

1

Abstract—Certain robot missions need to perform

predictably in a physical environment that may only be poorly

characterized in advance. We have previously developed an

approach to establishing performance guarantees for behavior-

based controllers in a process-algebra framework. We extend

that work here to include random variables, and we show how

our prior results can be used to generate a Dynamic Bayesian

Network for the coupled system of program and environment

model. Verification is reduced to a filtering problem for this

network. Finally, we present validation results that

demonstrate the effectiveness of the verification of a multiple

waypoint robot mission using this approach.

I. INTRODUCTION

In research being conducted for the Defense Threat
Reduction Agency (DTRA), we are concerned with missions
that may only have a single opportunity for successful
completion with serious consequences if the mission is not
completed properly. In particular we are investigating
missions for Counter-Weapons of Mass Destruction (C-
WMD) operations, which require discovery of a WMD
within a structure and then either neutralizing it or reporting
its location and existence to the command authority. Typical
scenarios consist of situations where the environment may
only be poorly characterized in advance in terms of spatial
layout, and often have time-critical performance
requirements. It is our goal to provide reliable performance
guarantees regarding whether or not the mission in question
as specified may be successfully completed under these
circumstances, and towards that end we have developed a set
of specialized software tools to provide guidance to an
operator/commander prior to deployment.

In prior work [2][13]-[17] using the Georgia Tech
MissionLab toolkit [18]-[20] we translate mission software
to a process algebra framework, and we verify whether the
mission software when executed in an operator-selected
physical environment model (also process algebra) will
achieve an operator-specified performance guarantee. The
SysGen algorithm [15] identifies periodic behavior in a set of
concurrent, connected processes that represent a behavior-
based robot program and its environment. The output of
SysGen is a set of recurrent parameter flow functions. The
effect of motion and sensor uncertainty is crucial in real-

*This research is supported by the Defense Threat Reduction Agency,

Basic Research Award #HDTRA1-11-1-0038.
D.M. Lyons, P. Nirmal and T-M Liu are with the Dept. of Computer &

Information Science, Fordham University, Bronx NY 10458, USA (Ph:
718-817-4485, Fx: 718-817-4488, Em: dlyons@cis.fordham.edu).

R.C. Arkin, S. Jiang and J. Deeb are with the Mobile Robotics
Laboratory, Georgia Institute of Technology, GA 30332, USA (Em:
arkin@cc.gatech.edu).

1
MissionLabis freely available for research and educational purposes at:

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/.

world robotics applications. In this paper, we address the
problem of how flow-functions that include random
variables can be generated. We show that a flow function
can be mapped to an equivalent Bayesian Network, and that
the problem of determining whether a mission will achieve
its performance guarantee can be reduced to the filtering
problem for a Dynamic Bayesian Network. Finally, new
results are presented for a multi-waypoint robot mission and
we validate these results showing the predictive power of
our method.

II. PRIOR WORK

Automatic verification of software is a very desirable
functionality in any application where software failure can
bring heavy penalties [7]. Examples include embedded
software such as airplane and space flight controllers as well
as factory controllers and medical equipment. A completely
general solution is ruled out by the undecidability of the
halting problem; however, much research has been
conducted on restricted instances of this problem. Model
checking [6]-[8] is a very successful technique in which a
program is mapped to a Kripke system – a state-based
transition system where states are labeled with sets of
propositions,. The instructions in the program map from one
state to a successor state. If the program has n variables, and
if each variable ri can have values from a set val(ri), then the
state space is Πi val(ri) = val(r0)× … ×val(rn-1). The
verification problem in model-checking is, at its heart, a test
of the reachability of a state or set of states from the start
state given the program instructions.

Automated verification of robot and multirobot software
has several characteristics that set it apart from general
purpose software verification. The first is that the robot
program does not execute based on static inputs, but rather
interacts with an environment model in an ongoing fashion.
increasing the state-space by the product with the
environment model. A second characteristic is that there
may be a necessary continuous nature to some aspects of the
environment; not easily handled with model-checking since
the state space will grow with the size of the value space of
the variables. A program with ten floating point 32-bit
numbers has a potential state-space of size > 10

90
 for

example. Finally, significant uncertainty pertains to the
result of robot sensing and motion; this cannot be ignored or
the results are not realistic.

A state-based approach experiences significant
combinatorial problems due to the characteristics discussed
in the previous paragraph. However, model-checking is not
the only approach to software verification. Satisfiability
Modulo Theories (SMT) [21] cast verification as the
satisfiability of expressions in a set of theories that can
include real-numbers, array references and most recently

Getting it Right the First time: Robot Mission Guarantees in the

Presence of Uncertainty*

D.M. Lyons, R.C. Arkin, P. Nirmal, S. Jiang, T-M Liu, J. Deeb

Executable

Operator

MissionLab

Programming

Environment
VIPARPARS

Models:

Sensor,

Robot,

Environment

Performance

Criteria

recursive functions. The challenge is in automatically
transforming a program into an appropriate collection of
expressions.

In [15] we introduce a process algebra (PA) approach to
representing robot programs and environment models. The
advantage of PA is that it can be used to determine how a
process transforms its inputs to produce outputs without
reference to states. Karaman et al. [10] also use a PA as a
specification language for multiple UAV missions and
develop a polynomial time algorithm that produces a plan to
satisfy the specification. That work, and our earlier work in
PA for performance analysis of robot programs [13]
leveraged the trace, or history of events, of a process. In this
paper, we use a PA that includes I/O port communications
[24] and leverage this structural locality information.

We focus on a specific kind of robot programming:
behavior-based robot programming [1]. A behavior-based
robot interacting with its environment will respond to a
specific set of environmental percepts as programmed by its
behaviors. Once a percept is responded to, the robot may
remain in this behavioral state or move to another that
handles a different set of percepts. For the specific case of a
system of a PA environment model and programmed
behaviors represented in tail-recursive process definitions,
we proposed a novel process interleaving theorem SysGen
that allowed us to identify a single composite system period
process. This process contained all the port-to-port
communications that could happen in the system as part of
the percept-response cycle. In a subsequent step, we showed
how the transformations that occur with these port
communications can then be written as a set of recurrent
functions, which we called parameter flow-functions, since
they related the value of variables in one iteration of the
system period to that in the next iteration. The verification
problem in this framework is the satisfiability of these
functions modulo recurrent functions and real-numbers.

Uncertainty plays a major role in real-life robotic
performance and needs to be included in any useful
approach to robot verification. Napp and Klavins [22]
introduce a guarded command language CCL for
programming and reasoning about robot programs and
environments. They address uncertainty by adding a concept
of rates and exponential probability distributions to CCL,
which allows them to reason about the robustness of
programs. Johnson and Kress-Gazit [9], addressing the
automatic controller generation problem rather than
verification, develop a model-checking based algorithm that
handles uncertainty based on Discrete Time Markov Chains;
however, they comment on the intractability of their
approach for large state spaces.

In this paper, we extend the flow-function approach to
include random variables, and we map the solution of a
system of flow-functions to a filtering problem for a
Dynamic Bayesian Network. This approach can also
leverage various parametric uncertainty distributions,
including Mixture of Gaussians [23], to capture motion and
sensor uncertainty.

III. MISSION SPECIFICATION

Dull, dirty, and dangerous missions are considered to be
the natural niche for robots, and these missions have been a
major driving force behind the advancement of robot

technology. Over the past decades, we have seen an
increasing number of robots being deployed to accomplish
dangerous missions (e.g., disarming IEDs in Afghanistan).
Missions in the domains of urban search and rescue (USAR)
and counter weapons of mass destruction (C-WMD) are not
only dangerous, but their failures usually have dire
consequences. It is highly desirable then to have the ability
to verify the performance of a robot before it is deployed to
carry out a mission. However, verification of robotic
missions poses a unique and significant challenge that is
different from traditional software verification – the robot
has to work in the real world, and the real world is inherently
unpredictable.

Fig. 1. MissionLab robot mission specification toolset with

VIPARS verification module, see [2] for more details.

We have built our robot mission verification framework
upon MissionLab

2
, a behavior-based robot programming

environment [19]. MissionLab provides a graphical user
interface where robot programs can be constructed as a finite
state automaton (FSA) from a library of primitive behaviors.
One of the many unique features of MissionLab is that it
generates hardware-independent executables from user-
constructed FSAs, which allows the desired robot platform
to be chosen at run time. For critical missions where
performance guarantees are desirable, we introduced a
verification framework into MissionLab by which missions
can be verified before the executable generation step [2].

The verification framework is shown in Fig. 1 as an
extension to the MissionLab programming environment. The
core of the framework is the process algebra based
verification module, VIPARS (Verification in Process
Algebra for Robot Schemas). To initiate the verification of a
mission, the robot program is compiled from CNL
(MissionLab’s internal representation [20]) to PARS
(Process Algebra for Robot Schemas), the language
understood by VIPARS. The robot operator also needs to
provide VIPARS with models of the robot, the sensors it is
equipped with, and the environment it is to operate in, along
with the performance criteria that the mission is required to
meet. VIPARS provides the operator with the performance

2MissionLab, now in version 7.0, is freely available for research

and education at http://www.cc.gatech.edu/ai/robot-

lab/research/MissionLab/.

guarantee for the mission based on how well the specified
performance criteria were met. The verification module
effectively forms a feedback design loop, where the operator
can iteratively refine the robot program based on the
information provided by VIPARS.

A. Mission Design

To illustrate the process of designing a mission with
MissionLab and verifying it with VIPARS, we present a
biohazard search scenario where the robot needs to access a
room inside the basement of a building, where potential
biological weapons might be located. The layout of the
basement is shown in Fig. 2, and the room the robot needs to
access is shown with a red biohazard symbol. With a known
layout of the environment, the simplest solution to
accomplish the mission is to designate waypoints which the
robot can follow to access the room of potential threat. The
waypoints and the path of travel are shown in red in Fig. 2.

Fig. 2. Building layout with waypoints labeled in red

The program for the multi-waypoints mission from Fig. 2
is shown in Fig. 3; this behavioral FSA was created with
CfgEdit, the Configuration Editor, in MissionLab. The FSA
consists of a series of GoToGuarded and Spin behaviors
with AtGoal and HasTurned triggers. The GoToGuarded
behavior drives the robot to a specified goal location (i.e.,
waypoint) with a velocity dropoff_radius around the goal
location. Dropoff_radius specifies the distance from the
goal, where the robot starts to slow down as it approaches
the goal location. The AtGoal trigger causes a transition to
the next state when the robot reaches the goal location. The
spin behavior rotates the robot around an obstacle with a
given velocity. The HasTurned behavior causes a state
transition when the robot has turned a desired angle. The
robot operator could verify the design intent by simulating
the mission with the simulation environment provided in
MissionLab, however a simulation is insufficient to provide
performance guarantees for the mission.

B. Mission Performance Criteria

Performance criteria are mission constraints (e.g., safety

and time constraints) that the robot system has to meet in

order to assert “mission accomplished.” The probability that

the system will perform under these criteria is the mission

effectiveness. Quantification of this probability provides a

metric of success for the system, which in turn allows for

decision-makers to properly assess the different options

associated with each mission. Mission effectiveness (ME) is

calculated as follows: ME = A×R, where A is the availability

at the start of the mission and R is the mission reliability

with environment and operator effects included [12]. For the

purposes of this paper, we will define availability as the

probability that an item will be operational at a given time,

and reliability as the ability of a system to operate under

designated performance criteria for fixed periods of time.

This model is consistent with the model previously provided

in [2] where the first term is effectively the availability and

the second reliability.

Previous models for mission effectiveness rely entirely on

empirical test data. This makes characterizing a system’s

effectiveness difficult when no such previous data exists,

which is often the case with robotic systems. Gathering data

specific to each C-WMD mission is not really feasible, so

predicting the rates of failures for the system becomes

imperative. Since both availability and reliability are

characterized by the behaviors of the failure rates, if the

failure rates of the components in the system can be

predicted without the use of past data then the mission

effectiveness can also be predicted.

C. Verification of Performance Guarantee

Designs rarely work the first time off the drawing board.
Final working products usually emerge only through
numerous “going back to the drawing board” moments. The
design of robot missions is no exception. However, for time-
critical C-WMD and USAR missions where we might only
have one opportunity to complete the mission, we need to
have some guarantee that our robotic system will succeed
before its deployment.

Fig. 3. Mission design with MissionLab’sCfgEdit, showing the

mission design for a multiwaypoint mission. Each ‘state’ and

‘trigger’ node (the large and small circles) corresponds to a

behavior and the arrows denote sequencing.

To obtain a performance guarantee for the robot mission
in Fig. 3, the operator needs to compile the mission into
PARS, select models of sensor, robot, and the environment,
and provide VIPARS with the performance criteria (Fig. 1).
Currently, VIPARS outputs 1) a Boolean answer regarding
whether the mission as specified can be successful, and 2) a
list of performance criteria indicating if each criterion had
been met. If the predicted performance of the mission does

x

y

Final Position

(58.75, 22.5)

(58.75, 33.75)

(60.5, 40.5)

Start

Position

(8.40, 23.8)

(18.2, 23.8)

(18.0, 20.8)

not meet the necessary performance criteria, the operator
could refine the robot program based on the feedback
provided by VIPARS. This iterative process can continue
until the operator is satisfied with the performance guarantee
and sufficiently confident to deploy the robot.

IV. PARS REPRESENTATION OF MISSIONS

PARS is a process algebra [4] for representing robot
programs and environments for the purpose of analysis and
verification. This section gives a brief introduction to PARS
as a precursor to the discussion on flow-functions and
filtering in subsequent. For a more thorough introduction,
and a wider selection of controllers and environment models,
see [13][17].

The semantics of a process in PARS is an extended port-
automaton [24], an automaton equipped with communication
ports over which it can send messages to other concurrent
automata, and extended with duration and partitioned end-
states (success/stop and fail/abort). A process PPPP with initial
parameter (variable) values u1,u2,…,un, input
ports/connections i1,i2,…,im, output ports/connections
o1,o2,…,op and final result values v1,v2,…,vq is written as:

 PPPPu1,u2,…,un (i1,i2,…,im) (o1,o2,…,op) 〈v1,v2,…,vq〉 (1)

Subscripts indicate parameters. Parentheses are used to
group port connections and the angle brackets, variable
results. In this paper (except for Section VI, which refers to
actual implementation) we will just use global port names
rather than the more general but more verbose port-to-port
connections. For brevity, the parts of a process description
that are empty are typically omitted. Process variables
(initial parameters, results) can be random variables; we’ll
return to this in more detail. Processes that are defined only
in terms of a port-automaton are referred to as basic
processes, the atomic units from which programs are built
(see Table 1).

Non-basic processes are defined in terms of compositions
of other processes. For example a process TTTT that inputs a
value on port c1 and then outputs it on port c2 is defined:

 TTTT=InInInInc1 〈x〉 ; OutOutOutOut c2, x (2)

A sequential composition (;) in which the first process

ends in abort (see Table 1) just aborts. This implements a
conditional construct. Other composition operations include
parallel-max (|), a parallel communicating composition of
processes that terminates when all have terminated, and
parallel-min or disabling (#), a parallel communicating
composition of processes that terminates as soon as any
terminate. A tail-recursive (TR) process is written as:

 TTTTa= PPPPa 〈b〉 ; TTTTf(a,b) (3)

This provides an repetitive construct. Any language that
implements sequence, condition and loop constructs is
sufficient to represent any program [5]; thus, we can be
confident that PARS can represent any program. In (3),
f(a,b) indicates how the parameters (or variables) of the
process are transformed when passed to the next recursion.
We refer to such functions for TR processes as parameter
flow functions.

A. PARS Controllers

One objective of our project is to automatically translate
MissionLab’s underlying CNL mission specification
language [20] into the PARS description of the mission
controller. This work is in progress but not completed, and
for now, we manually translate from CNL to PARS. A
MissionLab waypoint mission, as described in Section III,
might be approximated in PARS as:

MissionMissionMissionMissionw,i = GotoGotoGotoGotow(i) ; NeqNeqNeqNeqi,n ; MissionMissionMissionMissionw,i+1 (4)
 GotoGotoGotoGotoa = TurnToTurnToTurnToTurnToa ;MoveToMoveToMoveToMoveToa

MoveToMoveToMoveToMoveTog = InInInInp 〈r〉 ;NeqNeqNeqNeqr,g; OutOutOutOutv, u(g-r) ; MoveToMoveToMoveToMoveTog

TurnToTurnToTurnToTurnTog = InInInInp 〈r〉 ; OutOutOutOuth, d(g-r)

The controller MissionMissionMissionMissionwwww,0 visits a series of waypoints
w(i),i=0..n. For each waypoint, GotoGotoGotoGotow(i) first turns the robot
towards the waypoint by outputting d(g-r), the relative
direction to the waypoint, onto the heading port h, and then
repeatedly outputting a speed, u(g-r) on the velocity port v.

The example used in this paper is basically a motion
example. The representation and method is not however
intrinsically limited to this controller or to motion examples.

B. PARS Environments

An environment model in PARS is a causal model of the
environment in which a robot program is carried out. An
example of an environment model that includes both
position and heading uncertainty is shown below:

EnvEnvEnvEnvr,a,s = (DelayDelayDelayDelayt # OdoOdoOdoOdor # AtAtAtAtr) ; (5)

 ((InInInInh 〈a〉; RanRanRanRanΘh 〈z〉) # (InInInInv 〈s〉; RanRanRanRanΘv 〈w〉));
 EnvEnvEnvEnvr+u(a+z)*(s+w)*t, a, s

OdoOdoOdoOdor =RanRanRanRanΦ 〈e〉 ; OutOutOutOutp, r+e ; OdoOdoOdoOdor

The environment model accepts a heading input on port h
or a speed in the direction of the heading on port v. The
process AtAtAtAtr represents the robot at location r (where r is a
random variable). The process OdoOdoOdoOdo (short for Odometry
sensor) makes position information (with noise) available in
a loop until terminated by the DelayDelayDelayDelay enforcing the discrete
progress of time in steps of at most t. The new position of
the robot is calculated as the old position incremented by a
noisy speed command (s+w) in the unit vector direction
u(a+z) of the noisy heading. The actuator and odometer
noise (the variables z, w, and e in (5)) is characterized by the
distributions for speed, heading and sensor noise, Θh ~
N(µh,σh), Θv ~ N(µv,σv), and Φ ~ N(µm,σm).

C. PARS Goals

It is very common in model-checking and other kinds of
verification to use a temporal logic to specify the property to
be verified. Another approach, called refinement, is to use
the same language for property and program, but consider
the property to be a more abstract version of the program.
We specify performance goals directly in PARS. For
example, the designer may wish to specify that the robot

Table 1.Examples of Basic Processes
Process Stop Abort

DelayDelayDelayDelay t After time t If forced by #

RanRanRanRanΦ 〈v〉 Returns a random sample v from a

distributionΦ.

If forced by #

InInInInc 〈y〉 , OuOuOuOut c, x Perform input and output,
respectively, on port c

If forced y #

EqEqEqEqa,b , NeqNeqNeqNeq a,b,
GtrGtrGtrGtra,b, etc.,

a=b, a≠b, a>b, etc., Otherwise

arrives at position a after time t1 and stays there for at most
a time t2:

 Goal Goal Goal Goal = DelayDelayDelayDelaytttt1 ; (DelayDelayDelayDelayt2 # AtAtAtAta) (6)

where t1 and t2 are variables. A property specification
process network is actually a process network constraint
expression, a specification of a set of possible networks. The
system and property to be verified are compared and if the
system can be shown equivalent to the property, we extract
the constraints that the property network impose on the
system and determine if they hold.

V. VERIFICATION METHOD

The verification approach presented at the end of the last
section is as follows: Given a parallel composition of a
controller and system:

 (Gotoa | Envr0,h0,0) (7)

will (7) achieve the performance specification in (6)? In [15]
we leverage a property of behavior-based systems to reduce
the complexity of this problem. We present an algorithm,
SysGen that matches the recurrent structure in the controller
and environment processes to generate a process network
that is a behavioral system period. The port connectivity in
this system period is then analyzed to determine the way in
which the system period transforms process variables,
generating a set of recurrent functions, flow-functions, one
function fi for each variable ri in the system period. We show
that verification then consists of solving these recurrent
functions for initial variable values and goal variable values
(established by matching the system period and property
network) as boundary conditions. We consider in this paper
a practical Bayesian approach to the solution of these flow
functions.

FloGen(FS = {f1,…fm}): // component flow fns for processes p1,…,pm

1. For each fi∈ FS
2. For each vj in fi not a parameter of pi

3. a←port in pi that generated vj

4. While (a !=⊥)
5. cm(a) is the network connection of a on pk

6. u←parameter value to the port operation on cm(a)

7. a←port in pk that generated u or ⊥ if none
8. Replace vj with u

Fig. 4. Flow Function Generation Algorithm, FloGen

A. Flow Functions

SysGen allows us to recast the analysis of the recurrent
system into the analysis of a single period. This period
transforms the values of the variables at start of repetition k
of the period to those at the start of repetition k+1. Variables
may be transformed by operations within processes (we can
get this from the process flow functions) or they may be sent
via port communications to be included in other processes,
but that we now have to calculate. Figure 5 shows an
example of this for two processes.

The FloGen algorithm (Fig. 4) produces a flow function
that includes these transformations for each parameter to the
system period. For each flow variable, ri∈ R = {r1,…,rn},
FloGen traces its transformation through processes and port
communications to generate a single flow function fi defined
as:

)val(r)val(r ..) val(r:)r,...,(rf 1+ki,kn,k1,n1i →×× (8)

The complexity of FloGen depends on the number of
component processes and the number of parameters to each,
since each parameter will generate one flow function. If there
are m port-to-port connections in the system period, then m is
the upper bound on the sequence of substitutions for port
connections in FloGen.

Flow variables may contain random variables. Hence the
flow function relates the value of the random variable ri,k of
time step k to its value in time step k+1 given the values of
the other variables in R. This is equivalent to a calculation of
the posterior probability ri,k+1 given the values of all the
variable values at time k, Rk, which we can write

 P(ri,k+1 | Rk) = fi(Rk). (9)

Matching a goal network and a system is a constraint on
the posteriori values of some of the flow variables.

Not all variables in Rk may be needed to calculate each
rk+1. Any particular variable may only depend on some of
the variables in Rk as given by the structure of the processes
and process communications. This structural locality
property is identified by the FloGen algorithm as it follows
port connections between processes (Fig. 5), expressing the
inherent conditional independence:

 P(ri,k+1 | Ri,k) = fi(Ri,k), Ri,k ⊆ Rk (10)

The resulting structure can be drawn as a Bayesian
network as shown in Figure 6.

As long as flow functions can include the effect of
program conditionals [17], we can assume Ri,k = Ri and
hence that the evolution of flow-variable values is a
stationary process and can be captured as the Dynamic
Bayesian Network (DBN). We define a function F as the
transition model of the DBN, where

 F(Rk) = (f1(R1,k), f2(R2,k),…) (11)

B. Verification as Filtering

The process of matching the system and goal networks
[15] identifies a subset of the flow-variables, G ⊆ R, and the
values to be associated with them

Fig. 6. Flow function fi(r1…rn)=ri evaluation shown as a

Bayesian Network.

r1

r

 fi ri

 r h(r) f(h(r), g(r,q)) …

P1

 q

P2

 g(r,q)

Fig. 5. Example of variable value transformation (dotted

lines) for variables r and q in a single system period

composed of two processes P1 and P2.

 GV={ (g,v) | g∈G and v∈ val(g) } (12)

The verification problem asks whether the execution of
the controller in the given environment will result in the
flow-variables in G having the values specified by GV.
However, if the variables are random variables, then we
need to modify this: P(GVk| Rk) is the probability that GV
holds at step k given the flow-variable values at that step.
For each g∈G this means integrating the value of the
probability density over a small range around of the value v.
Our definition of a successful verification is that

 P(GVk | R1:k) > Pv (13)

Where Pv is a user specified constant (typically 80% in our
experiments, but user definable) and where R1:k means the
sequence of flow-variable values from the first to step k. We
introduce an observation model GF(Rk) to implement this
evaluation at any step:

 GF(Rk) = P(GVk | Rk) (14)

The goal conditions may be achieved on any step, so the
probability of achieving the goal is the disjunction (sum) of
the probabilities on each step:

 ∑
=

−=
k

i

iiiikk RRPRGVPRGVP
1

1:1:1)|()|()|((15)

Since each Ri is linked to the previous by the transition
model Ri+1 =F(Ri), and goal satisfaction is related to Ri by
the observation model GF(Ri):

 ∑ ∏
= =

−=
k

i

i

j

jjiikk RRPRGVPRGVP
1 1

1:1)|()|()|((16)

)()|(1

1

RFRGVP
i

k

i

ii∑
=

=

))((1

1

RFGF
i

k

i

∑
=

=

While thresholding on Pv in (13) gives a way to determine
a successful verification, it does not allow us to determine a
non-successful verification. One solution is to bound k,
insisting:

 P(GVk | R1:k) > Pv and k<Kmax (17)

This solution is reasonable if k can be related to time (for
example if a maximum time can be established for the
execution of a system period) and if there is a maximum
time constraint on the activity (for example, that the mission
must be achieved before a given time).

C. Extension of SysGen

Consider a a system SysSysSysSys composed of set of processes P1P1P1P1,

P2P2P2P2, …, PmPmPmPm:

 SysSysSysSys = P1P1P1P1 | P2P2P2P2 | … | PmPmPmPm (18)
 = S(P1, ..., PmP1, ..., PmP1, ..., PmP1, ..., Pm) ; SysSysSysSys

where each PiPiPiPi = 456 ; PiPiPiPi, , , , and where 456 is not recursive; that is,
each PiPiPiPi is a tail-recursive (TR) process. SysGen constructs
the system period S(P1, ..., PmP1, ..., PmP1, ..., PmP1, ..., Pm) for such systems. However,
Sysgen is defined in [15] only for a composition of TR
processes. If one of the processes, PiPiPiPi, is for example a
sequence of GotoGotoGotoGotoa processes in a waypoint mission, then PiPiPiPi is
not TR. There is a straightforward extension for SysGen to

automate this. Let one process PiPiPiPi in (18) be non-TR, then let
us consider all the scenarios that can result, and let 456 be the
‘period’ we then identify for use in SysGen:

1. PiPiPiPi is pure straight-line code: In that case, we have
456 = 46; so we calculate the system flow-function and
DBN, and filter the DBN for just a single time-step
(since the straight-line code does not repeat, only one
step is necessary).

2. PiPiPiPi is straight-line code followed by a single TR process,
PiPiPiPi a, b = SL= SL= SL= SL a 〈y〉 ; T; T; T; Ta, b, y. In this case, we break the problem
into two sequential problems;
(a) we first address the system with PiPiPiPi replaced by SLSLSLSL,

calculating the flow-function and DBN and filtering
for one time step, and carry the variable values over
to a second system where

(b) we address the system with PiPiPiPi replaced by TTTT, which
is TR and can be handled in the normal fashion.

3. PiPiPiPi is a sequence of two TR processes, PiPiPiPia,b= T1= T1= T1= T1a〈y〉 ;

T2T2T2T2a,b,y or a TR process followed by straight-line code.
We also break this into a sequence of two problems
with PiPiPiPi replaced by T1T1T1T1 in the first and PiPiPiPi replaced by T2 T2 T2 T2

in the second, carrying the variable values over
between both problems.

Using this approach, a mission with k sequential motions
will be broken automatically into k filtering problems. In the
current version of VIPARS, each problem is treated as a
distinct and independent step, and the probability of success
is simply the product of the step probabilities.

a) Moving up the ramp that

leads to the building entrance

b) Entering the building at the

loading dock

c) Traveling down the long

hallway

f) Entering the room with

potential biohazard threat

e) Moving toward the room

entrance

d) Rounding a corner

Fig. 7. Snapshots of Pioneer 3-AT robot at several points during a

validation of the multiple waypoint mission presented in Fig. 3.

Table 2. Validation Result

of Runs # of Failures # of Successes P(Success)

40 12 28 70%

VI. RESULTS

We conducted a validation of our performance prediction
for the multiple waypoint mission (Section III). The
VIPARS module was used to generate a prediction of the
robot position after completing the mission. The robot
motion and sensing uncertainty distributions used in
VIPARS were calibrated for the Pioneer 3-AT robot for an
indoor surface [16]. The robot mission was carried out 40
times and measurements made of the robot’s success at
completing the mission. The prediction and validation
results were then compared. In [16] this approach was used,

to validate the accuracy of a set of single waypoint missions.

A. Validation Procedure

The multi-waypoint mission employed a Pioneer 3-AT
robot (Fig. 7). The mission area is approximately 60×20
meters. The robot started at the bottom of the ramp. The start
location of the robot is (8.40, 23.80) with respect to the
world coordinates as shown in Figure 2. The waypoints for
the missions are (18.20, 23.80), (18.0, 20.80), (58.75, 22.50),
(58.75, 33.75), and (60.50, 40.50); and the robot is to visit
the waypoints in the order listed with (60.50, 40.50) as the
final waypoint. Following the waypoints, the robot moved
up the the loading dock ramp where an entrance to the
building is located. The robot then entered the building and
traveled down a long hallway (approximately 40 meters in
length), which leads to the room of interest located at the
end of the hallway. The performance criterion for the
mission is whether the robot had gained access to the room
of interest (i.e., reached the final waypoint, which resides in
the room). The objective of this guided-navigation mission is
to have the robot enter a room where potential biohazards
may be stored. Once the robot is in the room, it could deploy
its onboard sensors (e.g., chemical) to search the room for
biohazards. However, this paper focused on verifying the
guided-navigation mission, thus the mission is considered
successful once the robot enters the room of interest.
Verification of the biohazard detection and identification
mission with chemical sensors will be conducted in our
future work.

The mission was run 40 times and the number of
success/failures was recorded (Table 2). Most failures
observed were due to the robot being stuck at the corner near
the third waypoint as in Figure 7d. The reason for the failure
is that the robot was not able to reach the third waypoint at
the end of the long corridor. While the robot was near the
waypoint physically, its internal localization said otherwise
due to error accumulation in the odometry. As a result, the
robot kept trying to go the third waypoint, but the corner
walls prevented motion. Obviously better results could be
obtained with better sensors, but that is not the point of this
paper: it is rather to predict the likelihood of success given a
particular robot configuration, hence the reason we
encountered such a high failure reason.

B. VIPARS Prediction

The MissionLab FSA is manually translated to set of
PARS equations. The waypoint mission of Section III is
approximated in PARS as:

MissionMissionMissionMissiong1,g2,g3,g4(p,hi)(v,ho) =

 TurnTurnTurnTurng1(p,hi)(ho) ; MoveToVCMoveToVCMoveToVCMoveToVCg1(p)(v) ;

 TurnTurnTurnTurng2(p,hi)(ho) ; MoveToVCMoveToVCMoveToVCMoveToVCg2(p)(v) ;

 TurnTurnTurnTurng3(p,hi)(ho) ; MoveToVCMoveToVCMoveToVCMoveToVCg3(p)(v) ;

 TurnTurnTurnTurng4(p,hi)(ho) ; MoveToVCMoveToVCMoveToVCMoveToVCg4(p)(v) ;

 TurnTurnTurnTurng5(p,hi)(ho) ; MoveToVCMoveToVCMoveToVCMoveToVCg5(p)(v) .

The mission is five instances of a process that turns the
robot to face the goal TurnTurnTurnTurng1, and a process that then moves
the robot towards that goal, MoveToVCMoveToVCMoveToVCMoveToVCg1. Note that this
network also includes port connection information (as in
e.g., eq. (1)), which we omitted for brevity in previous
sections. Here it indicates the connections for the position

input (p), the heading input (hi), the heading output (ho) and
the velocity output (v) crucial for FloGen analysis. The
system process is the concurrent, communicating
composition of the mission and environment processes:

SYSSYSSYSSYS = NEnvNEnvNEnvNEnvP0,H0 (c2,c3)(c1,c4) | MissionMissionMissionMissionG1,G2,G3,G4 (c1,c4)(c2,c3) .

The parameters P0, H0, G1, G2 and so forth in the
expression above are the initial conditions for the system:
the initial position, heading, goal locations etc. The port
connections c1,...,c4 in the expression connect the position,
heading and velocity ports on the mission to those in the
environment model. The NEnvNEnvNEnvNEnv process is similar to EnvEnvEnvEnv in eq.
(5), but with the information about heading and rotational
uncertainty included. The process contains no information
about walls or laser sensing to detect and respond to walls
and obstacles. We have included this kind of information in
previous work (e.g., [16],[17]), but our objective eventually
is to not require an accurate map, or even any map, for
verification, since that information may not be available.

The VIPARS module first determines if SYSSYSSYSSYS is composed
of purely TR processes. If so, it can be verified by
determining if a system period exists (eq. (18)), and if one
does, by extracting the system flow functions and using the
DBN filtering approach presented in Section V.B. If SYSSYSSYSSYS is
not composed of purely TR processes (as in this case), then
the result presented in Section V.C is used to break up the
system into a sequence of networks of TR processes, and the
DBN filtering applied to each in turn. In this example, 10
networks are extracted and filtered in sequence. The goal of
reaching its final location is applied to each filtering result.

In [15], we show how this goal is specified and matched
with the SYSSYSSYSSYS network to determine what variables to inspect
during filtering. The termination condition for filter is shown
in eq. (17). The results demonstrate statistically the
predictive power of this approach for single waypoint
missions. Most waypoint missions have many waypoints,
and that is the more complex result presented here.

Table 3. VIPARS Waypoint Distributions

W# (µµµµx ,µµµµy) ΣΣΣΣ pmax

1 (17468, 23585) [2610, 0; 0,8830] 0.91

2 (17850, 21206) [4675, 286; 286, 9449] 0.99

3 (59411,21639) [14986, -608; -608, 48005] 0.81

4 (59092,33444) [24717, -218; -218, 50625] 0.99

5 (60422, 39764) [30051,-1048; -1048, 52273] 0.99

VIPARS reported a successful verification with final
position distributions (in mm) shown in Table 3. Calculation
time on an Intel Core 2 Duo 1.8GHz laptop was of the order
of a few minutes including (overly) extensive diagnostic
output. VIPARS was run several times with different Pmin to
determine a maximum value for a successful verification
(i.e., largest Pmin before Tmax). These are shown as the last
column in Table 3. Since a failure could occur at any
waypoint, we estimate the estimate for success as the
product of successes at each waypoint, psucc =
0.91*0.99*0.81*0.99*0.99=71.5%. The VIPARS breakdown
into these 5 subproblems is automatic and just separated out
here for a more detailed comparison with the validation.

C. Comparison of Predicted and Measured Results

Empirical experiments show a success probability of 70%
for this mission, from 40 runs with 12 failures. Our predicted

success rate is ~72%. We can statistically compare the
prediction with the validation results using a z-statistic
proportion test. The null hypothesis is H0: psucc=0.72 and Ha:
psucc<0.72. We calculate the z-statistic as z =-0.28, and
p(Z<-0.28)=0.3897 from the standard distribution tables.

Since 0.05<<0.3897 we (emphatically) fail to reject H0:
p=0.72 at the 95% confidence level. So although our
predicted results are a little more optimistic than the
experimental results, they are not significantly different. The
waypoint with lowest pmax, is also the one that offered most
difficulty during empirical validation, and this also supports
the usefulness of the VIPARS prediction.

VII. CONCLUSIONS

The general case of software verification runs afoul of the
halting problem. To address this fundamental limitation,
most work therefore focuses on specific cases; we have
focused on a PA structure that captures behavior-based
programming well and avoids explicit state: concurrent
interacting systems of TR processes. TR processes have the
useful feature that they easily allow the construction of
recurrent flow-functions that capture how the TR processes
transform variable values on each recursive step. To model
uncertainty, which is a sine qua non for realistic robot
results, processes are allowed to have random variables. We
show that the flow function in this case can be mapped to a
Bayesian Network, and the recurrent nature of the flow-
functions can be captured as a Dynamic Bayesian Network.
The verification problem for the random variable case can
then be phrased a DBN filtering problem.

Lahijanian et al. [11] and Johnson & Kress-Gazit [9]
address the problem of automatically generating a controller
from a high-level specification in a temporal logic such as
LTL or CTL. Model-checking provides techniques to verify
an automaton with respect to a temporal logic specification
and hence is leveraged in the aforementioned and similar
formal methods work in robotics. Our focus is verification of
operator-generated mission software to provide performance
guarantees and hence the temporal logic aspect is not as
useful an ingredient. Because of state-combinatorics, we
have elected to follow an SMT-like approach instead.

Sampling approaches, such as Ymer [25], use Monte Carlo
sampling of execution paths to verify probabilistic systems.
Simulation is typically used to generate sample paths and
sufficient samples are taken to verify a system within a
bound for false positives and a bound for false negatives.
Our approach is parametric rather than sampling based and
does not need bounds, and of course, does not need to carry
out multiple simulation runs. An advantage of sampling
methods is that they can handle Semi-Markov or
Generalized Semi-Markov systems.

In [16] we reported strong statistical evidence of the
predictive power of our approach for single motions at
various distances and speeds. Here, we extended that
validation to a multiple waypoint mission. Empirical testing
of this mission on a Pioneer 3-AT robot yielded a 70%
success probability. The VIPARS prediction was 72%. The
results are statistically strong enough to count the validation
as successful.
 Although a C-WMD mission might have some waypoint
aspects if sufficient knowledge is available a priori, it is

more likely that the mission will be of an explore-and-find
nature rather than strictly follow-the-waypoints, and will
involve multiple robots. We are already specifying and
executing missions of this kind in MissionLab and we will
now study how VIPARS can be used to verify performance
guarantees for these missions.

REFERENCES

[1] Arkin, R.C. (1998) Behavior-Based Robotics, MIT Press.

[2] Arkin, R. C., Lyons, D., Jiang, S., Nirmal, P., &Zafar, M. (2012)

Getting it right the first time: Predicted performance guarantees from the

analysis of emergent behavior in autonomous and semi-autonomous

systems. Proceedings of SPIE. Vol. 8387.

[3]Baier, C., et al. (2010) Performance Evaluation and Model Checking

Join Forces CACM (53)9: 78-85.

[4] Baeten, J. (2005) A Brief History of Process Algebra. Elsevier Jour.

Theoretical Comp. Sc. – Process Algebra 335(2-3).

[5] Boem, C. and Jacopini, G., (1966) Flow diagrams, Turing machines and

languages with only two formation rules. CACM 9(5): 366-371.

[6] Clark, E., Grumberg, O., Peled, D. (1999) Model Checking. MIT Press.

[7] Hinchey M.G., & J.P. Bowen (1999) High-Integrity System

Specification and Design FACIT series, Springer-Verlag, London.

[8] Jhala, R., Majumdar, R. (2009) Software Model Checking. ACM

Computing Surveys 41(4) 21:53.

[9] Johnson, B., and Kress-Gazit, H. (2011) Probabilistic Analysis of

Correctness of High-Level Robot Behavior with Sensor Error, Robotics

Science and Systems, Los Angeles CA.

[10] Karaman, S., Rasmussen, S., Kingston, D., Frazzoli, E. (2009)

Specification and Planning of UAV Missions: A Process Algebra

Approach. Amer. Control Conference, St Louis MO..

[11] Lahijanian, M., Wasniewski, S., Andersson, S., Belta, C. (2012)

Motion Planning and Control from Temporal Logic Specifications with

Probabilistic Satisfaction Guarantees. IEEE Trans. Rob. 28(2): 396-409.

[12] Lie, Chang Hoon, et al. (1984) Mission effectiveness model for a

system with several mission types" IEEE Trans. Rel. 33.4 346-352.

[13] Lyons, D., Arkin, R. (2004) Towards Performance Guarantees for

Emergent Behavior. IEEE Int. Conf. on Rob. and Aut. New Orleans LA.

[14] Lyons, D., Arkin, R., Fox, S., Jiang, S., Nirmal, P., and Zafar, M.

(2012) Characterizing Performance Guarantees for Real-Time

Multiagent Systems Operating in Noisy and Uncertain Environments,

Proc. Perf. Metrics for Int. Sys. (PerMIS'12), Baltimore MD.

[15] Lyons, D., Arkin, R., Nirmal, P and Jiang, S., (2013) Designing

Autonomous Robot Missions with Performance Guarantees.. IEEE/RSJ

IROS, Vilamoura Portugal.

[16] Lyons, D., Arkin, R., Nirmal, P and Jiang, S., Liu, T-L. (2013) A

Software Tool for the Design of Critical Robot Missions with

Performance Guarantees. Conf. Sys. Eng. Res. (CSER’13) Atlanta GA.

[17] Lyons, D., Arkin, R., Liu, T-L., Jiang, S., Nirmal, P. (2013) Verifying

Performance for Autonomous Robot Missions with Uncertainty. IFAC

Intelligent Vehicle Symposium, Gold Coast, Australia.

[18] MacKenzie, D., Arkin, R. (1998) Evaluating the Usability of Robot

Programming Toolsets. IJRR. (4)7: 381-401.

[19] MacKenzie, D., Arkin, R.C., Cameron, R. (1997) Multiagent Mission

Specification and Execution. Autonomous Robots 4(1): 29-52.

[20] MacKenzie, D.C. (1996) Configuration Network Language (CNL)

User Manual. College of Computing, Georgia Tech, V. 1.5.

[21] De Moura, L., Bjorner, N. (2011) Satisfiability Modulo Theories:

Introduction and Applications. CACM 54(9): 54-67.
[22] Napp, N., Klavins, E. (2011) A Compositional Framework for

Programming Stochastically Interacting Robots, IJRR. 30:713.

[23] Shenoy, P.P., (2006) Inference in Hybrid Bayesian Network Using

Mixtures of Gaussians, 22nd Int. Conf. Uncertain. in AI, Cambridge MA.

[24] Steenstrup, M., Arbib, M.A., Manes, E.G. (1983) Port Automata and

the Algebra of Concurrent Processes. JCSS 27(1): 29-50.

[25] Younes H., Simmons, R. (2002) Probabilistic verification of discrete

event systems using acceptance sampling. 14th Int. Conf. on Computer

Aided Verification Copenhagen, Denmark.

