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Abstract

The problem of fault-tolerant coordination is fundamental in distributed comput-
ing. In the past, researchers have considered the complexity of achieving optimal
simultaneous coordination under various failure assumptions. This paper studies
the complexity of achieving simultaneous coordination in synchronous systems
in the presence of send/receive omission failures. It had been shown earlier that
achieving optimal simultaneous coordination in these systems requires NP-hard
local computation. In this paper, we study almost-optimal coordination, which
requires processors to coordinate within a constant additive or multiplicative
number of rounds of the coordination time of an optimal protocol. We show that
achieving almost-optimal coordination also requires NP-hard computation.
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1 Introduction

Coordinating the activity of the processors in a distributed system is a fundamental
problem in distributed computing. Such problems require processors to agree on a com-
mon action to perform and to ensure that the action chosen is valid given the context
within which they are operating. This paper specifically considers the complexity of
fault-tolerant coordination in the presence of general omission tailures, by which faulty
processors may omit to send or receive messages. Fault-tolerant coordination requires
that the nonfaulty processors successfully coordinate their actions despite the failures
of others. There is a large body of literature within computer science that has stud-
ied fault-tolerant coordination problems, such as Reliable Broadcast and Distributed
Consensus. Fischer [6] provides a survey of many such problems.

This paper considers simultaneous coordination problems in synchronous systems
in which algorithms operate in rounds of communication (simultaneous coordination
is not possible in asynchronous systems). The results in this paper are based on the
relationship between coordination and different forms of processor knowledge [9]. 1t is
well-established that knowledge can be used to characterize and improve solutions to
various problems in distributed computing [3,5,8,10-14,17]. For example, Moses and
Tuttle [13] showed that common knowledge is necessary for the solution of simultaneous
coordination problems and used this fact to derive optimal solutions to such problems.
In particular, they proved that achieving optimal coordination in the presence of general
omission failures requires processors to perform NP-hard local computation between
rounds of communication. Neiger and Tuttle [17] subsequently showed related results
considering stronger forms of coordination and of common knowledge.

It is known that many NP-complete problems can be solved approzimately in poly-
nomial time [7]. Perhaps almost-optimal algorithms for simultaneous coordination
might require only polynomial-time local computation (in systems with general omis-
sion failures). A simultaneous coordination algorithm is almost-optimal if processors
decide within a constant additive or multiplicative number of rounds of the decision
time of an optimal algorithm. The possibility of such an algorithm in the multiplicative
case is suggested by studies of translations between models of failures [1,2,4,15,18]. For
example, Moses and Tuttle showed the existence of optimal algorithms that tolerate
crash failures. Neiger and Toueg [15] showed how algorithms tolerant of crash failures
could be converted to tolerate general omission failures by doubling the number of
rounds used; local computation time was increased only by a polynomial amount. If
this translation were applied to the optimal (crash-tolerant) algorithm of Moses and
Tuttle, perhaps it would result in a polynomial-time algorithm that is almost-optimal
within a constant factor (i.e., decision time would be at worst twice optimal).

We demonstrate that this method does not work. In particular, we show that,
in any almost-optimal coordination algorithm (for general omission failures), proces-
sors may still be required to perform NP-hard local computation between rounds of
communication.

The paper is organized as follows. In Section 2, we define the model of the system.
In Section 3, we give a formal definition of coordination algorithms and of almost-
optimal coordination. In Section 4, we introduce the necessary knowledge theoretic



background needed for the development of the results. In Section 5, we present our
results. Section 6 concludes the paper with a brief discussion.

2 Definitions

This section defines a model of a synchronous distributed system. This model is similar
to others used to study knowledge and coordination [5,9,10,13,14,17].

A distributed system consists of a set P of n processors connected by a communica-
tion network such that any processor can send a message to any other. All processors
share a clock that starts at time 0 and advances in increments of one. Computation
proceeds in a sequence of rounds, with round r taking place between time r — 1 and
time r. At the start of a round, each processor may receive an external input. The
inputs to all the processors in a round form the input vector for that round. In every
round, a processor sends messages to other processors, receives messages that have
arrived since the last round, performs some local computation and, optionally, a coor-
dination action. At any given time, a processor’s local state consists of the time on the
global clock, the messages it has sent and received, the sequence of external inputs it
has received, and the coordination actions it has performed. A global state is a tuple
of local states, one per processor.

A message sent in a round is either received in that round or never received. Message
losses are due to processor failures. We consider general omission failures, in which a
faulty processor may omit to send or receive messages. Up to ¢ processors can fail in
an execution. We assume that the faulty behavior in an execution is independent of
the inputs to the processors.

Processors follow a protocol. A protocol has two components: the communication
component specifies the messages a processor is required to send for a round as a func-
tion of the processor’s local state at the beginning of that round, and the coordination
component (or action function) specifies for every round whether a processor should
perform a coordination action (also function of local state). A history is a protocol
paired with an infinite sequence of global states, one per round.

Some processors correctly follow the protocol and are thus nonfaulty. Other proces-
sors are faulty. In any round ¢, we associate with each processor p two sets of processors
S(p,€) and R(p,{) that are respectively the sets of processors p failed to send to or to
receive from in round £. A processor is faulty if and only if S(p,¢)U R(p, () is nonempty
for some £. The sets S(p,¢) and R(p,{) for all p and ¢ define the failure pattern.

A run is a history paired with a failure pattern. N(p) denotes the set of processors
nonfaulty in run p (we will use N when p is clear from context). A failure pattern is
compatible with a history if it accounts for all missing messages in that history. For
example, assume that in some round processor p does not receive a message that it is
supposed to get from processor ¢ and that all other messages are delivered as specified
by the protocol (note that this is an informal partial description of a history). It is
possible that either p omitted to send or that ¢ omitted to receive a message. Both
of these failure patterns are compatible with the history just described. This work
identifies a system with the set of all runs of a communication protocol in that system.
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An ordered pair (p,{), where p is a run and / is a natural number, is called a point and
represents the system after the first ¢ rounds of p. The local state of processor p at
that point is denoted by p,(¢). The input vectors for all the rounds of a run define the
input pattern of the run.

In order to analyze systems, it is convenient to have a logical language to make
statements about the system. A fact in this language is interpreted to be a property
of points: a fact ¢ will be either true or false at a given point (p, (), denoted (p, () = ¢
and (p,l) = ¢, respectively. Fact ¢ is valid in a system if it is true at all points in
the system; it is valid if it is valid in all systems. Although facts are interpreted as
properties of points, it is often convenient to refer to facts that are about objects other
than points (e.g., properties of runs). In general, a fact ¢ is a fact about X if fixing X
determines the truth (or falsity) of .

3 Simultaneous Coordination Problems

A simultaneous coordination problem C is a set {aq,...,a,} of actions and an associ-
ated set {okq,..., 0k, } of enabling conditions that are facts about the input and the
existence of failures. A protocol P implements a simultaneous coordination problem in
a system if and only if the following holds of every run p of P in the system:

e cach nonfaulty processor performs at most one action from the set of actions,

e any action performed by a nonfaulty processor is performed simultaneously by all
of them, and

e an action is performed by a nonfaulty processor only if its associated enabling
condition is true of p.

We note that our definition of simultaneous coordination problems is the same as the
definition that Moses and Tuttle [13] give for simultaneous choice problems.

In this paper, we study coordination problems whose enabling condition are non-
trivial facts about the input and the existence of failures. A fact is nontrivial if neither
it nor its negation is valid in the system. Many natural simultaneous coordination
problems have enabling conditions that are nontrivial facts about the input and the
existence of failures.

In a given round r, the complexity of the local computation of a processor is mea-
sured as a function of r and the total number of processors n. Moses and Tuttle provide
a justification of this choice of parameters. Since in any protocol, processors would be
required to exchange messages containing their external inputs, we assume that the ex-
ternal inputs are polynomial in size. If processors perform only polynomial-time local
computation, we say that the protocol runs in polynomial time.

Two runs of two protocols are corresponding runs if they have the same failure and
input patterns. A protocol P implementing simultaneous coordination problem C is
optimal if, for every protocol P’ that implements C and every pair of corresponding
runs of P and P’, the nonfaulty processors perform an action in the run of P no later



than they do in the run of P’'. P is almost-optimal with additive constant k if, for every
protocol P’ and every pair of corresponding runs of P and P’, the nonfaulty processors
perform an action in the run of P no more than k& rounds after they do in the run of P’.
P is almost-optimal with multiplicative constant k if, for every protocol P’ and every
pair of corresponding runs of P and P’, the following holds: if the nonfaulty processors
perform an action in the run of P’ in round r then they perform an action in the run
of P no later than round kr. An action function of an almost-optimal protocol is an
almost-optimal action function.

A protocol is a full-information protocol if processors exchange all the information
they have about the run in every round; that is, in every round every processor sends its
state to every other processor. Moses and Tuttle proved that, if there exists a protocol P
that implements a simultaneous coordination problem and runs in polynomial time,
then there exists a full-information protocol P’ that implements the same problem and
runs in polynomial time such that processors decide in P’ no later than they do in P.
Therefore, in what follows, we can restrict our study to full-information protocols.

4 Knowledge and Coordination

Processor knowledge was first defined by Halpern and Moses [9] as follows. Processor p
knows ¢ at point (p,{), denoted (p,l) = Ky, if (p', ') |= ¢ for all runs p’ of the system
such that p(¢') = p,({) Since the global clock is always part of a processor’s local
state, it follows that (p,€) = Ky, if (p',€) = ¢ for all runs p’ of the system such that
P, () = pp(£). 1t is useful to condition a processor’s knowledge on its being nonfaulty.
We say that processor p believes ¢ if p knows that, if it is in N, ¢ is true. That is,
B, = K,(p € N = ). It is easy to see that (p,¢) E B,y if (p',{) E ¢ for all runs p'
such that 7 (£) = r,(£) and p € N(r').

Because this paper deals with coordination among the nonfaulty processors, we are
specifically interested in the knowledge possessed by the set A of nonfaulty processors.
Everyone in N knows ¢, denoted Ep, is defined as A,cp Byg. (Moses and Tuttle [13]
and Neiger and Tuttle [17] explain why belief, and not knowledge, is appropriate for
the problems considered here.) Fact ¢ is common knowledge, denoted Cep, if A;»q Efip.

A usetul tool for reasoning about knowledge is the similarity graph. The nodes of
this graph are the points of the system, and there is an edge between points (p, ()
and (p',¢) if and only if there exists a processor that is nonfaulty at both points and
has the same local state at both points. It is not hard to see that, it ¢ is true at all
points adjacent to (p,{), then (p,{) = Ep. We define the similarity relation ~ on the
similarity graph to be the transitive closure of the adjacency relation. We say that two
points (p,£) and (p',{) are similar if (p,€) ~ (p',€). 1t is not hard to see that a fact is
common knowledge at a point (p, () if and only if it holds at all points that are similar
to it [13].

One way to prove that a fact is common knowledge is to use the induction rule for
common knowledge [9]. The induction rule says that, if ¢ = E¢ is valid in a system,
then so is ¢ = Cep.

Common knowledge is important for reasoning about simultaneous choice problems
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because, when processors perform a simultaneous coordination action, they must have
common knowledge of the enabling condition of the action being performed [5,13]. In
particular, processors running an optimal protocol perform a simultaneous coordination
action as soon as some enabling condition becomes common knowledge. An almost-
optimal action function with additive constant k& requires processors to take some action
in round r when some enabling condition has been common knowledge since round r—k.
An almost-optimal action function with multiplicative constant & requires processors to
take some action in round r when some enabling condition has been common knowledge
since round |r/k].

5 Complexity Results

In this section, we study the complexity of almost-optimal simultaneous coordination.
Moses and Tuttle [13] proved that processors running an optimal protocol may be
required to perform NP-hard local computation between rounds of communication.
We show that processors running an almost-optimal protocol would still be required to
perform NP-hard local computation between rounds of communication. Our proof is
similar to that of Moses and Tuttle.

We prove the NP-hardness by giving a Turing reduction from the Vertex Cover
problem. This is the problem of determining whether a given graph G = (V, E) has
a subset C' of vertices (vertex cover) of size less than a given integer m such that any
edge of (G is incident to some vertex in €. The Vertex Cover problem is known to be
NP-hard [7]. The intuition behind the reduction is that the faulty processors form a
vertex cover of the graph defined by the missing messages in any round.

The following is an algorithm for Vertex Cover. It returns yes if and only if G has
a vertex cover of size less than m; it returns no otherwise.

c=|V]|

while SmallerCover(G, c)
c=c—1

if ¢ < m then
return(yes)

else
return(no)

SmallerCover is a boolean function that takes as input a graph G that has a vertex cover
of size ¢ and returns true if and only it G has a vertex cover of size less than ¢. We will
show that, if there is an almost-optimal (within a constant additive factor) coordination
function that runs in polynomial time, we would be able to implement SmallerCover
in polynomial time, and this would then give a polynomial-time algorithm for Vertex
Cover. This suffices to prove that almost-optimal coordination is NP-hard.

Let GG be a graph with v vertices, known to have a vertex cover of size ¢. We consider
a system of n = v 4 2¢ + 3 processors, t = ¢ + 2 of which could be faulty. We identify
three processors p, ¢ and r. A set Pg containing v other processors corresponds to
the vertices of G and the remaining 2¢ processors we call A. We will consider a choice



problem that has a unique action @ and whose enabling condition is ¢ = “p’s input in
round 1 is 0”7. (Our results can be extended to general nontrivial facts about the input
and the existence of failures using standard techniques.)

Consider the following history H of a full information protocol.

e In round 1, p’s external input is 0. No other input is received in H.

e Inround 1, g receives p’s message, but no other processor does so (this implies that
p is faulty in all runs compatible with H). No processor receives any message from
g in round 1 (this implies that ¢ is faulty). There is no communication between
processors p, and p, in P if and only if there is an edge between vertices x and
y in . All other messages are delivered in round 1.

e In round 2, no processor receives any message from p, while only r receives ¢’s
message. All other messages are delivered in round 2.

e After round 2, no processor ever receives a message from either p or ¢ while all
messages from all other processors are delivered.

Remember that H corresponds to a set of runs of the protocol. More than one failure
pattern of the system can be compatible with it. By fixing the failure pattern, we
identify a unique run. Note that ¢ is not known by processors in A at the end of
round 2. Since |A| = 2t > t, at least one processor in A is correct, so ¢ cannot be
common knowledge at the end of round 2.

In what follows we will need the following lemma of Moses and Tuttle [13, Lemma

11].

Lemma 1 (Moses and Tuttle): Let p and p' be runs differing only in the (faulty)
behavior displayed by processor p after time k, and suppose that no more than f
processors fail in either p or p'. If { — k <t+1— f, then (p,{) ~ (p',{).

The following lemma applies to runs that are compatible with H:

Lemma 2: For all k (0 < k < ¢), ¢ is common knowledge at the end of round k + 3
if and only if G has no vertex cover of size less than ¢ — k.

Proof:  Assume that G has a vertex cover C of size less than ¢ — k. Let p be a run
compatible with H such that fewer than (¢ — k) +2 =t — k processors fail by the end
of the second round; such a run exists because all missing messages can be accounted
for by assuming that p and ¢ are faulty as are the (fewer than ¢ — k) processors in
Pg corresponding to C'. Now, consider another run p’ that differs from p only in
the behavior of r, which is silent in p’ after the second round. Note that at most
(¢ — k) 4+ 2 =1t — k processors fail in p’ (one more than in p).

Let f =t—k. By Lemma 1, (p,0) ~ (p',€) if { =2 < t+1— f (since p and p’ differ
only in the behavior of r after time 2). Substituting for ¢, f and ¢, (p, k+3) ~ (p’, k+3)
ifk+3—-2<t+1—-(t—k)ork+1<k+1; thus, (p,k+3) ~ (p/,k+3). Notice
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that, at point (p, k+3), no correct processor knows . It is not hard to see, then, that
(p, k+3) E ~Ce.

Assume now that GG has no vertex cover of size less than ¢ — k. This means that
there must be at least ¢ — k faulty processors in Pg. Let a be “p and ¢ are faulty and
Pg contains at least ¢ — k faulty processors.” It follows that K,(p A «) at the end of
the second round of any run compatible with H. This is because, at the end of the
second round of any such run, r’s state contains the information about all the messages
exchanged in the first round. The missing messages cannot be accounted for unless «
holds.

The remainder of the proof makes use of the idea of a processor learning a fact
through a chain of distinct processors. Let o = (pi,p2,...,pa) be a sequence of d
distinct processors. We say that processor pgy1 learns i through o at time (4 d if K, ¢
at time ¢ and the communication between p; and p;4; is successtul in round ¢ + ¢ for
all ¢, 1 <7 < d (p441 could be in o). Note that, if s learns ¢ through o at time ¢ + d
then, at time ¢ + d, K,(p learns ¢ through o at time ¢ + d).

Let Pp = P U{p,q} and let Po = P — Pr = AU {r}. Let § be “there exists a
processor that learns o A « at time k+ 3 through a chain of £+ 1 distinct processors in
Pe.” Clearly, B = ¢ A« is valid. We will show that 3 is common knowledge at the end
of round k + 3 of any run compatible with H. It follows from this that ¢ is common
knowledge at such points as well.

Let p be a run compatible with H. The proof will use the induction rule for common
knowledge: we will first show that (p, k+3) = [ and then show that 8 = Ef is valid in
the system. This will imply that 5 = Cf is valid in the system and that (p, k+3) |= CS.
We first show that (p,k + 3) = 5. As noted above, (p,2) = K, (¢ A ). Since there are
at least (c— k)42 = t — k faulty processors in Pp, there are at most k faulty processors
in Po. Since |Po| = 2¢ + 1, there are at least 2¢ + 1 — k that are correct and, since
k < ¢, this number is at least ¢+ 1, which is greater than k. Let o be r followed by any
k of these correct processors; it is clear that all correct processors learn ¢ A a through
o at time k + 3, s0 (p, k +3) | 5.

We next show that, for any point (p’, ¢) such that (p',¢) = 5 holds, (p,{) E EB also
holds. Let (p',£) be such a point. Since (p',{) = 3 it follows that (p’,¢) = «, which
means that there are at least ¢ — k 4+ 2 = t — k faulty processors in Pp in p’. Since (3
holds in p’, some processor learns ¢ A a through a chain o of k4 1 processors in Pe in
p'. Since P contains at most ¢t — (t — k) = k faulty processors, one of the processors
in o is correct. Let p; be this correct processor, where ¢ is the index of p; in ¢ and ¢ is
maximal among the correct processors in o. This means that there are at least k+1—2
faulty processors in o and Py contains at most ¢ — 1 faulty processors outside o. Fg
contains at least 2¢+1— (k+ 1) > ¢ processors outside o, at least c— (i — 1) = ¢+ 1—14
of which are correct. It follows now that every correct processor learns ¢ A « through
a chain pi,pi,...,phyy of k + 1 distinct processors at time k 4+ 3. The chain is such
that p = p; for 1 < j <4 and the remaining k£ + 1 — ¢ processors are chosen from
the ¢ + 1 — ¢ correct processors in P that were not in o. Thus, (p/,¢) = ES. This
means that 8 = Ef is valid in the system and, by induction, so is § = C3. Since
(p,k+3)E B, (p,k+3) ECBand (p,k+3) E Cp. This completes the proof. O



The construction of history H and Lemma 2 are not sufficient to implement
SmallerCover. Consider the following. If a processor correct in some p compatible
with H does not perform action a at time k4 3, we can deduce that ¢ was not common
knowledge at time 3 and thus that GG has a vertex cover of size smaller than ¢. On the
other hand, if a processor does perform a at time k + 3, we can deduce only that ¢ is
common knowledge at time k£ + 3 and thus that G does not have a vertex cover of size
less than ¢ — k. The “gap” between ¢ and ¢ — k prevents the direct implementation of
SmallerCover. To implement SmallerCover, we define a new graph.

Let G*t! be the union of k + 1 different copies of (G. (G has a vertex cover of
size m if and only if G*t1 has a vertex cover of size m(k 4+ 1). When asked to im-
plement SmallerCover (G, ¢), construct the system and history described above using
GF*1 instead of G and c(k+ 1) instead of ¢. Let C be the simultaneous choice problem
described above and let P be an almost-optimal full-information coordination protocol
with additive constant k that implements C. Now, consider the history H of P at
time k£ + 3. If processors do not perform a by the end of round k + 3, then ¢ is not
common knowledge by the end of round 3. By substituting G**! for G and c(k + 1)
for ¢ in Lemma 2, we deduce that G**! has a vertex cover of size less than c(k + 1) or,
equivalently, that GG has a vertex cover of size less than ¢. If processors do perform a by
the end of round k + 3, then ¢ is common knowledge by the end of round &k + 3 [5,13].
Again, Lemma 2 implies that G**! has no vertex cover of size less than c(k + 1) — k.
This implies that G has no vertex cover of size less than c; if it did, G**! would have
a vertex cover of size (¢ — 1)(k+1) = ¢(k+1)—(k+1) < ¢(k+1) — k. Thus,
processors perform a by the end of round k£ 4 3 if and only if G has no vertex cover
of size less than ¢; the construction of G**! and Lemma 2 are sufficient to implement
SmallerCover. This completes the proof for the case of almost-optimal protocols with
additive constants.

To prove that the results holds for almost-optimal protocols with multiplicative
constants, we note the following. Let p be a run of the history H of an almost-optimal
full-information protocol with a multiplicative constant k. Processors perform a by
the end of round 3k if ¢ is common knowledge by the end of round 3k. Similarly, a
processor does not perform a at the end of round 3% only if ¢ is not common knowledge
at the end of round 3. The rest of the proof is almost identical to the one given above.

As noted above, our results can be extended to general nontrivial facts about the
input and the existence of failures using standard techniques.

6 Conclusions

The results of this paper extend those shown earlier by Moses and Tuttle [13]. They can
also be applied to the consistent simultaneous choice problems of Neiger and Tuttle [17];
solutions to such problems require that faulty processors, if they act, do so consistently
and simultaneous with the nonfaulty ones. They show that the earlier NP-hardness
results, which applied to optimal solutions in systems with general omission failures,
also hold for almost-optimal solutions.

One conclusion that can be drawn from these results is that translations that in-
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crease fault-tolerance cannot be used to obtain almost-optimal algorithms. Consider,
for example, systems with crash failures. Moses and Tuttle showed that polynomial-
time optimal solutions exist for such systems. Neiger and Toueg [16] showed how
crash-tolerant algorithms could be converted to tolerate general omission failures by
only doubling the number of rounds used and with only a polynomial increase in local
computation. The results of this paper show that, if P # NP, then the translation of
Neiger and Toueg does not preserve optimality (this could probably be shown indepen-
dent of the relation between P and NP but is beyond the scope of this paper).

Note that the results hold only for constant additive and multiplicative factors. It
is not hard to show that any simultaneous coordination problem has a solution that
is almost optimal with an additive factor of ¢ — 1, where ¢ is the number of faulty
processors. The proof of Lemma 2 holds only for additive factor k, where k < ¢ =t —2.
Thus, our results and the above fact are not contradictory.
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