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SUMMARY

This dissertation analyzes the capability of multiple-input, multiple-output (MIMO)

radar techniques to improve the image quality and area-coverage rate of synthetic aperture

imaging systems. A signal processing architecture for MIMO radar is used to understand

the applicability of MIMO for synthetic aperture radar (SAR) and synthetic aperture sonar

(SAS) systems. MIMO SAR/SAS is shown to be a natural extension of standard multi-

channel synthetic aperture imaging techniques to exploit transmit degrees of freedom in

addition to those used on receive. Degradation in range sidelobe performance and the as-

sociated impact on image quality is identified as a key impediment to MIMO SAR/SAS.

A novel mismatched filtering approach is presented to mitigate this issue. New results in

sampling theory are derived that allow the aliasing that occurs when a wide-sense station-

ary random process is non-uniformly sampled to be quantified. These results are applied to

the case of recurrent sampling and used to quantify the impact of azimuth ambiguities on

MIMO SAR/SAS image contrast.
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CHAPTER 1

INTRODUCTION

Radar systems have been actively developed since the 1930s with early systems focusing

on the detection of aircraft using a ground-based system. In the 1950s, the concept of syn-

thetic aperture radar (SAR) was demonstrated, which used an airborne radar to form high-

resolution imagery of the surface of the earth. Today, spaceborne systems like TerraSAR-X

provide images of the earth’s surface to allow scientists to understand how the planet is con-

tinuously reshaped by natural and anthropogenic forces. SAR has even been used to image

other planets; in the early 1990s, the Magellan spacecraft mapped the surface of Venus

using a radar that was able to penetrate its optically-opaque atmosphere of sulfuric acid.

While a more recent development than SAR, synthetic aperture sonar (SAS) systems are

now used to map the seafloor.

A more recent development in radar research is the concept of multiple-input, multiple-

output (MIMO) radar. The novelty of this idea is to employ multiple radiating elements

on transmit that each emit an independent waveform. While traditional SAR and SAS sys-

tems may use multiple elements on receive, a MIMO SAR/SAS would also simultaneously

transmit multiple independent waveforms. The goals of this dissertation are to create a gen-

eral theory of MIMO radar and to apply it to analyze the capability of MIMO techniques

to improve the performance of synthetic aperture imaging systems.

1.1 Organization and Summary of Contributions

The remainder of this chapter reviews some fundamental ideas of MIMO radar. In Chap-

ter 2, an approach to understanding MIMO radar is presented. This is applied to the case of

synthetic aperture imaging in Chapter 3. It will be shown that MIMO radar techniques can

improve the area-coverage rate and/or image quality for a SAR/SAS system by improving
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along-track sampling. This requires that multiple waveforms be simultaneously transmit-

ted, which will lead to cross-correlation energy that degrades image contrast. A technique

for combating this using mismatched filter theory is developed in Chapter 4.

MIMO SAR/SAS is a natural extension of multichannel systems that employ multiple

elements on receive to also use multiple elements on transmit. The motivation for multi-

channel synthetic aperture imaging is to improve along-track sampling, but using multiple

channels may lead to nonuniform sampling. Chapter 5 introduces the concept of recurrent

sampling, which is a particular nonuniform sampling structure that can occur in multi-

channel SAR/SAS. A method for computing the impact of aliasing when sampling a wide-

sense stationary random process is developed, which is applied to a number of interesting

SAR/SAS cases in Chapter 6.

This dissertation documents a number of original contributions:

• A theoretical framework for coherent MIMO radar is developed in Chapter 2, which

unifies a number of concepts that have appeared in the MIMO radar literature by

extending standard concepts in radar array signal processing [Davis et al., 2014].

• The application of MIMO radar techniques to synthetic aperture imaging is detailed

in Chapter 3. While this has been advocated in the literature by other authors, this

chapter presents the benefits (and costs) of MIMO in SAR/SAS in terms of standard

SAR performance metrics by extending the concept of multiplicative noise to the

MIMO case [Davis and Cook, 2011; Davis et al., 2011].

• A new method for controlling the range sidelobes in MIMO radar is presented in

Chapter 4. The technique is developed by extending the concept of mismatched

filtering to the case of multiple waveforms [Davis and Lanterman, 2015b].

• Contributions to sampling theory are presented in Chapter 5. These include a rigor-

ous method for computing the impact of aliasing in the case of sampling a wide-sense
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stationary random process as well as an application to a particular case of nonuniform

sampling called recurrent sampling [Davis and Lanterman, 2015a].

• New results in SAR/SAS performance analysis involving the ambiguity-to-signal ra-

tio (ASR) are documented in Chapter 6. This work builds on standard results for

ASR in single-channel stripmap SAR/SAS by first using the techniques of Chapter 5

to solidify their theoretical foundation [Davis and Cook, 2014]. Results are then

developed for spotlight mode as well as multichannel systems.

1.2 Coherent and Noncoherent MIMO Radar Systems

Since the turn of the century, a great deal of research has investigated the utility of ap-

plying MIMO techniques to enhance the performance of radar systems. Although MIMO

has been demonstrated to dramatically improve the capacity of communications systems in

multipath-rich environments [Foschini and Gans, 1998], and MIMO technology has been

included in multiple communications standards, the adoption of MIMO in operational radar

systems has been limited. As will be discussed, this may be attributed to radar systems us-

ing waveforms and antennas to interact with their environments in a dramatically different

way than communications systems. Still, some specific radar applications have been iden-

tified where a MIMO radar may outperform a more traditional system.

An active radar system emits electromagnetic energy to probe its environment. A

MIMO radar transmits independent waveforms from a number of spatially separated ra-

diating elements and observes the returns from a set of spatially diverse receive elements.

The environment is considered as a system where the inputs are the transmitted waveforms,

and the outputs are the echos observed by the receivers. This is, in general, a MIMO sys-

tem. There has been a long history of exploiting multiple degrees of freedom on receive

[Southworth, 1930]; the novelty of MIMO is to exploit similar degrees of freedom on trans-

mit.
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Of course, the idea of using multiple radiating elements on transmit is not new [Sil-

ver, 1949]. Phased array antennas have been an enabling technology for many systems

in support of a variety of radar missions. Rather than construct a prohibitively large an-

tenna to support long range detection of small targets, many small antennas are employed,

each of which transmits an identical signal (up to a phase shift). This phase progression

is chosen to steer a high-gain beam in a particular direction. This beam may be rapidly

resteered through electronic scanning, which enables multiple target tracking performance

that would be impossible for a mechanically scanned antenna.

Although a phased array uses multiple elements on transmit, the transmitted waveforms

are perfectly correlated and therefore provide no additional degrees of freedom. In con-

trast to the general MIMO radar, phased arrays operate as a single-input, multiple-output

(SIMO) system. Phased array radars typically provide receive degrees of freedom by dig-

itizing multiple, spatially-diverse receive channels, hence they are multiple-output. The

special case of a radar with a single transmit waveform and a single receive channel is

referred to as a single-input, single-output (SISO) radar system.

The idea of transmitting multiple, uncorrelated waveforms has been explored over the

years. For example, in [Messer et al., 1996], it was observed that a radar system transmit-

ting two orthogonal waveforms and using a single receiver provides bearing estimates that

are equivalent to a traditional radar transmitting a single waveform and using two receivers.

(An analogous result in the communications literature [Alamouti, 1998] demonstrated that

the diversity order of the same two configurations is equivalent if the transmitted waveform

is an orthogonal space-time block code.) An experimental radar that transmitted “orthogo-

nal” waveforms was described in [Dorey and Garnier, 1989].

It was not until the benefits of MIMO for communications were clear that the idea of

transmitting uncorrelated waveforms in radar received consistent attention. Using the lan-

guage of MIMO communications, researchers have described two broad classes of MIMO

radars: those with widely-separated antennas that, as in the communications application,
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seek to exploit spatial diversity to mitigate target fading [Fishler et al., 2006] as opposed

to those with closely spaced antennas that permit coherent processing [Bliss and Forsythe,

2003; Li and Stoica, 2007].

The class of MIMO radars that use widely-separated antennas is often referred to as

“statistical MIMO radar” because such systems seek to exploit the random fluctuation of

target reflectivity as a function of aspect angle. This fluctuation causes spatial decorrelation

of the target returns, which precludes coherent processing. As a result, statistical MIMO

is often referred to as non-coherent MIMO, while the term coherent MIMO is restricted

to systems where the antennas are sufficiently close (perhaps on the same platform) to

limit target decorrelation. The following discussion is limited to the latter case of coherent

MIMO radar. The case of non-coherent MIMO with widely-separated antennas has been

discussed extensively in the radar community in the context of multistatic radar systems

[Chernyak, 1998]. Just as coherent MIMO may be considered a natural extension of the

phased array, statistical MIMO generalizes the concept of bistatic radar [Willis, 2005].
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CHAPTER 2

MIMO RADAR SIGNAL PROCESSING

2.1 Overview

This chapter seeks to establish a framework for understanding the performance benefits

and potential drawbacks of MIMO radar systems. MIMO radar is realized by transmitting

independent waveforms, but in many ways the waveforms are simply a means to an end.

The view presented is that MIMO radar is essentially an antenna technology because it

is a generalization of the phased array architecture that has been used in radar and other

systems for decades. With this philosophical approach, a remarkable number of concepts

described in the MIMO radar literature can be illuminated.

A methodology will be established for evaluating the potential of a suite of waveforms

to enable a MIMO radar to effectively perform its mission. This provides the capability of

determining if MIMO techniques are appropriate for a given radar system. A tremendous

variety of radars are operational. MIMO can dramatically improve the performance of

some, but others will benefit from traditional phased array configurations. Further, this

framework can inform the design of waveforms, which are critical to the realization of a

MIMO radar system.

The first task is to characterize the gain of the antenna employed by a MIMO radar

by determining the MIMO radar beampattern. A similar approach is taken in [Bekkerman

and Tabrikian, 2006], though the present derivation explicitly deals with the possibility of

spatially colored interference and proposes an alternative formulation for dealing with cor-

related transmit signals. The present approach also explicitly identifies a signal processing

architecture and spatial weights that can be applied to form beams in desired directions.

A key result described in the MIMO radar literature is that the transmit beampattern is

characterized by the correlation between the transmitted signals [Fuhrmann and San An-

tonio, 2008]. This correlation impacts the MIMO radar ambiguity function, which was
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presented in [San Antonio et al., 2007]. Indeed, the correlation properties of the wave-

forms transmitted by a MIMO radar determine the characteristics of the system. These

characteristics are captured by considering the quantities presented in this chapter.

This chapter is organized as follows. Although radar and communications systems are

based on similar physical phenomena and are described by similar mathematics, there are

fundamental differences, particularly the role of the antenna subsystem. A discussion of

this is presented in Section 2.2. The utility of MIMO radar is motivated by the concept

of the virtual array in Section 2.3. This is followed by a derivation of a MIMO radar sig-

nal processing chain, described in Section 2.4. These observations are used in Section 2.5

to compare the traditional phased array to a MIMO radar that is transmitting orthogonal

waveforms. In Section 2.6, some quasi-orthogonal waveforms are described and their per-

formance is examined.

2.2 MIMO Systems: Radar and Communications

In both radar and communications systems, electromagnetic energy is radiated. This sig-

nal interacts with the environment, and the resulting electromagnetic field is observed by a

receiver. The goal of a communications system is to estimate the parameters of the input

signal, e.g., the sequence of message symbols used to generate it in spite of any environ-

mental effects. In radar, the goal is to infer some property of the environment based on

knowledge of the transmitted waveform.

In either case, an input signal is applied to some system, and the response of this system

to this input is observed. Radar and communications systems are typically modeled as

linear. First, consider a single-input, single-output (SISO) system. Let x (t) be the complex-

baseband representation of the input signal that is transmitted on a carrier frequency, ωc.

If the system is linear, the output of the system, y (t), may be written in terms of the input

signal and the system impulse response, h (t), as

y (t) =

∫ ∞

0
h (τ) e−iωcτx (t − τ) dτ + v (t) , (2.1)
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where v (t) represents receiver noise.

In communications, the system impulse response, h (t), describes the channel between

the transmitter and receiver, which may involve a direct path contribution and/or multipath.

For a monostatic radar system, where the transmitter and receiver are colocated, the relevant

impulse response describes the scatterers in the environment and may be called the range

profile.

For both communications and monostatic radar cases, the impulse response at a par-

ticular lag, τ, may be formed from returns from a number of scatterers. The returns from

these scatterers all arrive after the same delay, but they may correspond to different angles-

of-arrival, θ. In this case, the impulse response may be written in terms of the angle/delay

reflectivity profile, α (τ, θ), as

h (τ) =

∫ π

−π

α (τ, θ) dθ. (2.2)

In many radar applications, the goal is to estimate this angle/delay (or, equivalently, an-

gle/range profile). However, in communications, the only relevant parameter is the ag-

gregate channel response, h (t). The fundamental difference between the communications

problem and the radar problem is the role of the channel impulse response: in communica-

tions it is a nuisance factor that must be estimated to establish a link, but in radar, estimating

the “channel response” and, further, the underlying reflectivity profile, α (τ, θ), is essential.

In the MIMO case, a set of input signals, x (t) ∈ ICM, is used, and a set of output signals,

y (t) ∈ ICN , are observed where M is the number of transmitted signals, and N is the number

of received signals. The model in (2.1) can be extended to the MIMO case,

y (t) =

∫ ∞

0
H (τ) e−iωcτx (t − τ) dτ + v (t) , (2.3)

where H (t) is the N × M MIMO channel matrix that describes the impulse response of the

MN channels of the MIMO system.

If the multipath environment described by the channel matrix, H (t), is suitably rich
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and sufficient information about the channel is available, then tremendous gains in the ca-

pacity of the communications channel are provided by MIMO. These MN channels may be

exploited by sending redundant information over independent channels via space-time cod-

ing. Alternatively, if channel state information is available to the transmitter, diversity may

be exploited through precoding, which is analogous to beamforming on transmit [Biglieri

et al., 2007].

In either approach to MIMO communications, some level of diversity is provided by

having access to the MN channels. Indeed, capacity gains are limited if the MIMO channel

matrix is not well conditioned [Bliss et al., 2002]. In a sense, by using multiple channels on

transmit, a MIMO communications system can exploit available spatial diversity. In many

cases, two communications antennas placed on the order of a wavelength apart can observe

completely independent channel realizations. Now, consider the case of a coherent MIMO

radar and a single target. By definition, the antenna elements are spaced so closely that

they observe the same target reflectivity and the only difference will be a phase shift that is

related to the target angle.

Statistical MIMO radar, in which the elements are separated widely enough to pro-

vide independent realizations of target fading, is based on the same observation as MIMO

communications. However, the connection between coherent MIMO radar techniques and

MIMO communications is more elusive. Transmit precoding approaches to MIMO com-

munications may seem related to coherent MIMO radar, but they are more closely related

to the traditional phased array approach. Just as the transmit precoder of a MIMO commu-

nications system uses its knowledge of the multipath environment to maximize the signal-

to-noise ratio (SNR) at the receiver, the phased array forms a beam to maximize SNR for

a particular target location [Li and Stoica, 2010]. The approach of a coherent MIMO radar

is to optimize other properties of the radar antenna at the cost of SNR.

While it would seem natural that MIMO radar and MIMO communications possess a

great deal of similarity, the parallels in the context of coherent MIMO radar are limited. A
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coherent MIMO radar is not seeking to exploit spatial diversity to ensure that at least one

of the “links” is available. Instead, just like the phased array, the goal is to use coherent

processing to provide a more capable antenna for the radar system. The following analysis

of MIMO radar signal processing will demonstrate how this is accomplished and provide a

method to assess its performance.

2.3 The MIMO Virtual Array

The advantage of a MIMO radar transmitting orthogonal waveforms over a traditional

phased array is often explained by considering the virtual array [Li et al., 2008]. If an

array of M elements is used on transmit and an array of N elements is used on receive,

the corresponding virtual array of the system consists of MN virtual elements if the M

waveforms are perfectly orthogonal. The additional degrees of freedom provided by trans-

mitting orthogonal waveforms can potentially improve the performance of a radar system

[Bliss and Forsythe, 2003]. The MIMO virtual array, which consists of these MN virtual

phase centers is introduced. Following this, the MIMO virtual array is compared to the

coarray [Hoctor and Kassam, 1990].

2.3.1 Monostatic-Bistatic Equivalence and the MIMO Virtual Array

Suppose that a single element is used to transmit a waveform, and the returns are observed

by a single receive element. This system may be considered as a pseudo-bistatic pair, which

allows the monostatic-bistatic equivalence theorem to be applied: the signal observed by

the bistatic pair is well-approximated by the signal observed in the monostatic case where

the transmit and receive elements are located directly between the bistatic elements [Kell,

1965]. As the bistatic angle increases, variation in radar cross section (RCS) between the

bistatic pair and the monostatic equivalent will become apparent, but this effect is negligible

in the coherent MIMO case where the elements are assumed to be closely spaced. Note that

the term “pseudo-bistatic” is used for the case of coherent MIMO, where the bistatic angle

is assumed to be small, while the term “bistatic” is reserved for when the transmitter and
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receiver are separated by great distances, and the bistatic angle is large [Willis, 2005].

Consider a one-dimensional array where the location of each element is described by an

offset, x, from some arbitrary phase center. If xT is the location of a transmit element, and xR

is the location of a receive element, then the monostatic-equivalent phase center is located

between the two at (xT + xR) /2. The MIMO virtual array is the set of monostatic-equivalent

phase centers generated by considering each transmit element and each receive element as

a pseudo-bistatic pair. If the locations of the M transmit elements are xT/1, . . . , xT/M and

the locations of the N receive elements are xR/1, . . . , xR/N , then the corresponding MIMO

virtual array is { xT/m + xR/n

2
: m = 1, . . . ,M; n = 1, . . . ,N

}
. (2.4)

Note that each transmit element must employ an orthogonal waveform to contribute to the

MIMO virtual array.

A comparison of the virtual arrays corresponding to the phased array and to two con-

figurations using orthogonal waveforms is presented in Figure 2.1. In the phased array

case, where the waveforms are perfectly correlated from element to element, only data cor-

responding to a single transmit phase center can be processed, providing only N virtual

phase centers. This is illustrated in Figure 2.1(a). If orthogonal waveforms are transmitted,

then each of the MN virtual phase centers may be processed independently, which results

in the virtual array shown in Figure 2.1(b). Observe that the MN virtual phase centers

are not all distinct. In Figure 2.1(c), a large, contiguous array of virtual phase centers is

provided by separating the transmit elements.

By transmitting orthogonal waveforms, additional virtual phase centers are available as

shown in Figure 2.1. This suggests two possible applications of MIMO radar. First, by

simultaneously transmitting M orthogonal waveforms from different spatial locations, the

spatial sampling rate can be improved by a factor of M compared to the phased array. This

is useful in dealing with along-track sampling challenges in synthetic aperture imaging.

Another advantage is the potential improvement in angular resolution that accompanies an
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Figure 2.1: Examples of monostatic-bistatic equivalent virtual arrays.

increase in the size of the virtual array. The discussion of MIMO synthetic aperture imaging

will be deferred until Chapter 3, but the following discusses the relationship between the

MIMO virtual array and angular resolution. The related concept of the MIMO coarray is

also introduced.

2.3.2 The Angular Point-Spread Function and The MIMO Coarray

The MIMO virtual array is an extension of the coarray concept for coherent imaging de-

scribed in [Hoctor and Kassam, 1990], which considers an active, coherent imaging system

that scans a transmit and receive beam simultaneously to estimate a reflectivity profile over

a number of transmit-receive events. A phased array-like system was assumed to transmit a

narrow beam in a particular direction, and linear beamforming was used on receive to steer
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a narrow, digital beam in the same direction. This process was repeated for each direction

of interest to form an estimate of the reflectivity profile.

By changing the weighting applied on transmit to steer the phased-array beam from

dwell to dwell, angular resolution is provided on both transmit and receive. However, for

a single phased-array dwell where the transmit beam is stationary, angular resolution is

only provided by the receive array. Alternatively, if each element transmits an orthogonal

waveform, then the transmit beam can be effectively resteered digitally as described in the

next section. The consequence of this is that the standard coarray of [Hoctor and Kassam,

1990] can be applied to the MIMO case, but it corresponds to a single dwell with orthogonal

waveforms. The result that the angular point-spread function is the Fourier transform of the

coarray can also be applied. This is reviewed in the remainder of this section.

Before proceeding, a distinction between the beampattern of an aperture and the angular

point-spread function of an array is made. The beampattern of a transmit aperture describes

the power that is radiated in each direction. Similarly, the beampattern of a receive aperture

describes the power that is received from a source as a function of angle of arrival. With

a single aperture, it is difficult to determine the angle of arrival because it is impossible to

distinguish between a strong source located at the peak of the beam and a weak source in the

sidelobes. However, if an array of receive elements is available, the beam can be digitally

resteered. If a single source is present, the result is the angular point-spread function, which

provides a measure of the angular resolution capability of the receive array.

A well-known result of antenna theory is that the aperture illumination function and the

antenna beampattern are Fourier duals of one another [Johnson and Dudgeon, 1993]. The

two-way beampattern of a radar system is the product of the transmit beampattern and the

receive beampattern. Because of the duality between aperture and beampattern and because

multiplication in one domain is equivalent to convolution in the other domain, the two-way

beampattern is related to the convolution of the transmit and receive apertures by Fourier

transform. The convolution of the transmit and receive apertures can be thought of as a
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“coaperture” that combines the contribution of the transmit aperture and receive aperture

to the two-way beampattern. For example, if the same uniformly-illuminated, rectangular

aperture is used on transmit and receive, then the two-way beampattern has a sinc-squared

shape because the coaperture is the convolution of a rectangular function with itself, which

is a triangular function, and the Fourier transform of a triangular function is a sinc-squared

function.

An array of elements can be used on receive to determine a signal’s angle of arrival.

This array may consist of elements that have some spatial extent, e.g., reflector antennas or

subarrays of a phased-array antenna. However, the beampattern provided by the elements

does not affect the inherent angular resolution capability of the array. If the element patterns

have low sidelobes, they may mitigate contributions of targets from angles of interest, but

strong signals may overcome this attenuation. As a result, the angular point-spread function

of an array does not depend on the beampattern of its constituent elements. However, if an

array of perfectly omnidirectional elements is employed, then the beampattern and point-

spread function coincide.

The two-way beampattern is the Fourier transform of the coaperture. Similarly, the two-

way point-spread function is the Fourier transform of the coarray, which is the convolution

of the transmit and receive array-weighting functions. For example, if
{
xT/m

}
is the set of

locations of the elements in the transmit array, then the array function for the unweighted

transmit array is

gT (x) ,
M∑

m=1

δ
(
x − xT/m

)
. (2.5)

Similarly, the array-weighting function for the unweighted receive array is

gR (x) ,
N∑

n=1

δ
(
x − xR/n

)
, (2.6)

where
{
xR/n

}
is the set of element locations for the receive array. If the array elements are

uniformly spaced, then the Fourier transform of the array function is the familiar Dirichlet

14



kernel of Fourier analysis, which is also called the “aliased” or “periodic” sinc function:

DK (x) ,
K∑

k=−K

eikx =
sin ((2K + 1) x/2)

sin (x/2)
, (2.7)

where the number of elements is assumed to be of the form 2K + 1 for an integer, K.

The MIMO coarray is obtained by convolving the transmit and receive array-weighting

functions, which yields

g (x) =

(
gT ∗ gR

)
(x) =

M∑
m=1

N∑
n=1

δ
(
x −

(
xT/m + xR/n

))
. (2.8)

The MIMO coarray is seen to consist of elements located at

{
xT/m + xR/n : m = 1, . . . ,M; n = 1, . . . ,N

}
. (2.9)

Compare the virtual array of (2.4) with the coarray defined in (2.9). Observe that they

are equivalent up to a scaling by a factor of two. The elements of the virtual array describe

an equivalent set of independent, monostatic systems that could collect the equivalent data

of the MIMO system. For the single-transmitter/phased-array case, the virtual array is half

the length of the physical receive array because of the two-way effects. On the other hand,

the coarray is the Fourier dual of the angular point-spread function.

The MIMO coarray can be used to predict the performance of the arrays in Figure 2.1.

Recall that the figures present virtual arrays, but the corresponding MIMO coarrays are

simply scaled versions of these. The array of Figure 2.1(b) that uses orthogonal waveforms

is both longer than the phased array case in Figure 2.1(a), but it also provides a triangular

taper to the coarray. In addition to providing improved angular resolution with the larger

coarray, the taper provides lower angular sidelobes. In the case of the large contiguous

coarray of Figure 2.1(c) where the elements are distinct, by using M transmit elements

with orthogonal waveforms, the length of the coarray increases by a factor of M relative to

the phased array, which predicts an commensurate improvement in angular resolution.
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2.4 A MIMO Radar Signal Processing Architecture

The MIMO virtual array and the coarray are useful for comparing the expected perfor-

mance of a phased array that transmits perfectly correlated waveforms and an array that

transmits orthogonal waveforms. However, it does not provide a signal processing archi-

tecture to achieve this nor does it handle intermediate cases where the waveforms have

some correlation but are not perfectly correlated. In this section, such an architecture is

developed, which is used to quantify performance of a MIMO radar that employs an arbi-

trary suite of waveforms. A signal model and beamforming approach will be developed.

This is followed by an extension of standard antenna metrics to the MIMO case, which

will elucidate the relation between SNR, resolution, and beampattern for a specified set of

waveforms.

2.4.1 MIMO Radar Signal Model

Consider a MIMO radar that transmits M (generally) independent waveforms. Each sig-

nal may be emitted by a separate radiating element such as a reflector antenna or a horn

antenna. Alternatively, an array divided into a number of subarrays (possibly overlapped)

could be used where each subarray acts as an independent radiating element. The only

requirement is that each signal be emitted from a distinct phase center. The signals will

reflect off of scatterers in the environment, and the echos will be observed by N receive

elements. The elements used on receive may or may not be the same as those used on

transmit. The operation of a MIMO radar is illustrated in Figure 2.2.

First, a model is constructed for the data observed by a MIMO radar that is due to a

single point scatterer. This can be extended to more complex scenarios because of linearity.

Without loss of generality, assume that the return is observed with zero delay; equivalently,

consider the output of the radar signal processor in the center of the range bin containing

a target. This assumption will be revisited in Section 2.6, which investigates its impact.

For clarity, it is also assumed that the signal is narrowband relative to the size of the array.

Consequently, the data observed by each array element will be identical up to a phase shift.
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Figure 2.2: MIMO radar signal model. In this illustration, M = N = 3.

The methodology developed can be naturally extended to the wideband case by averaging

over frequencies within the radar’s operating bandwidth.

Let xm (t) be the waveform emitted by element m of the transmit array. The signal

observed by element n of the receive array from a target at an angle, θ0, with a (complex-

valued) backscatter coefficient, α, may be written as

yn (t; θ0) = αbn (θ0)
M∑

m=1

am (θ0) xm (t) + vn (t) , (2.10)

where am (θ0) and bn (θ0) are the phase shifts on transmit and receive, respectively, which

correspond to the target angle, θ0, and vn (t) is the observation noise. If, for example, the

array used on transmit is a uniform linear array (ULA) with an interelement spacing, d, the

transmit phase shifts corresponding to an angle, θ, would be

am (θ) = exp
{
i
ωc

c
(m − 1) d sin θ

}
(2.11)

for m = 1, . . . ,M, where c is the speed of waveform propagation and ωc is the waveform

center frequency expressed in radians per unit time. Of course, steering vectors may be

specified for arbitrary array configurations,

exp
{
i
ωc

c
(Rm − R1)

}
, (2.12)

where Rm is the range to the target from element m.
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These phase shifts may be arranged into the transmit and receive steering vectors, a (θ)

and b (θ). Note that a ∈ ICM and b ∈ ICN are considered to be column vectors. While (2.10)

is the data observed by a single receiver, steering-vector notation can be used to compactly

write the data observed by the MIMO radar, again corresponding to a single target at angle

θ0, as

y (t; θ0) = αb (θ0) a (θ0)T x (t) + v (t) , (2.13)

where y (t; θ0) ∈ ICN is a column vector in which each element is the signal observed by

one of the N receivers and x (t) ∈ ICM contains the signals transmitted by each of the M

transmitters. The noise observed by each receiver is represented by v (t) ∈ ICN . Note that

each element of the vector defined by (2.13) is equivalent to (2.10) for n = 1, . . . ,N.

The signal model in (2.13) suggests the definition of the MIMO channel matrix given

by

H (θ) , b (θ) a (θ)T . (2.14)

This provides the interpretation that the data observed by a MIMO radar is a linear com-

bination of the transmitted signals. This linear combination is described by the MIMO

channel matrix, H (θ), which depends explicitly on the angle, θ.

A MIMO radar may apply matched filters to resolve targets in range. This is motivated

by the assumption that the waveforms are perfectly orthogonal as well as the historical

ubiquity of the matched filter in radar signal processing [Turin, 1960; North, 1963]. In

the case of orthogonal waveforms, each matched filter will select exactly one signal and

reject the rest. Filters for each of the M transmitted signals are applied to each of the N

receive signals. A block diagram of this operation is shown in Figure 2.3. In practice,

receive beams may be formed first rather than applying the matched filters separately to

each receive channel, but this is mathematically equivalent to the diagram.

The result of matched filter processing, when applied to data with a target at angle θ0 at
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Figure 2.3: Notional MIMO radar signal processor.

the target range, is the N × M matrix given by

Z (θ0) ,
∫ ∞

−∞

y (t; θ0) x (t)H dt

= αH (θ0) Rx + E,
(2.15)

where E ,
∫

v (t) x (t)H dt is the filtered noise, and Rx is the M × M MIMO signal correla-

tion matrix, which describes the correlation among the transmitted waveforms. This matrix

is given by

Rx ,

∫ ∞

−∞

x (t) x (t)H dt. (2.16)

The integral of the matrix is understood to be computed element-wise. Each element of this

matrix is recognized as the inner product of two of the transmitted signals. Each element

of the matrix in (2.16) is the zero-lag term of the cross-correlation function of two of the

transmitted signals. The diagonal elements correspond to the autocorrelation functions of

the waveforms.
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The N × M data matrix, Z (θ0), given in (2.15) may be vectorized by stacking its

columns. By exploiting properties of the Kronecker product operator, ⊗, this may be writ-

ten as

z (θ0) , Vec {Z (θ0)} = αs (θ0) + e, (2.17)

where the MIMO steering vector, s (θ), which corresponds to an angle, θ, is given by

s (θ) ,
(
RT

x ⊗ IN

)
Vec {H (θ)} , (2.18)

and e , Vec {E} is the vectorized noise matrix.

The MIMO steering vector in (2.18) may also be written in terms of the transmit and

receive steering vectors,

s (θ) = RT
x a (θ) ⊗ b (θ) . (2.19)

The elements of the noise vector, e, will generally be correlated as a result of the

matched filtering process. Correlation will be introduced if the transmitted signals are not

orthogonal. If the original noise vector, v (t), in (2.13) is temporally white and wide-sense

stationary but has spatial covariance matrix Rv, then the interference covariance matrix of

the data in (2.17) will be

Re , E
[
eeH

]
= RT

x ⊗ Rv. (2.20)

If the noise vector, v (t), consists only of thermal receiver noise and no external noise

sources are present, then the receiver noise should be spatially white and Rv = IN , where

IN is the N × N identity matrix.

The signal model in (2.17) describes the data observed by a MIMO radar given a target

at an angle, θ0. Each element of the length-MN vector is the voltage observed if the target is

in the center of the range bin of interest after matched filtering is applied. This data vector is

characterized by the MIMO steering vector in (2.19) and the MIMO interference covariance

matrix in (2.20). Note the fundamental importance of the MIMO signal correlation matrix,

Rx, which figures prominently in the observed data. Indeed, this matrix characterizes the

performance of a MIMO radar.

20



2.4.2 MIMO Spatial Beamforming

The goal of a spatial beamformer is to enhance signals from targets at some angle of inter-

est, θ, while rejecting signals from other angles. A brief derivation of these weights was

presented in [Davis and Cook, 2011], and a similar approach was used in [Bekkerman and

Tabrikian, 2006].

The data observed by a MIMO radar that is due to a target at an angle, θ0, was derived

above and presented in (2.17). A linear beamformer will take a linear combination of the

elements of the data vector, z. This linear combination is described by the spatial weight

vector, w, which provides the (complex-valued) weight to be applied to each of the MN

elements of the data vector, z. If these weights are applied to data with a single target at a

given angle, θ0, the output is

wHz (θ0) = αwHs (θ0)︸     ︷︷     ︸
Signal

+ wHe︸︷︷︸
Noise

. (2.21)

Observe that the average power of the output noise when the weights, w, are applied is

PN , E
[∣∣∣wHe

∣∣∣2] = wHRew, (2.22)

where Re is the spatial covariance matrix of the interference after matched filtering, which

was given in (2.20). Similarly, the signal power in the beamformer output is

PS , E
[∣∣∣αwHs (θ0)

∣∣∣2] = σα
2
∣∣∣wHs (θ0)

∣∣∣2 , (2.23)

where σα
2 , E

[
|α|2

]
.

To design a linear beamformer that preserves signals from targets at a particular angle,

θ, the goal is to choose the weight vector, w (θ), that preserves signals corresponding to the

steering vector, s (θ), while minimizing the contribution of noise to the beamformer output.

The optimal spatial weights minimize the noise power, given in (2.22), yet preserve signals

from the desired direction, θ. This leads to the constrained optimization problem

w (θ) = arg min
w∈ICMN

{
wHRew : wHs (θ) = 1

}
. (2.24)
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This optimization problem occurs frequently in beamforming applications. This should

not be confused with the minimum variance distortionless response (MVDR) beamformer,

which would replace Re in (2.24) with Rz.

The optimal weights also maximize the output signal-to-noise ratio (SNR) [Applebaum,

1976]. It is well-known that the optimal weights, w (θ), satisfy the Weiner-Hopf equations

(see, e.g., [Johnson, 1982]),

Rew (θ) = γs (θ) , (2.25)

for some arbitrary scalar, γ , 0.

The weights will be unique if (and only if) the matrix, Re, is invertible. When this is the

case, the optimal weights are given by R−1
e s (θ0). However, for the interference covariance

matrix, Re, to be invertible, Rv and Rx must be invertible. The spatial noise covariance

matrix, Rv, will generally be invertible because of the inevitable presence of thermal noise

in the receiver, but an example of a non-invertible signal correlation matrix is the phased

array that employs multiple transmit elements that transmit waveforms that are perfectly

correlated.

The system of equations in (2.25) cannot be solved precisely when the vector, s (θ),

does not lie in the column space of the matrix, Re. However, inspecting the structure of the

MIMO steering vector in (2.19), reveals that valid steering vectors satisfy this requirement.

So, a set of optimal weights exist, but they are not unique. The minimum-energy weights

that achieve the maximum SNR are of the same form as those in the case where the in-

terference covariance matrix is invertible. This can be derived via the pseudoinverse. The

optimal weights for a direction, θ, are proportional to

w (θ) = a (θ) ⊗
(
R−1

v b (θ)
)
. (2.26)

The output of the optimal linear beamformer for a direction, θ, to a single target at an

angle, θ0, has an SNR of

PS

PN
= σ2

α


∣∣∣a (θ0)H R∗xa (θ)

∣∣∣2
a (θ)H R∗xa (θ)



∣∣∣b (θ0)H R−1

v b (θ)
∣∣∣2

b (θ)H R−1
v b (θ)

 . (2.27)
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The quadratic forms in (2.27) are recognized as inner products with respect to the matrix

R∗x for transmit and R−1
v for receive. This allows it to be expressed as

PS

PN
=


∣∣∣〈a (θ0) , a (θ)〉R∗x

∣∣∣2
‖a (θ)‖2R∗x



∣∣∣〈b (θ0) ,b (θ)〉R−1

v

∣∣∣2
‖b (θ)‖2R−1

v

 , (2.28)

where 〈x, y〉A denotes the inner product of two vectors, x and y, with respect to a matrix,

A. The SNR gain for a target in a direction, θ0, when beamforming in a direction, θ, is seen

to be related to the “angle” between the steering vectors, i.e., the gain for a target at θ0 is

related to the similarity between its steering vector and the steering vector corresponding

to the beamformed direction, θ.

2.4.3 MIMO Antenna Gain

The array factor describes the pattern of an array antenna if each subarray was omnidi-

rectional. The MIMO array factor in a direction, θ0, for an arbitrary set of beamforming

weights, w, is defined by

f (θ0) ,
wHs (θ0)√

wHRew
. (2.29)

This represents the (voltage) gain on a target at an angle, θ0, relative to the noise as is

evident from (2.21). If the optimal weights to steer the beam in a direction, θ, are employed,

the resulting MIMO array factor is

f (θ0; θ) =

 a (θ0)H R∗xa (θ)√
a (θ)H R∗xa (θ)


 b (θ0)H R−1

v b (θ)√
b (θ)H R−1

v b (θ)

 , (2.30)

where the notation f (θ0; θ) is employed to imply that this is the array factor for a beam-

former steered to a particular angle, θ. Observe that the first quotient in (2.30) is the trans-

mit array factor, while the second quotient is the standard receive array factor. A similar

expression for the array factor is derived in [Bekkerman and Tabrikian, 2006] for the case

of spatially-white receiver noise (Rv = IN) using an alternate but equivalent formulation of

the optimal spatial weights.

The gain in SNR for a target at an angle, θ0, when a beam is steered to a particular angle,

θ, is often of interest. This gain is the magnitude-squared of the array factor and includes
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the subarray gain. If, for a target at an angle, θ0, each transmit subarray has identical gain,

GTX (θ0), and each receive subarray has identical gain, GRX (θ0), the MIMO gain is

G (θ0; θ) =

GTX (θ0)

∣∣∣a (θ0)H R∗xa (θ)
∣∣∣2

a (θ)H R∗xa (θ)


GRX (θ0)

∣∣∣b (θ0)H R−1
v b (θ)

∣∣∣2
b (θ)H R−1

v b (θ)

 . (2.31)

Again, the first quotient is recognized as the transmit gain, while the second quotient is the

receive gain.

This is a fundamental result. As in the traditional case of multiple degrees of freedom

on receive (but not transmit), the response of an adaptive array on receive is characterized

by the spatial covariance matrix of the interference, Rv. In the MIMO case, this extends to

the transmit gain through the MIMO signal correlation matrix, Rx. Indeed, this matrix fully

characterizes the behavior of a MIMO radar. This highlights the fact that, although MIMO

radar is enabled by flexibility in waveform generation, it is inherently an antenna-based

technology.

2.4.4 Antenna Patterns

The performance of an array antenna for use in a radar system is well-quantified by con-

sidering three gain patterns: the steered response, the beampattern, and the (angular) point-

spread function [Johnson and Dudgeon, 1993]. These describe the ability of the data col-

lected by the system to be used to digitally form beams in desired directions with desired

properties in the following ways.

• The steered response, G1 (θ), quantifies the ability of the array to digitally steer a

beam in a direction, θ.

• The beampattern, G2 (θ0; θ), quantifies the ability of an array to reject targets from an

angle, θ0, when the array is steered in a direction, θ.

• The point-spread function (PSF), G3 (θ; θ0), quantifies the angular response of an

array to a target at an angle, θ0, if the array is steered to an angle, θ.
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Table 2.1: Description of antenna patterns. G (θ0; θ) is the gain for a target at an angle, θ0,
when the beam is digitally steered in a particular direction, θ.

Quantity Describes ability to... Definition
Steered Response Digitally resteer antenna G1 (θ) = {G (θ; θ) : θ ∈ Θ}

Beampattern Reject undesired targets G2 (θ0; θ) = {G (θ0; θ) : θ0 ∈ Θ0} for
fixed θ

PSF Resolve targets in angle G3 (θ; θ0) = {G (θ0; θ) : θ ∈ Θ} for
fixed θ0

The distinctions between these patterns are summarized in Table 2.1. Observe that the

beampattern and point-spread function are equivalent if the subarrays are assumed to be

omnidirectional.

These results consider the case where non-omnidirectional elements are used, which

can be assumed to be subarrays of the larger array. The case of a MIMO radar that uses

such elements on transmit has been discussed in the literature, e.g., in [Hassanien and

Vorobyov, 2010], where it is referred to as “Phased-MIMO.” Of course, the idea of using

receive subarrays in phased array radars is a mature concept [Cheston, 1968].

Expressions have been derived for the antenna gain provided by a MIMO radar that

uses a given set of waveforms. This allows three important gain patterns to be calculated.

In the next section, these concepts will be employed to describe the characteristics of a

radar using orthogonal waveforms and to contrast this with the phased array.

2.5 The Phased Array vs. Orthogonal Waveforms

As previously mentioned, the phased array may be considered as a MIMO radar that trans-

mits waveforms that are perfectly correlated. At the other extreme is what springs to mind

when one thinks of a MIMO radar: multiple elements that transmit orthogonal waveforms.
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The MIMO signal correlation matrix was introduced in (2.16). In the following, the corre-

lation matrices for these two extreme cases are presented and the resulting antenna perfor-

mance is described. This will demonstrate the utility (and possible limitations) of transmit-

ting orthogonal waveforms compared to the traditional phased array.

2.5.1 The MIMO Signal Correlation Matrix

In a phased array, each element ideally transmits an identical signal up to a phase shift

that can vary from element to element. Let x0 (t) be the (scalar-valued) radar waveform

that is common to each element. To steer a beam in a direction, θ̃, the appropriate phase

progression is applied if the transmitted signals are

xPA , a∗
(
θ̃
)

x0 (t) , (2.32)

where a∗ denotes the complex-conjugate (without transpose) of a vector, a. The corre-

sponding signal correlation matrix is

Rx/PA =
1
M

[
a∗

(
θ̃0

)] [
a∗

(
θ̃0

)]H
, (2.33)

where the steering vector, a∗, was normalized so that ‖a∗‖ =
√

M and that the waveform,

x0 (t), was normalized to have total energy of∫ ∞

−∞

|x0 (t)|2 dt =
1
M
. (2.34)

Note that the vector [a∗]H in (2.33) is simply the transpose of the steering vector, a, and

could also be written as aT.

In the phased array case, the waveforms transmitted by each element are perfectly cor-

related. Now, consider the case where a set of orthogonal waveforms is used. Suppose that

they are normalized so that

∫ ∞

−∞

xm (t) x∗m′ (t) dt =


1
M , for m = m′

0, for m , m′.
(2.35)
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The MIMO signal correlation matrix corresponding to a set of mutually orthogonal wave-

forms, each with equal energy, is a scaled identity matrix,

Rx/⊥ =
1
M

IM. (2.36)

Note that the signal correlation matrices, Rx/PA and Rx/⊥, have been normalized so that

the trace (the sum of the diagonal elements) of the correlation matrix is unity in both cases,

Tr (Rx) = 1. (2.37)

This is equivalent to requiring that the total transmitted energy be unity. Such a requirement

allows suites of signals with different correlation matrices to be compared fairly.

These two cases, the phased array on one hand and the radar using orthogonal wave-

forms on the other, are the two extremes of the continuum on which a MIMO radar may

operate. This is apparent from examining their MIMO signal correlation matrices: the

phased array correlation matrix, Rx/PA, is rank-1 while the orthogonal waveform correla-

tion matrix, Rx/⊥, is full rank (rank-M).

As seen from the signal model given in (2.15), the rank of the signal correlation matrix

determines how observable the channel matrix, H (θ), is. Of course, in the degenerate case

when no energy is transmitted (Rx = 0), no portion of the channel matrix is observed. The

other extreme is the full-rank case, where a full-rank observation is available. The phased

array case, where the signal correlation matrix is rank-1, provides an observation of a single

subspace of the channel matrix.

A third case will also be of interest, namely the phased array that uses a spoiled beam on

transmit [Kinsey, 1997]. Instead of forming a narrow, high-gain beam, a phased array may

trade some of its transmit beamforming gain in return for illuminating a larger set of angles.

This may be accomplished by applying a nonlinear phase progression or an amplitude taper

across the aperture. An alternate method is to transmit out of a single subarray. The term

“spoiled” indicates that the phased array intentionally degrades coherence on transmit and

accept a loss in peak gain to form a wider beam.
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The MIMO signal correlation matrix, Rx, characterizes the performance of the radar

antenna in terms of its transmit gain for a given set of waveforms, {xm (t)}. A phased

array and a radar using orthogonal waveforms represent the two extremes of MIMO radars.

The phased array has the rank-1 signal correlation matrix, Rx/PA, given in (2.33). The

signal correlation matrix for orthogonal waveforms, Rx/⊥, given in (2.36), is a full-rank

matrix. Using the framework developed above, the MIMO steering vector, interference

covariance, and optimal spatial weights can be determined for each case. These quantities

are summarized in Table 2.2.

Table 2.2: Comparison of a phased array and a radar using orthogonal waveforms.

Quantity Phased Array Orthogonal Waveforms

Signal Correlation, Rx
1
M a∗

(
θ̃0

)
a∗

(
θ̃0

)H 1
M IM

MIMO Steering Vector, s (θ)
(

1
M a

(
θ̃0

)H
a
(
θ̃0

)) (
a
(
θ̃0

)
⊗ b (θ)

)
a (θ0) ⊗ b (θ)

Optimal Weights, w (θ0) a
(
θ̃0

)
⊗ b (θ0) a (θ0) ⊗ b (θ0)

Transmit Gain, GTX (θ; θ0) 1
M

∣∣∣∣a (
θ̃0

)H
a (θ)

∣∣∣∣2 1
M2

∣∣∣a (θ0)H a (θ)
∣∣∣2

Receive Gain, GRX (θ; θ0) 1
N

∣∣∣b (θ0)H b (θ)
∣∣∣2 1

N

∣∣∣b (θ0)H b (θ)
∣∣∣2

Peak Transmit Gain M 1
Peak Receive Gain N N
Resteer Transmit Beam? No Yes
Resteer Receive Beam? Yes Yes

Recall that the phased array seeks to steer its transmit beam in some direction, θ̃. This

results in a transmit gain (neglecting subarray gain) for a target at angle, θ0, of

GTX/PA (θ0) =
1
M

∣∣∣∣a (
θ̃
)H

a (θ0)
∣∣∣∣ . (2.38)

As expected, the phased array antenna does not have the capability of digital transmit beam

steering. Because the waveforms are correlated from transmit subarray to subarray, there

are no transmit degrees of freedom available to the radar.

Compare this to the radar that transmits orthogonal waveforms. The transmit gain for a
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target in some direction, θ0, when the transmit beam is (digitally) steered to an angle, θ, is

GTX/⊥ (θ0; θ) =
1

M2

∣∣∣a (θ)H a (θ0)
∣∣∣ . (2.39)

Note that the transmit beam may be digitally resteered to any angle, θ, with the same set of

received signals.

This notion of digitally resteering the transmit beam may seem nonsensical at first, but it

is accomplished by using the transmit degrees of freedom provided by a radar transmitting

orthogonal waveforms just as a phased array with receive degrees of freedom can digitally

resteer a receive beam. The receive beam is digitally resteered by digitizing a number of

spatially-diverse channels that are linearly combined to synthesize arbitrary receive beams.

Exploiting the orthogonality of the transmit waveforms, a MIMO radar uses matched fil-

ters to isolate the contribution of each transmitter to provide a number of spatially-diverse

channels that are linearly combined to synthesize arbitrary transmit beams.

Two things are evident when the transmit gains of these two extreme cases of MIMO

radar in (2.38) and (2.39) are compared. First, the phased array provides additional transmit

gain for targets with angle θ0 = θ̃. Indeed, if M transmit elements are used, the phased array

can provide an improvement in SNR by a factor of M when compared to the orthogonal

waveform case.

However, this transmit beamforming gain provided by the phased array is only applica-

ble to targets in the direction where the transmit beam was steered, θ̃. Because the phased

array lacks transmit degrees of freedom, it is unable to use digital processing to resteer its

transmit beam. The phased array provides improved gain in a particular direction, but a

MIMO radar provides a digital beamforming capability on transmit by using orthogonal

waveforms.
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2.5.2 A Comparison of Gain Patterns

These concepts are made more concrete by considering the beampattern, steered response,

and angular point-spread function of the phased array and orthogonal waveforms. An ex-

ample of each of these is presented in Figure 2.4. The (transmit) subarray pattern and the

patterns of the spoiled phased array are also presented for reference.

From the steered response, it is seen that the phased array is able to provide superior

gain for the direction in a which the beam was formed (in analog) on transmit. By trans-

mitting M correlated waveforms, an improvement in gain in this direction is provided. The

spoiled phased array or the radar using orthogonal waveforms has a steered response iden-

tical to the subarray pattern because no array gain is realized on transmit.

By considering the transmit beampattern, it is apparent that the radar using orthogonal

waveforms is able to synthesize a beampattern with the same mainlobe width and same

sidelobe performance as the phased array. Recall from the steered response that the overall

gain is not as high as the phased array, but the beampattern is preserved.

The point-spread function demonstrates that the orthogonal waveform case possesses

superior angular resolution performance compared to the phased array. In fact, neither the

full phased array or the spoiled phased array are able to provide any resolution on transmit.

Note that a similar point-spread function is presented in [Bekkerman and Tabrikian, 2006],

where it is (somewhat misleadingly) referred to as a beampattern.

To summarize, by transmitting orthogonal waveforms, a MIMO radar is able to achieve

the wide area coverage of a spoiled phased array while preserving its beampattern. It is

also able to provide improved angular resolution. Note that, in this case, a uniform linear

array was employed and the correlation among the waveforms was varied. More novel

configurations may be used where orthogonal waveforms are able to operate in a sparse,

irregular configuration.
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Figure 2.4: Phased array and orthogonal waveform gain patterns.
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2.5.3 A Discussion of Search Rates

In many phased array radar systems, a high-gain, directional beam dwells in a particular

location for some coherent processing interval (CPI). The length of the CPI is chosen to

meet some requirement, e.g., a satisfactory probability of detection for a given class of

targets. By changing the look angles,
(
θ̃, φ̃

)
, the phased array can steer this beam over the

search volume.

Now, consider a radar that transmits M orthogonal waveforms. As was seen in the

above discussion, for a single dwell, a phased array improves SNR by a factor of M over

that of a radar using orthogonal waveforms, but the latter is able to illuminate an area that

is M times as large in angular extent. Consequently, by using a CPI that is M times as

long as that used by the phased array, the radar using orthogonal waveforms can obtain

equivalent SNR. Also, since it illuminates a larger volume, the search rate is unaffected.

This approach requires that the targets remain sufficiently coherent over the extended CPI,

which may require compensation for non-constant velocity in some applications.

To summarize, consider the special case of omnidirectional elements (or elements that

are matched to the specified surveillance volume) and for the moment ignore complications

such as beam shape loss and beam overlapping strategies. The phased array would steer the

beam through a series of M beam positions. On the other hand, the radar using orthogonal

waveforms would use a single CPI that was M times as long as that used by each phased

array dwell. In both cases, the search rate and SNR on any target will be equivalent.

This is consistent with the standard search-radar equation, which demonstrates that

the search rate of a radar is fundamentally limited by its power-aperture product [Scheer,

2010]. Indeed, the SNR constraints on search rate are seen to be unaffected by the choice

of operating an array as a phased array or using orthogonal waveforms.

This demonstrates that the “total” SNR of a coherent MIMO radar is unaffected by the

correlation matrix in many cases. However, as was seen before, using orthogonal wave-

forms provides many benefits. This includes improved angular resolution and an improved
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beampattern compared to the spoiled configuration.

Compare this with the case of statistical, i.e., non-coherent MIMO radar. For a non-

coherent MIMO dwell, M radar systems simultaneously illuminate some area/volume. It

is not clear that the CPI duration could be decreased by a factor of M. Also, for a volume-

surveillance radar, the volumes illuminated by each radar may not completely overlap,

representing an additional inefficiency. Careful bookkeeping is required when benchmark-

ing the performance of a non-coherent MIMO radar and comparing it to the case where

each radar operates independently and data fusion occurs at a higher-level, e.g., track-level

fusion.

2.5.4 Gain Patterns in Applications of MIMO Radar

In many ways, gain patterns fully characterize the antenna performance of a MIMO radar.

Consider, for example, the case of a MIMO ground-moving target indication (GMTI) radar,

as described in [Forsythe and Bliss, 2010]. The first question to address is to assess the im-

pact on the apparent loss of gain when moving from a phased array to transmitting orthog-

onal waveforms. It would seem that a MIMO GMTI radar, by transmitting M orthogonal

waveforms would suffer a factor of M loss in signal-to-noise ratio (SNR). Of course, this

could be compensated by dwelling M times as long for each CPI, but this would cause a

commensurate decrease in area coverage rate. However, as was seen from the steered re-

sponse, using orthogonal waveforms allows a larger area of the ground to be illuminated.

Instead of using a phased array to scan a narrow high-gain beam on the ground from CPI to

CPI, the MIMO radar is able to use a lower gain beam with a larger footprint and employ

a longer CPI. So, if the targets of interest and the clutter remains sufficiently coherent over

this long CPI, the SNR may be recovered.

As pointed out in [Forsythe and Bliss, 2010], these longer CPIs provide improved

Doppler resolution. In addition, as seen by considering the point-spread function, MIMO

radar also provides improved angular resolution. GMTI systems are able to detect very

slow moving targets in the presence of strong clutter returns through the application of
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space-time adaptive processing (STAP) [Melvin, 2004]. This is accomplished by exploit-

ing the angle-Doppler coupling of stationary clutter. Clearly, a MIMO GMTI system

that could transmit orthogonal waveforms could provide enhanced detection performance

against slow moving targets when compared to a phased array. Flight test data has been col-

lected to demonstrate improved detection performance that is provided by a MIMO GMTI

[Kantor and Davis, 2010].

While the angular point-spread function of the array used by a GMTI system is critical,

it is of less importance to a synthetic aperture radar (SAR) system, which seeks to form high

resolution imagery of the ground by synthesizing a synthetic aperture much larger than its

physical aperture through platform motion. In this case, the physical aperture does not

provide the resolution necessary to resolve targets in the along-track dimension. Instead,

the role of the antenna is to act as a spatial filter to reject returns that would otherwise be

Doppler ambiguous for the radar’s along-track sampling rate. In this case, the key figure of

merit is the antenna beampattern.

This is an extension of the Vernier array approach that uses multiple receive channels

to improve area coverage rates in along-track sampling limited applications [Kock, 1972].

This view of MIMO SAR was presented in [Davis et al., 2011]. An analogous approach

applies to the related technology of synthetic aperture sonar (SAS) [Davis and Cook, 2011].

Other discussions of MIMO SAR are presented in [Krieger et al., 2008; Rennich, 2009;

Ender and Klare, 2009]. MIMO SAR will be discussed in more detail in Chapter 3.

2.6 The MIMO Radar Range Response

In the previous discussion, the angular resolution properties of a MIMO radar have been

discussed. This was accomplished by considering a single range bin where a target was as-

sume to be present and examining the angular response of the beamformer. This discussion

is now extended to consider the response in range. To accomplish this, the definition of the

MIMO signal correlation matrix of (2.16) is redefined to include a dependence on time.
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Up to this point, only the inner products of the transmitted waveforms with one another

have been important. These correspond to the zero-lag terms of the autocorrelations and

cross-correlations. Now, the full autocorrelations and cross-correlations of the suite of

waveforms must be considered. This further reinforces the assertion that coherent MIMO

radar is essentially an antenna concept rather than a waveform-based technique. Indeed,

the waveforms (and their cross-correlations in particular) are the source of many of the

problems facing the implementation of MIMO radar.

The preceding analysis has tacitly assumed that the range to the target was known so

that the outputs of the matched filters in (2.15) may be sampled at the peak of the target re-

sponse. In practice, a radar signal processor generates the sampled response of the matched

filter at a rate corresponding to the expected range resolution. Each sample is the (complex)

voltage associated with a range bin. The model developed above in (2.17) for z (θ0), which

corresponds to the peak of the matched filter response to a target at an angle, θ0, is now

augmented to include a lag term, τ, which is relative to the peak of the response.

Observe that each of the elements of the matrix defined by (2.16) is the inner product

of a pair of transmitted waveforms. This describes the response of each waveform to the

matched filter constructed for each of the other waveforms sampled at the peak of the

autocorrelation. A lag term, τ, is introduced to capture the response of each matched filter

to a shifted version of each of the other waveforms. The MIMO signal correlation matrix

for a lag, τ, is given by

Rx (τ) ,
∫ ∞

−∞

x (t) x (t − τ)H dt. (2.40)

This can obviously be extended to include mismatches in Doppler frequency [San Anto-

nio et al., 2007; Friedlander, 2012]. Following a similar development to that above, the

response of the M matched filters to the signals from the N receivers given a target at an
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angle, θ0, may be written as

Z (τ; θ0) ,
∫ ∞

−∞

y (t; θ0) x (t − τ)H dt

= αH (θ0) Rx (τ) + E (τ) ,
(2.41)

where the filtered noise matrix is

E (τ) ,
∫ ∞

−∞

v (t) x (t − τ)H dt. (2.42)

The N × M matrix Z may be vectorized, which yields

z (τ; θ0) , Vec {Z (τ; θ0)} = αs (τ; θ0) + e (τ) , (2.43)

where the MIMO steering vector for a lag, τ, corresponding to a target at an angle, θ, is

s (τ; θ) , Rx (τ)T a (θ) ⊗ b (θ) , (2.44)

and e (τ) is the vectorized version of the filtered noise matrix, E (τ).

The array factor corresponding to lag τ is found to be

f (θ0; τ, θ) =

 a (θ0)H R∗x (τ) a (θ)√
a (θ0)H R∗x (τ) a (θ0)


 b (θ0)H R−1

v b (θ)√
b (θ0)H R−1

v b (θ0)

 . (2.45)

Compare this with the array factor in (2.30). This is interpreted as the (voltage) gain on a

target at an angle, θ0, provided by a beamformer steered to (τ, θ). The response of the linear

beamformer that is steered to an angle, θ, and a lag, τ, to a single target at an angle, θ0, is

G (θ0; τ, θ) =

GTX (θ0)

∣∣∣a (θ0)H R∗x (τ) a (θ)
∣∣∣2

a (θ)H R∗x (τ) a (θ)


GRX (θ0)

∣∣∣b (θ0)H R−1
v b (θ)

∣∣∣2
b (θ)H R−1

v b (θ)

 . (2.46)

For fixed angles, θ and θ0, this may be considered the range response of the waveforms.

This is analogous to the waveform autocorrelation, which describes the range response of

the waveform to the matched filter that is applied by a standard radar system. Observe

that the contribution of the receive array is equivalent regardless of which range bin is

considered. However, the transmit array factor varies as a function of range as well as

angle.
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For a moment, consider the single-waveform case where the “matrix,” Rx, is simply

the scalar-valued autocorrelation function of the transmitted waveform. This allows the

variation in range, which is due to the signal autocorrelation function, to be separated

from the variation in angle, which is related to the similarity between the steering vectors.

However, in the MIMO case, unless the waveforms are orthogonal, the range response can

vary as a function of both angle and range in a non-separable manner. This is alluded to in

[Friedlander, 2012], where the impact of range straddle loss is also discussed. Of course,

this latter effect is a problem encountered by any radar system [Cann, 2002].

An interpretation of the result in (2.45) is that the cross-correlation functions of the

transmitted waveforms interfere with each other in different ways depending on the angle

of arrival. This impacts beamforming and direction finding [Friedlander, 2012] and the

cancellation of clutter for GMTI radar [Rabideau, 2012].

2.7 Summary

Coherent MIMO radar is a natural extension of the phased array concept. Just as digital

beamforming on receive provides additional degrees of freedom that improve radar perfor-

mance, transmitting independent waveforms provides further flexibility. Like any new idea

proposed to improve a decades-old technology, MIMO radar has not been without its critics

[Daum and Huang, 2009]. Indeed, many radar applications will not benefit from MIMO

and performance may be degraded by transmitting uncorrelated waveforms. In situations

where performance is limited only by thermal noise, little improvement will likely be pro-

vided by MIMO. However, when performance is limited by other factors, e.g., multiplica-

tive noise in SAR [Davis et al., 2011], clutter in GMTI [Forsythe and Bliss, 2010], iono-

spheric phenomenology [Frazer et al., 2009], or even synchronization challenges [Steyskal

et al., 2003], a MIMO radar may outperform a traditional system.

The goal of this chapter has been to present a framework for understanding the appro-

priateness of a suite of MIMO waveforms for a particular radar application. The primary
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contribution has been a careful analysis of the antenna performance of a MIMO radar that

includes the impact on SNR as well as degradation of range sidelobe performance. This

was illustrated by providing a fair comparison of the phased array to a MIMO radar that

transmits orthogonal waveforms.
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CHAPTER 3

MIMO SYNTHETIC APERTURE IMAGING

3.1 Overview

Synthetic aperture radars (SAR) provide fine-resolution images of the earth’s surface, and

synthetic aperture sonars (SAS) map the sea floor. Instead of resolving targets in angle

using a large physical aperture, synthetic aperture systems use a more modest aperture and

use platform motion to synthesize a large one. As the SAR or SAS system moves, it collects

spatial samples using a number of pulses or pings that are coherently processed to resolve

targets in the cross-range/along-track direction.

As the platform moves, it transmits pulses and receives the echoes from the illumi-

nated scene. Each of these transmit/receive events occurs at a particular point in space and

provides a spatial sample. Essentially, the synthetic aperture imaging system provides a

sampled version of the desired continuous, physical aperture that is used to provide an-

gular resolution. Pulses must be transmitted frequently enough so that the aperture is not

spatially undersampled, which can lead to angle ambiguities in a manner analogous to tem-

poral sampling. However, the time between pulses limits the maximum range extent of

the image. Along-track sampling concerns constrain the performance of synthetic aperture

imaging systems and are especially stressing for spaceborne SAR [Freeman et al., 2000]

and for SAS [Cutrona, 1975].

Multichannnel systems that use multiple antennas on receive have been proposed to

mitigate azimuth ambiguities without decreasing the area-coverage rate [Kock, 1972; Cur-

rie and Brown, 1992]. Receive array configurations where a wide transmit beam is used and

the returns are collected by multiple receivers are ubiquitous in SAS. By simultaneously

observing the returns from spatially separated receivers, multiple along-track samples are

collected per pulse, which allows a lower pulse repetition frequency (PRF) to be used while

still maintaining the required along-track sampling rate.
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A more recent development is the proposed used of simultaneously transmitting inde-

pendent waveforms from a number of transmit elements in an analogous manner [Krieger

et al., 2008]. By simultaneously transmitting waveforms from spatially separated elements,

multiple along-track samples are collected per pulse by each receive channel. This has the

potential to allow for an even lower PRF to be used and enabling a further improved area

coverage rate. This idea has been discussed in the SAR literature [Rennich, 2009; Ender

and Klare, 2009; Wu et al., 2009; Correll, 2010; Davis et al., 2011; Wang, 2013; Krieger,

2013] as well as in the context of SAS [Davis and Cook, 2011]. Essentially, the idea is to

extend the standard approach of using a SIMO system to exploit additional spatial diversity

provided by MIMO.

The goal of this chapter is to present a methodology for assessing the performance of

a MIMO SAR or MIMO SAS. To accomplish this, the standard techniques of SAR image

quality analysis are used. In particular, the concept of multiplicative noise [Carrara et al.,

1995] is extended to the MIMO case. While the average power of additive noise, like

thermal noise or external interference, is independent of the desired signal power, a noise

source is said to be multiplicative if the ratio of the noise power to the signal power is

constant. This ratio is called the multiplicative noise ratio (MNR).

Transmitting multiple waveforms can modify the multiplicative noise in two ways.

First, it can improve the ambiguity-to-signal ratio (ASR) by mitigating azimuth ambiguities

through enhanced spatial sampling. However, it will also degrade the integrated sidelobe

ratio (ISR), which lowers image contrast.

In this chapter, MIMO SAR/SAS is motivated in Section 3.2 as an extension of standard

multichannel synthetic aperture systems that use multiple receive channels. A review of

ASR is presented in Section 3.3, which leads to two MIMO SAR/SAS array configurations

described in Section 3.4. Finally, the degradation of image quality through increased ISR

is described in Section 3.5.
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3.2 Multichannel and MIMO SAR/SAS

A synthetic aperture image is formed by collecting a number of spatial samples and pro-

cessing them coherently to provide fine cross-range resolution. This is accomplished by

transmitting a series of pulses from a moving platform. Each pulse corresponds to a spa-

tial sample. These samples are also referred to as along-track samples because they are

collected as the platform moves in the along-track direction.

In many ways, a synthetic aperture collection is conceptually similar to an array an-

tenna. To unambiguously measure the angle of arrival of a signal from a far-field source,

an array of uniformly-spaced, omnidirectional elements must be spaced by no more than

a distance λ/2 where λ is the signal’s wavelength. This half-wavelength spatial-sampling

requirement is analogous to the Nyquist sampling rate required to unambiguously sample

a signal with a particular maximum frequency. A synthetic aperture imaging system will

employ a directional element on receive, which relaxes the sampling requirement to D/2

where D is the along-track extent of the receive aperture [Brown, 1967].

The system transmits pulses at the PRF, which may be referred to as the ping rate in

sonar. For a fixed platform velocity, v, the PRF, fp, determines the along-track sampling

interval,

δx ,
v
fp
, (3.1)

which is the distance traveled between pulses. The PRF must be sufficiently high to provide

an acceptable along-track sampling rate, i.e.,

δx ≤ D/2. (3.2)

However, the PRF must be low enough to provide an acceptable area-coverage rate

(ACR). The extent of the range swath is limited by the ability of the sensor to unambigu-

ously measure range. The ACR is maximized in stripmap operation, where the system

continuously maps as it flies without reorienting the antenna. In this case, the ACR is
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related to the platform speed, v, and the range extent of the image, Rswath by

ACR , vRswath. (3.3)

If the sensor transmits pulses at a PRF, fp, the range swath is limited to Rswath < (c/2) / fp,

where c is the speed of waveform propagation. This leads to a bound,

ACR < δx (c/2) . (3.4)

From (3.4), it is evident that there is a fundamental limitation imposed on ACR by the

along-track sampling rate, 1/δx. There is also a dependence on c, which suggests that SAS

systems are more challenged than SAR systems because the speed of light is about five

orders of magnitude higher than the speed of sound in water.

A low PRF is desirable to maximize ACR, but sufficient along-track sampling is still

required. The aperture size, D, can be increased to relax the along-track sampling require-

ment of (3.2), but this is undesirable for a number of reasons. First, it is counter to the

motivation of synthetic aperture imaging, which is to provide the benefits of a large, phys-

ical aperture with a smaller one. Also, increasing the aperture size leads to a decreased

beamwidth. In stripmap synthetic aperture imaging, this results in coarser cross-range

resolution because of limited integration angle; in spotlight synthetic aperture imaging, it

results in a smaller image.

Instead of requiring larger and larger apertures, the traditional solution is to employ an

array of receive elements [Kock, 1972; Cutrona, 1975]. Each element is small enough to

provide acceptable stripmap cross-range resolution or spotlight image size. By using mul-

tiple receive elements, the along-track sampling rate can be improved without increasing

the PRF. This is accomplished because multiple along-track samples are simultaneously

collected for each pulse. In this configuration, a single element is used on transmit. On

receive, an array of N elements is used. If D is the length of an element, then the effec-

tive array length is ND. This array requires the along-track sampling rate corresponding to
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an element of length ND but can still provide the cross-range resolution of an element of

length D.

A synthetic aperture system that uses multiple elements on receive can be considered

as a SIMO system. The scene is illuminated by a single transmit source, but the returns

are observed by multiple receivers. This concept of a SIMO system can be extended to

the MIMO case by also simultaneously transmitting independent waveforms from multiple

transmitters. In either case, multiple along-track samples are collected with a single pulse.

The spatial locations of these along-track samples can be considered as the virtual array

corresponding to the physical transmit and/or receive arrays.

3.3 MIMO SAR/SAS Ambiguity-to-Signal Ratio

In (3.2), an upper bound on the along-track sampling interval was provided, but it does not

guarantee that azimuth-ambiguous returns will be completely mitigated. A synthetic aper-

ture system synthesizes a large, continuous aperture by collecting spatial samples. As is

always the case when sampling a signal, the spatial sampling rate must be sufficiently high

to prevent aliasing. In temporal sampling, out-of-band signals alias into the desired fre-

quency band. In spatial sampling, targets displaced in cross-range can alias into the image.

The beampattern acts as a spatial antialiasing filter, which can suppress these undesired

returns, but this filtering is far from ideal. The impact of ambiguous returns is quantified

by the ambiguity-to-signal ratio (ASR). The ASR depends on the beampattern as well as

the along-track sampling rate [Bayma and McInnes, 1975; Mehlis, 1980; Hawkins, 1996].

A simplified interpretation of synthetic aperture imaging is that it resolves targets in the

cross-range direction by applying Doppler processing. For a stationary target, the Doppler

frequency, fD, that is due to platform motion is related to the angle to the target, θ, by

fD =
2v
λ

sin θ. (3.5)

As the platform moves, it samples the slow-time signal at a rate that is precisely the PRF,

fp. Azimuth ambiguities are introduced by targets with Doppler frequencies, fD, that are
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Doppler ambiguous, which occurs when | fD| > fp/2. Range ambiguities (and their az-

imuth aliases) are also introduced. For a well-designed SAR or SAS system, these am-

biguities will be far from the peak of the beampattern and will be attenuated by the an-

tenna/hydrophone.

A standard approach to calculating SAR and SAS ASR is to compute the aliased

Doppler power spectrum [Mehlis, 1980]. For a given range, the Doppler power spectrum,

P ( fD), quantifies the relative power from targets at a given Doppler frequency, fD. For

range-unambiguous targets, this depends primarily on the transmit and receive beampat-

terns. The contribution of range ambiguities to the Doppler power spectrum also depends

on the collection geometry, signal attenuation from spherical spreading, and (especially for

SAS) the attenuation from propagation of the waveform through a medium.

The ASR depends not only the PRF, but also the cross-range resolution. If the platform

flies in a straight line, the Doppler frequency corresponding to a point on the ground will

vary over the synthetic aperture. If the integration angle is increased, the degree of variation

will increase as well. For a stripmap synthetic aperture imaging system, the finest cross-

range resolution is provided by processing the full Doppler bandwidth that corresponds to

the mainlobe of the beampattern. A coarser resolution image can be formed using a subset

of this Doppler bandwidth. This can potentially improve the ASR by excluding Doppler

frequencies that may include significant aliased energy.

The azimuth ambiguity-to-signal ratio (AASR) is the ratio of the power from azimuth

ambiguous returns to the power of the desired return. If P ( fD) is the Doppler power spec-

trum for a given range, then the AASR that results when a PRF, fp, is used is

AASR ,

∫
Ω

(∑
n,0

P
(

fD + n fp

))
d fD∫

Ω
P ( fD) d fD

, (3.6)

where Ω is the set of Doppler frequencies that are processed to form the image. The AASR

formula in (3.6) can be modified in a straightforward manner to include range ambiguities
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to provide the ASR. Note that the Doppler PSD is assumed to be zero for Doppler frequen-

cies that exceed the maximum Doppler frequency, 2v/λ, so the apparently infinite sum of

(3.6) is only over a finite number of Doppler ambiguities.

The methodology summarized by (3.6) allows the AASR to be computed for a given

array design. It assumes that the along-track samples are uniformly spaced and is based on

a stripmap imaging interpretation. This result is extended to the multichannel case where

nonuniform sampling is possible as well as to the spotlight case in Chapter 6. In any case,

a low PRF is desirable to maximize ACR, increasing along-track sampling can improve

image quality by providing a lower ASR.

3.4 Array Design for MIMO SAR and SAS

Two MIMO array configurations suggest themselves as being useful in a SAR system: a

dense MIMO array that seeks to improve the density of along-track samples and a sparse

MIMO array that allows a PRF than the corresponding SIMO array [Davis and Cook,

2011]. These configurations and their corresponding virtual arrays are presented in Fig-

ure 3.1.

The properties of the virtual arrays for these designs are given in Table 3.1. Note that

SIMO is a special case of either a dense MIMO array or a sparse MIMO array. The results

in the table for the MIMO configurations coincide with the SIMO case when M = 1.

For the same PRF and cross-range resolution, the dense MIMO configuration using M

transmit elements provides an increase in the spatial sampling rate by a factor of M, which

can potentially improve image quality by lowering the ASR. Similarly, the sparse MIMO

configuration using M transmit elements can potentially increase the ACR by a factor of M

while preserving cross-range resolution.

First, consider the dense MIMO array of Figure 3.1. This configuration uses a receive

array that consists of N receive elements that are of length D and spaced at an interval of D.

The system uses M transmit elements that are spaced by D/M. The corresponding virtual
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Figure 3.1: Examples of SAR/SAS physical arrays and corresponding virtual arrays.

array is sampled at an interval of 1/M×D/2. Note that the effective length of the dense

MIMO array is the same as the corresponding SIMO array. However, a higher along-track

sampling rate can be achieved by the dense MIMO array if it uses the same PRF as the

SIMO array.

Now, consider the sparse MIMO array. Once again, begin with a receive array of N

elements. Now, distribute the M transmitters such that there is a separation of ND between

Configuration Length Spacing

SIMO ND/2 D/2
Dense MIMO ND/2 D/(2M)
Sparse MIMO MND/2 D/2

Table 3.1: Properties of the virtual arrays.
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transmit elements. In this case, the spacing between virtual phase centers is D/2, as in the

SIMO array case, but the resulting virtual array is M times as long as that of the SIMO

virtual array. This allows the sparse MIMO array to use a PRF that is M times lower

than the SIMO case, which provides a commensurate increase in area coverage rate. This

configuration is called a Nyquist array in [Forsythe and Bliss, 2010] because it is critically

sampled in the spatial sense.

3.5 MIMO SAR/SAS Integrated Sidelobe Ratio

As described above, a MIMO synthetic aperture imaging system will simultaneously trans-

mit multiple waveforms to provide improved along-track sampling. However, one chal-

lenge is that this will lead to an increase in range sidelobes because of the inevitable cross-

correlation between the waveforms, which will lead to a degraded integrated sidelobe ratio

(ISR).

3.5.1 Quantifying the Impact of Sidelobes

Range sidelobes result from undesired energy that appears up range and down range of any

target return. Sidelobes of strong targets can limit detection of smaller targets nearby and

can cause extraneous false detections. The impact of sidelobes on detection is quantified by

the peak sidelobe ratio (PSR) of the waveform, which is the power of the strongest sidelobe

relative to the peak of the mainlobe.

Sidelobes can also degrade the quality of radar images. To form an image, the radar

resolves targets in down range and cross range to provide an estimate of the reflectivity of

the scatterers that are contained within each resolution cell. Range sidelobes from terrain

and targets up and down range of a particular resolution cell will contribute undesired

energy. For example, consider a low return area, e.g., a shadowed region or a road. A high-

quality image will have significant contrast between these areas and higher-return areas that

are nearby, but this contrast will be degraded by range sidelobes.

While a low PSR is desirable, imaging radar systems require low sidelobe levels over
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the entire range response. Moving target indication (MTI) radars typically operate in envi-

ronments where targets are relatively sparse, but a synthetic aperture radar (SAR) images

distributed targets including terrain.

Just as PSR is a useful metric for predicting the impact of range sidelobes on MTI

performance, the ISR is used to predict their impact on SAR image quality. ISR can be

treated as component of the SAR MNR, and the integrated sidelobes can severely degrade

image contrast [Carrara et al., 1995]. Historically, integrated sidelobe levels have not driven

SAR image quality because a linear frequency modulated (LFM), “chirped” waveform has

been used, which permits aggressive windowing to drive down the sidelobes. For example,

a Taylor weighting can be applied to drive the ISR to about -30 dB. This is well below the

multiplicative noise floor set by other contributors such as azimuth ambiguous returns.

The impact of a waveform with poor ISR on SAR image quality is shown in Figure 3.2.

Results from an unweighted LFM are compared to a random phase-coded waveform. In

both cases, a no-return area (NRA) is simulated between two areas of terrain. This occurs,

for example, if a road, which has low radar backscatter, crosses a grassy area. Ideally, there

should be significant contrast between the regions. However, the range sidelobes of terrain

up and down range of the NRA will fill in the NRA and degrade contrast. The degree

to which this impacts image quality is captured by the ISR. In this example, we see that

the LFM preserves the NRA better than the phase-coded waveform because the ISR of the

LFM is much lower.

3.5.2 Calculating the MIMO ISR

A MIMO radar/sonar signal processor was presented in Figure 2.3. The signal from each

of N receive channels is processed by applying M filters. Each of these filters is matched

to one of the transmitted waveforms. If the waveforms were orthogonal, the output of each

filter would consist of the contribution from a single transmit element. The contribution of

a single target at an angle, θ0, to an angle bin corresponding to an angle, θ, and a range bin

corresponding a delay, τ, was given in (2.46). Neglecting the terms that are constant with
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Figure 3.2: Comparison of LFM and phase-coded waveform range profiles. The dotted
green lines indicate a no-return area (NRA) with range extent equal to the pulse width.
Ideally, there should be no energy in this region, but the sidelobes from terrain up and
down range of the NRA will be present and degrade contrast. The expected sidelobe levels
are indicated by the superimposed lines. The NRA is better preserved by using the LFM
waveform, which has superior ISR compared to the phase-coded waveform.

range, this range response can be written as

P (τ, θ; θ0) =
∣∣∣a (θ)H R∗x (τ) a (θ0)

∣∣∣2 . (3.7)

This expression for the MIMO impulse response can be used to calculate the ISR for the

MIMO case.

The lag, τ, in the impulse response of (3.7) is related to a (slant) range displacement

from the true target location. If the output is sampled at set of lags, then each of these lags

corresponds to the return in particular range bin. Ideally, all of the energy in the impulse

response will be in the bin corresponding to τ = 0, and there will be no energy in bins

corresponding to τ , 0.

ISR is the ratio of the undesired sidelobe energy to the energy in the mainlobe of the

range response,

ISR ,

−T0/2∫
−∞

P (τ, θ; θ0) dτ +
∞∫

T0/2
P (τ, θ; θ0) dτ

T0/2∫
−T0/2

P (τ, θ; θ0) dτ

. (3.8)

where T0 is the null-to-null width of the mainlobe of the range response, which is related

to the bandwidth of the transmitted waveforms. In general, the MIMO ISR will vary with

target angle, θ0, and steered angle, θ.
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The ISR is of the same form as the ASR, which is the ratio of the energy from the

undesired ambiguous returns to the energy from the desired unambiguous returns. The

sum of these two terms is added to similar ratios for other multiplicative noise sources,

e.g., quantization noise-to-signal ratio (QNSR), to determine the overall system MNR. Any

benefits to the ASR gained by transmitting multiple waveforms may be canceled out if it

comes at the cost of increased ISR.

3.5.3 ISR of Chirp-Slope Multiplexing

Many radar systems have historically employed linear frequency modulated (LFM) wave-

forms. These waveforms are easy to generate, their sidelobe characteristics may be im-

proved through aggressive windowing, and they allow radar designers to relax receiver

bandwidth requirements by employing stretch processing. LFM waveforms are ubiquitous

in radar especially in SAR and GMTI radar systems.

A natural extension of LFM to multiple waveforms is to change the slope from signal to

signal. To obtain two approximately orthogonal waveforms, one might consider an up chirp

and a down chirp. Figure 3.3 shows their time-frequency representations. The autocorre-

lation and cross-correlation properties of these two waveforms are shown in Figure 3.4.

At the zero-lag, the cross-correlation is down by almost 30 dB from the peak, which is

well below the first sidelobe. From the range response, the PSR is seen to not increase by

transmitting the second LFM. Unfortunately, further away from the mainlobe, the cross-

correlation prevents the sidelobes from decaying to low levels. Consequently, transmitting

the second LFM greatly degrades the ISR performance.

While these waveforms may be acceptable for an MTI application, they are likely un-

suitable for SAR or other radar applications that seek to estimate the reflectivity profile of

a continuum of scatterers. The ISR approaches 0 dB, meaning that the contrast of an image

with distributed clutter will have very low contrast. It is likely that MIMO operation will

require a departure from LFM waveforms and the adoption of phase-coded or noise-like

waveforms for these cases.
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3.6 Summary

An analysis of a SAR and SAS system using multiple transmitters has been presented. Just

as the SIMO configuration common to most SAS systems uses multiple spatial channels on

receive to increase area coverage rate, a MIMO SAR or MIMO SAS system adds multiple

spatial channels on transmit to provide even more substantial performance gains. A SIMO

system using N receive channels is able to effectively collect N times as much data per

pulse, while a MIMO system with M transmit channels and the same receive array can

potentially capture M×N as much data.

Two MIMO SAR/SAS configurations were proposed. By using M transmit elements

that emit orthogonal waveforms, the dense MIMO configuration allows the effective along-

track sampling rate to be increased by a factor of M relative to a SIMO system with the same

area coverage rate and the same cross-range resolution. The sparse MIMO configuration

allows the area coverage rate to be increased by a factor of M relative to a SIMO array

with the same azimuth ambiguity-to-signal ratio and cross-range resolution. Note that the
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Figure 3.3: Spectrograms of an up chirp and a down chirp.
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Figure 3.4: Correlation properties and range response of an up chirp and a down chirp.
The upper figure presents the autocorrelation of each chirp and their cross-correlation. The
bottom figure presents the range response if these two waveforms are transmitted simulta-
neously.

MIMO SAR/SAS and comparable SIMO array transmit the same amount of power.

It is important to note that while M orthogonal waveforms are necessary to achieve

these full factor of M improvements, performance benefits can also be gained by using
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“nearly” orthogonal waveforms. The framework established in Chapter 2 provides the

tools for analyzing the performance characteristics of a MIMO SAR/SAS system given its

MIMO signal correlation matrix even if the waveforms are not perfectly orthogonal.

A key challenge to the realization of a MIMOSAS system is the generation of quasi-

orthogonal waveforms. Because a suite of waveforms can never be mutually orthogonal

for all delays, the transmission of multiple waveforms will undoubtedly degrade the ISR of

the SAR/SAS system. Detailed analysis must weigh the benefit, for example, of decreasing

ASR at the cost of increasing ISR. Still, a MIMO SAR/SAS system will be able to exploit

this tradespace more effectively than a system with a single transmit element.
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CHAPTER 4

CONTROLLING RANGE SIDELOBES IN MIMO RADAR

4.1 Overview

Multiple-input, multiple-output (MIMO) radars [Bliss and Forsythe, 2003; Li and Stoica,

2008; Davis, 2012] promise to outperform traditional systems in many applications by

simultaneously transmitting a number of waveforms from spatially-distinct radiating ele-

ments. While these multiple waveforms provide additional degrees of freedom that may be

exploited to improve radar performance, one drawback is the increase in range sidelobes

from the unavoidable cross-correlation between the radar waveforms.

Traditional radar signal processors employ a matched filter. This maximizes the signal-

to-noise ratio (SNR) in the target range bin, but it does not consider the sidelobe energy

that will be present in nearby range bins. A popular approach to range-sidelobe suppres-

sion is to use a so-called mismatched filter [Ackroyd and Ghani, 1973], which reduces the

sidelobes at the cost of SNR. This chapter extends the concept of optimal filtering, which

has been developed for a single waveform [Keel and Baden, 2012], to the case of multiple

waveforms. In particular, the minimum integrated sidelobe ratio (ISR) filter is derived for

MIMO radar.

Radar waveforms are carefully designed so that their matched filter responses have low

range sidelobes. However, there are limits to which their peak sidelobe ratio (PSR) and

ISR can be reduced, especially when waveforms are constrained to be constant amplitude.

For a single waveform, these limitations are imposed by bounds on autocorrelation func-

tions, and they are further exacerbated in the MIMO case where cross-correlation functions

must also be considered [Sarwate, 1979; Welch, 1974]. This motivates a departure from

a matched filter, which maximizes SNR, to a mismatched filter, which additionally sup-

presses sidelobes.

A simple approach to mismatched filtering that is typically used with linear frequency
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modulated (LFM) waveforms is to apply a windowing function, which lowers sidelobe but

also results in degraded SNR and degraded range resolution through a broadening of the

mainlobe. There has also been extensive research into mismatched filtering techniques for

phase-coded waveforms [Rihaczek and Golden, 1971; Ackroyd and Ghani, 1973; Zoraster,

1980; Griep et al., 1995]. In either case, the matched filter is either followed by or replaced

by a filter that is designed to implement range compression while minimizing the PSR or

ISR.

Just as in the single-waveform case, mismatched filtering techniques can be applied to

MIMO radar. Approaches to this have been presented in the literature before [Li et al.,

2008; Hu et al., 2010; Ma et al., 2010; Zou et al., 2011; Hua and Abeysekera, 2013], but

all of these are motivated by the assumption that the waveforms are orthogonal. In this

case, a natural signal processing architecture consists of a set of filters that are designed to

extract the contribution of a single waveform while rejecting the response from the other

waveforms. These filters can be independently designed to optimize the response for a

single waveform. The outputs of the filters are then combined to apply beamforming. Like

[Ma et al., 2010; Zou et al., 2011; Hua and Abeysekera, 2013], the focus of this discussion

is on controlling the integrated sidelobe level while [Li et al., 2008; Hu et al., 2010] aim to

control the peak sidelobes.

The proposed approach is based on the observation that the MIMO range response

varies with angle. This fact motivates the idea of jointly performing range compression

and beamforming rather than applying these processes separably as is typically advocated.

This new method provides a significant advantage in minimizing ISR without significant

SNR loss when compared to other approaches that are found in the literature.

4.2 An Architecture for MIMO Radar Processing
4.2.1 The MIMO Range Response as a Function of Angle

Consider a MIMO radar that uses M radiating elements that each transmit an independent

waveform. The signal that is incident upon a target at an angle, θ0, in the far field of the
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radar will be a linear combination of these waveforms,

s (t; θ0) , a (θ0)T x (t) (4.1)

where a (θ) is the steering vector for an angle, θ, which describes the relative phase of

the signals as the arrive at the target, and x (t) is the vector of transmitted waveforms. A

portion of this incident waveform will be reflected by the target and observed by each of

the N receive elements.

The signal observed by each receiver will be identical up to an amplitude scaling (if

the elements are not identical) and a delay. Because of this, exploiting multiple receive

channels provides no value in terms of range-sidelobe mitigation and only provides angular

resolution. Instead of jointly processing the data from all of the receive channels, the

process of range compression and receive beamforming should be performed separately.

Also, because all targets at an angle, θ0, are illuminated by the same linear combination

of waveforms, s (t; θ0), given by (4.1), this is equivalent to a radar that transmitted the sin-

gle waveform, s (t; θ0). This effective waveform changes as a function of target angle, but

the radar antenna will suppress targets from other angles. This fact motivates the process-

ing architecture of Figure 4.1(a). A receive beam is formed in a desired direction, which

combines the N receive channels into a single channel that contains the contributions of the

M transmitters. Then, a filter is applied to jointly perform range compression and transmit

beamforming. This filter can be designed to optimize the range response for targets that are

present at the angle corresponding to the beam.

4.2.2 Single-Filter vs. Multiple-Filter Architectures

An alternative approach that is based on the standard MIMO radar signal processor of

Figure 2.3 is shown in Figure 4.1(b). As in Figure 4.1(a), the N channels are first com-

bined into a single channel by applying receive beamforming. This signal contains the

contributions of the M transmitted waveforms. To extract each contribution, a bank of

filters, h0 (t) , . . . , hM−1 (t), is applied. Each filter, hm (t), is designed so that it provides a
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Figure 4.1: (a) Proposed MIMO radar signal processing architecture. The filter, h (t), is
designed to optimize the response for a target at a given angle and jointly implements
transmit beamforming and range compression. (b) Standard MIMO radar signal processor.
The range compression filters, hm (t), are independent of target angle.
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low-sidelobe range response to a particular waveform, xm (t), and also has a low cross-

correlation with the other transmitted waveforms, xm′ (t), with m , m′. The outputs of the

M filters are combined to apply transmit beamforming. Both architectures in Figure 4.1

provide an output signal, z (t), that is a range profile for a particular angle.

The MIMO radar signal processors of Figure 4.1(a) and Figure 4.1(b) can be referred

to as a single range compression filter and a multiple range compression filter architecture,

respectively. It is expected that the single range compression filter implementation will be

able to provide better sidelobe control because it is only required to optimize the response to

a single waveform, s (t), but the multiple filter approach requires that M filters be designed

and that each of these filters provides a desired response to M waveforms. A potential

drawback of the single filter approach is that there will be degraded performance for targets

at other angles. This may be mitigated by designing the filter over a range of angles.

Another distinction to be made between the two approaches is that the single minimum-

ISR range compression filter of Figure 4.1(a) must be redesigned for each beam that is

formed, i.e., for each set of spatial weights that is used to steer a beam to a particular angle.

Because the filters can be designed offline and only a relatively small number of beams

are required, this requirement should not challenge the implementation of this mismatched

filtering approach. The standard MIMO radar processor in Figure 4.1(b) requires that M

range compression filters be applied. The proposed architecture in Figure 4.1(a) requires

that only a single range compression filter be applied, but it must be applied for each beam.

In most radar applications, the number of digital beams formed does not exceed the number

of channels. For multibeam SAR, the number of beams typically equals the number of

channels [Currie and Brown, 1992]. For beamspace STAP, the number of beams is at most

equal to the number of channels [Wang and Cai, 1994], but fewer beams are formed in many

implementations. For a MIMO system with M transmit elements and N receive elements,

potentially MN virtual channels can be synthesized. If all MN beams are formed, then the

number of range compression filters that must be applied increases by a factor of N with
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the approach of Figure 4.1(a) compared to that of Figure 4.1(b).

Each of the filters in Figure 4.1(b) is designed to extract the response from one of the

transmitted waveforms. These filters are independent of target angle because the trans-

mit beamforming and range compression operations are separated. In [Li et al., 2008], a

method is proposed to minimize SNR loss while satisfying a peak sidelobe criterion. This

approach is extended in [Ma et al., 2010], where an integrated sidelobe criterion is used.

The ability to get extremely low sidelobes over a limited range extent at the expense of

elevated sidelobes over other regions is also included. As noted in [Ma et al., 2010], a

restrictive limit of optimizing over about (K/M − 1) /2 of the K range bins constrains this

approach. Further contributions were made in [Hua and Abeysekera, 2013] with an exten-

sion to include Doppler effects.

The approach to generating minimum ISR filters developed in this chapter fundamen-

tally differs from those in [Ma et al., 2010] and [Hua and Abeysekera, 2013] in two primary

ways. First, the proposed method is based on the key observation that, for a given angle,

the range response for a particular linear combination of transmitted waveforms needs to

be optimized, while the other approaches in the literature develop filters that simultane-

ously minimize the sidelobes for all linear combinations of the transmitted waveforms. By

combining the operations of beamforming and range compression, better sidelobe control

is possible. A second difference is that the technique developed here allows an arbitrarily

long filter to be used, which provides further sidelobe control. For both of these reasons, the

single-filter technique provides a powerful tool for controlling range sidelobes in MIMO

radar.

4.2.3 The MIMO Mismatched Filter Range Response

The range response of the single filter approach presented in Figure 4.1(a) is now derived,

which is analogous to the matched filter range response of (2.46). Suppose that a target

is present at an angle, θ0, and that a receive beam is formed for an angle, θ, and a single

filter, h (t; θ), is used to jointly perform range compression and transmit beamforming. The
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power of the contribution from this target in the mismatched filter processor output at a lag,

τ, and a Doppler shift, ν, is

P (τ, ν, θ; θ0) ,
∣∣∣∣∣∫ ∞

−∞

(
b (θ)H R−1

v y (t)
)

h (τ − t; θ) e−iνt dt
∣∣∣∣∣2

=

∣∣∣∣∣∫ ∞

−∞

(
a (θ0)T x (t)

)
h (t − τ; θ) e−iνt dt

∣∣∣∣∣2 ∣∣∣b (θ)H R−1
v b (θ0)

∣∣∣2 , (4.2)

where a (θ) and b (θ) are the transmit and receive steering vectors, respectively, and Rv is

the spatial covariance matrix of the interference and noise.

The range sidelobes depend on the result of convolving the filter impulse, h (t; θ), which

is designed for a particular angle, θ, with a Doppler-shifted, linear combination of wave-

forms, where the linear combination depends on the target angle, θ0, through the transmit

steering vector, a (θ0). Compare this to the matched filter response in (2.46) where the

sidelobes depend on the MIMO signal correlation matrix, Rx (τ, ν), through

∣∣∣a (θ)H R∗x (τ, ν) a (θ0)
∣∣∣2 . (4.3)

While the output of the standard processor of Figure 2.3, which uses matched filters, de-

pends on the MIMO signal correlation matrix, the filter, h (t), of Figure 4.1(a) can be freely

to designed to minimize the sidelobes. If matched filters are used, sidelobes can only be

controlled through waveform design. By removing this constraint and introducing mis-

matched filters, sidelobes can be mitigated through filter design as well.

4.3 Minimum-ISR Filtering for a Single Waveform

First, the filter response is defined, and the relevant figures of merit, ISR and SNR loss, are

defined. This is followed by a brief review of an approach to determine the optimal filter

for the single waveform case. The development of the direct method for determining the

minimum ISR filter for a single waveform follows [Keel and Baden, 2012], but an iterative

method and a new SNR loss constraint are also added.
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4.3.1 Signal Model

Let s (t) be the radar waveform, and let {sk} be the discrete-time representation of this signal

with sk,s (kT ), for a sampling interval, T . These fast-time samples of the waveform are

assumed to correspond to a single pulse. Suppose that the waveform can be represented by

K samples so that sk = 0 for k < {0, 1, . . . ,K − 1}. A digital filter, {w`}, with L taps (L≥K)

is applied to implement range compression. The goal is to find the filter taps that minimize

the resulting ISR.

While the matched filter is the same length as the waveform (L = K), long mismatched

filters (L > K) can be designed that provide very low ISR [Levanon, 2005]. While there

is no theoretical limitation on the length of the mismatched filter, there are some practical

concerns. These include the computational costs of applying long digital filters and edge

effects to account for filter roll in. Also, the number of sidelobes will be K + L − 1. While

long mismatched filters can strongly suppress the sidelobes, strong target returns can create

sidelobes significantly displaced from their true location.

The response of the length-L filter, {w`}, to the length-K waveform, {sk}, is the convo-

lution of the two sequences,

zk ,
L−1∑
`=0

w`sk−` (4.4)

for k = 0, 1, . . . ,K + L − 1. Each sample of the output, zk, is referred to as the output for a

particular range bin. The filter output can be written as a length-(L + K − 1) vector, z. This

is generated from the length-L filter vector, w, by

z = Φw, (4.5)
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where Φ is the (K + L − 1)×L convolution matrix of s. For example, if K = 3 and L = 4,

z0

z1

z2

z3

z4

z5



=



s0 0 0 0

s1 s0 0 0

s2 s1 s0 0

0 s2 s1 s0

0 0 s2 s1

0 0 0 s2





w0

w1

w2

w3


. (4.6)

The convolution matrix, Φ, is Toeplitz.

4.3.2 Figures of Merit

The ISR is defined as the ratio of the energy in the sidelobes to the energy in the peak of the

filter response. The matched filter maximizes SNR in the target range bin, but a minimum-

ISR filter seeks to control the sidelobes, which comes at the expense of SNR. This tradeoff

is characterized by evaluating the ISR and the SNR loss of a mismatched filter.

The ISR characterizes the total sidelobe energy of the filter response, {zk}, which was

defined by (4.4). To calculate the ISR, the ratio of the the power in the sidelobes to the

power in the peak of the response is calculated,

ISR ,

K+L−2∑
k=0
k,p

|zk|
2

∣∣∣zp

∣∣∣2 , (4.7)

where the desired location of the peak, p, is

p ,
⌊K + L

2

⌋
− 1. (4.8)

This choice of the peak location is convenient because the peak will be centered within the

range response, which consists of K + L − 1 samples.

A filter’s SNR loss, Ls, is the loss in SNR relative to the matched filter,

Ls ,
SNR

SNRmax
=

∣∣∣zp

∣∣∣2
‖w‖2 ‖s‖2

. (4.9)
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The SNR loss is limited to 0 ≤ Ls ≤ 1 because SNR ≤ SNRmax. An SNR loss of Ls = 1

indicates that there is no SNR loss compared to the matched filter. A low ISR and an SNR

loss as close as possible to 1 (= 0 dB) are desirable.

4.3.3 A Direct Method for Designing the Optimal Filter

To minimize ISR, a filter should provide a response that is as close as possible to the ideal

response where all but one sample is zero. This desired response may be written as

dk ,


1, k = p

0, k , p
(4.10)

where p is the desired location of the peak, which was defined as (4.8).

The sum squared error between the response, z, and the desired response, d, is

ε , ‖z − d‖2 = ‖Φw − d‖2 . (4.11)

Ideally, the weights would satisfy Φw = d for w so that ε = 0. This will require solving

an overdetermined system of equations, but the least-squares solution can be used, which

minimizes the error, ε. The optimal weights are

w =
(
ΦHΦ

)−1
ΦHd. (4.12)

The L×L matrix, ΦHΦ, is invertible unless the waveform is zero for all samples (sk = 0 for

k = 0, 1, . . . ,K − 1).

The optimal weight vector of (4.12) is recognized as column p of the pseudoinverse of

the convolution matrix, where the pseudoinverse of a matrix, A, with linearly independent

columns is

A+ =
(
AHA

)−1
AH. (4.13)

Because ΦHΦ is a Toeplitz matrix when Φ is a convolution matrix, the minimum ISR filter

may be efficiently computed using, e.g., the Levinson algorithm [Golub and Van Loan,

1996], by solving the system of equations,(
ΦHΦ

)
w = ΦHd, (4.14)
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for the optimal weight vector, w.

4.3.4 An Iterative Method for Designing the Optimal Filter

A direct method for designing the optimal filter is given by (4.12). Alternatively, an iterative

approach can be used. This may be more numerically stable than the direct approach and

also provides access to intermediate filters, which allows tradeoffs between ISR and SNR

loss to be made. A simple approach is to apply gradient descent [Boyd and Vandenberghe,

2004]. The matched filter can be used as the initial filter, w0, which will minimize SNR

loss but provide no control of the ISR. If wn is the filter after the nth iteration, then the filter

after the next iteration is

wn+1 = wn − µ
(
ΦHΦwn −ΦHd

)
, (4.15)

where µ > 0 is the step size and for n = 0, 1, . . .. If the steps are sufficiently small, then

the iteration should converge to the optimal, minimum ISR filter. One should expect the

ISR to generally decrease as iteration continues. At the same time, the SNR loss will likely

increase.

While the direct form of (4.12) provides immediate access to the minimum ISR filter,

the iterative approach of (4.15) allows a tradeoff between ISR and SNR loss. By choosing

an intermediate result, a filter that provides acceptable ISR can be found that has less SNR

loss than the minimum ISR filter. While this approach of “early stopping” applied to an

iterative algorithm is a common form of regularization [Veklerov and Llacer, 1987], it pro-

vides no guarantee that a filter with a given ISR achieves the minimum SNR loss possible.

However, this can be accomplished by augmenting the cost function of (4.11) with an SNR

loss constraint.

4.3.5 Minimum ISR Filter with an Explicit SNR Loss Constraint

The minimum ISR filter was found by minimizing the sum squared error defined by (4.11),

which is an unconstrained optimization problem. The following adds a constraint that
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allows the SNR loss to be controlled. The resulting filter will be the minimum ISR filter

for a given SNR loss.

The SNR loss, which was defined in (4.9), depends on the filter response at the desired

peak location, zp, the total power of the signal, ‖s‖2, and the total power of the weights,

‖w‖2. The cost function of (4.11) already penalizes filters that provide a peak, zp, that is

different from dp = 1, and the scaling of the signal vector, s, is arbitrary. This leaves the

norm of the weight vector, w, which suggests the constrained optimization problem,

arg min
w

{
‖Φw − d‖2 : ‖w‖2 = γ

}
, (4.16)

for some scalar, γ. This is a quadratically-constrained, quadratic program, which can be

solved by the method of Lagrange multipliers [Boyd and Vandenberghe, 2004].

The Lagrangian of (4.16), for a Lagrange multiplier, λ ≥ 0, is

L (w; λ) , ‖Φw − d‖2 + λ
(
‖w‖2 − γ

)
= wH

(
ΦHΦ

)
w − wH

(
ΦHd

)
−

(
dHΦ

)
w + λwHw + dHd − λγ,

(4.17)

and the gradient of the Lagrangian is

∇w∗L (w; λ) =
(
ΦHΦ + λI

)
w −ΦHd. (4.18)

For a given Lagrange multiplier, which corresponds to some SNR loss, the minimum ISR

filter is found by solving ∇L (w; λ) = 0, which yields

w (λ) =
(
ΦHΦ + λI

)−1
ΦHd. (4.19)

There is no straightforward way to relate the value of the Lagrange multiplier, λ, and the

resulting SNR loss, but it is clear that increasing λ leads to decreased SNR loss. If λ = 0,

then no SNR loss constraint is applied and the solution reduces to the unconstrained result

of (4.12) as expected. As λ increases, the result converges to the matched filter.

Equation (4.19) can be interpreted as applying diagonal loading proportional to λ to

prevent the algorithm from being overly aggressive in suppressing sidelobes at the expense
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of SNR. A similar result is encountered in the communications literature where a Bayesian

interpretation may be applied, which leads to a minimum mean square error (MMSE) esti-

mator that resembles (4.19).

4.4 Minimum-ISR Filtering for Multiple Waveforms

The minimum ISR filter is derived for the case where multiple waveforms are transmitted

simultaneously by the radar. The methods described in Section 4.3 for designing a filter for

a single waveform is extended to the case of multiple waveforms, which provides a new

architecture for MIMO radar signal processing.

Consider the case of a MIMO radar that transmits M waveforms. Let

{
xm,k : k = 0, 1, . . . ,K − 1

}
(4.20)

denote the samples of the waveform used by transmitter m. The signal observed from a

single zero-delay, zero-Doppler target by receiver n is

sn,k = bn

M−1∑
m=0

amxm,k, (4.21)

where am and bn are elements of the transmit steering vector, a, and receive steering vector,

b, respectively. Note that these steering vectors depend on the angle to the target, θ0.

Without loss of generality, the following discussion assumes that a single receive chan-

nel (N = 1) is used. In this case, the signal observed will be proportional to

sk =

M−1∑
m=0

amxm,k. (4.22)

Recall that this is a linear combination of the transmitted signals, where the combination

is described by the elements of the transmit steering vector; hence, this linear combination

depends on the angle to the target. For example, in the case of a planar array of identical

elements, targets at broadside will lead to an effective waveform that is just the sum of the

MIMO waveforms.
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If these data samples are grouped into a length-K vector, x, then

s = XTa, (4.23)

where X is the M × K waveform matrix,

X ,


x0,0 · · · x0,K−1

...
. . .

...

xM−1,0 · · · xM−1,K−1

 . (4.24)

For a given target angle/transmit steering vector, a MIMO radar is equivalent to a single

waveform radar that transmits this signal, s. This allows the method for designing a mini-

mum ISR filter for a single waveform to be used to handle the MIMO case.

4.5 Numerical Results
4.5.1 The Kasami Codes

The Kasami codes [Kasami, 1966] are a set of binary sequences with good cross-correlation

functions. Their periodic correlation functions meet the Sarwate bound [Sarwate and Purs-

ley, 1980]. Let m be a non-negative, even integer. The small set of Kasami codes consists of

2m/2 binary sequences, and the length of each sequence is 2m−1. The sidelobe levels that re-

sult from minimum ISR filtering will clearly depend on the choice of waveforms. Although

there may be better codes, the Kasami codes will be sufficient to demonstrate the utility of

the proposed filtering approach and to compare performance with other approaches.

Because a large number of sequences with good cross-correlation properties are avail-

able for each code length, the Kasami codes are useful for spreading sequences in multi-

user communications systems. MIMO radar applications will likely require only a few

waveforms. For this analysis, the M = 3 case is the initial focus, and three arbitrarily-

selected Kasami codes are used. The autocorrelation of a Kasami code and its cross-

correlation with two other Kasami codes is shown in Figure 4.2. For a target at broadside,

the matched filter response is the sum of the three autocorrelation sequences and the six

cross-correlation sequences, which is shown in Figure 4.3.
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Figure 4.2: Autocorrelation sequence of a Kasami code and cross-correlation sequences of
it with two other Kasami codes of the same length.
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Figure 4.3: Matched filter response of three length-1023 Kasami codes for a broadside
target in the target angle/Doppler bin.
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4.5.2 Minimum ISR Filtering for Multiple Kasami Codes

While the matched filter response has decent peak-sidelobe performance, the total sidelobe

energy is high; the range ISR is near unity (-0.2 dB). The minimum ISR filter improves

this by more than 5 dB, as shown in Figure 4.4. This can be further improved by using a

longer filter. The result of designing a mismatched filter that is four times the length of the

waveform (L = 4K) is presented in Figure 4.5.

The method of [Hua and Abeysekera, 2013] seeks to minimize the sidelobe levels over

a certain range extent. In Figure 4.6, an example of minimizing the energy over the max-

imum number of sidelobes allowed by this method is presented. The proposed method

accomplishes the same nearly-zero sidelobe performance but with less SNR loss. In fact,

the proposed method allows more sidelobes to be effectively zero. This is shown in Fig-

ure 4.7, where the results are compared with the method of [Hua and Abeysekera, 2013],

which fails to provide nearly-zero sidelobe levels over the region of interest.

4.5.3 Experiments with Additional Transmitted Waveforms

The results above have focused on the case of three transmitted waveforms (M = 3) to

illustrate the ability of mismatched filters to dramatically improve the resulting ISR. In

Figure 4.8, cases with more waveforms being simultaneously transmitted are considered.

In addition to the Kasami codes, results for a set of randomly generated biphase codes are

shown.

A number of interesting observations can be made regarding the results of Figure 4.8.

First, observe that ISR performance is not significantly degraded by adding more wave-

forms. One exception to this, however, is going from the single-waveform case (M = 1)

to multiple waveforms (M > 1) for the Kasami codes. Each Kasami code has good auto-

correlation properties, so the ISR for M = 1 is usually better than a randomly generated

biphase code. However, the integrated sidelobes increase to about the level of a randomly

generated biphase code when multiple Kasami codes are linearly combined when M > 1.

Even though the Kasami codes have relatively low peak cross-correlation levels, they still
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Figure 4.4: Mismatched filter response of three Kasami codes for a broadside target in the
target angle/Doppler bin with L = K.
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Figure 4.5: Mismatched filter response of three Kasami codes for a broadside target in the
target angle/Doppler bin with L = 4K.
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Figure 4.6: Mismatched filter response where the sidelobes are optimized over K0 = 170
of the 1022 range bin on each side of the peak.
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Figure 4.8: ISR as a function of number of transmitted waveforms. Results for Kasami
codes (left) and random biphase codes (right) are presented.

provide poor ISR when the matched filter is used.

When considering Figure 4.8, one may be surprised to see that the ISR can apparently

be improved by transmitting additional waveforms. Recall that the these results consider a

single linear combination of the waveforms. While the ISR may be very slightly improved

(fractions of a dB) by transmitting an additional waveform, at some other angle, the ISR

will be degraded.

4.5.4 Tradeoffs Between ISR and SNR Loss

The proposed method for designing mismatched filters is based on solving the optimiza-

tion problem that minimizes the squared error between the filter response and an idealized

desired response. A closed-form solution was presented in (4.12), which involves the pseu-

doinverse. Instead of finding the optimal weights directly, the iterative approach of (4.15)

can be employed, which is based on the method of gradient descent. This will provide a

sequence of filters that provide increasingly better ISR. If the matched filter is used as a

starting point to initialize the algorithm, any refinements to the filter will result in SNR

loss. Results using the gradient descent algorithm are shown in Figures 4.9 and 4.10.
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Figure 4.9: Results of iterative improvement of filter for M = 3 with gradient descent.
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Figure 4.10: Results of iterative improvement of filter for M = 3 that minimizes K0 = 170
of the 1022 sidelobes on either side of the peak with gradient descent.
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The iterative approach is especially attractive for the case where nearly-zero sidelobes

are required over a limited region (K0 < K). This is clear from Figure 4.10, where arbi-

trarily low sidelobes are provided over the region of interest but with much less SNR loss

compared to the optimal filter. This is because this case results in a poorly conditioned

problem, which is amenable to an iterative solution. The iterative approach can provide

low ISR of −80 dB with an SNR loss of only about −1.5 dB. The direct approach, shown

in Figure 4.6, provides an extremely low ISR of −286 dB, but this comes at the cost of

significant SNR loss, Ls = −17 dB.

When sidelobes are optimized only over a limited number of range bins, the iterative ap-

proach can be used to provide acceptably low ISR with much less SNR loss than the direct

approach. In most radar applications, the system designer can decide at what level ISR is

no longer the limiting factor in radar performance, e.g., when noise from range sidelobes is

pushed below the noise floor set by some other source. Consequently, a principled decision

on when to stop the iteration can be made based on a well-defined maximum acceptable

ISR.

The performance of the gradient-descent based approach with the constrained-optimization

approach are presented in Figure 4.11 and Figure 4.12. As is expected, the constrained-

optimization approach provides improved SNR loss compared to the gradient-descent ap-

proach, but the improvement seems to be limited.

4.5.5 Robustness to Angle and Doppler Offsets

Mismatched filters are so successful in improving sidelobe performance because they are

designed specifically for the waveform, and their performance degrades when used with a

different waveform. The classic example of this is when an uncompensated Doppler shift

is applied to the waveform. While the mismatched filter response to the waveform may be

quite good, the sidelobe levels and SNR loss may be significantly degraded when applied

to the Doppler-shifted waveform. Results showing the degraded SNR and increase in ISR

with Doppler shift are shown in Figure 4.13. Note that SNR loss is computed relative to

74



−6.5 −6 −5.5 −5 −4.5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

ISR (dB)

S
N

R
 L

o
s
s
 (
d
B

)

K = 255, L = 255, K
0
 = 254

 

 

Gradient Descent
Constrained Optimization
Matched Filter
Minimum ISR

Figure 4.11: Results of iterative improvement of filter for M = 1 with gradient descent and
constrained optimization approaches.
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Figure 4.12: Results of iterative improvement of filter for M = 3 that minimizes K0 = 127
of the 255 sidelobes on either side of the peak.
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Figure 4.13: SNR loss and ISR as a function of Doppler offset.

the case of no Doppler offset for each filter. Also, the ISR is computed relative to the peak

of the zero-Doppler case because the concern is that the range sidelobes of Doppler-shifted

returns will interfere with returns from targets at the expected Doppler.

The filters could be made more robust to Doppler by optimizing the response over

some Doppler extent. For applications like SAR, however, this is probably not necessary.

The Doppler shift imposed by the motion of the platform can be removed, which may be

necessary for highly-squinted collections. Targets on the ground are likely not moving

fast enough towards or away from the radar to impose a significant Doppler shift for a

reasonable SAR pulse width.

Another concern is that the sidelobes may be degraded for off-angle targets. The pro-

posed approach is to design optimal filters that assume a particular target angle. As has

been shown, these filters provide improved performance when the target is in the center of

the beam that is formed. However, degraded performance is expected for targets at other

angles. An example is shown in Figure 4.14. Again, ISR is presented relative to the case of

no angle offset. Longer mismatched filters, which can provide improved ISR performance,

are more sensitive to angle offsets.
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Figure 4.14: ISR as a function of angle offset. The mismatched filters are designed for a
target at θ = 0. ISR is computed relative to the peak of the response of the target at θ = 0.
The transmit and receive arrays are uniform linear arrays composed of subarrays with a
10◦ beamwidth. The matched filter ISR trend matches the two-way subarray pattern. The
transmit aperture is three times as long as the receive aperture.
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While targets in the center of the beam will have low sidelobes, targets that are offset

in angle will have elevated sidelobes when the proposed mismatched filtering approach is

used. The proposed approach optimizes the response for a single target angle. This could be

made more robust to angle offset by optimizing the response over a range of target angles.

Indeed, this is the approach used by other MIMO mismatched filtering approaches, which

optimize over all angles. An avenue for future work is to explore optimizing over a range

of angles to provide good ISR over the entire beam.

Fortunately, radar systems have other methods for suppressing off-angle targets. Unlike

a phased array, a MIMO radar transmitting nominally orthogonal waveforms cannot exploit

array gain on transmit, but both systems can take advantage of array gain on receive. The

example of Figure 4.14 assumed a relatively small receive aperture. Because of this, off-

angle targets are not suppressed, and their range sidelobes will be high. Figure 4.15 presents

cases where the receive aperture is the same size as the transmit aperture and where a

larger receive aperture is used. The receive beampattern effectively suppresses the targets

sufficiently so that their sidelobes do not interfere with the desired target.

4.5.6 Cumulative ISR

Traditionally, the ISR has been the primary metric to capture the contribution of range side-

lobes to the multiplicative noise in a SAR image. The ISR is the sum of the contributions

of all of the sidelobes in the impulse response. As can be seen from the example of an

NRA in Figure 3.2, the ISR only captures the impact at the edge of the NRA closest to

a high-return area. The impact of sidelobes decreases further into the NRA. This can be

quantified by adding the contribution of the appropriate sidelobes. An example is shown in

Figure 4.16. The cumulative ISR is shown as a function of range into the NRA. Note that

this assumes that this only includes the sidelobes from one side of the NRA. The matched

filter responses are the same as those highlighted by the superimposed lines in Figure 3.2.
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Figure 4.15: ISR as a function of angle offset with larger receive apertures. In the left
figure, the transmit and receive apertures are the same size, and in the right figure, the
receive aperture is three times the size as the transmit aperture. The receive aperture is able
to suppress off-angle targets thereby mitigating their poor sidelobe performance.
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Figure 4.16: The cumulative ISR for the matched filter and two mismatched filters using
three Kasami codes (M = 3).
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4.6 Summary

A new method for designing filters that control range sidelobes when multiple waveforms

are simultaneously transmitted, as in MIMO radar, has been presented. These filters mini-

mize the ISR, which is critical for applications such as MIMO SAR. This technique allows

arbitrarily long filters to be applied to aggressively control the sidelobes. It can also be

modified to control sidelobes over only a specified region in range. The proposed method

outperforms other techniques presented in the literature by jointly applying range com-

pression and transmit beamforming rather than applying these operations in a separable

manner.

An iterative approach to filter design was also presented, which suggests the poten-

tial for trading off ISR and SNR loss. It also allows numerical instabilities to be avoided

when designing a filter that optimizes sidelobes over a limited range extent. This simple,

gradient-descent based iterative approach provides similar performance to a more compli-

cated constrained-optimization approach that was also introduced.

The results described here focused on a particular angle/Doppler bin, i.e., the filter

is optimized for the target angle and Doppler frequency. Like all filter optimization ap-

proaches in radar, performance will degrade if a significant, uncompensated Doppler offset

is present. While the antenna will provide some suppression of off-angle targets, it is ex-

pected that sidelobe performance may degrade for sidelobe targets. The proposed algorithm

can be extended to optimize over angle and/or Doppler in a natural way analogous to the

method for optimizing over a set of range bins. This is a topic for future work.
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CHAPTER 5

RECURRENT AND MULTICHANNEL SAMPLING

5.1 Overview

Numerous versions of the sampling theorem have been proposed over the years that state

conditions under which a signal can be perfectly reconstructed from a sampled version

of itself. This fact, along with revolutionary advances in computing, enabled the current

ubiquity of digital signal processing. These sampling theorems provide assurance that if

a signal is sampled at a sufficiently high rate relative to the bandwidth of the signal, then

the signal can be perfectly reconstructed from these samples. However, no practical signal

is perfectly bandlimited, and degradation from aliasing is inevitable. This chapter presents

a method for quantifying this impact in a number of interesting cases. These include the

general case of multichannel sampling and a special case of nonuniform sampling called

recurrent sampling. Sampling of deterministic signals as well as random processes are

considered.

The sampling theorem discussed by Whittaker [Whittaker, 1915], Nyquist [Nyquist,

1928], and Shannon [Shannon, 1949] asserts that a bandlimited signal can be perfectly

reconstructed from a set of uniformly-spaced samples if the sampling rate is at least twice

the highest frequency of the signal. Higgins provides conditions on the sampling instants

under which a signal can be recovered from nonuniform samples [Higgins, 1976]. Lloyd

extended the sampling theorem to the case of wide-sense stationary (WSS) random process

[Lloyd, 1959] where the spectral content of the random process is described by its power

spectral density (PSD). Lee develops a sampling theorem for nonstationary processes [Lee,

1978], which is based on the definition of a bandlimited nonstationary random process

of Zakai [Zakai, 1965]. Extensions of the sampling theorem to the case of nonuniform

sampling have also been provided [Yen, 1956].

These versions of the sampling theorem are all based on the assumption of a perfectly
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bandlimited signal. This chapter analyzes the consequences of applying the reconstruction

formulas derived for bandlimited signals to signals that are not bandlimited. The case of

uniformly sampling a deterministic signal is understood by the familiar concept of aliasing,

where a sinusoid at a frequency higher than the sampling rate becomes indistinguishable

from its aliased frequency. A similar result is presented for the case of recurrent sampling

where the aliases are weighted depending on the spacing of the samples within a recurrence.

5.2 Aliasing in Uniform and Recurrent Sampling

Before turning to the case of a random process, sampling of a deterministic signal is con-

sidered. The notion of recurrent sampling is introduced, and it is compared to the case of

uniform sampling.

5.2.1 The Spectrum of a Sampled Deterministic Signal

Suppose that the signal, x (t), is sampled at a set of instants, {Tn}, to generate a discrete-

time sequence. Practically, sampling converts the continuous-time signal into a sequence

of samples. Conceptually, however, the process of sampling is equivalent to multiplying

the continuous-time signal, x (t), by a sampling signal, s (t), which is a collection of Dirac

delta functions located at the sampling instants,

s (t) ,
∞∑

n=−∞

δ (t − Tn) . (5.1)

The resulting signal after sampling is

x̃ (t) , x (t) s (t) =

∞∑
n=−∞

x (Tn) δ (t − Tn) . (5.2)

Because the sampled signal is the product of the signal, x (t), and the sampling signal, s (t),

its spectrum is the convolution of their Fourier transforms,

X̃ (ω) =
1

2π

∫ ∞

−∞

S (ξ) X (ω − ξ) dξ, (5.3)

where X (ω) and S (ω) are the spectra of the signal and the sampling signal respectively.

The convolution in (5.3) provides the interpretation that the action of sampling a signal
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alters the signal’s spectrum, X (ω), by passing it through a system with a frequency response

corresponding to the spectrum of the sampling signal, S (ω). An alternate interpretation is

that the spectrum of the sampled signal is the nonuniform discrete-time Fourier transform

(DTFT) of the sampled signal,

X̃ (ω) =

∞∑
n=−∞

x (Tn) e−iωTn . (5.4)

5.2.2 Uniform and Recurrent Sampling Schemes

In uniform sampling, a signal is sampled at a regular interval, T . Equivalently, the signal

is sampled at a constant rate, 1/T . Recurrent sampling is a generalization of uniform

sampling where sets of N samples are collected at a uniform rate. While these N samples

need not be uniformly spaced, each of these samples recurs at the same uniform rate, 1/T .

The sampling instants for uniform and recurrent sampling can be written as

Uniform: Tm , mT for m = 0,±1,±2, . . . (5.5)

Recurrent: Tnm , mT + Tn for m = 0,±1,±2, . . . and n = 1, . . . ,N, (5.6)

where T1, . . . ,TN are the samples collected during the recurrence corresponding to m = 0.

Uniform and recurrent sampling are illustrated in Figure 5.1.

Uniform Sampling Recurrent Sampling

t

s(t)

t

s(t)

T0 T1 T2

T

T00 T01

T
T1 T2

Tm=mT Tnm=mT+Tn

Figure 5.1: Sampling functions, s (t), for uniform and recurrent sampling. In uniform
sampling, all samples are spaced by an interval, T . In recurrent sampling, an additional
M − 1 samples are collected for each uniform sample.

If the samples within one recurrence are uniformly spaced, i.e., Tn = (n − 1) T0 for

some interval, T0, then there is a particular recurrence interval, T , where recurrent sam-

pling reduces to uniform sampling. This is the case when T0 = T/N, which is equivalent
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to uniformly sampling the signal at a rate, N/T . Recurrent sampling trivially reduces to

uniform sampling for N = 1.

If the samples within a recurrence are not uniformly spaced, or if they are uniformly

spaced but with T0,T/N, then the recurrent sampling will be nonuniform. To quantify

this deviation from uniform sampling, define the average spacing of the samples within a

recurrence as

T̄0 ,
1

N − 1

N−1∑
n=1

(Tn+1 − Tn) . (5.7)

The uniformity, κ, of a recurrent sampling scheme is found by comparing the average spac-

ing, T̄0, to the spacing required for uniform sampling, T/N, which yields

κ ,
T̄0

T/N
. (5.8)

For the trivial case of N = 1, the average spacing, T̄0, is not well defined, but such sampling

is always uniform so that κ = 1 by definition for this case. Examples of recurrent sampling

with varying degrees of uniformity are presented in Figure 5.2.

κ = 1.0

κ = 0.5

κ = 1.5

Figure 5.2: Varying uniformity, κ, in recurrent sampling for N = 3. Note that κ = 1.5 is a
degenerate case where two samples coincide for each recurrence.

5.2.3 Uniform and Recurrent Sampling of a Deterministic Signal

The uniform sampling signal is the sum of evenly spaced Dirac delta functions, which is

called an impulse train or a Dirac comb. The spectrum of the uniform sampling signal

is also an impulse train. In Appendix B, it is shown that the spectrum of the recurrent

sampling signal is also a set of impulses but with a weighting that depends on the spacing
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Uniform Recurrent

Sampling Signal, s (t) T
∞∑

m=−∞

δ (t − mT ) T
N

N∑
n=1

∞∑
m=−∞

δ (t − mT − Tn)

Sampling Signal Spectrum, S (ω) 2π
∞∑

m=−∞

δ
(
ω + 2π

T m
)

2π
∞∑

m=−∞

αmδ
(
ω + 2π

T m
)

Spectrum of Sampled Signal, X̃ (ω)
∞∑

m=−∞

X
(
ω + 2π

T m
) ∞∑

m=−∞

αmX
(
ω + 2π

T m
)

Table 5.1: Sampling signals, spectra of sampling signals, and spectra of sampled signals
for uniform and recurrent sampling. The weights, αm, for recurrent sampling are given in
(5.9)

of the samples within a recurrence,

αm ,
1
N

N∑
n=1

exp
{

i
2πm

T
Tn

}
. (5.9)

The sampling signals and their corresponding spectra are presented in Table 5.1.

5.3 Recurrent Sampling of a WSS Random Process

A zero-mean WSS random process is characterized by its power spectral density (PSD). In

this section, the PSD of a sampled random process is related to the PSD of the continuous-

time random process. The definition of the PSD is briefly reviewed before proceeding to

the case of sampling.

5.3.1 The PSD of a WSS Random Process

Let x (t) be a zero-mean, wide-sense stationary (WSS) random process. In general, the

Fourier transform of a realization of a random process does not converge, but this problem

can be remedied by only considering the signal over an interval of a finite duration, D.

Define this windowed signal by

xD (t) , x (t) rect
( t
D

)
, (5.10)

where rect (t) is the rectangular function that is zero for t < (−1/2, 1/2), and let XD (ω) be

the Fourier transform of the windowed signal. PSD of the random process is the average
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power of this spectrum as D is allowed to grow arbitrarily large,

Px (ω) , lim
D→∞

1
D

E
[
|XD (ω)|2

]
. (5.11)

The Wiener-Khinchin theorem asserts that the PSD of a WSS random process is the Fourier

transform of its autocorrelation function, Rx (τ), which is defined as

Rx (τ) , E [x (t) x∗ (t − τ)] . (5.12)

Because the random process is WSS, this is independent of t.

5.3.2 The PSD of a Recurrently Sampled WSS Random Process

Suppose that the WSS random process, x (t), is sampled at instants, {Tn}. The resulting

discrete-time random process, x̃ [n] is not generally WSS, so its PSD is not the discrete-

time Fourier transform (DTFT) of its autocorrelation sequence. However, the nonuniform

DTFT of (5.4) can still be computed. In the following, the formulation of the spectrum of

a recurrently sampled signal in Table 5.1 is used with the definition of the PSD given by

(5.11) to find the PSD of a recurrently sampled WSS random process.

The spectrum of the truncated random process after recurrent sampling is

X̃D (ω) ,
∫ D/2

−D/2
x̃ (t) e−iωt dt =

∞∑
−∞

αmXD

(
ω +

2π
T

m
)
, (5.13)

where XD (ω) is the spectrum of the truncated random process, xD (t), defined in (5.10).

In general, a realization of the random process, x (t), will not be absolutely integrable, but

it is assumed that |x̃ (t)|2 < ∞ for all t so that the series converges because the integral is

computed over a interval of finite length, D.

The power spectrum corresponding to (5.13) is

∣∣∣X̃D (ω)
∣∣∣2 =

∞∑
m=−∞

∞∑
m′=−∞

αmα
∗
m′XD

(
ω +

2π
T

m
)

X∗D

(
ω +

2π
T

m′
)
, (5.14)

and the average periodogram is

1
D

E
[∣∣∣X̃D (ω)

∣∣∣2] =

∞∑
m=−∞

∞∑
m′=−∞

αmα
∗
m′

1
D

E
[
XD

(
ω +

2π
T

m
)

X∗D

(
ω +

2π
T

m′
)]
. (5.15)
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To determine the PSD, the limit as the length of the interval, D, increases arbitrarily in

(5.15),

Px̃ (ω) = lim
D→∞

1
D

∞∑
m=−∞

∞∑
m′=−∞

αmα
∗
m′E

[
XD

(
ω +

2π
T

m
)

X∗D

(
ω +

2π
T

m′
)]

=

∞∑
m=−∞

∞∑
m′=−∞

αmα
∗
m′ lim

D→∞

[
1
D

E
[
XD

(
ω +

2π
T

m
)

X∗D

(
ω +

2π
T

m′
)]]

.

(5.16)

Interchanging the order of the infinite summations and the limiting operation is justified

by appealing to Lebesgue’s dominated convergence theorem. Because αmα
∗
m′ ≤ |αm| ≤ 1,

a suitable dominating function, is gm = Px (ω + 2πm/T ). In (A.15), it was shown that the

summands with m,m′ are equal to zero. The PSD of a recurrently sampled WSS random

process is

Px̃ (ω) =

∞∑
m=−∞

|αm|
2 Px

(
ω +

2π
T

m
)
, (5.17)

where the weights, αm, are as given in (5.9). Compare the PSD of a recurrently sampled

random process, which is given by (5.17) to the spectrum of a recurrently sampled de-

terministic signal in Table 5.1. In both cases, the aliased are weighted according to the

weights, αm. Because the PSD is related to the power spectrum, the aliases are weighted

by the power terms, |αm|
2, rather than the generally complex-valued weights, αm.

5.4 Multichannel Sampling and Reconstruction

The minimum sampling rate that permits reconstruction of a bandlimited signal is called

the Nyquist rate. A similar result exists for a multichannel system where the signal is

passed through N linear systems and the outputs are uniformly sampled at a rate that is

slower than the Nyquist rate by a factor of N [Papoulis, 1977a]. This generalized sampling

theorem asserts that a bandlimited signal can be perfectly reconstructed from its samples

as long as the average sampling rate is sufficiently high, which suggests that reconstruction

error is independent of the structure of the sampling. In the following, it will be shown that

this is only a valid conclusion if the signal is perfectly bandlimited.

A multichannel sampling and reconstruction scheme is illustrated in Figure 5.3. In
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[Brown, 1981], a general method for determining the frequency responses of the recon-

struction filters, Gn (ω), in terms of the channel frequency responses, Fn (ω), is derived that

guarantees perfect reconstruction of a suitably bandlimited signal.

Recurrent sampling can be considered as a special case of this multichannel sampling

structure where Fn (ω) = e−iωTn . The general method of [Brown, 1981] provides a nu-

merical method for determining the frequency responses of the reconstruction filters for

a general multichannel sampling system, i.e., for arbitrary Fn (ω) in Figure 5.3. In [Yen,

1956], a general closed-form interpolation formula is provided for reconstruction from re-

current samples. This method was extended in [Eldar and Oppenheim, 2000] to implement

this reconstruction as a filterbank using the same structure as [Brown, 1981].

In this section, a model is first derived for the reconstructed signal given the frequency

response of the N reconstruction filters. Then, the conditions that the frequency responses

must satisfy to provide perfect reconstruction of an appropriately band-limited signal are

derived. This follows the development of [Brown, 1981]. After reviewing multichannel

sampling and reconstruction, a method for calculating the impact of aliasing is presented.

The closed-form expressions for reconstruction from recurrent samples of [Yen, 1956] and

[Eldar and Oppenheim, 2000] are also discussed and placed in the general framework of

[Brown, 1981].

5.4.1 Signal Model

In multichannel sampling, the continuous-time signal, x (t), is not directly sampled, but

instead the responses of N linear time-invariant systems to the signal are sampled. To

reconstruct x (t) from samples of the system outputs, yn (t), a (digital) reconstruction filter

is applied to each channel output, and the results are summed. The process of multichannel

sampling and reconstruction is presented in Figure 5.3. In the following, a model for the

spectrum of the reconstructed signal is derived.

If fn (t) is the impulse response of a system for n = 1, 2, . . . ,N, then the output of each
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G1(ω)
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z[m]
y1(t)

y2(t)

yN(t)

Figure 5.3: Multichannel sampling and reconstruction. The outputs of N linear time-
invariant systems, {Fn (ω)}, are sampled a rate, 1/T . The samples from channel n are
processed by reconstruction filters, {Gn (ω)}. The results are summed to provide the recon-
structed signal.

system, yn (t), is the convolution of the input signal and the system impulse response,

yn (t) , ( fn ∗ x) (t) =

∫ ∞

−∞

fn (τ) x (t − τ) dτ. (5.18)

The output of each system is sampled simultaneously at the same rate, 1/T . The collected

samples are

yn [m] , yn (mT ) (5.19)

for n = 1, . . . ,N and m = 0,±1,±2, . . . where T is the sampling interval.

To reconstruct the input signal, x (t), from the samples of (5.19), the output of each

system will be processed by a reconstruction filter and the results summed. The sampled

sequence, yn [m], will be upsampled by a factor of N before being digitally processed by a

reconstruction filter with a frequency response, Gn (ω). These reconstruction filters will be

implemented digitally at a sampling rate, N/T . Because of this, the frequency response of

the reconstruction filters will be 2πN/T -periodic.

The output of each reconstruction filter will be the discrete convolution of an upsampled

version of the sampled signal and the samples of the impulse response, gn (t). These will

be summed to provide the reconstructed signal,

z [m] =

N∑
n=1

∞∑
k=−∞

yn (kT ) gn

(
(m − kN)

T
N

)
. (5.20)
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The spectrum of the reconstructed signal is

Z (ω) ,
∞∑

m=−∞

z [m] e−iωmT/N =

N∑
n=1

Gn (ω)
∞∑

k=−∞

yn (kT ) e−iωTk, (5.21)

where Gn (ω) is the frequency response of the reconstruction filter applied to the output of

system n,

Gn (ω) ,
∞∑

m=−∞

g [m] e−iωmT/N , (5.22)

which is periodic with period 2πN/T . The spectrum of the reconstructed signal, Z (ω), is

also 2πN/T -periodic.

By Poisson’s summation formula, the discrete Fourier transform of a uniformly sam-

pled signal is equivalent to an aliased version of the Fourier transform of the original signal,

∞∑
m=−∞

x (mT ) e−imTω =
1
T

∞∑
m=−∞

X (ω + 2πm/T ) , (5.23)

which allows the spectrum of (5.21) to be rewritten as

Z (ω) =
1
T

N∑
n=1

Gn (ω)
∞∑

k=−∞

Yn

(
ω +

2π
T

k
)
, (5.24)

where Yn (ω) is the spectrum of each channel. These spectra can be written as the product

of the spectrum of the input signal, X (ω), and the frequency response of each channel,

Fn (ω),

Yn (ω) = X (ω) Fn (ω) . (5.25)

Substituting (5.25) into (5.24) yields

Z (ω) =
1
T

∞∑
k=−∞

 N∑
n=1

Gn (ω) Fn

(
ω +

2π
T

k
) X

(
ω +

2π
T

k
)
. (5.26)

The form of the reconstructed signal spectrum in (5.26) motivates the definition of

Hk (ω) ,
N∑

n=1

Gn (ω) Fn

(
ω +

2π
T

k
)
, (5.27)

so that (5.26) becomes

Z (ω) =
1
T

∞∑
k=−∞

Hk (ω) X
(
ω +

2π
T

k
)
. (5.28)
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The frequency response, Hk (ω) is applied to a frequency that is offset from the recon-

structed frequency, ω, by (2π/T ) k.

In the above derivation, the order of summation of two infinite series was interchanged.

This is permitted because under the condition that all of the series are absolutely convergent

for reasonable signals of interest. Even if the input signal, x (t), is not absolutely integrable,

it is assumed that the impulse response of each channel is suitably well-behaved so that each

yn [m] is absolutely summable. This guarantees the absolute convergence of the series in

(5.20), which ensures the absolute convergence of the series in (5.21).

5.4.2 Multichannel Reconstruction Filter Derivation

Above, the spectrum of the reconstructed signal, given by (5.28), was derived in terms of

the overall frequency responses, Hk (ω), which are given by (5.27). From this, observe

that Z (ω) = X (ω) if H0 (ω) = T and Hk (ω) = 0 for k , 0. To eliminate reconstruction

error, the N reconstruction filters, Gn (ω), should be designed to satisfy this condition. In

general, this is impossible if the signal spectrum, X (ω), is nonzero over unbounded support,

which would require infinitely-many constraints to be satisfied with finitely-many degrees

of freedom. However, if X (ω) is appropriately bandlimited, then these N reconstruction

filters will be sufficient.

The output of each system is sampled at a rate of 1/T samples per second. Because

there are N systems, the effective sampling rate is N/T samples per second. Consequently,

a bandwidth of

β , N/T (5.29)

can be unambiguously reconstructed from the samples. Suppose that the bandwidth of x (t)

is 2πβ so that X (ω) = 0 for ω < Ω with

Ω , {ω : −πβ ≤ ω < πβ} . (5.30)

Even though the channel responses, Fn (ω), may be nonzero over any range of fre-

quencies, ω, only frequencies ω ∈ Ω are important because the signal passing through the
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channels is bandlimited. Without loss of generality, assume that Fn (ω) = 0 for ω < Ω.

Define the 2πβ-periodic extension of Fn (ω), which is denoted F̄n (ω), i.e., F̄n (ω) =

Fn (ω) for 0 ≤ ω < 2πβ, and F̄n (ω) is 2πβ-periodic. Similarly, denote the 2πβ-periodic

extension of the signal spectrum, X (ω), by X̄ (ω). Each reconstruction filter is a digital

filter that is implemented at a rate of β, so its frequency response, Gn (ω), is naturally 2πβ-

periodic.

Write the periodic extension of the reconstructed spectrum for 0 ≤ ω < 2πβ in (5.28)

as

Z̄ (ω) =
1
T

H̄0X̄ (ω) +
1
T

N−1∑
k=1

H̄k (ω) X̄
(
ω +

2πβ
N

m
)
, (5.31)

where H̄k is the periodic extension of the frequency response in (5.27), which can be written

as

H̄k (ω) =

N∑
n=1

Gn (ω) F̄n

(
ω +

2πβ
N

k
)
. (5.32)

There is no reconstruction error if Z̄ (ω) = Z (ω) for all ω. Because Z̄ (ω) is 2πβ-periodic,

this equivalence must only be established over an interval of length 2πβ. In fact, any interval

of that length will be sufficient.

From (5.31), observe that the reconstructed spectrum satisfies this requirement if

H̄k (ω) =


T, for k = 0

0, for k = 1, 2, . . . ,N − 1
(5.33)

for 0 ≤ ω < 2πβ. This is accomplished if the frequency responses of the reconstruction

filters satisfy 
N∑

n=1
Gn (ω) F̄n (ω) = T

N∑
n=1

Gn (ω) F̄n (ω + 2πβk/N) = 0 for k = 1, 2, . . . ,N − 1.
(5.34)

This provides N equations that could be solved for the N desired filters for each frequency,

ω. The equations can be written as a linear system, Ax = b where the N ×N system matrix
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is

A (ω) ,



F̄1 (ω) F̄2 (ω) · · · F̄N (ω)

F̄1 (ω + 2πβ/N) F̄2 (ω + 2πβ/N) · · · F̄N (ω + 2πβ/N)
...

. . .
...

F̄1 (ω + 2πβ (N − 1) /N) F̄2 (ω + 2πβ (N − 1) /N) · · · F̄N (ω + 2πβ (N − 1) /N)


(5.35)

and the length-N vector, b, and the length-N vector of frequency responses, x, are

b ,



T

0
...

0


, x (ω) ,



G1 (ω)

G2 (ω)
...

GN (ω)


. (5.36)

This process provides the frequency responses of the reconstruction filters, {Gn (ω)} for

frequencies with ω ∈
[
0, 2πβ).

5.4.3 Aliasing in Reconstruction from Multichannel Sampling

The above derivation was based on the assumption that the signal, x (t), was bandlimited.

Now, consider the impact of using these reconstruction filters when this assumption is

invalid. To accomplish this, the input signal, x (t), will be modeld as WSS random process

with a PSD, Px (ω), that is not necessarily bandlimited. This development will use some

facts established in Appendix A, which includes results on WSS random processes and

linear systems. The reconstruction filters are assumed to be designed to unambiguously

recover signals that are bandlimited to ω ∈ Ω, which was defined in (5.30).

To quantify the impact of aliasing, the PSD of the reconstructed signal, z (t), will be

computed given the PSD of the input signal, x (t). To accomplish this, the cross spectral

densities (CSD) of each reconstruction filter’s output will need to be computed.

The CSD of the signal from two channels, yn (t) and yn′ (t), is related to the input PSD,

Px (ω), and the channel frequency responses, Fn (ω) and Fn′ (ω), by

Pynyn′
(ω) = F∗n (ω) Fn′ (ω) Px (ω) , (5.37)
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and, after sampling and applying the reconstruction filters, the CSD of channel n and chan-

nel n′ is

Pznzn′
(ω) =

1
T

∞∑
k=−∞

G∗n (ω) Gn′ (ω) Pynyn′

(
ω +

2π
T

k
)
, (5.38)

which is 2πβ-periodic. After the N channels are summed, the PSD of the reconstructed

signal is found to be

Pz (ω) =

N∑
n=1

N∑
n′=1

Pznzn′
(ω)

=
1
T

∞∑
k=−∞

∣∣∣∣∣∣∣
N∑

n=1

Gn (ω) Fn

(
ω +

2π
T

k
)∣∣∣∣∣∣∣

2

Px

(
ω +

2π
T

k
)
.

(5.39)

As in the deterministic case, this can be partitioned into the desired response and the con-

tributions of the undesired aliases,

Pz (ω) =
1
T
|H0 (ω)|2 Px (ω) +

1
T

∞∑
k=−∞
k,0

|Hk (ω)|2 Px

(
ω +

2π
T

k
)

(5.40)

for ω ∈ Ω. If the filters were successfully designed to reconstruct a signal that is bandlim-

ited to ω ∈ Ω, then H0 (ω) = T and H1 (ω) , . . . ,HN−1 (ω) = 0 for all ω ∈ Ω. In this case,

the PSD of the reconstructed signal is

Pz (ω) = T Px (ω) +
1
T

∞∑
k=−∞
k,0

|Hk (ω)|2 Px

(
ω +

2π
T

k
)
. (5.41)

The average power of a random process is the integral of the PSD. In general, the alias-

to-signal ratio (ASR) for a signal that is reconstructed over an interval, Ω, is

ASR ,

∞∑
k=−∞
k,0

∫
Ω
|Hk (ω)|2 Px

(
ω + 2π

T k
)

dω

∫
Ω
|H0 (ω)|2 Px (ω) dω

. (5.42)

5.4.4 Special Case: Recurrent Sampling

Recurrent sampling is a special case of multichannel sampling, so the general method for

deriving reconstruction filters of [Brown, 1981], which was described above, can also be

used. A few results from the literature are briefly reviewed to show their relationship.
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It is well-known that a uniformly-sampled, bandlimited signal can be reconstructed by

using a sinc interpolator. A related result is an interpolation formula for a recurrently-

sampled signal that employs a modified sinc interpolator [Yen, 1956]. The reconstruction

formula of x (t) from its recurrent samples, {x [n,m]}, is

x̂ (t) =

∞∑
m=−∞

N−1∑
n=0

x [n,m] Ψnm (t) (5.43)

where the interpolation kernel for a sample point, t, is

Ψnm (t) ,
(−1)mN

N−1∏
n′=0
n′,n

sin (π (Tn − Tn′) /T )

N−1∏
n′=0

sin (π (t − Tn′) /T )

π (t − (Tn + mT )) /T
(5.44)

with

an ,
1

N−1∏
n′=0
n′,n

sin (π (Tn − Tn′) /T )
(5.45)

for n = 0, 1, . . . ,N − 1.

Rewrite (5.44) as

Ψnm (t) = ansinc
((

t − τn,m
)
/T

)N−1∏
n′=0
n′,n

sin
(
π
(
t − τn′,m

)
/T

)
(5.46)

where sinc (x) , sin (πx) / (πx). Writing the recurrent-sampling interpolation kernel as

(5.46) highlights its relationship to the sinc interpolator. Indeed, when recurrent sampling

reduces to uniform sampling, the kernel of (5.46) reduces to the standard sinc interpolator

for uniform samples.

The interpolation filter of [Yen, 1956] for a recurrently-sampled signal was imple-

mented as a filterbank in [Eldar and Oppenheim, 2000]. The reconstruction of (5.43) can

be written as

x̂ (t) =

N−1∑
n=0

(
sn ∗ hn

)
(t) (5.47)

where sn (t) is the sampled signal from channel n,

sn (t) ,
∞∑

m=−∞

x [n,m] δ
(
t − τn,m

)
, (5.48)
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and hn (t) is the impulse response of the reconstruction filter applied to channel n,

hn (t) , ansinc
(
t/T

)N−1∏
n′=0
n′,n

sin
(
π (t + Tn − Tn′) /T

)
(5.49)

While the method of [Brown, 1981] provides a method for generating reconstruction fil-

ters for a general multichannel sampling problem, (5.49) is a closed form for the impulse

response of the same reconstruction filter.

5.5 Summary

A rigorous method for calculating the impact of aliasing when sampling a WSS random

process has been developed. This approach naturally handles uniform sampling as well as

recurrent sampling. While the sampling theorem states that one can perfectly reconstruct

a bandlimited signal from its samples, this result allows the aliasing that occurs when this

assumption is not valid to be quantified.
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CHAPTER 6

ALIASING IN MULTICHANNEL SAR/SAS

6.1 Overview

A synthetic aperture imaging system provides a sampled, discrete-space representation of

the desired continuous-space aperture. The sampling theorem applies to spatial sampling

just as it does to temporal, and the impact of aliases will inevitably degrade image qual-

ity. Their impact is quantified by the azimuth ambiguity-to-signal ratio (AASR), which is

the ratio of the power within an image pixel from the undesired ambiguous returns to the

desired return. In many systems, this term is the dominant contribution to the system mul-

tiplicative noise ratio (MNR) [Carrara et al., 1995], which provides a fundamental limit on

the achievable image quality. Note that range ambiguities are also likely to be present be-

cause synthetic aperture imaging systems use a pulsed waveform, but the present discussion

is limited to azimuth ambiguities that result from along-track sampling.

To understand the operation of synthetic aperture radar (SAR) and synthetic aperture

sonar (SAS) systems, one can consider the problem in the following progression [Show-

man, 2010].

SAR/SAS as array processing The first approach is to consider the synthetic aperture

simply as a sampled version of the desired large physical aperture. This idea provides

a justification of the fact that synthetic aperture techniques can provide improved an-

gular resolution and provides a bound on the required along-track sampling interval.

SAR/SAS as a Doppler processor Early SAR systems extended standard radar techniques

of measuring range and Doppler to coarse imaging modes based on the observation

that the Doppler frequency of a stationary target observed from a moving platform

is related to the angle from the platform to the target. However, this simplified sig-

nal model becomes increasingly inaccurate as the resolution is improved. A more
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sophisticated model is required to allow the design of effective image formation pro-

cessors.

SAR/SAS as a general inverse problem (spatial-frequency sampling) The general ap-

proach allows the possibility of nonuniform sampling in the spatial frequency do-

main. Typically, the spatial frequency samples can be interpolated onto a uniform

grid, which allows an image to be efficiently formed with the use of the fast Fourier

transform (FFT). This motivates algorithms like the polar-format algorithm for spot-

light and the range migration algorithm for stripmap.

These three approaches provide three increasingly accurate methods for understanding the

along-track sampling requirements of synthetic aperture imaging and calculating the impact

of ambiguous returns on image quality.

If the synthetic aperture is considered simply as an array of along-track samples, then a

spatial sample must be collected at half-wavelength spacing, λ/2, to ensure Nyquist sam-

pling if an omnidirectional beampattern is used for each pulse. If a directional element

with an along-track extent, D, is used for transmit and receive, this spacing can be relaxed

to D/2. The array processing interpretation of SAR is useful in understanding the worst-

case along-track sampling requirements, but it leads to the so-called myth of the minimum

SAR antenna constraint [Freeman et al., 2000].

The justification for the standard methods of calculating AASR is the Doppler-based

approach to understanding synthetic aperture imaging. The idea is that a moving platform

uses a number of pulses to construct Doppler filters where each Doppler frequency cor-

responds to a target at a particular azimuth. Because a signal with a particular Doppler

frequency is sampled at a rate corresponding to the pulse repetition frequency (PRF), alias-

ing will occur for targets with a Doppler frequency greater than the PRF. This process is

referred to as slow-time sampling.

A Doppler-based method for calculating the AASR has been discussed previously in

the SAR literature [Curlander and McDonough, 1991]. In [Bayma and McInnes, 1975], a
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method is provided for quantifying the impact of range and Doppler ambiguities, which de-

scribed the relationships between antenna size, area-coverage rate, and ASR. This analysis

was extended to generate curves of AASR as a function of along-track sampling rate (rela-

tive to antenna length) and of processed Doppler bandwidth/cross-range resolution [Mehlis,

1980]. A discussion in the context of SAS was presented in [Hawkins, 1996]. Note that all

of these works have focused on stripmap synthetic aperture imaging, and they also assume

that the along-track samples are uniformly spaced.

In the following, a number of contributions are presented. First, the standard Doppler-

based method for stripmap AASR calculation is rigorously developed based on the concept

of sampling a wide-sense stationary (WSS) random process. This method is used to calcu-

late AASR for both stripmap and spotlight modes. A set of numerical results is presented

to illustrate the utility of these methods in SAR/SAS system design and performance pre-

diction. This analysis includes multichannel synthetic aperture imaging systems including

the possibility of nonuniform along-track sampling.

6.2 Doppler-Based AASR Calculation

Let x (t) be the slow-time signal for a particular range bin and neglect any range-walk

effects. For distributed clutter, this can be treated as a zero-mean, WSS random process

with a power spectral density (PSD), Px (ω). For convenience, define the Doppler power

spectrum, P ( fD), with fD , ω/ (2π). This PSD describes the average power of signals with

a Doppler frequency, fD, which is in units of cycles per second.

Because the terrain is assumed to be a distributed target that contains an arbitrary num-

ber of unresolved targets, the slow-time signal should be temporally white. However, be-

cause the signal is observed using a directional antenna, which introduces correlation into

the slow-time signal, the Doppler PSD is proportional to the two-way beampattern. An

illustration of a simplified two-dimensional stripmap geometry is presented in Figure 6.1.

The angle, θ, characterizes the point within the integration angle relative to the indicated

99



θ

velocity

a
n
t
e
n
n
a

θ

Figure 6.1: Two-dimensional stripmap collection geometry.

point. The point, θ = 0, corresponds to the point of closest approach.

6.2.1 SAR as Doppler Processing

A simplified interpretation of SAR image formation processing is that it can resolve targets

in azimuth by applying Doppler processing. For coarse cross-range resolutions, an im-

age of acceptable quality may be formed using Doppler processing, but more sophisticated

processing, such as the polar format algorithm, must be employed as the resolution im-

proves. Still, thinking of SAR image formation as Doppler processing is a useful concept

for understanding the impact of azimuth ambiguities on SAR image quality.

By transmitting a single pulse, a radar is able to measure the range to a target by calcu-

lating the time between transmission and reception of the pulse. By transmitting multiple

pulses, a stationary radar can also determine the velocity of a moving target by measuring

the rate of change in phase of the return over a number of pulses, which is proportional to

the change in range. The rate of phase change is called the Doppler frequency, which is

related to the target velocity by

fD =
2vr

λ
, (6.1)

where λ is the radar wavelength, and vr is the radial velocity of the target, i.e., the compo-

nent of the target velocity vector in the direction of the radar. The radar cannot measure the

tangential component of the target velocity vector because it does not result in a change in
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range to the target.

In synthetic aperture imaging, it is assumed that the targets are stationary and the radar

is moving. Consider the two-dimensional geometry of Figure 6.1. If v is the platform

velocity, then the Doppler frequency of a return from a stationary target with an angle, θ, is

fD =
2v
λ

sin θ. (6.2)

Because of this relationship between angle and Doppler, the angle to a target can be deter-

mined by applying Doppler processing. A range-Doppler map can be formed by applying

the discrete Fourier transform across the pulses of range compressed data. By rearranging

(6.2), Doppler frequency can be mapped to angle by

θ = arcsin
(
λ/2

v
fD

)
. (6.3)

As the radar moves, it transmits pulses at at a particular rate, namely the PRF. Because

of this sampling, Doppler frequencies over an interval equal to the PRF can be unambigu-

ously measured. If the PRF is fp, then a set of unambiguous Doppler frequencies is defined

by | fD| ≤ fp/2. A target with a Doppler frequency, fD, will have the same apparent Doppler

frequency as a target with a Doppler frequency, f̃D/n, given by

f̃D/n = fD + n fp (6.4)

for n , 0.

6.2.2 The Doppler PSD for Broadside Stripmap Collections

For a stationary target and a moving platform, the Doppler frequency, fD, and angle, θ,

are related according to (6.2). For a fixed platform velocity and center frequency, this

establishes a mapping between an angle, θ, and a Doppler frequency, fD. Because of this,

the Doppler power spectrum, P ( fD) is related to the average power of returns as a function

of angle, θ.

For a given range bin, the relative power of returns as a function of angle is driven

primarily by the antenna gain. Let D be the azimuthal extent of an idealized, uniformly
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illuminated antenna. The one-way gain for an angle, θ, is proportional to

G (θ) = sinc2
(D
λ

sin θ
)
, (6.5)

where the sinc function is defined as

sinc (x) ,


sin(πx)
πx , for x , 0

1, for x = 0.
(6.6)

The antenna gain varies with angle, but (6.3) describes the relationship between an

angle, θ, and a Doppler frequency, fD. For the broadside geometry of Figure 6.1, where the

antenna is oriented in a direction that is orthogonal to the velocity vector, the Doppler PSD

is

P ( fD) = sinc2
(

DTX/2
v

fD

)
sinc2

(
DRX/2

v
fD

)
rect

(
fD

4v/λ

)
. (6.7)

where DTX and DRX are the lengths of the transmit and receive antenna, respectively. For

stripmap imaging, where the antenna is not reoriented during the collection, the Doppler

PSD of (6.7) is constant and does not change as the platform moves.

6.2.3 AASR for Stripmap Synthetic Aperture Imaging

The Doppler PSD of clutter for a stripmap collection was given by (6.7). This can be used

to calculate the AASR for a given along-track sampling. In the following, two cases are

considered. In the first, it is assumed that the along-track samples are uniformly spaced.

This occurs in a single-channel system when the PRF is constant, and it also can occur

for a multichannel system when the PRF is constant and chosen appropriately. Next, the

more general case of a multichannel system with a constant PRF but with an arbitrary

channel spacing is considered. These two examples correspond to uniform and to recurrent

sampling, respectively.
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6.2.3.1 Single-Channel Stripmap: Uniform Sampling

If P ( fD) is the Doppler PSD, the PSD after sampling with a constant PRF, fp, is

P̃ ( fD) = P ( fD)︸︷︷︸
Unambiguous

+
∑
m,0

P
(

fD + m fp

)
︸              ︷︷              ︸

Ambiguous

(6.8)

for unambiguous Doppler frequencies, fD ∈
[
− fp/2, fp/2

)
. The aliased PSD of (6.8)

demonstrates how a target at a Doppler frequency, fD, is affected by targets at other Doppler

frequencies.

To resolve a particular target in cross-range, the radar will process a number of pulses

that correspond to a particular integration angle, θint, i.e., the pulses that are used correspond

to points in the synthetic aperture with |θ| ≤ θint/2 where θ is defined as in Figure 6.1.

As the platform flies the synthetic aperture, the target angle, θ, changes. Equivalently,

because of the relationship between angle and Doppler frequency in (6.2), the Doppler

frequency of the target changes. For a given platform velocity, v, and wavelength, λ, an

integration angle, θint, can be related to a processed Doppler bandwidth, β, by

β =
4v
λ

sin
(
θint

2

)
. (6.9)

For a broadside stripmap collection, the target Doppler frequency will vary with −β/2 ≤

fD ≤ β/2. As shown in (6.8), as the Doppler frequency of the target varies, the nature of

the aliasing varies. To account for this, the unambiguous power will be computed by

Punambig =

β/2∫
−β/2

P ( f ) d f , (6.10)

and the ambiguous power is

Pambig =

β/2∫
−β/2

∑
m,0

P
(

f + m fp

)
d f . (6.11)
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The corresponding AASR is

AASR ,
Pambig

Punambig
=

β/2∫
−β/2

∑
m,0

P
(

f + m fp

)
d f

β/2∫
−β/2

P ( f ) d f

. (6.12)

6.2.3.2 Multichannel Stripmap: Recurrent Sampling

Just as in the single-channel case, the AASR for a multichannel system can be calculated

by first determining the Doppler PSD after aliasing. If the PRF, fp, and platform velocity,

v, are both constant, then the synthetic aperture will be recurrently sampled. The resulting

PSD after this sampling is

P̃ ( fD) = P ( fD) +
∑
m,0

αmP
(

fD − m fp

)
, (6.13)

where {αm} are the recurrent sampling weights given by (5.9), which depend on the spacing

of the receive elements within the physical array. The multichannel AASR is

AASR =

β/2∫
−β/2

∑
m,0

αmP
(

f + m fp

)
d f

β/2∫
−β/2

P ( f ) d f

. (6.14)

6.2.4 CNR and SNR in Stripmap SAR/SAS

In the previous section, AASR was computed by invoking a Doppler processing interpre-

tation of synthetic aperture imaging. This involved the concept of the processed Doppler

bandwidth that corresponds to a particular integration angle. The AASR varies as a func-

tion of the processed Doppler bandwidth, and the cross-range resolution becomes more

coarse as less Doppler bandwidth is used. However, the clutter-to-noise ratio (CNR) and

the signal-to-noise ratio (SNR) of a point target will also vary. In this section, the relation-

ship between processed Doppler bandwidth and SNR/CNR will be explored for both the

stripmap and spotlight cases.
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The CNR describes the relative power of returns from the terrain relative to additive

noise, while SNR is defined for a point target. Because the return from a point target will

be coherent from pulse to pulse, integration gain allows the SNR to be improved as more

pulses are collected. However, because the terrain is a distributed target, speckle prevents

an increase in CNR.

The CNR can be used to define the system noise equivalent reflectivity, σN. A normal-

ized reflectivity coefficient,σ0, can be defined to characterize the reflectivity of a distributed

target like terrain. Just as the radar cross section (RCS) can be defined for a point target,

the reflectivity, σ0, can be defined for a distributed target where the equivalent RCS of a

clutter patch with a given area, A, is σ = Aσ0, i.e., σ0 can be interpreted as the RCS in

square meters of a one square meter patch of clutter.

The CNR will vary depending on the reflectivity of the underlying terrain. A system-

level metric can be defined that is independent of the clutter type. This metric is called

the noise equivalent backscatter coefficient and is denoted σN [Curlander and McDonough,

1991]. It is also called the noise equivalent sigma zero (NESZ). As suggested by the term

NESZ, σN is the average backscatter coefficient in a noise-only pixel. This motivates the

definition that

CNR =
σ0

σN
. (6.15)

In the following, the change in CNR as a function of processed Doppler bandwidth will be

derived. One interpretation of this is a change in σN.

For stripmap, the average clutter power is computed by integrating the clutter Doppler

PSD over the processed Doppler bandwidth.

PC =

∫ β/2

−β/2
P ( f ) d f . (6.16)

The corresponding noise power is

PN = βN0, (6.17)
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where N0 is the noise PSD. The clutter-to-noise ratio (CNR) is

CNR ,
PC

PN
=

1
N0

1
β

∫ β/2

−β/2
P ( f ) d f . (6.18)

As the bandwidth becomes arbitrarily small, the CNR converges to

CNR0 , lim
β→0

CNR =
1

N0
, (6.19)

where it is assumed that the clutter Doppler PSD has been normalized so that P (0) = 1.

The improvement in the CNR by integrating over a Doppler bandwidth, β, is

CNR
CNR0

=
1
β

∫ β/2

−β/2
P ( f ) d f . (6.20)

The SNR for a point target as a function of processed Doppler bandwidth is calculated

in a similar manner. The signal power is

PS = σ

∫ β/2

−β/2
G2 ( f ) d f (6.21)

where G ( f ) is the one-way antenna gain when the target has a Doppler frequency, f . Using

this, the SNR for a point target is found to be

SNR ,
PS

PN
= β

σ

N0
. (6.22)

The SNR increases linearly as the Doppler bandwidth is increased, and

SNR0 , lim
β→0

SNR = 0. (6.23)

6.2.5 AASR for Spotlight Synthetic Aperture Imaging

In stripmap synthetic aperture imaging, the antenna is not reoriented during the collection.

Because of this, the Doppler PSD of (6.7) does not vary as the platform moves. For a

broadside collection, the beam is always oriented orthogonal to the velocity vector so that

the peak of the antenna beampattern will always correspond to zero Doppler. Even if the

antenna pointing vector is not orthogonal to the velocity vector, the peak of the beam will

always be aimed at a point with a constant Doppler frequency.
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A spotlight system will continuously reorient the antenna to constantly aim the beam

at a point on the ground, which is called the scene reference point (SRP). As a result, the

Doppler PSD varies over the synthetic aperture. The peak of the antenna beampattern is

always in the direction of the SRP, so the peak of the Doppler PSD will vary as the Doppler

frequency of the SRP varies.

Another difference between AASR for spotlight and stripmap synthetic aperture imag-

ing is a result of the fact that stripmap image quality does not vary in the along-track

direction. In a stripmap collection, every point at a given range at the point of closest ap-

proach will have the same gain variation over its integration angle. However, for spotlight,

points displaced from the SRP in the cross-range direction will experience difference gain

variations. For example, the SRP will have no gain variation in spotlight, but it would come

into and go out of the beam like any other point in a stripmap collection.

The Doppler PSD when the platform is at an angle, θ, relative to the SRP is

P ( fD; θ) = G2
(
θ + arcsin

(
λ fD

2v

))
, (6.24)

for | fD| ≤ 2v/λ where G2 (θ) is the two-way antenna gain, which assumes that the same

aperture is used on transmit and receive. This can be extended to the case where different

apertures are used on transmit and receive in a straightforward manner.

The Doppler frequency of a target at an angle, θ0, relative to the SRP when the platform

is at the center of its integration angle is

fD (θ; θ0) =
2v
λ

(sin θ0 − sin θ) . (6.25)

This can be used to determine the point, θ, when the target is at a given Doppler frequency,

fD,

θ ( fD) = arcsin
(
sin θ0 −

λ fD

2v

)
. (6.26)

The notation, θ ( fD), is used to highlight the fact that this angle varies as a function of

Doppler frequency.
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The unambiguous power is found by integrating the PSD of (6.24) over the Doppler

frequencies that the target is observed at over the integration angle,

Punambig ,

∫ β/2

−β/2
P ( f ; θ ( f )) d f

=

∫ β/2

−β/2
P

(
f ; arcsin

(
sin θ0 −

λ f
2v

))
d f

=

∫ β/2

−β/2
G2

(
arcsin

(
sin θ0 −

λ f
2v

)
+ arcsin

(
λ f
2v

))
d f .

(6.27)

Similarly, the ambiguous power is found to be

Pambig =
∑
m,0

∫ β/2

−β/2
G2

arcsin
(
sin θ0 −

λ f
2v

)
+ arcsin

λ
(

f + m fp

)
2v


 d f . (6.28)

The AASR is

AASR ,
Pambig

Punambig
=

∑
m,0

β/2∫
−β/2

G2
(
arcsin

(
sin θ0 −

λ f
2v

)
+ arcsin

(
λ( f +m fp)

2v

))
d f

β/2∫
−β/2

G2
(
arcsin

(
sin θ0 −

λ f
2v

)
+ arcsin

(
λ f
2v

))
d f

(6.29)

For small integration angles, (6.29) can be approximated by

AASR ≈

∑
m,0

G2
(
θ0 +

λ fp
2v m

)
G2 (θ0)

, (6.30)

which is independent of integration angle and depends only on the target offset from scene

center, θ0.

6.3 Numerical Results: Impact of AASR on System Design

The Doppler PSD is shaped by the antenna, and the impact of the aliases depends on the

along-track sampling. System performance is quantified as a function of along-track sam-

pling relative to the antenna size. It is assumed that the apertures used on transmit and re-

ceive are uniformly-illuminated linear apertures with the sinc beampattern given by (6.5),

which lead to the stripmap Doppler PSD of (6.7) and the spotlight Doppler PSD of (6.24).

The calculations can be repeated for arbitrary beampatterns.
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The results presented in this section assume that the platform and the targets are con-

strained to lie in the same two-dimensional plane, i.e., the grazing angle is zero. Only

Doppler/azimuth ambiguities are considered, so the calculations are limited to AASR. The

analysis can be extended to include range ambiguities as well to calculate the ASR.

6.3.1 The Along-Track Oversampling Factor and Area-Coverage Rate

In presenting results for both stripmap and spotlight AASR, it will be convenient to de-

fine the along-track oversampling factor, η, which normalizes the PRF, fp, by the aperture

length, D.

The Doppler extent of mainlobe clutter is approximately v/ (D/2) where D is the length

of the aperture. To unambiguously sample this Doppler extent, the PRF must be at least

v/ (D/2), which is equivalent to sampling the synthetic aperture with an along-track sam-

pling interval of D/2. Because of this, D/2 along-track sampling corresponds to the critical

“Nyquist” sampling rate. For the single-channel stripmap analysis, it is assumed that the

transmit and receive apertures are the same size, i.e., DTX = DRX = D. Because critical

along-track sampling is achieved when v/ fp = D/2, the along-track oversampling factor is

given by

η ,
D/2
v/ fp

. (6.31)

Critical sampling corresponds to η = 1. For η = 2, D/4 sampling is provided.

For a fixed velocity and aperture size, increasing the PRF leads to an increased along-

track oversampling factor, which provides improved AASR. However, this comes at the

cost of area-coverage rate (ACR). The maximum (slant) range swath is constrained by the

PRF according to

Rswath ≤
c/2
fp
. (6.32)

Note that other limitations, e.g., transmit power, can further constrain the imaged range

swath, so the PRF provides an upper bound on range swath but no guarantee that this

bound is achievable.
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The maximum ACR is provided by stripmap operation where the platform moves at a

velocity, v, and continuously forms imagery with a range extent, Rswath. The corresponding

ACR is

ACRmax , vRswath. (6.33)

An upper bound is placed on ACR by the range swath limit of (6.32), which can be written

in terms of the along-track oversampling factor as

ACRmax ≤

(c
2

) ( v
fp

)
=

(c
2

) (D
2

) 1
η
. (6.34)

Note that this ACR is relative to a slant-plane image, but it can be adjusted by the grazing

angle if desired.

The bound of (6.34) suggests that increasing the aperture size, D, provides improved

ACR, but this provides additional constraints on the image. The larger aperture corresponds

to a narrower beamwidth. In stripmap, this leads to coarser cross-range resolution because

∆CR ≥ D/2. In stripmap, this limits the cross-range extent of the image.

To summarize, the PRF can be increased to improve the along-track sampling factor,

which can provide improved AASR by rejecting additional Doppler-ambiguous clutter.

However, this can limit the ACR by limiting the extent of the unambiguous range swath.

6.3.2 Single-Channel Stripmap AASR

In stripmap mode, the system continuously images with the ACR given by (6.33). How-

ever, the finest cross-range resolution that can be provided by a stripmap synthetic aper-

ture imaging system is limited by its beamwidth. While the finest cross-range resolution,

∆CR = D/2, corresponds to the case where the integration angle corresponds to the full

beamwidth, a processor is free to use only a subset of this angle. This results in coarser

cross-range resolution, but it will provide improved AASR.

Similar to the along-track oversampling factor, η, a cross-range resolution spoiling fac-

tor, ξ, can be defined. As ξ increases, the cross-range resolution degrades, but improved
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AASR can be achieved. For a given spoiling factor, the corresponding cross-range resolu-

tion is

∆CR = ξD/2. (6.35)

In stripmap synthetic aperture imaging, AASR can be improved at the cost of ACR

and cross-range resolution by η and ξ as shown in (6.34) and (6.35). The results of these

tradeoffs are presented in Figure 6.2. A similar figure was included in [Hawkins, 1996].

Each curve in Figure 6.2 corresponds to a given cross-range resolution spoiling factor,

ξ. For each curve, the AASR is given as a function of along-track oversampling factor,

η. These results are extended to the case where the transmit aperture is smaller than the

receive aperture in Figure 6.3.
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Figure 6.2: AASR for stripmap synthetic aperture imaging.

The previous analysis demonstrated how AASR performance can be improved by form-

ing imagery with degraded cross-range resolution. According to (6.18), the CNR and,

equivalently, σN, will also vary. This is illustrated in Figure 6.4. The cross-range resolu-

tion is degraded by integrating over a smaller angle. This means that the beampattern rolls
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Figure 6.3: AASR for stripmap synthetic aperture imaging where the physical transmit
aperture is larger than the receive aperture.

off less over the synthetic aperture, which leads to the slight improvement in σN. The effect

is more pronounced if a larger transmit element is used.
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Figure 6.4: Variation in σN as a function of processed Doppler bandwidth for stripmap.
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6.3.3 Multichannel Stripmap AASR: Uniform Sampling

Now, consider a multichannel synthetic aperture imaging system that uses N elements on

receive, where each has an along-track extent, DRX, and a single transmit element with an

extent, DTX. Assume that the receive elements are uniformly spaced and that the length of

the full receive array is

LRX , NDRX. (6.36)

For each pulse, N along-track samples are simultaneously collected with a spacing, DRX/2.

To provide a uniformly sampled synthetic aperture, the PRF is chosen so that v/ fp = LRX/2,

which limits the maximum ACR to

ACRmax =
LRX

2
c
2
. (6.37)

The cross-range resolution is constrained by the maximum integration angle supported

by the beamwidth, so the transmit aperture limits the finest achievable cross-range resolu-

tion. As before, a cross-range resolution spoiling factor, ξ ≥ 1, can be introduced with a

corresponding resolution of

∆CR = ξDTX/2. (6.38)

To ensure that each receive aperture is no larger than the transmit aperture, it is required

that the number of receive channels, N, satisfy

N ≥
LRX

DTX
. (6.39)

The along-track samples are spaced by DRX/2, and the critical sampling interval is DTX/2.

The along-track oversampling factor for the multichannel case is

ηmulti =
DTX

DRX
. (6.40)

The length of the receive array, LRX, the length of each receive element, DRX, and

the length of the transmit aperture, DTX, as well as the cross-range resolution spoiling

factor, ξ, are chosen to satisfy requirements on ACR, cross-range resolution, and AASR. A

methodology for doing so follows.
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• The length of the transmit aperture, DTX, must be small enough to support the re-

quired cross-range resolution; see (6.38).

• The length of the receive array, LRX, must be sufficient to support the required ACR;

see (6.37).

• The number of elements in the receive array, N, must be suitably large so that the

length of an individual receive element, DRX, is small enough to provide a sufficient

along-track sampling interval, DRX/2, that yields an acceptable AASR; see (6.40).

Also, it is required that N ≥ Nmin; see (6.39).

The ACR and cross-range resolution requirements determine the length of the receive

and transmit apertures, respectively, but this procedure allows two methods for achieving

the AASR requirement. The extent of each receive channel can be no larger than the min-

imum transmit aperture size without degrading the cross-range resolution. However, as

the receive aperture is divided into more and more channels, the along-track sampling in-

creases. This is equivalent to having a transmit aperture that is larger than a single receive

element, i.e., DTX ≥ DRX. Also, as in the single-channel case, only a portion of the integra-

tion angle supported by the transmit aperture can be processed. The resulting cross-range

resolution corresponding to a spoiling factor, ξ, was given by (6.38).

These tradeoffs are explored in Figure 6.5. While the single-channel results of Fig-

ure 6.2 and Figure 6.3 showed results as a function of the along-track oversampling factor,

η, Figure 6.5 corresponds to η = 1, which is required to provide uniform along-track sam-

pling. In the upper plot, Figure 6.5a, the AASR is plotted as the ratio, DTX/DRX increases

for a number of cross-range resolution spoiling factors, ξ. Identical results are shown in

Figure 6.5b, but the scale has been normalized by cross-range resolution.

Two important conclusions can be made from Figure 6.5 regarding the optimal ratio,

DTX/DRX. First, for a given cross-range resolution requirement, the best AASR is achieved

by using the largest possible transmit aperture and integrating over the entire beamwidth,

114



i.e., ξ = 1. Second, observe that AASR does not monotonically decrease as the ratio,

DTX/DRX, increases. For the ξ = 1 case, AASR is minimized when DTX ≈ (k + .5) DRX for

integers k = 1, 2, . . ..

1 1.5 2 2.5 3 3.5 4

−60

−50

−40

−30

−20

−10

0

D
TX

 / D
RX

A
A

S
R

 (
d
B

)

D
RX

/2 Sampling

 

 
∆

CR
 = 1.0× D

TX
/2

∆
CR

 = 2.0× D
TX

/2

∆
CR

 = 3.0× D
TX

/2

∆
CR

 = 4.0× D
TX

/2

∆
CR

 = 5.0× D
TX

/2

(a) AASR versus transmit aperture size and integration angle

1 1.5 2 2.5 3 3.5 4

−60

−50

−40

−30

−20

−10

0

∆
CR

 / (D
RX

/2)

A
A

S
R

 (
d
B

)

D
RX

/2 Sampling

 

 
∆

CR
 = 1.0× D

TX
/2

∆
CR

 = 2.0× D
TX

/2

∆
CR

 = 3.0× D
TX

/2

∆
CR

 = 4.0× D
TX

/2

∆
CR

 = 5.0× D
TX

/2

(b) Normalized by cross-range resolution

Figure 6.5: Stripmap AASR as a function of the relative transmit aperture size.
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6.3.4 Single-Channel Spotlight AASR

As suggested by (6.30), spotlight AASR is not strongly dependent on integration angle.

This is confirmed by examining Figure 6.6, which presents spotlight AASR for a target

at scene center. The antenna is aimed at this target for the entire integration angle, and

the beampattern apparently rotates about this point over the synthetic aperture. As is seen

from Figure 6.6, the dominant effect of increasing integration angle is to prevent the nulls

that the ideal beampattern provides at D/2 and D/4 sampling from perfectly canceling the

ambiguous returns.

While spotlight AASR is not sensitive to integration angle, it does vary over the image.

In Figure 6.7, AASR is plotted for a number of target offsets. This is parameterized as a

percentage of the beamwidth. For targets near the edge of the scene, AASR is much worse

for a fixed along-track oversampling factor. Consequently, while a certain PRF may be

sufficient to provide acceptable AASR for a target at scene center, a higher PRF may be

required to prevent degradation at the edge of the scene.

Compare the spotlight result of Figure 6.7 with the stripmap result of Figure 6.2. In

spotlight, AASR can be improved by forming a smaller image. In stripmap, AASR can

be improved by forming an image with coarser cross-range resolution. Similarly, spot-

light AASR is largely independent of cross-range resolution/integration angle, and stripmap

AASR does not vary with cross range in the final image.

6.3.5 Multichannel Spotlight AASR: Uniform Sampling

Just as in stripmap, a multichannel spotlight synthetic aperture imaging system must use

a specific PRF to obtain uniformly-spaced along-track samples. This PRF depends on the

platform velocity and the size of the receive elements. A larger transmit aperture can be

used to allow finer along-track sampling, but this comes at the cost of a smaller image size.

Under this uniform-sampling constraint, the AASR can be plotted as a function of target

offset as in Figure 6.8. Note that the maximum image size corresponding to each curve is

different because the transmit beamwidth differs from curve to curve.
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Figure 6.6: Scene center AASR for spotlight synthetic aperture imaging.
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Figure 6.8: AASR for spotlight synthetic aperture imaging as a function of angular offset
from scene center with DRX/2 along-track sampling.

6.3.6 Nonuniform Sampling and Multichannel Stripmap AASR

The multichannel stripmap case is now reconsidered but without the requirement that the

PRF is carefully chosen to ensure that the system provides uniform along-track sampling.

To calculate AASR, the recurrent sampling approach summarized by (6.14) is employed.

The results are presented in Figure 6.9. In Figure 6.9a, the transmit aperture is assumed

to be matched to the size of each aperture used on receive. In the single-channel case

(N = 1), AASR always improves if a higher PRF is employed (at the cost of ACR). For the

true multichannel case (N > 1), increasing the PRF to beyond the uniform-sampling case

(η = 1) tends to lead to degradation in AASR. The expected AASR reduction from finer

along-track sampling is overwhelmed by the impact of nonuniform sampling. The impact

of nonuniform sampling is more significant as the number of channels increases.

The effect of using a larger transmit aperture is illustrated in Figure 6.9b. As expected,

using a larger transmit aperture provides an improvement in AASR, but it comes at the cost

of degraded cross-range resolution. However, note that this AASR benefit rapidly declines
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as the sampling becomes increasingly nonuniform when a large number of channels are

employed.
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Figure 6.9: Multichannel stripmap AASR as a function of along-track sampling non-
uniformity and number of channels.
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6.4 Summary

This chapter presented the development of a rigorous method for calculating the impact of

aliasing on synthetic aperture images. This was based on the concept of sampling a WSS

random process that was developed in Chapter 5, which included the case of the recurrent

sampling that can occur in multichannel SAR/SAS systems. Results were presented for

both stripmap and spotlight synthetic aperture imaging including the multichannel case.
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CHAPTER 7

CONCLUSIONS

This dissertation analyzed the benefits of using multiple-input, multiple-output (MIMO)

techniques with synthetic aperture imaging systems. By transmitting multiple, independent

waveforms, a MIMO system can take advantage of spatial diversity on transmit as well as

receive. By exploiting these transmit degrees of freedom, a MIMO synthetic aperture radar

(SAR) or synthetic aperture sonar (SAS) is able to improve its area-coverage rate and/or

image quality by providing improved along-track sampling without an increase in pulse

repetition frequency (PRF).

A significant contribution of this dissertation is the development of a comprehensive

theory of coherent MIMO radar that is based on an array-processing approach. While the

MIMO virtual array is an interesting concept to convey the basic motivation of MIMO

radar, the beamforming approach developed in Chapter 2 provides a method for under-

standing the behavior of a MIMO-based radar antenna. This is critical for assessing the

appropriateness of MIMO for a particular radar application.

A MIMO SAR/SAS is able to take advantage of multiple transmit phase centers for each

pulse by simultaneously transmitting independent waveforms as discussed in Chapter 3.

However, the primary challenge of MIMO synthetic aperture imaging is that the cross-

correlation among these waveforms will increase the range sidelobes and degrade image

quality by lowering contrast. This is quantified by the integrated sidelobe ratio (ISR),

which is increased by transmitting additional waveforms.

While fundamental limits exist that prevent the autocorrelation sidelobes and the cross-

correlation energy of a suite of waveforms from being made arbitrarily low, Chapter 4

presented a signal processing approach based on mismatched filtering seeks to improve

ISR. This technique extends the concept of a minimum ISR filter that has been developed

for a single waveform to the case of multiple waveforms. It is based on the observation
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that the MIMO range response varies as a function of angle, which motivates the joint

application of range compression and beamforming rather than the traditional approach of

performing them in a separable fashion. By tailoring the filter to returns from a particular

angle, acceptable ISR may be obtained that may enable MIMO SAR/SAS.

While radar systems have historically used multiple channels on receive, the novelty

of a MIMO radar is essentially to operate multiple channels on transmit as well as using

a number of independent waveforms. Consequently, a MIMO SAR/SAS is an extension

of standard multichannel systems to now include multiple transmit elements. Especially

in multichannel SAS systems, the signal processing is based on the assumption that the

PRF is carefully controlled to ensure uniformly-spaced along-track samples. If this is not

the case, then the sample spacing may be nonuniform. This dissertation presented results

that quantify the impact of this nonuniform sampling in multichannel synthetic aperture

imaging.

The analysis of nonuniform sampling in multichannel SAR/SAS was based on a rigor-

ous analysis of aliasing in the sampling of a wide-sense stationary (WSS) random process.

Chapter 5 described the concept of recurrent sampling, which may occur in multichannel

SAR/SAS, and developed a method for calculating the impact of aliasing in this special

case of nonuniform sampling. In Chapter 6, these techniques were applied to calculate

the along-track ambiguity-to-signal ratio (AASR) to quantify the impact of ambiguities on

image contrast. This included the case where methods were used to reconstruct uniform

samples from the recurrent samples that were collected. Future work could explore alter-

native reconstruction methods. For instance, one can set up the task of reconstruction from

sparse samples as a linear inverse problem and calculate the condition number (and related

quantities) of the resulting transformation matrix (see [Ghaoui, 2002] and p. 83 of [Bertero

and Boccacci, 1998].

Remaining future work includes further controlling the range sidelobes in MIMO radar
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as well as dealing with the potential for nonuniform along-track sampling in multichan-

nel SAR/SAS. While the present work focused on extending the standard matched filter

processing to mismatched filtering to improve the ISR, indirect solutions based on sparse-

reconstruction techniques may also be successful [Potter et al., 2010; Çetin and Lanterman,

2005]. Similarly, a filtering technique based on a continuous-time development was ana-

lyzed for reconstruction from nonuniform samples. This could be extended to a more

practical discrete-time derivation that could exploit advanced reconstruction techniques.

The presented results focused on SAR or SAS systems for which the “real aperture”

array elements were equally spaced. Future work could explore the potential advantages

of designing systems with irregular spacing. This may involve adapting ideas from the

literature on the design of nonuniform arrays [Oraizi and Fallanpour, 2008; Ridwan et al.,

2011]. Similarly, it was assumed that distance traveled between pulses was equal. The

results of this dissertation could be expanded to explore cases of staggered PRFs and other

nonuniform slow-time sampling schemes.
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APPENDIX A

WIDE-SENSE STATIONARY RANDOM PROCESSES

This appendix reviews results regarding wide-sense stationary (WSS) random processes,

which are used some of the derivations presented in Chapter 5. Many of these facts can

be found in standard references [Papoulis, 1977b]. Notation is established for dealing with

WSS random processes as well as their autocorrelation functions and power spectral den-

sities. A standard proof of the Wiener-Khinchin theorem is provided, which is extended

to illustrate that the average power spectrum is uncorrelated from frequency to frequency

as stated by (A.15). Also, while many references contain the result that the power spectral

density of the output of a linear system is related to its input as in (A.19), a more obscure

result related to the cross spectral density of the output of two linear systems is included as

(A.20). Notation is also established for dealing with discrete random processes.

A.1 Preliminaries

A random process, x (t), is said to be wide-sense stationary (WSS) if

1. The mean function of x (t) is a constant,

µx (t) , E [x (t)] = µ for all t (A.1)

2. The autocorrelation function, Rx (t1, t2), only depends on the lag t2 − t1,

Rx (t1, t2) , E [x (t1) x∗ (t2)] = Rx (0, t2 − t1) for all τ (A.2)

3. Two random processes, x (t) and y (t), are said to be jointly WSS if their cross-

correlation function, Rxy (t1, t2), only depends on the lag, t2 − t1,

Rxy (t1, t2) , E
[
x (t1) y∗ (t2)

]
= Rxy (0, t2 − t1) for all τ (A.3)
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A.2 The Autocorrelation Function of a WSS Random Process

For WSS processes, write the autocorrelation and cross-correlation functions in terms of

the lag τ as

Rx (τ) , Rx (t, t − τ) = E [x (t) x∗ (t − τ)] (A.4)

Rxy (τ) , Rxy (t, t − τ) = E
[
x (t) y∗ (t − τ)

]
(A.5)

because these do not depend on the value of t. For the cross-correlation function to depend

only on lag requires that the two random processes be jointly WSS, which is a stronger

requirement than requiring that each random process be WSS independently.

The following are interesting properties of the autocorrelation function of a WSS ran-

dom process. Let X (t) be a WSS random process with autocorrelation function R (τ).

1. The zero-lag value of the autocorrelation function is the mean-squared value of the

random process,

E
[
|X (t)|2

]
= R (0) . (A.6)

2. The autocorrelation function is conjugate symmetric,

R (τ) = R∗ (−τ) . (A.7)

3. The autocorrelation function is maximized at τ = 0,

R (0) ≥ |R (τ)| (A.8)

for all τ.

A.3 The Power Spectral Density (PSD) of a WSS Random Process

The autocorrelation function characterizes the behavior of a random process in the time

domain, but the spectral content of the process may also be of interest. In general, a real-

ization of a random process, x (t), does not have a well-defined Fourier transform. Instead,
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begin by considering the Fourier transform of the random process that has been truncated

to an interval of length T ,

XT (ω) ,
∫ T/2

−T/2
x (t) e−iωt dt. (A.9)

The power spectral density (PSD) characterizes the average behavior of the spectrum in

(A.9) as the observation time, T , becomes arbitrarily long,

Px (ω) , lim
T→∞

1
T

E
[
|XT (ω)|2

]
. (A.10)

The Wiener-Khinchin theorem states that the limit in (A.10) converges, so the PSD

exists. It also provides the important result that the autocorrelation function and the PSD

are related by the Fourier transform. If the autocorrelation function, Rx (τ), is absolutely

integrable, then the PSD, Px (ω), defined in (A.10) exists. Further, the autocorrelation

function and the power spectral density of a WSS random process are Fourier duals,

Px (ω) =

∫ ∞

−∞

Rx (τ) e−iωτ dτ. (A.11)

A standard proof of the result of (A.11) is provided. The average periodogram with

observation interval, T , of (A.9) can be written as

E
[
|XT (ω)|2

]
= E

[(∫ T/2

−T/2
x (τ) e−iωτ dτ

) (∫ T/2

−T/2
x (t) e−iωt dt

)∗]
=

∫ T/2

−T/2

∫ T/2

−T/2
Rx (τ − t) e−iω(τ−t) dτ dt

=

∫ ∞

−∞

∫ ∞

−∞

Rx (τ − t) e−iω(τ−t)rect
(
τ

T

)
rect

( t
T

)
dτ dt.

Apply two changes of variable: τ 7→ t + τ and t 7→ t − τ, which yields

E
[
|XT (ω)|2

]
=

∫ ∞

−∞

Rx (τ) e−iωτ
∫ ∞

−∞

rect
( t
T

)
rect

( t − τ
T

)
dt︸                             ︷︷                             ︸

=rect( t
T )∗rect( t

T )

dτ.

The convolution of two unit rectangle functions is a unit triangle function,

Λ (t) ,


1 − |t| , for |t| < 1

0, otherwise.
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For two identical scaled rectangles,

Λ

(
τ

T

)
=

1
T

∫ ∞

−∞

rect
( t
T

)
rect

(
τ − t

T

)
dt,

Using this result,
1
T

E
[
|XT (ω)|2

]
=

∫ ∞

−∞

Rx (τ) e−iωτΛ

(
τ

T

)
dτ.

By definition, the PSD is the limit of this as T → ∞,

Px (ω) = lim
T→∞

∫ ∞

−∞

Rx (τ) e−iωτΛ

(
τ

T

)
dτ. (A.12)

Lebesgue’s dominated convergence theorem provides a set of conditions under which the

limit and integral operations can be interchanged. Define fT (τ) to be the integrand for an

interval, T . To satisfy the conditions of the dominated convergence theorem, it must be

shown that there is some function, f (τ), such that fT (τ) → f (τ) pointwise as T → ∞. It

also requires that an integrable function, g, such that | fT | ≤ g for all T > 0. First, observe

that

lim
T→∞

fT (τ) = Rx (τ) e−iωτ.

The dominating function, g, can be chosen to be g (τ) , |Rx (τ)| because

| fT (x)| =
∣∣∣∣∣Rx (τ) Λ

(
τ

T

)∣∣∣∣∣ ≤ |Rx (τ)| .

Note that g is integrable by definition because it was required that the autocorrelation func-

tion, Rx (τ), be absolutely integrable.

Interchanging the limit and integral and evaluating the limit in (A.12) yields the desired

result, which proves that the autocorrelation function and PSD of a random process are

related by Fourier transform as stated in (A.11).

Because the PSD is the Fourier transform of the autocorrelation function, the autocor-

relation can be recovered from the PSD using the Fourier inversion theorem. The autocor-

relation function can be computed from the power spectral density by

Rx (τ) =
1

2π

∫ ∞

−∞

Px (ω) eiωτ dω. (A.13)
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Just as the autocorrelation function and PSD are Fourier duals, the cross spectral density

(CSD) can be defined as the Fourier transform of the cross-correlation function, i.e., the

CSD of two random processes, X (t) and Y (t), is related to their cross-correlation function,

Rxy (τ), by

Pxy (ω) ,
∫ ∞

−∞

Rxy (τ) e−iωτ dτ. (A.14)

The result of the Wiener-Khinchin theorem, given by (A.11), provides the interpretation

the Fourier transform of the autocorrelation function is the average power spectrum of the

random process. It is now demonstrated that the average power spectrum is uncorrelated

from frequency to frequency, i.e.,

lim
T→∞

1
T

E [X (ω) X∗ (ω0)] =


Px (ω) , if ω = ω0

0, if ω , ω0.

(A.15)

As mentioned, the result for ω = ω0 follows from the Wiener-Khinchin formula. Now,

suppose that ω , ω0. Proceeding in a similar manner to that proof, it is found that

E [XT (ω) XT (ω0)] =

∫ ∞

−∞

Rx (t) e−iω0t
∫ ∞

−∞

e−i(ω−ω0)t0rect
( t0

T

)
rect

( t0 − t
T

)
dt0︸                                            ︷︷                                            ︸

f (t)

dt.

Rewrite the function, f (t), as

f (t) =

∫ T/2

−T/2
e−iξt0rect

( t0 − t
T

)
dt0,

where ξ , ω − ω0 , 0. Note that f (t) = 0 for |t| ≥ T . Otherwise, it is simply the integral

of e−iξt0 over some interval of t0. It can be shown that

f (t) =
1
ξ/2

e−i(ξ/2)t sin
(Dξ

2
Λ

( t
T

))
.

Using this, it can be written that

lim
T→∞

1
T

E [XT (ω) XT (ω0)] = lim
T→∞

1
T

1
ξ/2

∫ ∞

−∞

Rx (t) e−iω0te−i(ξ/2)t sin
(Dξ

2
Λ

( t
T

))
dt

=
1
ξ/2

∫ ∞

−∞

Rx (t) e−iω0te−i(ξ/2)t
[

lim
T→∞

1
T

sin
(Dξ

2
Λ

( t
T

))]
dt

= 0.
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The argument for interchanging the order of the integral and the limit operations is justified

in a similar manner to the proof of the Wiener-Khinchin theorem. The fact that the limit

goes to zero follows from the fact that sin (ax) /x→ 0 as x→ ∞.

A.4 Random Processes and Linear Systems

Recall that a linear time-invariant (LTI) system is completely characterized by its impulse

response, h (t), or, equivalently, its frequency response, H (ω). If the (deterministic) in-

put signal is x (t) with a spectrum, X (ω), then the output of the LTI system, y (t), is the

convolution of the input with the impulse response of the system,

y (t) ,
∫ ∞

−∞

x (τ) h (t − τ) dτ, (A.16)

and the spectrum of the output, Y (ω), is the product of the input spectrum and the frequency

response of the system,

Y (ω) = H (ω) X (ω) . (A.17)

This concept extends to the case where the input to the LTI system is a random pro-

cess. Let X (t) be a random process with autocorrelation function, Rx (t1, t2). If the random

process, X (t), is the input to an LTI system with impulse response, h (t), then the autocor-

relation function of the output random process, Y (t), has the autocorrelation function

Ry (t1, t2) =

∫ ∞

−∞

∫ ∞

−∞

Rx (t1 − τ1, t2 − τ2) h (τ1) h∗ (τ2) dτ1dτ2. (A.18)

If the input is WSS, then the output is as well. Let X (t) be a WSS process with mean

function, µx, and autocorrelation function, Rx (τ). Consider a linear system with an impulse

response, h (t). If the random process X (t) is the input to this system, then the output

random process, Y (t), is WSS with mean, µy, and autocorrelation function, Ry (t), given by

µy = µx

∫ ∞

−∞

h (τ) dτ, and

Ry (τ) =

∫ ∞

−∞

∫ ∞

−∞

Rx (τ − (τ1 − τ2)) h (τ1) h∗ (τ2) dτ1 dτ2

= h∗ (−τ) ∗ h (τ) ∗ rx (τ) .
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The corresponding power spectral density of the output is

Py (ω) = |H (ω)|2 Px (ω) , (A.19)

where H (ω) is the frequency response of the system.

Suppose that there are two random processes, and that each is passed through its own

LTI system. The CSD of the outputs can be written in terms of the CSD of the input

processes and the system frequency responses. Let X1 (t) and X2 (t) be jointly WSS random

processes with cross spectral density, Px1 x2 (ω). Let X1 (t) be the input to a system with

impulse response h1 (t), and let X2 (t) be the input to a system with impulse response h2 (t).

The cross spectral density of the output random processes, Y1 (t) and Y2 (t), is

Py1y2 (ω) = Px1 x2 (ω) H∗1 (ω) H2 (ω) , (A.20)

where H1 (ω) and H2 (ω) are the frequency responses of the LTI systems. Similarly, the

cross-correlation of the outputs is related to the cross-correlation function of the input ran-

dom processes and the impulse responses of the systems,

Ry1y2 (τ) = h∗1 (−τ) ∗ h2 (τ) ∗ Rx1 x2 (τ) . (A.21)

A.5 Linear Combinations of WSS Random Processes

Let X1 (t) , . . . , XN (t) be jointly WSS random processes. Define a new random process,

Y (t), that is a linear combination of these random processes by

Y (t) ,
N∑

n=1

w∗nXn (t) (A.22)

for complex weights {wn}. This may also be written using vector notation by defining the

weight vector, w, and the vector of random processes, X (t), as

Y (t) = wHX (t) , (A.23)

where

w ,


w1

...

wN

 ,X (t) ,


X1 (t)
...

XN (t)

 . (A.24)
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The autocorrelation function of Y (t) is then

Ry (τ) = wHRx (τ) w (A.25)

where Rx is the covariance matrix of the vector, X, given by

Rx (τ) , E
[
X (t) X (t − τ)H

]
. (A.26)

A.6 Discrete Random Processes

The above analysis can be repeated for the case of discrete random processes. Attention

will be restricted to discrete random processes that are WSS. Let x [n] be a WSS discrete

random process. It is characterized by the following quantities:

Mean Sequence: µ [n] , E [x [n]] (A.27)

Variance Sequence: σ2 [n] , E
[
|x [n] − µ [n]|2

]
(A.28)

Autocorrelation Sequence: R [n] , E [x [m] x∗ [m − n]] (A.29)

Autocovariance Sequence: C [n] , E
[
(x [m] − µ [m]) (x [m − n] − µ [m − n])∗

]
(A.30)

The PSD of a discrete WSS random process is the discrete-time Fourier transform of

its autocorrelation sequence,

Px (ω) ,
∞∑

n=−∞

Rx [n] e−iωn. (A.31)

Because it is the result of applying a discrete-time Fourier transform, the PSD of a discrete

random process is periodic with period 2π. If it is assumed that the discrete-time process is

generated by uniformly sampling a continuous-time process at a rate 1/T , the PSD may be

alternatively defined by instead scaling ω by 1/T so that it becomes 2π/T -periodic.

The autocorrelation sequence can be recovered from the PSD by the inverse discrete-

time Fourier transform,

Rx [n] =
1

2π

∫ π

−π

Px (ω) eiωn dω. (A.32)

Because Px (ω) is 2π-periodic, the integral may be computed over any interval of length

2π.
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A.7 Discrete WSS Random Processes and LTI Systems

Consider the case where a discrete WSS random process, x [n], is applied to an LTI system

with impulse response, h [n]. The output sequence, y [n] is the convolution of the input and

the impulse response,

y [n] , (h ∗ x) [n] =

∞∑
k=−∞

h [k] x [n − k] . (A.33)

As before, the output is also a WSS random process. The output autocorrelation func-

tion is found by convolving the input autocorrelation with the impulse response, and the

output PSD is found by multiplying the input PSD with the frequency response.

Let x [n] be a discrete WSS random process with autocorrelation sequence, Rx [n]. If

the random process, x [n], is the input to an LTI system with impulse response, h [n], then

the output random process, y [n], is WSS with autocorrelation sequence

Ry [n] =

∞∑
k=−∞

∞∑
`=−∞

Rx [n − (k − `)] h [k] h∗ [`]

= h∗ [−n] ∗ h [n] ∗ Rx [n] .

(A.34)

The PSD of the output is

Py (ω) = |H (ω)|2 Px (ω) (A.35)

where H (ω) is the discrete-time Fourier transform of the impulse response,

H (ω) ,
∞∑

n=−∞

h [n] e−iωn. (A.36)
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APPENDIX B

SPECTRUM OF A RECURRENT SAMPLING SIGNAL

This appendix derives the spectrum of the sampling signal that corresponds to recurrent

sampling. This result is used in Chapter 5 to derive the spectrum of a recurrently sampled

signal. Two special cases are also presented.

B.1 The Recurrent Sampling Signal and Its Spectrum

The sampling signal for recurrent sampling was given in Table 5.1 and is reproduced below:

s (t) ,
T
N

N∑
n=1

∞∑
m=−∞

δ (t − (Tn + mT )) , (B.1)

where T is the recurrence interval and T1, . . . ,TN are the offsets of the N samples within a

recurrence. An impulse train can be written as a Fourier series,

∞∑
k=−∞

δ (t − kT ) =
1
T

∞∑
k=−∞

exp
{

i
2πk
T

t
}
. (B.2)

This allows the sampling signal of (B.1) to be written as

s (t) =
1
N

N∑
n=1

∞∑
m=−∞

exp
{
−i

2πm
T

(t − Tn)
}

=

∞∑
m=−∞

( 1
N

N∑
n=1

exp
{
i2π

Tn

T
m
})

exp
{
−i

2πm
T

t
}
.

(B.3)

This is a linear combination of complex sinusoids, so the spectrum is a linear combination

of shifted Dirac delta functions,

S (ω) = 2π
∞∑

m=−∞

αmδ

(
ω +

2πm
T

)
, (B.4)

where the weight of each delta function is given by (5.9).

B.2 Special Case: Uniformly-Spaced Samples within a Recurrence

Consider the special case where the samples within each recurrence are uniformly spaced

by T0, i.e., Tn , (n − 1) T0 for n = 1, 2, . . . ,N − 1. In this case, the weights of (5.9) can
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be written as

αm =
1
N

N−1∑
n=0

exp
{
i
(
2π

T0

T
m
)

n
}
. (B.5)

This sum is related to the Dirichlet function, DN (x), by

αm = DN

(
2π

T0

T
m
)

exp
{
iπ (N − 1)

T0

T
m
}
, (B.6)

where the Dirichlet function is given by

DN (x) ,


(−1)k(N−1) , for x = 2πk for an integer, k

sin(Nx/2)
N sin(x/2) , otherwise.

(B.7)

B.3 Special Case: Uniformly-Spaced Samples

Now, consider a related case where the recurrent sampling reduces to uniform sampling,

i.e., Tn , (n − 1) /NT . This is related to the above case with T0 = T/N. In this case,

αm = DN

(
2π

m
N

)
exp

{
−iπ

N − 1
N

m
}
. (B.8)

The weights, αm, are nonzero only for m = 0,±N,±, 2N where αm = ±1. As expected, the

sampling spectrum reduces to the uniform sampling case.
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