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Yılmam and Fatih Çağlayan. No words can express my gratitude for their unconditional

love and support, which made this thesis and any other accomplishment I have in life

possible.



ACKNOWLEDGEMENTS

First and foremost, I want to thank my thesis advisor Dr. Turgay Ayer for his personal

and professional support, guidance, and mentorship during my doctoral studies. In addi-

tion, I want to acknowledge Dr. Mustafa Sir, Dr. Yunan Liu, and Dr. Christopher Flowers

for their contributions to my learning and development. Finally, I want to thank to the

members of my thesis committee Dr. Pinar Keskinocak, Dr. Paul Griffin, and Dr. Siva

Theja Maguluri.

A manuscript related to Chapter 1 was submitted to the journal Operations Research

and is currently under revision. The name of the manuscript that is under revision is “As-

sessing Multi-Modality Breast Cancer Screening Strategies for BRCA 1/2 Gene Muta-

tion Carriers and Other High-Risk Populations”. A manuscript related to Chapter 2 was

submitted to the journal Management Science. The name of the submitted manuscript is

“Physician Staffing in Emergency Rooms (ERs): Opening the Black-box of ER Care via

a Multi-Class Multi-Stage Network”. A manuscript related to Chapter 3 was published

by the journal Cancer. The name of the published manuscript is “A population-based

multistate model for diffuse large B-cell lymphoma-specific mortality in older patients”. A

manuscript related to Chapter 3 was published by the journal Clinical Lymphoma, Myeloma

& Leukemia. The name of the published manuscript is “Assessing the Effectiveness of

Treatment Sequences for Older Patients With High-risk Follicular Lymphoma With a Mul-

tistate Model”.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1: Optimal Breast Cancer Screening Strategies for Women at High-
Risk for Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Disease Progression Model . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Optimization Model for Multi-modality Breast Cancer Screening . . 15

1.4 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Data and Parameter Estimations . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1 Results for Young (25-44 Year Old) Women . . . . . . . . . . . . . 28

1.6.2 Results for Middle-Aged (45-74 Year Old) Women . . . . . . . . . 29

1.6.3 Results for Elderly (75 Year-Old and Older) Women . . . . . . . . 30

1.6.4 The Role of Ultrasound’s Operator Dependency . . . . . . . . . . . 31

vi



1.6.5 Extension of Results to Other High-Risk Groups . . . . . . . . . . 33

1.7 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2: Physician Staffing in Emergency Rooms via a Multi-class Multi-
Stage Queuing Network . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Background: Emergency Room (ER) and ER Physician Staffing
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 A Network Model for ER Care Delivery and A New Staffing Algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.3 Our Approach and Key Contributions . . . . . . . . . . . . . . . . 43

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 A Queuing Theory-based Staffing Approach: Offered-Load Analysis 46

2.2.2 Repetitive Service and Our Key Differences From The Existing Lit-
erature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 A Multi-Class Multi-Stage (MCMS) Network Model for ER Care . . . . . 49

2.4 A Staffing Rule for ED Erlang-C Queues and the MCMS Network . . . . . 51

2.4.1 An Analytic-Formula based Staffing Rule for Efficiency-Driven M/M/s
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 The Use of ED-NoAb Staffing with Time-Varying Arrivals . . . . . 55

2.4.3 The Use of ED-NoAb Staffing for a Network Model with Pooled
Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.1 Performance of ED-NoAb in Mt/G/st Queues under Challenging
Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.2 Multi-Class (m≥1) Multi-Stage (n≥1) Scenarios with Real ER Data 61

2.6 Discussions and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



2.6.1 The MCMS Network and A New Staffing Algorithm . . . . . . . . 71

2.6.2 Practical Routing Rules and The Role of the System Complexity . . 73

2.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 3: Multi-state Survival Analysis for Clinical Decision-Making: Appli-
cations to Follicular Lymphoma and Diffuse Large B Cell Lymphoma 76

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Assessing the Effectiveness of Treatment Sequences for Follicular Lym-
phoma Patients with a Multi-state Model . . . . . . . . . . . . . . . . . . . 77

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.3 Patients, Data Source and Variables . . . . . . . . . . . . . . . . . 78

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 A Population-Based Multi-state Model for Diffuse Large B Cell Lymphoma-
Specific Mortality in Older Patients . . . . . . . . . . . . . . . . . . . . . . 92

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.3 Data Source and Description . . . . . . . . . . . . . . . . . . . . . 95

3.3.4 Results - The General Elderly Population . . . . . . . . . . . . . . 95

3.3.5 Results - The Subpopulation of Patients Receiving First-Line R-
CHOP Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

viii



Chapter 4: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix A: Appendix for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . 110

A.1 Base-Case Analysis: Optimal Age-Specific Screening Strategies . . . . . . 110

A.2 Optimal Screening Strategies with Low US Specificity . . . . . . . . . . . 111

A.3 Numerical Results for BRCA2+ Carriers and Women with Family History . 113

A.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.4.1 Sensitivity Analysis - Cost Function . . . . . . . . . . . . . . . . . 117

A.4.2 Sensitivity Analysis - Disutility Function . . . . . . . . . . . . . . 119

A.5 Proofs of Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.5.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . 122

A.5.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . 129

A.5.3 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.5.4 Proof Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.5.5 Proof for Theorem 1.A . . . . . . . . . . . . . . . . . . . . . . . . 136

A.5.6 Proof for Theorem 1.B . . . . . . . . . . . . . . . . . . . . . . . . 137

A.6 Intermediate Rewards and Disutility Function . . . . . . . . . . . . . . . . 139

A.6.1 Disutility Associated with Screening uscrt (s, a) . . . . . . . . . . . 141

A.6.2 Disutility Associated with Biopsy ubiot (s) . . . . . . . . . . . . . . . 142

Appendix B: Appendix for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 143

B.1 Overview of Existing Asymptotic Staffing Rules . . . . . . . . . . . . . . . 143

B.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.3 Numerical Results: TPoD Graphs . . . . . . . . . . . . . . . . . . . . . . 147

ix



Appendix C: Appendix for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 154

C.1 Assessing the Effectiveness of Treatment Sequences for Follicular Lym-
phoma Patients with a Multi-state Model . . . . . . . . . . . . . . . . . . . 154

C.2 A Population-Based Multi-state Model for Diffuse Large B Cell Lymphoma-
Specific Mortality in Older Patients . . . . . . . . . . . . . . . . . . . . . . 158

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

x



LIST OF TABLES

1.1 Simulation-based Studies on Breast Cancer Screening for High-risk Popu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Cost of Screening Modalities and Biopsy . . . . . . . . . . . . . . . . . . . 25

1.3 Sensitivity (Left Table) and Specificity (Right Table) of Modalities . . . . . 25

1.4 Breast Cancer Data and Sources . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Optimal First Ten-year Strategies for 75- and 85-Year Old BRCA1+ High-
risk Women . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Optimal Strategies for 25-, 55- and 75- Year Old BRCA1+ Women with
Low US Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7 ICER Values of Optimal Screening Strategies for 35-Year Old Women
(When The False-Positive Rates of Ultrasound is High) . . . . . . . . . . . 33

1.8 Screening Strategies for Different High-Risk Groups . . . . . . . . . . . . 34

2.1 Mean Treatment Durations and Subsequent Departure Rates - St. Mary
Hospital, Rochester, MN . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Brief Descriptions of the Static and Dynamic Routing Rules . . . . . . . . 58

2.3 Single-Class Single-Stage Simulation Results for 64 Experiments . . . . . . 61

2.4 Parameters for the Single-Class Cases with ESI 2, ESI 3 and ESI 4 Popula-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Multi-Class Multi-Stage Numerical Experiments Summary . . . . . . . . . 69

3.1 Median Overall Survival (OS) Duration from the Initiation of Treatment . . 83

xi



3.2 The Impact of R-CHOP on Mortality as a First-, Second- or Third-line
Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Percentage of Deaths within 24 months of First-line Treatment . . . . . . . 84

3.4 Patient Characteristics at Diagnosis . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Multivariable Cox Regression Models for DLBCL Patients . . . . . . . . . 97

3.6 Multivariable Cox Regression Models for First-Line R-CHOP Patients . . . 98

A.1 Optimal Ten-year Strategies for 35 Year-old BRCA1+ Women . . . . . . . 110

A.2 Optimal Ten-year Strategies for 45 Year-old BRCA1+ Women . . . . . . . 110

A.3 Optimal Ten-year Strategies for 65 Year-old BRCA1+ Women . . . . . . . 111

A.4 Optimal Strategies for 35 Year-old BRCA1+ Women with Low US Specificity111

A.5 Optimal Strategies for 45 Year-old BRCA1+ Women with Low US Specificity112

A.6 Optimal Strategies for 65 Year-old BRCA1+ Women with Low US Specificity112

A.7 Optimal Strategies for 35 Year-old Women with BRCA2+ and Family History113

A.8 Optimal Strategies for 45 Year-old Women with BRCA2+ and Family History114

A.9 Optimal Strategies for 55 Year-old Women with BRCA2+ and Family History115

A.10 Optimal Strategies for 65 Year-old Women with BRCA2+ and Family History116

A.11 Optimal Strategies for 75 Year-old Women with BRCA2+ and Family History117

A.12 Cost Range of Screening Modalities and Biopsy . . . . . . . . . . . . . . . 118

A.13 Robust Strategy Modifications due to Changes in Cost . . . . . . . . . . . . 118

B.1 Asymptotic Staffing Rules with Associated Staffing Levels and Performance
Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.1 Patient Characteristics for First-Line Treatments . . . . . . . . . . . . . . . 154

xii



C.2 Multivariable Analyses via Cox PH Regression Models . . . . . . . . . . . 155

C.3 State Occupation Probabilities over Time for First Line Treatments . . . . . 156

C.4 The List of R-Other Therapies in the SEER-Medicare Dataset . . . . . . . . 156

xiii



LIST OF FIGURES

1.1 Breast Cancer Progression with or without Screening . . . . . . . . . . . . 13

1.2 The Range of the Screening Strategies for 45-year old High-Risk Women . 23

1.3 Optimal Screening Strategies for 25-Year Old BRCA1+ Women . . . . . . 29

1.4 Optimal Screening Strategies for 55-Year Old BRCA1+ Women . . . . . . 30

2.1 Average ER Arrivals - St. Mary Hospital, Mayo Clinic, Rochester, MN
(Jan. 2014 - Dec., 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Canadian Triage and Acuity Scale Guidelines: Patient-Class Specific TPoD
Type Service Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Black-box and Multi-Stage Network Models for ER Care Delivery Note:
Treatment and order bundle stations are abbreviated with “Tr” and “OB”,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Patient Flow in the ER from Arrival to Departure . . . . . . . . . . . . . . 49

2.5 A Multi-stage Queuing Network with Four Treatment Stages Note: The
patient class index is suppressed for simplicity. . . . . . . . . . . . . . . . 51

2.6 Network Models for Medical Services Provided by Dedicated vs. Central-
ized ER Physicians/Servers(s) . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Sinusoidal Arrival Rate Function with The Rate λ(t) = 10 + 2sin(t) . . . . . 60

2.8 (Exponential) Service Time Distributions for Treatment Stages 1-3 and ESI
2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.9 Arrival Data of ESI 2, ESI 3, and ESI 4 Patients . . . . . . . . . . . . . . . 62

xiv



2.10 TPoD Graphs for Single-Class Cases with ESI 2, ESI 3 and ESI 4 and 1-,
2-, and 3-Stage Networks - Reduced Staffing = 0.90(ED-NoAb) . . . . . . 64

2.11 TPoD Graphs for Single- and Two-Stage Networks with Multiple (2≤n≤3)
Patient Classes - Reduced Staffing = 0.90(ED-NoAb) . . . . . . . . . . . . 65

2.12 TPoD Graphs for Two-Class Three-Stage Cases with ESI 2 - ESI 3 and ESI
2 - ESI 4 Arrivals - Reduced Staffing = 0.90(ED-NoAb) . . . . . . . . . . 66

2.13 TPoD Graphs for Two-Class Three-Stage Case with ESI 3 - ESI 4 Patients
and Dynamic Routing - Reduced Staffing = 0.90(ED-NoAb) . . . . . . . . 67

2.14 TPoD Graphs for Three-Stage Network with Three Patient Classes under
Hybrid Routing Rules - Staffing: s(t) = ED-NoAb . . . . . . . . . . . . . . 68

2.15 Three-Class Three-Stage Case OL Functions for Treatment Stage 1 or ESI
2 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 A Multistate Model for the Clinical Course of Follicular Lymphoma . . . . 79

3.2 Consort Flow Diagram Reporting the Number of Patients in Each Analysis . 80

3.3 Graph of Occupation Probabilities over Time by First-Line Treatments . . . 82

3.4 Multi-state Models for DLBCL Patients and First-Line R-CHOP Patients . . 94

3.5 Cause-Specific Death and Survival Probabilities for R-CHOP Patients . . . 99

A.1 The Difference Between the Expected Courses of Women with Invasive
Cancer under No Intervention Strategy π and Single-Screen Strategy π′ . . 123

A.2 The Difference Between the Expected Courses of Women with Invasive
Cancer under Single-Screen strategy π and Double-Screen strategy π′ . . . 124

A.3 The QALYs Differences between Biennial-Screen strategy π′ and Double-
Screen strategy π due to Screenings at time t=3, 7, and 9 . . . . . . . . . . 125

A.4 The QALYs Differences between Annual-Screen strategy π′ and Biennial-
Screen strategy π due to Screenings at time t=2, 4, 6, 8, and 10 . . . . . . . 127

A.5 The Difference Between the Expected Courses of Women with Invasive
Cancer under Strategies π and π′ . . . . . . . . . . . . . . . . . . . . . . . 130

xv



A.6 The QALYs Differences between Biennial-Screen Strategies π′ and π due
to Screenings at time t=1, 3, 5, 7, and 9 . . . . . . . . . . . . . . . . . . . . 133

A.7 The QALYs Differences between Annual-Screen Strategies π′ and π due to
Screenings at time t=1, 2, 3, ... and 10 . . . . . . . . . . . . . . . . . . . . 134

A.8 The Clinical Course of Women with Invasive Cancer at time t=1 under
Strategies π and π′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.9 The Clinical Course of Women with Invasive Cancer at time t=6 under
Strategies π and π′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1 TPoD Graphs for Two-Class Three-Stage Case with ESI 3 - ESI 4 Arrivals
and Static Routing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2 TPoD Graphs for Three-Class Three-Stage Case with Hybrid Routing Rules
- Reduced Staffing = 0.90(ED-NoAb) . . . . . . . . . . . . . . . . . . . . 148

B.3 TPoD Graphs for Three-Class Three-Stage Case with Dynamic Routing Rules149

B.4 TPoD Graphs for Three-Class Three-Stage Case with Static Routing Rules . 149

B.5 Mt/G/st Queue Experiments with Mean Service Time = 0.25 Hour . . . . . 150

B.6 Mt/G/st Queue Experiments with Mean Service Time = 0.50 Hour . . . . . 151

B.7 Mt/G/st Queue Experiments with Mean Service Time = 0.75 Hour . . . . . 152

B.8 Mt/G/st Queue Experiments with Mean Service Time = 1.00 Hour . . . . . 153

C.1 Graph of Occupation Probabilities over Time for Second-Line Treatments . 157

C.2 Graph of Occupation Probabilities over Time for Third-Line Treatments . . 157

C.3 Survival and Cause-Specific Death Probabilities for Initial Treatments . . . 158

C.4 CONSORT Flow Diagram Reporting the Number of Patients . . . . . . . . 159

xvi



SUMMARY

This thesis presents three important and complex medical decision-making problems

Çağlar Çağlayan studied during his doctoral studies, describes the analytical methods he

utilized and developed, and discusses the methodological and numerical findings and con-

tributions of his work. The works presented in this thesis make contributions to three

research topics on clinical decision-making under uncertainty: (i) the development of an

optimal multi-modality screening program for women at high-risk for breast cancer, (ii)

the determination of optimal physician staffing levels in emergency department under time-

varying arrivals, and (iii) the study of the clinical course of follicular and diffuse large B

cell lymphomas with the goal of improving treatment outcomes.

In Chapter 1, we study a multi-modality breast cancer screening problem for high-risk

population and identify optimal and cost-effective population screening strategies based

on the imaging technologies that are in widespread use. Women with certain risk factors

such as BRCA 1/2 gene mutations and family history of breast or ovarian cancer are at

significantly higher risk for breast cancer. For these high-risk women, the existing guide-

lines recommend intensified screening starting at an early age, where the use of ultrasound

(US) and magnetic resonance imaging (MRI) might address some of the limitations of

mammography, the standard screening modality for average-risk women. Yet, the cost and

false positive rates of MRI, and the operator dependency of US raise concerns. Currently,

there is no consensus on the optimal use of these technologies in conjunction with, or in-

stead of, mammography in high-risk women. To study this problem, we develop a Markov

model to capture the disease incidence and progression in high-risk women, and formulate

a mixed integer linear program to identify the optimal structured strategies that are practical

for implementation. We further study the structure of the optimal strategies, and establish

the conditions under which a strategy with more frequent but less sensitive screens yields

higher health benefits than a strategy with more sensitive but less frequent screens. Our re-

xvii



sults show that (1) for young women, annual screening with ultrasound, is affordable with

moderate budgets, and optimal over a wide range of budget levels despite its high opera-

tor dependency, (2) for middle-aged women, annual mammography screening is robustly

optimal and cost-effective, and (3) the use of MRI, alone or combined with mammogram,

leads to outcomes that are not cost-effective.

In Chapter 2, we study a physician staffing and an associated patient routing problem

in emergency rooms (ERs) coping with time-varying demand. ERs are complex healthcare

delivery systems, characterized by time-varying unscheduled arrivals, medium-to-long ser-

vice times, high patient volumes, multiple patient classes, and multiple treatment stages.

In such a complex system, optimizing the staffing levels of physicians, the most critical

resources in ERs, is a major challenge. In this work, we study a staffing problem for ER

physicians, and propose a new staffing algorithm that determines the optimum staffing lev-

els stabilizing differentiated tail probability of delay (TPoD) type service targets. Taking

a queuing theory approach, we develop a practical and intuitive multi-class multi-stage

queuing network describing the ER care delivery as sequences of treatments and order

bundles (i.e., groups of diagnostic medical processes). Employing this model, we capture

time-varying patient flow in the ER and estimate its load on treatment stations, served by

physicians. Treatment queues operate in efficiency-driven regime but experience negligi-

ble abandonment as abandonments nearly always occur at earlier stages of the ER care.

This observation motivates our proposed new staffing algorithm, which translates the of-

fered load into staffing decisions for efficiency driven queues with perfectly patient cus-

tomers and TPoD type targets. We analytically show the asymptotic effectiveness of our

staffing algorithm for M/M/s queues that operate in efficiency-driven mode. Then, we

demonstrate its robustness via realistic and data-driven simulation experiments in various

time-varying ER settings, considering non-homogeneous Poisson arrivals, multiple patient

classes, multi-stage service, and centralized (pooled) (physicians) under several practical

routing rules. Our results show that (1) our proposed staffing approach is effective and
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robust for optimizing the ER physician staffing levels in various ER settings, and (2) as the

service complexity of an ER increases, the use of dynamic rules, using the current system

state for routing decisions, and hybrid policies, combining pre-determined static routing

rules with dynamic ones, become necessary to stabilize TPoD targets.

In Chapter 3, we study the clinical course of two types of lymph node cancers, fol-

licular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). These cancers have

different characteristics, where DLBCL is aggressive and FL is recurrent, and have multi-

ple clinical intermediate- or end-points such as the sequence of treatments or cause-specific

death. Accordingly, we develop two different continuous-time, multi-state survival anal-

ysis models to investigate the clinical course of these diseases following initial treatment

with the goal of improving treatment outcomes. We utilize Cox proportional hazards mod-

els to specify the impact of prognostic factors on overall survival and cause-specific deaths,

and the Aalen-Johansen estimator to project the course of DLBCL over time. In partic-

ular, employing the multi-state FL model, we investigate the clinical course of FL under

first, second and third line therapies for high-risk patients to assess the effectiveness of

various treatment sequences. Our analysis shows that single R-CHOP therapy in any line

of treatment improves overall survival for high-risk patients, achieving the most favorable

outcome when provided as first-line therapy, but its multiple use for first- and second-line

might lead to adverse outcomes. Using the DLBCL model, we examine the role of clinical

and socio-demographic factors on DLBCL-associated mortality in the elderly population

and identify a cutoff point to stop monitoring DLBCL patients receiving the standard R-

CHOP therapy. Utilizing a large population-based dataset, our analysis (1) identifies age,

sex, and Charlson comorbidity index as risk factors for DLBCL-specific and other causes

of death, and (2) confirms a 5-year cure point for older patients receiving R-CHOP ther-

apy, suggesting to transition survivorship surveillance plans from a focus on lymphoma

recurrence-related deaths to non-cancer risks at five years after treatment.

In Chapter 4, we summarize our studies with their contributions to their corresponding
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research topics, and conclude the thesis.
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CHAPTER 1

OPTIMAL BREAST CANCER SCREENING STRATEGIES FOR WOMEN AT

HIGH-RISK FOR BREAST CANCER

1.1 Introduction

Breast cancer is the most common noncutaneous cancer in U.S. women, with an estimated

252,710 new cases of invasive cancer and 63,410 new cases of in situ cancer in 2017. About

one in eight U.S. women is projected to ultimately develop breast cancer, leading to more

cancer deaths in women than any other cancer after lung cancer, with about 40,000 deaths

per year [1].

Some women are at significantly higher risk of developing breast cancer depending

on the existence of certain risk factors, including inherited breast cancer gene mutations

of BRCA1 or BRCA2, and a personal or family history of breast or ovarian cancer. For

example, compared with general population, BRCA 1 mutations carriers are at least four

times more likely to develop breast cancer whereas BRCA 2 mutations increase breast

cancer risk about three to five times. About 44% to 78% of women with BRCA1 mutations

and 31% to 56% of women with BRCA2 mutations are projected to develop breast cancer

by age 70, accounting for up to 10% of all breast cancers together [2, 3, 4]. Similarly, breast

cancer risk is almost two times higher for women with one-first degree female relative

diagnosed with breast cancer, about three times higher for women with two relatives, and

nearly four times higher with three or more relatives [5].

Genetic counseling and testing for BRCA mutations can identify such high-risk in-

dividuals, and subsequently lead to an improvement in their health outcomes. Although

historically such services have been underutilized primarily due to their high-costs [6, 7],

with the recent rapid declines in the prices for genetic testing, it is expected that more
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women would have access to such services, leading to an increase in the prevalence of de-

tected gene mutation carriers [8]. Indeed, in the past few years, the price of BRCA tests

has dropped from several thousands to below $250 [9, 10], which is identified as a cut-

off point for a cost-effective population-based testing [11]. Combined with the increasing

awareness about gene mutation related cancers, an increasing portion of BRCA gene muta-

tion carrier women are being identified over years, leading to a pressing need for long term

management strategies specifically designed for this high-risk subpopulation [12, 13].

Women at high risk of breast cancer may opt for bilateral prophylactic mastectomy, a

preventive surgical operation removing both breasts before cancer develops. However, per-

ceived mutilating effects of mastectomy make the decision for surgical prevention difficult

[14]. Furthermore, it is not currently recommended by national policy organizations as the

standard management strategy and insurance coverage is not guaranteed under federal law

[15]. As a less invasive intervention, high-risk women might be offered chemoprevention;

however, adherence to these chemoprevention drugs are typically very low [16] and most

intervention studies designed to increase the uptake have yielded disappointing results (see

[17] and references therein). Instead, intensified screening with an early starting age such

as 25 or 30, followed by a subsequent biopsy if an abnormality is detected, is the rec-

ommended strategy and the current standard for so-far healthy high-risk women [18, 19,

20].

Among the several screening modalities, mammography is the recommended and most

commonly used breast cancer screening technology for average-risk women [21], and most

insurers in the U.S. are required to cover it for women at ages 50-74 without a co-pay or de-

ductible. However, the accuracy of mammography in high risk populations, particularly in

women with a genetic predisposition and young high-risk women, is not as satisfactory [22,

23, 24]. Accordingly, the use of other screening technologies, such as magnetic resonance

imaging (MRI) and breast ultrasound, are encouraged to address the limitations of mam-

mography and enhance cancer detection in these populations (see [25, 26] and references
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therein). Breast MRI has been shown to offer additional health benefits for women at high

risk due to its higher sensitivity of detecting early breast cancer [23, 27, 28]. Additionally, a

number of studies showed that ultrasound usually has higher sensitivity than mammogram

in young high-risk women [22, 25, 29]. Based on these findings, the American Cancer

Society (ACS) and the American College of Radiology (ACR) have added annual MRI

screening to their guidelines for screening women at high risk of breast cancer and the

ACR guidelines have also recommended the whole-breast ultrasound as an alternative for

high-risk women unable to tolerate MRI [30, 19].

Despite its higher sensitivity and the potential for detecting more cancer cases, MRI is

an expensive modality, approximately five times more costly than mammography [31, 32].

Furthermore, it yields substantially higher number of false-positives (i.e. positive screening

outcomes when the disease is absent) due to its lower specificity, causing more unneces-

sary diagnostic follow-ups such as biopsy, and leading to increased screening and diag-

nostic costs [33, 29, 25]. On the other hand, while ultrasound is much cheaper than MRI,

it generally has lower sensitivity than MRI. Further, ultrasound is an operator-dependent

technology with substantially higher variation in performance among operators, compared

with mammography and MRI [34, 35]. This intra-observer variability is important and is

a concern in national guideline development [33, 36], as it affects the number of resulting

false-positive readings and hence, the total cost of a screening strategy.

Notwithstanding the strong evidence indicating that the employment of non mammo-

graphic technologies may be beneficial for women at high-risk in detecting breast cancer

earlier, currently there is no consensus on the optimal use of these technologies in conjunc-

tion or instead of mammography [37, 38]. While most guidelines recommend the use of

MRI and/or ultrasound in addition to mammograms for use in high-risk women, the current

guidelines are neither always specific, nor in agreement with each other about which modal-

ity or combination of modalities to use, when and with what frequency. For example, while

National Comprehensive Cancer Network (NCCN) recommends starting annual mammog-
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raphy and breast MRI as early as at age 25 and 30, respectively, for high-risk women with

lifetime breast cancer risk ≥ 20% (estimation of which largely depends on the existence

of a family history), the U.S. Preventive Services Task Force (USPSTF) recommends the

use of mammography starting at age 40 for high-risk women with family history. On the

other hand, the ACS recommends joint annual MRI and mammogram strategy starting at

age 30 for high-risk women with a lifetime risk greater ≥ 20-25%, with a known BRCA

mutation, or with a first-degree relative of BRCA carriers [18]. Furthermore, none of the

existing guidelines explicitly specify whether at any age screening frequency should be re-

duced and ultimately terminated. The lack of uniformity and clarity in the guidelines result

in lower adherence to the guideline-specific recommendations among healthcare providers

and hence, lead to inconsistency in the practice. Further, comprehensive randomized con-

trolled trials (RCTs), the gold-standard in such decisions, are unlikely to be performed

because of the associated large number of patients needed to demonstrate a difference be-

tween groups, the long length of follow-up required, and high financial costs incurred [39].

Designing screening strategies that balance the tradeoff between detecting as many can-

cers as early as possible and minimizing the harms of false-diagnosis, while keeping the

overall costs of screening and diagnosis at an affordable range is essential for improving

patient outcomes in an cost-effective way. Cost containment has become more critical

especially in recent years as the current cost burden of cancer prevention and control is

substantial and growing [40, 41], and employed imaging technologies are one of the the

main drivers of the increased cost [40, 42]. Accordingly, especially in the midst of an en-

vironment of rising health-care costs [40, 41, 43], it is essential to consider the associated

medical cost up front, in parallel with efforts to determine improved patient outcomes while

developing screening strategies [39].

The complexity and importance of multi-modality breast cancer screening problem

cannot be overestimated as the debate and literature around the optimal use of different

screening modalities and strategies continue to grow, and the associated cost burden has
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become a central concern. Identifying effective multi-modality screening strategies for

high-risk women may help decision-makers in developing evidence-based policies, health-

care providers in better defining the role of these tests in breast cancer screening, and in-

surance companies in making coverage decisions. Given the lack of comprehensive RCTs,

data-driven mathematical modeling and computational optimization can be promising in

conducting comparative effectiveness and cost-effectiveness of multimodality breast can-

cer screening strategies for women at high risk of breast cancer.

In this study, we study and propose a population-dynamics based modeling approach

for the multi-modality breast cancer screening problem in high-risk population to (1) iden-

tify the optimal structured screening strategies that are easy for implementation for women

at high lifetime risk of developing breast cancer, (2) investigate the impact of resource

restrictions and assess the cost-effectiveness of various screening strategies, and (3) gain

insight into the underlying structure of the optimal strategies. Adapting a societal perspec-

tive, we first develop a discrete-time finite-horizon Markov model to capture age-dependent

disease incidence and progression in high-risk population under various screening inter-

ventions. We parameterize, calibrate and validate this disease progression model using real

data and the best available evidence from the clinical literature. Then, we formulate and

solve a mixed integer linear program (MILP) to identify the optimal structured screening

strategies, maximizing quality-adjusted life years (QALYs) at various budget levels. We

assess the cost-effectiveness of the identified screening strategies with the incremental cost

effectiveness ratio (ICER) metric and the role of ultrasound’s operator-dependency via a

worst-case scenario analysis. Finally, we analyze the structure of optimal screening strate-

gies and establish the sufficiency conditions under which a strategy with more frequent

screens yields higher health benefits than the one using a more sensitive modality.

Our main findings shed light on several controversial health policy questions, which can

be summarized as follows: (1) Annual ten-year screening with ultrasound alone is afford-

able with moderate budget, optimal over a wide range of budget levels and cost-effective
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in young (aged 25-44 years) high-risk women. Furthermore, these findings continue to

hold across a wide range of specificity level for ultrasound, indicating that intra-observer

variability in ultrasound reading may not be a serious concern in guideline development

for young population groups; (2) for middle-aged (45-74 years) high-risk women, annual

mammography screening alone is robustly optimal over a wide budget range and is cost-

effective, whereas ultrasound may be an alternative at low to medium budget levels; (3)

use of MRI, as recommended by some of the major national guidelines, may lead to cost-

ineffective strategies, despite the fact that joint annual MRI and mammogram screening

strategy yields the highest health benefits for younger and middle-aged high-risk women.

The rest of the chapter is organized as follows. Section 1.2 summarizes the relevant

literature. In Section 1.3, we present a discrete-time Markov model capturing disease pro-

gression under various interventions, and propose an optimization model to identify the

optimal breast cancer screening strategies for high risk women. In Section 1.4, we present

our analytical results. In Section 1.5, we describe model inputs and parameter estimations.

In Section 1.6, we present the numerical results and discuss their implications. Finally, in

Section 1.7, we discuss our findings and conclude our study.

1.2 Literature Review

There are two main streams of research within the modeling-based disease screening liter-

ature. At the one end of the spectrum, there are cost-effectiveness microsimulation mod-

els based on clinical trials and at the other hand, there are mathematical modeling based

studies. In Table 1.1, we summarize the existing cost-effectiveness studies on breast can-

cer screening for high-risk population that are relevant to our study. Our key distinction

from these simulation-based cost-effectiveness studies is that while they evaluate a limited

(and often non-overlapping) predetermined set of strategies, we comprehensively consider

a large set of strategies, including but not limited to all of the different strategies proposed

and considered by these simulation-based studies.
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Table 1.1: Simulation-based Studies on Breast Cancer Screening for High-risk Population

Authors Year Examined
Policies Population Screening

Horizon
Screening
Interval

Results and
Conclusions

[48] 2006 MAM and
MAM+MRI

25 year-old
BRCA 1/2
mutation
carriers

45 years 1 year

MRI is more cost-effective
for BRCA 1 mutation
carriers (comparing to
BRCA 2 mutation carriers)

[49] 2006
MAM, MRI
and
MAM+MRI

35-49 years
old high-risk
population

2-7 years 1 year
MRI might be cost-effective
for BRCA 1 or 2
mutation carriers.

[50] 2009
MRI, (X-ray) MAM
and
MRI+(X-ray) MAM

High-risk
population

unknown
(no access)

unknown
(no access)

MRI is cost-effective
for BRCA 1 or 2 mutation
carriers.

[51] 2009 Annual MAM
versus MRI

Young
high-risk
population

over 25 years 1 year
Annual MRI is not cost-
effective even when
WTP/QALY = $ 120,000.

[19] 2010

Annual MAM,
Annual MRI
and Annual
MAM+MRI

25 year-old
BRCA 1
mutation
carriers

over 45 years 1 year

Annual combined screening
is cost-effective both
when WTP/QALY = $ 50,000
and WTP/QALY = $ 100,000

[32] 2013

MAM, MRI
and CBE (alone,
alternating,
combined)

Women with
familial risk

10 years,
15 years,
25 years

6 months -
2 years

MRI may improve survival
but is expensive especially
in youngest age group.

[52] 2013 digital MAM+MRI
(alternating)

25-year old
BRCA1/2
mutation carriers

from age 25
until death
(over 40 years)

6 months
and 1 year

Alternating MAM and MRI
screening in every 6 months
is the most cost-effective.

[53] 2013 MAM and
MAM+MRI

25-year old
BRCA 1/2
mutation carriers

40 years
(between 25
and 65 years old)

1 year

ICER of MAM+MRI
(comparing to annual
MAM alone) is
∼$50,000/QALY.

[54] 2013
Dutch, U.K.
and U.S.
guidelines

BRCA 1/2
mutation
carriers

over 50 years
1 year,
2 years and
3 years

Dutch screening is
the most cost-effective.

It is noteworthy to emphasize that microsimulation, despite being utilized very com-

monly in most cancer settings, is not the only methodology proposed in the literature for

assessing effectiveness and/or cost-effectiveness of interventions and there are also sev-

eral other approaches. For instance, as an alternative to the conventional simulation-based

approaches, [44] develop a simple and fast one-pass algorithm that is especially useful

when there are many scenarios to be simulated or an extensive suite of sensitivity analy-

ses are required to identify the efficient frontier. Based on continuous-time multi-armed

bandit model, [45] introduce another framework for adaptive and personalized treatments

of certain chronic diseases that can capture the trade-off between the health benefits and

costs of medical interventions and hence, can be utilized to generate an entire frontier

of cost-effective strategies. [46] and [47] both employ decision-analytic models for cost-

effectiveness analysis of a chronic Hepatitis C screening and a more comprehensive new-

born screening, respectively.

At the other end of the spectrum, there are studies that focus on different aspects of dis-

ease screening problems using analytical approaches. For older studies, we refer the reader
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to [55] for an extensive review of modeling based cancer screening studies, and below

summarize and discuss the more recent studies. Taking a population-based approach, [56]

study mammography screening problem for the average-risk population and employ a par-

tially observable discrete-time finite-horizon Markov chain that captures several age-based

dynamics of breast cancer. They evaluate various mammographic screening scenarios by

providing an upper bound on the lifetime breast cancer mortality risk for average-risk pa-

tients for each considered scenario and report a frontier of efficient strategies as measured

by lifetime mortality risk and expected number of mammograms. [57] develop a generic

model to capture disease progression and utilize a metaheuristic-based optimization tech-

nique to investigate Pareto-optimal breast cancer screening strategies over a ten-year time

horizon with annual or total budget constraints. [58] consider individualized mammogra-

phy screening decisions and use a partially observable Markov decision process (POMDP)

that considers some other personal risk characteristics in addition to age and screening his-

tory of each patient. They show that personalized screening strategies outperform the exist-

ing guidelines with respect to the total expected QALYs, while significantly decreasing the

number of mammograms and false-positives. [59] extend [58] and study mammography

screening problem under resource constraints. They propose a constrained POMDP max-

imizing total expected QALYs of patients when they are allowed only a limited number

of mammography screenings and find that efficient distribution of available resources be-

tween patients with different risk levels leads to significant QALYs gains, especially for the

patients with higher breast cancer risk. [60] and [61] study optimal biopsy decision-making

after mammography screening for average-risk women. In particular, [60] examine when

a woman should undergo a biopsy based on her mammographic features and demographic

factors by a finite-horizon MDP formulation, and [61] investigate the impact of budgetary

restrictions on breast biopsy decisions.

In addition to breast cancer screening, several other studies consider disease screening

optimization in other contexts such as colonoscopy for colorectal cancer, and PSA test for

8



prostate cancer screening [62, 63]. Considering the effect of age, gender, and personal

colorectal cancer (CRC) history on CRC progression, [62] propose a POMDP to optimize

colonoscopy screening policies wit the goal of maximizing total QALYs. They show that

the optimal colonoscopy screening policies generally need to be more frequent than the

current guidelines recommend and in addition to age and CRC history, gender is a criti-

cal factor in determining the frequency of screening. [63] formulate a POMDP model for

the prostate cancer screening problem, trading off the benefit of early detection by PSA

test with the cost of screening and loss of QALYs due to screening and treatment. Maxi-

mizing total QALYs and the net benefit, they reflect the patient and societal perspectives,

respectively. They show that the traditional guidelines for PSA test are suboptimal and

the optimal PSA screening policies differ significantly depending on the perspective of the

decision maker.

Another relevant stream of research focuses on allocation of scarce resources and/or as-

sessing cost-effectiveness in chronic disease screening and management. For example, [64]

study hepatitis B, a major health population problem both in China and the U.S., via com-

bining decision analysis and Markov models, and assess the cost effectiveness of several

interventions. The findings following from their analyses were instrumental in a relevant

health policy change on hepatitis B screening affecting millions of people. [65] focus on

HIV screening and develop a linear programming model, combined with a Bernoulli pro-

cess, and improve the allocation of limited Centers for Disease Control and Prevention

(CDC)-funded resources to prevent the most new cases of HIV infection. [66] study col-

orectal cancer screening and diagnosis problem and introduce a dynamic systems model,

combining population dynamics and operational control perspective by considering capac-

ity constraints and allocation rules. They show that more resources should be allocated

to diagnostic colonoscopy versus screening colonoscopy if the objective is to minimize

mortality rather than incidence rate. [67] structurally analyze the competing demand for

screening and diagnosis colonoscopy, and build effective policies that dynamically allocate
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resources for these two services at the operational-level.

Finally, several studies recently consider other aspects of breast cancer interventions

such as preventive surgery to reduce breast cancer risk or genetic testing to identify high-

risk population. [68] study the optimal timing and sequence of prophylactic surgeries, such

as bilateral mastectomy (BM) or bilateral salpingo-oophorectomy (BSO), to reduce breast

and ovarian cancer risks for BRCA mutation carriers. They establish optimal time win-

dows for preventive surgeries BM and BSO, separately for BRCA1 and BRCA2 mutation

carriers, and further show the existence of an optimal control limit for the surgery time of a

carrier who has already undergone one of the preventive surgeries. [11] employ a decision-

analytic model to evaluate cost-effectiveness of population-based testing for a mutation in

cancer susceptibility genes BRCA1/2. They conclude that a population-based testing is

currently too expensive but can be cost-effective if the cost of genetic testing drops below

$250. The authors acknowledge that even when the test is cost-effective, the logistics of

“testing more than 100 million women” would be challenging, and argue that funding an

aggressive surveillance strategy might offer more health benefits than allocating the fund

to the genetic testing of the whole female population over age 30.

A key difference of our study from the existing literature on modeling-based can-

cer screening/surveillance is that, while the published literature predominantly considers

single-modality screening for average-risk population (e.g. mammography screening for

average-risk population), we study screening in high-risk population using multi-modality

screening technologies. The facts that different screening modalities may be employed

with different frequencies over time, and screening modalities can be combined and used

in conjunction with each other significantly complicate the problem and make many of

the proposed approaches inapplicable. Second, unlike most of the studies in the literature

which proposed unstructured policies with frequently changing screening intervals over

time, our proposed model enforces structured policies that are easy to implement from a

health policy perspective. Third, contrary to the simulation based approaches, our modeling
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framework and data-driven findings enable a comprehensive comparison of many potential

strategies, and hence may initiate discussions among policy-makers.

1.3 Model Formulation

We take a policy-maker’s perspective, where the objective is to maximize population health

outcomes by designing effective screening strategies, while considering for budget con-

straints. Similar to existing guidelines, we consider each age group separately (e.g., 25, 35

or 45-year-old women) and aim to maximize the health outcomes over the entire lifetime

of such women, measured in QALYs. In line with reality, we enforce budget constraints

over budget planning periods (e.g., 10 years), and systematically vary these budget levels

so that our solutions can be adapted in different resource settings. Lastly, we assess the

cost-effectiveness of the identified optimal screening strategies at different budget levels

using ICER analysis.

Our overall modeling approach is as follows: we first develop and validate a disease

progression model to capture incidence and progression of breast cancer under various

screening interventions; then, building up on this disease progression model, we formulate

an optimization model to identify effective screening strategies for the targeted population,

the women at high lifetime risk of developing breast cancer. In the following subsections,

we present these two models in detail.

1.3.1 Disease Progression Model

We develop a discrete-state discrete-time finite-horizon Markov model with age-dependent

transition probabilities and rewards to capture breast cancer progression in high-risk women.

We adapt a societal perspective, and use QALYs to evaluate the health benefits of screening

strategies, in compliance with the recommendation of the U.S. Panel on Cost-Effectiveness

in Health and Medicine [69, 70]. The disease progression model considers subpopulations

of high-risk women with a given initial age (e.g., women at age 25), and simulates disease
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incidence and progression over time under different screening actions. The model is devel-

oped for the entire screening horizon, covering the time range from the beginning age (e.g.,

age 25) to the terminal age of screening (e.g., age 100) for the given subpopulation. The

model components and the notation used are introduced below.

Time index: Let t denote the time index in years, where t ∈ {1, 2, . . . , T}with T <∞.

We use TA = {1, 2, . . . , T − 1} to denote the time index set excluding the terminal time

point T , where no screening action is taken.

Study Population: In line with the existing guidelines [20], we consider age groups

separately. Accordingly, the study population corresponds to the cohort of high-risk women

with an initial age of a1 (e.g., age 25) at time t = 1, and this population group ages to

at=a1 + t - 1 at time t ∈ {1, 2, . . . , T}.

States: Let xt(s) denote the proportion of the study population in health state s at time t,

where s ∈ S = {0, 1, 2, 3, 4, 5} with state 0 representing cancer-free women, states 1 and 2

respectively representing women with so-far undetected in-situ and invasive cancers, states

3 and 4 respectively representing patients initiated in-situ and invasive cancer treatments,

and state 5 representing death. We use the notation SU = {0, 1, 2} and ST = {3, 4} to

denote the set of unobservable health and observable treatment and post-treatment states,

respectively. Previously treated patients need to undergo a more aggressive screening for

surveillance, compared with women who have not been diagnosed with cancer [71, 72],

and hence, once detected, these patients remain in the treated state and leave the target

group for screening.

Actions: An action a ∈ A = {1, 2, 3, 4, 5} represents the screening modality employed,

where 1 denotes “No Screening (NO SCREEN)”, 2 denotes “Mammography (MAM)”, 3

denotes “MRI”, 4 denotes “Ultrasound (US)”, and 5 denotes “MRI adjunct to mammogra-

phy (MAM+MRI)”. We remark that all of those five actions are permissible for women in

states 0, 1 and 2 whereas the only permissible action for women in a treatment or dead state

is “No Screening”, and no action is taken at the terminal time period T. We denote the set
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of screening actions by AS = {2, 3, 4, 5} by excluding the action a=1, which corresponds

to “No Screening”.

Transition Probabilities: P a
t denotes the annual transition probability matrix of the

underlying Markov model associated with action a at time t. Figure 1.1 depicts the state

transition diagram of disease progression in high-risk population (while state transitions are

age-dependent, this dependence is suppressed in the figure for the ease of presentation). In

this figure, solid lines represent transitions between health states without any intervention

(i.e. when a = 1) and the dotted lines represent transitions to the treatment states upon

detection, following a “screen” action (i.e. a ∈ AS), probability of which depends on the

sensitivity of the employed modality. Accordingly, P a
t (3|1) = P a

t (4|2) = senst(a) when

a ∈ AS and, t ∈ TA, where senst(a) denotes the sensitivity of the corresponding screening

technology a at time t, and senst(1) is defined as 0 for all t ∈ TA.

Figure 1.1: Breast Cancer Progression with or without Screening
Solid lines represent transitions between health states without any
intervention and the dotted lines represent transitions to the treat-
ment states upon detection, following a “screen” action.

Upon screening, women with positive (i.e. abnormal) screening results undergo a con-

firmatory diagnostic test such as biopsy, which is assumed to be a perfect follow-up test

[73]. Women with positive biopsy results (i.e. women with detected cancer) start cancer

treatment, transition to a treatment state, and leave the decision process. On the other hand,

women with negative screening results and positive screening but negative biopsy results
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remain in the target group for screening in future. Lastly, we remark that specificity of a

chosen screening modality affects the overall diagnostic costs, as lower specificity leads to

more unnecessary diagnostic exams. However, it does not affect the transition probabilities

because in the case of a negative screening test outcome, regardless whether it is a true-

or false-negative, no follow-up intervention is made and patients continue to follow their

natural disease incidence and progression.

Costs: ct(s, a) represents the total expected cost of decision a at time t and in state

s, including the cost of screening and a follow-up biopsy if performed. Let cSt (s, a) and

cFt (s, a) respectively denote the cost of screening and a follow-up biopsy in state s at time

t. Then, ct(s, a) = cSt (s, a) + pFt (s, a)cFt (s, a) ∀ s ∈ SU , a ∈ A, t ∈ TA, where pFt (s, a)

represents the probability of performing a follow-up test upon a positive screening result

in health state s at time t. Accordingly, for a ∈ AS , pFt (s, a) = senst(a) when s ∈ {1, 2},

pFt (0, a) = 1 - spect(a), where spect(a) represents the specificity of modality a at time t,

and pFt (s, 1) is defined as 0 ∀ s ∈ S and t ∈ T . We remark that sensitivity and specificity

of some screening modalities change with age (Table 1.3), resulting in varying screening

and diagnostics costs at different ages.

Rewards: There are three types of rewards: annual (intermediate), lump-sum (treat-

ment) and terminal rewards. In particular, rt(s, a) denotes the annual reward defined as the

expected QALYs accumulated between time t and t+ 1 when a woman is in health state s

and action a is chosen at time t, Rt(s) denotes the lump-sum treatment reward defined as

the total expected post cancer treatment QALYs accrued from t until death when the pa-

tient is diagnosed with breast cancer and has initiated cancer treatment, and rT (s) denotes

the terminal reward defined as the total expected remaining QALYs at the terminal decision

epoch T when the woman’s health state is s. More details about reward function estimation

can be found in the Appendix A.6.

Decision Epochs: Let t denote the time index in years, where t ∈ {1, 2, . . . , T} with

T <∞. We use TA = {1, 2, . . . , T −1} to denote the time index set excluding the terminal
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time point T , where no screening action is taken.

1.3.2 Optimization Model for Multi-modality Breast Cancer Screening

In this section, we present an optimization model for multi-modality breast cancer screen-

ing problem, building upon the disease progression model presented in the previous section.

Taking a societal perspective, our objective is to identify structured optimal policies that are

practical for implementation, maximizing the total expected QALYs of women at high risk

for breast cancer, while considering budget constraints. To be applicable to different re-

source settings and assess the structure of the resulting policies as budget increases, we

solve the optimization models by varying the budget levels.

The overall description of the optimization model is as follows: The model considers a

subpopulation of high-risk women with a given initial age (e.g., women at age 25), prob-

abilistically captures their disease incidence and progression over time through stochastic

flow balance equations introduced over the disease progression model, and systematically

assess the effect of different strategies (i.e. set of screening actions over time) on the total

accumulated QALYs through the objective function.

The optimal solution to the base optimization model, introduced in (1)-(13) below,

may have an irregular structure, where screening modalities and frequencies may change

frequently over time (e.g., ultrasound for two years, then MRI for three years, and then

mammography for one year etc.), which would prevent the implementation of the resulting

strategies in real-life settings. To address this concern, after we introduce the base model,

we enforce additional constraints to ensure that the optimal policy would be structured and

have limited changes in screening frequencies. More specifically, these constraints guar-

antee that (i) the chosen screening action remains unchanged over L-year periods and (ii)

the frequency of screenings within the L-year periods follows a regular pattern (e.g., an-

nual ultrasound or biennial MRI over the next L=10 years). Further, while the optimization

model considers the entire screening horizon similar to the disease progression model, we
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consider budget allocation decisions over each of these L-year periods, rather than over

the entire planning horizon. This is primarily for practical purposes, because strategic bud-

get plans are typically made over no longer than 10-year periods (while disease burden

projections require longer term planning).

There are two types of decision variables in the optimization model. The continuous

decision variable xt(s, a) denotes the proportion of women in health state s ∈ S, who take

the screening action a ∈ A at time t ∈ TA. The optimization model governs the underlying

stochastic process by probabilistically updating the proportion of women in any model

states via these continuous decision variables. For the terminal decision period T, there is

no decision to take, and xT (s) denotes the proportion of women in health state s at time T ,

given the sequence of actions taken in previous periods. The other decision variable yt(s, a)

is a binary variable, indicating the action taken at each decision epoch, and is equal to 1 if

action a ∈ A is taken by the women in health state s ∈ S at time t ∈ TA and is 0 otherwise.

In addition to signaling the optimal screening strategy, these binary decision variables are

used to introduce several additional constraints that capture the critical features of the multi-

modality breast cancer screening problem and ensure that the generated optimal solutions

are practical and clinically-meaningful. The base optimization model formulation for our

problem is as follows:

max
∑
t∈TA

∑
s∈SU

∑
a∈A

rt(s, a)xt(s, a)+
∑
t∈TA

∑
s∈ST

Rt(s)(xt+1(s, 1)−xt(s, 1))+
∑
s∈SU

rT (s)xT (s)

(1.1)

s.t.

∑
a∈A

x1(s, a) = α(s) ∀s ∈ S (1.2)

∑
a∈A

xt(s, a)−
∑
a′∈A

∑
j∈S

P a′

t−1(s|j)xt−1(j, a′) = 0 ∀s ∈ S, t = 2, ..., T − 1 (1.3)
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xT (s)−
∑
a′∈A

∑
j∈S

P a′

T−1(s|j)xT−1(j, a′) = 0 ∀s ∈ S (1.4)

∑
t∈Ik

∑
a∈A

∑
s∈SU

ct(s, a)xt(s, a) ≤ Bk (1.5)

xt(s, a) ≤ yt(s, a) ∀s ∈ S, t ∈ TA (1.6)

∑
a∈A

yt(s, a) = 1 ∀s ∈ S, t ∈ TA (1.7)

yt(0, a) = yt(1, a) ∀t ∈ TA (1.8)

yt(1, a) = yt(2, a) ∀t ∈ TA (1.9)

yt(3, 1) = yt(4, 1) = yt(5, 1) = 1 ∀t ∈ TA (1.10)

yt(s, a) ∈ {0, 1} ∀s ∈ S, a ∈ A, t ∈ TA (1.11)

xt(s, a) ≥ 0 ∀s ∈ S, a ∈ A, t ∈ TA (1.12)

xT (s) ≥ 0 ∀s ∈ S (1.13)

The objective value (1) represents the total expected QALYs associated with the optimal

screening strategy, where the first, second, and third components capture the total QALYs in

pre-diagnosis (including disease-free), post-diagnosis (upon detection), and terminal health

states, respectively. The difference [xt+1(s,1) - xt(s,1)] in the second component accounts

for the expected number of women with detected cancer, transitioning to treatment states

at time t ∈ TA.

Constraint (2) accounts for the initial proportion of the targeted high-risk population

with the initial health state distribution α. Constraints (3) and (4) are stochastic flow-

balance equations, capturing and probabilistically updating the proportion of women in

health state s over time, depending on chosen sequence of screening actions and the in-

cidence and progression rates over time. Constraint (5) introduces a budget constraint for

each budget interval of lengthL, denoted by k, ensuring that the total expected expenditures

in each interval k (corresponding to L-year periods) do not exceed the allocated budget for
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that interval, denoted by Bk.1

Constraint (6) links each binary variable yt(s, a) with a corresponding continuous de-

cision variable xt(s, a) and prevents illogical solutions such as having a positive xt(s, a)

when yt(s, a) is zero. Constraint (7) guarantees that exactly a single action is chosen for all

women in the same health state s ∈ S at each decision epoch t ∈ TA, avoiding the possi-

bility of randomized policies, in line with the population-based guidelines. Constraint (8)

ensures that the same action is chosen for all of the undetected women in the targeted popu-

lation to be screened. Accordingly, in line with the population-based screening guidelines,

all high-risk women of the same age in model states “No BC” (s=0), “in-situ BC” (s=1),

and “invasive BC” (s=2) are recommended to take the same action a ∈ A at time t ∈ TA.

The output of the above presented base optimization model, formulated by (1)-(13),

is a screening strategy that specifies (i) whether to screen or not at a given time t and

(ii) which modality (or joint modalities) to use if screening is performed. Yet, as noted

earlier, this strategy may have a dynamic and irregular structure, where screening actions

and frequencies change too frequently and hence make the generated strategy impractical

for implementation. To address this concern, we enforce additional constraints to ensure

that within each L-year period over the entire planning horizon, the strategy is one of the

following type: (1) Single screening, (2) Double screening, (3) Biennial screening and (4)

Annual screening. Single screening is a strategy with one screening action at the beginning

of the corresponding L-year interval, double screening strategy performs two screens, one

at the beginning and the other in the middle, biennial screening recommends screening

every other year and annual screening strategy recommends screening every year within the

L-year interval. As an example, consider the following strategy: MRI screenings between

ages 25-34, biennial US screening between ages 35-44, annual mammography screening

between ages 45-55 etc. We remark that while such a strategy imposes some regularity

1By properly adjusting Bk in Constraint (5), the allocation of the same amount of per person budget can
be ensured, after accounting for the women who left the screening process, either due to death or cancer
treatment initiation.
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into the policy structure and hence is practical, it also offers enough flexibility to capture

many different possible combinations of screening frequencies with different modalities

over time.

To enforce structured strategies, we utilize four types of binary variables, ξ(k),γ(k),

µ(k), and θ(k), corresponding to the predetermined screening frequencies of single, double,

biennial and annual screening for period k, respectively. Based on these binary variables,

we introduce “regularity” constraints to ensure that the generated strategies follow a regular

pattern. Since the full set of the “regularity” constraints is very long, here we present only

a small portion that is sufficient to explain the general concept:

θ(k), µ(k), γ(k), ξ(k) ∈ {0, 1} (1.14)

θ(k) + µ(k) + γ(k) + ξ(k) = 1 (1.15)

µ(k) + γ(k) + ξ(k) = 1 (1.16)

γ(k)− 1 ≤ y(k−1)∗L+1(0, a)− y(k−1)∗L+6(0, a) ≤ 1− γ(k) (1.17)

y(k−1)∗L+j(0, 1) ≥ γ(k) j = 2, 3, 4, 5, 7, 8, 9 (1.18)

Here, Constraints (15) ensures that exactly one of these frequencies is activated for each

of the L-year planning intervals. Suppose that the chosen frequency is “double screening”

for period k and hence, its corresponding binary variable γ(k) = 1. Then Constraint (16)

enforces the same action a ∈ A to be taken at the two time points t = (k-1)*L+1 and t = (k-

1)*L+L/2+1. Further, Constraint (17) guarantees that no additional screening is conducted

(i.e. a=1) at the other time points (years) of the screening interval k. When the chosen

frequency is not “double screening” for period k, i.e. γ(k) = 0, Constraints (16) and

(17) are not binding in interval k and hence do not pose any limitations. We use similar

constraints for other practical frequency structures to capture the full set of the “regularity”

constraints that guarantee that the generated strategies are practical for implementation.
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The final model is given by (1)-(13) and full set of the regularity constraints, the solu-

tion of which identifies the optimal practical screening strategies for the specified high-risk

group over the entire screening horizon. When we analyze the structure of the optimal

strategies and discuss our findings for each subpopulation though, we concentrate on the

screening strategies corresponding to the next ten years (rather than the entire lifetime)

because: (i) based on our interactions with policy makers, we discovered that any discus-

sion of strategies longer than ten year periods is not practical from a strategic planning

perspective, especially when budget allocation decisions are taken into account, and (ii) it

is difficult to gain insights into the structure of the surveillance strategies over the entire

screening horizon.

1.4 Analytical Results

In this section, we study the structural properties of regular screening strategies over L =

10-year periods (Figure 1.2) and assess the trade-off between the two key parameters of a

screening strategy: sensitivity of the employed modality and frequency of the screenings.

In particular, we first separately examine the conditions under which higher sensitivity

or frequency is guaranteed to improve health outcomes, measured by expected QALYs,

regardless of what the initial cancer prevalence is and which future strategies are imple-

mented after the ten-year period. Then, we investigate the cases where there is a trade-off

between the two parameters and establish the conditions under which a strategy with more

frequent but less sensitive screens is more favorable than a strategy with more sensitive but

less frequent screens.

We start with stating the assumptions we make throughout this section. These assump-

tions are in line with the evidence in the medical literature and are satisfied by our dataset

especially for young and middle-aged high-risk women, for whom the harms associated

with screening is negligible comparing to its potential health benefits. The assumptions are

stated in main text in an intuitive way, and the formal mathematical conditions correspond-
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ing to these assumptions are included in Appendix A.5.

Assumption 1: (Detection is better than no detection) For both in situ (i=1) and invasive

(i=2) cancer states, detection at any time in the next ten-year period, i.e. t ∈ {1,2,...,10},

yields higher expected QALYs than the scenario with no detection by the end of the next

ten-year period (followed by a possible detection under any future strategy φ implemented

after ten years).

Assumption 2: (Early detection is better than late detection) For both in situ (i=1) and

invasive (i=2) cancer states, detection at any time t ∈ {1,2,...,9} yields higher expected

QALYs than detection at a later time point t+k in the ten-year period, where k ∈ {1,2,...,10-

t}.

Assumption 3: Sensitivity of a screening modality a ∈ AS , denoted by senst(a), is

greater than 50% at any time t ∈ {1,2,...,10}.

We first present two results, Propositions 1 and 2, which show that (i) increased screen-

ing frequency or sensitivity leads to better health outcomes, and (ii) these results are ro-

bust against the changes in the health state distribution (cancer prevalence) and the future

screening actions taken. Unless presented in the main text, all proofs are included in the

Appendix A.5.

Proposition 1: Between two strategies using the same screening modality with dif-

ferent frequencies, the strategy with higher screening frequency yields higher expected

QALYs, regardless of the initial health state distribution and future strategy implemented.

Proposition 2: Between two strategies using different screening modalities with the

same frequency, the strategy utilizing a more sensitive modality yields higher expected

QALYs, regardless of the initial health state distribution and future strategy implemented.

These two results immediately lead to the following corollary:

Corollary 1: Among affordable ten-year screening strategies, either the one with the

highest frequency or the one with the most sensitive modality is the optimal policy over the

entire planning horizon for the given budget level. This result holds for any initial health
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state distribution and any future strategy that is implemented after the ten-year period.

Propositions 1 and 2 allow a policy-maker to “myopically” focus on the next ten-year

strategies at any given time without being concerned about the uncertainty around the fu-

ture screening strategies that may be implemented beyond the 10-year period. Corollary

1 narrows the search space of the optimal solutions to the strategies with either the most

frequent screens or the most sensitive technology that can be afforded, irrespective of what

strategy is implemented beyond the 10-year period. While these results are useful, it is

not clear how the optimal policy changes when both screening frequency and sensitivity

change simultaneously. Therefore, in our main result below, we analyze the tradeoff be-

tween screening frequency and sensitivity. We consider the case where a strategy with

more frequent screenings and a strategy with a more sensitive modality are both affordable,

and establish the conditions under which the strategy with more frequent but less sensitive

screens is more favorable. Before presenting the main theorem, we first introduce some

additional notations needed, as follows:

µ1(i): Proportion of women in health state i ∈ {0,1,2} in the targeted (sub-)population

at time t=1, depending on the initial health state distribution (i.e., prevalence). That is, µ1(i)

=
∑
a∈A

x1(i, a) for i ∈ SU .

Pr(sj=i|s1=0): Probability of being in cancer state i ∈ {1,2} at time j ∈ {2,...,10}, given

that the patient was healthy at time t = 1, i.e. s1 = 0, and no intervention is taken between

time 1 and j.

Eφ[s11=i]: Expected future QALYs for a woman with so far undetected stage i ∈ {1,2}

cancer at the end of ten-year period (i.e. t=11), gained under a future strategy φ imple-

mented after the next ten-year period. The best future clinical scenario is immediate detec-

tion right after the ten-year period and the worst one is no detection before death. Accord-

ingly, expected QALYs under the scenarios immediate detection (ID) at time t = 11 (i.e.,

right after the next ten-year period) and no detection (ND) during the lifetime respectively

impose upper and lower bounds on the expected future QALYs.
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Rew(t,φ|i): Expected QALYs difference between the scenarios (1) detection of a stage

i ∈ {1,2} cancer at time t ∈ {1,2,...,10} and (2) no detection in the ten-year period possibly

followed by a detection at a later time, if any, under future strategy φ. We use Rew(t|i)LB

and Rew(t|i)UB to denote lower and upper bounds on Rew(t,φ|i), respectively.

Rew(t,k|i): Expected QALYs difference between early detection at time t ∈ {1,2,...,9}

and late detection at time t+k, where k ∈ {1,2,...,10-t}, for cancer state i ∈ {1,2}.

Figure 1.2: The Range of the Screening Strategies for 45-year old High-Risk Women

To investigate the trade-off between sensitivity and frequency, we compare (A) “single-

screen” with “double-screen”, and (B) “double-screen” with “biennial” ten-year strategy.

In the following result, we characterize the conditions under which a more frequent screen-

ing strategy is more effective than a less frequent screening strategy that utilizes a more

sensitive technology.

Theorem 1.A: Consider two ten-year screening strategies: single (i.e., every 10-year)

screening strategy, call π, and double (i.e., every 5-year) screening strategy, call π′, which

utilizes a less sensitive modality (i.e., senst(π′) < senst(π) ∀ t = 1,2,...,10). Then, under

any future strategy, policy π′ yields higher QALYs than policy π, if the following condition

holds:

µ1(0)
1−µ1(0) >

1
Pr(s6=i|s1=0)

sens1(π)−sens1(π′)
sens6(π′)

sens6(π′)Rew(1,5|i)+[1−sens6(π′)]Rew(1|i)UB
Rew(6|i)LB

for i=1,2

Theorem 1.B: Consider two ten-year screening strategies: double screening strategy,

call π, and biennial (i.e., every 2-year) screening screening strategy, call π′, which utilizes

a less sensitive modality (i.e., senst(π′) < senst(π) ∀ t = 1,2,...,10). Then, under a fixed

future strategy φ, policy π′ yields higher QALYs than policy π, if the following conditions

and hold:
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µ1(0)
1

5∏
t=1

Pt(0|0)

−µ1(0)
> 1

Pr(s7=i|s6=0)+Pr(s9=i|s6=0)
sens6(π)

min{sens7(π′),sens9(π′)}
X(i)

Rew(9,φ|i) for i=1,22

µ1(0)
1−µ1(0) >

1
Pr(s3=i|s1=0)+Pr(s5=i|s1=0)

sens1(π)−sens1(π′)
min{sens3(π′),sens5(π′)}

Y (i)
Z(i)

for i=1,234

Theorem 1 establishes the sufficiency conditions under which the strategy with more

frequent screenings offsets the disadvantage of using a less sensitive modality and yields

greater expected health benefits than the strategy that utilizes a more sensitive technology.

The conditions presented in Theorem 1 can be interpreted based on two critical factors,

initial breast cancer prevalence and breast cancer incidence rates, as follows: when the

prevalence of the disease in the study population (i.e., 1- µ1(0), where µ1(0) corresponds

to the proportion of disease-free women) is low at the time of initial screenings (i.e., µ1(0)

>> 0), the benefit of using a more sensitive modality is smaller (as compared with the

case where initial prevalence is high). On the other hand, if the risk of developing breast

cancer is high (i.e, Pr(s1+k=i|s1=0) >> 0 for i ∈ {1,2} and k > 0), then, frequent screens

might effectively detect the recently developed cancers at earlier stages, leading to more

favorable health outcomes as a result of earlier treatment initiation. Accordingly, this result

says that if the initial prevalence is (relatively) low and disease progression is (relatively)

high such that the conditions in Theorem 1 are satisfied, then a strategy recommending

more frequent screens yields more favorable outcomes than a strategy that employs a more

sensitive technology. We remark that in addition to shedding some lights into the overall

optimal policy structure, the findings from these structural analyses (i.e., more frequent

screens with a less sensitive technology leading to better health outcomes) are also reflected

in our real data-driven numerical experiments, as we discuss in the following sections.

2X(i)=sens7(π)Rew(6,1|i)+[1-sens7(π)]sens9(π)Rew(6,3|i)+[1-sens7(π)][1-sens9(π)]Rew(6,φ|i)
3Y(i)=sens3(π′)Rew(1,2|i)+[1-sens3(π′)]sens5(π′)Rew(1,4|i)+[1-sens3(π′)][1-sens5(π′)]

sens7(π′)Rew(1,6|i)+[1-sens3(π′)][1-sens5(π′)][1-sens7(π′)]sens9(π′)Rew(1,8|i)+[1-sens3(π′)][1-sens5(π′)]
[1-sens7(π′)][1-sens9(π′)]Rew(1,φ|i)

4Z(i)=sens6(π)min{Rew(3, 3|i), Rew(5, 1|i)}+ [1− sens6(π)]min{Rew(3, φ|i), Rew(5, φ|i)}
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1.5 Data and Parameter Estimations

We use multiple sources to estimate our MILP model parameters, which are summarized

in Table 1.4. To estimate the age-dependent state transitions between cancer states, we

use Wisconsin Breast Cancer Simulation (WBCS), which is a discrete-event simulation

model of breast cancer epidemiology developed and validated by a multidisciplinary team

in Cancer Intervention and Surveillance Modeling Network (CISNET), a National Cancer

Institute (NCI)-sponsored consortium. The model is populated by approximately 3 million

women, making up the female population aged 20-100 years of age living in Wisconsin

between 1950 and 2000. Details about the WBCS model can be found in [74].

Table 1.2: Cost of Screening Modalities and Biopsy

Table 1.3: Sensitivity (Left Table) and Specificity (Right Table) of Modalities

To estimate the incidence of breast cancer among high-risk women, we utilize the

Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm risk

estimation model [75, 76]. BOADICEA is a validated, commonly used risk-estimation tool

for high-risk women, calculating the risk of breast and ovarian cancer in women based on

key factors such as age, family history and the existence of BRCA1 and BRCA2 gene mu-
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tations. BOADICEA is recommended by NCI for use in high-risk women, and has been

shown to be well-calibrated for BRCA1 and BRCA2 mutation carriers in the U.S. and other

populations [77, 78, 79, 80]. We refer the reader to [81] for a detailed description of the

latest version of BOADICEA. In addition to BOADICEA, we use NCI’s Breast Cancer

Risk Assessment Tool (BCRAT), developed based on the Gail model [82, 83], for women

at high-risk for breast cancer due to family history.

We estimate intermediate rewards, representing QALYs, also using the WBCS model,

and the lump sum rewards and terminal rewards based on the NCI’s Surveillance, Epi-

demiology, and End Results (SEER) data [84], as described in [85]. The impact of co-

morbidities is captured by comorbidity-adjusted mortality rates and intolerance to screen-

ing and biopsy, as typically experienced by elderly women [86, 51], are captured by a

disutility function. SEER data and the incidence ratio as suggested by [87] are used to

estimate the initial distribution of the population. The cost of screening modalities and

biopsy are drawn from the 2005 Medicare Resource-Based Relative Value Scale [88], and

are inflated at a 3% rate to estimate the corresponding 2017 values, which are in line with

estimations in reported cost ranges in other sources. To assess the impact of ultrasound’s

operator-dependency, we conduct a worst-case scenario analysis by using the highest false

positive rate reported in literature [25]. Finally, while we present the base-case results in the

following section, we conduct extensive sensitivity analyses on many of these parameters,

and present the corresponding results in the main text and Appendix A.4.

1.6 Numerical Results

We use IBM ILOG CPLEX to solve the MILP formulation of the multi-modality breast

cancer screening problem over the lifetime of high-risk women, between ages 25-100 [20].

Our numerical analyses reveal that the structure of the optimal ten-year strategies depends

on age groups, which is somewhat expected as the disease progression and the benefits of

screening change with age. We characterize these age categories within which the structure
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Table 1.4: Breast Cancer Data and Sources

Model Parameter Source
Breast Cancer

Progression Probabilities
WBCS, BOADICEA,

NCI (BCRAT)
Intermediate (Annual)

rewards WBCS

Lump-sum
(Post-Treatment) rewards SEER

Terminal
Rewards SEER

Initial population
distribution SEER

Costs of
diagnostic tests Medicare

Sensitivity and
specificity of MAM NCI [89]

Sensitivity and
specificity of MRI

[22] , [90],
[91], [92]

Sensitivity and
specificity of US

[93], [94],
[95], [25]

Sensitivity and specificity of
MAM and MRI combined [27]

Disutility of Screening
and Biopsy

[96], [97],
[98], [99]

of the optimal strategies tend to remain similar. Accordingly, we present and discuss the

optimal ten-year strategies based on the following identified three age categories: 25-44

years old (young) women, 45-74 years old (middle-aged) women and over 75 years old

(elderly) women. In our base case analysis, we focus on the optimal screening strategies

for women with BRCA1 gene mutations (see Sections 1.6.1-1.6.4). Later, in Section 1.6.5,

we extend our analysis to BRCA2 mutation carriers and women with a family history of

breast cancer.

In our numerical presentation, we first present the optimal screening strategies for

BRCA1+ women, which are identified by solving the MILP model at various budget levels.

Then we assess the cost-effectiveness of these different optimal strategies at various bud-

get levels by using incremental cost effectiveness ratio (ICER) analysis [100]. To conduct

ICER analysis, we order the identified optimal strategies by the increasing order of required

budget and define ICER of strategy i as follows: ICER(i) = [Bi+1 - Bi]/[Qi+1 - Qi], where

Bi is the allocated ten-year budget per person for strategy i and Qi is the expected QALYs

gained under strategy i. In line with the health policy literature [101], we use a willingness-

to-pay (WTP) ratio of $ 100,000 and deem that a strategy is cost-effective if its ICER is
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lower than this WTP per a unit QALY gain. To identify and eliminate the strategies whose

health benefits and costs are outperformed by a mixed strategy of two other alternative

strategies, we use the principle of extended dominance [102]. For easier interpretation and

comparison of the results, we discuss the cost-effectiveness of screening strategies based

on budget levels allocated for a single woman, but if preferred, these budget levels could

easily be adjusted to compute the required population-level budget by multiplying the per

woman budget with the size of the corresponding population.

1.6.1 Results for Young (25-44 Year Old) Women

In this section, we consider the optimal screening strategies for young high-risk women,

aged 25-44 years-old. Given the similarity of the policies in the age group of 25-44, we

focus on the results for 25 year-old high-risk women in the main text for simplicity of the

presentation (For the results for 35 year-old high-risk women, see Appendix A.1). Results

are presented in Figure 1.3, which depicts the expected QALYs (y-axis) and ten-year budget

levels allocated per woman (x-axis). Each point in this QALY/cost curve corresponds to a

strategy, and among these strategies, the optimal ten-year policies at various budget levels

are depicted to the right of this figure. As an example, biennial ultrasound screening is the

optimal ten-year strategy when the budget level is between $1,430 - $2,793, and beyond

$2,793 “Annual US” becomes optimal and continues to be optimal until budget is increased

to $16,841. We further compute the corresponding ICER value for each optimal ten-year

strategy at various budget levels, and also present them in the sub-table on the right in

Figure 1.3.

We make three interesting observations with important policy implications from these

results: (1) as the budget increases, the optimal policies tend to typically chance quickly,

until annual US becomes optimal, which tend to remain optimal a wide range of budget

levels, between $2,793 - $16,841. This finding implies that for young high-risk women,

“Annual US” is affordable with moderate budget, cost-effective and robustly optimal over
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a wide range of budget levels; (2) mammography alone is not optimal at any budget levels

since ultrasound screenings achieve higher QALYs with lower costs for this age group; and

(3) although recommended by the some of existing guidelines, “Annual MRI+mammography”

is not cost-effective with an ICER $100,000, and “Annual MRI” is a dominated strategy

(by extended dominance). These results collectively indicate that annual ultrasound should

be the preferred ten-year strategy for screening young BRCA1+ women and the use of MRI

should be avoided in resource-constrained settings with WTP value of $100,000/QALY.

Figure 1.3: Optimal Screening Strategies for 25-Year Old BRCA1+ Women

1.6.2 Results for Middle-Aged (45-74 Year Old) Women

For “middle-aged” high-risk women, we present the results for 55 year-old BRCA 1 mu-

tation carriers (See Appendix A.1 for the results for 45 and 65 year-old high-risk women).

Results are presented in Figure 1.4, which lists the optimal ten-year strategies with their

expected QALYs, costs, ICER values, and the budget range over which they continue to be

optimal. For example, annual mammography between ages 55-64 yields 26.3043 QALYs,

costs $2,414 per woman and remains optimal over the budget range $2,414 - $14,328.

We make the following observations for “middle-aged” BRCA1+ high-risk women

from these results: (1) “Annual MAM” is a notably effective strategy: It is affordable with
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moderate budget, cost-effective and robustly optimal over a wide range of budget levels;

(2) Strategies utilizing ultrasound are optimal for low-to-moderate budget levels and cost-

effective and hence, offer alternatives to mammographic screenings when resources are

tight; and (3) MRI is not a cost-effective technology as “Annual MRI” is dominated (by ex-

tended dominance) and “Annual MRI+MAM” results in an ICER $400,000/QALY, which

is way above the WTP=$100,000, despite yielding the highest health benefits. These find-

ings collectively imply that annual mammography screening should be the recommended

ten-year strategy in middle-aged high-risk women and the regular use of MRI, alone or

jointly with mammography, should be avoided for cost containment.

Figure 1.4: Optimal Screening Strategies for 55-Year Old BRCA1+ Women

1.6.3 Results for Elderly (75 Year-Old and Older) Women

For “elderly” high-risk women, we present the results of 75 and 85 year-old BRCA 1+

women together. Table 1.5 lists optimal ten-year screening strategies and expected QALYs,

costs, and ICER values corresponding to these strategies. One of the key observations

for elderly high-risk women is that annual screening strategies are either not optimal at

any budget level or when optimal, they are not cost-effective (e.g., annual mammography,

alone or with MRI, is not optimal and annual ultrasound is not cost-effective for 75-year old
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women). Further, among the cost-effective strategies, the screening frequency of the most

favorable strategy drops from five screens (biennial ultrasound) to two screens (double

mammogram) as age of the targeted population increases from 75 to 85. This observed

reduction in the frequency of screenings in optimal strategies for elderly population is due

to the diminishing benefits of screening with older age as a consequence of increasing

comorbidity rates and intensified harms associated with screening and biopsy [103, 51].

The second key observation is that ultrasound alone and mammogram alone both yield

affordable strategies that are optimal and cost-effective at certain budget levels. These

findings collectively suggest that both mammography alone or ultrasound alone might be

used in elderly high-risk populations but the frequency of screenings should be biennial or

less and should be decreased with increasing age.

Table 1.5: Optimal First Ten-year Strategies for 75- and 85-Year Old BRCA1+ High-risk
Women

1.6.4 The Role of Ultrasound’s Operator Dependency

Compared to mammography and MRI, ultrasound has a higher operator-dependency, caus-

ing higher user-variability on the accurate classification of positive (abnormal) image re-

sults [34]. Despite its widespread availability, low cost and favorable patient tolerance, the

operator-dependency of ultrasound prevents consensus on the consistent use of breast ultra-

sound as it affects the resulting size of false-positive readings and the total cost of screening

strategies and hence, is a major concern in national guideline development [104]. To ad-
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dress this concern, we perform a worst-case scenario analysis by using specifically the

highest false-positive rates for ultrasound reported in the literature (20.2%) than the values

used in the base-case analysis (11.8% and 3.2% below and above age 40, respectively). The

corresponding results are presented in Table 1.6, which lists the optimal strategies and the

corresponding costs, QALYs and ICERs, for 25-,55- and 75- year old BRCA1+ women, as

representatives of young, middle-aged and elderly high-risk populations, respectively.

Table 1.6: Optimal Strategies for 25-, 55- and 75- Year Old BRCA1+ Women with Low
US Specificity

The key findings of this worst-case analysis, conducted with conservatively high false-

positive rates for ultrasound, are as follows: (1) For “young” BRCA1+ women, “Annual

US” strategy is still affordable with moderate budget, cost-effective and robustly optimal

over a wide-range of budget levels; (2) Mammography alone is the only optimal and cost-

effective modality for middle-aged and elderly BRCA1+ women; and (3) the use of MRI

is still not cost-effective at a WTP value of $100,000/QALY. Accordingly, with conser-

vatively high false-positive rates, the annual use of ultrasound is still the most favorable

cost-effective strategy for “young” high-risk women but ultrasound fails to offer an alter-

native to mammography in other age groups.
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1.6.5 Extension of Results to Other High-Risk Groups

Among high-risk populations, breast cancer incidence and progression rates differ depend-

ing on whether the dominant risk factor is family history or inherited gene mutation. In our

base numerical analysis, we discuss the results for women at high-risk due to BRCA 1 gene

mutations. In this section, we extend the results to two other major risk groups, BRCA 2

mutation carriers and women with a family history of breast cancer. The analyses with

base-case parameters reveal that the key results following from BRCA 1 mutations carriers

continue to hold for other two high-risk populations: (1) “Annual US” and “Annual MAM”

are both affordable with moderate budget, cost-effective and robustly optimal over a wide

budget range for young and middle-aged high-risk women, respectively; (2) The use of

MRI, alone or with mammography, leads to outcomes that are not cost-effective. Yet, there

are some important differences in the optimal strategies between the three different high-

risk groups (i.e., BRCA 1+, BRCA 2+, women with family history), which we highlight

in the following subsections. The full set of results for BRCA2+ and women with a family

history of breast cancer are included in Appendix A.3.

Table 1.7: ICER Values of Optimal Screening Strategies for 35-Year Old Women (When
The False-Positive Rates of Ultrasound is High)

Young High-Risk Women: For “young” women at high-risk due to BRCA 2 gene
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mutations or family history of breast cancer, we present the results for 35-year old high-

risk women, and compare them against the results for BRCA1+ women. The main differ-

ence from the findings for BRCA1+ women is the following: When ultrasound has a low

specificity rate, leading to a high number of false-positives, most of the strategies utilizing

ultrasound are cost-effective for BRCA1/2 carriers but none of these strategies, including

“Annual US”, is cost-effective for women with family history (Table 1.7). Relatively lower

breast cancer incidence and progression rates experienced by women with family history,

compared to BRCA1/2 mutation carriers, might explain why ultrasound fails to offer an

alternative to mammography for young women with family history in the clinical scenario

with high false-positive rates.

Table 1.8: Screening Strategies for Different High-Risk Groups

Other Age Groups: For “middle-aged” and “elderly” high-risk women, the differences

between optimal strategies of different high-risk groups mostly correspond to low budget

scenarios where only a single or at most two screenings are affordable (Table 1.8).The only

exception is the “annual” US strategy for 75-year old women. This strategy is not optimal

for women with family history of breast cancer, optimal but not cost-effective for BRCA 1

mutation carriers, and optimal and also cost-effective for BRCA 2 mutation carriers. These
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results are in line with the differences in five-year breast cancer risk at age 75 for these

risk groups: 3.8% for women with family history, 4.9% for BRCA 1 mutation carriers, and

8.0% for BRCA 2 mutation carriers.

1.7 Discussion and Conclusions

In this paper, we study the multi-modality breast cancer screening problem for high-

risk population. The performance of mammography, the standard modality for average-risk

women, is not satisfactory for high-risk women. MRI and ultrasound are shown to have

potential health benefits for high-risk population in detecting breast cancer earlier. Yet, the

cost and false positive rates of MRI and operator dependency of US are important concerns

in guideline development. Currently, there is no consensus on the optimal and cost-effective

design of screening strategies for high-risk women, using MRI and ultrasound either in

addition or instead of mammography. Attempting to make an initial step in closing this

gap, we identify optimal screening strategies for high risk women, including women with

known BRCA 1/2 gene mutations and family history of breast cancer, by considering the

technologies that are in widespread use.

Taking a societal perspective, we study optimal screening strategies for high-risk women

including BRCA1/2 gene mutation carriers and women with a family history. The key

findings of our analysis are as follows: (i) For “young” high-risk women, “annual ultra-

sound” screening is a very efficient strategy even with high false-positive rates and should

be the recommended ten-year policy in resource-constrained settings; (ii) “annual mam-

mography” is optimal strategy for “middle-aged” high-risk women as it is affordable with

moderate budget, robustly optimal over a wide budget range with high QALYs, and cost-

effective; (iii) The strategies utilizing MRI, either as the primary modality or jointly with

mammography as recommended by guidelines, require a large amount of resources due to

high cost and high false-positive rates of this modality and lead to outcomes that are not

cost-effective.
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Both for developed and developing countries, identification of cost-effective surveil-

lance programs that adapt frequent screens such as “Annual US” and “Annual MAM”

strategies, is important for young and middle-aged BRCA 1/2 women as timely detection

is very critical in these populations due to rapid progression of cancer [105]. Furthermore,

the scenarios we identify where ultrasound screenings require low-to-moderate budget and

offer a cost-effective alternative to mammogram might address some of the limitations of

screening programs in developing countries, where mammography is not widely available

[106, 107, 108]. The robustness of “Annual US” in young high-risk populations, for whom

the performance of mammography is not satisfactory [109, 110], is especially important,

because the lack of proper training to interpret whole-breast ultrasound screenings might

cause an increased number of false-positives in developing countries [26]. In older high-

risk age groups, the operator-dependency of ultrasound might be a limiting factor for its use

as the primary modality, as our results indicate that ultrasound fails to offer cost-effective

alternatives to mammogram in the older population when its false-positive rates are high.

Given that assessing all plausible strategies via comprehensive randomized controlled

trials is time and cost-prohibitive, our findings can complement clinical studies and be

instrumental in designing future trials, developing evidence-based guidelines and inform-

ing insurance coverage decisions. Furthermore, this flexible optimization framework can

be useful in other healthcare applications, especially when the number of practical inter-

ventions is large and a variety of complexities must be captured to generate clinically-

meaningful solutions. Finally, our study is also important for the ongoing debate on the

cost-effectiveness of individualized or population-based genetic-testing. By enabling tar-

geted high-level surveillance for BRCA1/2+ carriers, genetic-testing has potential to im-

prove health outcomes; however, despite the reduction in prices of these tests, the cost-

effective use of screening resources, as shown in this study, is required to justify the

widespread clinical adaptation of genetic-testing for BRCA1/2 and other gene mutations.

We should note that our study is not without limitations. First, we primarily utilized
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estimations for high risk populations but reliable estimations were not always available for

all the modalities. In order to address this limitation, we conducted extensive sensitivity

analyses on such parameters. Second, we do not consider emerging technologies, such as

molecular breast imaging [111] and breast tomosynthesis [112] due to rarity and lack of

sufficient clinical evidence and the combination of ultrasound and mammography together

as a single action due to lack of reliable data on sensitivity and specificity rates. Finally, a

population-based approach is taken in this study and hence, caution must be exercised if the

findings are implemented in clinical practice, where individual patient characteristics such

as breast density, and personal values and behaviors, such as adherence to recommended

screening actions, play an important role.
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CHAPTER 2

PHYSICIAN STAFFING IN EMERGENCY ROOMS VIA A MULTI-CLASS

MULTI-STAGE QUEUING NETWORK

2.1 Introduction

We study a staffing problem in the context of a medium-to-large scale emergency room

(ER) and determine staffing levels for ER physicians satisfying “tail probability of delay”

(i.e., serve y% in x minutes) type service targets. Conducted in collaboration with Mayo

Clinic, our practice-based approach accounts for the key dynamics of the ER care including

time-varying demand, multi-stage service and multi-class patients. Keeping practicality as

a priority, we develop a queuing network to model the ER care and utilize it to estimate the

offered load for treatment queues, corresponding the workload on ER physicians. Treat-

ment queues in ER operate in “efficiency-driven” (ED) mode, where servers (physicians)

are mostly busy and waiting before service is usually inevitable, but experience no (or, if

any, negligible) abandonment. Motivated by these unconventional ED queues, we propose

a new staffing algorithm converting offered load into staffing for these type of ED queues,

and demonstrate its utility in various ER settings. Finally, we tackle an associated routing

problem, and discuss several routing rules that are practical for implementation with our

solutions.

Below, we first provide a brief background on ER staffing and its impact on the ER

care. Next, we motivate the need for a network queuing model and present a list of our

contributions.
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2.1.1 Background: Emergency Room (ER) and ER Physician Staffing Problem

The importance of an emergency room (ER) for a hospital, and for a healthcare system in

general, cannot be overstated. It is one of the major gateways for hospital admissions and

plays a pivotal role in acute healthcare delivery by providing critical service for emergency

and disaster management. In addition, especially in the U.S., ERs are also used by many

non-urgent patients as a means to access general healthcare services [113], as they provide

care for more than 140 million patients annually [114].

Figure 2.1: Average ER Arrivals - St. Mary Hospital, Mayo Clinic, Rochester, MN (Jan.
2014 - Dec., 2016)

In line with their importance, there is a constant pressure to improve ERs’ efficacy and

efficiency across the nation [115]. On the one hand, ERs are expected to provide high-

quality care in a timely manner despite high patient volumes and crowdedness problem

[116, 117]. On the other hand, especially in the midst of rising healthcare costs, eliminat-

ing inefficiencies and unnecessary costs in ERs is a central concern [118]. Accordingly,

effective and efficient management of ERs, achieving timely high-quality service with ef-

ficient resource use, has become an utmost necessity.

An ER’s performance is strongly linked with its workforce planning decisions for ER

physicians, the most critical human resources in ERs. ER physicians are the leading mem-

bers of ER care teams, make critical decisions under situations requiring emergency care,

and play a decisive role in providing timely and effective medical service. Hence, physician

understaffing causes severe consequences for ERs, including increased medical error risk,
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prolonged waiting times and higher patient dissatisfaction and abandonment rates [117,

119, 120]. On the other hand, overstaffing can quickly diminish ERs’ cost-effectiveness, as

ER physician salaries, averaging around $290,000 per year, constitute a significant portion

of the overall personnel cost [121]. Finally, contrary to nurses and other ER personnel,

it is fairly difficult to make real-time adjustments to the staffing levels of ER physicians,

making them a key determinant of ERs’ capability in coping with time-varying demand

and preventing systematic capacity-demand mismatches.

Table 2.1: Mean Treatment Durations and Subsequent Departure Rates - St. Mary
Hospital, Rochester, MN

Optimizing staffing levels is a challenging task for ERs as they exhibit high levels of ser-

vice complexity. First, ER arrivals are non-deterministic and time-varying (Figure 2.1) with

daily and hourly variations [122, 123, 124]. Second, high patient volumes and medium-

to-long sojourn times, experienced by many ERs, put a significant amount of workload

on ER personnel and cause over-crowding unless managed properly [125]. Third, the ER

care delivery is not a single encounter. It involves multiple treatment stages, where a pa-

tient is seen multiple times by an ER care team, and is likely to be paused at least a few

times for the completion of auxiliary services such as lab work and diagnostic imaging

[126, 127]. Fourth, ER patients are not a homogeneous population [128]. Upon arrival,
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patients are categorized into different patient classes, where each class has varying degrees

of urgency, severity and service requirements. Last but not least, the ER care delivery is

not a standard process for all patients, where the average duration of an ongoing treatment

and the expected number of additional patient-physicians interactions are both patient type

and treatment history dependent, showing variations among patient classes and treatment

stages (Figure 2.1).

Figure 2.2: Canadian Triage and Acuity Scale Guidelines: Patient-Class Specific TPoD
Type Service Goals

Reduced waiting time in ERs is shown to be associated with higher patient satisfaction

[129] and lower adverse outcome risk [130, 131]. Accordingly, keeping waiting times at ac-

ceptable levels is a suitable objective for the ER physician staffing problem. A particularly

noteworthy guideline on waiting times is the Canadian Triage and Acuity Scale (CTAS),

which is also adopted by many ERs in the U.S. [132]. CTAS categorizes ER patients into

five classes (namely, Resuscitation, Emergent, Urgent, Semi-Urgent and Non-Urgent) and

specifies two service parameters for each patient category: (1) a threshold value, say T , on

waiting before service provided by an Qualified Medical Professional (i.e., ER physician),

and (2) a tolerance target, say α, serving as an upper bound for the fraction of patients

whose waiting time is tolerated to exceed their threshold value (Figure 2.2). To meet CTAS

targets, an ER must satisfy that probability of waiting more than threshold T before service

is always less than tolerance target α (i.e., Pr(Wait(t)>T ) < α ∀ times t) for all patient

classes. These types of service goals are referred to as “tail probability of delay (TPoD)”

in queuing theory literature [133] and have been used in many service applications.
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2.1.2 A Network Model for ER Care Delivery and A New Staffing Algorithm

Queuing models have been increasingly utilized in healthcare for workforce management

and system analysis [134]. Taking a black-box approach, single-station queues (e.g., Erlang-

A ,-B and -C models) are among the models that are commonly used to analyze system be-

havior and performance [135, 136]. However, the ER physician staffing problem demands

a more comprehensive framework, as these popular models fail to consider a fair number

of the key features of ER care delivery, summarized as follows: (1) Physicians are not the

only service providers over the course of the ER care delivery as the process also includes

various tasks undertaken by other members of the ER care team. (2) The medical service

provided in ER is not a single event and involves multiple physician-patient interactions

[127]. Further, for each patient class, the durations of these physician-patient interactions

(i.e., treatments) and the probability of receiving another treatment before departure show

variations among treatment stages. (3) Some patients leave the ER without receiving treat-

ment. Yet, these abandonments happen mostly at earlier stages of the ER care (i.e., before

a patient is placed on his assigned bed and seen by an ER physician). Accordingly, the

treatment processes directed by ER physicians experience no (or, if any, negligible) patient

abandonment.

Considering these key features of the ER care, we develop a multi-stage queuing net-

work model that (1) captures multiple physician-patient interactions, (2) differentiates the

physician-guided works from the services provided by nurses or other ER personnel (e.g.,

lab work), and (3) separately models the earlier stages of the ER care delivery process to

correctly account for abandonments.

Two main building blocks of our multi-stage network are the “Treatment” and “Order

Bundle” queues, separating the ER care directed by ER physicians from other services.

“Treatment” stations are where ER physicians examine and treat patients over the course

of the ER care and are used to calculate the workload on ER physicians. “Order Bundle”

stations represent the group of diagnostic medical orders, requested by an ER physician
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to better assess a patient’s condition before continuing treatment, and are positioned after

treatment stations (Figure 2.3). These orders are conducted by nurses or allied health staff

and may include lab work (e.g., blood test) or specialty tests (e.g., electrocardiogram and

CT scan). Such representation of ER care, describing its central section as a sequence of

treatment and order bundle processes, is intuitive and in line with ER physicians’ perspec-

tive, who view their work as successive examination-decision combinations.

Figure 2.3: Black-box and Multi-Stage Network Models for ER Care Delivery Note:
Treatment and order bundle stations are abbreviated with “Tr” and “OB”, respectively.

Treatment queues operate with efficiency-driven perspective, where servers (physicians)

are mostly busy and delays before service are usually inevitable. Yet, contrary to conven-

tional ED regimes, these stations experience no (or, if any, negligible) abandonments, as

abandonments almost always occur (and are captured by our network model) at the earlier

stages of the ER care (e.g. in the waiting area). This type of an ED regime, especially with

TPoD targets and time-varying demand, has not gained much attention since abandonment,

a non-negligible feature of the majority of crowded queues, is considered a defining charac-

teristic of an ED model [137, 138] and accordingly, ED queues are commonly studied with

abandonment [139, 140]. This motivates us to develop a new staffing formula, translating

the load on servers into staffing decisions that meet TPoD targets for ED queues without

abandonment (i.e., with perfectly patient customers).

2.1.3 Our Approach and Key Contributions

In collaboration with Mayo Clinic, we study the ER physician staffing problem with time-

varying demand. Our objective is to determine optimal staffing levels satisfying patient-
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class and treatment-stage specific TPoD targets at all times. To the best of our knowledge,

ours is the first study that simultaneously and comprehensively accounts for various real-

life features, including time-varying demand, multi-class customers, multi-stage service

of discontinuous nature, and differentiated TPoD targets. More specifically, our overall

approach and key contributions are as follows:

Multi-Class Multi-Stage Network Model: We develop a multi-stage queuing network

to capture the patient flow in ERs and estimate time-varying offered load (OL) for treatment

queues. This model serves two important purposes: (1) Differentiating patient-physician

interactions from services provided by other ER personnel and the earlier stages of the

ER care, where abandonments happen, it allows to model and staff the queues that are

served by ER physicians more accurately. (2) Opening the black-box of care delivery, it

provides more access to and managerial control over the internal components of ER service.

Using this modeling framework, a decision-maker can analyze the instantaneous load on

physicians at various stages of the ER care, set differentiated TPoD targets for patient

classes and treatment stages, and make staffing decisions accordingly.

New Staffing Algorithm: Motivated by the treatment queues, we develop a new and

comprehensive algorithm to staff the ED queues that serve under TPoD type service targets

and experience no abandonment. We analytically show the asymptotic effectiveness of our

staffing rule on stabilizing TPoD for M/M/s queues, operating in ED heavy-traffic mode.

Via realistic and data-driven simulation experiments, we demonstrate the robustness of this

new algorithm in various ER settings, characterized by time-varying stochastic demand,

multi-stage service, multi-class customers (patients), and centralized (pooled) servers (ER

physicians). Finally, we propose a weighted average technique to avoid overstaffing due to

the pooling effect (i.e., improved service quality due to the pooling of resources), and show

its utility in multi-class multi-stage cases.

Practical Routing Rules: The real-time performance of ER physicians also depends

on the routing mechanism, determining which patient to be served next. Therefore, we
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address the associated routing problem for ERs, and assess several practical routing rules,

coupled with our staffing solutions, under various clinical scenarios and network setups.

We demonstrate that as system complexity (measured by arrival volumes, number of pa-

tient classes and the expected number of treatments) increases in ERs, static routing rules

fail to meet TPoD targets. We further show that dynamic routing rules, making routing as-

signments based on the system state, are not always sufficient to cope with the high levels

of complexity of medium-to-large scale ERs either. For these cases, we propose hybrid

routing policies, integrating predetermined priorities (via static rules) and the use of sys-

tem state (via dynamic rules), and discuss how they, together with “ED-NoAb”, achieve the

desired performance in medium-to-large scale ERs.

The rest of this paper is organized as follows: Section 2.2 summarizes the relevant liter-

ature and highlights our key differences. Section 2.3 presents our network model. Section

2.4 discusses the derivation of our staffing method and describes its use in networks with

time-varying demand. Section 2.5 presents our numerical experiments and discusses the

implementation of our staffing approach with practical routing rules. Section 2.6 summa-

rizes our findings, and concludes our study.

2.2 Literature Review

There are two main streams of research within the modeling-based ER care delivery liter-

ature. At the one end, there are studies using simulation models to analyze the ER patient

flow and evaluate what-if scenarios in different ER settings (See [141] for a review). Given

the complexity of ER care delivery, a simulation model might offer a (relatively) conve-

nient framework (than an analytical method) to study various operational problems in ERs

[142] . Yet, to be accurate and reliable, a simulation model requires meticulous efforts to

(1) account for all major system characteristics and interactions, (2) estimate and fine-tune

a large set of parameters, and (3) calibrate and validate the model [126]. Further, studying

a complex process with a simulation model carries the risk of being system-of-interest-
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specific, as it requires detailed modeling, and hence, might offer limited insights for the

same system in other settings.

At the other end of the spectrum, there are queuing theory based analytical approaches,

as ours, focusing on different aspects of health service operations including ER care de-

livery. Queuing models provide an abstract representation of a service process, and are

quite instrumental to study (and gain insights from) system behavior and performance via

closed-form formulas. See [134], [135], [136] and [143] for a review the queuing theory

applications in ER and other healthcare settings.

2.2.1 A Queuing Theory-based Staffing Approach: Offered-Load Analysis

A central queuing theory-based staffing approach for medium-to-large service systems is

offered-load (OL) analysis [144]. The key idea is to approximate the behavior of the orig-

inal system with a corresponding infinite-server (IS) queue to compute its OL (i.e., the

instantaneous arrival rate per unit service rate) and then use the OL to propose staffing lev-

els for the original system [145]. The foundations of this approach are laid down by [146],

who analyze an Erlang-C (i.e., M/M/s) model under heavy-traffic limits (i.e., arrival rate

λ and number of servers s → ∞ while service rate µ is kept fixed) with a probability of

delay (PoD) target α. They show Pr(Wait > 0) → α ∈ (0, 1) if and only if s−λ/µ√
λ/µ
→ βα

for some quality-of-service (QoS) parameter βα ∈ (0,∞), leading to the staffing formula

“square-root safety (SRS)” s = OL + βα
√
OL, OL = λ/µ. Studying Erlang-A (M/M/s+M)

and M/M/s+G queues, [137] and [139] extend this approach to many server queues with

abandonment. In addition, [137] introduce three staffing regimes, Efficiency-Driven (ED),

Quality-Driven (QD) and Quality-and-Efficiency-Driven (QED), to be used depending on

whether the emphasis is on (server) efficiency, (service) quality or both. [140] study Erlang-

A queue and introduce the “ED+QED” regime (i.e., QED refinement of ED staffing) to sta-

bilize TPoD for stationary queues with abandonment. Also see [147, 148, 149], and [150]

for related works on optimal staffing of many-server queues based on asymptotic behavior
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analysis.

Experiencing time-varying demand, many service systems do not operate in stationary

fashion. Addressing this issue, [151] and [152] generalize OL analysis to time-varying set-

tings, and provide new tools, namely modified-offered-load (MOL) and infinite-server (IS)

approximation, to propose staffing under time-varying demand. Applying a simulation-

based iterative algorithm, [153] generalize the SRS to queues with time-varying arrivals

and customer abandonment. See [127, 154, 155, 156] for various extensions of the MOL

method under different performance functions such as PoD, probability of abandonment

(PoAb) and mean waiting time. There has also been attempts to address time-varying de-

mand by using traditional models in a non-stationary way. The core idea is to approximate

non-stationary system behavior using the exact steady-state formula of stationary queues

at each time point. Examples of this approach include pointwise stationary approximation

and stationary independent period-by-period methods, which have been proven useful in a

variety of settings, including ER staffing [157, 158, 159].

2.2.2 Repetitive Service and Our Key Differences From The Existing Literature

Beside ours, there exists a few studies accounting for the discontinuous and repetitive na-

ture of health services. [160] study an ER nurse staffing problem with a closed queuing

model M/M/s/n, where s nurses serve n patients, attempting to re-enter service when their

state switches from “served (stable)” to “in need for service”. Based on new many-server

asymptotic results, the authors develop heuristics to set nurse staffing levels stabilizing

TPoD, or its special case PoD, with a variant of SRS formula. Motivated by healthcare sys-

tems, [127] develop a two-station open queuing network with a feedback loop, and using

SRS with MOL approximation, propose a staffing formula stabilizing PoD in QED systems

facing customer re-entries and time-varying demand. In their model, a patient either de-

parts the ER after being served in the first queue or, with a fixed probability, transitions

to the second queue, where she waits and then re-visits the first station for service. Both
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studies propose staffing levels using a (stationary or time-varying) variant of SRS, consider

a homogeneous (single-class) patient population, and assume identical and memoryless

“service” and “return to service” processes (i.e., use exponential distributions having the

same means for every customer re-entry). Instead, we consider a heterogeneous patient

population, model each “treatment” and “return to treatment” process separately, and use

“history-dependent” (i.e., treatment stage-specific) service times for the ER care process.

The key differences of our study and the existing queuing literature are as follows:

(1) Instead of predominantly used single-station queues, we propose a practical queu-

ing network model that simultaneously considers various complex features including time-

varying demand, multi-class customers, and multi-stage service, and differentiated service

goals. Specifically, by allowing the use of different (i) general probability distributions for

service times, (ii) departure probabilities after service completion, and (iii) TPoD type ser-

vice targets for each customer type at each service stage, our network model accounts for

the differences in the service processes and requirements. This modeling framework can

also be applied in other complex service settings and is especially useful for the systems

having various service components with different characteristics that cannot be captured by

simplistic black-box models.

(2) We propose a new queuing network- and OL analysis-based staffing approach. In

particular, we develop and use this approach to meet TPoD targets for ED queues experi-

encing no abandonment. Yet, our approach can also be extended to other settings, where

a different staffing formula (e.g. SRS) is used to stabilize a different performance measure

(e.g., PoD) for other types of queuing regimes (e.g., QED).

(3) We tackle some additional challenges that arise from the problem features we jointly

consider. In particular, we show how to account for the pooling effect of centralized servers

while proposing staffing over a multi-class multi-stage network. Further, addressing the

associated routing problem, we also shed some lights into the relationship between system

complexity and staffing-routing policies.
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2.3 A Multi-Class Multi-Stage (MCMS) Network Model for ER Care

The ER care delivery process, illustrated in Figure 2.4, can be described as follows: Upon

arrival, patients are categorized and prioritized by nurses at triage based on their perceived

health risk, and subsequently, begin waiting to be admitted to the ER, during which they

might choose to leave. After the waiting period, each patient is assigned to and placed

on an empty treatment bed. This process is referred to as “bed placement”, during which

nurses and other allied health staff interact with the patient and conduct the initial medi-

cal assessment. This process is followed by a physician-patient interaction (i.e., treatment

process). Once the ER physician completes her initial examination, she might request a set

of orders (“order bundle”) to assess the patient’s medical condition before continuing the

treatment. An order bundle may involve lab work (e.g., blood tests), diagnostic imaging

(e.g., X-ray) and other procedures, and is completed by nurses and other allied health staff.

Upon completion of the orders, the ER physician analyzes the results and continues the

patient’s treatment with this additional information. If required, she pauses the treatment

again and requests more orders. These treatment and order bundle sequences cease when

the ER physician arrives at a final disposition decision, ending the patient’s ER care. Sub-

sequently, the patient departs the ER either to be admitted to a hospital inpatient unit or to

go home. The departure process is supervised by nurses and require no more emergency

care.

Figure 2.4: Patient Flow in the ER from Arrival to Departure

We develop a queuing network to model the ER care delivery process, illustrated in
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Figure 2.5. The model components and the notation used in the manuscript are described

below:

Patient Classes: P = {1, 2, ..,m} denotes the set of patient classes, where m<∞. Us-

ing a five-tier triage scale (m=5), we define the patient classes as follows: Level 1 (critical)

corresponds to critical conditions, requiring an immediate life-saving medical intervention.

Level 2 (emergent) conditions pose a potential threat to life limb or function, requiring rapid

medical intervention. Level 3 (urgent) corresponds to a stable health status that causes a

certain level of discomfort and carries a risk of progression to a more serious problem over

the course of the ER care. Level 4 (semi-urgent) conditions are relatively low-risk but

have potential for deterioration if treatment is delayed over an hour. Level 5 (non-urgent)

conditions are associated with the lowest risk, allowing for delays in the ER care without

significant consequences. In this study, we conduct numerical experiments on Level 2, 3,

and 4 patients, constituting 98% of arrivals in our dataset and discuss the impact of not

considering Level 1 patients later.

Arrival Process: Arrivals to ER are time-varying and stochastic, and modeled as inde-

pendent non-homogeneous Poisson processes with rate λx(t) at time t for patient class x

∈ P.

Bed Placement, Treatment, and Order Bundle Queues: For patient class x ∈ P, TRx

:= {1, 2, ...} denotes the set of treatment queues and µxi denotes the service rate at treatment

stage i ∈ TRx. Similarly, OBx denotes the set of order bundle queues for patient class x ∈

P, where δxi is the service completion rate of order bundle process i ∈ OBx. In addition, δx0

denotes the completion rate of bed placement process for patient class x ∈ P.

Abandonment: With varying rates depending on patient class, abandonments, also

called left-without-being-seen (LWBS), happen in the waiting area while patients wait to

be admitted to the ER after triage. No significant abandonment is recorded in our data

following the bed placement process. Moreover, this observation also extends to most

other ERs as it is unlikely for a patient to prematurely leave the ER care after being placed
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on a treatment bed in the ER.

Departure Probabilities: For patient class x ∈ P, pxi denotes the probability of de-

parture after treatment stage i ∈ TRx. Then, with probability 1- pxi , a patient in class x

∈ P goes through at least another sequence of order bundle and treatment processes after

treatment stage i ∈ TRx.

Figure 2.5: A Multi-stage Queuing Network with Four Treatment Stages Note: The
patient class index is suppressed for simplicity.

In the next section, we describe how we (i) utilize our network model to calculate the

instantaneous loads on treatment stations, representing the physical and cognitive workload

on ER physicians, and (ii) convert them into staffing levels for ER physicians with our

staffing algorithm.

2.4 A Staffing Rule for ED Erlang-C Queues and the MCMS Network

Our staffing approach can be decomposed into two steps: (1) The calculation of time-

varying offered-load (OL) for each queue of interest under (a version of) infinite-server

(IS) approximation, (2) the translation of OL functions into staffing levels via an analytic

formula-based staffing algorithm. The key idea of our approach to use instantaneous OL

functions (of some specific queues) for (overall) staffing decisions, and is applicable to

many service systems. Yet, attention must be paid to the characteristics of the queues of in-

terest as they impact both the choice of the OL calculation method (Step 1) and the staffing
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formula (Step 2). Hence, before describing the details of our method and its implementa-

tion for the ER physician staffing problem, we first briefly discuss the defining features of

treatment queues, capturing the medical services provided by ER physicians.

The operational behavior of treatment queues is characterized by the following factors:

(1) Facing high patient volumes, ER physicians (servers) are mostly busy. (2) Delay before

each treatment stage (physician-patient interaction) is usually inevitable. (3) At each stage

of treatment, keeping the waiting time at an acceptable level is required for patient satis-

faction and safety. (4) Abandonments only occur before a patient is placed on an ER bed

(i.e., at earlier stages of ER care).

The features of treatment queues define an efficiency-driven (ED) regime, aiming rea-

sonable service quality with highly utilized servers, but not a conventional one given the

lack of abandonment. For a conventional ED queue, service capacity is set below the ar-

rival rate by a moderate fraction, and abandonments compensate the excess of demand over

capacity, preventing asymptotic results from being divergent or degenerate. Yet, there is no

(non-negligible) abandonment from treatment queues that can be used to regulate their

asymptotic behavior. Such an ED regime, especially with a TPoD target (rather than the

commonly used PoAb), has not gained much attention in the literature, given abandonment

is usually considered a defining characteristic of ED queues [137, 138]. Accordingly, as we

study this special ED regime, we develop a new staffing rule to convert the OL into staffing

levels achieving TPoD goals.

We organize the rest of the Section 2.4 as follows: In Section 2.4.1, we formally define

an ED regime for Erlang-C (M/M/s) queues, show the asymptotic convergence of TPoD

to a non-degenerate limit for this stationary regime, and discuss how this result leads to a

new staffing formula (i.e., ED-NoAb). In Section 2.4.2, we describe how to use ED-NoAb,

together with delayed-infinite-server approximation [154], for a dedicated non-stationary

Mt/G/st queue, serving a single patient class under time-varying (Poisson) demand with

TPoD target. In Section 2.4.3, we generalize the ED-NoAb algorithm to multi-class multi-
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stage networks, where pooled agents (ER physicians) serve patients from multiple classes

under time-varying arrivals and differentiated service goals. We also briefly discuss the

routing policies we employ with ED-NoAb in multi-class multi-stage settings. Finally, in

Section 2.4.4, we confer about how our staffing approach can be implemented in other

queuing systems exhibiting different characteristics.

2.4.1 An Analytic-Formula based Staffing Rule for Efficiency-Driven M/M/s Models

Now, we present Theorem 1, which (i) defines an ED regime for M/M/s queues, and (ii)

describes the asymptotic (i.e., heavy-traffic limit) behavior of EDM/M/s queues based on

tail probability of delay and expected waiting time. The proof of Theorem 1 is provided in

Appendix B.

Theorem 1: (An ED Regime for M/M/s) Consider a sequence of M/M/s queues

indexed by n, each of which has arrival rate λn, service rate µn = µ ∈ (0,∞), and sn

servers. Let the traffic intensity ρn = λn
µsn

< 1. Consider probability target 0 < α < 1 and

delay threshold T > 0. Then, if

lim
n→∞

sn(1− ρn) = β as λn, sn →∞, where β =
ln(1/α)

µT
> 0, (2.1)

The probability of delay and the server utilization converge to 1:

P (Wn > 0)→ 1 and ρn → 1 as λn, sn →∞. (2.2)

The tail probability of delay and the expected waiting time converge to non-degenerate

limits:

P (Wn > T )→ α and E[Wn]→ w∗ ≡ T

ln(1/α)
as λn, sn →∞. (2.3)

Remark 1: (Heavy-Traffic Regime: ED Erlang-C) In Theorem 1, the condition 2.1
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plays two significant roles regarding the behavior of an M/M/s queue as sn and λn grow

to infinity: (1) It keeps the resource capacity sn and the load on resources λn/µ “matched”

in a way that the system stability is maintained (i.e., ρn < 1), and (2) it dictates the rate

of convergence for server utilization ρn (in an order 1/sn) (i.e., ρn → 1 - β/sn). Under

the condition 2.1, a (heavy-traffic) M/M/s queue operates in an efficiency-driven mode,

achieving high server utilization at the expense of delays before service (Theorem 1.i). We

dub this heavy-traffic regime “ED Erlang-C”, where the TPoD and expected waiting time

both converge to non-degenerate limits (Theorem 1.ii). Note that the fine-tuning of these

metrics (i.e., P (W > T ) and E[W ]) are achieved via controlling the (positive) constant β

in 2.1. That is, E[W ] is governed by the service parameters α and T , and P (W > T ) is

stabilized around the probability target α when β = ln(1/α)/µT .

We explain the key difference of ED Erlang-C with the conventional ED regimes, al-

lowing for customer abandonment, as follows: The ED models with impatient customers

(e.g., M/M/s+M ) operate with staffing levels below the OL = λ/µ (i.e., ρ > 1) to achieve

high server utilization, where E[W ] > 0, P (W > 0) ≈ 1 and P (W > T ) > 0. In

such systems, the abandonment rate serves as a regulator to keep the traffic intensity of

the served customers < 1, which ensures the system stability [139]. Yet, given the lack of

abandonment, all customers are needed to be served in ED Erlang-C queues and hence,

ρ < 1 is required to maintain stability in ED Erlang-C regimes. This is satisfied by setting

staffing levels above the OL, as we discuss next.

Remark 2: (Asymptotic Staffing Formula: ED-NoAb) Theorem 1 suggests a staffing

rule for large-scale (i.e., λ, s >> 0) M/M/s queues, operating in ED mode with a TPoD

target. That is, solving the equation s(1-ρ) = s (1- λ/µs) = β for the staffing level s∗, we

obtain that s∗ = λ/µ + β, β>0. We refer this staffing formula “ED-No Abandonment (ED-

NoAb)”. Notice that ED-NoAb sets s∗ above the OL = λ/µ, where the excess staffing β is

carefully tailored to stabilize the TPoD around the probability target. In particular, with the

choice of β = ln(1/α)/µT (as in Theorem 1), the TPoD P (W > T ) ≈ α for a large-scale
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M/M/s queue.

2.4.2 The Use of ED-NoAb Staffing with Time-Varying Arrivals

For models with time-varying arrivals, using asymptotic regime staffing formulas together

with the time-varying version of the stationary OL has been shown to perform well [151,

152]. The key idea is to compute the time-varying OL for each time t, denoted by m(t),

under IS approximation, and then use it to replace the stationary OL in the asymptotic

staffing formula. A modified version of this method, called delayed-infinite-server (DIS)

approximation, is proposed by [154]. In this study, we adopt and customize their approach

to propose staffing for Mt/G/st queues, operating under a TPoD-type service constraint.

[154] study a multi-server queue with general service times, non-homogeneous Pois-

son arrivals and general abandonments (i.e., Mt/G/st + G) and develop a novel two-stage

network approach (DIS approximation) to stabilize probability of abandonment (PAb). DIS

approximation decomposes the original Mt/G/st + G system into two (artificial) IS queues

in series, representing the waiting and service areas. In this setting, each arriving customer

is required to stay a deterministic amount of time ω in the first station and, unless he aban-

dons the system at the first station, is subsequently admitted to the second station (i.e.,

service area) without further delay. Then, for any given time t ≥ ω, the mean number of

busy servers, all operating in the second IS queue, is calculated with a time-shifted integral

as follows: [DIS Formula]mω(t) = [1−F (ω)]
∫ t−ω
0 [1−GS(t−ω−u)]λ(u)du, where GS(.)

and F (.) respectively denote the cumulative distribution functions (CDFs) of service and

abandonment processes, and λ(t) denotes the arrival rate at time t. Parameter ω is chosen

so that PAb is stabilized around F (ω) (i.e., PAb ≈ F (ω), ω ≥ 0) and mω(t) serves as the

stochastic OL (to be used for calculating staffing levels).

We make two modifications to customize the DIS Formula for Mt/G/st queues target-

ing to achieve P(W (t) > T ) ≈ α at all times t: (1) We set the forced delay ω equal to ω*

= T /ln(1/α) based on Theorem 1 showing that E[W ] → T /ln(1/α) as λ→∞ (2.3), (2)
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In line with the absence of abandonments, we define a degenerate cdf F (.) for abandon-

ments, where F (ω) = 0 for any ω ≥ 0. The modified version of DIS-based OL function is

calculated as follows for any time t ≥ T
ln(1/α)

:

mT,α(t) =
∫ t− T

ln(1/α)

0
[1−GS(t− T

ln(1/α)
− u)]λ(u)du. (2.4)

Then, the time-varying staffing levels s(t) is given by s(t)∗ = mT,α(t) + ln(1/α)
T

E[S],

where S is the service time, to ensure P(W (t) > T ) ≤ α at any given time t.

2.4.3 The Use of ED-NoAb Staffing for a Network Model with Pooled Servers

To make OL calculations tractable, DIS approximation requires the arrival process of a

queue to be Poisson [154] and hence, its use over the nodes of the MCMS network are

based on the following two features: (1) The Poisson property is preserved for the departure

process of a DIS queue given the arrival process is also Poisson [161, 154]. (2) Except for

the external (original) arrivals, arrivals to any queue of the MCMS network are originated

from the departures from its preceding queue (Figure 2.5). Then, when the external arrivals

are Poisson, arrivals to any queue of the MCMS network follow a Poisson process under

DIS approximation [162], and the formula (2.4) can be used for any node of the MCMS

network.

Figure 2.6: Network Models for Medical Services Provided by Dedicated vs. Centralized
ER Physicians/Servers(s)

We calculate the OL functions over the MCMS network iteratively by setting the depar-

ture rate of a visited queue, or its splitting, as the arrival rate of the next one (See [155] for
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a detailed description of departure rate computations). Next, we convert the OL functions

into staffing levels that ensure P(W (t) > T xi ) ≤ αxi holds ∀ x ∈ P and i ∈ TRx at all times

t. During this conversion, it is essential to account for the pooling effect (i.e., improved

service quality due to the pooling of resources) as the ER physicians are pooled servers,

who serve all patients and treatment queues as opposed to being dedicated to a subset of

them (Figure 2.6).

For a pooled-server system, a naive approach for determining the total staffing is to

sum the optimal dedicated staffing levels without making any adjustments for the pooling

effect. Neglecting the effect of pooling, this approach causes overstaffing in multi-class

multi-stage settings, especially for ED queues [163]. Instead, we propose a weighted av-

erage technique that addresses the pooling effect and avoids overstaffing. This technique

normalizes the excess staffing, the staffing above the total OL, with arrival rates and assigns

higher weights to the queues (and/or patient classes) having higher instantaneous demand.

Let Sxi , λxi (t) and mx
i (t) respectively denote the service time, arrival rate, DIS-based OL

function of patient class x ∈ P in treatment queue i ∈ TRx at time t. Then, the total

staffing proposed by the naive approach and weighted average method at time t, respec-

tively denoted by sN (t) and sWA(t), are calculated as follows:

The Naive Approach: sN(t) =
∑
i,x

sxi (t), where sxi (t) = mx
i (t) + ln(1/αxi )

Txi
E[Sxi ],

Weighted Average Method: sWA(t) =
∑
i,xm

x
i (t) +

∑
i,x

λxi (t)∑
i,x

λxi (t)

ln(1/αxi )

Txi
E[Sxi ].

Besides staffing levels, the operational performance of an ER depends on routing deci-

sions. Hence, to be practical in multi-stage multi-class settings, our solutions must also pro-

vide a routing mechanism, specifying which patient to be served next [164]. As typically

done in the literature [165], we address the staffing-routing problem in two separate stages,

where we first develop a staffing algorithm and then assess its performance under several

practical routing rules. Table 2.2 lists the static and dynamic routing rules considered in

this study, where the dynamic rules use the current system state for routing decisions.

Before we conclude this section, we briefly discuss the factors that must be paid atten-
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Table 2.2: Brief Descriptions of the Static and Dynamic Routing Rules

Name Type Description
Class-Based

Routing
Static

(Default)
Serve the patient from the class with higher medical urgency first.
Within the same patient class, prioritize an earlier treatment stage.

Stage-Based
Routing Static

Serve the head-of-the-line patient waiting at an earlier treatment stage.
Within the same treatment stage, prioritize the patient class with higher medical urgency.

Initial-Treatment
Routing Static

Serve the initial treatment stage first with priority given to the class with higher urgency.
If no patient is waiting in the initial treatment stage, then apply “class-based” routing.

Low-Volume
Based Static

Serve the patient class with lower volume (i.e., total number of arrivals per day) first.
Within the same patient class, prioritize an earlier treatment stage.

Shortest Mean
Service Time Static

Among the waiting patients, serve the one whose service is expected to be shortest.
That is, prioritize the patient class and treatment stage with the shortest average service time.

Stage- and Low-
Volume-Based Static

Serve the head-of-the-line patient waiting at an earlier treatment stage first.
Within the same treatment stage, prioritize the patient class with lower (daily) volume.

Maximum-
Waiting Ratio Dynamic

Serve the patient with the maximum ratio of so-far waiting at the current treatment stage to
pre-determined waiting threshold (of that treatment stage for the class the patient belongs to).

Shortest-or-
Violated Deadline Dynamic

Serve the patient with the minimum difference between so-far waiting at the current treatment
stage and waiting threshold (of that treatment stage for the class the patient belongs to).

tion to when our staffing approach is implemented in other settings. Two core elements of

our approach are (1) the calculation of the OL functions over the MCMS network, and (2)

the translation of the OL functions into staffing levels via an algorithm. Accordingly, when

this approach is used in a particular setting, the key decision lies in the choice of the staffing

and OL calculation methods that are in line with a system’s characteristics including the

operational behavior of the queues (e.g., ED, QD, QED), the performance measures to be

stabilized (e.g., TPoD, PoD, PAb), and the abandonment behavior of customers.

Modeling the queues having different features separately, the MCMS network enables

the use the preferred OL method (and a correspondent staffing algorithm) for each queue.

For instance, DIS approximation can be used for the queues targeting to control their rel-

atively high PAb whereas IS approximation is used for the QED queues with PoD targets.

A noteworthy point is that, while converting the OL into staffing decisions, the “pooling

effect” must be taken into account if the servers are centralized. In this study, we propose

a weighted average technique, normalizing the excess staffing with instantaneous arrival

rates, to determine the overall staffing levels serving all “treatment” queues of the MCMS

network. We note that another method (or the use of different weights) might be more

appropriate in other settings, as the (magnitude of the) effect of “pooling” depends on the

operational characteristics of the queues of interest [163].
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2.5 Numerical Experiments

We conduct several numerical experiments using a detailed and realistic discrete event sim-

ulation, written in MATLAB R2016b, to assess the performance of our proposed staffing

approach under time-varying demand over a 24-hour period. The experiments are divided

into two main categories. First, we simulate single-class, single-station Mt/G/st queues

with periodically fluctuating arrivals to assess the effectiveness and robustness of ED-NoAb

staffing in stabilizing TPoD targets under challenging time-varying demand. Second, using

real ER data, we simulate various ER scenarios over different network setups to (i) exam-

ine the performance of ED-NoAb staffing on realistic and data-driven ER settings, and (ii)

analyze the relationship between the staffing-routing decisions and system complexity (set

by the number of treatments and patient classes, and arrival volumes).

For each simulation experiment, we run N independent replications. We set N = 1000

for relatively simple cases, and N = 2000 when we simulate a scenario with more than

two patient classes and/or treatment stages. At each replication, we send virtual patients to

the queues of interest and collect waiting time statistics at fixed times ∆t, 2∆t, 3∆t, . . .,

where ∆t = 0.25 hour. Unlike the real patient entities, the virtual patients are terminated

right before they start receiving service and hence, do not affect the system performance or

behavior in simulation experiments.

For each considered scenario, we calculate the estimated TPoD at time t by the frac-

tion of replications that the virtual patients arriving at time t waited more than the delay

threshold T . If the estimated TPoD at time t is above the acceptable level, we refer this

outcome as a “violation”. A “violation” indicates that our proposed staffing levels cannot

meet the desired TPoD target at all times and hence, lead to understaffing for the simulated

scenario. If there is no “violation”, we run the same simulation experiment with reduced

staffing = FLOOR[0.90 ∗ s(t)], where s(t) is the staffing levels proposed by ED-NoAb, and

check whether our proposed staffing levels cause overstaffing.
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2.5.1 Performance of ED-NoAb in Mt/G/st Queues under Challenging Demand

First, we investigate the effectiveness and robustness of ED-NoAb staffing in Mt/G/st

queues under periodically fluctuating demand. In line with our objective, we use a sinu-

soidal arrival rate function (Figure 2.7) to model the arrivals, following a non-homogeneous

Poisson process. We emphasize that we choose a sinusoidal function to generate challeng-

ing demand rather than to mimic the actual arrival process to an ER, for which we will

later use real ER data. We set the arrival rate λ(t) = 10 + 2sin(t) so that the mean daily

arrivals roughly matches the number of daily visits to a medium-to-large scale ER (≈ 250

patients/day). The other parameters, determined based on CTAS and our discussions with

ER managers, are as follows: Expected service time E[S] = 0.25, 0.50, 0.75 and 1.00 hour,

delay threshold T = 0.50, 1.00, 1.50 and 2.00 hour, and tolerance level α = 0.05, 0.10, 0.15

and 0.20.

Figure 2.7: Sinusoidal Arrival Rate Function with The Rate λ(t) = 10 + 2sin(t)

In total, we conduct 64 simulation experiments. In all 64 cases, each simulated with

1000 independent replications, ED-NoAb staffing achieves to meet TPoD targets at all

times. On the contrary, when the staffing levels are reduced, TPoD targets are violated

at certain times during the day in 98.5% (=63/64) of the cases. Table 2.3 summarizes

the results. In addition, we provide “TPoD graphs” in Appendix B, showing the fraction

of patients waited more than threshold T (y-axis) over time (x-axis) and whether the tol-

erance target α is violated. These results demonstrate ED-NoAb staffing effectively stabi-
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lizes TPoD targets inMt/G/st queues under challenging time-varying demand, and jointly

achieves maximum server utilization, as desired in ED regimes, where lower staffing levels

fail to meet the desired performance standards.

Table 2.3: Single-Class Single-Stage Simulation Results for 64 Experiments

2.5.2 Multi-Class (m≥1) Multi-Stage (n≥1) Scenarios with Real ER Data

Using real ER data, we conduct simulation experiments to assess the performance of ED-

NoAb staffing in realistic ER settings, characterized by time-varying demand, multi-stage

service, heterogeneous customer population, and centralized servers (i.e., pooled physician

resources). We consider different network setups, consisting of n treatment and n-1 or-

der bundle queues (1≤n≤3), single- (m=1) and multi- (2≤m≤3) class patient population

scenarios, and several (static, dynamic and hybrid) routing rules that are practical for im-

plementation. Our main objectives are to (i) demonstrate the effectiveness of our staffing

approach in multi-class multi-stage settings and (ii) gain insights into the relationship be-

tween the staffing-routing decisions and system complexity (as a function of the number of

treatments and patient classes, and arrival volumes).

Data and Parameter Estimation: We estimate the parameters of ER care delivery
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Figure 2.8: (Exponential) Service Time Distributions for Treatment Stages 1-3 and ESI
2-4

process using time-stamp data of approximately 108,000 ER patients, receiving service at

the ER of Mayo Clinic Saint Mary‘s Hospital at Rochester, MN between July, 2012 and

September, 2015. In line with the existing healthcare operations literature, we model the ER

arrivals as a non-homogeneous Poisson process [166, 167, 168, 127, 169, 170]. Based on

the best fit to the observed data, we select exponential distributions (with different means) to

model the service times of treatment and order bundle queues (Figure 2.8). We emphasize

that exponentially distributed service times are not a requirement, as our approach, relying

on the use of Mt/G/∞ queues in MCMS network, allows general service time distributions.

Service target parameters (delay threshold T and probability tolerance α) are determined

based on CTAS and our discussions with ER managers and physicians.

Figure 2.9: Arrival Data of ESI 2, ESI 3, and ESI 4 Patients

Based on Emergency Severity Index (ESI), a five-tier triage scale roughly matching

CTAS [132], patients are classified into five categories in the dataset, where a lower number
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indicates a higher priority [128]. Similar to [171], we conduct numerical experiments on

the patient classes (i.e., ESI 2, 3, and 4) that constitute the majority (> 98%) of ER arrivals,

and later, separately discuss the impact of ESI 1 (i.e., the highest priority) patients on

staffing decisions and system performance. The arrival volumes of ESI 2, ESI 3 and ESI

4 patients are respectively low, high and medium (Figure 2.9). The differences in arrival

volumes and medical urgencies among ESI 2 (high urgency-low volume), ESI 3 (medium

urgency-high volume), and ESI 4 (low urgency-medium volume) populations complicate

the routing decisions. Yet, this variety also provides us with an opportunity to analyze

the relationship between staffing-routing decisions and system dynamics as we consider

various multi-class scenarios in this section.

Table 2.4: Parameters for the Single-Class Cases with ESI 2, ESI 3 and ESI 4 Populations

Single (n=1) Patient Class: Treating different patient populations separately, we first

consider various single-class cases scenarios exhibiting different arrival patterns, service

targets, and network complexity (Table 2.4). We use a m-stage network (1≤m≤3), con-

sisting of m treatment and m-1 order bundle stations, with a static routing rule prioritizing

an earlier treatment stage.

The ED-NoAb staffing meets the TPoD targets for all three single-class cases (ESI 2,

ESI 3 and ESI 4) in all of the m-stage network setups considered (m=1, 2, 3). For ESI

3 and ESI 4, the ED-NoAb staffing also achieves the maximum server utilization in all

scenarios, where the reduced staffing FLOOR[0.90(ED-NoAb)] fails to stabilize the TPoD.

For ESI 2, the reduced staffing satisfies the TPoD constraints for single-stage queue (m=1)

and two-stage network (m=2) but does not meet the TPoD targets for the three-stage (m=3)

network (Figure 2.10).
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Figure 2.10: TPoD Graphs for Single-Class Cases with ESI 2, ESI 3 and ESI 4 and 1-, 2-,
and 3-Stage Networks - Reduced Staffing = 0.90(ED-NoAb)

Based on the results, we make several observations: We derive the ED-NoAb staffing

formula st=mt+βT,α under the heavy-traffic conditions, where the ratio of the increased

staffing βT,α to OL mt, R:= βT,α/mt, converges to 0. Yet, for the single-station queue

with ESI 2 arrivals, low volume and high medical urgency, respectively affecting mt and

βT,α, cause R to be significantly above zero (R = 9.8 for ESI 2, 0.94 for ESI 3, and 1.62

for ESI 4, assuming a constant rate λ to simplify the calculations). Deviating from the

limit conditions, this high ratio of excess staffing to OL leads to overstaffing for the single-

station queue with ESI 2 arrivals. The overstaffing disappears when we consider a realistic

ER setting, consisting of (possibly) m=3 service stages, or the cases (i.e., ESI 3 or ESI 4)

leading to a low R. These findings suggest that (i) the ratio of the increased staffing to OL

(rather than just low patient volume), and (ii) system complexity can be used together to

predict when ED-NoAb might not be the minimum staffing achieving the TPoD targets.

Multi-Class (n≥2) Patients Receiving One (m=1) or Two (m=2) Treatments: Next,

we examine single- and two-stage treatment scenarios with a heterogeneous population

consisting of two (ESI 2-ESI 3, ESI 2-ESI 4, or ESI 3-ESI 4) or three classes. We use the

“class-based routing” rule, prioritizing the class with higher urgency (at an earlier treatment
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stage). In all scenarios we consider, ED-NoAb succeeds and the reduced staffing 0.90(ED-

NoAb) fails to meet the TPoD targets (Figure 2.11). Further, under the reduced staffing,

the TPoD goal with the highest priority, the one for the most urgent class at the initial stage,

is violated in all two- and three-class cases with ESI 2 (and almost violated in other cases).

This observation is important as it indicates that the performance of the reduced staffing

cannot be improved by changing the routing policy. Then, for the cases considered, we can

conclude that the staffing levels proposed by ED-NoAb are indeed the minimum meeting

the TPoD targets, and hence, are the maximizer for the server utilization (under TPoD

constraints).

Figure 2.11: TPoD Graphs for Single- and Two-Stage Networks with Multiple (2≤n≤3)
Patient Classes - Reduced Staffing = 0.90(ED-NoAb)

ERs with High Complexity- The Need for Dynamic and Hybrid Routing: Finally,

we examine multi-class multi-stage cases with high system complexity, where patient pop-

ulation is heterogeneous (n≥2) and each patient might need, up to, m=3 treatments before

departure. In particular, we use a network of m=3 treatment and m-1=2 order bundle

queues to model the ER care delivery in these more realistic cases, and consider three two-
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class (n=2) and one three-class (n=3) scenarios with the combinations of ESI 2, ESI 3 and

ESI 4 populations.

• Two-Class Three-Stage Cases with ESI 2: ED-NoAb staffing meets TPoD targets

under the default “class-based” routing rule for the two-class three-stage scenarios with

ESI 2 - ESI 3 and ESI 2 - ESI 4 arrivals. Further, the levels proposed by ED-NoAb is

the minimum stabilizing all TPoD goals as half of the TPoD constraints, including the one

with the highest priority (ESI 2 Stage 1), is violated under the reduced staffing in both cases

(Figure 2.12).

Figure 2.12: TPoD Graphs for Two-Class Three-Stage Cases with ESI 2 - ESI 3 and ESI 2
- ESI 4 Arrivals - Reduced Staffing = 0.90(ED-NoAb)

• Two-Class Three-Stage Case with ESI 3 - ESI 4: Under the dynamic routing rules

“Shortest-or-Violated-Deadline (SoVD)” or “Maximum-Waiting-Ratio (MWR)”, ED-NoAb

attains all TPoD goals, whereas the reduced staffing fails, in the two-class three-stage case

with ESI 3 - ESI 4 arrivals (Figure 2.13). On the contrary, none of the static routing rules

meets all TPoD targets with the staffing levels of ED-NoAb (Figure B.1).

• Three-Class Three-Stage Case: For the three-class three-stage case, no dynamic

or static rules (that we consider) provides a routing mechanism stabilizing all TPoD goals
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Figure 2.13: TPoD Graphs for Two-Class Three-Stage Case with ESI 3 - ESI 4 Patients
and Dynamic Routing - Reduced Staffing = 0.90(ED-NoAb)

with ED-NoAb (Figures B.3 and B.4). This motivates us to develop hybrid routing rules

that combine dynamic and static routing policies. We start with the observation that the

only unmet TPoD target under the dynamic rule “SoVD” is the one for ESI 2 patients at

the first treatment stage. Based on this observation, we build a hybrid routing policy that

prioritizes ESI 2 patients at the first treatment and applies “SoVD” for other queues or

patient classes. We refer this rule “SoVD with ESI-2-Stage-1 Priority”. Based on “SoVD”,

we also design two alternative hybrid routing policies, “SoVD with ESI 2 Priority” and

“SoVD with Stage 1 Priority”, where the former prioritizes ESI 2 patients (at all treatment

stages) and the latter prioritizes the first treatment queue (for all patient classes).

“SoVD with ESI-2-Stage-1 Priority” and “SoVD with ESI 2 Priority” successfully sta-

bilize all TPoD targets with ED-NoAb, where ED-NoAb proposes the minimum staffing

that meets all TPoD targets for both policies (Figure B.2). On the other hand, “SoVD with

Stage 1 Priority” cannot satisfy all targets due to the unmet TPoD goal for ESI 2 at Stage 2

(Figure 2.14).

Based the numerical results, we briefly discuss the static, dynamic and hybrid routing
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Figure 2.14: TPoD Graphs for Three-Stage Network with Three Patient Classes under
Hybrid Routing Rules - Staffing: s(t) = ED-NoAb

rules:

(1) In all scenarios with NoQ<6, where “NoQ”=n ∗m denotes the number of queues

competing for service, the default static rule “class-based” meets all TPoD goals (Table

2.5). Yet, the cases with NoQ≥6, which we refer as the cases with high system complexity,

pose challenges for static routing policies. In particular, no static rule meets TPoD targets

in three-class three-stage case (NoQ>6) and two-class three-stage case with ESI 3 - ESI

4 arrivals (NoQ=6), and the TPoD targets are barely stabilized in other scenarios with

NoQ=6 under the default static rule “class-based”.

(2) For the cases with NoQ≥6, dynamic routing rules are needed especially if NoQ>6

or the daily volume of the class with the tightest targets (i.e., highest medical urgency) is

large. A notable instance is the two-class three-stage case with ESI 3 - ESI 4 arrivals, where

the number of routing decisions to make NoQ=6 and the average daily volume of the most

critical class (λ=117.3 arrivals/day for ESI 3) is large. In this scenario, the dynamic rules

“SoVD” and “MWR” both meet all TPoD targets under ED-NoAb staffing while all static

routing rules fail.

(3) As shown by the three-class three-stage case (NoQ=9), the use of dynamic routing

rules alone might not always be sufficient to cope with high system complexity of medium-

to-large scale ERs. To improve the system performance and address the routing problem in
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Table 2.5: Multi-Class Multi-Stage Numerical Experiments Summary

Case Patient Populations NoQ ED-NoAb Routing Policy
Single-Class Single-Stage ESI 2 1 Not Minimum Class-based
Single-Class Single-Stage ESI 3 1 Minimum Class-based
Single-Class Single-Stage ESI 4 1 Minimum Class-based
Single-Class Two-Stage ESI 2 2 Minimum Class-based
Single-Class Two-Stage ESI 3 2 Minimum Class-based
Single-Class Two-Stage ESI 4 2 Minimum Class-based
Single-Class Three-Stage ESI 2 3 Minimum Class-based
Single-Class Three-Stage ESI 3 3 Minimum Class-based
Single-Class Three-Stage ESI 4 3 Minimum Class-based
Two-Class Single-Stage ESI 2 - ESI 3 2 Minimum Class-based
Two-Class Single-Stage ESI 2 - ESI 4 2 Minimum Class-based
Two-Class Single-Stage ESI 3 - ESI 4 2 Minimum Class-based
Two-Class Two-Stage ESI 2 - ESI 3 4 Minimum Class-based
Two-Class Two-Stage ESI 2 - ESI 4 4 Minimum Class-based
Two-Class Two-Stage ESI 3 - ESI 4 4 Minimum Class-based
Two-Class Three-Stage ESI 2 - ESI 3 6 Minimum Class-based
Two-Class Three-Stage ESI 2 - ESI 4 6 Minimum Class-based
Two-Class Three-Stage ESI 3 - ESI 4 6 Minimum SoVD, MVR
Three-Class Single-Stage ESI 2 - ESI 3 - ESI 4 3 Minimum Class-based
Three-Class Two-Stage ESI 2 - ESI 3 - ESI 4 6 Minimum Class-based
Three-Class Three-Stage ESI 2 - ESI 3 - ESI 4 9 Minimum SoVD with ESI-2-Stage-1 or ESI 2 Priority

real ERs, one alternative is to design hybrid routing rules by integrating managerial insight

in the form of static rules with dynamic rules that account for current system state. For

example, “SoVD with ESI-2-Stage-1 Priority” gives a static priority to the queue with the

tightest target (ESI 2 Stage 1), which is violated when SoVD is implemented alone, and

stabilizes all TPoD targets in the three-class three-stage case, which is the most realistic

case we consider in this study. Yet, the hybrid rules should be tailored carefully since

giving a pre-determined (static) priority to a queue improves its performance at the expense

of others. Specifically, we construct two other hybrid rules, “SoVD with ESI 2 Priority”

and “SoVD with Stage 1 Priority”, by respectively extending the pre-determined priority

to all ESI 2 patients or all classes at Stage 1. Yet, the impact of prioritization is not the

same as the OLs of ESI 2 patients at Stage 2 and Stage 3, prioritized under “SoVD with

ESI 2 Priority”, are respectively low and medium, whereas the loads of ESI 3 and ESI 4

patients at Stage 1, prioritized under “SoVD with Stage 1 Priority”, are relatively high and

medium, respectively (Figure 2.15). As a result, the former rule causes minor disturbances

for non-prioritized queues and meets all TPoD targets but the latter results in delays for

non-prioritized queues that are large enough to violate a TPoD target.
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Figure 2.15: Three-Class Three-Stage Case OL Functions for Treatment Stage 1 or ESI 2
Patients

Discussion on High-Urgency ESI 1 Patients: ESI 1 patients, representing patients

with the highest urgency, make up a very small portion (≈1% in our dataset) of the total

arrivals. However, they might have a significant impact on the utilization of ER resources

as their life-threatening conditions require immediate medical intervention and might take

longer to be stabilized. The OL and staffing calculations for ESI 1 patients, requiring minor

changes in our approach, are as follows: First, we make two modifications in the network

model by removing triage (for ambulance arrivals), and replacing bed placement queue with

“treatment stage 0” (operating room) queue, served by ER physicians. Second, we use the

SRS staffing formula [152] for treatment stages 0 and 1, as these are QED queues with PoD

type service targets. The rest of the ER care delivery process and staffing calculations are

the same as other patient classes.

Despite the importance of ESI 1 patients, an ER manager might choose to exclude them

in the calculation of staffing levels due to two reasons: (1) ESI 1 arrivals are rare events

without a clear predictable pattern, where the historical data is not necessarily representa-

tive of the underlying stochastic process. Accordingly, it is unclear at what time of the day

the number of ER physicians should systematically be increased so that an ER copes with

an ESI 1 arrival without affecting the treatment of other patients. (2) Given the high salary

cost of ER physicians, increasing the staffing levels of ER physicians to account for rare

and unpredictable ESI 1 arrival(s) is not an cost-effective approach. Adjusting the staffing

levels with SRS formula even for limited portions of the day could still be costly since PoD
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type service targets, reflecting the urgency of ESI 1 cases, require higher staffing levels so

that earlier treatment stages operate in QED mode for ESI 1 patients.

Based on our discussions with ER administrators, we conclude that a practical and cost-

effective solution that can be implemented in ERs is to make staffing decisions excluding

rare ESI 1 cases, and then allocate all resources necessary when an ESI 1 patient arrives

at the expense of violating some of the TPoD targets for other patients temporarily. This

solution is based on the fact that TPoD targets are “soft (non-binding)” constraints, deter-

mined by a managerial board as ideal goals rather than enforced by a federal agency, and

is in line with the current practice.

2.6 Discussions and Conclusion

ERs are complex healthcare delivery systems, expected to provide service in a timely and

cost-effective manner. Workforce planning of ER physicians, the most critical and expen-

sive human resources in ERs, plays a pivotal role in determining ERs’ operational efficacy

and efficiency. In this paper, we study a staffing and an associated routing problem for ER

physicians, who serve a multi-class patient population in a repetitive service setting under

time-varying demand. Our objective is to determine the minimum number of ER physi-

cians that are needed to meet TPoD type service targets for all patient classes and at all

treatment stages at any given time.

2.6.1 The MCMS Network and A New Staffing Algorithm

We propose a new staffing approach based on a practical and intuitive queuing network

model. Representing the patient flow in the ER via tandem queues, the network model

opens the black-box of ER care and captures the key aspects of ER service. Utilizing this

model with DIS assumption, we compute the OLs for treatment queues of the network,

which are served by ER physicians and do not experience abandonments despite operating

in ED regime. Motivated by these unconventional ED queues, we develop a new algo-
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rithm, “ED-NoAb”, that translates OL into staffing for ED queues with perfectly patient

customers and TPoD type service targets. We analytically show that ED-NoAb asymptoti-

cally stabilizes TPoD for stationary M/M/s queues operating in ED regime and we numer-

ically demonstrate its robustness in time-varying settings with Mt/G/st queues coping with

periodically fluctuating demand. Finally, we generalize our approach to multi-class multi-

stage ER settings, where we also capture the pooling effect, and perform a comprehensive

analysis with real ER data by considering various network setups with different patient

populations under practical routing rules. Our analysis shows that ED-NoAb algorithm is

effective in meeting differentiated TPoD targets while ensuring high resource utilization

for various ER settings.

Our approach addresses the some of the major limitations of black-box models. In

particular, the network model we propose is practical and comprehensive enough to capture

the key features of the ER care and account for many real life challenges ERs face. Further,

by opening the black-box of ER service, it provides more access to and managerial control

over the internal components of ER care delivery process. Utilizing the network model,

an ER manager can set differentiated service goals at each treatment stage for each patient

class, estimate the load on the ER physicians at various treatment stages for any given time,

and make staffing decisions based on these factors accordingly. In addition, despite the

highly complex nature of ER care delivery process, the network model is intuitive enough

to gain insights and implement in practice. In this study, we focus on queues operate with an

efficiency-driven philosophy, aiming to maximize server utilization while keeping waiting

times at acceptable levels, and experience no significant abandonments but our approach

can also be used for other complex service systems.

Despite the practicality our approach, we should note that an ER manager might choose

to use our staffing solution as a reference rather than directly implementing them. This is

because TPoD targets are non-binding service goals and the managerial board might have

other incentives and concerns. For instance, an ER manager might prefer lower staffing lev-

72



els at the expense of violating certain TPoD goals sometimes, as strictly satisfying all TPoD

targets might not be cost-effective. Another implementation-related issue is the length of

intervals over which the staffing levels remain constant. In our analyses, we allow changes

in the number of ER physicians in every 15 minutes to be able to accurately monitor the

performance of our staffing solutions. Yet, in practice, ER physician shifts may start only

at pre-determined times such as 30-minute or 1-hour intervals. In such cases, the staffing

levels should be set the maximum number of ER physicians over the no-change interval to

avoid any TPoD violation.

2.6.2 Practical Routing Rules and The Role of the System Complexity

Besides the staffing problem, we also study an associated routing problem and analyze the

relationship between staffing-routing decisions and system complexity. Our numerical re-

sults show that dynamic and, eventually, hybrid routing rules become necessary as the sys-

tem complexity increases with increasing number of treatment stages and patient classes,

and daily arrival volumes. The dynamic routing rule “SoVD”, directing a physician to the

patient with the (most or) almost violated delay threshold, is particularly important for our

solutions since it serves as the backbone for the proposed hybrid routing policies. A chal-

lenge for “SoVD” or any other dynamic routing policy, in terms of implementation, is the

requirement of keeping track of waiting times, possibly using a real-time location services

(RTLS) [172]. Yet, our discussions with ER managers reveal that the “SoVD” rule can be

still implemented in ERs (to a certain extent) without the use the RTLS technology. Specif-

ically, the waiting time of a patient for the next treatment can roughly be estimated based

on the arrival time of the last medical order in the electronic medical records and then this

estimate can then be used to implement an approximate version of “SoVD”.

Another interesting result of our study is the failure of “SoVD with Stage 1 Priority”

rule to meet TPoD. This is important as routing rules similar to “SoVD with Stage 1 Pri-

ority”, prioritizing the initial treatment stage after triage for all patient classes, are quite
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common in practice. The routing rules prioritizing the initial treatment are commonly used

in many ERs partly because of the critical metric “time to initial service”, affecting both

performance and financial evaluations. “Time to initial service” (Door to Diagnostic Eval-

uation by a Qualified Medical Professional) is one of the key metrics, based on which an

ER’s performance is assessed, and further, is required to be reported the Centers for Medi-

care and Medicaid Services (CMS) for the receipt of reimbursements. Accordingly, the

improvements efforts in ERs are primarily focused on the first patient-physician interaction

such as implementing the routing mechanisms that reduce the waiting time before the first

treatment. In this study, we propose a more comprehensive approach, where service goals

are determined for each treatment stage and all stages are accounted for when staffing deci-

sions are made, and show the sub-optimal of “SoVD with Stage 1 Priority” routing policy.

Yet, higher level interventions (e.g. at federal policy, reimbursement and metric-reporting

levels) might be required to create incentives for ERs focus on all treatment stages (and

record and report related statistics) as they make their staffing and routing decisions.

2.6.3 Conclusion

As stated by [171], it is challenging to capture all prevalent features of the ER care delivery

process with a single analytic model given the complexity of ER operations. Our study is

no exception and has the following limitations: First, we assume a constant service rate for

the queues of the network model whereas, in reality, the service rate might server specific

[173] and depend on the current load on the system [170]. We limit the scope of this study

with the performance of the ER under regular conditions and do not consider the rare but

very critical conditions such as a mass casualty event. We do not explicitly account for

the interruption of service due to equipment malfunction, lost document, or other causes

[174]. We assume the same skill level among servers (ER physicians) in this study. Other

approaches (e.g., see [175] and [176]) might be more appropriate for the service systems

where the skills of the servers differentiate significantly. We assume there are sufficient
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physical resources (e.g., total number of beds) available and hence, access to the ER might

be delayed, causing some abandonments, but never blocked. This assumption may not

hold for small-sized ERs. The misclassification of patient classes, analyzed by [177], is

not considered in this study. Finally, we do not impose the “same patient-same staff ” rule,

where ideally each patient is treated by the same ER team throughout her ER stay.

To summarize, in collaboration with Mayo Clinic, we study a staffing problem for ER

physicians. The problem features we consider are time-varying demand, multi-class patient

population, differentiated service targets, and discontinuous, treatment-history dependent,

and multi-stage service provided by centralized servers. We develop a queuing network

model that captures the patient flow in the ER, utilize it to compute the workload on ER

physicians, and propose a new staffing algorithm that translates the load on ER physi-

cians into staffing decisions. Using real ER data, we show the effectiveness of our staffing

approach in various ER settings, and demonstrate the need for dynamic and, eventually,

hybrid routing rules as the system complexity increases.
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CHAPTER 3

MULTI-STATE SURVIVAL ANALYSIS FOR CLINICAL DECISION-MAKING:

APPLICATIONS TO FOLLICULAR LYMPHOMA AND DIFFUSE LARGE B

CELL LYMPHOMA

3.1 Background

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lym-

phoma (NHL) in the United States, accounting for about one out of every four lymphomas.

DLBCL tends to be a fast-growing (aggressive) lymphoma, requiring rapid initiation of a

medical therapy, but it often responds well to treatment and might be cured. About one

out of five lymphomas in the United States is a follicular lymphoma (FL). Contrary to DL-

BCL, FL is usually a slow-growing (indolent) lymphoma, and also often responds well to

treatment. However, follicular lymphomas are hard to cure, where patients with FL usually

experience multiple remission-relapse cycles over the course of this disease.

In this chapter, we present our survival analysis studies, investigating the clinical courses

of DLBCL and FL after initial treatment over time as a function of socio-demographic and

clinical factors. Our main objectives are (1) to investigate optimal treatment sequences and

regimens for older high-risk FL patients, (2) to identify the predictors affecting the course

of FL for older high-risk population, (3) to identify factors influencing the course of DL-

BCL and to quantify their impact on DLBCL-specific mortality in patients older than age

65, (4) to determine the optimal stopping time to end the surveillance of older DLBCL

patients for their lymphoma recurrence-related death risk.
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3.2 Assessing the Effectiveness of Treatment Sequences for Follicular Lymphoma

Patients with a Multi-state Model

3.2.1 Introduction

Follicular lymphoma (FL) is the most common indolent lymphoma and the second most

common non-Hodgkin lymphoma accounting for about 20-25% of all lymphomas in West-

ern countries [178] [179]. For most patients, FL is an incurable disease characterized by

an indolent behavior with an initial period of observation followed by favorable response

to initial therapy. Most newly diagnosed FL patients treated with rituximab (R) alone or

R-chemotherapy enjoy prolonged progression free survival (PFS) and overall survival (OS)

but some patients with FL undergo transformation to a more aggressive histology [180] and

approximately 20% experience progression of disease (PD) within two years of first-line

chemoimmunotherapy irrespective of treatment choice [181].

Large randomized studies have consistently shown FL patients with early PD have

poorer OS compared to those patients who did not relapse within two years [182] [183]

[184]. Consistent with these trials, an analysis of data from the National LymphoCare co-

hort study (NLCS) in the United States involving 588 patients with stage II-IV FL treated

with first-line R-chemotherapy, showed that 19% relapsed within two years of diagnosis

[181]. Importantly, OS was markedly reduced in the early progression group, with a 5-year

survival rate of 50% from the 2-year risk-defining progression event compared with 90%

for patients without early progression. Validation of these data in an independent cohort

of FL patients for Iowa/Mayo confirmed poor 5-year OS in early relapsing patients [181].

Along with early PD, advanced age also has been identified as a high-risk factor for poor

clinical course of FL and worse survival. In particular, age > 60 years has been shown to

be a key adverse prognostic factor associated with poorer OS and PFS and is a component

of the follicular lymphoma international prognostic index [185] [186].

Limited data exist regarding the outcomes associated with the sequencing of first, sec-
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ond, and third line therapy in FL, which remains important since most patients relapse and

require sequential treatment. Moreover, no study exists regarding the impact of sequential

therapies among the most vulnerable FL patients who are > 60 years and require a second

treatment within two years of initial therapy. We developed a continuous-time multi-state

model to capture the clinical course of FL for older high-risk patients, and conducted a

multi-state survival analysis (1) to examine the outcomes associated with first-, second-

, and third-line therapies and (2) to assess the effects of socio-demographic and clinical

factors on outcomes at each line and OS.

3.2.2 Methods

Our multi-state model consists of three treatment states, alive after first- (TX1), second-

(TX2), and third-line treatment (TX3); and an absorbing health state“Dead” (Figure 3.1).

FL patients enter a treatment state with the initiation of their corresponding treatment and

depart either when they die or when their next treatment is initiated. We used the Aalen-

Johansen estimator [187], a generalization of Kaplan-Meier (KM) estimator [188], to assess

the likelihood of being in one of the four clinical states at a given time. The AJ estimator is

a convenient and reliable (nearly unbiased) nonparametric estimator for multi-state models,

does not assume any form on probability distributions, and can cope with censored obser-

vations that exist in clinical data. It was mathematically shown that the Aalen-Johansen

estimator is the maximum likelihood estimator of multi-state models [189] [190], and pro-

vides consistent estimates both for Markov and non-Markov models [191].

3.2.3 Patients, Data Source and Variables

Data from the Surveillance, Epidemiology, and End Results (SEER) 2000-2009 registry,

linked with Medicare claims data through 2011, were used to identify patients with a his-

tologically confirmed first primary diagnosis of FL based on the International Classifica-

tion of Diseases for Oncology, 3rd Edition (ICD-O-3) histology codes [192]. The SEER
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Figure 3.1: A Multistate Model for the Clinical Course of Follicular Lymphoma

program is a National Cancer Institute sponsored epidemiologic surveillance system of

population-based tumor registries that routinely seek to collect demographic and clinical

information on all incident cases occurring in SEER areas [193]. Medicare is the primary

health insurer for 93% of the United States population aged 65 years and older. Medicare

claims data contain information collected to cover health care services provided to Medi-

care beneficiaries. Since the median age at diagnosis for patients with FL is > 65 years, the

SEER-Medicare data offer a valuable source to examine FL patterns of care and outcomes.

The SEER-Medicare dataset included a total of 8411 FL patients ≥ 65 years. After

our examination for eligibility, 3177 patients were excluded for the following reasons: in-

sufficient data (n = 676), diagnosis before year 2000 (n = 1342), no received treatment

after diagnosis (n = 821), and progression more than 2 years after initial treatment (n =

338) (Figure 3.2). All 5234 patients included in this analysis (1) had an advanced age >

65 years, a high-risk factor for poor PFS and OS, (2) received at least a first-line therapy

after being diagnosed in the era of routine first-line rituximab and R-chemotherapy (> year

2000) and (3) either had an early PD < 2 years after first-line therapy (71%), a risk factor

for poorer OS, or experience median OS < 3 years (29%).

Starting with their diagnosis, patients were observed until death or end of follow-up

(12/31/2009 for SEER and 12/31/2011 for Medicare data). We used Medicare as the pri-

mary source for time of death information and adjusted the missing entries via SEER data,
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Figure 3.2: Consort Flow Diagram Reporting the Number of Patients in Each Analysis
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assuming the 15th day of the month as the time of death. The primary variables of inter-

est were the receipt of first-, second- and third-line treatment, and OS under these treat-

ment conditions. We identified FL-directed treatment strategies using ICD, 9th Revision,

Clinical Modification (ICD-9-CM) Diagnosis; ICD-9-CM Procedural; Current Procedural

Terminology (CPT); HCPCS; and revenue centers codes [193] on inpatient, outpatient and

physician claims. We grouped treatments into five main categories as follows: (1) R with

or without radiation, (2) R-cyclophosphamide and vincristine (R-CVP), (3) R- cyclophos-

phamide, hydroxydaunorubicin, and vincristine (R-CHOP), (4) R with other chemotherapy

combinations (R-Other) and (5) treatments that did not contain R (Non-R). Data also in-

cluded patients with unknown treatments. When we investigated the optimal first-, second-

and third-line therapies, we presented the results for the treatment groups R, R-CVP, R-

CHOP and R-Other. When we examined the impact of clinical and socio-demographic

risk factors on the clinical course of FL, we considered all patients, including patients with

Non-R and unknown treatments. To adjust for the use of R maintenance therapy following

induction, we classified a treatment as involving R-maintenance if R-alone was received

within 180 days of the previous treatment and more than one dose of R treatment was

given (Figure 3.2).

3.2.4 Results

We assessed 8411 patients in the SEER-Medicare data for eligibility and included 5234 pa-

tients, diagnosed between 2000 and 2009, in this study (Figure 3.2): 71% of these patients

received a second-line therapy within two years, and 29% received no further therapy after

their initial therapy and experienced median OS less than three years. All patients were

above age 65, the mean age was 76 years and median duration of time from diagnosis to

first-line treatment was 1.37 months (95% Confidence Intervals (CI): 1.33-1.43). Table C.1

(see Appendix C) displays the baseline patient characteristics by treatment type.

In this FL population enriched for patients with early progression, 1219 received R

81



alone, 620 R-CVP, 894 R-CHOP, and 432 R-Other as first line therapy and 322 patients

received R maintenance therapy after first-line treatment. R-CHOP achieved the highest

survival rates at two and five years among the first-line treatments, which were: 76% and

46% for R, 82% and 55% for RCVP, 84% and 71% for RCHOP, and 74% and 54% for

R-Other, respectively (Figure 3.3). RCHOP in second- and third-line therapies also were

associated with the most favorable five-year OS rates after the initiation of second- and

third-line treatments, which were: 50% and 49% for R, 47% and 38% for R-CVP, 55% and

61% for R-CHOP, and 47% and 46% for R-Other as second- and third-line therapies, re-

spectively (see Figure C.1 and C.2 in Appendices). Consistent with these findings, median

OS from the initiation of corresponding treatment was the highest for RCHOP patients at

any treatment line and was 36.3 months (95% CI: 33.7, 38.7) for first-line R-CHOP, 34.1

months (95% CI: 28.6, 37.9) for second-line R-CHOP, and 40.4 months (95% CI: 33.5,

45.7) for third-line R-CHOP therapy (see Table 3.1).

Figure 3.3: Graph of Occupation Probabilities over Time by First-Line Treatments

RCHOP had the greatest impact on OS when provided as the first-line therapy. For

patients receiving first-line R-CHOP and then two other therapies (R-CHOP + X + X),

the mortality rate at two years after the corresponding line of therapy was 10.9%, 13.8%,
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Table 3.1: Median Overall Survival (OS) Duration from the Initiation of Treatment

and 17.8% when this statistics collected after the initiation of first-, second- and third-

line treatments, respectively (Table 3.2). The corresponding mortality rates for second-

line R-CHOP (X + R-CHOP + X) were 18.0%, 20.8% and 23.7%, and for third-line R-

CHOP (X + X + R-CHOP) were 25.5%, 31.1% and 34.0% when R-CHOP was combined

with any other two regimens. Over the course of sequential treatments, first-line R-CVP

followed by R-CHOP also was a particularly favorable combination with no deaths within

24 months of initiating first line therapy (Table 3.3). Patients who received R-Other as

first-line therapy in this cohort had poorer outcomes with all second line regimens if they

received a (subsequent) second-line therapy (Table 3.3).

Table 3.2: The Impact of R-CHOP on Mortality as a First-, Second- or Third-line Therapy

Compared to other regimens, first-line R-CHOP was effective across all age subgroups.

Among first-line R-CHOP patients, the five-year OS rates were 0.70 for age 66-70, 0.71

for age 71-75, 0.75 for age 76-80, and 0.66 for age ≥ 81. On the contrary, the five-year

OS rates were lower for patients receiving other R-based regimens including R, R-CVP
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Table 3.3: Percentage of Deaths within 24 months of First-line Treatment

or R-Other first-line therapies. For these groups of patients, the five-year OS rates were

0.52 for age 66-70, 0.52 for age 71-75, 0.49 for age 76-80, 0.48 for age ≥ 81. In terms of

comorbid conditions, first-line R-CHOP was slightly less effective for patients with CCI >

1, where the five-year OS rates were 0.71 for CCI ≤ 1 and 0.66 for CCI > 1. Not surpris-

ingly, FL stage affected the performance of the first-line R-CHOP, where the five-year OS

rate dropped from 0.75 (for stage ≤ 2) to 0.66 when stage > 2. Though moderately, the

histology was also influential in the effectiveness of R-CHOP. The five-year OS rates were

0.74 for FL grade 1/2 and 0.70 for grade 3, respectively. The factors affecting outcomes

for R-CHOP were not as influential in patients receiving front-line R treatment. The effect

of age, comorbidity, stage, grade, and performance status on five-year OS rates among pa-

tients receiving R-Only for their first-line therapy were as follows: 0.48 for age 66-70, 0.50

for age 71-75, 0.47 for age 76-80, 0.51 for age ≥ 81; 0.49 for CCI > 1, 0.49 for CCI ≤ 1;

0.48 for FL stage ≤ 2, 0.51 for FL stage > 2; 0.50 for grade 1/2, 0.49 for grade 3; and 0.50

for favorable performance status and 0.48 for unfavorable performance status.

3,734 patients received a second-line therapy and 65% of these patients received a sub-

sequent third-line therapy within two years of their second-line therapy including: 750 R,

198 R-CVP, 286 R-CHOP and 356 R-Other. For these patients, empirical two- and five-

year OS rates after second-line therapies were: 83% and 55% for R, 76% and 45% for

R-CVP, 77% and 55% for R-CHOP, 75% and 45% for R-Other respectively.
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Multivariable Cox regression models revealed that the presence of B-symptoms, being

married, and grade 1/2 FL histology were associated with earlier initiation of the second-

line therapy and age > 85 years was associated with elevated risk of death after first-line

treatment (Table C.2). The Cox models also substantiated that R-CHOP in any-line im-

proved OS by reducing the rate of death after first-, second- and third-line treatments. Com-

pared to the baseline treatment group R, first-line R-CHOP reduced the risk of death after

first-line treatment, with hazard ratio (HR) 0.60 (95% CI: 0.47-0.77), and improved OS

after any subsequent second- and third-line treatments, with HR 0.40 (95% CI: 0.29-0.53)

and 0.63 (95% CI: 0.53-0.76), respectively. Second- and third-line R-CHOP treatments had

similar positive impacts on OS: The mortality risk was reduced by second-line R-CHOP

with HR 0.61 (95% CI: 0.44-0.84) after second-line and 0.80 (95% CI: 0.66-0.96) after any

third-line treatment, and by third-line R-CHOP with HR 0.81 (95% CI: 0.66-1.00).

As might be expected, RCHOP followed by second-line RCHOP yielded unfavorable

clinical outcomes. Among all first-line R-CHOP patients, who also received a second-line

therapy, two-year mortality rates were: RCHOP followed by R, 9.7%; RCHOP followed

by RCVP, 8%; RCHOP followed by RCHOP, 17.3%; and RCHOP followed by R-Other,

12.3% (Table 3.3). Similarly, the repeated use of R-CVP (i.e., R-CVP + R-CVP) yielded

adverse outcomes with the highest two-year mortality rate 21.1%, compared to other clin-

ical scenarios, where first-line R-CVP was followed by another second-line regimen: R-

CVP + R = 5.7%, R-CVP + R-CHOP = 0%, and R-CVP + R-Other = 14% (Table 3.3). On

the contrary, R-CHOP followed by R-CVP and R-CVP followed by R-CHOP both resulted

in the low two-year mortality rates, 0% and 8%, respectively (Table 3.3).

3.2.5 Discussion

Currently there is no standard of care for the initial treatment following diagnosis of FL in

the United States, where the management options include watchful waiting, single agent

therapy, combination chemotherapy with immunotherapy, and radiation [25]. For instance,
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the initial first-line strategies among 2728 patients reported by NLCS included: watchful

waiting in 17.7%, R alone in 13.9%, a clinical trial in 6.1%, radiation therapy in 5.6%,

chemotherapy in 3.2%, and R with chemotherapy in 51.9% [194]. Since that publication, R-

bendamustine and maintenance R following chemoimmunotherapy have emerged as other

common first line approaches [182] [183] [184], yet no treatment strategy has demonstrated

superior outcomes over all alternatives. The impacts of clinical and biological data or

functional imaging on FL outcomes have been analyzed in a number of studies [183] [195]

[196] [197], and early relapsing patients are significantly more likely than patients without

early PD to have high FL International Prognostic Index scores (p=0.007) [181] and to have

worse OS. At present, identifying the subset of patients at greatest risk for early PD and the

optimal treatment strategies for these patients remain unmet clinical needs [180]. However,

limited data exist examining the patterns of care, impact of certain regimens across lines of

therapy, or the optimal therapy sequence for patients with FL who experience early PD.

In this population of 5234 patients, enriched for older FL patients with early initiation of

second-line therapy, our analysis revealed that R-CHOP at any-line of treatment was asso-

ciated with the highest OS, and the most favorable impact was achieved when R-CHOP was

provided as a first-line therapy (Table C.3). Yet, as might be expected, RCHOP followed

by second-line RCHOP yielded unfavorable clinical outcomes. One possible explanation

for this is anthracycline toxicity due to doxorubicin. Anthracycline-containing regimens

are associated with toxicities including myelosuppression, mucositis, febrile neutropenia,

and cardiomyopathy particularly in older patients, like the patients included in our dataset.

Older individuals with lymphoma have been shown to be particularly vulnerable to car-

diac and hematologic toxicity with anthracycline-based therapies [198] [199]. [29, 30].

A second explanation includes the development of drug resistance upon chemotherapy re-

challenge [200]. Studies on the efficacy of anthracycline re-challenge have focused on

breast cancer and remains inconclusive [201]. Drug resistance also would explain the un-

favorable outcomes seen with repeat use of R-CVP (Table 3.3). The issue of sub-optimal
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outcomes with the repetitive use of the same regimen, R-CHOP or R-CVP in particular,

might be addressed by using R-CHOP or R-CVP as first- and the other as second-line

treatment since such treatment sequences resulted in low two-year mortality rates in our

analysis of this SEER-Medicare dataset.

Our study has some limitations. First, we analyzed the impact of first-, second- and

third-line FL treatments and other factors on OS; a more in depth analysis could assess

the effect of these factors specifically on FL-associated mortality by using the same multi-

state framework but distinguishing ?death due to FL? and ?death from other causes? if

the data permitted. Second, the population examined was older FL patients and was en-

riched for high-risk patients. Accordingly, the findings may not be directly generalizable

to younger or average-risk patients. Third, novel therapies have been developed for re-

lapsed FL including bendamustine [202], obinotuzumab [203], lenalidomide [204] [205],

ibrutinib [206], and idelalisib [207] [208] [209] that were not directly assessed in this anal-

ysis of patients diagnosed with FL from 2000 through 2009. While some of these agents

were included in the category of “R-Other” treated patients (see Table C.4 in Appendix),

these interventions were poorly represented in this dataset, and will likely impact future

outcomes.

Other data-related limitations were as follows: 632 (12%) first-line, 552 second-line

(15%), and 430 (17%) third-line treatments were unidentified due to data limitations. Fur-

ther, despite our efforts to adjust for the use of R maintenance therapy, there might be some

patients for whom our method failed to correctly categorize the sequence of treatments due

to the limitations of SEER-Medicare dataset. As with any observational study, the lack

of selection criteria (for the choice of R-CHOP and other therapies) is another limitation

of the SEER-Medicare dataset. Although we conducted several multivariable Cox regres-

sion analyses to assess the effectiveness of R-CHOP and found that findings were robust

and could not be attributed to another covariate, we could only account for the factors that

were available in the dataset. The Cox models accounted for age, gender, comorbidities,
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FL prognostic factors and other demographic covariates known to influence outcomes in

FL. Yet, additional unmeasured factors could also influence treatment selection and con-

found assessment of the relationship between treatment and outcomes. Although this was a

SEER population-based study, linkage with Medicare claims yielded a cohort with a mean

age of 76 years. Thus, caution must be exercised when interpreting these findings for clin-

ical practice, where individual patient characteristics - such as existence of co-morbidities

- influence the selection and performance of treatments strategies especially for older in-

dividuals. In these analyses, we adjusted for comorbidities using the CCI. However, other

unmeasured comorbidities may influence practice patterns and outcomes. Moreover, the

lack of tumor size measures or tumor size related indications for treatment, such as Groupe

d’Etude des Lymphomes Folliculaires (GELF) criteria [210], in the SEER registry or Medi-

care claims datasets prevented us from analyzing the impact of tumor burden on outcomes.

The inclusion of such information in disease-specific clinical data collection in cancer reg-

istries will enable further analyses and improve the clarity of findings from such studies.

Prior predictive models have focused on effects of a single line of therapy on a single

outcome of interest such as PFS or OS, while our model allows us to untangle the effects

of first-line and additional therapies on subsequent treatment progression and from factors

pertaining to all-cause death. Knowledge regarding predictive factors for earlier transi-

tion to next line treatment provides clinicians with more specific information to use in the

decision-making process, and is particularly valuable in a high-risk, older population. Age

has consistently been an important risk factor for worse FL outcomes [185] [186], and

age above 85 years was associated with elevated risk of death after initial (first-line) treat-

ment for this high-risk population. In addition, age above 80 years was associated with

earlier initiation of third-line treatment, indicating more rapid disease progression after the

second-line therapy for older patients. B symptoms, as expected, were associated with

worse OS [186], as well as with earlier transitions between therapies. Contrary to prior

studies that identified being married as a significant predictor of improved outcomes in FL
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[211], we found that married status predicted earlier initiation of the second-line therapy.

While other analyses have documented the poor outcomes associated with early PD

following first-line chemo-immunotherapy [181], this is one of the first to indicate in a

large dataset that early progression from second- to third-line therapy is also associated

with poor 2-year and 5-year OS. However, we acknowledge that our study selected for

patients experiencing early PD following all first-line therapies as opposed to relapse fol-

lowing chemo-immunotherapy only [181], and the prognosis for these patient groups is not

necessarily the same. National clinical trials are now underway for patients with early pro-

gression after first-line therapy and their findings might shed more light on this important

issue.

In this study, we modeled the clinical course of FL with a multi-state model, em-

ployed the Aalen-Johansen estimator to estimate the clinical course of FL over time under

various treatments, and utilized Cox regression models to quantify the impact of socio-

demographic and clinical factors. Multi-state models offer an ideal framework to accurately

analyze survival data with multiple intermediate states and/or multiple endpoints [212]. By

capturing different types of events and the relationships between these events separately

within the same model, the multi-state modeling framework distinguishes the differential

effects of baseline clinical factors and subsequent treatment events across lines of care, and

allows us to evaluate their distinct influences on outcomes in more detail. This compre-

hensive modeling framework was especially important for the accuracy of our study since

examining inter-dependent clinical events within the same model, such as competing risks

of OS (i.e., death) and different phases of progression free survival (i.e., across multiple

lines of subsequent treatment), address biases in estimates that have been demonstrated to

occur when events are examined in isolation [213] [214] [215] [216]. Our use of the large

SEER-Medicare claims database was also critical for our method as the availability of a

large dataset enabled us to utilize a nonparametric method and hence, avoid potentially

unrealistic parametric assumptions on the clinical course of FL over time.
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Our study provides the first attempt to examine multiple clinical states beyond diag-

nosis for patients with FL using the most contemporary data available in the type of large

dataset required to perform this type of analysis. Yet, despite its strengths in conceptual

design, analysis, and modeling, our study would significantly benefit from a dataset that

includes more modern front-line chemo-immunotherapy agents such as bendamustine. For

instance, data from the BRIGHT study [217] suggested that bendamustine combined with

rituximab produced equivalent outcomes to R-CHOP or R-CVP for patients with previ-

ously untreated advanced stage FL. In addition, data from the STiL study [182] suggested

that bendamustine and rituximab improved progression free survival (PFS) when compared

to R-CHOP for patients with advanced stage FL receiving first-line therapy. Unfortunately,

since bendamustine was underrepresented in this SEER-Medicare dataset, we were not able

to conduct further analysis on the effectiveness of treatments that include this agent. To our

knowledge, currently, no existing resource provides sufficient detailed information on sub-

sequent lines of therapy under first-line bendamustine + rituximab treatment and sufficient

follow-up to describe outcomes. Yet, as large clinical datasets with more contemporary

treatment strategies, such as the Follicular Lymphoma Analysis of Surrogate Hypothesis

(FLASH) collaboration [218], are now becoming available, we are optimistic that similar

multi-state survival analyses will be conducted on these new and richer datasets to produce

more insightful results.

3.2.6 Conclusion

We conducted a multi-state survival analysis to study the clinical course of FL under first-,

second- and third-line treatments, and assess the impact of sequential therapies on imme-

diate and subsequent line outcomes. Our analysis revealed that R-CHOP at any-line of

treatment improved the OS, achieving the most favorable impact when provided as the

first-line therapy. Together these findings suggest that R-CHOP remains an appropriate

comparator for clinical trials involving patients with high-risk FL at any line of therapy
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when compared to R-monotherapy, R-CVP and R-Other. Yet, caution must be exercised to

the generalization of the effectiveness of first-line R-CHOP as the study population derived

from the SEER-Medicare data, consisting of all first-line patients, was enriched for older

high-risk patients with poor FL outcomes (early PD or death).

The key clinical practice points of this study are as follows: (i) No standard treatment

exists for high-risk follicular lymphoma (FL) patients and the effectiveness of sequential

therapies remains unclear, (ii) Utilizing a large dataset and a multi-state model, this sur-

vival analysis study examined the clinical course of FL under first-, second- and third-line

treatments, (iii) In this FL population enriched for patients with early progression from

first- to second-line therapy, B-symptoms, being married, and grade 1/2 histology were as-

sociated with earlier initiation of second-line therapies. Early progression from second- to

third-line therapy was shown to be associated with poor OS, (v) R-CHOP at any-line of

treatment was demonstrated to improve the OS rates, achieving the most favorable impact

when provided as the first-line therapy (iv) Our findings suggest that R-CHOP remains an

appropriate comparator for clinical trials involving patients with high-risk FL at any line of

therapy when compared to R-monotherapy, R-CVP and other R-containing treatments (i.e.,

R-Other), and (vi) Using the same regimen in first- and second-line treatments, in particu-

lar R-CHOP + R-CHOP and R-CVP + RCVP, yielded adverse clinical outcomes with high

two-year mortality rates. The multi-state model approach allowed a more detailed analysis

of the impact of clinical covariates on the phases of care and ensured the model accuracy

for distinguishing endpoints. The utility of this approach is not limited to FL and it can

be applied to other clinical situations to inform decision-making on sequences of therapy

when longitudinal time-to-event data are available for patient populations.
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3.3 A Population-Based Multi-state Model for Diffuse Large B Cell Lymphoma-

Specific Mortality in Older Patients

3.3.1 Introduction

Diffuse large B-cell lymphoma (DLCBL) is the most common lymphoid malignancy in

the United States, accounting for about one-fourth of all non-Hodgkin lymphomas [219].

DLBCL is an aggressive disease with untreated survival less than 12 months and a peak in-

cidence after age 60 years [220]. The majority of patients who receive the standard regimen

of rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)

survive more than five years and are considered cured [221] [222] [223] [224]. Yet, a size-

able fraction of DLBCL patients do not respond to initial therapy or experience relapse

[221] [225] [226] [227] while others die from comorbid conditions or treatment-related

complications. At present, autologous stem transplant is the only known curative approach

in the setting of relapse and older individuals rarely are candidates for this treatment.

Identifying predictors of poor outcomes have been a central focus of recent research in

DLBCL, where a variety of biological, clinical and socio-demographic factors have been

identified as contributors to the disparity in DLBCL outcomes [224] [228] [229] [230]

[231]. Most recently, utilizing a large dataset, Howlader et al. conducted a population-

based study on patients ≥ age 20 to investigate predictors for DLBCL-associated death,

and assess cure outcomes with risk stratification in the R-CHOP era (i.e., from 2002 on-

ward) [229]. The authors identified advanced stage, older age, black race, and Hispanic

ethnicity as predictors of worse DLBCL-specific survival and found that being married and

female sex were associated with a lower risk of DLBCL-specific death. The authors also

concluded that there was no clear (so-called “cure”) point, where DLBCL-specific mortal-

ity risk reaches a plateau over time and patients can be considered cured [225] [232] [233].

Despite its valuable findings, this study was limited by missing key prognostic variables,

such as treatment data [234], and by the modeling approach examining cancer- and other
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cause-specific deaths separately as this approach has been shown lead to biased estimates

[213] [215] [216], and potentially incorrect conclusions [235], despite its popularity.

Compared to younger patients, patients older than 60 years experience significantly

worse DLBCL outcomes [236] that have been shown to be influenced by geriatric syn-

dromes, frailty, comorbid diseases and variations in disease biology [237] but these factors

have not commonly been addressed in large cohort studies. The International Prognostic

Index (IPI), which includes advanced stage, elevated lactate dehydrogenase, age over 60

years, an Eastern Cooperative Oncology Group performance status ≥ 2, and the involve-

ment of more than one extranodal site, has been the primary clinical tool used for risk

stratification [236] [238], but requires adjustments for older individuals. A study specif-

ically focusing on DLBCL patients ≥ age 60 can aid in better characterizing risk factors

for elderly population as well as identifying older patients in need of novel therapies at

diagnosis or relapse.

In this study, we examined the clinical course of DLBCL in elderly patients in the

R-CHOP era by conducting a multi-state survival analysis with a large population-based

dataset that includes patient-level demographic, clinical and treatment information. Our

objectives were to investigate the prognostic factors affecting overall and cause-specific

survivals in the general and R-CHOP (sub-) populations within a comprehensive model.

3.3.2 Methods

Given that older individuals are at risk for multiple causes of death due to comorbidities,

in our study, we used a multi-state framework that captures DLBCL- and other causes-

associated deaths separately within a single model, so that we can account for competing

risks and accurately identify factors affecting cause-specific mortalities.

We developed two multi-state models. Utilizing the first model, we analyzed the course

of DLBCL in the general elderly population with four model states: Alive after Diagnosis,

Alive after Treatment (TX), Death due to DLBCL and Death from Other Causes (Figure
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3.4). We built a separate second multi-state model for the sub-population of patients re-

ceiving first-line RCHOP therapy. The health states examined by the second model are

as follows: Alive after First-Line Treatment (TX1) with R-CHOP, Alive after Subsequent

Therapy, Death due to DLBCL and Death due to Other Causes (Figure 3.4).

Figure 3.4: Multi-state Models for DLBCL Patients and First-Line R-CHOP Patients

We employed the Aalen-Johansen estimator [187], a generalization of Kaplan-Meier

(KM) estimator [188], to assess the probability of being one of the model states at any

given time. The Aalen-Johansen estimator can cope with censored observations, is the

nonparametric maximum likelihood estimator of multi-state models [189] [190] [239], and

provides consistent and reliable estimates both for Markov and non-Markov models [191].

We used multivariable Cox proportional hazard models [240] [241] to examine the associ-

ation between clinical and socio-demographic factors and the time of the clinical events of

interest. To do so, first, we constructed a multivariable Cox regression model for the con-

ventional overall survival (OS) model and analyzed the impact of predictors on OS. Then,

we fit a multivariable Cox model to each transition between the model states of the multi-

state models and identified the risk factors having a (statistically) significant impact on the

timing and rate of each clinical event. This is one of the major strengths of a multi-state

approach as the use of Cox models over each transition (e.g., early deaths before treatment)

allows the identification of the covariates that define different populations (having different

prognosis and characteristics), which can lead to the design of tailored interventions for

specific poor-risk subgroups based on data for the cause of death.
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3.3.3 Data Source and Description

We used Surveillance, Epidemiology, and End Results (SEER) data registry (2002-2009)

and Medicare claims dataset (2002-2011), to identify individuals with a histologically con-

firmed initial primary DLBCL diagnosis. Sponsored by the National Cancer Institute

(NCI), the SEER program operates (high-quality) population-based cancer registries by

systematically collecting clinical and socio-demographic information on cancer cases in

all SEER designated areas [193]. Medicare is a public health organization, and the primary

source of healthcare insurance for more than 90% of the U.S. citizens≥ 65 years old. Since

most DLBCL patients are diagnosed after age 60, the SEER-Medicare data offer a valuable

source to analyze DLBCL treatment patterns and outcomes.

Patients were observed from diagnosis until death or end of follow-up (12/31/2011 for

all-cause and 12/31/2009 for cause-specific mortality). All patients were older than 65

years at diagnosis. Patient age, sex, marital status, race, geographical region (Northeast,

Midwest, South, or West), residency demographics (metropolitan, urban, or rural area),

education level (as a census tract-level characteristics), and cause of death were collected

from the SEER dataset. Other potential predictors included in the data were Charlson co-

morbidity index, DLBCL stage, extranodal primary site of involvement, and the receipts of

treatments. We categorized treatments into five main categories: (i) rituximab (R), (ii) Rcy-

clophosphamide and vincristine (RCVP), (iii) Rcyclophosphamide, hydroxydaunorubicin,

and vincristine (RCHOP), (iv) other Rcontaining regimens (ROther), and (v) regimens that

do not contain R (Non-R). We also included the patients with unknown treatments in gen-

eral analyses. DLBCL subtype was not included in our analysis due to data limitation in

SEER.

3.3.4 Results - The General Elderly Population

We examined 11,780 patients with DLBCL older than 65 years. The median age at diagno-

sis was 76 years. Patients were diagnosed between 2002 and 2009, 9,508 patients received a
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first-line therapy, 5,732 died within two years of diagnosis (69% due to DLBCL), and 7,599

died before the last day of follow-up (58% due to DLBCL). Table 3.4 displays the baseline

characteristics for all patients (n=11,780), patients receiving a first-line therapy (n=9,508),

and patients with R-CHOP first-line therapy (n=3,610). Median time to treatment was short

for all first-line regimens: 1.07 months for R, 1.07 months RCVP, 1.00 month for RCHOP,

1.03 months for R-Other, and 0.87 months for Non-R. Two and five-year OS rates after

diagnosis were the highest among patients who received R-CHOP as first-line treatment at

76.9% and 62.1%, and were 53.6% and 34.3% for R, 57.6% and 38.6% for R-CVP, 66.2 %

and 49.4% for R-Other, 45.9% and 31.7% for Non-R treatments, respectively (Figure C.3).

Table 3.4: Patient Characteristics at Diagnosis

The analyses based on multivariable Cox regression models revealed that age > 70
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years, advanced stage, Charlson comorbidity index (CCI) score≥ 1, and not being married

were associated with an increased risk of DLBCL-caused mortality for patients with or

without treatment (Table 3.5). In particular, comparing to the reference age group 66-70,

the hazard ratios (HRs) for DLBCL-specific mortality after first-line treatment were 1.25,

1.46, 1.88, and 2.26 for age group 71-75, 76-80, 81-85, and≥ 86, respectively. For patients

receiving treatment, being female (HR = 0.91) and having higher socioeconomic status (HR

= 0.91) were associated with a lower risk of DLBCL-related death following treatment.

Table 3.5: Multivariable Cox Regression Models for DLBCL Patients

Age, stage, (male) gender, CCI, and (the lack of) marital status were also predictors

of poor OS and non-DLBCL mortality whereas extranodal site of disease, and race were

found to influence non-DLBCL mortality rate (Table 3.5). As expected, treatment was

shown to reduce the risk of DLBCL-specific death, where R-CHOP achieved the greatest

impact among first-line therapies (HR: 0.51, 95% confidence interval (CI) 0.4-0.6).
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3.3.5 Results - The Subpopulation of Patients Receiving First-Line R-CHOP Therapy

Among 11,780 DLBCL patients examined, 3,610 received a first-line R-CHOP therapy:

937 (26%) of these patients received no further treatment and 2,673 (74%) received a sub-

sequent therapy after R-CHOP within a median of 2.90 months (Figure C.4). The receipt of

R-CHOP as a first-line therapy decreased with increasing age. Out of 9,508 patients receiv-

ing a first-line treatment, the percentages of first-line R-CHOP were 43%, 39%, 32%, 23%

and 9% within the age subgroups 66-70, 71-75, 76-80, 81-85, and ≥ 86, respectively. On

the contrary, the adoption of first-line R-CHOP increased slightly with the (later) year of

diagnosis. The rates of R-CHOP, out of all patients diagnosed in the same period, increased

from 28% in the period 2002-2005 to 34% in the period 2006-2009.

Table 3.6: Multivariable Cox Regression Models for First-Line R-CHOP Patients

Similar to the general population, increased age, advanced stage, and CCI ≥1 were

associated with worse OS and DLBCL-specific mortality whereas being female improved

OS and reduced cause-specific mortality risk both due to DLBCL and from other causes

(Table 3.6). The cumulative mortality rate associated with DLBCL was 14.0% at two years

and 18.6% at five years under the front-line R-CHOP, after which it plateaued and was
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exceeded by the risk of other causes mortality thereafter (Figure 3.5). Among the patients

receiving no subsequent (i.e., continuation of the first-line or a new second-line) therapy

after R-CHOP, lower socio-economic status and being African American were respectively

associated with higher risk of death from DLBCL (HR: 1.38) and other causes (HR: 2.72).

Figure 3.5: Cause-Specific Death and Survival Probabilities for R-CHOP Patients

3.3.6 Discussion

Traditionally, the decisions for initial management of older (and recently diagnosed) DL-

BCL patients have been dependent predominantly on clinician judgment [242] [243] [244].

The current standard treatment for DLBCL patients > 60 years was based on the Groupe

d? Etude des Lymphomes de l?Adulte (GELA) NHL trial (GELA LNH- 98-5). The GELA

NHL trial demonstrated that the long-term survival outcomes were improved for these pa-

tients when R was administered together with cyclophosphamide, doxorubicin, vincristine,

and prednisone (CHOP) therapy [221] [245], and this result was later confirmed by the

RICOVER-60 trial [246]. Approaches using dose-reduced CHOP with an anti-CD20 an-

tibody also demonstrated favorable progression free survival with tolerable toxicity in pa-
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tients ≥ 80 years, but both appear to produce inferior outcomes compared to patients of 80

years treated with R-CHOP at standard doses on GELA LNH- 98-5 [247] [248]. Comor-

bidities and changes in functional status might complicate anthracycline-based chemother-

apy treatments, as shown in a large epidemiological study that analyzed treatment patterns

in the U.S. for older patients with DLBCL [225]. The toxicities related to R-CHOP therapy

exacerbate with increasing age, functional disability and comorbidity [249] [250]. Previ-

ous studies and our current analysis suggested that even “unfit” elderly patients may still

benefit from anthracycline-based chemotherapy, thus making it imperative to undertake a

careful assessment of fitness for R-CHOP before considering less toxic and potentially less

effective alternatives [251] [252] [253].

Two large database-based analyses used the SEER-Medicare dataset to characterize

treatment and survival outcomes for older individuals with DLBCL. Williams et al. exam-

ined 1,156 patients >80 years diagnosed with DLBCL from 2002-2009 and found that R-

CHOP, as compared to non-anthracycline containing regimens, was associated with better

lymphoma-related (HR = 0.58) and overall (HR = 0.45) survival outcomes [254]. Tien et al.

examined 8,262 Medicare patients diagnosed with DLBCL from 2000-2006 and found that

OS was highest in patients treated with an anthracycline-containing regimen plus R [255].

A recent systematic review conducted on the available evidence related to the inclusion

of anthracycline found that the initial management strategies of DLBCL for older patients

might benefit from the potential use of a comprehensive assessment, taking comorbidities

and frailty/fitness into account (instead of age alone), as the available evidence shows that

an extensive geriatric evaluation before treatment correctly anticipates treatment toxicities

and (the course of) OS [256].

In this nationwide retrospective analysis of a large cohort of older individuals with DL-

BCL (n=11,780), we confirmed increased age and stage as predictors of worse DLBCL

outcomes [254]. We found that older age and advanced stages are associated with worse

OS, and increase the likelihood of cause-specific deaths, from DLBCL and other causes,
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both before and after treatment. In particular, age > 70 and stage ≥ II both increased the

risk of all-cause and DLBCL-related mortality. The CCI has previously been shown to pre-

dict worse OS for DLBCL adults age 18-64 years [230]; and our results affirmed that it is

a prognostic factor in this elderly population ≥ 65 years old as well. Increased comorbities

(CCI≥ 1) did not influence time to initial treatment but were associated with worse OS and

increased risk of death due to DLBCL, suggesting an important interplay between DLBCL

and comorbidities. Higher CCI was also associated with increased risk of death from other

causes both for patients receiving and those not receiving a treatment. Being married were

shown to improve OS and cause-specific survivals before/after treatment, indicating a posi-

tive impact of marital support on DLBCL outcomes. Married patients were also associated

with a shorter time to treatment. Our analysis confirmed the association between female

gender and improved DLBCL outcomes [229] and demonstrated an increased likelihood

of an earlier treatment among females, implying that gender traits may impact the time to

initiate treatment and treatment outcomes. Surprisingly, nearly all socio-demographic and

clinical factors associated with DLBCL-specific mortality were also factors associated with

all other causes of death. The data and our findings suggest that these mitigating factors

need to be considered in optimizing therapy both to increase efficacy and reduce adverse

events.

Our analysis also demonstrated that higher socio-economic status was associated with a

shorter time to treatment, better OS and lower DLBCL-specific (and other cause) mortality

risk after therapy. Yet, there was no identified effect of socio-economic status on cause-

specific survivals for patients receiving no treatment. African Americans more commonly

present with DLBCL with a younger age at diagnosis and have been shown to have worse

outcomes in previous studies [257] [258]. In this population of older patients with DLBCL,

African American race was not associated with differences in OS or DLBCL-specific sur-

vival in the general population. Yet, in the R-CHOP subpopulation, African American

race was found to be associated with worse DLBCL-specific survival among the (first-line

101



R-CHOP) patients receiving no subsequent therapy (after R-CHOP).

The utility of surveillance imaging and the optimal time to stop monitoring DLBCL

patients have been analyzed by a couple of recent studies. A meta-analysis examining

PET/CT surveillance in DLBCL patients achieving clinical remission recommended against

routine surveillance imaging but suggested it is reasonable to consider in high-risk patients

[232]. Cohen et al. [259] concluded that, for high-risk DLBCL patients, routine imaging,

if performed, should be limited to the first two years after induction therapy as the prob-

ability of relapse, a significant risk factor for salvage therapy failure and early mortality

[232], declines significantly after two years. Maurer et al. [225] also suggested a two-year

cut-off point to stop observing DLBCL patients receiving standard immune-chemotherapy

for relapse as their analysis revealed that the patients with event-free two-year survival after

diagnosis had OS comparable to that of the age- and sex-matched general population. In

their analysis of 18,047 DLBCL patients, diagnosed in the R-CHOP era (i.e., from 2002

onward), Howlader et. al [229] concluded that there was no clear point where DLBCL-

specific mortality plateaued over time. Yet, this study was limited as the authors failed to

determine the patients in SEER receiving R-CHOP due to data-related restrictions. In our

study, we identified 3,610 R-CHOP patients and found that DLBCL-specific mortality was

exceeded by the cumulative other causes-specific mortality risk 5.25 years after diagnosis

(Figure 3.5) and remained nearly constant afterwards. This result suggests that, for elderly

DLBCL patients, five years after front-line R-CHOP can be considered as a natural time

point to transition the focus of survivorship surveillance plans from DLBCL-specific to

other mortality risks. This finding provides additional credence for the common approach

in clinical practice.

In the SEER-Medicare dataset, 38% (=3,610/9,508) of the first-line treatments were

R-CHOP, which is lower than expected given that our study corresponds to the R-CHOP

era. Utilizing a subset of the same dataset, Williams et al. [254] examined 3,176 (2,581

between age 66-80, and 595 above age 80) first-line R-CHOP patients diagnosed during
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the period 2002-2009, and suggested that for some individuals co-morbidities or age were

the main factors precluding the use of CHOP/R-CHOP therapy. Age was influential in the

receipt of first-line R-CHOP in our study as well, where the proportion of patients receiving

R-CHOP within age subgroups decreased with increasing age. Various other reasons, such

as race, were shown to influence the slow adoption of chemo-immunotherapy [260], which

also affects the adoption of R-CHOP despite the demonstrated effectiveness of R-CHOP

in 2002 by the French GELA group [221]. We observed the year of diagnosis was also

a factor in the adoption of R-CHOP, where the annual rate of patients receiving R-CHOP

noticeably increased between 2002 and 2009.

We should note the limitations of our study. The study population was≥ 65 years old at

the time of diagnosis. Accordingly, further analyses are needed to generalize the findings

of this study to younger age groups. As with many other observational studies, the lack of

selection criteria for the choice of treatments was another dataset-related limitation. Due

to the nature of SEER-Medicare dataset in which the determination of the chemotherapy

regimen being administered is derived from claims data, we were unable to determine

chemotherapy dosing. This issue is an important one to consider in other very large clinical

datasets with direct ascertainment of the treatment regimen, dosing, timing of dose delivery,

and outcomes. Large clinical datasets such as the Surrogate Endpoints for Aggressive

Lymphoma (SEAL) collaboration are now becoming available to address such question

[261].

In terms of methodology, even though the Aalen-Johansen estimator is the canoni-

cal nonparametric maximum likelihood estimator for multi-state models with guaranteed

asymptotical convergence [214] [189] [262] [215] caution must be exercised as the size of

the available data gets smaller. This is unlikely to pose an issue for subpopulation analyses

(e.g., patients using R-CHOP) [213] but might be a concern for individualized predictions

as each covariate defining an individual patient also shrinks the size of the available data

that the estimator utilizes. In such cases, either Cox regression models can be appended
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to make personalized inferences or a computational tool, such as micro-simulation, might

be preferred. Finally, despite including the registry of subsequent therapies after first-line

R-CHOP, the SEER-Medicare dataset does not specify whether a subsequent therapy is a

continuation of the first-line or a new (i.e., second-line) treatment. This limitation pre-

vented us from conducting further analyses on the subsequent therapies following first-line

R-CHOP (in the R-CHOP subpopulation).

Despite these limitations, it is worth mentioning some of the key strengths our multi-

state approach. First, the availability of a large dataset enabled us to utilize a nonparamet-

ric method and hence, avoid potentially unrealistic parametric assumptions on the clinical

course of DLBCL (over time) following diagnosis or treatment [189] [263] [190]. Second,

with the use of multi-state model, we captured the competing risks of DLBCL-specific and

other cause mortality within the same framework, whereas studying them separately was

shown to yield biased estimates [214] [213] [215] [216] [264]. Third, by using separate

model states for diagnosis and treatment, we were able to distinguish patients with and

without treatment (and differentiate early deaths before treatment from others), and define

the subgroups having different prognosis, characteristics [220], and clinical implications

for improving outcomes. Finally, as we were able to identify the patients receiving R-

CHOP in the SEER-Medicare dataset, we could conduct an in-depth survival analysis over

the R-CHOP sub-population with a tailored multi-state model for older patients who are

administered the current, optimal first-line therapy.

3.3.7 Conclusion

We conducted a population-based multi-state survival analysis on the clinical course of

DLBCL in R-CHOP era for older individuals. Utilizing a large population-based dataset,

we confirmed and showed that increased age, advanced DLBCL stage, higher Charlson

comorbidity index and the lack of marital support as significant predictors for poor OS

and increased risk of DLBCL-associated death in the elderly population. Our findings
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accentuated the importance of comorbidity and functional status assessments in the eval-

uation of older patients with lymphoma prior to therapy initiation and the potential role

of gender characteristics, social support and socio-economic status on treatment outcomes.

Our multi-state analysis revealed that DLBCL-associated mortality plateaued and was ex-

ceeded by other-cause specific mortality risk five years after R-CHOP treatment. This result

provides strong support for transitioning survivorship surveillance plans from a focus on

lymphoma relapse-related deaths to non-cancer risks at five years following treatment. Ad-

ditional research using the multi-state approach with datasets including younger patients

and detailed information on later lines of treatment is required to assess the impact of se-

quential therapies following R-CHOP.
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CHAPTER 4

CONCLUSION

In Chapter 1, I studied a multi-modality breast cancer screening problem. Women with

certain risk factors are at higher risk of developing breast cancer. Some of these factors are

gene mutations, family history of breast or ovarian cancer, or elevated breast density. For

these high-risk women, intensified screening with non-mammographic technologies such

as ultrasound (US) and magnetic resonance imaging (MRI) have been suggested to address

some of the limitations of mammography, the standard screening modality for average-

risk women. However, MRI is significantly more expensive and yields substantially higher

number of false-positives than mammograms, while US is less sensitive than MRI and is

more operator dependent, despite being cheaper. Currently there is no consensus on the

optimal use of US and MRI in conjunction with, or instead of, mammography in high-

risk women. I studied and proposed a population-dynamics based optimization approach

for the multi-modality BC screening problem for the high-risk population. I developed a

Markov model to capture the disease incidence and progression in high-risk women, pa-

rameterize and calibrate it using the best available evidence and formulate a mixed integer

linear program to identify optimal structured strategies that are practical for implementa-

tion. I assessed the cost-effectiveness of the identified strategies and the role of ultrasound’s

operator-dependency. I further shed some light on the structure of the optimal screening

strategies by establishing the sufficiency conditions under which a strategy with more fre-

quent screens yields higher health benefits than the one using a more sensitive modality.

The main findings are the following: (1) Annual screening with ultrasound alone, even

when its false-positive rates are high, and annual mammogram screening are respectively

optimal with moderate budgets and robustly cost-effective in young (aged 25-44 years) and

middle-aged (45-74 years) high-risk women, and (2) the annual use of MRI, alone or com-
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bined with mammogram, leads to outcomes that are not cost-effective. These findings can

be helpful in designing future trials, developing evidence-based guidelines and informing

insurance coverage decisions.

In Chapter 2, I studied a physician staffing and an associated patient routing problem

in the emergency room (ER) with time-varying stochastic arrivals. The ER is a highly

complex service system. Patient visits are unscheduled and time-varying in terms of ar-

rival rates and acuity levels. Designing, modeling and managing such a complex service

system is a challenge and determining appropriate staffing levels while balancing costs and

targeted service levels lies at the heart of this challenge. In this study, to design a model

consistent with the perspective of ER physicians, I developed order bundle notion, which

views the ER care delivery process as a sequence of treatments and diagnostic test orders

placed by a physician. Based on this notion, I introduced an intuitive, realistic and tractable

model of ER composed of a multi-class multi-stage queuing network with multiple targeted

service levels. Utilizing infinite-server approximation and offered load analysis, I first ap-

proximated the expected stochastic load on the physicians in the ER. Then I converted the

calculated workload into staffing decisions, by using a new staffing formula I developed,

with the goal of satisfying the targeted tail probability of delay constraints. I analytically

showed that our new staffing rule asymptotically satisfied the desired convergence for the

M/M/s queues that operate efficiency-driven mode. Then, I demonstrated the robustness of

our approach via realistic and data-driven simulation experiments in various (time-varying)

ER settings, considering multi-stage service, multi-class patients and pooled servers (physi-

cians). I also studied the associated patient routing problem and showed that as the service

complexity of an ER increases, the use of dynamic rules, using the current system state

for routing decisions, and hybrid policies, combining pre-determined static routing rules

with dynamic ones, become necessary to stabilize TPoD targets. Overcoming the major

limitations of black-box models, our study offered a new queuing theory-based staffing

approach that is detailed enough to capture the key dynamics of complex service systems,
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and practical enough to implement in practice.

In Chapter 3, I conducted multi-state survival analyses for clinical decision-making,

with applications to follicular lymphoma (FL) and diffuse large B-cell lymphoma (DL-

BCL). DLBCL is a fast-growing lymphoma with high rates of treatment under correct

therapies whereas FL is a slow-growing disease with lower rates of full recovery. Despite

having different characteristics, the courses of both of these diseases include multiple clini-

cal intermediate- or end-points of interest. In the works presented in Chapter 3, I developed

two different continuous-time, multi-state models to investigate the clinical course of these

diseases. Based on the SEER-Medicare data, one of the largest available datasets on FL and

DLBCL, I took a data-driven solution approach and utilized nonparametric methods such

empirical transition matrix estimates as well as other tools of survival analysis. Using the

DLBCL model, I examined the role of clinical and socio-demographic factors on DLBCL-

associated mortality in the elderly population, showed the effect of age, sex, and Charlson

comorbidity index on cause-specific mortalities, and identified a five-year cutoff point to

stop monitoring DLBCL patients receiving the standard R- CHOP therapy. This approach,

coupled with the findings, enriched the current literature as the existing studies based their

conclusions mostly on overall survival rather than cause-specific mortality. Employing the

multi-state FL model, I studied the clinical course of FL under first, second and third line

therapies for high-risk patients to assess the effectiveness of various treatment sequences.

I showed that single R-CHOP therapy in any line improved overall survival for high-risk

patients, achieving the most favorable outcome when provided as first-line therapy. This is

important as currently there is no standard for treatment of these patients and hence, our

findings might influence the current medical practice.
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APPENDIX A

APPENDIX FOR CHAPTER 1

A.1 Base-Case Analysis: Optimal Age-Specific Screening Strategies

Table A.1: Optimal Ten-year Strategies for 35 Year-old BRCA1+ Women

Table A.2: Optimal Ten-year Strategies for 45 Year-old BRCA1+ Women
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Table A.3: Optimal Ten-year Strategies for 65 Year-old BRCA1+ Women

A.2 Optimal Screening Strategies with Low US Specificity

Table A.4: Optimal Strategies for 35 Year-old BRCA1+ Women with Low US Specificity
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Table A.5: Optimal Strategies for 45 Year-old BRCA1+ Women with Low US Specificity

Table A.6: Optimal Strategies for 65 Year-old BRCA1+ Women with Low US Specificity
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A.3 Numerical Results for BRCA2+ Carriers and Women with Family History

Table A.7: Optimal Strategies for 35 Year-old Women with BRCA2+ and Family History
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Table A.8: Optimal Strategies for 45 Year-old Women with BRCA2+ and Family History
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Table A.9: Optimal Strategies for 55 Year-old Women with BRCA2+ and Family History
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Table A.10: Optimal Strategies for 65 Year-old Women with BRCA2+ and Family History
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Table A.11: Optimal Strategies for 75 Year-old Women with BRCA2+ and Family History

A.4 Sensitivity Analysis

In this section, we perform a series of univariate sensitivity analyses on the cost of screen-

ing technologies and biopsy, and the disutility associated with screening and biopsy, and

discuss our findings.

A.4.1 Sensitivity Analysis - Cost Function

We conduct sensitivity analysis on cost function by considering all possible combinations

among low (minimum), medium (average), and high (maximum) cost scenarios separately

(Table A.12), where medium (average) values are employed in the base case numerical

study. Change in the cost of one of the technologies might result in a change in optimal

screening strategies, comparing to the base study results. We name a change as “robust” if

it occurs under all possible scenarios that are separately examined. The robust changes in

optimal screening strategies, resulting from the use of alternative cost values for screening

modalities or biopsy, are presented in Table A.13.
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Table A.12: Cost Range of Screening Modalities and Biopsy

Table A.13: Robust Strategy Modifications due to Changes in Cost
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Our study reveals two important findings regarding the impact of screening costs on

optimal strategies: (1) The most critical cost factor, affecting both the optimality and cost-

effectiveness of identified strategies, is the cost of mammography. Under high (maximum)

cost scenario of mammography, “single MAM” loses its cost-effectiveness and/or optimal-

ity at all age groups (also making “single US” cost-effective) and “double MAM” becomes

dominated for all “elderly” women. On the other hand, a decrease in the cost of mammog-

raphy affects only “double MAM”, by making it cost-effective for all “elderly” women.

(2) “Annual MRI+MAM” becomes cost-effective for 25-year-old high-risk women under

all scenarios of low MRI cost. This result suggests that lowering the cost of MRI can

make “Annual MRI+MAM” a cost-effective strategy for “young” high-risk women and

that the cost of MRI plays a more critical role than cost of biopsy and mammography on

cost-effectiveness of this strategy.

A.4.2 Sensitivity Analysis - Disutility Function

We utilize a disutility function, capturing the harms associated with a screening action,

for elderly high-risk populations, for whom tolerance to aggressive screening is a sig-

nificant concern and the benefits of screenings diminish due to increased comorbidities

and complications [103, 51]. In our base case study, we consider a linear disutility func-

tion increasing with age both for screening technologies and biopsy for women over age

75. In this section, we investigate the impact of an alternative (i) structure (i.e., constant

rather than linearly increasing) and (ii) initiation age (e.g., age 55 or 65). For “young”

age groups, these changes in disutility function have no impact on their ten-year strategies.

For “middle-aged” high-risk women, sensitivity analysis reveals that disutility initiation

age affects cost-effectiveness or optimality of “annual MAM” screening only. Activating

disutility at age 65 causes “annual MAM” strategy to be sub-optimal for women above 65

years old and activating it at age 55 makes “annual MAM” either sub-optimal or dominated

(hence not cost-effective) for all “middle-aged” women. These results suggest that when
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affordable, “annual US”, instead of annual “MAM”, can be used for “middle-aged” high-

risk individuals who have a significant intolerance to biopsy procedure or for whom biopsy

has a significantly elevated complication risk. Finally, for “elderly” high-risk women, the

structure of the disutility function has an impact on the cost-effectiveness of the strategies

with the highest health benefits (namely, “annual US” for 75- and “biennial US” for 85-

year old women). With a constant structure, “annual US” and “biennial US” both become

cost-effective for 75-and 85-year old women, respectively.

A.5 Proofs of Analytical Results

In this section, we provide the proofs of the analytical results we presented in the main

text. We use the following notational conventions about the summation and product signs:
M∑
i=S

... = 0 and
M∏
i=S

... =1 when M < S. We start with introducing additional notations that

will be needed for the proofs (in addition to the ones defined in the main text):

µt(i): Proportion of women in health state i ∈ {0,1,2} in the targeted (sub-)population

at time t ∈ {1,2,...,10}, which changes probabilistically over time as a function of disease

prevalence, incidence and progression with respect to the natural history of breast cancer.

Accordingly, µ1(i) corresponds to the the initial health state distribution for i ∈ SU and is

equal to
∑
a∈A

x1(i, a).

µ̂t(i|π,π′): Proportion of women with so far undetected stage i ∈ {1,2} cancer at time

t ∈ {1,2,...,10}, when strategy π or π′ is implemented. That is, µ̂t(i|π,π′) corresponds the

fraction of stage i cancers that would not be detected by either one of the strategies π or π′,

regardless of which one of them has been implemented by time t.

Next, we restate Assumptions (1)-(3) and present the resulting mathematical statements

imposed by these assumptions.

Assumption 1: (Detection is better than no detection) For both in situ (i=1) and

invasive (i=2) cancer states, detection at any time in the next ten-year period, i.e. t ∈

{1,2,...,10}, yields higher expected QALYs than the scenario with no detection by the end
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of the next ten-year period (followed by a possible detection under any future strategy φ

implemented after ten years). Accordingly, the conditions (1.1) and (1.2), expressed below,

hold for all t ∈ {1,2,...,10} under any future strategy φ:

(1.1) Rew(t,φ|1):= Rt(1) - [rt(1)+
9∑
j=t

[
j∏
s=t

Ps(1|1)rj+1(1)]+
10∏
j=t

Pj(1|1)Eφ[s11=1]) +

10−t∑
s=1

[
t+s−2∏
j=t

Pj(1|1)Pt+s−1(2|1)[rs+t(2)+
9∑

k=t+s
[

k∏
j=s+t

Pj(2|2)rk+1(2)]+
10∏

j=s+t
Pj(2|2)Eφ[s11=2]]+

9∏
k=t

Pk(1|1)P10(2|1)Eφ[s11=2]) > 0

(1.2) Rew(t,φ|2):= Rt(2) - [rt(2)+
9∑
j=t

[
j∏
s=t

Ps(2|2)rj+1(2)]+
10∏
j=t

Pj(2|2)Eφ[s11=2]) > 0

Assumption 2: (Early detection is better than late detection) For both in situ (i=1) and

invasive (i=2) cancer states, detection at any time t ∈ {1,2,...,9} yields higher expected

QALYs than detection at a later time point t+k in the ten-year period, where k ∈ {1,2,...,10-

t}. Accordingly, the conditions (2.1) and (2.2) hold for all t ∈ {1,2,...,9}, k ∈ {1,2,...,10-t}:

(2.1) Rew(t,k|1)=: Rt(1) - rt(1)+
t+k−2∑
j=t

[
j∏
s=t

Ps(1|1)rj+1(1)]+
t+k−1∏
j=t

Pj(1|1)Rt+k(1) +

k−1∑
s=1

[
t+s−2∏
j=t

Pj(1|1)Pt+s−1(2|1)[rs+t(2)+
t+k−2∑
m=t+s

[
m∏

j=s+t
Pj(2|2)rm+1(2)]+

t+k−1∏
j=s+t

Pj(2|2)Rt+k(2)]]+

t+k−2∏
j=t

Pj(1|1)Pt+k−1(2|1)Rt+k(2) > 0

(2.2) Rew(t,k|2)=: Rt(2) - rt(2)+
t+k−2∑
j=t

[
j∏
s=t

Ps(2|2)rj+1(2)]+
t+k−1∏
j=t

Pj(2|2)Rt+k(2) > 0

Assumption 3: Sensitivity of a screening modality a ∈ AS , denoted by senst(a), is

greater than 50% at any time t ∈ {1,2,...,10}. That is, senst(π)≥ 0.50 for all t ∈ {1,2,...,10}

and for any screening strategy π.

We use “≺” to denote the order between the strategies in terms of expected total

QALYs. That is, π ≺ π′ means that strategy π′ yields more expected QALYs than strategy

π. We construct proofs by going backward in time and visiting each time point the com-

pared strategies differ. For future reference, we name the time points, where the compared

strategies (and hence, the clinical courses of women with breast cancer following these

strategies) differ, as critical time points.
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A.5.1 Proof of Proposition 1

Proposition 1: Between two strategies using the same screening modality with different

frequencies, the strategy with higher screening frequency yields higher expected QALYs,

regardless of the initial health state distribution and future strategy implemented.

To prove Proposition (1), we fix the screening modality being used, call ψ, and sys-

tematically compare the strategies utilizing this modality with different frequencies. In this

context, the critical time points, where different strategies lead to different outcomes, are

the times of extra screenings implemented by the more frequent strategy. At each critical

time point, a portion of so far undetected cancers is detected with the extra screening of the

more frequent ten-year strategy, denoted as strategy π′. These cancers either are detected

later or remain undetected by the end of ten-year screening period when the less frequent

ten-year strategy, denoted as strategy π, is implemented instead. Accordingly, to prove

Proposition (1), we show that for all critical time points, the detections under the extra

screenings of the more frequent strategy π′ yield more expected QALYs than the QALYs

obtained with the alternative clinical course and outcomes observed under the less frequent

strategy π (in the ten-year period and afterwards). We complete this proof in four steps:

Propositions (1.1), (1.2), (1.3), and (1.4).

Proposition (1.1): No Intervention Strategy π ≺ Single-Screen Strategy π′

The only difference between “no intervention strategy” π and “single-screen strategy”

π′ is the clinical course of women whose cancers are detected at time t=1 under strategy π′.

These cancer patients leave the screening process and initiate their cancer treatments under

strategy π′. However, if “no intervention strategy” π is implemented, these cancers remain

undetected by the end of the ten-year interval. Accordingly, for a fixed future strategy φ,

implemented after ten years, the total expected QALYs difference between the strategies π′

and π is equal to µ1(1)sens1(ψ)Rew(1,φ|1)+ µ1(2)sens1(ψ)Rew(1,φ|2). In this expression,

the term µ1(i)sens1(ψ) corresponds the proportion of cancers detected in stage i ∈ {1,2}

122



at time t=1 by strategy π′. Rew(1,φ|i) is the total expected QALYs difference between

strategies π′ and π for a woman with stage i ∈ {1,2} cancer at time t=1. This difference in

the expected QALYs arises from the difference in the course of women with breast cancer

under strategies π′ and π. Figure A.1 depicts the expected QALYs difference between the

strategies π′ and π for women with invasive cancer (i=2) at time t=1. Since µ1(1) > 0 and

µ2(1) > 0 for any initial health state distribution, sens1(ψ)> 0 and Rew(1,φ|i)> 0 for i ∈

{1,2} by Assumption (1), we conclude that “Single-Screen” strategy π′ yields more total

expected QALYs than “No Intervention” strategy π for any future strategy φ.

Figure A.1: The Difference Between the Expected Courses of Women with Invasive
Cancer under No Intervention Strategy π and Single-Screen Strategy π′

Proposition (1.2): Single-Screen strategy π ≺ Double-Screen strategy π′

Under the single-screen and double-screen strategies π and π′ the expected clinical

course of healthy women and women with cancer does not differentiate until time t=6. At

time t=6, an additional screening is conducted by strategy π′, detecting µ̂6(i|π,π′)sens6(ψ)

cancers in stage i ∈ {1,2}. These patients with detected breast cancer are assigned a

one-time lump sum reward R6(i), corresponding to expected lifetime QALYs after stage

i cancer treatment, and depart the screening process. Under single-screen strategy π, the

cancers of these patients remain undetected by the end of the ten-year interval, and the

patients continue to receive annual rewards associated with their health states. Given
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they survive, they receive further rewards after the ten-year period, depending on the

implemented future strategy φ. Rew(6,φ|i) captures the total expected QALYs differ-

ence between these two clinical scenarios observed under the strategies π and π′ for a

woman with stage i ∈ {1,2} cancer at time t=6. Accordingly, for a fixed future strat-

egy φ, the total expected QALYs difference between the strategies π′ and π is equal to

µ̂6(1|π,π′)sens6(ψ)Rew(6,φ|1)+ µ̂6(2|π,π′)sens6(ψ)Rew(6,φ|2) (Figure A.2). As µ̂6(1|π,π′)

> 0 and µ̂6(2|π,π′)> 0 for any initial health state distribution, sens6(ψ)> 0 and Rew(6,φ|i)>

0 for i ∈ {1,2} by Assumption (1), we conclude that “Double-Screen” strategy π′ yields

more total QALYs than “Single-Screen strategy” π for any future strategy φ.

Figure A.2: The Difference Between the Expected Courses of Women with Invasive
Cancer under Single-Screen strategy π and Double-Screen strategy π′

Proposition (1.3): Double-Screen strategy π ≺ Biennial-Screen strategy π′

Biennial screening strategy π′ has screenings at time t=1, 3, 5, 7, and 9 whereas double-

screen strategy π recommends screenings at time t=1 and 6. We show the superiority of

strategy π′ step-by-step by visiting all critical points backward in time and stop at the time

point t=3, where the strategies differ first. In order to reduce algebraic computations, we

shift the screening at time t=5 (under strategy π′) to time t=6 and only focus on time points

t=3, 7 and 9 (rather than time t=5 and 6 as well).1 Figure A.3 demonstrates the total QALYs
1This shift is justified because Assumption (2) states that early detection yields higher QALYs in terms of
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differences at each critical time point t ∈ {3, 7, 9}.

We start the proof with the latest critical point t=9, where biennial strategy π′ recom-

mends an additional screening. µ̂9(1|π,π′) and µ̂9(2|π,π′) respectively corresponds to the

proportions of women with undetected in situ (i=1) and invasive (i=2) cancers at time

t=9, regardless of whether strategy π′ or π has been implemented by this time point.

[100*sens9(ψ)]% of these cancers are expected to be detected by the screening recom-

mended by strategy π′ at time t=9. Then, for a fixed future strategy φ, the total expected

QALYs difference of the strategies π′ and π for so-far undetected cancer cases at time t=9

is equal to [µ̂9(1|π,π′)sens9(ψ)Rew(9,φ|1)+ µ̂9(2|π,π′)sens9(ψ)Rew(9,φ|2)]. This term is

positive for any initial health state distribution and future strategy φ since Rew(9,φ|i)> 0

holds for i ∈ {1,2} by Assumption (1).

Figure A.3: The QALYs Differences between Biennial-Screen strategy π′ and
Double-Screen strategy π due to Screenings at time t=3, 7, and 9

Now, we proceed to the preceding critical time point t=7, where biennial screening

strategy π′ recommends a screening. µ̂7(i|π,π′) corresponds to the proportions of women

with so-far undetected stage i,i ∈ {1,2}, cancers at time t=7, regardless of whether strategy

π′ or π has been implemented by this time point. We will show that strategy π′, conducting

a screening at time t=7 and another one at time t=9, yields more total expected QALYs for

these so-far undetected cancer cases. Among these cancer patients, we can discard the can-

cer cases that will be detected later at time t=9, since we have already shown the superiority

of biennial strategy π′ for them. Hence, to prove the superiority of π′ for women with so-far

time and hence, by shifting a screening to a later time, we cause strategy π′ to lose some of its advantage on
strategy π.
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undetected cancers at time t=7, it suffices to focus on cancer cases that are detected at time

t=7 by strategy π′. For a fixed future strategy φ, the total expected QALYs difference be-

tween strategies π′ and π for these cancer cases is equal to [µ̂7(1|π,π′)sens7(ψ)Rew(7,φ|1)+

µ̂7(2|π,π′)sens7(ψ)Rew(7,φ|2)], which is positive for any initial health state distribution

and future strategy φ.

Finally, we proceed the first critical time point t=3. At time t=3, strategy π′ recommends

a screening, and detects a portion of so far undetected cancers. The expected course of can-

cers that are not detected at time t=3 by the strategy π′ is the same under both strategies π′

or π by time t=7, where the strategies differ again. We can discard these cases, as we have

already shown the superiority of π′ at time t=7 and afterwards, and can turn our attention

to the cancers that are detected under strategy π′ at time t=3. Under double-screen strategy

π, these cancers remain undetected at time t=3, as no screening is conducted, a fraction

of them are expected to be detected later at time t=6 and given they survive, the rest re-

mains undetected at least by the end of ten-year period with their future clinical course

depending on the future strategy φ. By taking all these possible scenarios into account,

the total expected QALYs difference between strategies π′ and π for these cancer cases

can be expressed by µ̂3(1|π,π′)sens3(ψ)[sens6(ψ)Rew(3,3|1)+[1- sens6(ψ)]Rew(3,φ|1)]+

µ̂3(2|π,π′)sens3(ψ)[sens6(ψ)Rew(3,3|2)+[1- sens6(ψ)]Rew(3,φ|2)]. The term Rew(3,3|i)

captures the expected QALYs difference between detecting a stage i cancer at time t=3 or

later at time t=6 (3+3). The term Rew(3,φ|i) captures the expected QALYs difference be-

tween detecting a stage i cancer at time t=3 and not detecting it by time t=10, with possible

detection after the ten-year period under the future strategy φ. By Assumptions (1) and (2),

the terms Rew(3,3|i) and Rew(3,φ|i) are both positive for both cancer states i=1,2. As a re-

sult, the overall term µ̂3(1|π,π′)sens3(ψ)[sens6(ψ)Rew(3,3|1)+[1- sens6(ψ)]Rew(3,φ|1)]+

µ̂3(2|π,π′) sens3(ψ) [sens6(ψ)Rew(3,3|2)+[1- sens6(ψ)]Rew(3,φ|2)] is > 0 for any health

state distribution µ and future strategy φ.

Combining the results for the critical time points t=3, 7 and 9, we conclude that biennial
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screening strategy π′ yields more expected QALYs than double-screen strategy π over the

entire ten-year period under any health state distribution µ and future strategy φ.

Proposition (1.4): Biennial-Screen strategy π ≺ Annual-Screen strategy π′

The biennial and annual strategies π and π′ differ at times t=2, 4, 6, 8 and 10, where

only the annual-screen strategy recommends screenings. Again, we construct our proof it-

eratively by analyzing these critical time points backward in time and show that the annual-

screen strategy π′ yields higher QALYs at each critical time point t ∈ {2, 4, 6, 8, 10} for

any health state distribution µ and future strategy φ. Figure A.4 demonstrates the total

QALYs differences between the strategies π′ and π for so-far undetected cancer cases at

each critical time point.

Figure A.4: The QALYs Differences between Annual-Screen strategy π′ and
Biennial-Screen strategy π due to Screenings at time t=2, 4, 6, 8, and 10

Time t=2 is the first time point the strategies π and π′ differ in the ten-year screen-

ing period. At time t=2, a screening is performed under annual strategy π′ and detects a

portion of so-far undetected cancer cases. These cancers remain undetected at time t=2 if

biennial strategy π is implemented instead but they might be detected later by one of the

screenings performed by strategy π at times t= 3, 5, 7, 9 or after the first ten-year period

by future strategy φ. The total expected QALYs between the strategies π and π′ for so-far
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undetected cancers at time t=2 is computed by taking all of these scenarios into account

(Figure A.4). The component Rew(2,k|i) captures the expected QALYs between detecting

a stage i cancer at time t=2 or later at time t+k. The term Rew(2,φ|i) captures the expected

QALYs between detecting a stage i cancer at time t=2 or not detecting it by time t=10, with

possible detection later with the future strategy φ. These terms (i.e., Rew(2,k|i) for i= 1,

2 and k= 1, 3, 5, 7, and Rew(2,φ|i) for i= 1, 2 and any future strategy φ) are positive by

Assumptions (1) and (2), and µ̂2(i|π,π′) ≥ 0 for i ∈ {1,2} for any health state distribution

µ. Accordingly, the whole term capturing the total QALYs difference between π and π′ at

time t=2 is positive. This result shows the superiority of annual strategy π′ over biennial

strategy π for the cancers detected under strategy π′ at time t=2.

We also need to show the superiority of strategy π′ for the cancer cases that are not

detected by the additional screening of strategy π′ at time t=2. These undetected cancers

might be detected at times t= 3, 5, 7, 9, which is a clinical scenario that doesn’t impact

the QALYs difference between the strategies π and π′ as both recommend screenings at

these points. Alternatively, if they survive, they join the proportion of women with so-far

undetected cancers at time t= 4, 6, 8, 10. As a result, we need to show the superiority of

strategy π′ at times t ∈ {4, 6, 8, 10} to demonstrate the superiority of strategy π′ at time t=2

over the entire targeted population. That’s why, we follow a backward-style proof since the

complete result for any critical time point, where the strategies differ, relies on the results

shown for the critical time points that will come later.

The proofs for the time points t ∈ {4, 6, 8, 10} follow the same structure as of the

proof for the time point t=2 presented above. That is, the objective is the show that the

total expected QALYs differences between strategies π′ and π at each one of these critical

time points are positive, and the results follow from the fact that the terms Rew(t,k|i) and

Rew(t,φ|i) are positive by Assumptions (1) and (2), and µ̂t(i|π,π′) ≥ 0. Accordingly, the

overall terms (Figure A.4), each capturing the total expected QALYs difference at one of

the critical time points, are positive. Combined, these results show that annual-screening
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strategy π′ yields higher total expected QALYs than biennial screening strategy π over the

entire ten-year screening period for any future strategy φ and any health distribution µ.

A.5.2 Proof of Proposition 2

Proposition 2: Between two strategies using different screening modalities with the same

frequency, the strategy utilizing a more sensitive modality yields higher expected QALYs,

regardless of the initial health state distribution and future strategy implemented.

To prove Proposition (2), we compare the strategies that utilize different modalities

with different sensitivity rates under the same fixed screening schedule. The critical time

points, where the difference in compared strategies causes a difference in the clinical course

of women with cancers, correspond to the time points where screenings are conducted.

For any two strategies that are compared, the expected result of screenings with different

modalities can be categorized into three groups: (i) so far undetected cancer cases that

remain undetected under both strategies, (ii) so far undetected cancer cases that are detected

under both strategies and (iii) so far undetected cancer cases that are detected under the

strategy using the more sensitive modality but remains undetected at that time point under

the other strategy. Since the implementation of one strategy, instead of the other, affects

the clinical course of the women in group (iii) only, it suffices to focus on these patients to

prove Proposition (2).

We evaluate the four practical schedule cases (i.e., 1, 2, 5 and 10 screenings in the ten-

year interval) separately and complete the proof in four steps: Propositions (2.1), (2.2),

(2.3), and (2.4). For each fixed screening schedule, we begin with the latest critical time

point, where a screening is recommended, and then visit all critical points step-by-step

backward in time because the proof at any critical time point relies on the proof of a later

point in time. We use senst(π) and senst(π′) to respectively denote the sensitivity of the

modality used at time t ∈ {1, ..., 10} by strategies π′ and π, where strategy π′ always uses

a more sensitive modality (i.e senst(π′) > senst(π) ∀ t ∈ {1, ..., 10}).
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Proposition (2.1): Single Screening Strategy (Frequency=1)

Under single screening strategy, a screening is performed at the beginning (i.e., at time

t=1) and no other intervention is taken during the ten-year interval. Due to utilizing a more

sensitive technology, strategy π′ is expected to detect µ1(i)[sens1(π′)-sens1(π)] more stage

i cancers at time t=1. These cancers remain undetected under strategy π by the end of

the ten-year period and might be detected later by the future strategy φ. Since the clinical

course of cancer cases (Figure A.5) constitute the only difference between the impacts

of strategies π′ and π, the total expected QALYs difference between these two policies

is equal to µ1(1)[sens1(π′)-sens1(π)]Rew(1,φ|1)+µ1(2)[sens1(π′)-sens1(π)]Rew(1,φ|2) for

a future strategy φ. The term Rew(1,φ|i) > 0 for i ∈ {1,2} under any future strategy

φ by Assumption (1), µ1(1) > 0 and µ1(2) > 0 for any health state distribution µ, and

sens1(π′)> sens1(π) as the strategy π′ uses a more sensitive modality. Hence, the overall

term, capturing the total QALYs difference of strategies π′ and π, is positive, which shows

the superiority of strategy π′ that utilizes a more sensitive modality than strategy π.

Figure A.5: The Difference Between the Expected Courses of Women with Invasive
Cancer under Strategies π and π′

Proposition (2.2): Double Screening Strategy (Frequency=2)

Double screening strategies π′ and π conduct two screenings in the ten-year interval,
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one at time t=1 and the other at time t=6. We analyze the critical time point t=6 first and

then t=1. Regardless of whether strategy π′ or π has been implemented by time t=6, there

are women with so-far undetected cancers at time t=6. Among these women, strategy π′

is expected to detect µ̂6(i|π,π′)[sens6(π′)-sens6(π)] more stage i cancers at time t=6 due to

utilizing a more sensitive modality. These cancers remain undetected under strategy π by

the end of ten-year period and might be detected later by the future strategy φ. Then, the

total expected QALYs difference between strategies π′ and π for these so-far undetected

cancer cases at time t=6 is equal to
∑
i=1,2

µ̂6(i|π,π′)[sens6(π′)-sens6(π)]Rew(6,φ|i) for a fu-

ture strategy φ. This term is positive since Rew(6,φ|i) > 0 for i∈ {1,2} under any future

strategy φ by Assumption (1), sens6(π′)> sens6(π), and µ̂6(i|π,π′) > 0 for i∈ {1,2} with

any health state distribution µ. As a result, strategy π′, the strategy with more sensitive

modality, yields more expected QALYs for women with so far undetected cancers at time

t=6.

At time t=1, both strategies schedule a screening. Due to its more sensitive modal-

ity, strategy π′ is expected to detect µ1(i)[sens1(π′)-sens1(π)] more stage i cancers at time

t=1. These cancers remain undetected at time t=1 under strategy π but might be detected

later either at time t=6, or after the ten-year period by the future strategy φ. Taking all

these possible scenarios into account, the total expected QALYs difference between strate-

gies π′ and π at time t=1 is equal to
∑
i=1,2

µ1(i)[sens1(π′)-sens1(π)][sens6(π)Rew(1,5|i)+[1-

sens6(π)]Rew(1,φ|i)]. Given Rew(1,5|i)2> 0 for i∈ {1,2} by Assumption (2), Rew(1,φ|i)3

> 0 for i ∈ {1,2} under any future strategy φ by Assumption (1), sens1(π′)> sens1(π) and

µ1(i) > 0 for i∈ {1,2} with any health state distribution µ, the overall term for the total

QALYs difference is positive, indicating that strategy π′ yields more expected QALYs at

time t=1. Combining the results for both critical time points t=1 and t=6, we conclude that

for any future strategy φ and health state distribution µ, strategy π′, the strategy with a more

2Rew(1,5|i) is the QALYs difference between detecting a stage i cancer at time t=1 or later at time t=6.
3Rew(1,φ|i) is the QALYs difference between the detection of a stage i cancer at time t=1 and no detection

by the end of the ten-year period.
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sensitive modality, yields higher expected QALYs when two screenings are scheduled in

the ten-year screening interval.

Proposition (2.3): Biennial Screening Strategy (Frequency=5)

Biennial screening strategies π′ and π both schedule five screenings at times t=1, 3, 5,

7 and 9. Since strategy π′ uses a more sensitive modality at each t ∈ {1, 3, 5, 7, 9}, it

is expected to detect µ̂t(i|π,π′)[senst(π′)-senst(π)] more stage i cancers among the women

with so-far undetected cancers. If strategy π is implemented, these cancer cases, which

are detected at time t only by strategy π′, remain undetected at this time point but might

be detected later by either a subsequent screening of strategy π or future strategy φ. The

expected QALYs difference between strategies π′ and π at t ∈ {1, 3, 5, 7, 9} is calculated

by probabilistically taking all of these clinical scenarios into account (Figure A.6). At

each critical time point, the expected QALYs difference is positive as Rew(t,φ|i) > 0 by

Assumption (1), Rew(t,k|i)> 0 by Assumption (2), senst(π′)-senst(π)]> 0 due to the higher

sensitivity of strategy π′ modality, and µ̂t(i|π,π′) > 0 as µ is a probability distribution.

Accordingly, the summation of the results for t ∈ {1, 3, 5, 7, 9}, each corresponding to

the expected QALYs difference at one of critical time points, is positive, which shows that

strategy π′, the strategy using a more sensitive modality, yields more total expected QALYs

over the entire ten-year screening interval.

Proposition (2.4): Annual Screening Strategy (Frequency=10)

Annual screening strategies π′ and π both schedule yearly screenings all time points

t=1,2,...,10 within ten-year period. Due to employing a more sensitive modality, strategy

π′ is expected to detect µ̂t(i|π,π′)[senst(π′)-senst(π)] more stage i cancers at each t ∈ {1,

2, ..., 10} from the population with so-far undetected cancers. If strategy π is implemented,

these cancer cases remain undetected at this time point but might be detected later by either

a subsequent screening of strategy π or future strategy φ. The difference in the clinical

course of these cancer cases leads to the expected QALYs difference between strategies

π′ and π at each time t ∈ {1, 2, ..., 10}, which is calculated by probabilistically taking
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Figure A.6: The QALYs Differences between Biennial-Screen Strategies π′ and π due to
Screenings at time t=1, 3, 5, 7, and 9

all of the clinical scenarios into account (Figure A.7). At each time point t ∈ {1, 2, ...,

10}, the expected QALYs difference is positive since Rew(t,φ|i)4 > 0 by Assumption (1),

Rew(t,k|i)5 > 0 by Assumption (2), senst(π′)-senst(π)] > 0 due to the higher sensitivity of

strategy π′ modality, and µ̂t(i|π,π′) > 0 as µ is a probability distribution. Accordingly, the

total QALYs difference, the summation of the results for t ∈ {1, 2, ..., 10}, is positive,

which indicates that the strategy using a more sensitive modality (i.e., strategy π′) yields

more total expected QALYs under annual screening schedule.

A.5.3 Proof of Corollary 1

Corollary 1: Among affordable ten-year screening strategies, either the one with the high-

est frequency or the one with the most sensitive modality is the optimal policy over the

entire planning horizon for the given budget level. This result holds for any initial health

state distribution and any future strategy that is implemented after the ten-year period.

4Rew(t,φ|i) captures the expected QALYs difference resulting from the detection of a stage i cancer at
time t and no detection by the end of the ten-year interval.

5Rew(t,k|i) captures the expected QALYs difference resulting from the detection of a stage i cancer at
time t, by strategy π′, or later at time t+k by strategy π.
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Figure A.7: The QALYs Differences between Annual-Screen Strategies π′ and π due to
Screenings at time t=1, 2, 3, ... and 10

The proof of Corollary (1) immediately follows from Propositions (1) and (2). We

show that Corollary (1) holds by “proof by contradiction”. Assume that Corollary (1) is

not true. Then there is an optimal ten-year screening strategy that achieves the highest

expected QALYs, let’s say strategy δ, without utilizing neither (i) the highest screening

frequency nor (ii) the most sensitive modality that is affordable. Alternative (i) cannot be

true since Proposition (1) states that the strategy using the same modality with strategy

δ and having higher frequency yields more expected QALYs than strategy δ. Similarly,

alternative (ii) cannot be true either since Proposition (2) states that the strategy having

the same frequency with strategy δ and utilizing a more sensitive modality yields more

expected QALYs than strategy δ. As a result, a strategy cannot be optimal without utilizing

either (i) the highest frequency or (ii) the most sensitive modality options.

A.5.4 Proof Lemma 1

For a fixed given future strategy φ, Lemma 1 establishes the conditions under which single

screening strategy π is outperformed by “double” screening strategy π′, which utilizes a

less sensitive modality than strategy π. After proving Lemma 1, we generalize this result

to all future strategies by proving Theorem 1 (A).

Lemma 1: Consider two ten-year screening strategies: single (i.e., every 10-year)

screening strategy, call π, and double (i.e., every 5-year) screening strategy, call π′, which

utilizes a less sensitive modality (i.e., senst(π′) < senst(π) ∀ t = 1,2,...,10). Then, under
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a fixed future strategy φ, strategy π′ yields higher QALYs than strategy π, if the following

condition (E.1) holds for both cancer states i=1 and i=2:

µ1(0)
1−µ1(0) >

1
Pr(s6=i|s1=0)

sens1(π)−sens1(π′)
sens6(π′)

[sens6(π′)Rew(1,5|i)+[1−sens6(π′)]Rew(1,φ|i)]
Rew(6,φ|i)

Proof (Lemma 1): Let either double-screen strategy π′ or single-screen strategy π

be implemented in the ten-year screening interval and a fixed future strategy φ be imple-

mented afterwards. Both strategies π′ and π conduct a screening at time t=1, and strategy

π′ conducts an additional screening at time t=6. Due to utilizing a more sensitive screening

modality, strategy π is expected to detect µ1(i)[sens1(π)-sens1(π′)] more cancers in health

state i ∈ {1,2} at time t=1. These cancer cases are not detected at time t=1 if strategy π′ is

implemented but, if survive, they might be detected later by strategy π′ at time t=6 or after

the ten-year period by future strategy φ. Figure A.8 depicts the expected clinical course

of these cancer cases under strategies π′ and π, based on which the total expected QALYs

surplus of strategy π over strategy π′ at time t=1 is calculated. The total expected QALYs

surplus of strategy π, due to utilizing a more sensitive modality at time t=1, is equal to∑
i=1,2

µ1(i)[sens1(π)-sens1(π′)][sens6(π′)Rew(1,5|i)+[1-sens6(π′)]Rew(1,φ|i)].

At time t=6, strategy π′ conducts an additional screening and is expected to detect

µ̂6(i|π,π′)sens6(π′) stage i cancers, which would remain undetected regardless whether

strategy π′ or π has been implemented by time t=6. Since single-screen strategy π does

not conduct a screening at time t=6, these cancers remain undetected by the end of the ten-

year interval. Figure A.9 depicts the expected clinical course of these cancer cases under

strategies π′ and π. The total expected QALYs surplus of strategy π′, due to utilizing an

additional screening at time t=6, is equal to
∑
i=1,2

µ̂6(i|π,π′)sens6(π′)Rew(6,φ|i) .

Accordingly, double-screen strategy π′ generates a QALYs surplus at time t=6, due to

utilizing an additional screening, and single-screen strategy π generates a QALYs surplus at

time t=1, due to utilizing a more sensitive modality. Now, we will show that if the inequal-

ity (E.1) holds, then the QALYs surplus of double-screen strategy π′ is higher and hence,

strategy π′ yields more expected QALYs. Assume that the inequality (E.1) holds for cancer
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states i= 1,2. Then µ̂6(i|π,π′)
µ1(i)

> µ1(0)Pr(s6=i|s1=0)
µ1(i)

>µ1(0)Pr(s6=i|s1=0)
1−µ1(0) holds for cancer states

i= 1,2. This implies that µ̂6(i|π,π
′)

µ1(i)
> sens1(π)−sens1(π′)

sens6(π′)
[sens6(π′)Rew(1,5|i)+[1−sens6(π′)]Rew(1,φ|i)]

Rew(6,φ|i)

holds for i= 1,2. Accordingly, under the fixed future strategy φ, µ̂6(i|π,π′)
µ1(i)

sens6(π′)
sens1(π)−sens1(π′)

Rew(6,φ|i)
[sens6(π′)Rew(1,5|i)+[1−sens6(π′)]Rew(1,φ|i)] > 1 holds for each cancer state i=1 and i=2, leading

to
∑
i=1,2

µ̂6(i|π,π′)sens6(π′)Rew(6,φ|i)> ∑
i=1,2

µ1(i)[sens1(π)-sens1(π′)][sens6(π′) Rew(1,5|i)+

[1-sens6(π′)]Rew(1,φ|i)]. This shows the superiority of double-screen strategy π′ and con-

cludes the proof.

Figure A.8: The Clinical Course of Women with Invasive Cancer at time t=1 under
Strategies π and π′

A.5.5 Proof for Theorem 1.A

Theorem 1.A: Consider two ten-year screening strategies: single (i.e., every 10-year)

screening strategy, call π, and double (i.e., every 5-year) screening strategy, call π′, which

utilizes a less sensitive modality (i.e., senst(π′) < senst(π) ∀ t = 1,2,...,10). Then, under

any future strategy, policy π′ yields higher QALYs than policy π, if the following condition

(E.2) holds:

µ1(0)
1−µ1(0) >

1
Pr(s6=i|s1=0)

sens1(π)−sens1(π′)
sens6(π′)

sens6(π′)Rew(1,5|i)+[1−sens6(π′)]Rew(1|i)UB
Rew(6|i)LB

for i=1,2

Proof (Theorem 1.A): When the inequality (E.2) holds the inequality (E.1) holds for
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Figure A.9: The Clinical Course of Women with Invasive Cancer at time t=6 under
Strategies π and π′

any future strategy φ since by definition, Rew(1|i)UB > Rew(1, φ|i) and Rew(6|i)LB >

Rew(6, φ|i) for both in situ (i=1) and invasive (i=2) cancer states. Then, the result follows

immediately from Lemma 1.

A.5.6 Proof for Theorem 1.B

Theorem 1.B: Consider two ten-year screening strategies: double screening strategy, call

π, and biennial (i.e., every 2-year) screening screening strategy, call π′, which utilizes a

less sensitive modality (i.e., senst(π′)< senst(π) ∀ t = 1,2,...,10). Then, under a fixed future

strategy φ, policy π′ yields higher QALYs than policy π, if the following conditions (E.3)6

and (E.4)78 hold:

µ1(0)
1

5∏
t=1

Pt(0|0)

−µ1(0)
> 1

Pr(s7=i|s6=0)+Pr(s9=i|s6=0)
sens6(π)

min{sens7(π′),sens9(π′)}
X(i)

Rew(9,φ|i) for i=1,2

µ1(0)
1−µ1(0) >

1
Pr(s3=i|s1=0)+Pr(s5=i|s1=0)

sens1(π)−sens1(π′)
min{sens3(π′),sens5(π′)}

Y (i)
Z(i)

for i=1,2.

Proof (Theorem 1.B): Let either biennial-screen strategy π′ or double-screen strategy

6X(i)=sens7(π)Rew(6,1|i)+[1-sens7(π)]sens9(π)Rew(6,3|i)+[1-sens7(π)][1-sens9(π)]Rew(6,φ|i)
7Y(i)=sens3(π′)Rew(1,2|i)+[1-sens3(π′)]sens5(π′)Rew(1,4|i)+[1-sens3(π′)][1-sens5(π′)]

sens7(π′)Rew(1,6|i)+[1-sens3(π′)][1-sens5(π′)][1-sens7(π′)]sens9(π′)Rew(1,8|i)+[1-sens3(π′)][1-sens5(π′)]
[1-sens7(π′)][1-sens9(π′)]Rew(1,φ|i)

8Z(i)=sens6(π)min{Rew(3, 3|i), Rew(5, 1|i)}+ [1− sens6(π)]min{Rew(3, φ|i), Rew(5, φ|i)}
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π be implemented in the ten-year screening interval and a fixed future strategy φ be im-

plemented afterwards. Biennial-screen strategy π′ conducts five screenings at time t= 1, 3,

5, 7 and 9. Double-screen strategy π utilizes a more sensitive modality and conducts two

screenings at times t= 1 and 6. Accordingly, strategy π generates more QALYs at times t=

1, 6, whereas strategy π′ yields QALYs surplus at times t= 3, 5, 7 and 9. We will show that

the additional QALYs obtained under strategy π′ offsets the additional benefits of strategy

π when the inequalities (E.3) and (E.4) hold.

If the inequality (E.3) holds for both cancer states i=1,2, then the left hand side com-

ponent
µ1(0)

5∏
t=1

Pt(0|0)

1−µ1(0)
5∏
t=1

Pt(0|0)
[Pr(s7=i|s6=0)+Pr(s9=i|s6=0)] is greater than the right hand side

sens6(π)
min{sens7(π′),sens9(π′)}

X(i)
Rew(9,φ|i) , which is equivalent to µ6(0)[Pr(s7=i|s6=0)+Pr(s9=i|s6=0)]

min{sens7(π′),sens9(π′)} Rew(9,φ|i) > [1-µ6(0)] sens6(π) X(i), i ∈ {1, 2}. Using the def-

inition of X(i) and summing up both sides of the inequality over i=1,2, we derive the in-

equality
∑
i=1,2

µ̂7(i|π,π′)sens7(π′)Rew(7,φ|i)+µ̂9(i|π,π′)sens9(π′)Rew(9,φ|i)> ∑
i=1,2

µ̂6(i|π,π′)

sens6(π′)[sens7(π) Rew(6,1|i) + [1-sens7(π)]sens9(π)Rew(6,3|i) + [1-sens7(π)][1-sens9(π)]

Rew(6,φ|i)].9 This shows that the total expected QALYs surplus obtained under strategy π′

due to the screenings at time points t=7, and 9 is higher than the QALYs surplus obtained

under strategy π due to the screening conducted at time point t=6.

If the inequality (E.4) holds for both cancer states i=1, 2, then the inequality µ1(0)

[Pr(s3=i|s1=0)+Pr(s5=i|s1=0)] min{sens3(π′),sens5(π′)} Z(i)> [1-µ1(0)] [sens1(π)-sens1(π′)]

Y(i) is satisfied. This implies that
∑
i=1,2

µ̂3(i|π,π′)sens3(π′) [sens6(π)Rew(3,3|i)+[1-sens6(π)]

Rew(3,φ|i)]+µ̂5(i|π,π′)sens5(π′)[sens6(π)Rew(5,1|i)+[1-sens6(π)]Rew(5,φ|i)] is greater than

the term
∑
i=1,2

µ1(i)[sens1(π)-sens1(π′)] Y(i) holds for both cancer states i=1,2. The summa-

9 The inequality (E.3) leads to this result since the following inequalities hold both for i=1 and i=2:

• µ̂7(i|π,π′)sens7(π′)Rew(7,φ|i)+µ̂9(i|π,π′)sens9(π′)Rew(9,φ|i) >
µ6(0)[Pr(s7=i|s6=0)+Pr(s9=i|s6=0)] min{sens7(π′),sens9(π′)} Rew(9,φ|i) ,

• [1-µ6(0)] > µ6(i) ,

• X(i)=sens7(π)Rew(6,1|i)+[1-sens7(π)]sens9(π)Rew(6,3|i)+[1-sens7(π)][1-sens9(π)]Rew(6,φ|i).
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tion of both sides of the inequality over i=1,2 shows that the total expected QALYs surplus

obtained under strategy π′ due to the screenings at time points t=3, and 5 is higher than the

QALYs surplus obtained under strategy π due to the screening conducted at time point t=1.

As shown, the inequality (E.3) implies that the screenings of strategy π′ at time points

t=7, and 9 yields more additional QALYs than the screening conducted at time point t=6

by strategy π. Similarly, the inequality (E.4) implies that the screenings of strategy π′ at

time points t=3, and 5 yields more additional QALYs than the QALYs surplus of screening

strategy π, due to its more sensitive screening at time point t=1. Combined, these results

show that when the inequalities (E.3) and (E.4) both hold for cancer states i=1, 2, biennial

screening strategy π′ is expected to generate more QALYs surplus with its screenings at

t=1, 3, 5, 7 and 9 than double screening strategy π under a fixed future strategy φ. This

concludes the proof.

A.6 Intermediate Rewards and Disutility Function

We use rt(s, a) to denote the intermediate expected QALYs accrued between time t and

t + 1 when a woman′s current health state is s ∈ SU and the screening action is a ∈ A. It

consists of two main components: reward function, denoted by r̂t(s, a), and the disutility

function, denoted by ut(s, a).

We employ the “half-cycle correction method” to calculate the first component of in-

termediate rewards. Accordingly, we assign the full decision interval length to the inter-

mediate reward of each woman if she remains alive and the half decision interval length in

the case of death. The underlying assumption is that if death occurs, it happens, on aver-

age, in the middle of the decision interval. Then, the general form of the reward function

corresponding to health state s ∈ SU and action a ∈ A at time t ∈ TA is the following:

r̂t(s, a) = CP a
t (Alive|s) + C

2
P a
t (Dead|s)

C is a constant that denotes the length of time interval between consecutive decision

epochs, P a
t (Dead|s) denotes the probability of death and P a

t (Alive|s) denotes the prob-
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ability of survival given the health state is s ∈ SU and action is equal to a ∈ A at time

t ∈ TA. In our study, C =1 since decisions are made every year, P a
t (Dead|s) = P 1

t (5|s),

i.e. probability of death under natural history of disease progression, and P a
t (Alive|s) = 1

-P a
t (Dead|s) ∀ s ∈ SU , a ∈ A and t ∈ TA.

We account for quality of life reductions due to the harms associated with diagnostic

actions (i.e. screening and biopsy) by subtracting a certain amount from r̂t(s, a). This

reduction is captured by disutility function ut(s, a). In our study, we activate this disutility

function starting from a certain age, where the harm associated with diagnostic actions is

not negligible and hence, cannot be ignored. We employ an indicator function 1{t≥DIT},

which is equal to 1 if time t is no less than the disutility initiation timeDIT and 0 otherwise.

Accordingly, the general form of the intermediate reward corresponding to health state s ∈

SU and action a ∈ A at time t ∈ TA is the following: rt(s, a) = r̂t(s, a)− 1{t≥DIT}ut(s, a)

In our base case analysis, we choose “DIT ” in a way that it corresponds to age 75

and conduct sensitivity analysis to measure its impact on optimal strategies (e.g. chang-

ing initiation age to age 65 or 55). This concludes the general description of intermediate

rewards.We now proceed with the detailed description of disutility function. Similar to

intermediate rewards, disutility function consists of two main components: Disutility as-

sociated with screening, denoted by uscrt (s, a), and disutility associated with (follow-up)

biopsy, denoted by ubiot (s). The general form of the disutility function, corresponding to

harms associated with action a ∈ A for health state s ∈ SU at time t ∈ TA, is the follow-

ing: ut(s, a) = uscrt (s, a) + qbiot (s, a)ubiot (s)

where the probability of performing a biopsy qbiot (s, a) = 1 - spect(a) when s=0 (healthy)

and qbiot (s, a) = senst(a) when s=1, 2 (undetected -asymptomatic- cancer states) for all a

∈ ASCR. There is no disutility when the chosen action is “No Screening” (i.e. ut(s,a) = 0

when a=1).

The literature reports that false positive screening has higher disutility than a true posi-

tive one [99] and disutility (both associated with screening and biopsy) increases as women
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get older ([86] and the references therein). Accordingly, we penalize false positive screen-

ing results higher than true positive ones and use a linear function both for screening and

biopsy disutility functions (accounting for increasing disutility with age) in our base case

(numerical) study. There are three parameters, allowing us to adjust for these features of

the disutility function: (i) false-positive penalty constant αFPP , accounting the ratio of

disutility of a false positive screening to the one of a true positive screening, (ii) screening

linearity factor αSLF , setting the ratio of screening disutility at age 100 when compared to

the one at age 40 and (iii) biopsy linearity factor αBLF , setting the ratio of biopsy disutility

at age 100 when compared to the one at age 40.

We continue discussing the disutility function, by analyzing the mathematical expres-

sion of its components in detail. We start with providing the relation between time t,

the current age of patient at and screening initial age a1: t = at − a1 + 1 ∀ t ∈

{1, 2, ...T − a1 + 1}

We use this relationship below when we define the components of disutility function.

Terminal age T is set to age 100 in our study.

A.6.1 Disutility Associated with Screening uscrt (s, a)

The disutility of negative screening is set to 0.5 days at age 40 (and at younger ages) for any

single modality [96] and 1 day when two modalities (i.e. MRI adjunct to mammography)

is utilized together. We designate n(a) to denote the number of modalities employed by

screening action a ∈ A, which is equal to 0 when a=1, 1 when a ∈ {2,3,4} and 2 when a=5.

Then general form of the disutility associated with screening is the following:

uscrt (s, a) = 0.5
365
∗ n(a) when at ∈ {25, 26, ..., 40}, a ∈ A and s ∈ SU

uscrt (s, a) = 0.5
365

+ βS(at − 40)] ∗ n(a) when at ∈ {41, .., 99}, a ∈ A and s ∈ SU

uscrt (s, a) = αSLF ∗ 0.5
365
∗ n(a) when at = 100, a ∈ A and s ∈ SU

Screening disutility linearity slope βS = 0.5
365

αSLF−1
100−40 . Screening linearity factor αSLF=1

and =2 when a constant or an increasing disutility function is employed, respectively. Ac-
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cordingly, βS disappears when harm associated with screening is assumed to remain con-

stant with age (i.e. when αSLF is set to 1).

A.6.2 Disutility Associated with Biopsy ubiot (s)

The disutility of true positive screening at age 40 (and at younger ages) is set equal to two

weeks [97, 98].

ubiot (s) = 2
52

when at ∈ {25, 26, ..., 40} and s ∈ {1, 2}

ubiot (s) = 2
52

+ βB(at − 40) when at ∈ {41, 42, ..., 99} and s ∈ {1, 2}

ubiot (s) = αBLF ∗ 2
52

when at = 100 and s ∈ {1, 2}

ubiot (s) = αFPP ∗ ubiot (s+ 1) when at ∈ {25, 26, ..., 99} and s = 0

Biopsy disutility linearity slope βB = 2
52
αBLF−1
100−40 . Biopsy linearity factor αBLF=1 and =2

when a constant or an increasing disutility function is employed, respectively. Accordingly,

βB disappears when harm associated with biopsy is assumed to remain constant with age

(i.e. when αBLF is set to 1). False-positive penalty constant αFPP is set to 2.
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APPENDIX B

APPENDIX FOR CHAPTER 2

B.1 Overview of Existing Asymptotic Staffing Rules

In the literature, three main modes of operation, based on which analytic-formula based

staffing rules with asymptotic convergence developed, has been identified for queuing

regimes: Quality-Driven (QD), Efficiency-Driven (ED), and Quality-and-Efficiency Driven

(QED) [139]. QD regimes target timely service (i.e., service quality) with the goal of min-

imal delays and abandonments, ED regimes emphasize server efficiency with the goal of

maximum server utilization and QED regimes balance these two perspectives and target

high (service) quality and (server) efficiency simultaneously rather than letting one per-

spective (goal) dominating the other. In particular, the main staffing results for these three

asymptotic queuing regimes are developed by studying M/M/s (+M or +G) queue, charac-

terized by Poisson arrivals (M/./.) with rate λ, exponential service (./M/.) with rate µ, s

identical servers (././s), and if abandonment is included, exponentially (+M) or generally

(+G) distributed patience time with pdf g(.). Summary of the our and other main staffing

rules with their corresponding staffing level formulas and targeted performance measures,

asymptotically achieved as λ and s increase indefinitely and µ held fixed, are provided in

Table B.1. See [146], [137], [139], and [140] for the details and [165] for an overview.

ER treatment queues, where servers are ER physicians and the service is the medical

treatment provided, are characterized as efficiency-driven (ED)(busy-server) regimes. In

an ED regime, servers are generally busy and some delay in service is inevitable, and un-

der heavy traffic limit conditions, expected waiting time E[W ] > 0, probability of delay

P (W > 0) ≈ 1 and tail probability of delay P (W > T ) > 0 for any T>0. The key

difference between ER treatment queues, operating as no-abandonment-ED, and the other
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Table B.1: Asymptotic Staffing Rules with Associated Staffing Levels and Performance
Goals

Asymptotic Staffing Rule Staffing Level Formula Key Performance Measure(s) Other Measures
Efficiency-Driven

(ED) s = (1-γ)*λ
µ

, γ > 0 P(Ab)→ γ P(W > 0)→ 1, ρe→ 1

Quality-Driven
(QD) s = (1+γ)*λ

µ
, γ > 0 P(Ab)→ 0, E[W]→ 0 P(W > 0)→ 0, P (Ab)

E[W ]
=g(0)

Quality-and-Efficiency
Driven (QED) s = λ

µ
+ βα

√
λ
µ

P(W > 0)→ α P(Ab)→ 0, E[W]→ 0, ρe→ 1

QED tuning of ED
(ED+QED) s = (1-γT )*λ

µ
+ δT,α

√
λ
µ

P(W > T )→ α P(Ab)→ γT

ED-No Abandonment
(ED-NoAb) s = λ

µ
+ ln(1/α)

µT
P(W > T )→ α, E[W]→ T

ln(1/α)
P(W > 0)→ 1, ρe→ 1

Note: “Ab” and “W” are abbreviations for abandonment and waiting time, respectively.
Effective server utilization (load per server) ρe:= ρ*(1-P(Ab)), where ρ = λ

µs
.

efficiency-driven regimes is the (non)existence of abandonment. As noted in the main text,

abandonments from the ER happen at the earlier stages (queue stations) of the ER care de-

livery process (multi-stage network) and ER treatment queues experience no abandonment.

When the ED (or ED+QED) formula is used without abandonments by setting the aban-

donment target γ (or γT ) = 0, the resulting staffing level s is equal to the offered load λ
µ

, and

cannot maintain stability (as ρ = 1). Hence, we develop a new staffing rule, ED-NoAb, to

stabilize the tail probability of delay P(W > T ) around α for ED regimes with negligible,

if any, abandonment events (i.e., P(Ab) ≈ 0).

B.2 Proof of Theorem 1

We first present some steady-state results for M/M/s (Erlang-C) queue that we use to prove

Theorem 1.

Relevant Steady-State Results for M/M/s (Erlang-C) Consider a M/M/s (Erlang-C)

queue model with (Poisson) arrival rate λ, (exponentially distributed) service rate µ, and s

identical servers. The steady-state results for this queue, when the expected traffic intensity

(server utilization) ρ := λ
µs
< 1 holds, are as follows [265]:

• Probability of delay P(W > 0) is equal to

P (W > 0) =
1

1 + A/B
, where A =

s−1∑
k=0

(sρ)k

k!
and B =

(sρ)s

s![1− ρ]
, (B.1)
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• Conditional tail probability of delay P(W > T|W > 0) is equal to

P (W > T |W > 0) = e−s[1−ρ]µT for T > 0, (B.2)

• Conditional expected waiting time, given service is delayed, is equal to

E[W |W > 0] =
1

s(1− ρ)µ
. (B.3)

Now, we provide three results that will help us prove Theorem 1. From now on, assume

ρn ∈ (0,1) ∀ n.

Lemma 1: Let γn =
n−1∑
k=0

(nρn)k

k!
e−nρn . Then γn→ 1/2 as n→∞ and n(1-ρn)→ β > 0.

Proof (Lemma 1): Let Sn be the sum of n independent and identically distributed

Poisson random variables, each with rate ρn. Then, Sn is also a Poisson random variable

[266] with rate nρn, mean E[Sn] = nρn and variance V[Sn] = nρn [267].

It is easy to recognize that γn = P( Sn ≤ n-1 ) = P( Sn−E[Sn]√
V [Sn]

≤ (n−1)−nρn√
nρn

). Then, by

Central Limit theorem [268], γn → P(N(0,1) ≤ K), where N(0,1) is the standard normal

distribution and K = limn→∞
(n−1)−nρn√

nρn
as n(1-ρn)→ β.

Since (n−1)−nρn√
nρn

= n(1−ρn)−1
n1/2√ρn , it is easy to see that K=0 as n(1-ρn) → β and n → ∞.

Accordingly, the result γn→ 1/2 immediately follows as γn→ P( N(0,1) ≤ 0 ) = 1/2.

Lemma 2: Let ξn = (nρn)n

n![1−ρn]e
−nρn . Then ξn→∞ as n→∞ and n(1-ρn)→ β > 0.

Proof (Lemma 2): Let’s apply Stirling’s formula [269] to ξn in order to approximate

the factorial n! term by (2πn)1/2nne−n. Then, we obtain ξn ∼ (nρn)n

(2nπ)1/2nne−n[1−ρn]e
−nρn =

n1/2en(1−ρn)
√
2πn[1−ρn]

(ρn)n. Since ρn = 1-(1-ρn) = 1 - n(1−ρn)
n

, we get ξn ∼
√
n√
2π

en(1−ρn)

n[1−ρn] [1 - n(1−ρn)
n

]n.

As n → ∞ and n(1-ρn) → β > 0, the components
√
n√
2π
→ ∞, en(1−ρn)

n[1−ρn] →
eβ

β
, and [1 -

n(1−ρn)
n

]n→ 1. Accordingly, ξn→∞.

Lemma 3: Let γn and ξn be as defined in Lemma 1 and Lemma 2. Then, the terms γn/ξn

→ 0 and 1
1+γn/ξn

→ 1 as n→∞ and n(1-ρn)→ β > 0.
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Proof (Lemma 3): Lemma 3 directly follows from Lemma 1 and Lemma 2: Since γn

→ 1/2, by Lemma 1, and ξn→∞, by Lemma 2, as n→∞ and n(1-ρn)→ β > 0, the terms

γn/ξn→ 0 and 1
1+γn/ξn

→ 1.

Theorem 1: Consider a sequence of M/M/s queues, indexed by n, each of which has

arrival rate λn, service rate µn = µ ∈ (0,∞), and sn servers. Let the traffic intensity

ρn = λn
µsn

< 1. Consider probability target 0 < α < 1 and delay threshold T > 0. If

lim
n→∞

sn(1− ρn) = β as λn, sn →∞, where β =
ln(1/α)

µT
> 0, (B.4)

(i) The probability of delay and the server utilization converge to 1:

P (Wn > 0)→ 1 and ρn→ 1 as λn, sn→∞.

(ii) The tail probability of delay and the expected waiting time converge to non-degenerate

limits:

P (Wn > T )→ α and E[Wn]→ w∗ ≡ T
ln(1/α)

as λn, sn→∞.

Proof (Theorem 1): The proofs of Theorem 1 (i) and (ii) are as follows:

(i) Let the condition B.4 holds. Further, let An =
sn−1∑
k=0

(snρn)k

k!
, Bn = (snρn)sn

sn![1−ρn] , γsn =

An*e−snρn and ξsn= Bn*e−snρn . Then by B.1, P(Wn > 0) = 1
1+An/Bn

= 1
1+γsn/ξsn

, when

ρn < 1. By Lemma 3, P(Wn > 0) = 1
1+γsn/ξsn

→ 1 as λn,sn→∞ in a way that sn(1-ρn)→

β. Further, since β
sn
→ 0 as sn → ∞ for β > 0, the server utilization ρn → (1− β

sn
) → 1

when the condition B.4 holds.

(ii) Under B.4, P(Wn > T |Wn > 0)→ e−βµT = α and E[Wn|Wn > 0]→ 1
βµ

= T
ln(1/α)

by

B.2, B.3, and the choice of β = ln(1/α)
µT

. As P (Wn > 0) → 1 when λn, sn → ∞, as shown

in Proof (Theorem 1) (i), the results P (Wn > T )→ α and E[Wn]→ T
ln(1/α)

immediately

follow from the definitions of conditional probability and conditional expectation.
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B.3 Numerical Results: TPoD Graphs

As described in the manuscript (Section 2.5 Numerical Experiments), we conduct sim-

ulation experiments to assess the performance of ED-NoAb staffing under time-varying

demand. Each simulation experiment corresponds to a scenario with fixed parameters.

For each experiment, we run N independent replications and at each replication, we send

virtual patients to the queue(s) of interest at fixed times t1, t2, ... to collect statistics. Ac-

cordingly, in total, there are N virtual patients that are (generated and) dispatched to the

queues of interest at the fixed time point ti, where i ∈ {1,2,...,}. Then, for each ti, the frac-

tion of patients waiting more than delay threshold T is given by N(ti)
N

, where N(ti) is the

total number of virtual patients with arrival time ti and waiting time over T . The result of

each experiment is summarized by (what we call) a “TPoD graph”, depicting the fractions

of patients waiting more than threshold T (y-axis) over time (x-axis),and demonstrating

whether the tolerance α is violated. If the TPoD targets are attained with ED-NoAb, the

same experiment is run with the reduced staffing levels 0.90 ∗ ED-NoAb.
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Figure B.1: TPoD Graphs for Two-Class Three-Stage Case with ESI 3 - ESI 4 Arrivals
and Static Routing Rules

Figure B.2: TPoD Graphs for Three-Class Three-Stage Case with Hybrid Routing Rules -
Reduced Staffing = 0.90(ED-NoAb)
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Figure B.3: TPoD Graphs for Three-Class Three-Stage Case with Dynamic Routing Rules

Figure B.4: TPoD Graphs for Three-Class Three-Stage Case with Static Routing Rules
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Figure B.5: Mt/G/st Queue Experiments with Mean Service Time = 0.25 Hour
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Figure B.6: Mt/G/st Queue Experiments with Mean Service Time = 0.50 Hour
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Figure B.7: Mt/G/st Queue Experiments with Mean Service Time = 0.75 Hour
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Figure B.8: Mt/G/st Queue Experiments with Mean Service Time = 1.00 Hour
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APPENDIX C

APPENDIX FOR CHAPTER 3

C.1 Assessing the Effectiveness of Treatment Sequences for Follicular Lymphoma

Patients with a Multi-state Model

Table C.1: Patient Characteristics for First-Line Treatments
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Table C.2: Multivariable Analyses via Cox PH Regression Models
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Table C.3: State Occupation Probabilities over Time for First Line Treatments

Table C.4: The List of R-Other Therapies in the SEER-Medicare Dataset
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Figure C.1: Graph of Occupation Probabilities over Time for Second-Line Treatments

Figure C.2: Graph of Occupation Probabilities over Time for Third-Line Treatments
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C.2 A Population-Based Multi-state Model for Diffuse Large B Cell Lymphoma-

Specific Mortality in Older Patients

Figure C.3: Survival and Cause-Specific Death Probabilities for Initial Treatments
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Figure C.4: CONSORT Flow Diagram Reporting the Number of Patients
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