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Overview: Motivations and Setting

o Motivation: understand charge transport in interacting systems
e Setting: interacting electrons on the honeycomb lattice.
Why the honeycomb lattice?

© Interest comes from graphene and graphene-like materials =
peculiar transport properties, growing technological applications

@ Interacting graphene is accessible to rigorous analysis =
benchmarks for the theory of interacting quantum transport

e Model: Haldane-Hubbard, simplest interacting Chern insulator.

Several approximate and numerical results available.
Very few (if none) rigorous results.
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Overview: Results

o Results: at weak coupling, we construct the topological phase
diagram of the Haldane-Hubbard model. In particular:
@ we compute the dressed critical line
@ we construct the critical theory on the critical line
© we prove quantization of Hall conductivity outside the critical line
@ we prove quantization of longitudinal conductivity on the critical line

e Method: constructive Renormalization Group —+
+ lattice symmetries + Ward Identities + Schwinger-Dyson
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Graphene

Graphene is a 2D allotrope of carbon: single layer of graphite.

First isolated by Geim and Novoselov in 2004 (Nobel prize, 2010).

Graphene and graphene-like materials have unusual, and remarkable,
mechanical and electronic transport properties.

Here we shall focus on its transport properties.
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Graphene

Peculiar transport properties due to its unusual band structure:

e at half-filling the Fermi surface degenerates into two Fermi points

e Low energy excitations: 2D massless Dirac fermions (v ~ ¢/300) =
‘semi-metallic’ QED-like behavior at non-relativistic energies
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Minimal conductivity

Signatures of the relativistic nature of quasi-particles:

@ Minimal conductivity at zero charge carriers density.
Measurable at T' = 20° C from t(w) = W
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Anomalous QHE

© Constant transverse magnetic field: anomalous IQHE.
2
Shifted plateaus: 12 = 45 (N + 1):
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QHE without net magnetic flux

© Another unusual setting for IQHE with zero net magnetic flux:
proposal by Haldane in 1988 (Nobel prize 2016). Main ingredients:

e dipolar magnetic field = n-n-n hopping 2 acquires complex phase
e staggered potential on the sites of the two sub-lattices

(NT)

33ty

Bgadh [HD)

—3/3t2

- —n/2 0 /2 ™

Phase diagram (predicted...) (... and measured, Esslinger et al. ’'14)
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Theoretical understanding

These properties are well understood for non-interacting fermions. E.g.,

o QHE: let P, = x(H < p) = Fermi proj. If E|P,(z;y)| < Ce~lz=¥l,
i.e., u € spectral gap, or p € mobility gap:
ie? e?
o12 = ?TrP#[[Xl,Pu], [Xo, P,]le 7 W/
(Thouless-Kohmoto-Nightingale-Den Nijs ’82, Avron-Seiler-Simon 83, '94,
Bellissard-van Elst-Schulz Baldes 94, Aizenman-Graf ’98...)

e Minimal conductivity: gapless, semi-metallic, ground state.
Exact computation in a model of free Dirac fermions
(Ludwig-Fisher-Shankar-Grinstein ’94),
or in tight binding model (Stauber-Peres-Geim *08).
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Effects of interactions?

What are the effects of electron-electron interactions? In graphene,
interaction strength is intermediate/large:

2
e
a=—n~22
hv
and has visible effects on, e.g., the Fermi velocity.
But: no effects on conductivities! Why?

o QHE. Folklore: interactions do not affect o192 because it is
‘topologically protected’. But: geometrical interpretation of
interacting Hall conductivity is unclear.

e Minimal longitudinal conductivity: no geometrical interpretation.
Cancellations due to Ward Identities? Big debate in the graphene
community, still ongoing (Mishchenko, Herbut-Jurigié-Vafek, Sheehy-

-Schmalian, Katsnelson et al., Rosenstein-Lewkowicz-Maniv ...)
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Rigorous results, I

In 2009, we started developing a rigorous Renormalization Group
construction of the ground state of tight-binding interacting
graphene models.
@ Short-range interactions: analyticity of the ground state
correlations Giuliani-Mastropietro '09, "10

@ Coulomb interactions: proposal of a lattice gauge theory model,
construction of the g.s. at all orders, gap generation by
Peierls’-Kekulé instability Giuliani-Mastropietro-Porta 10, '12

@ Longitudinal conductivity w. short-range int.: universality of the
minimal COHdUCtiVity Giuliani-Mastropietro-Porta 11, ’12

@ Transverse conductivity w. short-range int.: universality of the
Hall conductivity, with U <« gap Giuliani-Mastropietro-Porta 15

Today: Universality of 012 (up to the critical line) and of 17 (on the
critical line) in the weakly interacting Haldane-Hubbard model.
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Rigorous results, II

Previous results on quantization of Hall cond. in interacting systems:

Consider clean systems, and assume that 3 gap above the interacting
ground state (unproven in most physically relevant cases).

@ Frohlich et al. ’91,... Effective field theory approach: gauge theory
of phases of matter. Quantization of the Hall conductivity as a
consequence of the chiral anomaly.

@ Thm: Hastings-Michalakis '14. Gapped interacting fermions on a 2D

lattice, geometrical formula for o1o in terms of N-body projector.

62

O12 =41 + (exp. small in the size of the system)

No constructive way of computing n. E.g., the result does not
exclude n = n(size).

Note: our method: no topology/geometry, no assumption on gap:
decay of interacting correlations + cancellations from WI and SD.
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The lattice and the Hamiltonian

+ +

Figure: Dimer ~ (a3, by ,)-

e Hamiltonian: H = Hy + UV, where
Ho = n.n. + complex n.n.n. hopping + staggered potential — u/N

A A B , B
V=) (ngpngy +nppng)
X
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Conductivity

@ Finite temperature, finite volume Gibbs state (eventually, 5, L — c0):

_ Tr . e PH

<->57L - ZB,L

e Conductivity defined via Kubo formula (e? = h = 1):

. 0
oi; = lim 3(/ dte™ ([ethJie*th,jj])oo - ([Z;,Xﬂ)oo)

n—0t 1N —o0

z,0

where: X =3 (znZ, + (z + 01)n ) = position operator and

J =i[H, X] = current operator, (Yoo = lim L7*()g 1.
B,L—o0

@ Kubo formula: linear response at t = 0, after having switched on
adiabatically a weak external field e E at t = —oo
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o N.n. hopping: t;

e N.n.n. hopping:
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The model and the main results

The non-interacting Hamiltonian (Haldane model)

@ Haldane '88. N.n. + complex n.n.n. hopping + staggered potential —uN
Hy = tlz laf gby o+ af by o+ ad b, 4 hec]

2T T [l sy + B ]

zr,0 a==+
j=12,3

+WZ aw,aa’;,a w(r a;o _:U’Z z(r zo b:—;obza]

o N.n. hopping: t;

e N.n.n. hopping:
tae’® (black), toe ™™ (red).
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The non-interacting Hamiltonian (Haldane model)

@ Haldane 88. N.n. + complex n.n.n. hopping + staggered potential —uN
Mo = 01y |ad by, +al by, ,+al,by_,  +hc]
x,0

2y D [ 0, 0 T € by, o]

+W Z [a’;o’a’;a - b;r,ob;:,a] —H Z [a;;r,oa;,a + b;a'b;,a]
x,o
o Gapped system. Gaps:

Ay =|my], mg= W+3V/3t, sin ¢.

= “mass” of Dirac fermions.
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Non-interacting phase diagram

o If U =0, u is kept in between the two bands, and my # 0:

2¢? 1
o1 = =V, v= §[sgn(m,) —sgn(m4 )]
: v=20
33ty o
W o

—3\/§t2 i u(;)()
|- T |- |
—7 —m/2 0 /2 ks

¢

@ Simplest model of topological insulator.

Building brick for more complex systems (e.g. Kane-Mele model).
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Phase transitions in the Haldane-Hubbard model

Theorem (Giuliani, Jauslin, Mastropietro, Porta 2016)

There exists Uy > 0 and a function (“renormalized mass”)
MRw =My + Fu(me;U)  where F,=0U), w==

such that, for U € (=Uy, Uy), choosing p = p(my;U):
e? .
019 = ﬁ[sgn(mg_) —sgn(mp +)], if mpy #0,

e .
mR,w=0 = EZ’ if MR,—w 7é 0.

cr o ..
oy = 0'”|
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There exists Uy > 0 and a function (“renormalized mass”)
MRw =My + Fu(me;U)  where F,=0U), w==

such that, for U € (=Uy, Uy), choosing p = p(my;U):

2
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There exists Uy > 0 and a function (“renormalized mass”)
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Phase transitions in the Haldane-Hubbard model

Theorem (Giuliani, Jauslin, ropietro, Porta 2016)

There exists Uy > 0 and a function (“renormalized mass”)
MRw =My + Fu(me;U)  where F,=0U), w==

such that, for U € (=Uy, Uy), choosing p = p(my;U):

2
6 .
o192 = ﬁ[sgn(mg_) —sgn(mp4)], if mps #0,
e’ )
o5 = O-ii|me:0:ﬁZ7 if mp_o#0.

Remarks:
@ mp 4+ = 0: renormalized critical lines.
o If mpy =mpr_=0= 0 =(e?/h)(n/2). Same as interacting graphene:
Giuliani, Mastropietro, Porta '11, "12.

@ For each w = =%, unique solution to mpg,, = 0 (no bifurcation).
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Renormalized transition curves

3/3to

—3V/3t2

| I R T L
— —7/2 0 /2 ™

@ Away from the blue curve the correlations decay exponentially fast.

On the blue curve the decay is algebraic = chiral semi-metal.
@ Repulsive interactions enhance the topological insulator phase

@ We rigorously exclude the appearance of novel phases in the vicinity of
the unperturbed critical lines.
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Step 1: We employ constructive field theory methods (fermionic
Renormalization Group: determinant expansion, Gram-Hadamard
bounds, ...) to prove that:

o the FEuclidean correlation functions are analytic in U,
uniformly in the renormalized mass, and decay at least
like [x|~2 at large space-(imaginary)time separations.
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Main strategy, I

Step 1: We employ constructive field theory methods (fermionic
Renormalization Group: determinant expansion, Gram-Hadamard
bounds, ...) to prove that:

o the FEuclidean correlation functions are analytic in U,

uniformly in the renormalized mass, and decay at least
like [x|~2 at large space-(imaginary)time separations.

The result builds upon the theory developed by Gawedski-Kupiainen,
Battle-Brydges-Federbush, Lesniewski, Benfatto-Gallavotti, Benfatto-Mastropietro,
Feldman-Magnen-Rivasseau-Trubowitz, ..., in the last 30 years oOr so.
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Main strategy, I

Key aspects of the construction:

@ the critical theory is super-renormalizable, with
scaling dimension 3 —n,, (as in standard graphene)

e lattice symmetries constraint the number and structure of the
relevant and marginal couplings.

Renormalized propagator: if pp = (2—“ 3\f) with w = &+,

S'Q(k()uﬁ%{ + E/) =

. ’L'k‘()ZLR’w — MRw I)R,w(—ikll + wké)
VR w(ik] +wky)  ikoZ2 Rw + MR W

-1
) (1+ R(ko, k"))

where:
o R(kg,k'): subleading (‘irrelevant’) error term

o the effective parameters are given by convergent expansions
° ‘Zl,R,w # ZZ,R,w‘
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Step 2: Combining the existence of the g.s. euclidean correlations with
a priori bounds on the correlation decay at complex times t € CT,
we infer the analyticity of correlations for ¢ € CT (via Vitali’s theorem)
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Main strategy, II

Step 2: Combining the existence of the g.s. euclidean correlations with
a priori bounds on the correlation decay at complex times t € CT,
we infer the analyticity of correlations for ¢ € CT (via Vitali’s theorem)

Next, using the (Re t)~2 decay in complex time, we perform a
Wick rotation in the time integral entering the definition of ¢;;(U):
the integral along the imaginary time axis is the same as the one
along the real line



Sketch of the proof

Main strategy, II

Step 2: Combining the existence of the g.s. euclidean correlations with
a priori bounds on the correlation decay at complex times t € CT,
we infer the analyticity of correlations for ¢ € CT (via Vitali’s theorem)

Next, using the (Re t)~2 decay in complex time, we perform a

Wick rotation in the time integral entering the definition of ¢;;(U):
the integral along the imaginary time axis is the same as the one
along the real line or, better, as the limit of the integral along a path
shadowing from above the real line. Existence and exchangeability of
the limit follows from Lieb-Robinson bounds.
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Main strategy, III

Step 3: The universality of the Euclidean Kubo conductivity is studied
by using lattice Ward Identities in the (convergent, renormalized)
perturbation theory for o;;(U), and by combining them with:

@ a priori bounds on the correlations decay;
e the Schwinger-Dyson equation;

o the symmetry under time reversal of the different elements of o;;.

The general strategy is analogous to [Coleman-Hill *85]: “no corrections beyond
1-loop to the topological mass in QED241.”
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Conclusions and outlook

@ We discussed the transport properties of interacting fermionic systems on
the hexagonal lattice. In particular: Haldane-Hubbard model.

@ We presented results about:
e construction of the ground state phase diagram and correlations at
weak coupling, in cases where U > gap,

e quantization of the transverse and longitudinal conductivities up to,
and on, the renormalized critical line.

Tools: rigorous fermionic RG (determinant expansion, Gram-Hadamard bounds),
lattice symmetries, Ward identities, Schwinger-Dyson equation,
Lieb-Robinson bounds.

@ Open questions:

e Spin transport in time-reversal invariant 2d insulators
(e.g., interacting Kane-Mele model)?

e Interacting bulk-edge correspondence?

o Effect of long-range interactions (e.g., static Coulomb)?
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Thank you!
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