppb NO and 0-200 ppb NO2 

 

 

Figure A. 8 Relative standard deviation of PN at 0-200 ppb NO and 0-200 ppb NO2 
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Figure A. 9 Measurements of the difference signal (sampling from the 653K – 

reference channel) over IPN concentration when adding different amounts of NO to 

IPN at different times 

Kinetic Box Model  

• i-C3H7ONO2 (IPN) = i-C3H7O + NO2  * 

• i-C3H7ONO2 (IPN) = i-CH3CHO + CH3O2  

• i-C3H7O + O2 = HO2 + C3H6O  

• i-C3H7O + NO2 + M = i-C3H7ONO2 + M 

• CH3O2 + NO = CH3O + NO2  

• CH3O2 + NO = CH3NO3  

• CH3O2 + HO2 = CHCO + O2 + H2O 

• CH3O2 + HO2 =CH3OOH + O2 

• CH3O2 + NO2 +M = CH3O2NO2 +M  
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• CH3O+ O2 =HCHO + HO2  

• CH3O2NO2 = CH3O2 + NO2 

• PAN = CH3C(O)O2 + NO2  

• CH3C(O)O2 + NO = CH3O2 + NO2            

• CH3C(O)O2 + NO2 = PAN                   

• CH3C(O)O2 + CH3O2  = CH3COOH           

• CH3C(O)O2 + CH3O2 = CH3COO + CH3O2 + O2  

• CH3C(O)O2 + HO2 = CH3COOH + O3          

• CH3C(O)O2 + HO2 = CH3COOOH + O2    

• CH3C(O)O2 + HO2 = CH3O2 + OH    

RO2= {‘CH3O2'; ' CH3C(O)O2 '} 

 

• CH3O2 + RO2 = CH3O 

 

• CH3O2 + RO2 = CH3OH 

 

• CH3O2 + RO2 = HCHO 

 

• CH3C(O)O2 + RO2 = CH3CO2H 

 

• CH3C(O)O2 + RO2 = CH3O2 

 

• NO + NO = NO2 + NO2  

• HO2 +NO = OH+ NO2  

• OH + NO2 = HNO3  

• HO2 + NO2 = HO2NO2  

• HO2NO2 = HO2 + NO2  

• OH + NO = HONO 

• HO2 + HO2 = H2O2  

• HO2 + HO= H2O + O2  

• HO2 + NO = OH + NO2  
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• NO + NO = NO2 + NO2  

• O3 = O2 + O ** 

• O + O2 + M = O3 + M 

• O + O3 = 2 O2 

• O + NO = NO2 

• O + NO2 = NO + O2 

• O + NO2 = NO3 

• NO + O3 = NO2 + O2 

• NO2 + O3 = NO3 + O2 

• NO + NO3 = NO2 + NO2  

• NO2 + NO3 = NO + NO2  

• NO2 + NO3 = N2O5  

• N2O5 = NO2 + NO3 

• OH + O3 = HO2 

 

• OH + H2O2 = HO2 

 

• HO2 + O3 = OH 

 

• OH + NO3 = HO2 + NO2 

 

• OH + HONO = NO2 

 

• OH + HO2NO2 = NO2 

 

• OH + HNO3 = NO3 
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Reaction rate coefficients were taken from Master Chemical Mechanisms (MCM) v 3.3.1.  

with the exception of *{Day, 2002 #17}{Curran, 2006 #98}  and  **{Peukert, 2013 

#99}{Thieser, 2016 #19} 

AN and PN are produced from photooxidation of α-pinene in the presence of NOx, 

using HONO as an OH precursor 

Before the experiment, the reactor was flushed with zero air (Aadco, 747-14) for at least a 

day. Then, seed aerosol is injected into the chamber by atomizing a 0.015 M (NH4)2SO4 

seed solution (Sigma Aldrich) until the seed concentration is approximately 20 µg m-3. 

Before reaching the chamber, the seed aerosol is sent through a silica gel dryer to remove 

water from the particles. Next, liquid α-pinene (>99%, Sigma Aldrich) is transferred to a 

glass bulb using a syringe. 5 lpm of zero air flow-through the bulb and carry the VOC into 

the chamber, reaching a concentration of 40 ppb. After seed aerosol and α-pinene reach a 

stable concentration HONO is injected. HONO is synthesized by the dropwise addition of 

20 mL of a 1% wt aqueous NaNO2 (VWR International) to 40 mL of a 10% wt H2SO4 

(VWR International) in a glass bulb. After the addition, we flow zero air over the solution 

to transfer the HONO into the chamber (Tuet et al 2017). NO and NO2 are also formed as 

byproducts of the HONO synthesis. Once HONO reaches a steady concentration, as 

tracked by the NO and NO2 concentrations in the chamber, the UV lights are turned on to 

start the photooxidation.
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similar to the atmosphere, but quantitative prediction of the outcome of these experiments 

is generally not achieved, which signifies our lack in understanding of these results and 

limits their portability to large scale models. In general, kinetic models employing state-

of-the-art explicit chemical mechanisms fail to describe the mass concentration and 

composition of SOA obtained from chamber experiments. Specifically, chemical reactions 

involving nitrate radical (NO3) oxidation of volatile organic compounds (VOCs) are a 

source of major uncertainty for assessing the chemical and physical properties of oxidation 

products. Here, we introduce a kinetic model that treats gas-phase chemistry, gas-particle 

partitioning, particle-phase oligomerization and chamber wall loss and use it to describe 

the oxidation of the monoterpenes α-pinene and limonene with NO3. The model can 

reproduce aerosol mass and nitration degrees in experiments using either pure precursors 

or their mixtures and infers volatility distributions of products, branching ratios of reactive 

intermediates as well as particle-phase reaction rates. The gas-phase chemistry in the model 

is based on the Master Chemical Mechanism (MCM), but trades speciation of single 

compounds for the overall ability of quantitatively describing SOA formation by using a 

lumped chemical mechanism. The complex branching into a multitude of individual 

products in MCM is replaced in this model with product volatility distributions, detailed 

peroxy (RO2) and alkoxy (RO) radical chemistry and amended by a particle-phase 

oligomerization scheme. The kinetic parameters obtained in this study are constrained by 

a set of SOA formation and evaporation experiments conducted in the Georgia Tech 

Environmental Chamber (GTEC) facility. For both precursors, we present volatility 

distributions of nitrated and non-nitrated reaction products that are obtained by fitting the 
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kinetic model systematically to the experimental data using a global optimization method, 

the Monte Carlo Genetic Algorithm (MCGA). The results presented here provide new 

mechanistic insight into the processes leading to formation and evaporation of SOA. Most 

notably, much of the non-linear behavior of precursor mixtures can be understood by RO2 

fate and reversible oligomerization reactions in the particle phase, but some effects could 

be accredited to kinetic limitations of mass transport in the particle phase. The 

methodologies described in this work provide a basis for quantitative analysis of multi-

source data from environmental chamber experiments with manageable computational 

effort. 

1 Introduction 

Atmospheric aerosol particles play an important role in the Earth system by influencing 

weather and climate, enabling long-range transport of chemical compounds and negatively 

affecting public health (Pöschl, 2005;Fuzzi et al., 2006). A major contributor to the global 

aerosol burden is the oxidation of volatile organic compounds (VOCs) to condensable 

organic species, which leads to formation of secondary organic aerosol (SOA, Kanakidou 

et al., 2005). Important classes of SOA precursors include alkanes and aromatic 

compounds, which are often emitted from anthropogenic sources, as well as alkenes such 

as isoprene, monoterpenes, and sesquiterpenes, which are predominantly emitted by trees 

(Hallquist et al., 2009). The monoterpenes α-pinene and limonene are among the most 

abundant and well-studied SOA precursors (Seinfeld and Pandis, 2016). Atmospheric 

oxidation of alkenes occurs mainly through three oxidants: the hydroxyl radical (OH), 

which is produced in daylight and is short-lived; the abundant, but comparatively slow 
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reacting ozone (O3); and the nitrate radical (NO3), which is the major source of SOA at 

nighttime, but also contributes to SOA formation during daytime, despite its quick 

photolysis (Liebmann et al., 2019). The oxidation of VOCs by NO3 results in the formation 

of high yields of nitrated organic compounds, alkyl nitrates and peroxy acyl nitrates, which 

are produced in lower quantities through other atmospheric oxidation channels such as 

reaction of organic peroxy radicals (RO2) or hydroperoxy radicals (HO2) with nitric oxide 

(NO) (Perring et al., 2013;Ng et al., 2017). These organic nitrates (ON) play an important 

role in the atmospheric nitrogen budget by serving as temporary or permanent sink for 

highly reactive nitrogen oxides (NO, NO2 = NOx). Reactive nitrogen oxides constitute an 

integral part of oxidation cycles in the atmosphere and are made significantly less reactive 

through reaction to ON.  

Due to their sufficiently low volatility, ON can be taken up into atmospheric aerosol 

particles, where they are shielded from gas-phase chemical decomposition, causing NOx to 

be temporarily removed from atmospheric oxidation cycling. While NOx can be recycled 

back into the atmosphere via photolysis (Müller et al., 2014), photooxidation (Nah et al., 

2016), and thermal decomposition of ON, permanent removal can occur through ON 

hydrolysis (Takeuchi and Ng, 2019) and deposition processes (Nguyen et al., 2015).  

Furthermore, the presence of ON affects the formation and persistence of organic aerosol 

(OA) (Ng et al., 2017). The contribution of particulate ON mass (pON) to total organic 

aerosol has been investigated previously in laboratory studies by mass-spectrometric 

methods (Fry et al., 2009;Fry et al., 2011;Fry et al., 2014;Boyd et al., 2015;Nah et al., 
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2016;Boyd et al., 2017;Faxon et al., 2018;Takeuchi and Ng, 2019) and a radioactive tracer 

method (Berkemeier et al., 2016), revealing that organic nitrate mass fractions can reach 

up to 0.8 in the particle phase under certain conditions. Although ambient measurements 

varied strongly temporally and regionally, the ratio of ON mass to the total organic mass 

has been shown to reach up to 0.77 (Ng et al., 2017 and references therein).  

Despite the importance of ON to the dynamics of SOA formation, the chemical mechanism 

for their formation in the gas and particle phases is still under discussion (Kurtén et al., 

2017;Claflin and Ziemann, 2018;Draper et al., 2019). The Master Chemical Mechanism 

(MCM) provides a resource of the gas phase degradation chemistry of typical SOA 

precursors with atmospheric oxidants (Saunders et al., 2003;Jenkin et al., 2003). However, 

application of MCM to the oxidation of monoterpenes with NO3 leads to a significant 

underestimation of particle mass and pON/OA (Boyd et al., 2017;Faxon et al., 2018). 

It has been hypothesized and shown recently that a majority of SOA might exist in 

oligomerized form (Kalberer et al., 2004;Gao et al., 2010), which might alter their 

evaporation behavior (Baltensperger et al., 2005;D’Ambro et al., 2018). In that case, the 

evaporation time scale is determined by chemical decomposition instead of equilibrium 

partitioning due to volatility (Pankow, 1994). Additionally, organic aerosol particles can 

exhibit a highly viscous phase state (Virtanen et al., 2010;Koop et al., 2011;Reid et al., 

2018), which leads to kinetic limitations in evaporation (Vaden et al., 2011), reduced 

particle-phase chemistry (Gatzsche et al., 2017), and non-equilibrium partitioning (Cappa 

and Wilson, 2011). 
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To describe kinetic limitations in mass transport, a number of kinetic multi-layer models 

have been developed recently to describe aerosol particles and cloud droplets, including 

KM-SUB (Shiraiwa et al., 2010), KM-GAP (Shiraiwa et al., 2012), ADCHAM (Roldin et 

al., 2014), and MOSAIC (Zaveri et al., 2008;Zaveri et al., 2014). These models are capable 

of explicitly resolving mass transport and chemical reactions within aerosol particles. 

Using these models, Shiraiwa et al. (2013) and Zaveri et al. (2018) were able to find 

evidence for diffusion limitation affecting SOA formation dynamics by inspection of the 

evolution of particle size distributions. Yli-Juuti et al. (2017) and Tikkanen et al. (2019) 

used an evaporation model based on KM-GAP to describe the interaction of volatility and 

viscosity during isothermal dilution as a function of different environmental conditions. 

However, to our best knowledge, no model has been presented that describes all aspects of 

gas-phase chemistry, particle-phase chemistry, gas-particle partitioning and bulk diffusion 

of SOA.  

A model capable of describing all these aspects of SOA formation must rely on a large set 

of kinetic parameters, which are often not readily accessible. However, model parameters 

can be systematically altered so the model matches experimental data, an approach often 

referred to as inverse modelling. Simultaneously optimizing multiple model parameters 

can often be unfeasible via manual optimization and prompts the use of global optimization 

methods (Berkemeier et al., 2017;Berkemeier et al., 2013). As opposed to local 

optimization methods, global optimization algorithms are not as easily stuck in local 

minima and are able to reliably find solutions of difficult optimization problems. In 

conjunction with a kinetic model, global optimization algorithms represent a powerful tool 
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that allows to infer molecular level information from macroscopic data. Thus, global 

optimization algorithms based on differential evolution, such as the Monte Carlo Genetic 

Algorithm (MCGA), have become increasingly popular in the modelling of complex 

multiphase chemical systems (Berkemeier et al., 2017;Marshall et al., 2018;Tikkanen et 

al., 2019). 

In a previous study, Boyd et al. (2017) showed that the retained aerosol mass from 

oxidation of limonene with NO3 after heating from 25 °C to 40 °C is significantly different 

than the mass obtained from oxidizing limonene at 40 °C. They further showed that the 

evaporation behavior of mixtures of limonene SOA and β-pinene SOA crucially depends 

on the order in which oxidation occurred. Limonene SOA evaporated less in the experiment 

where oxidation of limonene was followed by oxidation of β-pinene, compared to the 

experiment where both precursors were oxidized simultaneously. At the time, it was only 

postulated that diffusion limitations and/or oligomerization reactions could have led to 

these observations. In this work, we conduct new environmental chamber experiments and 

apply a novel kinetic modelling framework to investigate whether gas-phase chemistry, 

equilibrium partitioning, and particle-phase chemistry can describe the formation and 

evaporation of monoterpene SOA from oxidation of α-pinene, limonene, and mixtures of 

both precursors with NO3. α-pinene is chosen over β-pinene since it shows a more distinct 

evaporation behavior to limonene SOA and is the overall better-understood SOA precursor. 

We perform experiments at a lower initial temperature compared to Boyd et al. (2017) to 

include a second heating stage in the experiments. We focus the modelling efforts on the 

experimental observables aerosol mass and organic nitrogen content (contribution of 
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particulate ON mass to total organic aerosol, pON/OA) as a function of time in the reaction 

chamber. The model uses a simplified, lumped kinetic mechanism based on MCM 

(Berkemeier et al., 2016), but modifies some of the branching ratios in RO2 chemistry and 

adds chemical reactivity in the particle phase. Building on the observations of Boyd et al. 

(2017) in their mixed precursor experiments, we investigate the linearity of these two 

observables by quantitative comparison of formation and evaporation of SOA from pure 

and mixed monoterpene precursors. Lastly, we use the kinetic model to perform a 

sensitivity analysis on the potential effect of retarded bulk diffusion due to a viscous phase 

state. The kinetic modelling framework consisting of a kinetic multi-layer model based on 

KM-GAP and the MCGA algorithm is used as analysis tool to unravel the mechanistic 

interactions between reactive intermediates and oxidation products that can lead to non-

additivity of the investigated reaction systems 

2 Experimental and theoretical methods 

2.1 Georgia Tech Environmental Chamber (GTEC) 

The aerosol formation and evaporation experiments are performed as batch reactions in the 

GTEC facility, which consists of two separate 12 m3 Teflon chambers in a temperature- 

and humidity-controlled enclosure (Boyd et al., 2015). A consistent experimental routine 

is maintained for all experiments presented in this study and resembles the method used by 

Boyd et al. (2017) with small updates. Concentrations of O3 and NOx are determined with 

a UV absorption O3 analyzer (Teledyne T400) and a chemiluminescence NOx monitor 

(Teledyne 200 EU), respectively. Aerosol particle number and volume concentrations are 
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measured using a scanning mobility particle sizer (SMPS, TSI), which consists of a 

differential mobility analyzer (DMA, TSI 3040) and a condensation particle counter (CPC, 

TSI 3775). Bulk aerosol composition is measured using a High Resolution Time-of-Flight 

Aerosol Mass Spectrometer (HR-ToF-AMS, DeCarlo et al., 2006).  

The Teflon chamber is flushed with zero air for at least 24 h and the chamber enclosure is 

cooled to 5 °C several hours prior to each experiment, to ensure full equilibration with 

regard to temperature, pressure, and humidity. Monoterpene oxidation is initiated at 5 °C 

and under dry conditions (RH < 5 %). All experiments are conducted using ammonium 

sulfate seed particles. Seed particles are generated by atomizing a 15 mM ammonium 

sulfate solution into the chamber for 20 minutes, which typically results in particle number 

concentrations around 20 000 cm-3 and mass concentrations of 28 – 41 µg/m3. 

Simultaneously, monoterpene precursors are injected into the chamber. Injection volumes 

of the precursors are chosen to achieve consistent total aerosol mass concentrations around 

100 µg/m3 in all experiments, based on knowledge about aerosol yields in trial experiments 

for this study. For α-pinene, we use a micro syringe to inject a known volume of liquid into 

a mildly heated glass bulb from which a 5 L/min zero air flow carries the evaporating fumes 

into the chamber. For limonene, the required liquid volume is so low that the use of micro 

syringes is a source of non-negligible uncertainty and hence a gas cylinder filled with 0.85 

ppm limonene, calibrated and confirmed using gas chromatography with flame ionization 

detection (GC-FID), is used to inject a known volume of gas into the chamber over the 

course of several minutes. NO3 is produced by oxidation of NO2 with O3 (generated by 

passing zero air through a photochemical ozone generator) in a 1.5 L flow tube (0.9 L/min 
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flow, 100 s residence time). The reaction mixture is optimized so NO3 and N2O5 are 

produced in high yields, with no significant amount of O3 entering the chamber. This is 

achieved by using a 2:1 ratio of NO2 and O3. N2O5 decomposes in the chamber to release 

NO3 over time. Injection of NO3/N2O5 marks the beginning of the reaction. 

When peak SOA growth is reached, which is typically achieved in under 4 hours of the 

experiment, the chamber enclosure temperature is raised to 25 °C and, after another waiting 

period, to 42 °C. The temperature changes take approximately 90 minutes in both cases. 

Temperature profiles are reported alongside the experimental results in Fig. 2. 

In total, four experiments are conducted, either with a single monoterpene precursor, pure 

-pinene (APN) and pure limonene (LIM), or with a mixture of both precursors. In the 

case where both precursors are used, the oxidation occurred in one of two variants: 

simultaneous (MIX) or sequential oxidation (SEQ). In case of the MIX experiment, both 

precursors are injected simultaneously into the chamber prior to NO3/N2O5 injection. In 

case of the SEQ experiment, peak growth of the first precursor oxidation is first awaited. 

The first oxidation is followed by a second NO3/N2O5 injection and injection of the second 

VOC precursor shortly thereafter. An 8-fold excess of N2O5 is used for pure limonene 

experiments, and a 4-fold excess used for pure α-pinene experiments. In the mixed 

precursor experiments, the amount of injected NO3/N2O5 is determined using the same 

ratios proportionately. A summary of all experimental conditions, including injected 

precursor amounts, aerosol mass, organic aerosol mass excluding seed, and SOA yields 

can be found in Table 2. It is noted that we refer to the total aerosol mass concentration 
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(sum of inorganic seed mass concentration and organic aerosol mass concentration) in the 

chamber simply as “aerosol mass” in our discussions. “SOA yield” refers to the ratio of 

produced organic aerosol mass concentration to the reacted VOC mass concentration 

(Odum et al., 1996).  

2.2 Kinetic model 

The kinetic model calculations in this study are performed with a multi-compartmental 

model akin to the KM-SUB/KM-GAP model family (Shiraiwa et al., 2010;Shiraiwa et al., 

2012). The model code is set up as a generator script that uses an input chemical mechanism 

to generate a system of differential equations that is able to describe the key physical and 

chemical processes in the GTEC chamber. The model compartments include the chamber 

wall, the chamber gas phase, the particle near-surface gas phase, the particle surface and 

the particle bulk. The processes explicitly described in the model include injection of 

chemical compounds, wall loss of gas phase species, temperature change, gas diffusion to 

particles, condensation and evaporation at the particle surface, as well as chemical reaction 

in the gas and particle phases. Wall loss of particles is implicitly accounted for in this study 

by using wall loss-corrected SMPS data (Keywood et al., 2004;Nah et al., 2017). 

All product molecules with volatility lower than 10-5 Pa are allowed to partition into the 

topmost layer of the particles, according to their volatility. Gas-particle partitioning is 

explicitly treated in the model and equilibration between the particle near-surface gas phase 

and the particle surface is achieved by balancing surface adsorption and desorption rates. 

This way, evaporation and condensation kinetics are treated more realistically than in a 
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model assuming instantaneous equilibrium partitioning. The adsorption flux Jads,X of a 

molecule X is calculated from the collision flux from the particle near-surface gas phase to 

the particle surface, which in turn is calculated from the mean thermal velocity wX and the 

accommodation coefficient αs,X. αs,X is assumed to be 0.1 for all organic species in this 

study, in line with previous investigations (Julin et al., 2013). 

𝐽ads,𝑋 = 𝛼s,𝑋 ⋅
𝑤𝑋
4
⋅ [𝑋]gs (1) 

The desorption flux from the particle surface to the gas phase Jdes,X is dependent on the 

vapor pressure 𝑝vap,X and the ratio of the concentration of X in the particle near-surface 

bulk layer [X]b1 and the sum of all other species Yj in that layer. 

𝐽𝑑𝑒𝑠,𝑋 =
𝛼s,X ⋅ 𝑤X ⋅ 𝑝vap,X ⋅ 𝑁A ⋅ [𝑋]b1

4 ⋅ 𝑅 ⋅ 𝑇 ⋅ ∑[𝑌𝑗]b1

 
(2) 

Here, R is the universal gas constant, T the temperature, and NA is Avogadro’s number. 

The vapor pressure of product compounds is assumed to be temperature dependent with a 

precursor-dependent effective enthalpy of volatilization, ΔHvap,Z in kJ/mol, where Z is the 

precursor of X and T0 refers to the reference temperature 298 K. We assume this single 

effective enthalpy to be representative for the entire product spectrum and hence 

independent of C*. 

𝑝vap,𝑋(𝑇) = 𝑝vap,𝑋(𝑇0) ⋅ exp
−Δ𝐻vap,𝑍 

𝑅 ⋅ (𝑇 − 298)
 

(3) 
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Note that in this study only a single well-mixed layer is used to describe the aerosol phase. 

New particle formation from low-volatility vapors is not treated in this model, so seed 

particles have to be pre-defined. Seed particles are initialized as covered with a very small 

amount of non-volatile organics (0.005 ppb gas phase mixing ratio) to aid in computation 

of gas-particle partitioning. 

The model can be run in two modes: lumped mode, in which only vapor pressure bins are 

defined, and explicit mode, in which vapor pressures must be pre-supplied for all 

participating species. In the following, we will describe the specific lumped mode used in 

this study. 

2.3 Lumped Chemical Mechanism 

The gas-phase chemical mechanism, summarized in Fig. 1a, is modeled after the initial 

reaction steps in the MCM, but does not assume specific sum or structural formulas of 

product molecules. The validity of this approach has been shown in previous work 

(Berkemeier et al., 2016). For limonene SOA, we apply the same general chemistry, but 

consider the oxidation of both double bonds individually, which leads to the more complex 

reaction scheme shown in Fig. S1. Note that oxidation of the second double bond of 

limonene with NO3 is not considered in MCM. However, we have shown previously that 

including oxidation of the second double bond leads to a significantly improved correlation 

between a kinetic model and chamber experiments (Boyd et al., 2017). 

To account for chemical identity, the major product classes, nitrated and non-nitrated 

organic molecules, are subdivided into volatility bins (Fig. 1b) following the concept of a 
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volatility basis set (VBS; Donahue et al., 2011). The six volatility bins employed in this 

study are chosen to have increased resolution and hence achieve maximum sensitivity 

around the experimental range of 10-100 µg/m3, but still cover a wider range of volatilities: 

(1) 1.32·10-12 Pa (C* = 0.01 µg/m3), (2) 1.32·10-10 Pa (C* = 1 µg/m3), (3) 1.32·10-9 Pa (C* 

= 10 µg/m3), (4) 1.32·10-8 Pa (C* = 100 µg/m3), (5) 1.32·10-7 Pa (C* = 1000 µg/m3) and 

(6) 1.32·10-5 Pa (C* = 100 000 µg/m3) at 298 K. C* is the saturation mass concentration, 

which indicates the organic aerosol mass at which a semi-volatile organic substance would 

be in the gas and particle phase in equal parts. Oligomeric species are chosen to be fully 

non-volatile and hence technically form a seventh volatility bin. The average molar mass 

of molecules in the organic aerosol phase is assumed to be 250 g/mol, which is similar to 

assumptions in previous publications (Berkemeier et al., 2016) and consistent with our 

measurements using chemical ionization high-resolution time-of-flight mass spectrometry 

with a special filter inlet that samples both the aerosol and gas phase (FIGAERO-HRToF-

CIMS, Lopez-Hilfiker et al., 2014) that were conducted alongside this study (Takeuchi and 

Ng, 2019). 

A specific aim of this study is the mechanistic analysis of ON formation. Therefore, the 

gas-phase formation of ON is treated in detail and has been expanded from the MCM 

template, which is detailed in Fig. S2. We assume that chemical reaction of NO3 with the 

terpenic precursor yields a nitrated peroxy radical (RNO2). The fate of the nitrate group (-

ONO2) in this radical is dependent on its radical branching ratios. Following MCM, we 

assume that the reaction of RNO2
 with HO2 yields a stable organic nitrate product, whereas 

reaction with NO, NO3, RO2, or unimolecular decay leads to formation of a nitrated alkoxy 
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radical (RNO), which can further stabilize under elimination of the nitrate group. Reaction 

of two RO2 may also yield dimers. Another channel of ON formation is the reaction of a 

non-nitrated peroxy radical (RO2
II) with NO. Following MCM, we assume that only RO2

II, 

which is the main intermediate in monoterpene OH oxidation and a secondary intermediate 

of monoterpene ozonolysis, can undergo this reaction and is in that regard distinct from 

RO2
I, which is the main intermediate in monoterpene ozonolysis. However, this RO2

II + 

NO reaction channel has only minor implications in this study due to the low prevalence 

of NO under the employed reaction conditions, i.e., injection of NO3/N2O5 as well as no 

irradiance with UV lights. 

Particle-phase chemistry is included as formation and decomposition of oligomers from 

monoterpene oxidation products. Possible reaction pathways for oligomerization include 

the formation of esters, aldols, hemiacetals, acetals, peroxyhemiacetals, and peroxyacetals 

from alcohol, aldehyde, hydroperoxide, and carboxylic acid moieties in the monoterpene 

oxidation products (Ziemann and Atkinson, 2012), but are lumped into a single reaction 

for simplicity. These oligomers are assumed to be non-volatile, but can re-partition back to 

the gas phase after decomposition into the monomeric building blocks. The information 

about volatility and nitration degree of monomers is retained during oligomerization and 

reinstated after their decomposition. This process is outlined in Fig. 1c. A detailed 

discussion of the oligomerization scheme is provided in the Supplement, Sect. S1 and Fig. 

S3. An overview of all reactions of the lumped model in the gas and particle phases is given 

in Table S1. 
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2.4 Global Optimization 

The Monte Carlo Genetic Algorithm (MCGA; Berkemeier et al., 2017) is applied for 

inverse fitting of the kinetic model to the experimental data and determining the non-

prescribed kinetic parameters listed in Table 1. The MCGA method consists of two steps: 

a Monte Carlo step and a genetic algorithm step. During the Monte Carlo step, kinetic 

parameter sets are randomly sampled from a defined parameter range and the residue 

between the model result and the experimental data is determined for each parameter set 

through evaluation of the kinetic model. During the genetic algorithm step, the parameter 

sets are optimized mimicking processes known from natural evolution: a survival 

mechanism retains best-fitting parameter sets, the recombination mechanic generates new 

parameter sets by combing parameters of high scoring sets, and the mutation step prevents 

early homogenization of the sample of parameter sets. To determine the model-experiment 

correlation, we use a least-squares approach that minimizes the sum of the squares of the 

residuals, Eq. 4. The estimator is normalized to the magnitude of the largest data point in a 

given sample, max(Ydata,i), and the number of data points ni of data set i. Additionally, 

optional weighting factors wi can be used to guide the optimization process. 

𝑓𝑖 = 𝑤𝑖√
1

𝑛𝑖
∑(

𝑌model − 𝑌data,𝑖

max(𝑌data,𝑖)
)

2

 (4) 

After an optimization result is returned, a 1-dimensional golden-section search (Press et 

al., 2007, Sect. 10.2) is used to ensure conversion into a minimum of the optimization 

hypersurface. The simplex method (Press et al., 2007, Sect. 10.5) is used to find other 
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combinations of parameters that lead to equivalent model results (test of uniqueness). 

Weighting factors wi can be used to assign a lower importance to data sets that e.g., exhibit 

large scatter due to experimental noise, represent experimental artifacts or are deemed only 

supplementary for the purpose of the optimization. 

Note that for the experiments discussed in this manuscript, multiple model solutions can 

be obtained, dependent not only on the choice of data sets that is optimized to, but also on 

the choice of weighting factors. In the following sections, only one fit of the model to 

experimental data will be discussed as de-facto fit as it scored best in our choice of model-

experiment correlation estimator. The fit is obtained by fitting to total aerosol mass and 

aerosol organic nitrate fraction (pON/OA) data of three experimental data sets (LIM, APN, 

and SEQ). The fourth experiment (MIX) is intentionally left out from the fitting process 

for cross-validation. We will discuss the dependence of the best fit on weighting factors 

and the uniqueness of the obtained model solution in a separate section, Sect. 3.5. 
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3 Results and discussion 

3.1 Pure limonene oxidation (LIM) 

3.2.1 Experimental observations (LIM) 

Fig. 2a shows the total aerosol mass concentration (denoted as “aerosol mass”) during an 

experiment of limonene oxidation with NO3 in the presence of ammonium sulfate seed 

particles, and subsequent evaporation in the GTEC chamber, here referred to as “LIM” 

experiment. Oxidation at 5 °C initially causes a fast increase in aerosol mass (black open 

markers, left axis) from 29 µg/m3 of seed mass to about 70 µg/m3 of aerosol mass within 

the first 20 minutes of the experiment. Afterwards, aerosol growth slows down 

considerably, so that the peak aerosol mass of 110 µg/m3 is reached only after 5 hours. The 

slow increase in aerosol mass in the beginning of the experiment is likely an important 

feature of the experimental data for determination of mass transfer and chemical reaction 

rates. 

The produced aerosol mass corresponds to a SOA yield of 130 % (Table 2) and is observed 

to be constant in the chamber for several hours at 5 °C. Note that this observation is 

different from previous experiments conducted at 25 °C and 40 °C (Boyd et al., 2017), 

where peak aerosol mass was achieved swiftly and SOA yields at aerosol mass loading 

similar to this study were determined to be 174 % (constant yield) and 124 %, respectively. 

While the lower SOA yield at 40 °C compared to 25 °C can be explained with equilibrium 

partitioning theory, the lower mass yield observed at 5 °C in this study cannot. 
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After 7 hours of total experiment time, the temperature set point of the chamber enclosure 

is increased to 25 °C. The new temperature plateau is reached inside the Teflon chamber 

90 minutes later (grey dashed line, right axis). The temperature change causes a slight 

reduction in aerosol mass from 110 to about 104 µg/m3. At the new temperature set point, 

aerosol mass is not constant, but rather decays at a constant rate. After about 19 hours, the 

temperature set point is increased to 42 °C, which again causes an immediate slight 

reduction in aerosol mass from 90 to about 83 µg/m3. At the new temperature plateau of 

42 °C, aerosol mass once again decays at a constant rate that is comparable to the one 

previously observed. 

 

3.2.2 Kinetic modelling results (LIM) 

In the following, kinetic modelling results are discussed in terms of a best fit that is 

obtained using the Monte Carlo Genetic Algorithm (MCGA). The uniqueness of this fit 

and potential pitfalls of the optimization process are discussed in Sects. 3.3.2 and 4. The 

kinetic model (red solid line in Fig. 2a) is able to reproduce the observed aerosol formation 

and evaporation behavior. In the model run at hand, the initial quick increase in aerosol 

mass is due to condensation of dimers formed in the gas phase through the RO2 + RO2 

channel (from now on referred to as “gas-phase dimers”), making up about 50 % of 

condensing material in the initial seconds and minutes. Subsequent growth is due to 

condensation of monomeric oxidation products (from now on referred to as “monomers”) 

of sufficiently low volatility. After 20 minutes, half of the aerosol mass at peak growth is 
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reached and the particle phase is mostly comprised of monomeric compounds, cf. Fig. 2b, 

panel (i), about one third of which still contain an C-C double bond (Fig. S4). These mono-

unsaturated oxidation products either partition back into the gas phase where they can be 

oxidized further, or co-oligomerize in the particle phase with other oxidation products. The 

vapor pressure of the non-nitrated and nitrated mono-unsaturated oxidation products were 

fitted during the MCGA optimization and determined to have saturation mass 

concentrations C* of 1560 and 292 µg/m3 at 298 K, respectively. During peak growth, 27 

% of oxidation products still contain a double bond in this model run, almost all of which 

are nitrated and present in the oligomer phase. Note that this is possible because we do not 

consider the oxidation of unsaturated compounds in the particle phase.  

The volatility distributions determined with the global optimization can be found in Fig. 

S5a. The majority of limonene oxidation products in this model run occupies the 4th and 

5th volatility bins (C* = 100, 1000 µg/m3 at 298 K), which are mostly present in the gas 

phase under these reaction conditions. In the model, the slow increase in aerosol mass from 

20 minutes to 5 hours of oxidation is due to oligomerization of monomers forming higher 

molecular weight structures through accretion reactions in the particle phase (from now on 

referred to as “oligomers”). According to the model fit, oligomerization occurs at a rate of 

1 h-1, hereby slowly removing semi-volatile species in the particle phase from the 

partitioning equilibrium and causing a slow drift of semi-volatiles from the gas phase into 

the particle phase. At peak growth, most of the organic material in the particle phase exists 

in an oligomeric state, cf. Fig. 2b, panel (ii), which explains the lack of initial evaporation 

caused by an increase in chamber temperature.  
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A potential justification for the observed lower SOA yield at 5 °C in this study compared 

to experiments performed at 25°C (Boyd et al., 2017) could be the temperature-dependence 

of the oligomerization rate constant. In chamber experiments, condensation of vapors onto 

the particles stands in competition with irreversible loss to the chamber walls, which we 

assume to be mostly temperature-independent. When oligomerization occurs more slowly, 

oxidation products from the 100 and 1000 µg/m3 volatility bins are increasingly lost to the 

walls instead of being incorporated into the particle oligomer phase. Furthermore, Boyd et 

al. (2017) observed a lower aerosol mass when forming limonene SOA at 40 °C compared 

to first forming limonene SOA at 25 °C and then heating to 40 °C. Also here, a possible 

explanation is the formation of oligomers of semi-volatile vapors: the fractional amount of 

chemical species from the 100 and 1000 µg/m3 volatility bins that partitions into the 

particle phase is much smaller at 40 °C and hence prevents mass accumulation through 

oligomerization. 

The slow decay of aerosol mass between 6 and 24 hours of the experiment is attributed in 

the model to a slow unimolecular decay of oligomeric material with a rate constant of 0.04 

h-1 and subsequent evaporation of monomers at elevated temperatures, followed by 

irreversible deposition of vapors onto the chamber walls. The observed decomposition rate 

is slightly slower than the rate of 0.06-0.2 h-1 reported by D’Ambro et al. (2018) for SOA 

formed from ozonolysis of α-pinene. Following Le Chatelier’s principle, removal of 

monomers from the equilibrium causes a constant drift of organic matter from oligomeric 

to monomeric state. Since the volatility of the monomeric subunit is retained in the model 

(for details see oligomerization mechanism in Fig. S3), this process is faster for monomers 
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that have higher volatilities because they partition into the gas phase more quickly and 

readily, causing an enrichment of low-volatility monomeric subunits in the particle phase. 

The (meta-)stability of organic material in the particle phase can hence be attributed not 

only to the stability of the oligomer bond, but also the volatility of the monomeric building 

blocks at this temperature.  

Monomers are removed from the system by loss to the chamber walls, which is the main 

driver of loss of organic mass. The loss coefficient of gas-phase molecules to the chamber 

wall is determined to be 3.3×10-7. This number is interpreted as a vapor-wall 

accommodation coefficient of molecules colliding with the chamber wall and is used for 

all organic molecules independent of their chemical structure. In this study, it is assumed 

that molecules adsorbed to the chamber walls are irreversibly lost for the time scale of the 

experiment. This can be explained by slow diffusion of molecules into the inner layer of 

the Teflon wall (Huang et al., 2018). In the geometry of the GTEC and for 250 g/mol 

molecules at 298 K, a loss coefficient of 2.8×10-7 corresponds to a loss rate of 0.12 h-1 or 

an equilibration time scale τgwe of 3.0×104 s, respectively. This number falls in-between 

values previously reported in the literature. Krechmer et al. (2016) as well as Yeh and 

Ziemann (2015) reported a τgwe around 1 ×103 s in their Teflon chamber, whereas vapor 

wall equilibration timescales measured in the CalTech chamber typically range from 3×104 

s and 5×105 s, depending on the chemical identity of the investigated substance (Loza et 

al., 2010;Shiraiwa et al., 2013;Zhang et al., 2015a). 

3.2 Pure α-pinene oxidation (APN) 
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3.2.1 Experimental observations (APN) 

Fig. 3a shows the aerosol mass during the corresponding experiment of α-pinene oxidation 

with NO3, here referred to as “APN” experiment. Similar to the LIM experiment described 

above, oxidation at 5 °C initially causes a fast increase in aerosol mass (black open 

markers), however, peak aerosol mass is reached already after 3 hours of oxidation at 109 

µg/m3. Due to the larger amount of injected precursor, SOA yield is at 25.2 % significantly 

lower than observed in the limonene oxidation experiment (Table 2). However, this yield 

appears to be larger than previously reported for the oxidation of α-pinene with NO3: 

Hallquist et al. (1999) measured a 7 % yield (corresponding to 52.9 µg/m3 organic aerosol) 

at 15 °C. Nah et al. (2016) measured a yield of 3.6 % (corresponding to 2.4 µg/m3 organic 

aerosol) at room temperature. Fry et al. (2014) reported no significant aerosol growth at 

room temperature. This is indicative of the low temperature employed in the experiments 

having a significant impact on SOA yield. 

After about 4 hours of total experiment time, the temperature set point of the chamber 

enclosure is increased to 25 °C, leading to a sharp and significant evaporation of organic 

material from aerosol particles. When the new temperature plateau is reached after 7 hours, 

aerosol mass has decreased to 80 µg/m3. Since evaporation has hardly slowed down by that 

time, heating to the new temperature set point of 42 °C is initiated after 8 hours of 

experiment time (i.e., without long waiting time at the 25 °C temperature plateau) to avoid 

losing too much volatile aerosol mass from evaporation. After a chamber temperature of 

42 °C is reached after 10 hours, evaporation slows down considerably and continues at a 
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slow rate until the end of the experiment, where a minimum aerosol mass of 57 µg/m3 is 

observed. With a seed mass of 37.3 µg/m3, this corresponds to a retained organic aerosol 

mass of about 20 µg/m3 (cf. Table 2).  

3.2.2 Kinetic modelling results (APN) 

The kinetic model (blue solid line in Fig. 3a) shows a reasonable correlation to the 

experimental data. The detailed model analysis in Fig. 3b reveals that at peak growth, the 

aerosol is composed of about 57 % of monomers and an aggregate 43 % of higher 

molecular weight structures, i.e., 33 % oligomers and 11 % gas-phase dimers (Fig. 3b (i)). 

Upon increase in chamber temperature, the gas-phase dimer content increases considerably 

from 11 % to 31 % (panel ii) due to evaporation of monomers in volatility bins C* = 1-100 

µg/m3 and decomposition of oligomers. Hence, the slower evaporation of organic material 

toward the end of the experiment can be attributed to the fact that the remaining organic 

aerosol is only comprised of gas-phase dimers (C* = 0.01 µg/m3), low-volatile monomers 

(C* = 0.01-1 µg/m3 volatility bins) and oligomers composed of low-volatile monomer 

building blocks (Fig. 3b (ii)). The volatility distributions of the monomers produced from 

gas-phase chemistry (Fig. S5b) reveal that a large fraction of nitrated monomers occupy 

the highest volatility bin and does not partition into the particle phase. Since the majority 

of the oxidation products of the reaction of α-pinene with NO3 are nitrated organics, this 

could explain the lower SOA yield compared to the reaction of α-pinene with O3 or OH 

(Hoffmann et al., 1997;Griffin et al., 1999;Ng et al., 2007;Eddingsaas et al., 2012;Nah et 

al., 2017) since non-nitrated monomers also occupy lower volatility bins in this specific 

global optimization result.  



 

 

 

84 

Compared to the LIM experiment, peak aerosol mass is reached more quickly in the APN 

experiment. In the model solution, this is due to the determined oligomer formation rate 

being comparatively high at 17.4 h-1, which is an order of magnitude faster than determined 

for the LIM experiment. On the other hand, the oligomer decomposition rate is determined 

to be 3.3 h-1, which is two orders of magnitude quicker than that determined for the LIM 

experiment and one order of magnitude quicker than the rates reported by D’Ambro et al. 

(2018) for α-pinene ozonolysis. This leads to an overall lower, more quickly formed, but 

labile oligomer content for the APN experiment. The higher gas-phase dimer concentration 

can be explained by the higher initial precursor concentration used in the APN experiment 

that leads to a more pronounced RO2 + RO2 gas-phase chemistry. 

Evaporation in the model slows down once the 25 °C temperature plateau is reached and 

picks up again after temperature is raised. This behavior is not observed in the experiment, 

where the evaporation rate remains almost constant, irrespective of chamber temperature 

between hours 5 and 9 of the experiment. The behavior cannot be reproduced in any model 

run and the implications of these findings will be discussed in Sect. 3.4.3. 

3.3 Simultaneous and sequential oxidation experiments (MIX and SEQ) 

In addition to oxidation experiments with single precursors, experiments are performed 

where α-pinene and limonene are oxidized simultaneously (MIX) or in sequence (SEQ) to 

investigate whether their co-existence affects growth or evaporation of SOA. In Figs. 4a 

(MIX) and 4b (SEQ), aerosol mass  is displayed for these two scenarios alongside kinetic 

modelling results. The experiments are set up in a way that the produced aerosol mass is 
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comparable in magnitude to the pure precursor experiments and both precursors contribute 

to the produced mass in equal parts. Table 2 lists the experimental SOA yields along with 

injected precursor amounts. 

3.3.1 Experimental observations (MIX and SEQ) 

In the MIX experiment (Fig. 4a), most of the initial increase in aerosol mass (black open 

markers) is rapid and peak growth is reached after about 3 hours, comparable to the pure 

α-pinene oxidation experiment. The evaporation pattern upon chamber heating shows a 

less pronounced decrease in particle mass compared to the APN experiment, but is more 

pronounced than observed in the LIM experiment. Overall, the mass loss during the 5 °C 

to 25 °C evaporation step is more pronounced than mass loss during the 25 °C to 42 °C 

step. 

In the SEQ experiment (Fig. 4b), initial growth of α-pinene SOA onto the inorganic seed 

particles is rapid. After subsequent injection of limonene precursor, the second increase in 

aerosol mass is more gradual, as would be expected from the pure LIM experiment. The 

evaporation pattern in the SEQ experiment is less pronounced than the one of the MIX 

experiment during the 5 °C to 25 °C temperature increase and equally marginal from 25 

°C to 42 °C.  

3.3.2 Kinetic modelling results (MIX and SEQ) 

The model result of the best fit modelling scenario (solid green and purple lines) lacks in 

correlation to the experimental data for both, MIX, and SEQ experiments. Strikingly, the 
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mass at peak aerosol growth is overestimated by the model in both scenarios. Furthermore, 

initial evaporation is overestimated such that aerosol mass in the middle and late stages of 

the experiments agrees between model and experiment. Towards the end of the experiment, 

evaporation is further overestimated in the SEQ experiment, such that predicted aerosol 

mass becomes lower than the experimentally observed mass. 

The best fit modelling result is generated from optimization to aerosol mass and pON/OA 

data from experimental data sets LIM, APN, and SEQ; experiment MIX is left out for 

cross-validation. Furthermore, pure precursor experiments are each weighted twice as high 

as the MIX experiment. pON/OA data is weighted by a factor of 4 less than aerosol mass 

data. The model optimization is hence intentionally biased towards aerosol mass of the 

pure precursor experiments. The premise of this decision is to investigate the potentially 

non-linear effects of mixing precursors, which cannot be accomplished if the pure 

precursor experiments are not accurately represented in the first place. We note that fitting 

to all four data sets with equal weighting coefficients does not yield a subjectively better 

optimization result and only shifted insufficient model-experiment correlation to the pure 

precursor experiments APN and LIM. 

Figs. 4a and 4b also show a different modelling scenario that is obtained by only optimizing 

to the APN and LIM experiments (dashed green and purple lines), with experiments MIX 

and SEQ left out for cross-validation. This scenario shows agreement between model and 

mixed precursor experiments during peak growth, but significantly underestimates aerosol 

mass after the first increase in chamber temperature. If applied to all data sets, this fit scores 
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worse in the least-squares residue between model and experiment (Eq. 4) than the best fit 

scenario described above, however, overestimation of evaporation in the mixed precursor 

experiment is a common theme between modelling scenarios that were able to reproduce 

both the growth and evaporation of the pure precursor experiments. Of note, evaporation 

is generally more strongly overestimated in the SEQ experiment, where limonene SOA is 

deposited onto α-pinene SOA that has already formed. 

These results are similar to the findings of Boyd et al. (2017), who showed less evaporation 

of limonene SOA and more evaporation of β-pinene SOA in a SEQ-type experiment (β-

pinene SOA condensing on preformed limonene SOA) compared to their MIX-type 

experiment. The study postulated a core-shell morphology of a limonene SOA core and a 

β-pinene SOA shell that is sustained due to incomplete mixing, though oligomerization 

between limonene and β-pinene oxidation products could also play a role. Here, we show 

in a proof of concept that oligomerization mechanics alone cannot explain the evaporation 

of monoterpene SOA mixtures. In the following, we will take a closer look at further 

possible explanations. 

3.4 Deviation between model and experiment 

We can conclude that while peak aerosol mass can be reconciled between the four 

simulated experiments with the kinetic model, the evaporation pattern in experiments MIX 

and SEQ cannot be brought fully into agreement with the pure precursor experiments LIM 

and APN. Hence, the kinetic model must lack a process that leads to resistance in 
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evaporation in the mixed precursor scenarios compared to the pure precursor experiments. 

Possible mechanisms introducing such non-linearity include: 

1. Non-linear gas-phase chemistry 

2. Augmented particle-phase oligomerization chemistry  

3. Mass transfer limitations 

In general, none of these points can be fully excluded based on the results presented in this 

manuscript. However, in the following, we will go through the obtained evidence and 

evaluate these points to make an informed guess on how likely they are to affect aerosol 

formation and evaporation. 

3.4.1 Gas-phase chemistry 

Non-linear effects in gas-phase chemistry branching ratios could lead to a mixture of 

oxidation products that is more readily oxidized or dimerized and hence would show a 

reduced evaporation rate upon increase in chamber temperature. One possible mechanism 

for this is an increased yield of gas-phase dimers due to bimolecular reaction of two RO2 

radicals from different precursors, forming hetero-dimers of oxidation products. Formation 

of hetero-dimers is considered in the model, however, the branching ratio is assumed to be 

similar for limonene- and α-pinene-derived molecules and hence self-reactions are of the 

same speed as cross-reactions. Berndt et al. (2018) showed that cross-reactions of two 

different -pinene-derived RO2 radicals can be faster than the respective self-reaction 

rates. Such an effect would cause a higher dimer fraction in the product spectrum, which 

in turn would lead to reduced evaporation of SOA from precursor mixtures due to overall 
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lower volatility. Since the number of RO2 radicals in precursor mixtures is diversified, 

more cross-reactions could occur naturally, which would lead to more gas-phase dimers 

and in turn explain the slower evaporation in the MIX experiment. The SEQ experiment, 

however, also shows slow evaporation compared to the pure precursor experiment. Since 

oxidation occurred separately and cross-reactions are not enhanced by diversification of 

RO2 radicals, formation of hetero-dimers in the gas phase cannot be the cause for reduced 

product volatility in the SEQ experiment. 

3.4.2 Oligomerization 

Augmented oligomerization in the particle phase is a possible explanation of reduced 

evaporation rates in case mixtures of oxidation products from different precursors 

oligomerize more readily together than the pure components in isolation. Unlike the gas-

phase chemistry scenarios described above, these effects could be observed in both MIX 

and SEQ experiments since particle-phase oligomerization may occur retroactively after 

the second oxidation step in the sequential oxidation experiment. Moreover, 

oligomerization of already low-volatile products would not alter SOA yields as strongly as 

gas-phase chemical effects would, but could have a pronounced influence on evaporation 

rates.  

In general, an augmentation effect leading to a higher oligomerization degree in mixtures 

could be achieved if the hetero-oligomers were formed more efficiently than a linear 

combination of formation rates of both homo-oligomers. A similar effect would be 

achieved when oxidation products of one of the two precursors were such efficient 
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oligomer-formers that they would cause the oxidation products of the other precursors to 

oligomerize more readily and pull them into the oligomer phase. Therefore, during 

development of the model, we tested an implementation of the oligomerization scheme 

where formation of hetero-oligomers occurs at a combined rate using their logarithmic 

mean value, but first-order decomposition rates remain unaffected by the precursor type. 

The model solution exhibited a large discrepancy in oligomerization rates of a few orders 

of magnitudes, with limonene oxidation products oligomerizing quickly and readily and α-

pinene oxidation products hardly oligomerizing in isolation. As a result, mixtures of 

oxidation products still oligomerized significantly, driven by the high individual oligomer 

formation rate of limonene oxidation products. Equilibrium oligomerization degree is 

governed by both oligomer formation and decomposition rates, but is also naturally capped 

to a value of 100 %. Hence, in conclusion, mixing a strong oligomer former that reaches 

this cap in isolation with a weak oligomer former can lead to a higher combined 

oligomerization degree of the mixture. However, this pure theoretical result seems 

unphysical as it requires a very high oligomerization degree of pure limonene SOA and a 

very small degree of oligomerization in pure α-pinene SOA, which has not been observed 

in experimental studies (Faxon et al., 2018;Takeuchi and Ng, 2019). 

3.4.3 Mass transfer limitations 

Increased mass transfer limitations caused by high viscosity can cause a reduction of 

volatilization. This is due to surface concentrations of the evaporating components being 

depleted when the mixing time scale in the particle is longer than the evaporation time 
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scale. Mass transfer limitation is not treated in the model runs previously shown in this 

study. Instead, a well-mixed bulk phase is assumed and any resistance in evaporation is 

explained with oligomerization reactions. The slow evaporation of limonene SOA is hence 

solely caused by significant oligomerization in the model runs previously presented, but 

could also be caused by mass transfer limitations induced by a high bulk-phase viscosity, 

especially if a high fraction of particle-phase oligomers would have formed that depresses 

mobility of molecules in the condensed phase (Baltensperger et al., 2005;D’Ambro et al., 

2018). Hence, limonene SOA might exhibit a more viscous phase state than α-pinene SOA. 

The high viscosity caused by limonene oxidation products might in turn affect evaporation 

in the mixed precursor experiments and cause the observed non-linear effects. In a first 

approximation, viscosities of mixtures can be assumed to be a linear combination of the 

individual viscosities and follow a logarithmic mixing rule (Gervasi et al., 2019). This 

entails that the change in the rate of mass transport between pure compounds and their 

mixtures can reach orders of magnitudes. This would be in line with volatilization rates 

observed in the mixed precursor experiments being more similar to the pure LIM 

experiment, which was observed in this and a previous study (Boyd et al., 2017). Notably, 

while evaporation steps immediately following a change in chamber temperature are 

overall similar between the MIX and SEQ experiments, the slope of the aerosol mass versus 

time curve is steeper in the MIX experiments. This might suggest that in the SEQ 

experiment, limonene SOAmight be covering the preformed α-pinene oxidation products 

in a core-shell morphology and thus hampering their volatilization. 
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To test the effect of impeded bulk diffusivity on the evaporation of SOA, we perform a 

sensitivity study in which we increase viscosity in the model to evaluate whether the 

evaporation rates in the MIX experiment can be brought into agreement with observations. 

We use the alternative fitting scenario shown in Fig. 4 (dashed lines) and raise the viscosity 

in the simulation to 2·106, 2·107, and 2·108 Pa·s, respectively, in three separate model runs 

(Fig. 5). These viscosities are in the typical range for SOA under dry conditions and fall 

into the semi-solid phase state region (Koop et al., 2011;Shiraiwa et al., 2011;Abramson et 

al., 2013;Zhang et al., 2015b;Grayson et al., 2016;Gervasi et al., 2019). Using the Stokes-

Einstein relation (Einstein, 1905) and an effective molecular radius of 2 nm, these 

viscosities correspond to bulk diffusion coefficients of 5×10-16 to 5×10-18 cm2/s at 298 K. 

The effective radius is approximated from geometric considerations assuming spherical 

molecular shape, a molar mass of 250 g/mol and density of 1.55 g/cm3. The temperature-

dependence of this diffusion coefficient is approximated with a constant activation 

enthalpy of diffusion ΔHdif = 50 kJ/mol according to Eq. (5). 

𝐷𝑏(𝑇) = 𝐷𝑏(298 𝐾) ⋅ exp
−Δ𝐻dif

𝑅 (
1
𝑇 −

1
298)

 (5) 

Fig. 5 shows that in the selected viscosity range, the model output is quite sensitive to 

changes in bulk diffusivity. Evaporation is almost unimpeded in the highest diffusion case, 

but considerably slowed at the lowest simulated diffusivity. At a bulk diffusion coefficient 

of 5×10-17 cm2/s, the correlation with the evaporation pattern in the MIX experiment is 

much improved. This model result insinuates that the co-presence of limonene SOA and 
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α-pinene SOA might strongly reduce the mobility of α-pinene oxidation products so that 

the fast evaporation of α-pinene oxidation products observed in the pure α-pinene oxidation 

experiment does not take place. 

The outcome of this sensitivity study has to be treated with caution since slow diffusion of 

limonene oxidation products also causes a change in the simulation outcome for the pure 

limonene experiment, which the employed parameter set is based on. With this parameter 

set, the slow evaporation of limonene SOA in the model is purely attributed to oligomer 

formation. The sensitivity study hence suggests that the high oligomerization degree 

observed for limonene SOA in the previous best fit solutions might be overestimated. In 

fact, a particularly high oligomer content was not observed for limonene SOA from 

oxidation with NO3 in measurements using FIGAERO-CIMS (Faxon et al., 2018). 

Distinction of these two effects (oligomerization vs. mass transfer limitation) could be 

possible with the model and the MCGA, but is not attempted in this study due to the 

prohibitive computational cost of model calculations at low diffusivities and will be subject 

of future studies. 

Taken together, it is possible that increased mass transfer limitation led to the observed 

reduced evaporation rates of the SOA mixtures as postulated in Boyd et al. (2017). 

However, there are still large uncertainties and a high computational expense associated 

with a model treatment of highly viscous SOA systems. While frameworks for the 

determination of viscosity of mixtures have recently been developed (Gervasi et al., 2019), 

these rely on structural information about individual compounds. Furthermore, while the 
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Stokes-Einstein relation seems to hold for similar systems at viscosities of up to 104 Pa·s 

(Ullmann et al., 2019), it is not clear whether it also holds for viscosities of ~107 Pa·s 

derived in this study (Evoy et al., 2019).  

Additionally, treatment of slow particle-phase diffusion requires many model layers to 

describe the steep concentrations gradients arising at the particle surface upon evaporation. 

In combination with the multitude of tracked species in the particle phase, computational 

costs quickly reach unfeasible ranges. Ideally, the spatial resolution model layers would 

have to be generated upon model runtime by an algorithm that detects steep concentration 

gradients. This detailed description will be presented in a forthcoming publication.  

3.5 Organic nitrate fractions  

In this study, the organic nitrate fraction (pON/OA) is presented as ratio of the total mass 

concentration of particulate ON (which includes the organic part and nitrate part of the ON 

compounds) to the total mass concentration of organic aerosol (which includes both ON 

and non-nitrated organics) (Takeuchi and Ng, 2019). It can be inferred from AMS data 

using Eq. 6. In this formula, it is assumed that all organic aerosol mass is found in the 

organic and nitrate signal of the AMS (AMSORG and AMSNO3) and all AMS nitrate is ON. 

When MWpON is the average molar mass of the ON (i.e., 250 g/mol in this study) and 

MWNO3 the molar mass of the nitrate group (i.e., 62 g/mol), the pON mass can be 

determined by scaling the AMS signal with the ratio of these molar masses. 
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𝑝𝑂𝑁

𝑂𝐴
=  

𝐴𝑀𝑆NO3 ⋅
𝑀𝑊pON
𝑀𝑊NO3

𝐴𝑀𝑆NO3 + 𝐴𝑀𝑆ORG
≈

4.03

1 +
𝐴𝑀𝑆ORG
𝐴𝑀𝑆NO3

 (6) 

Fig. 6 depicts measured and modelled values for pON/OA for all four experiments. Panel 

a shows that in the LIM experiment, pON/OA is high, with a mass ratio of about 0.8 in the 

particle phase, and only slightly increases over time, which is reproduced in the model. 

Note that the average molar mass of ON might change during the experiment, e.g., by 

evaporation of lower molecular weight components, which is not considered in our 

calculation. In the model, the slow evaporation of limonene SOA is caused by oligomer 

decomposition followed by evaporation of volatile monomers. The fact that nitrate groups 

are rather evenly distributed across monomers from the predominantly evaporating 

volatility bins is reflected in the constant pON/OA returned by the model. We note that this 

result gives no evidence that decomposition rates of oligomers consisting of nitrated or 

non-nitrated monomeric building blocks might differ and we use the same oligomer 

decomposition rate irrespective of nitration state of the respective product bin. 

Panel b shows pON/OA in the APN experiment. The initial nitrate content is lower than in 

the LIM experiment with a value of about 0.45. During the first temperature increase in the 

APN experiment, ON content increases with the reduction in organic mass, indicating 

predominant evaporation of non-nitrated oxidation products. During the second 

evaporation step, ON content decreases, indicating predominant evaporation of nitrated 

oxidation product. The best fit model run (solid blue line) captures the overall magnitude 
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of the ON content, but lacks the time dependence of a reduction followed by an increase in 

pON/OA. This is probably due to the model parameter optimization being stuck in a local 

minimum and the relatively low weighting coefficients assigned to the pON/OA data sets 

in this study. pON/OA data were weighted by a factor of 4 less than aerosol mass data in 

this study. 

The measured and simulated ON contents for the experiments with multiple precursors are 

shown in panels c and d of Fig. 6 for the MIX and SEQ experiment, respectively. While 

both experiments use approximately the same concentrations of α-pinene and limonene, 

the measured pON/OA are slightly different. Simultaneous oxidation (MIX) leads to an 

initial pON/OA of 0.53, which is surprisingly low and closer to the value measured for 

pure -pinene SOA. Sequential oxidation (SEQ) leads to an initial pON/OA of 0.52 after 

α-pinene oxidation, and increases to 0.6 after oxidation of limonene has concluded. This 

value in the SEQ experiment is closer to the expected value when assuming linear 

additivity of ON content. The unexpectedly low ON content in the MIX experiment points 

towards non-linear effects in chemistry that are not captured by the model. The time- and 

temperature-dependence of the ON fraction is qualitatively similar for both experiments 

and overall captured by the model. Predominant evaporation of α-pinene oxidation 

products, which are the more-volatile and less-nitrated components of the mixture, leads 

to an overall increase of pON/OA. 

A notable observation from modelling is that dimers from the gas-phase reaction of RO2 + 

RO2 are mainly nitrates because most RO2 radicals originate from the reaction of alkene 
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with NO3 and are hence nitrated. This is especially significant for the α-pinene + NO3 

reaction system since the high momentary RO2 radical concentrations in these experiments 

lead to a high estimated contribution of gas-phase dimers to aerosol mass of 11 % at peak 

growth and close to 31 % after heating to 42 °C (cf. Fig. 3). 

In summary, the experimental and modelling results in this study confirm previous studies 

and report a high efficiency of nitration in the reaction of monoterpenes with NO3, with a 

nitrated SOA fraction larger than 50 % under most experimental conditions studies (Ng et 

al., 2017 and references therein). Limonene SOA shows overall higher nitration degrees 

than α-pinene SOA, which can be understood by the higher number of double bonds of the 

VOC precursor compound itself and hence more possibilities to introduce a nitrate group 

during oxidation. An increase in temperature from 5 °C to 25 °C leads to an increase in ON 

content of the SOA in all observed systems, which can be explained by the slightly elevated 

nitration degree in the dimer fraction and hence less volatile fraction of the organic aerosol. 

By heating above 25 °C, pON/OA is in general slightly reduced. A potential reason for this 

might be accelerated thermal decomposition of ON. 

4 Conclusions and Outlook 

In this study, an inverse modelling approach is utilized alongside laboratory chamber 

experiments to gain insights into the molecular-level processes which occur during the 

formation and evaporation of SOA from the oxidation of α-pinene, limonene, and mixtures 

of both precursors with NO3. We find α-pinene SOA to form and evaporate rather quickly 

and limonene SOA to form and evaporate more slowly. Both SOA types, however, show 
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retardation in evaporation compared to instantaneous equilibration, which can be explained 

by the presence of particle-phase oligomers. The oxidation products of both SOA types are 

found to be heavily nitrated. A mixed and a sequential oxidation of both precursors shows 

the expected linear additivity of SOA yields, but a non-linear reduction in evaporation 

behavior, which could not be explained without diffusion limitations in the particle phase. 

These results highlight the significance of NO3 as oxidant in SOA formation and the 

importance of ON as products of monoterpene oxidation. This study finds evidence for 

non-equilibrium partitioning caused by slow particle-phase chemistry and slow diffusion, 

which is currently not considered in global models and may lead to underestimation of 

SOA persistence and hence underestimated global SOA burden in these models. 

The modelling approach applied in this study comprises a combination of the kinetic multi-

layer model based on KM-GAP (Shiraiwa et al., 2012) with the automated global 

optimization suite MCGA (Berkemeier et al., 2017) and details the full chemistry and 

physics of SOA particle growth and shrinkage. The underlying SOA formation and 

evaporation mechanism uses a simplified and lumped version of the Master Chemical 

Mechanism (MCM; Jenkin et al., 2003;Saunders et al., 2003;Berkemeier et al., 2016), 

extends it with a reversible particle-phase oligomerization and gas-phase dimerization 

scheme, and treats gas-particle partitioning with a volatility basis set approach (Donahue 

et al., 2006;Donahue et al., 2011) for each product bin. This study focuses on NO3 oxidation 

of monoterpenes and their mixtures, but the model framework can be ported to other 

chemical systems. The depth resolution capabilities of the multi-layer model allow for a 

sensitivity study of the influence of particle phase state on the evaporation of these 
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particles. A full treatment of composition-dependent, depth-resolved viscosity as global 

optimization parameter is ultimately needed to disentangle the interactions of particle-

phase diffusion and particle-phase chemistry. Due to the computational expense of finely-

resolved computational layers and the general uncertainty in the physical and chemical 

parameters, this will be subject of follow-up studies. In such studies, offline analysis of the 

oligomerization degree of SOA material can help to constrain oligomerization and 

oligomer decomposition rates and thermodynamic models can be used to provide estimates 

for composition-dependence of viscosities and diffusivities (DeRieux et al., 2018;Gervasi 

et al., 2019). 

In general, the model parameters that are returned by the inverse modelling approach 

applied in this work must be evaluated in the context of the model and experimental data 

that are employed. With a simplified multi-parameter model and experimental data sets 

that are aggregate observables and subject to uncertainty, the concept of a single global 

minimum and multiple local minima on the optimization hypersurface can become blurred 

and several extended areas on the optimization hypersurface can exhibit a minimal function 

value. This effect is enhanced when model parameters behave non-orthogonally, i.e., one 

parameter can by expressed to some extent by another one (or combinations of others). The 

existence of numerous and extended minima on the optimization hypersurface makes the 

process of finding an optimal parameter set computationally expensive. For example, 

repeated execution of an automated fitting algorithm can help to assess the flexibility of an 

undetermined system. Fig. S5 includes an estimation of the uncertainty in volatility 

distributions obtained in this study. The error bars in Fig. S5 are standard deviations of 
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individual re-fits of volatility distributions and hence quantify the uniqueness (or lack 

thereof) of the fitted volatility distributions. Beyond the technical intricacies of the 

parameter optimization process, the uniqueness of the obtained parameter set can be 

enhanced by inclusion of more experimental data at different conditions or by a priori 

determination of model parameters such as measurements of volatility distributions, 

oligomerization degrees or particle viscosities.  

The modelling suite presented here constitutes a step forward in the computational, data-

driven evaluation of SOA formation with kinetic models. In this work, only a small set of 

laboratory chamber data is utilized for optimization as proof of concept. We postulate that, 

by reconciling and cross-comparing large sets of experimental data we will be able to 

significantly enhance our understanding of SOA and close the gap between our expanding 

theoretical knowledge about the detailed gas-phase chemistry, gas-particle partitioning, 

particle phase state of SOA, and the application of this knowledge in chemical transport 

models. 
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Figures 

 

Figure 1. (a) Schematic representation of the lumped chemical mechanism for oxidation of monoterpenes with one 

double bond (e.g., α-pinene). The asterisk stands for chemical reaction with NO, NO3, and RO2. (b) The stable products 

are divided into 6 product bins each with a different volatility (grey arrows; bin1-bin6), according to a probability 

distribution (exemplary graphs on the right). (c) Oligomerization occurs in equilibrium reactions in the particle phase 

under conservation of precursor origin and volatility bin. 
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Figure 2. (a) Comparison of experimental and modelling results for oxidation of limonene with 

NO3. Open black markers are experimental aerosol mass obtained using an SMPS. The red solid 

line represents the model result and the grey dashed line corresponds to the experimental 

temperature profile. (b) Analysis of the occupation of volatility bins of all products (bar plot) and 

oligomerization state of particle-phase products (pie chart) in the model (i) 20 minutes and (ii) 12 

hours after the beginning of the experiment. Shadings in the bar plot denote where molecules of a 

certain volatility bin reside: gas phase (grey) or particle phase (colored). Products in the particle 

phase are further distinguished as orgranic nitrates (green) and non-nitrated organics (orange). 



 

 

 

104 

 

 

Figure 3. (a) Comparison of experimental and modelling results of aerosol mass for oxidation 

of α-pinene with NO3. Open black markers are experimental aerosol masses obtained using 

an SMPS. The blue solid line represents a model result and the grey dashed line corresponds 

to the experimental temperature profile. (b) Analysis of the occupation of volatility bins of 

all products (bar plot) and oligomerization state of particle-phase products (pie chart) in the 

model (i) 3 hours and (ii) 12 hours after the beginning of the experiment. Shadings in the bar 

plot denote where molecules of a certain volatility bin reside: gas phase (grey) or particle 

phase (colored). Products in the particle phase are further distinguished as orgranic nitrates 

(green) and non-nitrated organics (orange). 
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Figure 4. Overview of experimental and modelling results of aerosol mass for experiments with 

mixed monoterpene precursors. The experiments in the two panels differ in the way the precursors 

were added: (a) simultaneous oxidation of a mixture of α-pinene and limonene, (b) sequential 

oxidation of firstly α-pinene and secondly limonene with NO3. Open black markers are 

experimental aerosol mass obtained using an SMPS. The colored solid and dashed lines represent 

model results from two different fits to the experimental data. The grey dashed line indicates the 

experimental temperature profile. 
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Figure 5. Influence of viscosity on model simulation results based on the alternative fitting 

scenario and the MIX experiment. Model simulations were performed at different diffusivity 

coefficients 5×10-18 - 5×10-16 cm2/s, corresponding to bulk viscosities of 2·106 - 2·108 Pa·s 

according to the Stokes-Einstein relation, Eq. (5). 
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Figure 6. Experimental and modelling results of particulate organic nitrate content (pON/OA) for 

four different types of chamber-generated SOA. (a) only limonene, (b) only α-pinene, (c) a mixture 

of α-pinene and limonene and (d) sequential oxidation of firstly α-pinene and secondly limonene. 

Cross markers are experimental nitration degrees inferred using a High Resolution Time-of-Flight 

Aerosol Mass Spectrometer (HR-ToF-AMS). The colored solid lines represent results of the 

kinetic model. The grey dashed line indicates the experimental temperature profile. 
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Tables 

 

Table 1. Fit parameters of the kinetic model. Error estimates for the volatility distribution 

(parameters fapin and flim) can be found in Fig. S5 in the supplement, error estimates for all 

other parameters are ranges in which a parameter can be varied until the model-experiment 

correlation decreases by 10 %. For a full list of kinetic parameters, see Table S1. 

# of 

parameters 

Parameter Value of best fit Description 

6 fapin,org,b1 - fapin,org,b6 see Fig. S5 Volatility distribution of 

non-nitrated monomeric α-

pinene oxidation products 

6 fapin,nitr,b1 - fapin,nitr,b6 see Fig. S5 Volatility distribution of 

nitrated monomeric α-

pinene oxidation products 

6 flim,org,b1 - flim,org,b6 see Fig. S5 Volatility distribution of 

non-nitrated monomeric 

limonene oxidation 

products 

6 flim,nitr,b1 - flim,nitr,b6 see Fig. S5 Volatility distribution of 

nitrated monomeric 

limonene oxidation 

products 

1 gpwl 2.80×10-7 (2.31 – 

3.34×10-7) 

Gas-phase wall loss rate 

1 ΔHvap (α-pinene) 76.7 (62.9 – 88.5) Effective enthalpy of 

vaporization of α-pinene 

SOA products (kJ/mol) 

1 ΔHvap (limonene) 69.2 (66.0 – 72.2) Effective enthalpy of 

vaporization of limonene 

SOA products (kJ/mol) 

1 pvap,intermed1 

(limonene) 

2.06×10-7 (1.38×10-7 

– 4.70×10-7) 

Vapor pressure, non-

nitrated limonene SOA 

intermediate (Pa) 
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1 pvap,intermed2 

(limonene) 

3.86×10-8 (3.16 – 

4.48×10-7) 

Vapor pressure, nitrated 

limonene SOA 

intermediate (Pa) 

1 c1 0.0139 (0.0106 – 

0.0168) 

Branching ratio, gas-phase 

dimer yield from RO2 + 

RO2 

1 c2 0.141 (0.102 – 

0.0171) 

Branching ratio, RO yield 

from RO2 + RO2 

1 c3,apin 0.0691 (0.0630 – 

0.0746) 

Branching ratio, product 

yield from RO, α-pinene 

1 c3,lim 0.774 (0.578 – 0.972) Branching ratio, product 

yield from RO, limonene 

1 c4,apin 0 (0 – 0.0965) Product ratio of non-

nitrated to nitrate ratio 

species from RO, α-pinene 

1 c4,lim 0.230 (0.190 – 0.272) Product ratio of non-

nitrated to nitrate ratio 

species from RO, limonene 

1 kform,apin 17.4 (9.5 – 27.0)  Oligomerization rate 

coefficient, α-pinene (h-1) 

1 kform,lim 1.11 (1.01 – 1.22) Oligomerization rate 

coefficient, limonene (h-1) 

1 kdecom,apin 3.28 (2.13 – 6.04) Oligomer decomposition 

rate coefficient, α-pinene 

(h-1) 

1 kdecom,lim 0.0392 (0.0356 – 

0.0428) 

Oligomer decomposition 

rate coefficient, limonene 

(h-1) 

1 TF(kdecom,apin) 620 (492 – 801) Temperature-dependence 

factor of oligomer 

decomposition, α-pinene 

(kJ/mol) 

1 TF(kdecom,lim) 244 (214 – 269) Temperature-dependence 

factor of oligomer 
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decomposition, limonene 

(kJ/mol) 

 

Table 2. Experimental conditions for environmental chamber experiments presented in this 

study alongside aerosol masses and SOA yields during peak growth at 5 °C. 

Exp VOC 1 

(ppb) 

VOC 2 

(ppb) 

Experiment 

variant 

Seed 

mass† 

(µg / 

m3)  

Peak 

aerosol 

mass† 

(µg / 

m3) 

Peak 

organic 

aerosol 

mass† (µg 

/ m3) 

SOA 

yield 

(%) 

LIM limonene 

(10.5 ± 

1.1) 

 
pure 

limonene 

28.8 ± 

1.4 

110.1 ± 

5.5 
81.3 ± 5.7 

129.6 

± 15.8 

APN α-pinene 

(47.5 ± 

4.8) 

 
pure α-

pinene 

37.3 ± 

1.9 

108.7 ± 

5.4 
71.4 ± 5.7 

25.2 ± 

3.2 

SEQ α-pinene  

(24 ± 

2.4) 

limonene 

(5 ± 0.5) 
sequential 

33.4 ± 

1.7 

100.1 ± 

5.0 
66.7 ± 5.3 

38.5 ± 

4.9 

MIX α-pinene 

(22.5 ± 

2.3) 

limonene 

(5 ± 0.5) 
simultaneous 

40.9 ± 

2.0 

93.8 ± 

4.7 
52.9 ± 5.1 

32.2 ± 

4.5 

†: Aerosol masses are calculated from aerosol volume concentrations using a density of the 

organic phase of 1.64 g/cm3 for limonene SOA (Boyd et al., 2017), 1.46 g/cm3 for α-pinene 

SOA (Nah et al., 2016), and 1.55 g/cm3 for the mixtures. All the reported masses are wall-

loss corrected 
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Gas-phase oxidation products may undergo reversible oligomerization in the particle 

phase, which is treated in the kinetic model. The volatility information of the monomeric 

building blocks is tracked in their oligomeric state and regained after decomposition into 

monomers. We assume both, formation and decomposition of oligomers, to be pseudo-first 

order processes that occur with a rate depending on the precursor material. Formation of 

hetero-oligomers is hence implicitly considered, but occurs with the speed of product from 

either precursor, not with a combined rate. This means that molecule A oligomerizes with 

molecule B with the (pseudo-first order) oligomerization rate coefficient 𝑘form,𝐴 =

𝑘′form,𝐴 ⋅ ([𝐴monomer] + [𝐵monomer]), where 𝑘′form,𝐴 is the second-order oligomerization 

rate coefficient of molecule A and [𝐴monomer], [𝐵monomer] are particle-phase monomer 

concentrations of molecules A and B, respectively. 

𝐴monomer
𝑘form,A
→    𝐴dimer 

𝐴dimer
𝑘decom,A
→      𝐴monomer 

(1) 

 

(2) 

Furthermore, gradual oligomerization will affect the availability of reaction sites for 

oligomerization reactions. This is accounted for with a conservatively chosen factor that 

can reduce the oligomer formation rate by up to a factor of 0.5, depending on the oligomer 

fraction, foligomer.  

𝑘form,A
∗ = 𝑘form,A ⋅ (1 − 0.5 ⋅ 𝑓oligomer) (3) 
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This assumes that every monoterpene oxidation product has two possible reaction sites for 

oligomerization, but for simplicity, there is no further oligomerization beyond the dimer 

level. The real reduction in formation rate will depend on the exact number of reaction sites 

and average chain length of the oligomer in solution. A schematic representation of the 

oligomer formation and decomposition processes employed in the kinetic model is shown 

in Fig. S3. 

 

SI Figures 

 
Fig. S1. Schematic representation of the extended lumped chemical mechanism for monoterpenes with two double 

bonds (e.g. limonene). Yellow colors denote non-nitrated products, while green colors denote mono-nitrated organics 

(light green), di-nitrated organics (green), and nitrogen oxides (dark green), respectively. Stable products are divided 

into product bins analogous to Fig. 1 (not depicted for clarity). 
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Fig. S2. Scheme detailing the branching ratios c1-c4 of RO2 and RO radical chemistry used in the oxidation of α-

pinene. The branching ratios detail the success of dimer fomation (c1), RO yield from not-dimer-forming RO2 self-

reaction (c2), success of RO making product upon unimolecular decay (c3) and the branching between nitrated and 

non-nitrated products from stabilization of RO (c4). The darker color in the arrow pairs indicates which of the two 

branches is increased with increasing numerical value of the branching ratio. The formation of α-pinene oxidation 

products from RO2
II and limonene oxidation products from RO2

IV and RO2
V was treated analogous. 

 

Fig. S3. Schematic representation of the oligomer formation and decomposition scheme A employed in the kinetic 

model presented in this study. Chemical reaction of the oxidation products from precursor 1 (green ellipsoid) and 

precursor 2 (blue ellipsoid) occurs at specific reaction sites (orange squares) under formation of dimers. 
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Fig. S4. Detailed composition highlighting saturation and oligomerization degree of oxidation products of the particle 

phase during the LIM experiment according to the model in the best fit simulation. 



 

 

 

123 

 

SI Tables 

 

Table S1. Lumped gas-phase chemical mechanism employed in this study. Rate 

coefficients of gas phase reactions involving inorganic reactants are ported from MCM and 

unless explicitly indicated displayed for a temperature of 5.5 °C and 1 bar pressure. Note 

that all stable organic products are further subdivided into 6 volatility bins according to a 

fitted volatility distribution. [RO2] stands for the total concentration of RO2 radicals, T is 

temperature, foligomer the oligomer fraction, c1-c4 are fittest branching ratios, and TFapin and 

TFlim are temperature-dependence factors for α-pinene and limonene, respectively. In the 

names of chemical species, the suffix “org” denotes a non-nitrated product, the suffix 

“orgnitr” denotes an organic nitrate. Among these, a superscript “1N” denotes a 

mononitrated compound, a superscript “2N” denotes a dinitrated compound, etc.  

 

Fig. S5. Volatility distributions of monoterpene oxidation products as derived from kinetic model optimization to 

experimental data. These distribution keys are used to divide stable monomeric oxidation products into volatility bins. 

Volatility distributions were differentiated between nitrated and non-nitrated products as well as their precursor origin: 

(a) nitrated and non-nitrated α-pinene oxidation products (fapin,org,bi, fapin,nitr,bi), (b) nitrated and non-nitrated limonene 

products (flim,org,bi, flim,nitr,bi). Dinitrated and mononitrated molecules were considered as following the same volatility 

distribution. The bars show arithmetic means obtained from multiple model optimizations that each optimized six 

volatility bins while keeping all other model parameters constant. All fits possessed similar model-experiment 

correlation. Error bars represent standard deviations. 



 

 

 

124 

Number Reaction Equation Rate coefficients  

(s-1 or cm3/s) 

Gas Phase Reactions Involving Inorganics 

1 O → O3 6.27·104·(T/300)-2.6 

2 O → O3 1.78·104·(T/300)-2.6 

3 O + O3 → 8.00·10-12·exp(-2060/T) 

4 O + NO → NO2  2.63·10-12  

5 O + NO2 → NO  5.50·10-12·exp(188/T)  

6 O + NO2 → NO3  2.33·10-12 

7 O3 + NO → NO2  1.40·10-12·exp(-1310/T)  

8 O3 + NO2 → NO3  1.40·10-13·exp(-2470/T)  

9 NO + NO → NO2 + NO2  1.79·10-20·exp(530/T) 
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10 NO + NO3 → NO2 + NO2  1.80·10-11·exp(110/T)  

11 NO2 + NO3 → NO + NO2  4.50·10-14·exp(-1260/T)  

12 NO2 + NO3 → N2O5  1.28·10-12 

13 O3 + OH → HO2  1.70·10-12·exp(-940/T)  

14 OH + CO → HO2  2.33·10-13 

15 OH + H2O2 → HO2  2.9·10-12·exp(-160/T)  

16 O3 + HO2 → OH  

2.03·10-16·(T/300)4.57 

·exp(693/T)  

17 OH + HO2 → 4.80·10-11·exp(250/T)  

18 HO2 + HO2 → H2O2  2.20·10-13·exp(600/T)  

19 HO2 + HO2 → H2O2  4.94·10-14·exp(980/T)  

20 NO + OH → HONO  1.12·10-11 
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21 NO2 + OH → HNO3  1.15·10-11  

22 NO3 + OH → NO2 + HO2  2.00·10-11  

23 NO + HO2 → NO2 + OH  3.45·10-12·exp(270/T)  

24 NO2 + HO2 → HO2NO2  8.55·10-13 

25 OH + HO2NO2 → NO2  3.20·10-13·exp(690/T) 

26 NO3 + HO2 → NO2 + OH  4.00·10-12  

27 OH + HONO → NO2  2.50·10-12·exp(260/T)  

28 OH + HNO3 → NO3  5.00·10-3 

29 HNO3 → NA  6.00·10-6  

30 N2O5 → NA + NA  4.00·10-4  

31 N2O5 → NO2 + NO3  3.50·10-3 

32 HO2NO2 → NO2 + HO2  5.00·10-3 
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Gas Phase Reactions Involving Organics 

34 O3 + APINENE → OH + APINENE_RO2
I  0.85·8.05·10-16·e-640/T 

35 O3 + APINENE → APINENE_RO2
II 0.15·8.05·10-16·e-640/T 

36 OH + APINENE → APINENE_RO2
II  1.2e-11·e440/T 

37 NO3 + APINENE → APINENE_RO2
III  1.2e-12·e490/T 

38 NO + APINENE_RO2
I → NO2 + APINENE_ROI  9.10·10-12 

39 NO3 + APINENE_RO2
I → NO2 + APINENE_ROI  2.30·10-12 

40 HO2 + APINENE_RO2
I → APINENE_org 2.20·10-11 

41 NO + APINENE_RO2
II → APINENE_orgnitr1N 9.10·10-12 

42 NO + APINENE_RO2
II → NO2 + APINENE_ROI  9.10·10-12 

43 NO3 + APINENE_RO2
II → NO2 + APINENE_ROI  2.30·10-12 

44 HO2 + APINENE_RO2
II → APINENE_org 2.20·10-11 
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45 NO + APINENE_RO2
III → NO2 + APINENE_ROII 9.10·10-12 

46 NO3 + APINENE_RO2
III → NO2 + APINENE_ROII  2.30·10-12 

47 HO2 + APINENE_RO2
III → APINENE_orgnitr1N 2.20·10-11 

48 APINENE_RO2
I → APINENE_ROI [RO2]·(1-c1)·c2·10-13 

49 APINENE_RO2
I → APINENE_org [RO2]·(1-c1)·(1-c2)·10-13 

50 APINENE_RO2
II → APINENE_ROI [RO2]·(1-c1)·c2·10-14  

51 APINENE_RO2
II → APINENE_org [RO2]·(1-c1)·(1-c2)·10-14  

52 APINENE_RO2
III → APINENE_ROII  [RO2]·(1-c1)·c2·10-14  

53 APINENE_RO2
III → APINENE_orgnitr1N [RO2]·(1-c1)·(1-c2)·10-14  

54 APINENE_ROI → HO2 + APINENE_org c3_apin ·106 

55 APINENE_ROI → APINENE_RO2II  (1- c3_apin)·106  

56 APINENE_ROII → NO2 + APINENE_org c3_apin ·(1-c4_apin)·106  
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57 APINENE_ROII → APINENE_orgnitr1N c3_apin · c4_apin ·106 

58 APINENE_ROII → APINENE_RO2
III  (1-c3_apin)·106  

59 APINENE_RO2
I → APINENE_dimer_org  c1·[RO2]·10-13  

60 APINENE_RO2
II → APINENE_dimer_org  c1·[RO2]·10-14  

61 APINENE_RO2
III → APINENE_dimer_orgnitr1N  c1·[RO2]·10-14  

62 O3 + LIMONENE → OH + LIMONENE_RO2
I  0.865·2.80·10-15·exp(-770/T) 

63 O3 + LIMONENE → LIMONENE_RO2
I 0.135·2.80·10-15·exp(-770/T) 

64 OH + LIMONENE → LIMONENE_RO2
I 4.28·10-11·exp(401/T) 

65 NO3 + LIMONENE → LIMONENE_RO2
II 1.22·10-11 

66 

NO + LIMONENE_RO2
I → 

LIMONENE_intermed_orgnitr1N  

0.228·2.70·10-12·exp(360/T) 

67 

NO + LIMONENE_RO2
I → NO2 + 

LIMONENE_ROI  

0.772·2.70·10-12·exp(360/T) 
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68 

NO3 + LIMONENE_RO2
I → NO2 + 

LIMONENE_ROI  

2.30·10-12 

69 

HO2 + LIMONENE_RO2
I → 

LIMONENE_intermed_org  

0.914·2.91·10-

13·exp(1300/T) 

70 

NO + LIMONENE_RO2
II → 

LIMONENE_intermed_orgnitr1N  

0.228·2.70·10-12·exp(360/T) 

71 

NO + LIMONENE_RO2
II → NO2 + 

LIMONENE_ROII  

0.772·2.70·10-12·exp(360/T) 

72 

NO3 + LIMONENE_RO2
II → NO2 + 

LIMONENE_ROII  

2.30·10-12 

73 

HO2 + LIMONENE_RO2
II → 

LIMONENE_intermed_orgnitr1N  

0.914·2.91·10-

13·exp(1300/T) 

74 LIMONENE_RO2
I → LIMONENE_ROI [RO2]·(1-c1)·c2·8.80·10-13  

75 LIMONENE_RO2
I → LIMONENE_intermed_org  

[RO2]·(1-c1)·(1-c2)·8.80·10-

13  

76 LIMONENE_RO2
II → LIMONENE_RO_II  [RO2]·(1-c1)·c2·9.20·10-14  
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77 

LIMONENE_RO2
II → 

LIMONENE_intermed_orgnitr_1N  

[RO2]·(1-c1)·(1-c2)·9.20·10-

14  

78 

LIMONENE_ROI → HO2 + 

LIMONENE_intermed_org  

c3,lim ·106 

79 LIMONENE_ROI → LIMONENE_RO2
II  (1-c3,lim) ·106 

80 

LIMONENE_ROII → NO2 + 

LIMONENE_intermed_org  

c3,lim ·106 

81 LIMONENE_ROII → LIMONENE_RO2
III  (1-c3,lim)·106  

82 

O3 + LIMONENE_intermed_org → OH + 

LIMONENE_RO2
III  

0.67·8.30·10-18  

83 

O3 + LIMONENE_intermed_org → 

LIMONENE_RO2
III  

0.33·8.30·10-18  

84 

OH + LIMONENE_intermed_org → 

LIMONENE_RO2
III  

1.10·10-10 

85 

NO3 + LIMONENE_intermed_org → 

LIMONENE_RO2
IV  

2.60·10-13 
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86 

O3 + LIMONENE_intermed_orgnitr1N → OH + 

LIMONENE_RO2
IV  

0.67·8.30·10-18  

87 

O3 + LIMONENE_intermed_orgnitr1N → 

LIMONENE_RO2
IV  

0.33·8.30·10-18  

88 

OH + LIMONENE_intermed_orgnit_1N → 

LIMONENE_RO2
IV  

1.10·10-10 

89 

NO3 + LIMONENE_intermed_orgnitr1N → 

LIMONENE_RO2V  

2.60·10-13 

90 HO2 + LIMONENE_RO2III → LIMONENE_org 

0.914·2.91·10-

13·exp(1300/T) 

91 

NO3 + LIMONENE_RO2III → NO2 + 

LIMONENE_ROIII  

2.30·10-12 

92 

NO + LIMONENE_RO2
III → NO2 + 

LIMONENE_ROIII 

 0.772·2.70·10-12·exp(360/T) 

93 

NO + LIMONENE_RO2
III → 

LIMONENE_orgnitr1N 

 0.228·2.70·10-12·exp(360/T) 



 

 

 

133 

94 LIMONENE_RO2
III → LIMONENE_ROIII  [RO2]·(1-c1)·c2·9.20·10-14  

95 LIMONENE_RO2
III → LIMONENE_org 

[RO2]·(1-c1)·(1-c2)·9.20·10-

14  

96 

HO2 + LIMONENE_RO2
IV → 

LIMONENE_orgnitr1N 

 0.914·2.91·10-

13·exp(1300/T) 

97 

NO3 + LIMONENE_RO2
IV → NO2 + 

LIMONENE_ROIV  

2.30·10-12 

98 

NO + LIMONENE_RO2
IV → NO2 + 

LIMONENE_ROIV  

2.70·10-12·exp(360/T) 

99 

NO + LIMONENE_RO2
IV → 

LIMONENE_orgnitr2N  

2.70·10-12·exp(360/T) 

100 LIMONENE_RO2
IV → LIMONENE_ROIV  [RO2]·(1-c1)·c2·9.20·10-14 

101 LIMONENE_RO2
IV → LIMONENE_orgnitr1N 

[RO2]·(1-c1)·(1-c2)·9.20·10-

14 

102 

HO2 + LIMONENE_RO2
V → 

LIMONENE_orgnitr2N 

0.914·2.91·10-

13·exp(1300/T) 
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103 

NO3 + LIMONENE_RO2
V → NO2 + 

LIMONENE_ROV 

2.30·10-12 

104 

NO + LIMONENE_RO2V → NO2 + 

LIMONENE_ROV  

2.70·10-12·exp(360/T) 

105 LIMONENE_RO2V → LIMONENE_ROV  [RO2]·(1-c1)·c2·9.20·10-14  

106 LIMONENE_RO2
V → LIMONENE_orgnitr2N 

[RO2]·(1-c1)·(1-c2)·9.20·10-

14  

107 LIMONENE_ROIII → HO2 + LIMONENE_org c3,lim ·106  

108 LIMONENE_ROIII → LIMONENE_RO2III  (1 - c3,lim)·106 

109 LIMONENE_ROIV → NO2 + LIMONENE_org c3,lim ·(1 - c4,lim)·106 

110 LIMONENE_ROIV → LIMONENE_orgnitr1N c3,lim · c4,lim ·106 

111 LIMONENE_ROIV → LIMONENE_RO2IV  (1-c3,lim)·106 

112 

LIMONENE_ROV → NO2 + 

LIMONENE_orgnitr1N 

c3,lim ·(1 - c4,lim)·106 
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113 LIMONENE_ROV → LIMONENE_orgnitr2N c3,lim · c4,lim ·106 

114 LIMONENE_ROV → LIMONENE_RO2V   (1- c3,lim)·106  

115 LIMONENE_RO2
I → LIMONENE_dimer_org   c1·[RO2]·9.20·10-14  

116 

LIMONENE_RO2
II → 

LIMONENE_dimer_orgnitr1N  

 c1·[RO2]·9.20·10-14  

117 LIMONENE_RO2
III → LIMONENE_dimer_org   c1·[RO2]·9.20·10-14  

118 

LIMONENE_RO2
IV → 

LIMONENE_dimer_orgnitr1N  

 c1·[RO2]·9.20·10-14  

119 

LIMONENE_RO2
V → 

LIMONENE_dimer_orgnitr2N  

 c1·[RO2]·9.20·10-14  

Particle Phase Reactions 

120 

LIMONENE_intermed_org → 

LIMONENE_olig_intermed_org  

 kform,lim·(1-foligomer/2) 

121 

LIMONENE_intermed_orgnitr1N → 

LIMONENE_olig_intermed_orgnitr1N  

kform,lim·(1-foligomer/2) 
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122 APINENE_org → APINENE_olig_org kform,apin·(1-foligomer/2) 

123 APINENE_orgnitr_1N → APINENE_olig_orgnitr1N  kform,apin·(1-foligomer/2) 

124 APINENE_olig_org → APINENE_org kdecom_apin·exp(TFapin/T) 

125 APINENE_olig_orgnitr1N → APINENE_orgnitr1N  kdecom_apin·exp(TFapin/T) 

126 LIMONENE_org → LIMONENE_olig_org kform,lim·(1-foligomer/2) 

127 

LIMONENE_orgnitr1N → 

LIMONENE_olig_orgnitr1N 

 kform,lim·(1-foligomer/2) 

128 

LIMONENE_orgnitr2N → 

LIMONENE_olig_orgnitr2N 

 kform,lim·(1-foligomer/2) 

129 LIMONENE_olig_org → LIMONENE_org  kdecom_lim·exp(TFlim/T) 

130 

LIMONENE_olig_orgnitr1N → 

LIMONENE_orgnitr1N 

 kdecom_lim·exp(TFlim/T) 

131 

LIMONENE_olig_orgnitr2N → 

LIMONENE_orgnitr2N 

 kdecom_lim·exp(TFlim/T) 



 

 

 

137 

132 

LIMONENE_olig_intermed_org → 

LIMONENE_intermed_org  

 kdecom_lim·exp(TFlim/T) 

133 

LIMONENE_olig_intermed_orgnitr1N → 

LIMONENE_intermed_orgnitr1N  

 kdecom_lim·exp(TFlim/T) 
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Abstract 

The atmospheric life cycles of organic compounds occur amongst the evolution of 10,000’s 

of compounds spread across wide ranges of volatility, polarity, and water solubility. The 

molecular-level chemical composition of this mixture plays a major, yet uncertain, role in 

its transformations, fates, and impacts. Here, we perform an extensive untargeted 

molecular-level intercomparison of functionalized organic aerosol (OA) from three diverse 

mailto:drew.gentner@yale.edu
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field sites and an environmental chamber. Despite similar bulk OA composition, we report 

large molecular-level variability between ambient samples at each field site, with 66 ± 13% 

of functionalized OA compounds in a sample differing between consecutive multi-hour 

samples. Single precursor laboratory experiments and fully chemically-explicit modeling 

confirm this variability is due to changes in emitted precursor mixtures, chemical age, 

and/or oxidation conditions. These molecular-level results demonstrate much greater 

compositional variability than less-speciated measurements, which tend to show consistent 

diurnal profiles for descriptors of elemental composition (e.g. O/C ratio). This has potential 

implications for fundamental and applied atmospheric chemistry studies, and should be 

considered in future work to evaluate the effects of compositional variability on OA 

properties measured at a broader array of sites and to ultimately inform strategic OA 

parameterizations for air quality and climate models. 

Introduction  

Organic aerosol (OA) is a major component of ambient fine particulate matter (20-

90%),1 which has significant detrimental health effects and climate forcings.2,3 Primary OA 

(POA) is emitted directly from anthropogenic and biogenic sources, while secondary OA 

(SOA) is formed through the oxidation of reactive gas-phase precursors in the atmosphere 

(including volatile organic compounds (VOCs)). The oxidation of both gas- and particle-

phase organic compounds occurs via a diverse set of oxidation pathways, depending on 

molecular structure and atmospheric conditions. These reactions and their divergent 

branching ratios convert an often complicated mixture of emitted reactants into an 
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increasingly diverse mixture of oxidation products, which is broadly characterized as SOA 

or “oxidized OA”.1,4,5 Products span a wide polarity and volatility space, with diverse 

oxygen-, nitrogen-, and sulfur-containing functionality.6 

Molecular identity and structure are tied to the atmospheric transformations of 

organic compounds, and the ultimate health and environmental impacts of OA.7–13 Thus, 

detailed molecular-level speciation is necessary to advance fundamental understanding of 

atmospheric processes and chemical life cycles, and to provide effective parameterizations 

for air quality-climate models and detailed chemical mechanisms. This is challenging, 

however, because the number of potential oxidation products and isomers to catalogue 

rapidly increases with molecular size and elemental constituents.4  

Knowledge of OA chemical composition has advanced considerably in recent years 

through online and offline measurement studies, but major uncertainties remain at the 

molecular level. Chemically-detailed online measurement capabilities have improved 

through applications of mass spectrometry (MS) (e.g. aerosol MS (AMS), chemical 

ionization MS (CIMS), ion mobility spectrometry–MS) and gas chromatography (GC) 

with MS detectors.1,14–17 Some recent studies have combined data from multiple mass 

spectrometers to measure across wider volatility and polarity ranges,15,18 even achieving 

mass closure at one forested site (i.e. Σ(individual measured species) ≈ total observed 

carbon mass).15  

However, the current state of knowledge from both online and offline 

measurements is far from chemically-comprehensive. Most online methods have limited 
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molecular-level speciation due to limited MS resolution and isomer differentiation.19,20 

Also, many online OA instruments can only characterize the bulk OA mixture, which 

greatly reduces chemical detail. Still, these useful bulk measurements are central to most 

OA source apportionment studies (where “oxidized OA” is a common reported factor)1 

and atmospheric chemistry models. For example, AMS data on bulk elemental ratios (O/C 

and H/C) from chambers and ambient measurements across the globe are often used to 

parameterize the overall composition and photochemical age of OA in models.1,21,22 Offline 

characterization of OA filter samples with MS is common and sometimes includes GC or 

liquid chromatography (LC) separation,23–26 but is often limited to targeted analyses of a 

smaller subset of compounds. Very few studies have looked at compositional variability 

for either chamber or laboratory samples via a non-targeted approach with a sufficiently 

powerful MS, and those that have were limited by sample size and did not include LC.6,27,28 

This study is the most extensive non-targeted multi-platform survey to date of 

functionalized OA compositional variability via LC and high resolution MS, with more 

temporal resolution and a larger sample size than previous offline studies. With the 

objective of advancing the state of knowledge on molecular-level OA composition, 

variability, and dynamics, we: (a) carry out a non-targeted molecular-level speciation of 

complex OA mixtures from 3 diverse field sites and a set of environmental chamber 

experiments, resolving isomers using LC and identifying the molecular formula of each 

observed LC peak using high resolution MS; (b) perform an unprecedented 

intercomparison of functionalized OA composition in environmental chamber experiments 

and at each field site to examine sample-to-sample variability in each data set and explore 
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potential causes of this molecular-level variability; (c) model the multi-generational 

evolution of molecular-level variability in OA composition using chemically-explicit 

mechanisms, and compare this data to our other results. Results from all platforms are 

supported by a sensitivity analysis to strengthen conclusions. 

 

Limited temporal variability in bulk chemical speciation of functionalized OA at 3 

diverse field sites 

To capture OA chemical complexity with increased levels of atmospheric 

oxidation, summertime measurements were made at three field sites: a remote forest in 

Northern Michigan (PROPHET site), near downtown Atlanta, and New York City (Queens 

Co.). Particulate matter (PM10) samples were collected on PTFE membrane filters using a 

passivated stainless steel sampler with a minimal inlet surface area to reduce sampling 

artifacts and losses. Multi-hour samples were separately collected during day and night 

(site-dependent, 8 hours on average), avoiding dusk and dawn to focus on daytime or 

nighttime chemistry. OA was extracted from the filters with methanol, and characterized 

via high performance LC with electrospray ionization (ESI) in positive and negative mode, 

with high resolution quadrupole time-of-flight MS (LC-ESI-Q-TOF).  

Data collection was extensively quality-controlled through the use of field and 

laboratory blanks, spiking filter samples with deuterated internal standards, and consistent 

sample handling and analytical procedures. Similarly, data processing was thoroughly 

quality controlled, and a conservative threshold for peak inclusion in the subsequent 
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analyses was implemented (i.e. limit of detection (LOD) threshold). Observed analytes 

were assigned a molecular formula using high mass accuracy molecular ion m/z ratios and 

isotopic distributions. Then, peaks and their assigned formulas were rigorously scrutinized 

via a series of rules and standards (see Methods), and catalogued based on their molecular 

formula and LC retention time. To ensure an accurate interpretation of all results, data 

collection and processing methods were validated with replicate runs of standards and 

samples, and run-to-run variability of identified compounds was reduced to less than 8% 

(see Methods, Figure S1, Table S1). Unless otherwise specified, all data presented here are 

based on compound count (see SI for additional intensity-weighted data). 

The focus of this study was functionalized OA; many of these functionalized 

compounds are readily protonated/deprotonated, or can interact with other ions to form 

adducts, making them well-suited for electrospray ionization.29,30 This includes SOA and 

functionalized POA, though the majority of the compounds sampled is expected to be SOA, 

as these samples were all collected during the summer. Henceforth, all references to the 

OA characterized by LC-ESI-Q-TOF are labelled as “OA”, but represent functionalized 

POA and SOA observed with the methods discussed here. The vast majority of compounds 

observed at each field site contain at least 1 oxygen atom (92%-94%), with minor 

contributions of nitrogen-containing compounds without oxygen, which ionize well via 

ESI.29,31 Sulfur-containing compounds without oxygen do not ionize well via ESI, and are 

thus omitted here, along with non-functionalized OA.29,31,32 Overall, the average sum of 

speciated components represents approximately 2.6 ± 1.3 μg/m3, 0.5 ± 0.3 μg/m3, and 1.0 

± 0.3 μg/m3, in the forest, Atlanta, and New York City, respectively (see Supplemental 
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Information), but this does not include any sulfur-containing compounds without oxygen 

or non-functionalized OA.  

The bulk composition of OA filter samples at each site exhibits limited variance 

and is particularly consistent for the forested site, for both daytime and nighttime samples 

(Figures 1, S2, S3). Mean elemental ratios of oxygen-to-carbon (O/C), oxygen-to-nitrogen 

(O/N), and oxygen-to-sulfur (O/S) show minor changes at each site, but contributing 

compounds demonstrate a diverse mix of functionality, similar to previous high-resolution 

OA characterization.6,23,27 Limited variance in average O/C ratio was also observed via 

AMS in the forest and in Atlanta (Figures S2-S4). Such behavior is typical of many past 

AMS studies, where there is some variance in high-time resolution data, but diurnal profiles 

are consistent day-to-day, often falling within a narrow O/C range.33,34 Approximately 

50%-65% of observed compounds contain nitrogen or sulfur, including organonitrates and 

organosulfates, whose average molecular weights have been previously underconstrained 

and are provided in Figure S2. Compounds containing oxygen, nitrogen, and sulfur 

(CHONS), which have been detected previously in the ambient atmosphere,26,35,36 were 

prevalent at the three sites (10% on average). 
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Molecular-level speciation reveals extensive temporal variability in functionalized 

OA composition 

Despite relatively constant overall composition, an isomer-specific molecular-level 

analysis shows ubiquitous sample-to-sample variability in chemical composition of OA at 

 

Figure 1. Average bulk mixture composition and elemental ratios for each field site show 

limited variability between multi-hour samples. Elemental ratios (points on upper scales) are 

displayed as daytime (red) and nighttime (blue) values for LC-ESI-Q-TOF data, and shown 

along with AMS ratios (green). Error bars represent 1 standard deviation (LC-ESI-Q-TOF data) 

and 28% error (AMS data, as determined by Canagaratna et al. for improved-ambient analysis22). 

Values presented here are unweighted. O/N and O/S ratios are computed for compounds with 1 

or more N or S atoms. Bar charts show the fraction of compounds in each compound class, 

denoted by the elements present in each class (daily compound class distributions are shown in 

Figures S7 and S8). Oxygen and nitrogen-containing organic compounds are split into two 

classes depending on their O/N ratio: CHON with O/N<3, and CHON with O/N≥3 (includes 

organic nitrates). In Atlanta, the LC-ESI-Q-TOF O/C ratio agrees well with the AMS O/C ratio. 

However, there is a larger discrepancy between these values in the forest, which decreases 

slightly in the abundance-weighted results (Figure S3) (see Section S2 for further discussion). 
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all three sites (Figures 2, S5, S6). With 1620-8100 compounds measured at each site, 

variability at the molecular-level was regularly 60-80%, meaning that 60-80% of 

compounds in a given sample were distinct and typically only 20-40% of compounds 

overlapped between any two compared samples. This reached a minimum of only 40% 

distinct compounds (60% overlapping) in two Atlanta comparisons. For each site, we 

compared subsets of similar samples (e.g. all daytime to all daytime) and all consecutive 

samples (e.g. day-to-day, day-to-night). Compounds were cataloged by both their 

molecular formula and LC retention time to differentiate isomers. Here, the definitions of 

“distinct” and “overlapping” are the percentages of observed compounds in a given sample 

that are either different or shared, respectively, in a comparison of 2 samples (see Methods, 

Equations 1 and 2). “Distinct” compounds are present above the LOD in one of the two 

compared samples, but absent or below the LOD in the other, and therefore contribute a 

negligible amount of mass to the second sample. 
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On average, 73±8%, 78±13%, 70±9% of compounds were distinct between any 

compared samples in the forest, Atlanta, and New York City, respectively. Large sample-

 

Figure 2. Molecular-level composition varies greatly between multi-hour samples at 3 diverse 

field sites, and this variability occurs across abundances, volatilities, and compound classes. (A) 

The average (± standard deviation, shown as error bars) percentage of distinct compounds for 

sample-to-sample comparisons is shown across various sample subsets at each field site, where 

overlapping compounds are determined by comparing molecular formulas and LC retention 

times. Markers above and below each average and standard deviation represent the minimum and 

maximum values of distinct compounds for each set of comparisons. All other sample-to-sample 

comparisons in each set fell in the range set by the minimum and maximum displayed here.  “All 

consecutive samples” includes consecutive days, consecutive nights, consecutive day-night pairs, 

and consecutive night-next day pairs. Day- and night-only comparisons for all samples and 

consecutive samples are also shown. (B-D) Molecular-level variability in all sample comparisons 

across all 3 sites is shown as the distribution of compositional variability (i.e. distinct 

compounds) across (B) abundance ranges, (C) volatility bins (i.e. 

intermediate/semi/low/extremely-low volatility organic compounds: IVOCs, SVOCs, LVOCs, 

ELVOCs, respectively), and (D) compound classes. 
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to-sample variability was observed even with minimal changes in overall composition 

(Figures S5-S6, S10-S11). Daytime and nighttime comparisons were equally variable. For 

all 3 sites, comparisons of consecutive samples had only slightly more overlap than 

comparisons of all samples, but were within standard deviations (Figure 2), with 

consecutive sample-to-sample variability of 67±9%, 65±13%, 69±7% in the forest, 

Atlanta, and New York City. Comparisons between daytime and nighttime samples are 

expected to vary somewhat, due to the distinctly different oxidation conditions in the 

presence or absence of sunlight (i.e. OH•- versus NO3
•-oxidation pathways). However, 

comparisons between consecutive daytime samples and consecutive nighttime samples 

also show significant variability, despite similar oxidation conditions from day-to-day and 

night-to-night. These highly variable results are notable in contrast to Figure 1, which 

shows relatively consistent bulk aerosol properties (elemental ratios and elemental 

composition) across each field campaign. 

The observed sample-to-sample compositional variability is due to differences in 

both detected molecular ions and isomeric structures differentiated by LC. In the midst of 

this variability, there are still prominent molecular formulas in our datasets spread across 

multiple isomers, including common, known markers of monoterpene, isoprene, and PAH 

oxidation (Table S3). There are also compounds that appear relatively frequently at each 

site, but few compounds are above LOD thresholds in all samples (Figure S12). 

Compounds were observed with up to 8 isomers at the 3 field sites (Figure S13). However, 

the majority of compounds at each site were present as only one isomer above LODs 

(Figures S12-S13).  
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The observed compositional variability occurs across a distribution of abundances, 

volatilities, and compound classes (Figures 2b-d, site specific distributions in S15-S16). 

Though not displayed in Figure 2, similar trends were observed for the laboratory chamber 

experiments. Distinct compounds from each sample-to-sample comparison are similarly 

spread across abundance quartiles, highlighting that this variability exists across a range of 

concentrations and is not attributed just to low abundance compounds. Individual 

compounds observed exist at ~ng/m3 concentrations in the atmosphere.  Furthermore, the 

distinct compounds contribute significantly to the total analyzed mass in the OA samples, 

representing 59 ± 17% of the abundance (i.e. mass) in the comparisons of all consecutive 

samples (e.g. Figure S6b, for the Atlanta campaign). 

The volatility of each observed compound was computed according to a 

parameterization by Li et al.,37 and compounds were then binned as intermediate-volatility 

(IVOC), semivolatile (SVOC), low-volatility (LVOC), and extremely low volatility 

(ELVOC) organic compounds. Distinct compounds span a wide volatility space, with 

similar contributions from IVOCs, SVOCs, ELVOCs, and fewer distinct LVOCs at all sites 

(Figures 2c, S15, S16). IVOCs represent 21% of observed variability on average; their 

presence in OA can be attributed to either: highly-polar water-soluble compounds often 

observed in OA (e.g. 2-methylglyceric acid (C4H8O5) from isoprene oxidation), 

misattribution without structural consideration in the above parameterization,38 or 

fragments of larger species. Finally, distinct compounds occur across all compound classes 

(Figures 2d, S15, S16), similar to the overall distributions in Figure 1, and there is no 
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statistically significant difference in the relative occurrence of compositional variability 

within each class (Figure S17).  

There are several considerations in the interpretation of these results. First, non-

functionalized hydrocarbons (i.e. unoxidized precursor gases or unoxidized OA) are 

outside the scope of this study, but the presence of fresh emissions could either homogenize 

OA if there are continuous sources, or exacerbate variability if there are intermittent diverse 

sources. The relative effect of any given intermittent source through non-functionalized 

hydrocarbons or their SOA is going to depend on the complexity of emissions (e.g. motor 

vehicle exhaust).14,39 Second, it is possible that longer duration samples (e.g. 24 hours) with 

greater averaging times could reduce sample-to-sample variability by collapsing diurnal 

variations into a single aggregate sample. Here, sampling times vary depending on the site 

(4.5-10 hours), but comparisons were always between samples of similar duration.  

Third, the OA mass collected and instrument LOD will affect the total number of 

compounds observed in a given sample, regardless of instrumentation. Our ambient results 

show that the variability is distributed across abundances (Figure 2b). However, we more 

thoroughly investigated the influence of LOD via a sensitivity analysis of ambient, 

chamber, and modeling results. Our sensitivity analysis (Figures 3a and S18) demonstrates 

that the outcomes of this study are not prone to bias based on the LOD threshold, number 

of analytes detected, or sample mass collected. Improved instrument sensitivity (e.g. 

attogram-level) could enable the measurement of very minor compounds, which may 

reduce sample-to-sample variability in ambient data. However, this study demonstrates that 
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variability occurs across a range of abundances, even in the most abundant OA 

components, which are most influential on OA properties and associated impacts.   

Similarly, the number of compounds and fraction of OA mass observed in each 

sample in this study must be considered. The data quality control discussed above allows 

only high quality peaks with assigned molecular formulas that pass a strict set of standards 

to be considered in this analysis (see Methods); this resulted in an average of 553 ± 146 

compounds per sample for the forest samples (mean ± standard deviation), 128 ± 41 

compounds per sample for the Atlanta samples, 161 ± 66 compounds per sample for the 

New York City samples, and 240 ± 35 compounds per sample for the environmental 

chamber samples. These numbers increase as the inclusion threshold is dropped (which 

was set conservatively and in the LOD sensitivity analysis it was still always above the 

instrument LOD determined by a signal-to-noise ratio of 3 – refer to Methods and SI for 

additional discussion). Though there are 10,000’s of compounds estimated to be present in 

the atmosphere, many of these compounds are present at concentrations below our 

conservative thresholds for formula assignment and inclusion in this study (i.e. ~0.1 ppt 

LOD threshold). Similarly, though GECKO-A produces roughly 83,700 possible 

compounds for α- and β-pinene oxidation, most of these theoretical compounds exist at 

minimal concentrations (i.e. << ppq); only ~1000 particle phase compounds from each 

precursor are present above 1 ppt. However, there is no guarantee that all of them will form 

in a given ambient atmosphere due to variable chemical conditions, precursor/oxidant 

concentrations, or further particle-phase processing. Refer to the GECKO-A methods 

section for further discussion. We acknowledge that the functionalized OA compounds 
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discussed here may not be representative of all particle-phase organic compounds at each 

of the sites we sampled, but rather represent a subset of compounds that are functionalized 

with oxygen, nitrogen, and/or sulfur. However, filter extraction and analysis techniques 

(discussed in the Methods section) were tailored based on best-practices in the literature to 

focus on this functionalized fraction. There is some uncertainty regarding the 

representativeness of the fraction of compounds we observe compared to the rest of OA 

present (especially POA), and results should be interpreted in this context. However, this 

highly functionalized fraction has been understudied, and warrants further characterization 

and assessment for its possible effects on the chemical physical properties and impacts of 

SOA.  

A comparison of mass differences between OA components in this study and other forested 

sites using both CIMS and offline ultra-high resolution MS shows a large fraction of 

compounds that would not be resolved by online MS methods due to interferences from 

other analytes (Figure 3b).20 This renders a significant fraction of the chemical diversity 

observed or modeled in this study inaccessible via current online MS measurements. In 

contrast, our offline LC-ESI-Q-TOF analysis has the advantage of isolating analyte peaks 

in LC space for accurate mass detection and formula assignment, without interference from 

other mass spectral peaks. 
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Figure 3. (A) A sensitivity analysis demonstrates minimal change in compositional variability 

results from the base case (“100% of LOD threshold”) with changes in LOD threshold for field, 

chamber, and modeling results. LOD thresholds were increased to 110%, 120%, 125%, and 

190%, and decreased to 10%, 20%, 25% and 90%. The model threshold was set to a baseline of 

0.5 ppq. The model threshold was varied as above, and was also reduced and increased by 1-3 

orders of magnitude, resulting in less than 6.6% change in compositional variability. For each 

LOD threshold, all sample-to-sample comparisons were performed, and compositional 

variability values averaged to yield an average change in compositional variability from the base 

case threshold. The range denoted by the arrow on the right denotes the full extent of variability 

observed in the sensitivity analysis when varying all relevant threshold parameters together (3A) 

and independently (Figure S18). (B) The distributions of molecular mass differences between 

compounds modeled or measured at forested sites in this study, and in another published ultra-

high resolution (UHR) offline filter study, demonstrate small mass differences between many 

compounds that could be missed with typical online MS.20 They are compared to published 

CIMS compound lists with demarcation of necessary mass differences for CIMS or other online 

MS to resolve peaks and assign formulas.20 All measured or modeled data have been normalized 

to CIMS mass resolution (M/∆M=4000) for comparison, but CIMS resolution limits do not 
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Potential driving factors explored via field, chamber, and modeling data 

To constrain the factors driving the observed ambient OA variability, we examine 

the effects of diversity in precursor emissions, chemical oxidation conditions, and air parcel 

history, via a combination of environmental chamber experiments, chemically-explicit 

modeling, and backward trajectory analysis. Currently, molecular-level variability in 

primary emissions from both biogenic and anthropogenic sources is well understood.40 

Gas- and particle-phase emissions, both locally and regionally, are chemically-diverse 

across source types (e.g. trees versus motor vehicles), but differences also exist between 

source sub-types (e.g. orange versus pine trees), and composition of emissions can vary 

temporally. This has all become more evident with increasingly speciated 

measurements.14,41,42  

To investigate molecular-level variability in oxidation products, a set of “nighttime” 

environmental chamber experiments was performed using either α-pinene or β-pinene 

precursors. Precursor compounds were initially oxidized by NO3
• radicals to form RO2

• 

radicals, and then chemistry was varied between experiments, and either controlled by 

RO2
•+NO3

• or RO2
•+HO2

• pathways. With our molecular-level speciation, we observe 

significantly different product distributions between α-pinene and β-pinene experiments 

(84% distinct on average) in similar chemical conditions, while changing oxidation 

conditions with the same precursor produces more product overlap (60% distinct on 

average) (Table 1, Figure S19).28 Isomers were observed in sets of up to 4 in the 

environmental chamber experiments (Figure S13). Average O/C ratios for overlapping 
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compounds ranged from 0.2-0.34, which are lower than (but not statistically significantly) 

the overall average O/C of all observed compounds in each comparison. 

 

Interestingly, the abundances of most overlapping compounds are similar between 

chamber experiments (Figure S19). Compounds that are common to both experiments tend 

to fall near a 1:1 abundance line, suggesting the presence of shared prominent products 

across oxidation conditions for nighttime α- or β-pinene chemistry, and potentially other 

precursors or chemical conditions. This trend was not evident in the model chamber 

simulations, discussed below (Figure S20).    

 To supplement these chamber experiments, we modeled the gas-phase product 

distribution of the same single precursors (α- and β-pinene), and their initial particle-phase 

composition after partitioning using GECKO-A (Table 1). Here, chemical structures were 

tracked between modeling experiments. With an average of 2296 ± 2911 individual 

Table 1. Chamber experiment and model run intercomparisons with molecular-level variability. 

Bolded entries represent comparisons with either the same precursor or chemical pathway. 
Chamber experiment comparisons 

Experiment α-pinene RO2
•+ HO2

• α-pinene RO2
•+ NO3

• β-pinene RO2
•+ HO2

• β-pinene RO2
•+ NO3

• 

α-pinene RO2
•+ HO2

• 0% 63% 83% 88% 

α-pinene RO2
•+ NO3

•  0% 75% 85% 

β-pinene RO2
•+ HO2

•   0% 56% 

β-pinene RO2
•+ NO3

•    0% 

Modeling comparisons (gas-phase / initial particle-phase) 

Model run α-pinene RO2
•+ HO2

• α-pinene RO2
•+ NO3

• β-pinene RO2
•+ HO2

• β-pinene RO2
•+ NO3

• 

α-pinene RO2
•+ HO2

• 0% 43% / 41% 87% / 98% 90% / 99% 

α-pinene RO2
•+ NO3

•  0% 90% / 99% 83% / 97% 

β-pinene RO2
•+ HO2

•   0% 41% / 39% 

β-pinene RO2
•+ NO3

•    0% 

Note: A comparison of model simulations with OH• oxidation of α-pinene versus β-pinene (in 

forest conditions) results in 60% (gas) and 69% (particle) distinct compounds after 8 hours of 

simulation time. Initial particle-phase composition refers to particle-phase composition directly 

after gas-particle partitioning (no particle-phase chemistry is included in GECKO-A). 
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compounds above a 0.5 ppq LOD threshold at each final model simulation time, the results 

demonstrate similar molecular-level variability as in the chamber and field data. It is 

important to note that 0.5 ppq is below our instrument LOD threshold for ambient and 

laboratory chamber analyses, but was selected as a threshold for the GECKO-A simulated 

data because it provided an opportunity to further extend the LOD sensitivity analysis 

beyond the range of our ambient/laboratory chamber measurements (Figure 3A).  

We tested nighttime (NO3
•) oxidation with either RO2

•+NO3
• or RO2

•+HO2
• reaction 

pathways, similar to the chamber experiments (“chamber simulations”), as well as daytime 

OH•-initiated oxidation under ambient conditions (“forest simulations”). Model runs with 

RO2
•+NO3

• controlled reactivity showed a significantly more diverse set of oxidation 

products than the product distribution from RO2
•+HO2

• chemistry. The chamber and model 

results are in agreement that variations in precursor structure are more influential 

contributors to compositional variability than the oxidation conditions tested. However, 

this chamber and modeling study was limited to α- and β-pinene, and should not be 

extrapolated to other precursors or oxidation conditions without further testing. Other 

precursor comparisons with greater difference in structure or formula are extremely likely 

to cause greater variability in OA composition. The inclusion of these modeling results acts 

as an independent verification of our ambient and laboratory chamber observations, as the 

model results are not subject to any of our analytical procedures. The variability observed 

in the simulated data strongly supports the results by replicating the variability observed in 

ambient and laboratory data.  
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Modeling results suggest that SOA compositional variability can be partially 

attributed to the preceding composition of oxidized organic gases, which, along with the 

initial particle-phase composition, provides a lower limit of variability just after 

partitioning but before additional particle-phase chemistry takes place (such chemistry is 

excluded from GECKO-A). The subsequent contributions of compositional variability 

from particle- and/or aqueous-phase chemistry cannot not be determined from this 

modeling analysis. The LOD sensitivity analysis with modeling data also shows little 

sensitivity to changes in threshold (Figures 3a, S18), down to LODs several orders of 

magnitude below the ambient or chamber LODs.   

Time-resolved modeling results show that the evolution of compositional variability over 

time varies with chemistry and precursors (Figure 4a-b), with variability increasing or 

decreasing over time for comparisons with like versus differing precursors, respectively. 

Additional intra-comparisons of individual model runs at fresh versus old “ages” (i.e. 

product generation) (Figure 4c) demonstrates that air parcel “age” likely plays a role in 

accentuating compositional variability since reaction precursors are frequently not emitted 

and reacted at a uniform time in the ambient atmosphere. The precursor-dependent increase 

in potential compounds in chemically-explicit models has been shown previously to reach 

105-106 over several generations, including diverse isomers.5,18 The chemical diversity of 

a single precursor or simple mixture is expected to grow exponentially and peak with a 

diverse population of larger oxidized compounds, and ultimately converge on a smaller 

number of oxidized fragments at the end of the oxidation life cycle.5,43 The extent to which 
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this decrease in variability might occur in the ambient atmosphere is subject to the effects 

of aerosol deposition and emissions of fresh precursors. 
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Figure 4. Modeling results with the dynamics of SOA compositional variability for α- or β-

pinene daytime OH• oxidation (“OH”) or nighttime NO3 oxidation with RO2
• radical reacting 

predominantly with HO2
• or NO3

• (“HO2”, “NO3”). (A-B) Model results show the evolution of 

compositional variability over reaction time, with variability increasing or decreasing over time 

for comparisons with like versus differing precursors, respectively. Oxidant exposure values for 

each modeling experiment are shown in Figure S18, and the evolution of gas- and particle-phase 

mass and elemental ratios in the modeling experiments are shown in Figure S19. (C) Intra-run 

comparisons of fresh (5 min simulation time) versus aged (last 2 simulation time points) 

compounds in the gas-phase GECKO-A output show compositional variability within single 

simulations. 
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To investigate the role of air parcel history in contributing to the observed OA 

compositional variability, we modeled hourly backward trajectories covering all air 

parcels’ 24-hour history for each sample using HYSPLIT.44,45 For each site, we compared 

the statistical distribution of backward trajectories separately for all daytime and nighttime 

samples with 20×20 km2 resolution and observed a diverse range of unique versus 

overlapping air parcel histories (Figure S25). Despite some prevailing backward 

trajectories observed at each site, there is no observed correlation between dissimilar 

backward trajectories and chemical compositional variability (Figure S26, r=0.02-0.5). 

However, there is clustering around very high backward trajectory variability and very high 

OA compositional variability, meaning most sample-to-sample comparisons with 

significantly different backward trajectories do not share many compounds. This suggests 

that changes in air parcel backward trajectories may contribute to compositional variability, 

but do not control it.  

Our observations are not without supporting evidence from other studies. Source 

apportionment via PMF with bulk OA measurements at the forested site shows major shifts 

in the relative source contributions of 3 broadly-defined factors representing more oxidized  

oxygenated OA, IEPOX-derived OA, and monoterpene-derived OA (Figure S14). All 3 

factors frequently approach negligible prevalence over long time periods, and at least two 

of the factors may also have significant variability in precursors or oxidation pathways. 

Similar shifts in the prevalence of PMF factors has been observed in other regions 

including the Southeastern U.S, though interpretation has been limited without chemical 

speciation.46–48 In addition, our molecular-level compositional variability results (Figure 2) 
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are supported by two recent analogous studies using high resolution mass spectrometry 

without LC separation. First, laboratory experiments on aqueous photochemistry of SOA 

from terpene precursors found that >50% of all observed oxidation products were unique 

to a single precursor.28 Second, a comparison of 4 ambient OA samples from Los Angeles 

and Bakersfield, CA report 35-65% compositional variability between sites, and 35-91% 

when compared to chamber experiments with diesel fuel or isoprene.27 These values are all 

lower limits of variability, since no LC separation was employed in either of these two 

studies to distinguish between isomers.  

 

Conclusions, potential implications and opportunities for fundamental 

understanding, monitoring, and modeling  

In conclusion, we present a multiplatform analysis of compositional variability in the 

atmosphere, and show significant temporal variability in ambient, laboratory, and modeled 

functionalized OA composition. Our observations highlight the complex interplay between 

precursor emissions, chemistry, and air parcel history in determining molecular-level 

functionalized OA composition, which is likely primarily composed of SOA. The 

atmosphere combines variability in precursor emissions with variability in the measured 

air parcels’ ages, and multiple levels of variability in multiphase chemical oxidation 

conditions (e.g. day versus night; concentrations of oxidants, NOX, and co-reactants (e.g. 

HNO3, H2SO4, NH3); concentration and composition of existing POA/SOA; particle 

acidity; relative humidity and aqueous chemistry;49 solar intensity; temperature). 
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Additionally, differences in transport and meteorology can also affect dry and wet 

deposition timescales and OA lifetime. In all, the combination of these factors produces a 

much larger number of divergent chemical species, whose presence varies with changes in 

these underlying factors. Shifts in one or more of these factors can significantly alter 

ambient molecular-level OA composition day-to-day, despite other factors, such as the 

presence of major precursors, remaining constant. This and future molecular-level studies 

on aerosol composition should be used to strategically parameterize aerosol composition 

in models, or to inform strategic model simplifications to more efficiently yet accurately 

describe complex aerosol mixtures. Future research is required to expand on this study of 

aerosol variability and observe temporal trends in molecular-level aerosol composition at 

these sites and others throughout different seasons. Gas-phase composition should also be 

assessed to determine the link between variability in gas-phase precursors and resulting 

SOA. The variability of non-functionalized POA should also be considered, and its 

possible effect on compositional variability (See discussion above). Finally, the impacts on 

aerosol properties should be assessed, using molecular-level data to study mixture-wide 

aerosol viscosity and resulting phase state, solubility, hygroscopicity, volatility, among 

other properties of interest. 



 

 

 

164 

 

Potential Implications and Opportunities for Future Work: Our findings reveal that the 

molecular-level chemical composition of functionalized OA mixtures in the atmosphere is 

highly variable, with the specific combination of factors driving SOA formation constantly 

changing, and their combined effects on aerosol properties underconstrained. These results 

are important for fundamental understanding, monitoring and modeling practices, and air 

quality management policies for several main reasons. 

First, this molecular-level study reveals significant temporal variability in OA 

composition, in contrast with common bulk OA composition metrics which seemingly 

collapse variability in OA evolution within and between studies, and thus tend to 

oversimplify the underlying variability of complex OA mixtures. For example, tracking 

elemental ratios from our LC-ESI-Q-TOF analysis (e.g. O/C, O/N, O/S in Figure 1) shows 

minimal temporal variability (Figure 1), while molecular level data show major changes in 

chemical composition with time (Figure 2). Molecular-level data should be used in 

 
Figure 5. Summary of the hypothesized causes and effects of OA compositional variability  
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combination with bulk metrics to evaluate, constrain, and improve the use of simplified 

metrics to represent aerosol composition, as well as age, evolution, and properties. SOA 

parameterizations in 3-D chemistry and climate models should be informed by these results 

and incorporate strategic simplifications that capture key changes in molecular-level 

composition. Existing bulk composition metrics include elemental ratios,34 bulk carbon 

oxidation state,43 mass spectral fragments (e.g. m/z 43/44),50 functional group fractions,51 

or often generic statistically-derived source apportionment factors (e.g. “semivolatile 

oxygenated OA”).1,50 Non-targeted molecular-level speciation should be used to elucidate 

variations between seemingly similar bulk metric values within data sets, between studies, 

and in model evaluations. If such non-targeted data are unavailable, studies should avoid 

basing analyses on single “representative” days because they are uncertain to include 

“typical” OA composition for a given site. 

Second, the molecular-level composition of OA (both elemental and structural) is a 

determining factor for its oxidation chemistry, its chemical/physical properties, the 

multiphase evolution of the whole organic mixture, and its interactions with aerosol 

inorganic species and water. A constantly changing aerosol composition may imply 

constantly changing oxidation chemistry and resulting aerosol properties, though this must 

be the subject of future research. For example, aerosol miscibility is strongly dependent on 

chemical structure.52 Metrics like O/C, which do not reflect changes in the isomeric 

composition of a mixture, may be misleading in characterizing an aerosol mixture because 

overall O/C may remain fairly consistent with time, and therefore seemingly indicate 

consistent chemical composition. However, when chemical structure is taken into account 
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to study structure-dependent properties, like aerosol miscibility, these properties may begin 

to show significant variability.  Therefore, to develop effective air quality and climate 

management strategies, it is essential that we understand the underlying processes that 

control this variability and thus influence the impacts of the coupled emissions-chemistry 

system. OA compositional variability could modify (and signify changes in) its impacts, 

such as urban air quality (i.e. SOA formation/evolution),1,52 human health (e.g. structurally 

dependent toxicity, carcinogenicity, and in vivo reactive oxygen species (ROS) 

generation),3,53 climate (e.g. changes in aerosol phase state, cloud condensation nuclei52), 

and feedbacks to chemical composition evolution through changes in aerosol phase state 

(e.g. glassy versus aqueous layer) that will affect chemistry in all phases.  

For example, a recent study with α- and β-pinene showed that precursor structure 

caused greater variations in in vivo ROS generation than reaction conditions.53 Similarly, 

molecular-level characterization is valuable because it can enable detailed estimates of 

physical/chemical properties like aerosol phase state, viscosity, solubility, hygroscopicity, 

and volatility, and allow for assessments of their ambient variability.52,54 Future work 

should determine which chemical/physical properties are most prone to changes with 

compositional variability, and how observed compositional changes at different locations 

will affect SOA properties. For example, while there is some correlation between 

hygroscopicity and overall O/C ratio,55–57 the importance of O/C distributions (rather than 

just the average O/C ratio) in determining volatility has been shown.56,58 For these and 

other properties, understanding molecular-level variability will further advance 

understanding and improve our predictive capacity. 
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Third, these data-rich molecular-level characterizations of compositional variability 

represent an incredible statistical resource and opportunity to develop a fundamental 

understanding of the chemical evolution of complex OA mixtures and its driving factors. 

A broad survey and intercomparison of ambient sites and laboratory experiments is needed 

to provide data to enable computationally-intense source apportionment and factor analysis 

studies with machine learning, neural networks, and other statistical methods. These offline 

methods and results are not intended to supplant, but rather augment, the valuable data 

produced by online methods and bulk characterization. Together with powerful, high-time 

resolution instruments (i.e. AMS, CIMS), future molecular-level compositional variability 

studies with greater temporal resolution and structural characterization of analytes with 

tandem MS can further deconvolve the factors that drive SOA formation and 

transformations. 

Methods  

The methods combined in this study each have strong foundations discussed in 

numerous previous studies, including filter handling and extraction, LC-ESI-Q-TOF 

analysis of OA extracts including QC/QA for formula assignment and formula evaluation, 

and non-targeted approaches to chemical characterization (all references herein). 

 

Site descriptions  
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Ambient particle-phase samples were collected at three field sites. The first set of 

samples was collected in a remote forest at the PROPHET research tower (University of 

Michigan Biological Station, 45.33ºN, 84.42ºW) during PROPHET 2016 (Program for 

Research on Oxidants: PHotochemistry, Emissions and Transport). The campaign ran from 

July 1 to July 31, 2016, and samples were collected from July 11 to July 31. This remote, 

mixed forest contains a variety of coniferous and deciduous trees, including types of aspen, 

northern hardwood, and pine.59 It is well isolated from major urban areas; Pellston, MI is 

the nearest town (5.5 km from the PROPHET tower, population < 900), and major 

metropolitan areas such as Detroit, Milwaukee, and Toronto are more than 400 km away. 

This site was selected because of its prominent biogenic emissions with minimal 

anthropogenic influence, allowing a focused study of BVOC oxidation products. This was 

a collaborative field campaign, with a variety of other measurements collected, including 

online particle-phase characterization data via AMS that are used in this study.  

 Samples were also collected near downtown Atlanta (33.78ºN, 84.41ºW), at the 

Jefferson Street SEARCH site (Southeastern Aerosol Research and Characterization). 

These measurements were collected from July 26 to August 18, 2017. The Atlanta site was 

selected because of its mix of anthropogenic and biogenic precursors and conditions; there 

is significant anthropogenic influence expected with high NOx concentrations and other 

anthropogenic pollutants (e.g. SO2), as well as high concentrations of biogenic organic 

compounds such as isoprene and monoterpenes, observed during similar field campaigns 

in the Southeast US.60,61 Using the established SEARCH site infrastructure, these 
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measurements were once again part of a collaborative mission, and we use online particle-

phase measurements collected via AMS in this study. 

Finally, samples were collected in Queens, New York, at the New York State 

Department of Environmental Conservation Air Monitoring Station (40.74ºN, 73.83ºW). 

Measurements were collected from September 1 to September 21, 2017. This site is located 

in a densely populated area, and anthropogenic emissions are expected to be dominant. 

These measurements are supported by PM2.5 and other trace gas pollutant measurements 

made by the New York State Department of Environmental Conservation.  

 

Sampling 

Particle-phase samples were collected with a custom built passivated stainless steel 

sampler for simultaneous collection of offline gas- and particle-phase samples with a very 

low surface area inlet (minimal or no upstream tubing) to minimize sampling artifacts and 

losses. The sampler was designed using passivated stainless steel filter holders (Pall 

Corporation) and an 84 mesh stainless steel screen (McMaster Carr). The screen was 

installed over the opening of the filter holders to limit particle size to a PM10 size cut (mesh 

size determined by aerosol penetration efficiency at 1 m3/hour, accounting for losses to the 

screen by diffusion, impaction, and interception). Particle-phase samples were collected on 

PTFE membrane filters (47 mm diameter, 1.0 μm pores, Tisch Environmental) at 1 m3/hour 

according to federal reference methods.62 Field blanks were collected with all samples. All 

filters were spiked with deuterated standards (containing benzene-d6, ethylbenzene-d10, 
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diethyl phthalate-d4 (all from AccuStandard), N-dodecanol-d25, octanoic acid-d15, N-

hexadecane-d34, and N-octane-d18 (all from Cambridge Isotope Laboratories)), stored at 

-30ºC to -80ºC, and transported using expedited shipping in insulated coolers with multiple 

ice packs to ensure good sample quality upon analysis.   

At PROPHET (forested field site), particle-phase samples were collected on the 

research tower, 28 m above the ground and 6 m above the canopy. The sampler was facing 

west on the tower, and no inlet tubing was used. Samples were collected both during the 

day (9:00am-5:00pm) and at night (9:30pm-5:30am), avoiding sunrise and sunset periods 

to capture distinct daytime and nighttime chemistry. At the Atlanta site, the inlet was 

positioned 4.5 m above the ground, facing west. Minimal inlet tubing was used in this 

sampling setup (18” of 5/8” stainless steel tubing), so that the sampler could be housed out 

of direct sunlight, in an air conditioned trailer at the site. Samples were collected during 

the day (9:00am-7:00pm) and overnight (10:30pm-5:00am), once again avoiding 

transitional periods. At the New York site, the sampler was positioned 4.5 m above the 

ground, facing west. Minimal inlet tubing was used here (9” of 5/8” stainless steel tubing), 

also to house the sampler away from direct sunlight and with temperature control. Samples 

were collected during the day only (7:00am-4:00pm, referred to as “all day” samples, or 

1:00pm-5:30pm, referred to as “afternoon” samples). 

PROPHET AMS Measurements: At PROPHET, a high-resolution time-of-flight 

aerosol mass spectrometer (HR-TOF-AMS, Aerodyne Research Inc.) was used to measure 

non-refractory submicron aerosols.63 In brief, particles are sampled through a 100-micron 



 

 

 

171 

critical orifice and are focused into a particle beam using an aerodynamic lens.  After 

traversing a vacuum chamber, the particles in the beam are impacted onto a porous tungsten 

vaporizer heated to 600ºC. Vapors are subsequently ionized by electron impact ionization 

(70 eV).  The resulting ions are detected using a high resolution time-of-flight mass 

spectrometer.  The HR-TOF-AMS was operated in a high sensitivity mode, referred to as 

“V-mode”.  Sampling inlets for HR-TOF-AMS measurements were located at two different 

heights, 6 m and 30 m, and data from the 30 m inlet on the PROPHET tower are considered 

in this study. Both inlets were fitted with PM2.5 cyclones to remove dust and prevent 

instrument clogging. The results presented here are of PM1, due to the transmission 

efficiency of PM1 through the AMS aerodynamic lens. Measurements were alternated 

between the 6 m and 30 m heights at 10 minute intervals. Ionization efficiency (IE) HR-

TOF-AMS calibrations were performed at the beginning and end of this field campaign, 

according to standard protocols.64,65 The IE calibrations were performed using 

monodisperse 300-nm ammonium nitrate particles.  

Atlanta AMS Measurements: Another Aerodyne HR-ToF-AMS (referred to as GT-

AMS hereafter) was deployed at the Atlanta Jefferson Street site. The sampling was done 

continuously with an inlet facing west at 4.5 m above the ground, and the inlet was coupled 

with a PM2.5 cyclone to remove coarse particles. However, as above, the data presented 

here is for PM1.  

For the AMS instruments at both sites, a nafion dryer was attached upstream of the 

AMS to dry the particles to below a relative humidity of 20%, because humidity has the 
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potential to affect particle collection efficiency at the vaporizer. IE calibrations were 

performed every week. The composition dependent collection efficiency (CDCE) was 

applied to  HR-TOF-AMS data from both sites, according to Middlebrook et al.66 Data 

analysis was performed in Igor Pro v6.37 (Wavemetrics, Inc.) using the Squirrel v1.16H 

and Pika v1.57I packages.67  High resolution mass spectral fitting was performed on the 

HR-TOF-AMS V-mode data.  Elemental analyses were performed to find the atomic ratios 

of oxygen to carbon (O/C) according to the “improved-ambient” method by Canagaratna 

et al.22  

Four chamber experiments were performed in the Georgia Tech Environmental 

Chamber facility.69 Experiments were performed at 70% relative humidity at 25°C with 

seed aerosols generated by atomization of a sulfuric acid (0.01 M) and magnesium sulfate 

(0.005 M) solution. α-pinene and β-pinene (12 ppb) were used as precursor VOCs and were 

oxidized by NO3
•. These experiments were designed to study nighttime VOC oxidation 

chemistry as it has been shown that nitrate radical oxidation of monoterpenes can 

contribute substantially to nighttime aerosol production in the southeastern U.S. The 

experiments are included in this study because they present an opportunity to explore the 

effects of precursor identity and chemical conditions on compositional variability in a 

controlled manner. Here, α-pinene and β-pinene were selected as precursors because they 

are prevalent monoterpenes observed at the forested site and Atlanta site. Their difference 

in structure presents an opportunity to study the effects that these structural differences 

have on oxidation chemistry. Future research will include a broader selection of biogenic 

and anthropogenic VOC precursors. Two experiments were run for each precursor, with 
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RO2
• fate controlled primarily either by NO3

• (“RO2
•+NO3

• experiments”) or by HO2
• 

(“RO2
•+HO2

• experiments”), following experimental protocols similar to those in Boyd et 

al.69 Briefly, seed aerosols and a precursor VOC were injected into the chamber prior to 

the introduction of N2O5, which serves as a source of NO3
•. For RO2

•+HO2
• experiments, 

25 ppm formaldehyde was also injected. N2O5 was premade in a flow tube by mixing O3 

and NO2 and was introduced to the chamber, which marked the beginning of an 

experiment. Approximately 60 ppb N2O5 was added to the chamber for RO2
•+ NO3

• 

experiments, and 80 ppb N2O5 was added for RO2
•+ HO2

• experiments. Filter samples were 

collected on PTFE membrane filters (47 mm diameter, 0.45 μm pores, Maine 

Manufacturing LLC) 3-4 hours after the beginning of each experiment for 100-120 minutes 

at 28-30 L/min.  

Model simulations use GECKO-A, an explicit chemical mechanism generator that 

applies observed structure-activity relationships (SARs) to predict as fully as possible the 

atmospheric chemistry of precursor hydrocarbons.5,70 SOA formation is described via gas-

particle partitioning,71 using vapor pressure relationships.72,73 The completed mechanisms 

are implemented in a box model. To maintain a tractable mechanism size, the following 

standard thresholds are imposed: (1) for any given reaction, pathways with branching ratio 

<5% are ignored and the reaction rates of the other pathways are incremented 

proportionally so that the overall reaction rate is unchanged; (2) we lump together products 

contributing <5% to the total yield from a reaction, by substituting them with their highest-

yield positional isomer (GECKO-A does not account for stereoisomers). The model has 

been tested with these thresholds for the oxidation of α-pinene.74,75 In this study we also 



 

 

 

174 

apply the GECKO-A SARs to the oxidation of β-pinene. Here, α-pinene and β-pinene were 

selected for consistency with the laboratory chamber experiments discussed above. The 

resulting combined mechanism contains ~83700 unique non-radical species, including 

~18500 lumped species which represent the contributions of an additional ~128000 very 

low-yield isomers. These species should be regarded as potential products. Not all possible 

reaction pathways are relevant to any given set of experimental conditions. The effective 

diversity of the model is best assessed by applying experimentally-relevant “detection 

limits” to the model output. 

Six different single precursor modeling experiments were performed, either as 

chamber simulations (α- or β-pinene precursor with NO3
• oxidation, and subsequent RO2

• 

fate controlled by NO3
• or HO2

•) or as ambient (forest) simulations (α- or β-pinene 

precursor, OH• oxidation). Chamber simulations were run for 2-4 hours of simulated 

oxidant exposure, and ambient simulations were run for 8 hours of simulated exposure 

under constant noontime conditions. All runs were performed at 295 K, with 70% relative 

humidity. Initial precursor concentration was 12 ppb in all cases, to match the chamber 

experiments discussed previously. For the GECKO-A chamber simulations, runs started 

with 60 ppb N2O5 (as NO3
• source), with 25 ppm of formaldehyde added for the RO2

• + 

HO2
• experiment. In the ambient simulations, 30 ppb O3 and 0.1 ppb of NOX were added. 

After applying an abundance threshold of 0.5 ppq, as previously discussed, an average of 

2296 ± 2911 compounds remained for each simulation.  
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Analysis 

 All filters were extracted in 2 mL of methanol (≥99.9% purity, Sigma-Aldrich). 

Various solvents were considered and tested for filter extraction (e.g. acetonitrile, 

dichloromethane), but methanol was selected because of its well-documented use in 

extraction of oxidized organics, organonitrates, and organosulfates.25,26,76–78 It is important 

to note that only reasonably polar organic compounds will dissolve in methanol, so non-

polar compounds may be left behind. However, non-polar compounds do not ionize well 

via electrospray ionization (discussed below), and are therefore not observed during 

analysis anyway.  

Extracts were sonicated at room temperature for 60 minutes, and were exposed 

to gentle nitrogen flow to reduce their volume to 200 μL methanol (≥99.9% purity, Sigma-

Aldrich), thereby increasing analyte concentration.26,49–52 Extracts were stored at -30°C 

until analysis. Field and laboratory blanks were extracted using these same methods. All 

filters from each campaign were extracted at the same time and subsequently analyzed 

together. 

Samples were analyzed on an Agilent 1260 Infinity HPLC with electrospray 

ionization (ESI), and an Agilent 6550 Q-TOF tandem mass spectrometer. Separation was 

performed with an Agilent Poroshell 120 SB-Aq reverse phase column column 

(2.1×50mm, 2.7 μm particle size). Formic acid at 0.1% (98-100%, Sigma-Aldrich) was used 

as a modifier in the PROPHET sample set to promote ionization in the ESI source. In the 

Atlanta and New York City sample sets, 0.1% acetic acid (for HPLC, Sigma-Aldrich) was 
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used as a modifier. Methanol (≥99.9% purity, Sigma-Aldrich) and water at ambient 

temperature were used as LC solvents.  

In all analyses, 5 μL aliquots of each sample were injected to the LC column. For 

the PROPHET sample set, the following solvent gradient was applied: from 0 to 2 minutes, 

95% water (A) and 5% methanol (B); from 2-10 minutes, increase B to 90%; from 10-17 

minutes, hold at 90% B; then decrease to 5% B to prepare for the next run, similar to 

previously established methods.79 For the Atlanta and New York City sample sets, the 

above gradient was slightly extended: from 0 to 2 minutes, 95% water (A) and 5% methanol 

(B); from 2-22 minutes, increase B to 90%; from 22-27 minutes, hold at 90% B; then 

decrease to 5% B to prepare for the next run. A flow rate of 0.2 mL/min was used in all 

cases. 

The electrospray source was run in both positive and negative ionization mode at 

the following source conditions, optimized for small molecule identification with our Q-

TOF: drying gas temperature and flow of 225°C and 13 L/min (PROPHET) or 17 L/min 

(Atlanta/New York City), respectively; fragmentor voltage at 365 V and capillary voltage 

at 4000 V; sheath gas flow and temperature at 400°C and 12 L/min, respectively; nebulizer 

pressure at 20 psig. The fragmentor voltage was lowered to investigate possible compound 

fragmentation caused by this voltage, leading to the observation of IVOCs (as discussed 

above). However, there was no difference in the volatility distribution observed when this 

value was lowered.  
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ESI ionization allows for measurement of compounds that are efficiently ionized in 

the source. Oxygen-containing compounds are prominent, as are nitrogen-containing 

compounds (e.g. amines, as they are sufficiently basic and thus readily ionized via ESI)29,31, 

and compounds containing a combination of oxygen, nitrogen, and sulfur atoms. We 

observe nitrogen- and sulfur-containing compounds without oxygen, though they 

contribute minimally to observed abundance. Sulfur-containing compounds without 

oxygen are difficult to detect without specialized pre-treatment, and thus omitted 

here.29,31,32 We note that the organic compounds we observe during this analysis do not 

reflect the full range of organic compounds present as particles in the atmospheres we 

sampled, but rather a fraction that is functionalized with oxygen, nitrogen, and/or sulfur.  

To ensure accurate mass results, a solution of reference masses was introduced to 

the ESI source throughout analysis, containing compounds with extremely high purity and 

predictable ionization in positive and negative mode: 5 mM purine and 2.5 mM HP-0921 

(in 95% acetonitrile (≥99.9% purity, Honeywell), 5% water (18.2 MΩ-cm), Agilent 

Technologies). The Q-TOF was tuned and calibrated for optimal performance in its low 

mass range (m/z < 1700), and data were collected for ions ranging from m/z 50-1000.  

Data were initially processed with Agilent Mass Hunter software. Mass Hunter was 

selected for automated peak finding and identification because it has been optimized to 

work with the Agilent LC-Q-TOF data output, and because of its strengths in feature 

identification and formula generation (see below). We carefully evaluated Mass Hunter’s 

performance at multiple points in our analyses with analytical standards, to verify its 
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efficacy at feature and formula identification. This software has been used extensively in 

previously published work, in the field of atmospheric chemistry (e.g. Zhang et al.79) and 

in others (e.g. Chen et al.,80 Witherspoon et al.81). 

For all samples, ions from m/z 50-600 were extracted and assigned masses, 

allowing for [M+H]+ and [M+Na]+ addition in ESI positive mode, [M-H]- and [M+HCOO]- 

or [M+CH3COO]- in negative mode, as well as neutral water loss. To ensure high quality 

data, only ions with strong signal (isotope height of 1000 counts and compound height of 

5000 counts to confidently surpass instrument noise) and strong peak quality score (>70%, 

a score produced by Mass Hunter, including criteria such as signal-to-noise ratio, retention 

time peak width, retention time peak shape, and isotope pattern) were selected. Formulas 

were assigned to the resulting masses, constraining elements according to C3-60H4-122O0-

20N0-3S0-1. The formula with the best formula match score for each compound was selected. 

Only formulas with formula quality scores greater than 75% were retained for subsequent 

untargeted analysis (formula quality score is a score produced by Mass Hunter, 

incorporating mass match, isotope spacing, and isotope abundance). Samples and blanks 

were processed identically. The high mass accuracy (sub 1-2 ppm) and mass resolution 

(>25000) of the Q-TOF, paired with accurate adduct assignment and the use of isotopic 

distribution (pattern and spacing) ensures accurate molecular formula identification for the 

analytes observed in this untargeted analysis, similar to previous work.82–84 Compared to 

online methods, our instrumentation has the advantage of isolating analyte peaks in LC 

space for mass detection and formula assignment without interference from other mass 

spectral peaks (as is typical with direct-MS analysis), therefore increasing the likelihood 
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of a high mass accuracy formula assignment well beyond the mass resolution (i.e. M/∆M) 

of the MS.   

Data Quality Control and Quality Assurance: We performed extensive data quality 

control using external code written in R, following best practices established in the 

literature.82,85 

 Blank subtraction: Masses appearing in both a sample and its corresponding blank 

(using a conservative 5 ppm tolerance) with an abundance ratio of less than 5:1 were 

eliminated from the results. Masses appearing in both a sample and its corresponding blank 

with a ratio larger than 5 were retained, and the abundance of the blank was subtracted 

from the abundance of the sample in these cases. Positive and negative mode data were 

then combined, and abundances of any compounds appearing in both ionization modes 

were averaged.  

Molecular formula evaluation: For further data quality control, all molecular 

formulas were screened to identify possible incorrect assignments. The number of C, H, O, 

N, and S atoms were further limited according to values presented by Kind and Fiehn (e.g. 

for masses below 500 Da, to no more than 39 C, 72 H, 20 O, etc.82). Compounds were 

additionally flagged based on a disagreement with the “Nitrogen rule” (molecules with an 

odd number of N-atoms must have an odd nominal mass86), non-integer double bond 

equivalent values, large mass differences between the observed mass and proposed mass 

for a particular formula, and outlier H/C ratios (H/C < 0.2 or H/C > 3.1)82. Alternative 

molecular formulas proposed by the Agilent software for these flagged compounds were 
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evaluated, and if no reasonable alternative formula existed, the compounds were omitted 

from analysis.  

Conservative abundance thresholds: An additional screening step was added to reduce 

variability from sample to sample caused by low abundance impurities in the LC solvents. 

Here, frequently occurring impurity ions were excluded and a conservative abundance 

threshold was implemented to far surpass the instrument LOD (ion height>15000 counts 

or peak abundance>100000 counts); see Supplemental Information for additional details. 

This threshold is unrelated to the threshold used in the GECKO-A analysis, discussed 

above. All together, our LC-ESI-Q-TOF’s capabilities, in combination with strict quality 

control on peak assignment, formula assignment, and blank subtraction enable confident 

mass and formula identification for compounds in complex aerosol mixtures and follows 

best practices from the literature.  

To study sample-to-sample compositional variability, molecular formulas and retention 

times were compared. The fraction of overlapping compounds was computed by 

comparing the number of compounds occurring in both samples (with a formula and 

retention time match, “NShared”) in a set of two by the number of compounds present in each 

sample in the set (“N1” and “N2” for samples 1 and 2 in the set), and averaging the two 

values to provide the percent of distinct or overlapping compounds in a given sample 

comparison, as show in Equations 1 and 2. Compound-specific model results were treated 

in the same way. However, instead of tracking isomers with molecular formula and LC 
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retention time for the model results, chemical structures were used to compare across 

modeling experiments. 

Additional data analyses performed in this study include a sensitivity analysis and a 

statistical backward trajectory analysis using HYSPLIT. Briefly, a sensitivity analysis was 

performed to evaluate the effect of LOD thresholds on the results of the sample-to-sample 

compositional variability analysis presented here. In addition, a backward trajectory 

analysis with 24-hour HYSPLIT trajectories was performed to evaluate the effect of air 

parcel history (and associated transport, chemistry, and meteorology) on the compositional 

variability observed at each field site. Additional details for both analyses can be found in 

the Supplemental Information. 

Data availability 

The data that support the findings presented here are available from the authors upon 

request. 

 

Code availability 

Basic R code for data processing and sample comparison are described in the Methods and 

Supplemental Information, but are available upon request. The chemical mechanism from 

GECKO-A modeling is also available upon request.  
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Supplemental Informstion 

S1. Methods and Method Validation 

To limit run-to-run variability of a single sample caused by low abundance 

impurities present in the liquid chromatography solvents, we excluded a comprehensive 

list of background ions and implemented a strict abundance threshold, as briefly described 

in the Methods section. Frequently occurring background ions were tracked across a series 

of 10 positive and negative mode LC-ESI-Q-TOF runs of filter extract blanks, and then 

excluded from all subsequent analysis (Figure S1). In addition, a conservative abundance 

threshold was implemented to ensure that all analytes considered in this study are above 

the method limit of detection (LOD), determined by calibration curve analysis to 

correspond to a peak volume of 82,500 ±13,400 counts (peak volume is used by Agilent 

Mass Hunter software to account for abundance, retention time, and the formation of 

multiple adducts for a single species). Only analytes with a peak volume greater than 

100,000 counts or a corresponding peak height greater than 15,000 counts were considered, 

which was well above typical signal-to-noise ratios that are set at 3-5 (computing LOD 

with a signal-to-noise ratio of 3 yields a minimum peak height of 1200 counts). Combined 

with the data quality control described in the Methods section, implementing a strict LOD 

threshold and tracking and eliminating low abundance background ions reduced run-to-run 

variability for sample replicates to less than 8%, on average (Figure S1). This low 

variability between triplicate runs of the same sample demonstrates that the compositional 

variability observed when comparing different samples in this study is in fact due to 

different chemical composition, and not an artifact of analytical methodology.  
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The data quality control discussed above allows only high quality peaks with assigned 

molecular formulas that pass a strict set of standards to be considered in this analysis (see 

Methods); this resulted in an average of 553 ± 146 compounds per sample for the forest 

samples (mean ± standard deviation), 128 ± 41 compounds per sample for the Atlanta 

samples, 161 ± 66 compounds per sample for the New York City samples, and 240 ± 35 

compounds per sample for the environmental chamber samples. When the LOD is reduced 

to -90% in the sensitivity analysis presented here, the height threshold still surpasses the 

instrument LOD computed with a signal-to-noise ratio of 3 (1500 counts versus 1200 

counts, respectively), and an average of 600 ± 145 compounds for the forest, 175 ± 51 for 

Atlanta, 268 ± 107 for New York City, and 275 ± 41 for the chamber are considered. The 

 
Figure S1. (A) A comprehensive list of background ions was compiled from 10 LC-ESI-Q-TOF 

runs of a filter extract blank, accounting for >99% of observed background ions. This exclusion 

list, in combination with implementing a peak volume threshold of 100,000 counts and a peak 

height threshold of 15,000 counts, reduced run-to-run variability for the same sample to less than 

8% on average (B), for triplicate runs of the same sample (comparing run 1 versus run 2, run 2 

versus run 3, and run 3 versus run 1). 
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trends in variability observed at the -90% LOD case are less than 6.5% different than the 

base case LOD threshold, indicating that the variability trends discussed here are not 

sensitive to LOD or the number of compounds considered. An additional discussion of the 

sensitivity analysis can be found in section S3 (Figure S18).  

Leveraging liquid chromatographic separation to distinguish between isomers was 

central to this study. Retention times were used to distinguish between two different 

structures with the same molecular formula. In order to define a retention time window of 

expected chromatographic drift, five samples were spiked with an internal standard (after 

first running them on the LC-ESI-Q-TOF to collect compositional variability data). 

Samples were specifically chosen here, to account for potential matrix effects. A standard 

was made from the following components, all at 5 ng/µL: limonene epoxide, pinonic acid, 

pinane diol, 2-decanone, dodecanal, 4-heptanone, octanoic acid, nopinone (all from Sigma 

Aldrich), N-dodecanol-d25, diethyl phthalate-3,4,5,6-d4, octanoic acid-d15 (all from 

AccuStandard), and 2-methyltetrols (synthesized by the Surratt group at UNC Chapel Hill).  

 Spiked samples were run in both ESI positive and negative mode. An average 

retention time and standard deviation for each component was computed, and are reported 

in Table S1. The majority (75%) of compounds did not drift more than 0.2 minutes between 

runs, with only a few outliers exhibiting more significant changes. An expected drift 

threshold of 0.25 minutes was set (85% of compounds fell below this limit); compounds 

with the same molecular formula and retention times differing by 0.25 minutes or less were 

considered to be the same isomer, while compounds with the same molecular formula and 
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retention times differing by more than 0.25 minutes were classified as isomers. Any very 

closely eluting isomers (i.e. with retention times that differ by less than 0.25 minutes) were 

treated as the same compound for this analysis. As a result, this retention time analysis 

provides a lower limit for variability—if many closely eluting isomers exist, more 

compositional variability may be observed.  

In addition, to estimate the quantity of mass analyzed from each filter sample via 

LC-ESI-Q-TOF, an average ESI response factor was computed. An internal standard was 

run on the system, expanding upon the components of the internal standard discussed 

above, to incorporate a wider range of functional groups (including acids, aldehydes, 

ketones, alcohols, amines, amides, nitrates, nitriles, ethers, thiols, epoxides, sulfides, 

sulfates, and phthalates). This standard contained the following components at 5 ng/µL: 

octanoic acid, citronellol, nopinone, 4-heptanone, N,N-diethyl-meta-toluamide, dodecanal, 

isobutyl nitrate, isopropyl nitrate, dodecanenitrile, dimethybenzylamine, diphenyl ether, 

octanethiol, mentha-8-thiol-3-one, limonene epoxide, dibutyl sulfide, benzene, maleic 

acid, pinene diol, menthol, benzophenone, octyl sulfate, camphor sulfonic acid, limonene 

diol, pinonic acid, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, dibutyl phthalate, 

di-n-octyl phthalate, diethyl phthalate, and dimethyl phthalate (all from Sigma Aldrich). 

We studied several isomer pairs (e.g. with the same molecular formula but different 

structure, such as pinene diol and limonene diol, citronellol and menthol, bis(2-ethylhexyl) 

phthalate and di-n-octyl phthalate), which were well-separated during LC analysis (>3 

minutes between peaks, on average). A response factor (expressed as mass injected/peak 

volume) for each individual component was computed. Response factors were then 
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averaged, and the average value multiplied by individual analyte abundances observed in 

the field samples. 

 

S2. Limited temporal variability in bulk chemical speciation of OA  

LC-ESI-Q-TOF elemental ratios and elemental composition (Figures 1, S2, S3) 

remain relatively consistent throughout each campaign. This is consistent with AMS O/C 

data from the forest and Atlanta (Figures 1, S2-S4). Both AMS instruments sampled PM1 

particles, in contrast with the filter measurements discussed in this study, which collected 

Table S1. Constraining expected chromatographic drift to separate isomers via LC 

ESI mode Formula 

Average retention 

time (min) 

Standard 

deviation (min) 

Negative C10H16O 17.09 0.24 

Positive C10H16O3 11.56 0.21 

Negative C10H16O3 11.33 0.02 

Negative C10H18O2 17.64 0.42 

Positive C10H20O 18.90 0.31 

Negative C10H20O 19.06 0.02 

Positive C12HD25O 21.27 0.11 

Positive C12H24O 21.18 0.10 

Negative C12H24O 21.45 0.02 

Positive C12H9D4O4 12.00 0.67 

Positive C5H12O4 0.91 0.01 

Negative C5H12O4 0.90 0.01 

Positive C7H14O 21.17 0.10 

Negative C7H14O 13.67 0.01 

Positive C8HD15O2 16.47 0.16 

Positive C8H16O2 16.64 0.16 

Negative C8H16O2 15.66 0.00 

Positive C9H14O 11.57 0.20 

Negative C9H14O 14.14 0.01 
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PM10. Figure S4 shows data from the forest and Atlanta for the total submicron organic 

fraction concentration and for O/C. The total organic components observed is somewhat 

variable (particularly at the Atlanta site). However, with a few short exceptions for the 

forest campaign, O/C varies within a narrow range throughout both campaigns, especially 

over hourly (Figure S4) to 8 hour (Figures S2, S3) time resolution.  

There is good agreement between the PM10 O/C estimate and the PM1 AMS O/C 

estimate for the Atlanta site, but the forest estimates diverge more significantly from each 

other. Inlets at the Atlanta site were vertically co-located, whereas inlets at the forested 

site, though both above the canopy, were offset by 2 m. Furthermore, in Atlanta, the 

sampling height was 4.5 m above the ground, whereas at the forested site, the sampling 

height was 28-30 m above the ground. The most important hypothesized driving factor 

behind these different O/C ratios is the different PM size cuts that are sampled by the AMS 

and by the filters analyzed by LC-ESI-Q-TOF. The distribution of organic compounds 

across the PM1 size range (measured by AMS) and the PM10 size range (measured by LC-

ESI-Q-QTOF) appears to have been more similar at the Atlanta site than at the forested 

site. At the forested site, the particles observed by LC-ESI-Q-TOF may include more larger 

diameter functionalized POA than the particles sampled by AMS (for example, primary 

biogenic aerosol with a diameter greater than PM1 but less than PM10, which may include 

compounds related to fungal spores, bacteria, small plant fragments, etc.,1 all of which are 

likely to be present in a forested environment). This could contribute to some of the 

observed O/C difference between the two types of measurements. However, there was a 

significant range of compounds observed at both sites, and when accounting for the 
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standard deviation of O/C at the forested site (Table S2), many of the values approach the 

AMS values within the 28% AMS uncertainty (shown in light green shading, discussed 

below). Relative to each other, the AMS O/C values are as expected; the forested site AMS 

O/C is larger, as the forested site is more rural and sees more influence from SOA, while 

the Atlanta site O/C is smaller, as the Atlanta site seems more influence from POA which 

lowers the average O/C. 

All combined, the difference in PM size cut, differences in site-to-site sampling 

height, and differences in site-to-site size-dependent chemical composition of particles 

drive the forest LC-ESI-Q-TOF and AMS O/C data to stray farther apart from each other, 

while remaining more similar in the Atlanta case. 

Unweighted elemental ratios are presented in Figure S2, where elemental ratios 

were computed for each compound and then averaged, with all compounds treated equally. 

Weighting O/C ratios by abundance to determine mixture-wide O/C has been shown to 

improve the accuracy of O/C estimates.1 This assumes roughly equal ionization efficiencies 

between compounds in the electrospray source. Despite some variance in ionization 

efficiency between compounds with different functionality (observed in this study as well 

as in the literature), an extensive comparison of O/C in the literature obtained by high 

resolution mass spectrometry and by AMS shows that the assumption of equal ionization 

efficiency is reasonable.1 Weighting the elemental ratios computed here by abundance has 

a variable effect (Figure S3); on average, O/C is increased by 18.7±28.0%, O/N is increased 

by 10.1±33.5%, and O/S is decreased by 7.8±16.1%. 
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Panel 2 shows average O/N and O/S values for filter samples analyzed via LC-ESI-Q-TOF 

during the day and at night, for compounds with 1 or more N-atoms and 1 or more S-atoms, 

respectively. The weighted mean molecular weights for compounds with O/N≥3 (includes 

organonitrates) and compounds with O/S≥4 (includes organosulfates) are 446.8 ± 27.2 

g/mol and 354.2 ± 58.9 g/mol, respectively, in the forest (unweighted: 412.2 ± 11.4 g/mol,  

433.0 ± 13.5 g/mol), 342.1 ± 67.0 g/mol and 286.0 ± 44.2 g/mol, respectively, in Atlanta 

 
Figure S2. Bulk mixture properties for samples at each of 3 field sites: a forest (column A), in 

Atlanta (column B), and New York City (column C). Panel 1 shows average O/C values 

(unweighted) for filter samples analyzed via LC-ESI-Q-TOF during the day (red) and at night 

(blue), and values recorded by the AMS at each site (green). AMS data are averaged across each 

filter sampling period, but do not include the ±28% uncertainty reported in Canagaratna et al. for 

improved-ambient elemental analysis (light green shading, computed as 28% from the mean).2  
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(unweighted: 368.2 ± 24.0 g/mol, 339.2 ± 33.6 g/mol), and 330.8 ± 119.1 g/mol and 289.9 

± 105.4 g/mol, respectively, in New York City (unweighted: 353.9 ± 28.0 g/mol and 340.8  

± 16.3 g/mol). Panel 3 shows the mean compound class distribution at each site (identical 

to Figure 1). Error bars represent 1 standard deviation from the mean, highlighting limited 

variation between the compound classes observed from sample to sample at each site. 
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Standard deviations for Figures S2 and S3, panels 2 and 3, describe the range of O/C, O/N, 

and O/S observed at each field site. They are not presented in Figures S2 and S3 as error 

bars for clarity, but are presented in Table S2. 

 
Figure S3.  Abundance-weighted bulk elemental ratios for samples at each of 3 field sites: a 

forest (column A), near downtown Atlanta (column B), and New York City (column C). Panel 1 

shows average O/C values for filter samples analyzed via LC-ESI-Q-TOF during the day (red) 

and at night (blue), and values recorded by the AMS at each site (green). Hourly AMS data are 

averaged across each filter sampling period, but do not include the ±28% uncertainty reported in 

Canagaratna et al. for improved-ambient elemental analysis (light green shading, computed as 

28% from the mean).2 Panel 2 shows average O/N and O/S values for filter samples analyzed via 

LC-ESI-Q-TOF during the day and at night, for compounds with 1 or more N-atoms and 1 or 

more S-atoms, respectively. All elemental ratios are weighted by the relative abundance of each 

compound, and then averaged. Panel 3 shows the mean distribution of compound class at each 

site, weighted by abundance. 
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Table S2. Standard Deviations Corresponding to Figures S2 and S3 

PROPHET 

Filter 

O/C SD 

(Fig. S2) 

O/N SD 

(Fig. S2) 

O/S SD 

(Fig. S2) 

O/C 

Weighted 

SD (Fig. 

3) 

O/N 

Weighted 

SD (Fig. 

3) 

O/S 

Weighted 

SD (Fig. 

3) 

Sample 1 Day 0.29 2.87 4.61 0.27 2.74 3.23 

Sample 2 Night 0.29 2.72 3.39 0.27 3.90 4.15 

Sample 3 Night 0.28 2.54 2.41 0.42 2.39 3.38 

Sample 4 Day 0.24 2.47 3.64 0.39 2.11 3.42 

Sample 5 Night 0.26 3.07 3.39 0.27 3.83 3.67 

Sample 6 Day 0.26 3.06 3.88 0.22 2.46 2.79 

Sample 7 Day 0.28 3.12 5.15 0.26 3.84 4.48 

Sample 8 Day 0.31 2.98 4.21 0.24 3.70 3.39 

Sample 9 Night 0.36 2.75 2.51 0.45 3.79 2.54 

Sample 10 Day 0.32 2.95 3.04 0.32 2.01 4.84 

Sample 11 Day 0.33 2.89 4.94 0.38 4.12 3.34 

Sample 12 

Night 0.27 2.54 2.63 0.37 3.90 3.68 

Sample 13 Day 0.29 2.79 4.27 0.33 2.31 4.25 

Sample 14 

Night 0.32 2.65 2.65 0.37 2.51 4.50 

Sample 15 

Night 0.25 2.82 3.50 0.27 2.75 4.89 

NYC Filter 

O/C SD 

(Fig. S2) 

O/N SD 

(Fig. S2) 

O/S SD 

(Fig. S2) 

O/C 

Weighted 

SD (Fig. 

3) 

O/N 

Weighted 

SD (Fig. 

3) 

O/S 

Weighted 

SD (Fig. 

3) 

Day 1 0.43 2.10 4.21 0.39 2.90 2.61 

Day 2 0.33 2.86 3.91 0.34 3.25 4.03 

Day 3 0.38 2.66 3.46 0.40 2.64 3.53 

Day 4 0.33 2.38 4.91 0.36 1.91 4.60 

Day 5 0.36 2.48 4.55 0.34 2.11 4.15 

Day 6 0.48 2.68 4.75 0.49 2.16 5.00 

Day 7 0.47 2.79 5.36 0.54 2.56 5.11 

Day 10 0.40 2.63 5.43 0.39 2.45 4.23 

Day 11 0.47 2.49 5.13 0.40 2.37 4.24 

Day 14 0.55 2.84 4.81 0.53 2.15 4.23 

Atlanta Filter 

O/C SD 

(Fig. S2) 

O/N SD 

(Fig. S2) 

O/S SD 

(Fig. S2) 

O/C 

Weighted 

O/N 

Weighted 

O/S 

Weighted 
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SD (Fig. 

3) 

SD (Fig. 

3) 

SD (Fig. 

3) 

Day 1 0.48 2.67 3.03 0.56 1.99 2.37 

Night 1 0.46 2.98 3.12 0.58 2.68 1.95 

Day 2 0.39 3.33 3.45 0.59 3.76 2.36 

Night 2 0.36 3.32 3.75 0.52 3.52 2.50 

Day 3 0.46 2.70 4.33 0.59 2.44 2.98 

Night 3 0.39 2.47 4.67 0.39 2.02 4.76 

Day 4 0.38 3.54 5.10 0.40 3.32 4.47 

Night 4 0.41 3.13 4.18 0.48 3.07 3.06 

Day 5 0.39 2.61 4.68 0.54 2.59 3.14 

Night 5 0.43 3.43 4.53 0.56 3.65 2.69 

Day 6 0.40 2.85 4.70 0.46 2.96 3.84 

Night 6 0.38 3.14 2.70 0.46 2.71 2.23 

Day 7 0.32 3.25 4.09 0.29 3.24 3.20 

Day 8 0.39 2.29 4.97 0.48 2.28 3.91 

Night 8 0.28 2.16 4.03 0.30 2.31 3.82 

Day 9 0.51 2.32 4.21 0.56 2.04 2.46 

Night 9 0.41 3.75 5.47 0.41 3.37 4.59 

Day 10 0.47 3.12 3.52 0.49 3.96 2.76 

Night 10 0.46 3.28 4.53 0.45 3.72 2.58 

Day 11 0.44 2.98 3.95 0.44 3.31 3.15 

Night 11 0.46 3.03 4.59 0.48 2.82 3.40 

Day 12 0.47 3.01 4.80 0.49 3.51 4.01 

Night 12 0.42 3.11 2.83 0.46 3.32 2.43 

Day 13 0.39 3.62 3.88 0.33 3.52 2.79 

Night 13 0.41 3.33 3.52 0.49 3.61 2.17 

Day 14 0.43 3.47 3.87 0.52 4.00 2.05 

Night 14 0.39 3.27 4.29 0.40 3.13 3.18 

Day 15 0.37 3.30 4.42 0.35 3.72 3.17 

Night 15 0.37 3.34 3.22 0.40 3.37 2.42 

Day 16 0.44 3.40 3.74 0.51 3.53 2.14 

Night 16 0.36 2.66 3.25 0.32 2.62 1.95 

Day 17 0.41 3.10 4.39 0.52 3.58 3.10 

Night 17 0.36 3.04 3.99 0.43 3.22 3.30 

Day 18 0.35 2.69 5.07 0.43 3.17 6.02 
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S3. Molecular-level speciation reveals extensive temporal variability in OA 

composition 

Comparisons of consecutive samples and samples collected at similar times (e.g. 

all daytime, all nighttime) show significant temporal compositional variability (Figures 2, 

S5, S6), despite similar bulk mixture properties across each field campaign (Figures S2-

S3, S10-S11). Consecutive samples, which may be expected to share many of their 

products due to the long atmospheric lifetime of OA, exhibit significant compositional 

variability across days and nights, with 67±9%, 65±13%, 69±7% distinct samples in the 

forest, Atlanta, and New York City, respectively.  

 
Figure S4. Hourly AMS data from the forest and Atlanta, showing O/C (A-B) and the 

concentration of the organic components (C-D) throughout each field campaign.  
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Figures 2, S5, and S6 highlight the significant sample-to-sample compositional variability 

observed across all three field campaigns. The distinct compounds observed represent a 

significant portion of the OA mass (that was able to ionizable via ESI), as shown in Figure 

S6b (for the Atlanta field campaign). On average, across the three campaigns, distinct 

compounds represent 59 ±17% of the mass observed on each filter sample for consecutive 

sample comparisons. Additional visualizations of compositional variability are shown with 

Van Krevelen diagrams and overlaid average mass spectra for select samples in Figures 

S7-S9. 

 

 
Figure S5. Individual sample-to-sample comparisons show that the majority of compounds in 

consecutive samples are distinct. The colored pie charts show the elemental composition of each 

sample, while the grey and white pie charts show the percentage of compounds that are distinct 

(grey) or overlapping (white) for each comparison. 
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Figure S6. Average OA compositional variability (shown as percent distinct compounds) for the 

Atlanta campaign (A) and average abundance of all distinct compounds in each sample-to-

sample comparison (B). The majority of compounds in each sample-to-sample comparison are 

distinct, and these compounds represent a significant portion of the mass in each sample. In both 

panels, line markers above each point represent the fraction of distinct compounds with respect 

to each individual sample in the comparison, while circular markers represent the average 

between the two. 
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Figure S7. Van Krevelen diagrams and overlaid mass spectra for three sample comparisons at 

the forested site. Two daytime samples (A, D), two nighttime samples (B, E) and one daytime 

and one nighttime sample (C, F) are shown here to illustrate the observed compositional 

variability. These sample-to-sample comparisons yield 65% distinct compounds (Sample 1 vs. 

10, panels A and D), 68% distinct compounds (Sample 2 vs. 3, panels B and E), and 66% distinct 

compounds (Sample 13 vs. 14, panels C and E). Comparisons in A and D are included in “All 

days”, B and E in “All nights”, and C and F in “All consecutive” in Figure 2A.  
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Figure S8. Van Krevelen diagrams and overlaid mass spectra for three sample comparisons at 

the Atlanta site. Two daytime samples (A, D), two nighttime samples (B, E) and one daytime and 

one nighttime sample (C, F) are shown here to illustrate the observed compositional variability. 

These sample-to-sample comparisons yield 78% distinct compounds (Sample 9 vs. 11, panels A 

and D), 52% distinct compounds (Sample 6 vs. 8, panels B and E), and 63% distinct compounds 

(Sample 8 vs. 9, panels C and E). Comparisons in A and D are included in both “All days” and 

“All consecutive days”, B and E in both “All nights” and “All consecutive nights”, and C and F 

in both “All consecutive” and “All consecutive nights to days” in Figure 2A.  
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Figure S9. Van Krevelen diagrams and overlaid mass spectra for three sample comparisons at 

the New York City site. Two daytime samples (A, D), two nighttime samples (B, E) and one 

daytime and one nighttime sample (C, F) are shown here to illustrate the observed compositional 

variability. These sample-to-sample comparisons yield 72% distinct compounds (Sample 3 vs. 5, 

panels A and D), 69% distinct compounds (Sample 5 vs. 7, panels B and E), and 73% distinct 

compounds (Sample 3 vs. 7, panels C and E). Comparisons in A and D as well as B and E are 

included in “All days” and “All consecutive days”, and C and F in “All days” in Figure 2A.  
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Figure S10. Elemental composition for all samples across each field site, reported by 

unweighted number count. CH and CHS compounds are omitted from this analysis, as they are 

not readily ionized by the electrospray source. 
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Figure S11. Elemental composition for all samples across each field site, weighted by 

abundance, exhibits more variability than the unweighted version (Figure S7). CH and CHS 

compounds are omitted from this analysis, as they are not readily ionized by the electrospray 

source. 
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A large fraction of the compounds observed did not repeat in multiple samples, as 

shown in Figure S12. This trend was observed across the three field studies discussed in 

this work, once again illustrating the significant sample-to-sample variability presented in 

Figure 2. Despite this variability, we observe several prominent molecular formulas spread 

across multiple isomers, corresponding to common monoterpene and isoprene oxidation 

products observed in previous field and laboratory studies (observed at the forest and in 

Atlanta),3–6 as well as anthropogenic SOA tracers commonly observed in the particle phase 

(observed in New York City),7–9 shown in Table S3.   

Tracking individual isomers across each field campaign, we observe compounds 

with isomers in sets of 8 or fewer (i.e. with 8 or fewer distinct retention times), with the 

majority of compounds detected in sets of 3 or fewer (Figure S13). 

The variability in Figure S12 shows that some markers of oxidized organic aerosol 

do not appear in all samples. This could be due to variations in the isomers present for a 

general source (i.e. monoterpene SOA) or relatively minimal presence of a source factor 

below the LOD, which is consistent with AMS source apportionment studies with positive 

matrix factorization (PMF). While there are clear diurnal patterns in PMF factors like 

IEPOX-OA in past studies, minima in the IEPOX-OA factor with very low contributions 

were reported over multi-day periods during the summer.10,11 Additionally, there is 

significant variability in the relative contributions of each of the three reported PMF factors 

from the forest campaign (Figure S14). This variability can be partially attributed to 

environmental conditions—even for the relatively simple molecule isoprene, a diversity of 
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oxidation products (including oligomers) have been observed with a strong dependence on 

chemical-physical conditions (i.e. aerosol liquid water content; pH; oxidant; sulfate/nitrate, 

and NOx concentrations) and yields that vary from 1% to 50% with these conditions across 

a range of structural isomers.12–15 

 

 
Figure S12. Many of the analytes observed at each of the 3 field sites do not reappear across 

multiple samples, yet the frequency patterns are similar across all 3 sites. Distribution plots are 

shown here for both (A) molecular ion occurrence and (B) isomer-specific occurrence. 

Individual compounds were tracked across all samples for each field campaign (in (A), 

molecular formulas were tracked, not accounting for isomers; in (B), both molecular formulas 

and retention times were tracked to account for isomers). The number of samples in which a 

compound was observed was counted for each field campaign, and is shown as a fraction of the 

total samples collected at each campaign on the x-axis. Each campaign has a different total 

number of samples, so points do not necessarily align on the x-axis. Percentages are displayed as 

a number count, where the steep decrease of occurrence towards 0% indicates that fewer and 

fewer compounds are present in most samples. 
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Figure S13. Tracking isomers across each field campaign, most compounds above LOD 

thresholds were detected as a single isomer. Compounds with multiple isomers most frequently 

have 3 isomers or fewer. Compounds with up to 8 isomers were observed in all 3 field sites, 

though these contributed minimally to the total number of compounds observed.  
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Table S3. Top 10 most prominent biogenic and anthropogenic target species observed at 

the forested site, in Atlanta, and in New York City. Other notable target compounds 

 
Figure S14. 1-hour averaged AMS PMF factors from the forest site (A-C) show variability in 

their relative contribution to total PMF-attributed OA across the campaign, with the relative 

importance of individual factors becoming very low for hours to days throughout the sampling 

period (D). Factors represent more oxidized oxygenated OA (factor 1), IEPOX-derived OA 

(factor 2), and monoterpene-derived OA (factor 3). Additional OA compositional variability can 

be expected within each of the statistically-derived PMF source factors. 



 

 

 

215 

observed include common markers of isoprene and monoterpene oxidation, such as 

methyltetrolsf,a, methylglyceric acida,n, pinonic acidf, pinic acidf,a,n, norpinic acidf,a,n, and 

3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)f,a,n (and their isomers). 

Site 

Sample 

time Formula 

Number of 

isomers 

observed 

% samples with 

molecular ion 

occurrence 

Source (with past 

observations) 

Forest Day C14H26O4 2 100 Monoterpenes5 

Forest Day C18H34O4 4 100 Monoterpenes5 

Forest Night C12H24O3 3 100 Monoterpenes5 

Forest Night C13H25NO3 2 100 Monoterpenes5 

Forest Night C14H24O5 2 100 Monoterpenes4 

Forest Night C16H30O4 1 100 Monoterpenes5 

Forest Day C10H16O 3 87.5 Monoterpenes5 

Forest Night C10H18O3 3 85.7 Monoterpenes5 

Forest Night C11H20O3 1 85.7 Monoterpenes5 

Forest Night C9H16O4 1 85.7 Monoterpenes5 

Atlanta Night C14H28O2 4 75 Monoterpenes5 

Atlanta Night C5H12O4 2 75 Isoprene3 

Atlanta Day C14H28O2 5 72.2 Monoterpenes5 

Atlanta Night C10H16O6 4 68.8 Monoterpenes5 

Atlanta Night C8H12O6 8 68.8 Monoterpenes5 

Atlanta Night C9H14O4 6 68.8 Monoterpenes5 

Atlanta Night C9H16O4 4 68.8 Monoterpenes5 

Atlanta Day C13H25NO2 4 66.7 Monoterpenes5 

Atlanta Day C16H32O2 5 66.7 Monoterpenes5 

Atlanta Night C9H16O3 4 62.5 Monoterpenes5 

NYC Day C5H8O5 3 70 Toluene7 

NYC Day C8H6O4 6 70 PAH7 

NYC Day C4H8O4 2 60 Isoprene7 

NYC Day C9H8O4 3 50 PAH7 

NYC Day C8H4O3 3 30 PAH8 

NYC Day C10H7NO4 1 20 PAH9 

NYC Day C6H5NO3 1 20 Nitroaromatic7 

NYC Day C6H5NO4 1 20 Nitroaromatic7 

NYC Day C7H7NO4 2 20 Nitroaromatic7 

NYC Day C10H7NO3 1 20 PAH9 

Notes: f Forest field site, a Atlanta field site, n New York City field site 
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Distinct compounds in all sample-to-sample comparisons exist across a range of 

abundances, volatility bins, and compound classes (Figures 2, S15, S16). While there is a 

distribution of distinct compounds across volatility bins, SVOCs and ELVOCs tend to 

dominate (Figures S15a, S16a, Table S4). Distinct compounds exist across a range of 

abundances, representing compounds across both low and high relative abundance in each 

sample comparison (Figures S15b, S16b). Distinct compounds fall into a variety of 

compound classes, typically dominated by CHO compounds (Figures S15c, S16c). 

However, there is rarely a statistically significant difference between the relative fraction 

of each compound class with compositional variability (Figure S17).  
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Figure S15. Average unweighted distribution of distinct compounds from each sample-to-

sample comparison, separated by field campaign. 
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Figure S16 Average distribution of distinct compounds from each sample-to-sample 

comparison, separated by field campaign, weighted by abundance (A and C).  
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Table S4. Fraction of distinct compounds falling in each volatility bin. A small contribution 

from VOCs is omitted here (≤2%, likely fragments).  

 

Forest 

Number % of 

distinct compounds 

Mass % of distinct  

compounds 

(unweighted) 

Mass % of distinct  

compounds 

(weighted) 

IVOC 19 ± 1 18 ± 2 21 ± 5 

SVOC 25 ± 2 29 ± 8 25 ± 5 

LVOC 19 ± 1 12 ± 3 14 ± 5 

ELVOC 35 ± 3 39 ± 9 37 ± 10 

 

Atlanta 

Number % of 

distinct compounds 

Mass % of distinct  

compounds 

(unweighted) 

Mass % of distinct  

compounds 

(weighted) 

IVOC 26 ± 4 22 ± 8 24 ± 10 

SVOC 33 ± 5 31 ± 9 33 ± 12 

LVOC 14 ± 3 26 ± 13 25 ± 15 

ELVOC 26 ± 5 20 ± 8 18 ± 9 

 

NYC 

Number % of 

distinct compounds 

Mass % of distinct 

compounds 

(unweighted) 

Mass % of distinct 

compounds 

(weighted) 

IVOC 19 ± 4 13 ± 7 13 ± 5 

SVOC 31 ± 5 40 ± 2 47 ± 18 

LVOC 21 ± 4 22 ± 1 20 ± 14 

ELVOC 28 ± 8 24 ± 4 20 ± 5 
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A sensitivity analysis was performed to evaluate the effect of instrument/method LODs on 

the results of the sample-to-sample comparisons presented in this study. The height 

threshold was varied with volume at its base case threshold (100,000 counts), as well as 

with no initial volume threshold. In addition, the volume threshold was varied with height 

at its base case threshold (15,000 counts), as well as with no initial height threshold. 

 

Figure S17. The relative occurrence of compositional variability is statistically-similar across all 

compound classes. Panels A-D show the average fraction of each compound class that is distinct, 

for all sample-to-sample comparisons across the three field campaigns. Error bars represent 1 

standard deviation from the mean. There is rarely a statistically significant difference between 

the relative occurrence of distinct compounds in each compound class. 
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Finally, height and volume were varied together. Sample-to-sample compositional 

variability results varied by less than 6.5% in all cases (Figures 3, S18), indicating that the 

results of the sample-to-sample comparisons here are not sensitive to the LOD thresholds 

that were implemented in this study. 
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Figure S18. A sensitivity analysis performed for ambient, chamber, and model results by 

varying the LOD thresholds by ±10%, 20%, 25%, and 90% shows less than 4.5% change in the 

fraction of distinct compounds observed in each sample-to-sample comparison. All consecutive 

sample-to-sample comparisons were considered for this sensitivity analysis, and average change 

in compositional variability for each LOD threshold test is presented here. For all ambient and 

chamber analysis, the base case volume threshold was set to 100,000 counts and the base case 

height threshold to 15,000 counts. For model analyses, the base case abundance threshold was 

set to 10,000 molecules/cm3. In this analysis, peak height was varied (resulting compositional 

variability shown in A, and average deviation from the base case in D; both with and without a 

base peak volume threshold), peak volume was varied (B and D; both with and without a base 

peak height threshold), and both peak height and volume were varied together (C and Figure 3). 

Only one abundance threshold was altered for the model data. As a result, the model data 

presented in A-C is identical, as is the model data presented in D-E and Figure 3. The last time 

point in each model simulation was used for all model run comparisons. In addition to the data 

presented here, the model abundance threshold was reduced by 1-3 orders of magnitude and 

increased by 1-3 orders of magnitude; these changes resulted in less than 6.6% change in 

compositional variability (shown in Figure 3).  
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In addition, we compared LC-ESI-Q-TOF measurements to measurements from 

other forested sites (other ultra-high resolution MS data and CIMS data), and show that a 

large fraction of the chemical diversity observed or modeled in this study is inaccessible 

with the current capabilities of many online MS instruments (Figure 3b). The distribution 

shown for LC-ESI-Q-TOF in Figure 3b includes all unique species across the forest field 

campaign (similar to the CIMS mass list presented). The distribution of compounds below 

0.5 MS peak half-widths for the LC-ESI-Q-TOF data depends on the number of samples 

collected and the number of unique compounds detected in the samples (i.e. more 

compounds detected results in smaller average distance between compound masses). So, 

the distribution of compounds in any of the 2-sample comparisons in this study would have 

a smaller fraction of analytes in the 0-0.5 half-width range than the aggregated campaign 

data. 

S4. Potential driving factors explored via field, chamber, and modeling data 

Figure S19 shows the distribution of overlapping compounds in the set of chamber 

experiments, comparing oxidation products of α-pinene and β-pinene under two different 

chemical conditions (NO3
• initiated oxidation, followed by further oxidation by NO3

• or 

HO2
•). O/C ratios of products observed in these 4 chamber experiments range from O/C of 

0 to O/C of 2, and most overlapping compounds have an O/C < ~0.5 (Figure S19).  

The overlapping and distinct fractions shown in Figure S19 account for the 

presence of isomers by comparing both molecular formulas and retention times across 

samples. A non-isomer specific analysis (i.e. ignoring retention time and considering only 
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the molecular formula) yields slightly lower distinct fractions between experiments: 69.3% 

distinct (α-pinene-HO2
•
 versus β-pinene-HO2

•), 76.2% distinct (α-pinene-NO3
•
 versus β-

pinene-NO3
•), 56.1% distinct (α-pinene-NO3

•
 versus α-pinene-HO2

•), and 46.5% distinct 

(β-pinene-NO3
•
 versus β-pinene-HO2

•). These experiments (with and without isomer-

specific tracking) suggest that altering precursor results in greater compositional variability 

than altering oxidation conditions. This is consistent with the modeling results shown in 

Table 1. 

The overlapping compounds in Figure S19 have similar abundances; they fall along 

a 1:1 line, and are often constrained by 2:1 and 1:2 lines (dotted lines above and below 1:1 

line, respectively). A similar analysis for two of the modeling experiments does not yield 

the same trend, and shows an increased abundance for these overlapping compounds for 

the NO3
•  oxidation experiment (Figure S20). 

Equivalent simulation time points are compared in all cases for the modeling analysis 

presented in Table 1 and Figure 4.  An additional time point (at 4 hours of simulation time) 

for the β-pinene NO3
• is included to reach the same equivalent NO3

• exposure as the parallel 

α-pinene experiment, and is compared to the final time point of relevant experiments (i.e. 

at 2 hours of simulation time hours, for comparisons with β-pinene HO2
• and α-pinene 

NO3
•, in Table 1, Figure 4, and Figure S20b). 
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Figure S19. Examining chemistry as a driving factor of sample to sample variability in oxidation 

products. The axes show log abundance for each experiment in question. The following 

experiments were compared: (A) α-pinene versus β-pinene with HO2
•-controlled RO2

• fate, (B) 

α-pinene versus β-pinene with NO3
•-controlled RO2 fate, (C) α-pinene with RO2

• fate controlled 

by either NO3
• or HO2

•, and (D) β-pinene with RO2
• fate controlled by either NO3

• or HO2
•. 

Overlapping compounds fall along a 1:1 line, and are often constrained by 2:1 and 1:2 lines 

(dotted lines above and below 1:1 line, respectively). Pie charts represent the fraction of 

overlapping (white) and distinct (grey) compounds between each set of experiments. Markers are 

colored by O/C.  
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Figure S20. Examining chemistry as a driving factor of sample to sample variability in oxidation 

products through GECKO-A modeling. The axes show log abundance for each experiment in 

question. Initial particle-phase composition was compared (i.e. before any particle-phase 

chemistry occurs, as this chemistry is excluded from GECKO-A), using the final simulation time 

point for each experiment. The following chamber simulation experiments were compared: (A) 

α-pinene with RO2
• fate controlled by either NO3

• or HO2
•, and (B) β-pinene with RO2

• fate 

controlled by either NO3
• or HO2

•. Overlapping compounds generally fall above the 1:1 line here, 

and are more abundant as products of the NO3
• oxidation experiment. Pie charts represent the 

fraction of overlapping and distinct compounds between each set of experiments. Markers are 

colored by O/C.  
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Figure S21. Correlation between simulated reaction time and equivalent oxidant exposure (OH• 

exposure for experiments denoted as α- or β-pinene OH above, or NO3
• exposure, for 

experiments denoted as α- or β-pinene NO3 or HO2 above). 
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A subset of the compounds observed in each chamber experiment discussed here were also 

observed in the forest and in Atlanta, and exist across a range of O/C and H/C ratios (Figure 

 
Figure S22. Evolution of gas and particle phase compounds (#C>1) for each modeling 

experiment using GECKO-A. Panels A-D represent the chamber simulation (i.e. with NO3
• or 

HO2
• oxidation), while E-F represent the forest (ambient) simulation (i.e. OH oxidation). 
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S23). These two sites were chosen for comparison with the chamber data because of the 

prominence of BVOC precursors, particularly α- and β-pinene, at both locations. For α-

pinene-HO2
• experiments, 13.5% of compounds were observed in the forest samples, on 

average (daytime and nighttime), and only 4% were observed in the Atlanta samples. For 

α-pinene-NO3
• experiments, 9.5% of compounds were observed in the forest samples, on 

average, with only 3% of compounds observed in the Atlanta samples. For β-pinene-HO2
• 

experiments, 12% of compounds were observed in the forest samples, on average, with 

5.5% observed in the Atlanta samples. For β-pinene-NO3
• experiments, 18% of compounds 

were observed in the forest samples, on average, and 9.5% of compounds were observed 

in the Atlanta samples. 

 

 

Figure S23. Intercomparison of chamber experiments with forest and Atlanta field sites, where 

BVOC precursors are prominent. 
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Additional comparisons were made between all samples at each field site, with associated 

changes in temperature, relative humidity, wind speed, wind direction, and AMS organic 

and inorganic concentrations, where data were available. Little correlation exists between 

changes in these factors and the observed chemical compositional variability (Figure S24). 

 

S5. Potential driving factors explored via backward trajectory analysis 

 
Figure S24. A study of compositional variability with respect to changes in meteorological and 

chemical conditions, where data were available, shows minimal correlation between the 

compositional variability observed and the meteorological and chemical conditions studied. 

Temperature and relative humidity (panels A and B) are averaged across the last 6 hours of 

HYSPLIT backward trajectories for each sample. Wind direction is considered via a more 

thorough backward trajectory analysis, discussed below and shown in Figure S25 and S26. AMS 

data are shown in panels C-F because they better represent the concentrations of the ions shown 

for a longer period of time than local gas-phase concentrations.  
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To evaluate the similarity between air parcels impacting each field site, we ran 24-

hour HYSPLIT models for each daytime and nighttime sample, with backward trajectories 

computed every hour for the duration of each sample. A final height of 50 m above ground 

level was selected to compute each trajectory, and only trajectory points below 1 km in 

height were considered. Trajectory points were grouped into 20 km latitude by 20 km 

longitude bins. Figure S25 shows the degree of backward trajectory similarity at each of 

the 3 field sites. In general, backward trajectories are similar close to the site, and differ 

more significantly with distance. 

 

To compute the percent similarity or difference between 2 backward trajectories, 

the number of bins populated by at least 1 point from both backward trajectories was tallied, 

and divided by the total number of populated latitude and longitude bins for each trajectory. 

 

Figure S25. 24-hour backward trajectories for every hour corresponding to a filter sampling time 

period at each of the three field sites. Though there are some prevailing backward trajectories 

observed at each site, there is still significant diversity in air parcel path. Some difference in 

precursor emissions and meteorology along these paths is expected, with each path therefore 

contributing a diverse set of oxidized organic compounds to the sampling site.  
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These bins were then all weighted by the number of points they contained to reduce the 

impact of bins with few trajectory points (i.e. where air parcels did not spend much time) 

and increase the impact of bins with many trajectory points (i.e. where air parcels may have 

stalled). Percentile values for the number of points per bin (n) were defined, and bins were 

weighted according to the following, adapted from Polissar et al. and Gentner et al.: 1 

(n≥Q90), 0.7 (n≥Q75), 0.42 (n≥Q50), 0.17 (n<Q50).16,17  

 For each field campaign, all daytime samples were compared to each other, and all 

nighttime samples were compared to each other, with respect to both chemical composition 

and HYSPLIT backward trajectories. There is no observed correlation between dissimilar 

backward trajectories and chemical compositional variability (Figure S26, r=0.02 to r=0.5), 

suggesting that though air parcel history (including precursor emissions, associated 

chemical processing and meteorology) is important, it does not solely control OA 

compositional variability. 
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