The CASSIS Flight Trials

Joel K. Klooster GE Aviation

Copyright (2009) General Electric Company, U.S.A.

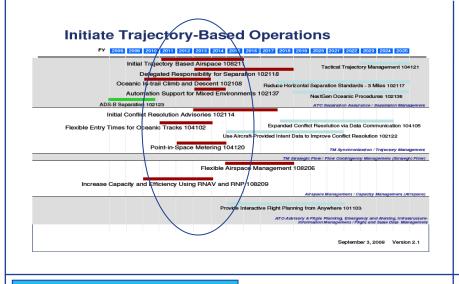
Overview

- CASSIS Background
- Trajectory Based Operations
 - How do we get from here to there?
- CASSIS Flight Trials
 - Objectives
 - Setup
 - Results

Conclusions & Next Steps

CASSIS - CTA / ATM **System Integration Studies**

- Explore the concept feasibility
 Conduct several hundred trials with
- revenue-flights
 Produce CTA ConOps document



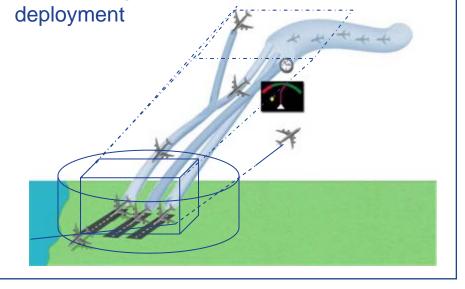
http://www.eurocontrol.int/tma2010/public/standard_page/CASSIS.html

What are we trying to solve?

"Path to Performance"

RNAV= (2D) Flexible Routing

RNP = (3D) RNAV +Integrity +Availability +Containment


4D-RNP TBO = (4D) RNP + Negotiation with ATC via datalink for Reference Business Trajectory. Time-guidance < 10 second accuracy anywhere in profile.

A two-pronged approach

POLICY: Integration of Air+Ground and C+N+S Industry Consensus: RTCA NextGen Task Force

TECHNICAL:

Use <u>best existing</u> equipage for Mid-Term Importance of operational evaluations that "Learn and Leave Behind" Take managed investment risks in

Stockholm – Arlanda (ESSA)

Objectives of Trial Flights Delay En Route

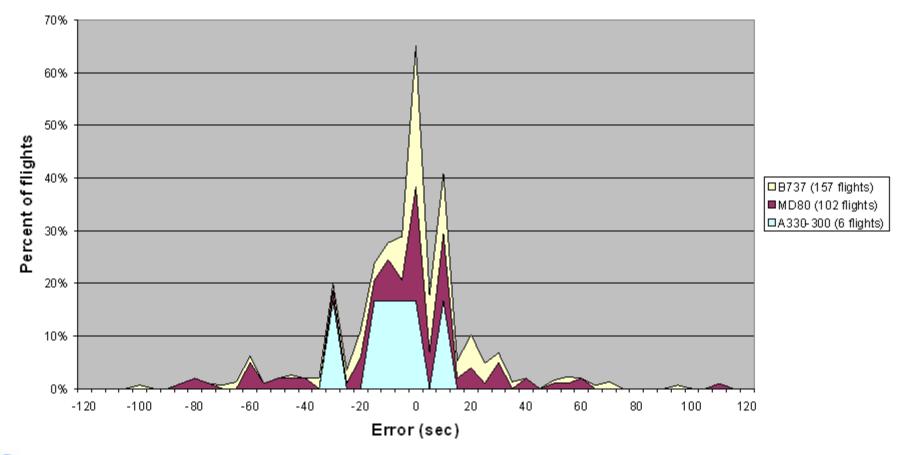
 Avoid holdings by taking delay en route instead

Improve Arrival Management

•Strategic Planning – extend planning horizon

Delay on Ground

•Pop-up flights disrupt the arrival sequence


"Royal Flights"

2 flights, RTA to IAF or Runway

CASSIS 2008 CTA Flight Trials - Over 300 flight tests!

	Round 1 June-July 2008	Round 2 September, 2008	Round 3 December 2008
Number of flights	~100	~100	~100
Traffic situation	Low	Low and High	Low and High
Delay on ground	No	Yes	Yes
"Royal Flights"	No	Yes	No
CTA as a spacing tool	No	Yes	Yes
Entry points	Hammar (Northern)	Hammar (Northern)	Hammar (Northern) Eltok (Western)
Aircraft Types	MD80 Family, B737NG	MD80 Family, B737NG	MD80 Family, B737NG A330-300

Completed Cassis Flights All types of aircraft and trial types

Experiment Infrastructure

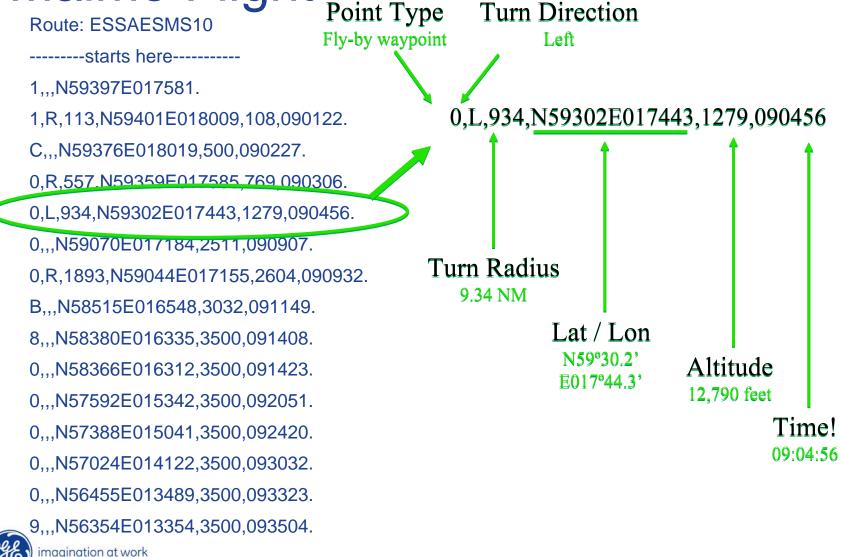
Intent Bus in B737 since 2006 • ARINC 702A-1 Trajectory Bus

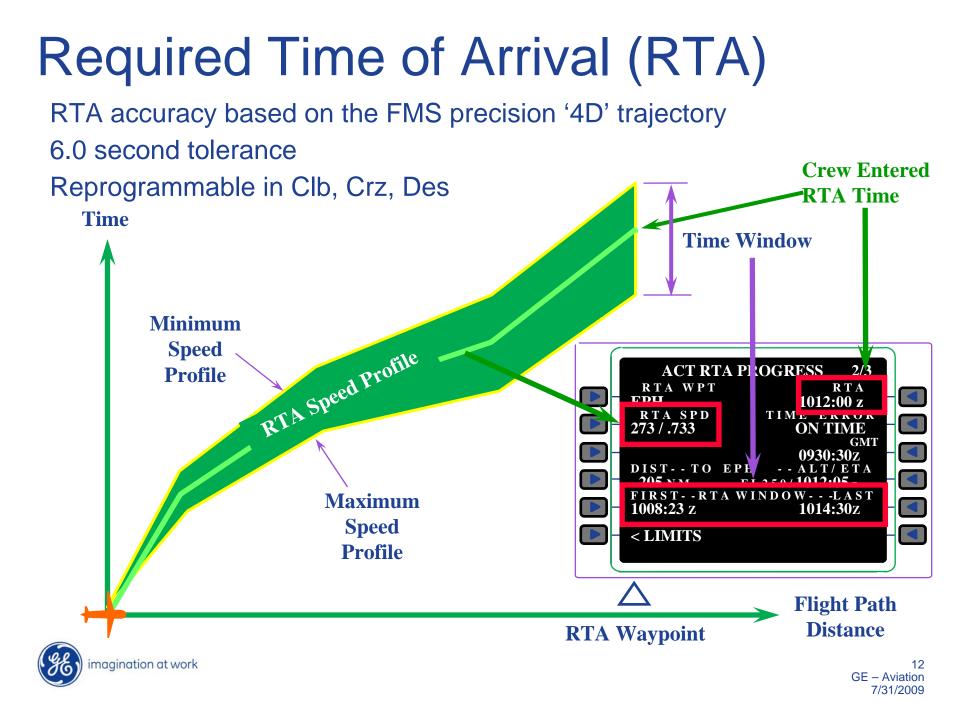
- Aircraft current-state information 2Hz
- Aircraft 4D trajectory predictions (Intent)
 - Each minute or when FP changes
 - Full trajectory to runway
 - Includes vertical wpts and turns

AOC

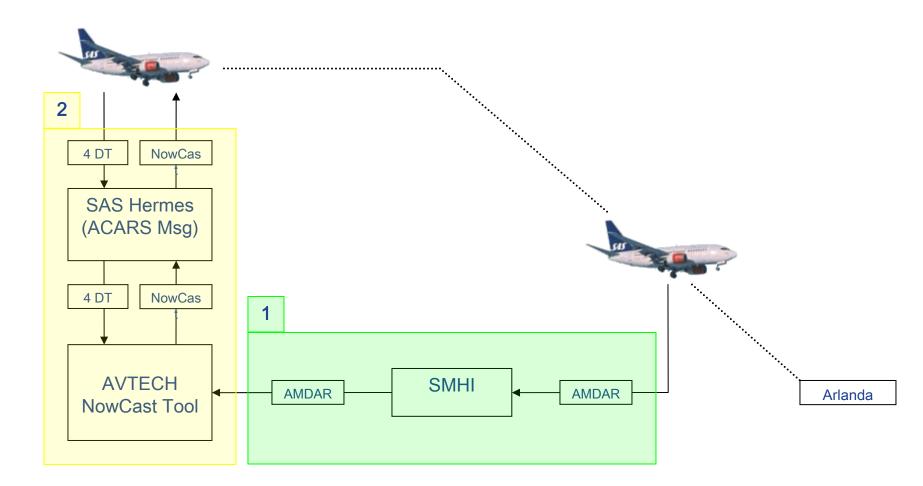
ARTICAD BUS

ATC


CARS

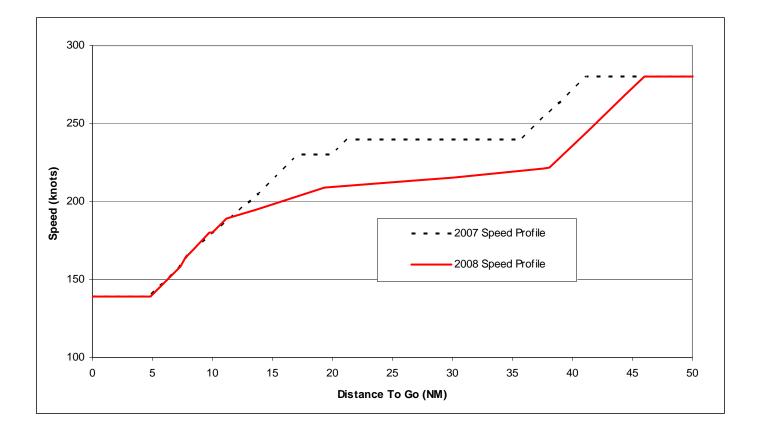

Current A/C State and Trajectory Predictions

Dedicated ARINC 429 Bus and/or via ACARS



ACARS Downlink: Stockholm to Malmo Flight

AVTECH NowCast wind uplink



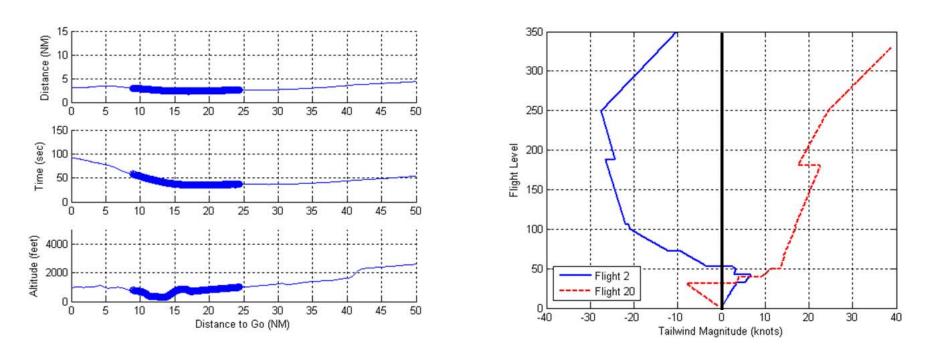
Results of Royal Flights

	CTA Accuracies					
_	IAF	Threshold (All)	Threshold (ETA)	Threshold (ETA+2)	Threshold (ETA-2)	
Rel. Mean	-0.4 sec	3.3 sec	7.6 sec	-6.6 sec	3.1 sec	
Rel. σ	5.9 sec	17.3 sec	10.9 sec	19.7 sec	23.6 sec	
Abs. Mean	4.0 sec	14.7 sec	10.9 sec	17.0 sec	19.4 sec	
Abs. σ	3.9 sec	9.4 sec	7.1 sec	9.1 sec	11.4 sec	

Impact of speed and altitude constraints

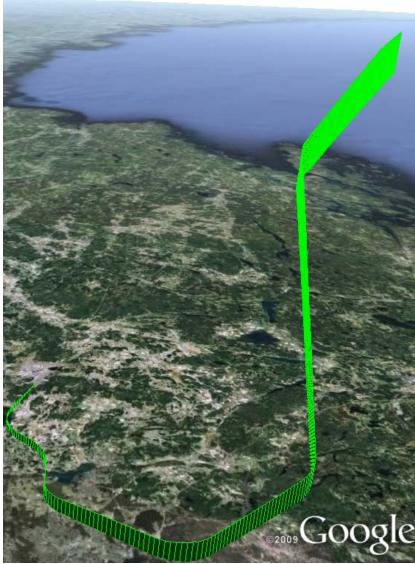
Separation Evaluation

- •Using Quick Access Recorder (QAR) Data
- "Time Shift" one flight for ∆RTA relative to a second flight
- •Examine flights with RTA at runway only
 - Flights to same runway and STAR only
- •33 valid flight pairs ➤ 66 comparisons
- Runway spacing of 60 120 seconds



Theoretical Separation Evaluation

Target Landing	3NM / 1000 ft Separation Violations		
Separation	Number	Percent	
60 sec	64	97.0%	
75 sec	57	86.4%	
90 sec	9	13.6%	
105 sec	1	1.5%	
120 sec	0	0.0%	


Evaluation of Individual Cases Revealing

Flights occurred on different days, with very different wind conditions

"Green

Scandinavian Airlines reports:

>4000 Green Approaches so far

- 60kg fuel saved on each
- 756 Metric Ton CO2 reduced
- 2,300 kg of NOx reduced
- 240,000 kg of fuel saved

SAS-Sweden potential 36,000 Green Approaches yearly into Stockholm alone

- \$5.8M fuel reduction plus \$4M yield improvement yearly
- 23,000 Metric Ton CO2 reduction yearly
- 79 Metric Ton of NOx reduction yearly
- Noise reduced by 50% (65db exposure area)

LFV committed to 80% "Green19 Approaches" by 2012! GE - Aviation 7/31/2009

imagination at work

Conclusions

- 4 second accuracy at IAF, < 15 seconds at the runway threshold
- •Wind error major impact on time accuracy
- •Flap extension and speed/altitude constraints significant role beyond IAF
- •Separation must be dealt with, but not an impossible problem to solve
- •Further integration with ATM tools an integral next step

CASSIS 2

- **Continue success of CASSIS**
- **Expand to other operators and aircraft**
- •Novair, KLM
- •B737, A320
- Improve integration with ground equipment

•Thales ATM

MINT – Minimum CO₂ in the TMA **AIRE project Sponsored by SESAR RNP AR flights with Novair A321** Further use of CTA in descent

4DTRAD Standarization

RTCA SC-214 / EUROCAE WG 78

- 4D Trajectory Datalink (4DTRAD)
- Queue Management using RTA / CTA
- Primarily focused on communication, but navigation and surveillance also important:
 - How will trajectory be used?
 - How will RTA / CTA be used?
 - What implications does this have for the FMS?
 - What impact do different implementations have?

RTCA SC-214 / EUROCAE WG 78

The need for standardization

- Downlink of performance?
- Number of Speed Changes?
- Monitoring (who and when)?

Two Approaches

- New EUROCAE WG focusing on 4D Nav
- RTCA Committee looking at TBO at a higher level

Thank You!

Joel K. Klooster GE Aviation 3290 Patterson Ave SE Grand Rapids, MI 49512-1991

joel.klooster@ge.com +1 616.241.7501

