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Abstract

Different upwinding schemes in the context of finite element, finite volume, finite

difference methods are discussed. Numerical tests are presented to identify numer-

ically whether or not, for the solutions of multi-dimensional convection-diffusion

systems, given upwinding schemes combine improved stability with high-order ac-

curacy.

1998 ASME FLUIDS ENGINEERING FEDSM98-4926

Transactions of the ASME Journal of Fluids Engineering (submitted)



I Introduction

Great advances have been accomplished during recent years in the analyses of general

fluid flows, heat transfer, and their structural interactions. The use of finite element

methods has made it possible to analyze such problems with complex geometries,

and to integrate with many mature finite element packages for solids and structures.

Nevertheless, convective terms (hyperbolic in nature) introduce nonsymmetry into

the discretized coefficient matrix and remain the source of non-physical oscillatory

solutions, which often occur along the sharp internal or boundary layers and are

very similar to Gibbs' phenomenon [1].

To circumvent the skew matrix derived with the standard Galerkin finite ele-

ment, finite volume or central difference methods, researchers have proposed vari-

ous discretization procedures (often called upwinding schemes). The basic idea of

upwinding, which was discussed by Courant et al. [2] in 1952, is to assign more

weight to the nodal solution in the upstream direction than in the downstream

direction. The initial upwinding finite element schemes were outlined by Christie

et al. [3] and Heinrich et al. [4] [5]. Noble control volume finite element upwinding

formulations include the quadrilateral elements by Schneider and Raw [6] and the

4/3-c triangular and 5/4-c tetrahedral elements by Bathe et al. [7]. Some other up-

winding approaches, such as the Lax-Wendroff/Taylor-Galerkin formulation [8], the

Galerkin least squares method [9], and the Galerkin method with bubble functions

[10], were also developed recently. Most importantly, the well-known Streamline Up-

wind Petrov/Galerkin (SUPG) method, originally developed by Brooks and Hughes

[11], was studied and analyzed extensively [12] [13].

Although it is possible to achieve exact nodal solutions for the one-dimensional

model problem, and this idea has been widely used in various upwinding schemes



such as the exponential schemes developed in control volume finite difference pro-

cedures (see Spalding [14], Patankar [15], and Minkowycz et al. [16]), solutions for

multi-dimensional cases, in general, exhibit either excessive diffusion or oscillatory

behavior. In fact, all upwinding schemes are, in essence, equivalent to the standard

Galerkin or central difference method with a so-called artificial diffusivity.

In this paper, starting with the one-dimensional convection-diffusion model prob-

lem, we compare various upwinding schemes and propose a numerical test to inves-

tigate whether any given upwinding scheme is as accurate as the standard Galerkin

formulation with sufficiently refined meshes, and/or as oscillation free as the mono-

tonic classic upwinding approach. This test is applied to two generic two-dimensional

convection-diffusion examples and used to explain the solution behaviors with vari-

ous discretizations.

2 One-Dimensional Model

For the one-dimensional convection-diffusion model, the governing differential equa-

tion can be written as follows:

dO d20

-o

with the boundary conditions

0 = 0 at x=O

0 = 1 atx=l

where c_ is the thermal diffusivity and v is the prescribed velocity.

Although Eq. (1) is a simple constant coefficient ordinary differential equation

with the exact solution 0 - (evx/c'- 1)/(e v/a- 1), we recognize that the basic

observations of discretization procedures are applicable to the solution of multi-



dimensional cases and to the Navier-Stokes equations. In this paper, we elaborate

the inner relationships among various upwinding schemes with the analogously sim-

ple form of Eq. (1).

The typical/th finite difference equation, with central differencing for both the

convective and diffusive terms, takes the form

V OZ OL V OL

- (_+ X)0___+ 2X0_+ (_- _)0_+_- 0 (2)

where h denotes the mesh size. The oscillatory nature of Eq. (2), when the element

Peclet number Pe e - vc_/h > 2, has been widely reported. To illustrate the remedy

designed by Courant et al. [2], we assume without loss of generality that v is positive.

If we discretize the convective term with a backward Euler scheme (a so-called

classical upwinding scheme), we arrive at the following ith equation

c_)Oi_l+ (v + 2 c_- (_+ X X)o_-Xo_+_- o. (a)

Using Eq. (3), the oscillatory solution behavior is no longer present. It is not

difficult to identify that in order to get Eq. (3), we, in fact, add an artificial diffusivity

to Eq. (2),

v (O__x- 20_+ 0_+x) (4)2

and Eq. (3) corresponds to a modified problem

dO vh d20

__ - (_+ -7)_. (5)

The control volume finite element method is a rather straightforward approach

for this one-dimensional problem. The/th equation corresponds to satisfying the



dO

equilibrium of the flux v_ - a_x for the/th control volume between the stations

i- 1/2 and i + 1/2. In the standard control volume method (without upwinding),

with

_i-_/_- (_i+_i-_)/2 (6)

_i+l/2- (9i+6;i+1)/2 (7)

we find that the/th equation is exactly the same as Eq. (2); while in the control

volume method with upwinding, assuming v is positive, with

_i-_/2 - _i-1 (8)

0i+_/2 - Oi (9)

we obtain Eq. (3). Note that, in both cases (with and without upwinding), we apply

_ = (_ioi_)/h (lO)dx [i-_/2 - 1

dxdOIi+l/2 = (0i+1 -- Oi)/h. (11)

In the standard Galerkin finite element formulation, the same trial functions are

employed to express the weighting and the solution. However, in principle, different

functions may be used in the variational formulation. The modified weight function

in the SUPG method includes a first derivative term and can be written, in the

one-dimensional case as

- v_h dSO
5_- 5_-_ 2 dx (12)



where ( is a parameter to be adjusted. For a typical two-node element, we obtain

the following stiffness matrix:

K,- -2+(h+ ) 2-(h+ )

2 (X+ ) + )
from which, after the element assemblage, the/th equation becomes

v a __ c_ v a __- (_ + (_ + ))0,__ + (2_ + v_)O, + (_ - (X + ))0,+_ - O. (14)

We note that with _ - 0, the standard Galerkin finite element equation is

recovered; when _ - 1, the classic upwinding scheme is obtained. In particular,

for this one-dimensional model problem, ( can be evaluated such that nodal exact

values are obtained for all values of Pe _,

2 (15)sc- coth( 2 ) Pe*'

An ad hoc generalization is applied to multi-dimensional elements based on di-

rectional Peclet numbers. In the numerical implementation of Eq. (15), doubly

asymptotic approximations or critical approximations are often used:

Pe*/6 -6_ Pe __< 6- sgn(Pe e) IPeel > 6

or

I -1 - 2/Pe e Pe e < -1

_- 0 -1 <Pe* < 1
1 - 2/Pe* Pe _ > 1.

In fact, Eq. (14) represents a general form of upwinding schemes for this one-

dimensional model problem, for example, the Galerkin least squares method results

in the same _cas in Eq. (15). With Eq. (15), Eq. (14) becomes equivalent to Eq. (3),

in the hyperbolic limit as a --+ 0.
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Figure 1' One-dimensional discretization of the convection-diffusion equation with
a bubble function (hi- 1/2- x/h, h2 1/2 + x/h, and h,3- 1- 4x2/h2).

If we consider the type of elements shown in Fig. 1, it is not difficult to prove

that the bubble function ha, in essence, introduces an artificial diffusivity with

_ - vh/6c_ (this magic number is in fact the same as in the doubly asymptotic

approximation of the SUPG method). A comprehensive mathematical study of the

general connection between the standard Galerkin method with bubble functions

and the SUPG method is available from Brezzi et al. [10].

To study the stability of Eqs. (2), (3), and (14), we solve the corresponding

constant-coefficient homogeneous difference equations. Assume 0_ - aG i with the

exponent i; we have for Eq. (14), the following quadratic characteristic equation,

- ([ + (X+ ))+ (2X+_)a + ([ - (X+ ))a'-- 0 (16)
with two roots

G1 = 1

G2 _
_/h- (_- _)/2

In the standard Galerkin finite element method, or the central difference method

(( - 0), since G2 < 0, if Pe _ > 2, it is obvious that the solution of Eq. (2) contains

oscillations; in particular, if c_ -+ 0, i.e., G2 --+ -1, we observe the sawtooth pro-

file (similar to the checkerboard pressure modes for incompressible analyses [17]).



Furthermore, we notice that the coefficient matrix based on Eq. (2), satisfying the

consistency of course, is not diagonally dominant for Pe e > 2. In the classical up-

winding method (_ - 1), G2 is always positive for all Pe e, and the coefficient matrix

based on Eq. (3) is diagonally dominant (though not strictly diagonally dominant).

Therefore, the solution of Eq. (3) does not contain non-physical oscillations.

It is also interesting to point out that if 0 < _ < l, for Pe e > 2/(1 - _), the so-

lution retains oscillations and the corresponding coefficient matrix is not diagonally

dominant.

3 General Convection-Diffusion Model

To introduce finite element approximations in multi-dimensional cases, we consider

the homogeneous convection-diffusion problem

v. v0 - v. (_v0)+f in a (_s)

0 -- 0 on F (19)

where for the bounded n-dimensional domain f_ C 7_n with a Lipschitz continuous

boundary I', the given data are the source function f, the velocity field v with

V. v - O, and the diffusivity oz. With the following Sobolev space:

H 1o,_(a)- {o oEn_(a), ol_- o}

the standard variational form of Eq. (18) can be defined as:

Find 0 E V- H xo,r(_) such that

(v. vo, 5o)+(_vo,vao) - (f,ao), vaoEv (20)

8



where 

(v l ve, se> = 

s 

6evmvedS2, (ave,vbe) = s av6847edS2; 
0 s2 i- (f,se) = / sefdci. 
n 

Given a sequence of finite dimensional subspaces Vj c V, we can obtain the 

following finite dimensional approximation: 

where h is the mesh size parameter indicating the length of the side of a generic 

element or the diameter of a circle encompassing that element [18]. Moreover, we 

can derive from Eqs. (20) and (21) the relation 

To establish an error estimate, we employ 

that (refer to Appendix A) 

Define Ihe as the interpolation function of 8, i.e., an element in vh that, at the 

finite element nodes, has the exact value of the unknown solution 8 and geometrically 

corresponds to a function close to 8; we obtain the estimates of the interpolation 

errors, 

(0 - IheiO,fl - < w+l[(qk+l 

10 - Ih$n _ < Gh”llqk+1 

(24) 

(25) 

9 



where Cr and Cz are constants independent of h, and k is the order of interpolation 

functions [18] [19]. 

Let US choose 6& = 0h - Ihe, and apply Eqs. (22) and (23); we obtain, based on 

I the Cauchy-Schwarz inequality (refer to Appendix B) the estimate 

< (8 - Ihell, + - - ‘lvll (8 - IheI(- 
cl! (26) 

Therefore, an error estimate is established in the semi-norms of IT& of the form 7 

10 - ehll,Q 5 (8 - Ih@~l,n + leh - Ihell,n 

< - 2ie - Ihell$ + - ‘lvll le - Ihelo,n 
cl! (27) 

< (2C2 + - clh”v”)hk(lel~~+l. 
cl! 

Note that, if Q! _I) 0, the inequality (27) does not yield convergence; however, for 

a finite a, with a sufficiently refined mesh h /v O(Q), the inequality (27) guarantees 

the convergence of oh to 8. In fact, all upwinding schemes introduce the notion of an 

artificial diffusivity CY*; for instance, in the classic upwinding scheme, the artificial 

diffusivity a* = C~llv~~h, and we have, with Q! + 0, 

10 - ehil,R 5 (2c2 + ~)h”llBl~k+b (28) 

In general, the monotonic and often over dijfusive classical upwind scheme with 

O(h) can be written in the form 

(V . v@h, 6eh) + ((a + qlvllh)Veh7 v&oh) = (f, @h), vbeh E vh (29) 

while the non-monotonic and not too diffusive SUPG formulation can be written as 

10 



= (f,5o_)+E(f, _*' vso_), vso_Ev_ (30)
Fte

where_-- 211vi[and the element subdomain _ satisfies U f2_- _ and _ f2,- ®.
¢ 6

4 Proposed Numerical Tests

We recognize that to completely eliminate non-physical oscillatory solutions, we need

to use monotonic schemes. Nevertheless, in order to achieve high-order accuracy for

all ranges of finite diffusivities, upwinding schemes should approach the standard

Galerkin formulation with sufficiently refined meshes. Although many of the up-

winding schemes work well for selected examples, it is often the case that, in solving

practical problems with distorted meshes, the stability and accuracy of such formu-

lations need to be verified. The proposed numerical test in this paper will be used to

compare any given upwinding scheme (in this paper, we select the SUPG formula-

tion as an example) with two limit cases, i.e., the classical upwinding schemes (such

as the Schneider and Raw scheme [t5]for two-dimensional cases, and the Courant's

scheme [2] for one-dimensional cases), and the standard Galerkin formulation. In

order to measure the difference between a given upwinding scheme and the standard

Galerkin formulation with a finite diffusivity, we construct the following semi-norms'

where the superscripts c and g stand for the solutions of a given upwinding scheme

and the standard Galerkin formulation, respectively. It is noteworthy that we can

use the same approach to compare any given upwinding scheme with the SUPG

11



method. In addition, to estimate the oscillatory behaviors, a generic eigenvalue test

is designed to check whether the coefficient matrix is diagonally dominant for the

hyperbolic limit.

Although numerical tests are not as a_rmative as analytical proofs, in practice,

a properly designed numerical evaluation is very likely to be effective. Similar ideas

are used when analytical evaluations are not achieved in the studying of incompatible

displacement formulations, the effects of element geometric distortions, and, most

recently, the inf-sup condition of incompressible analyses. The following steps are

designed in the proposed numerical test:

1) Loop every row of the assemblaged coefficient matrix and select the rows sat-
N

isfying _ Kij - 0, where N is the number of nodal unknowns and Kij stands for
j=l

the ijth element of the matrix;

2) Check whether the selected rows (assume N_ such rows) are diagonally domi-

nant;

3) If the selected rows are not diagonally dominant, check whether or not the ratio

Fd -- _ f2 approaches 1, as oz_ O, where fi -IK_il/ Z IKi l;
i--1 j--l,j_i

4) Normalize the coefficient matrix, for every 1 __ i _ N, K_j - Kij/max_=_(Kij),

and calculate th e maximum and minimum moduli of the eigenvalues of the normal-

ized matrix; and

5) Select a proper finite value of diffusivity (Pe e __ O(1)), and study the rate of

convergence of the semi-norms defined in Eqs. (31) and (32) with a proper sequence

of meshes (the finer meshes shouldcontain the coarser meshes).

Step 1 is used to separate the boundary effects from the upwinding scheme,

whereas Steps 2, 3 and 4 are designed to evaluate whether or not the given up-

12



winding scheme is monotonic for the hyperbolic limit. It is known that with a

finite diffusivity, at best, different upwinding schemes can converge as fast as the

corresponding standard Galerkin formulation, provided a sufficiently refined mesh

is taken. Therefore, Step 5 is introduced to evaluate the accuracy of the given

upwinding scheme by comparing it with the standard Galerkin formulation.

In this paper, we study the SUPG, the Schneider and Raw, and the standard

Galerkin methods for the solution of two generic two-dimensional examples illus-

trated in Fig. 2.

In the diagonal flow problem, the flow is uniform (vi - 1.0 and v2 - 1.0)

in the diagonal direction; while in the rotating cosine hill problem, the flow is

rotational (vi - -x2 and v2 - xl). Figures 3 and 4 give the typical results from the

standard Galerkin, SUPG, and Schneider and Raw formulations. It is clearly shown

that the SUPG formulation retains spatial oscillations, while the Schneider and

Raw scheme performs perfectly well for the diagonal flow problem but introduces

excessive diffusion in the rotating cosine hill problem. This crosswind diffusion, of

course, decreases as the mesh is refined.

The results in Figs. 5 and 6 show the changes in the diagonal and off-diagonal

ratio Fd. It is not surprising to find that in the Schneider and Raw scheme, F_ - 1

holds for all ranges of finite diffusivities, which means the solutions are smooth

and monotonic. In addition, Figures 5 and 6 indicate that the standard Galerkin

formulation gradually loses the diagonal dominance as the diffusivity approaches

zero, and that the SUPG method, with F_ _ 1, should produce solutions between

the two limit cases. Of course, the distribution of 1 - fi, corresponding to the nodal

unknown _i, implies possible non-physical spatial oscillations along node i.

The rates of convergence of the 1-norm and 0-norm defined in Eqs. (31) and (32)

13



are shown in Figs. 7 and 8. It is not difficult to infer that the SUPG method has

higher accuracy than the Schneider and Raw scheme, although the latter provides

smoother solutions.

Figures 9 and 10 give the results of the proposed normalized eigenvalue problem

with different diffusivities, whereas Figures 11 and 12 show the standard eigenvalues

of the coefficient matrix. Note that with the normalization of the coefficient matrix,

the lowest and highest moduli of the eigenvalues of the SUPG method are between

the results of the standard Galerkin formulation and the Schneider and Raw scheme;

however, the standard eigenvalues do not exhibit such relationships. It is obvious

that Figures 9 and 10 match well with Figures 5 and 6, and that the normalized

eigenvalue test again measures the likelihood of non-physical spatial oscillations.

5 Conclusion

It is possible to improve upwinding schemes, although for convection-diffusion prob-

lems, it appears that there is always a trade-off between the order of accuracy and

stability. We conclude that the numerical evaluation proposed in this paper may be

of important value with respect to determining the advantages and disadvantages

of any upwinding discretizations and may eventually help in the development of

optimal upwinding schemes. The proposed cheaply computable and very effective

numerical test compares with two extreme cases (with and without distorted ele-

ments)' firstly, the monotonic classical upwinding approach for the hyperbolic limit,

and secondly, the standard Galerkin formulation with a finite diffusivity.

Along with the diagonal and off-diagonal ratio convergence test, the proposed

normalized eigenvalue problem will help to identify whether or not a given upwinding

scheme is monotonic. The convergence of two proposed semi-norms can be used to

14



evaluate the accuracy of given upwinding schemes. For the coefficient matrices 

derived from specific approaches such as wavelets and other interpolation functions, 

this numerical test is still applicable. 
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Figure 2' Two convection-dominated heat transfer problems.
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Figure 3: Solutions of the diagonal flow problem (c_ - 10-8).
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Figure 4: Solutions of the rotating cosine hill problem (c_- 10-8).
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Figure 9' The results of the proposed normalized eigenvalue test of the diagonal
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Figure 10' The results of the proposed normalized eigenvalue test of the rotating
cosine hill problem.
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Figure 11: The results of the standard eigenvalue test of the diagonal flow problem. 
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Figure 12: The results of the standard eigenvalue test of the rotating cosine hill 
problem. 
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Appendix A

Since 5Onis zero on F and V. v- 0 in f2, it follows that

(v- VdOn, dOn) - f dOhv. VdOndf2
f_

2'
f_

2
f_

_ f ,oX ,oX- --_-v. ndF - f -TV. v df2
F $2

---- 0.

Therefore, Eq. (23) holds based on the semi-norm definition

[01m,Ft- ( Z f [oko[ 2 d["_) 1/2' (A.2)
[k[-mf_

Appendix B

Substituting 5Oh-Oh- IhO into Eqs. (22) and (23), we have

(v-V(O - 0h), Oh- IhO)+ (c_V(0 - Oh),V(0h - IhO)) -- 0 (B.1)

and

_[oh- zh01_,_- (_v(0h- z_0),V(0h- zh0))- (v· v(0h- zh0),0_- z_0).(B.2)

The first term in Eq. (B.1) can be rewritten as follows'
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fl

= f v. (v(O- o_)(o_- _o))_a
fl

- f(o_- z_o)(o- o_)v. ,_a_ (B.a)
$2

f_

= -(v. v(o_- _r_o),o- o_)

and therefore, combining Eqs. (B.1), (B.2) and (B.3)yields

_1o_- z_ol_,_- (_v(o - z_o),v(o_- z_o))- (v. v(o_- z_o),o- z_o). (B.4)

Then, the inequality (26) can be derived by using the Cauchy-Schwarz inequality
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