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ABSTRACT

The understanding of how people perceive spatially dynamic sound
sources is limited, due in part to the difficulty of controlling dy-
namic environmental interactions. Free field solutions require large
rooms with bulky equipment for moving speakers. Virtual systems
that account for head movement must balance adaptability with
stability of timing characteristics (time lag and jitter). The system
described here combines the flexibility and ease of use of a soft-
ware system, with near-hardware stability of a real-time operating
system. Hardware and software design choices are discussed and
the system performance is evaluated. Preliminary psychophysics
are run to validate the system and to illustrate the need to study
system latencies smaller than previously considered relevant.

1. INTRODUCTION

The study of spatially dynamic virtual sound localization is diffi-
cult to implement. The head related transfer functions (HRTFs)
change as the subject moves his/her head. Therefore the subject’s
interaction in the environment must be considered in real time. In
order to create the virtual environment, the system must be able to
change filters and render the output with minimal time lag. The
system described here is meant for installation in a psychoacous-
tics laboratory for experiments that explore thresholds of auditory
perception. These experiments require the system to be flexible,
accurate, and easy to use. Although the use of specialized hard-
ware such as DSPs or FPGAs may produce more stable results,
their flexibility requires specialized programming skills not often
found in a psychoacoustics lab. Furthermore, streaming file I/O is
more complicated to implement on specialized hardware.

The goal of the Real Time Virtual Auditory Space (RTVAS)
system is to generate dynamic acoustic stimuli with a high perfor-
mance, cost-effective, flexible system that can dynamically update
filter coefficients in real time. These stimuli will enable investiga-
tors to explore dynamic localization cues that arise from movement
of the source and/or of the subject’s head. RTVAS is written en-
tirely in C++ and runs on stock computer hardware. This allows
for code to be updated quickly and real-time streaming of data to
and from the disk to be implemented easily. The system is open
source and uses readily available hardware, allowing other labs to
implement and modify this technology with minimal effort. Pre-
vious work with virtual environments utilizing head tracking has
been reported by Wenzel [1], Wightman and Kistler [2] and Brun-
gart et al. [3]. The last of these studies showed no significant

effects of system latencies smaller than 70 ms in a statically lo-
cated sound localization task. Some of the work reported here has
been previously reported by Scarpaci and Colburn [4].

2. SYSTEM HARDWARE

The RTVAS system is comprised of standard components, allow-
ing for easy implementation. Currently the RTVAS system is being
run on a stock Dell OptiPlex with a 2.6 GHz Intel Pentium Proces-
sor and 512 Mb of DDR RAM.1 The operating system is a Linux
2.4.20 kernel with a Real-Time Application Interface (RTAI) real-
time kernel patch.2

The Data Acquisition Card (DAQ) is a National Instruments
NI PCI-6052E card.3 This card has 16 analog inputs and 2 analog
outputs with 16-bit resolution and up to a 333 kHz sample rate.
The range of the output channels is ±10V, and each sample is dis-
played on the output at a rate of 44.1 kHz by our real-time process.
This sample rate is set in software and can be easily changed to fit
experimental design. RTVAS can utilize the A/D channels on the
DAQ in a variety of different ways including obtaining signal input
and subject feedback. The Digital I/O can also be utilized for exter-
nal triggering as well as user feedback by means of a response but-
ton. The drivers used to control the DAQ are open source Comedi
drivers.4 The Comedi drivers are supported by RTAI and control a
wide range of readily available hardware. This allows our system
to run in a variety of hardware configurations. Comedi’s interface
is straightforward and easy to learn and implement for someone
competent in C/C++ programming.

Head position is measured with the InterSense IS-900VWT
Precision Motion Tracker.5 This system allows for 6 degrees of
freedom (yaw, pitch, roll, X, Y, and Z) and can track up to 4 de-
vices at a time. The two devices that may be used in RTVAS are
the head tracker and wand. Both of these devices have gyroscopic
sensors as well as ultrasonic sensors that pick up signals from bea-
cons placed in the room. The processing needed to compute the
position of each device is implemented in the InterSense hardware.
The hardware then transmits position data to the computer through
the serial port.

1Dell Inc. http://www.dell.org
2Real-Time Application Interface http://www.rtai.org
3National Instruments http://www.ni.com
4Linux Control and Measurement Device Interface

http://www.comedi.org
5InterSense Inc. http://www.intersense.com

ICAD05-1

Eoin Brazil
ICAD05-241



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

Figure 1: System level flow diagram for the RTVAS system. Subject hears output over headphones and the system receives feedback
through the head tracker and response button.

The operating system, RTAI real-time patch, and DAQ drivers
are all open source and freely distributable. Since all of the hard-
ware is standard, any component of the system can be upgraded
or changed without affecting the other components. This allows
the system to be completely scalable; e.g. more complicated algo-
rithms can be implemented by simply upgrading the computer.

3. SYSTEM DESIGN

3.1. Real-Time Implementation

The RTVAS system utilizes two real-time methods in order to sta-
bilize timing. The first is a soft-real-time scheduler native to Linux
called the FIFO scheduler. This scheduler preempts most other
processes running on the operating system, including operating
system processes that handle mouse movements and refreshing the
screen. These processes would normally take processor time away
from the running virtual display system, causing time jitter. Using
this method the real-time process can still be interrupted by ker-
nel level processes and is thus still considered soft-real-time. The
RTAI kernel patch allows for hard-real-time performance by dis-
abling all maskable interrupts and running the process with kernel-
level priority. Furthermore this scheduler is truly periodic, inter-
rupting any currently running process when the real-time process
is scheduled to run.

Using RTAI for real-time research has been implemented by
one of the authors [5]. Even though the application is real-time
patch clamping instead of real-time virtual audio, the use of RTAI
is proven to be a stable and effective method for obtaining hard-
real-time performance.

3.2. High level system structure

Some of the advantages to a software based system are the flexibil-
ity and control over data structures. Using a computer also allows
for disk and serial I/O to be straightforward. Furthermore the use
of a standard operating system allows for a Matlab interface, mak-
ing it accessible for users of many skill levels. The overall system
is shown in Fig. 1.

The Matlab user interface sets up variables and creates input
and position vectors. This part of the system is non-real-time and
is not available during time-critical periods. The Matlab interface

allows for easy scripting of dynamic experiments with intuitive
user response and feedback utilizing graphical user interfaces.

The user level process parses the command line and sets up the
auditory objects described below. During run time the soft-real-
time threads running in user space control serial I/O and stream-
ing of data to and from the hard disk. Data is shared with the
hard-real-time process by means of shared memory and software
FIFOs. This shared memory allows for the user space program to
configure the hard-real-time process during run time.

The RTAI Process handles all of the computation of output
as well as I/O to the data acquisition card. These processes are
time sensitive; thus it is important to run them in a hard-real-time
environment.

A multi-threaded approach allows for the most efficient use
of processor time. The file I/O and serial routines are blocking
processes which means there are times where these processes are
waiting for data to be received by the processor. During those wait
periods, it is important to give control of the processor to one of
the other threads running in the system. File I/O and serial I/O are
implemented in soft-real-time to allow multi-threading.

3.3. Software Architecture

The system is implemented using an object-oriented architecture.
The class structure shown in Fig. 2 allows the system to be dy-
namic and easily expanded. To add a class or change a model, one
needs only to create an inherited class and implement the functions
described by the generic function headers, therefore the core of the
program only sees the generic classes and their function headers.
It is blind to the implementation of the virtual functions.

The object-oriented approach also allows multiple auditory
objects to occur simultaneously in the auditory space. Each au-
ditory object has separate memory space for state variables and
output data, and separate member classes for obtaining input, po-
sition, and for calculating output. These classes are derived from
parent classes GenericInput, GenericPosition, and GenericCalc.
The generic classes are the only interface between the system and
the derived classes. Each of the derived classes must be self-
contained and have a defined rt get() or rt calc() function. To add
an object to the system, pointers to the class instances are passed
to the add obj() function. For example:
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Figure 2: Class structure. Derived classes are shown connected
to their parent classes. Virtual function headers defined in generic
classes must be implemented in derived classes.

add obj(new inputnoise(),
new positionfile(‘‘pos.dat’’),
new calcFilt(‘‘Filter.dat’’));

This allows the system to be configured at run time rather than re-
compiling every time there is a change.

In addition to having multiple sources, the system can be con-
figured to add reflections by modeling them as separate sources
with a delayed and filtered version of the same input. By imple-
menting the reflections in this manner, one can study reverberant
conditions without using extremely long filters. This allows these
filters to be implemented in real time.

As mentioned above, this architecture allows researchers to
implement their own model without having knowledge of the sys-
tem architecture. A user may simply write a new class, inheriting
the GenericCalc class. Within the implemented class, the virtual
function rt calc is passed all the relative data needed for the com-
putation of the output. The complexity of the models used is solely
limited by processor speed. Since the system is scalable, the com-
puter may be upgraded and more complex models can be imple-
mented without changing the system architecture.

4. IMPLEMENTED OUTPUT ALGORITHMS

4.1. HRTF Model

An example of an HRTF model currently implemented is that us-
ing the CIPIC HRTF database [6]. The HRTF class filters the input
with 200-point anechoic head-related impulse responses (HRIRs)
stored in memory. These HRIRs are taken from the 1250 posi-
tions recorded from the KEMAR mannequin that are part of the
CIPIC database. However, the class is flexible and can be passed
any properly formatted file of HRIRs at any temporal or spatial
resolution.

The measured data sets that we are using are not spatially-
sampled densely enough, which may cause “clicks” when chang-
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Figure 3: The current input sample is multiplied by the current im-
pulse response and added to circular output buffer. Y(0) is added
to the system output, the output buffer is shifted, the impulse re-
sponse h is updated, and procedure is repeated.

ing between adjacent filters. We have implemented and are cur-
rently evaluating different methods for interpolation. For the dis-
cussion in this paper we will use a method similar to that described
by Kistler and Wightman [7]. Although the initial work of inter-
polating the HRIRs has been done offline, we hope to implement
the interpolation in real time.

4.2. Convolution Engine

Due to dynamic filters and concerns about system latency, an “out-
put side” algorithm that accounts for time dependent filters is used.
If FL is the length of the filter, the output side algorithm is as fol-
lows:

y(i) =
i

X

k=i−F L+1

h(i − k, k)x(k) (1)

In this equation h(n, m) is the response n time steps after an im-
pulse which occurred at time m. This equation allows the current
output to depend on past input samples filtered by the system as it
existed when the sample occurred.

Calculating one point of output per cycle of the real-time thread
eliminates latencies induced by block convolution. Since the filters
change with time, a circular output buffer is used to store the tails
of past scaled impulse responses to be used in the current output
sample (see Fig. 3). Block convolution may be used to allow for
longer filters or more complicated algorithms that take more than
a sample period to compute. Each sample in the block convolution
will add an additional sample period (23 µs) latency to the system.

4.3. ITD Model

An important cue for localization of sound is the Interaural Time
Difference (ITD). This is the difference in time it takes a signal to
reach one ear relative to its arrival at the other ear. While work-
ing on the issues of implementing the HRTF models, we decided
to also explore a much simpler output algorithm. By simply de-
laying one ear relative to the other we implemented a simple ITD
model. This model ignores any frequency dependence of the ITD,
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Figure 4: Timing characteristics of 10,000 packets received by the
serial port. FIFO scheduling used in panels a and c allows for soft-
real-time processing. Low latency serial mode used in panels a and
b reduces jitter by instructing the serial port hardware to interrupt
the processor for every byte received. Panels c and d show a bi-
modal distribution near 0 and 10 ms due to the low latency mode
being disabled.

to which subjects have been shown to be insensitive [8]. We took
the azimuthal angle of the egocentric source position and used it
to calculate the ITD using the low frequency ITD model described
by Kuhn [9]. Half the ITD is imposed on one ear as a lead and half
is imposed on the other ear as a lag.

It has been shown by Mills [10] that the minimal audible an-
gle (i.e. the resolution at which a subject can distinguish a spatially
separated signal in the azimuth) can be as small as 1 degree in the
mid-line. For an average sized head this corresponds to a differ-
ence in ITD around 10 µs, which has been shown to be the just
noticeable difference (JND) in ITD at the midline [11]. At a com-
monly used sampling freq of 44.1 kHz the smallest integer sample
delay that can be implemented is 23 µs. In order to make delays
small enough to account for human sensitivity of 10 µs it is neces-
sary to use methods to delay the signals less than a sample period.
To implement this delay we filter the signal with a sinc function as
described in Laakso et al. [12].

5. SYSTEM PERFORMANCE

Two important metrics to consider when evaluating a real-time
system are the latency and time jitter of the feedback updating the
output. First we consider the latency and time jitter created by the
head tracker system.

The largest source of system latency is the head tracker. Some
of this latency is due to the head tracker hardware and some is due
to the transmission of the data through the serial port of the com-
puter. Figure 4 shows the timing characteristics of the serial com-
munication. We have taken two steps to reduce the transmission-
induced jitter. The first step is to run the system in a soft-real-time
mode (FIFO scheduling) which is a standard Linux scheduler that
has priority over normal system tasks. The timing characteristics
using FIFO scheduling are shown in panels a and c. Under normal
scheduling other processes can block the communication process

Movements Trials System
Load

Mean
(ms)

Standard
Error (ms)

Similar to fast 75 Low 6.31 0.26
head movements 75 High 6.59 0.22
Faster than fast 25 Low 10.41 0.14

head movements 25 High 10.41 0.01

Table 1: Results of tracker latency experiment. Total system delay
between head tracker movement and response of the system to the
movement.

causing time jitter, shown here in panels b and d as the spread of
the inter-sample time histogram. The second step is to put the se-
rial port hardware into low latency mode, as shown in panels a
and b. In this mode the serial port hardware will notify the sys-
tem processor after every byte is received. In the normal mode,
the hardware buffers the data and notifies the processor only af-
ter multiple bytes have been received. This will effectively skip
tracker samples since the next position sample will be handled im-
mediately after the first sample. This is shown in panel c and d as
a bimodal distribution with centers at 0 and 10 ms. Under normal
operation we will run the system with both FIFO scheduling and
low latency mode enabled.

We have also attempted to characterize the timing character-
istics of the head tracker hardware. According to the InterSense
documentation the tracker should have a latency between 4 - 10
ms [13, p. 93]. To validate this, we took our own measurements
comparing the tracker data to data recorded from an independent
device which could measure azimuth in real time. These measure-
ments represent the total system timing latency including the head
tracker, serial communication, computer processing, and DAQ.

The two independent measures of azimuth as a function of
time were compared by taking the cross correlation and finding the
peak. This measurement was taken for a high computational load
(file I/O for input and position as well as a 200-point convolution
for each output sample), and for a low computational load (no file
I/O or output calculations). The mean and standard error of the
delays are shown in Table 1. Movements were made by hand by
rotating the tracker’s headpiece in azimuth around the post of the
measurement device.

No statistical difference is seen between low and high system
loads, which validates our assertion that the timing characteristics
are dominated by the head tracker. For movements similar to fast
head movements, the timing characteristics seem to be well within
the specifications of the InterSense documentation of 4-10 ms. For
movements that are faster than what a subject would be able to
make, the timing characteristics were outside specifications, al-
though only slightly.

Additional latency and time jitter due to the RTAI system is
very small compared to that caused by the tracker. The hard-real-
time function controlled by the RTAI scheduler is called every
22.68 µs. Fig. 5 shows the deviation from that sample period.
Even though the inset shows timing overshoots as large as 15 µs,
the error histogram shows that 95% of the error is within 1.56 µs.
The time jitter is always less than a single sample period. This
implies that with hardware buffering of one sample there would be
no time jitter in the output displayed to the subject.

The implication of these findings is that the system is currently
limited by the head tracker hardware. Theoretically, the system
can update the filters every sample period with only one sample of
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Figure 5: Histogram of the error between when a time step should
have occurred and when it actually occurred. Figure inset shows a
sample of the error, 95% of the error is within 1.56 µs.

latency, and effectively no time jitter. The modularity of the sys-
tem allows for the head tracker hardware to be easily updated to
bring the timing characteristics of the system closer to its theoreti-
cal limit.

The computational complexity of the models also influences
temporal stability. The number of auditory objects that the system
can render while streaming input and position data from disk and
recording timing information to disk was measured. Results show
that while maintaining temporal stability, the system can render 4
auditory objects using the ITD model or 1 object using the larger
HRTF filter model. More objects can be rendered in real time by
decreasing the constraints on the system latency or by increasing
processor speed.

6. PRELIMINARY PSYCHOPHYSICS

6.1. Basic Characterization of Sound Localization

To validate the effectiveness of the system for spatialization we
ran localization experiments with stationary sound sources. For
the static condition, subjects were played a 2-second lowpass noise
stimuli with a cutoff of 1.5 kHz. The subjects were instructed to
keep their heads still during the stimulus interval and then point
their noses towards the perceived location and press the response
button. The position was recorded by the head tracker and stored
to disk. A sample of the results is shown in Fig. 6A.

The experiment was repeated, this time allowing the subjects
to turn their heads during the stimulus interval. As shown in Fig.
6B the subject performs better than in the stationary head condi-
tion. Since subjects can move their heads to position the virtual
source in front of them, the task can now be considered a center-
ing task.

The data shown here are meant to be a proof of concept, and
are by no means complete. The results shown in Fig. 6 used the
ITD model as the spatialization method. The performance using
the HRTF model is very similar to the results using the ITD model.

6.2. Effects of System Latency

A preliminary experiment to judge the effects of system latency
shows the versatility of the system as well as demonstrates the
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Figure 6: Results of 1 subject in a localization task. Panel A shows
target vs response angle for static localization task. Panel B shows
results for localization using head movement.

need for small latencies. In this experiment the azimuth of a virtual
Gaussian noise source was moved in a reproducible manner. The
subjects were instructed to follow the noise by keeping their noses
pointed in the direction where they perceived the source. A sys-
tem latency was artificially induced by buffering the head tracker
by various amounts. The stimulus rendering included reading in-
put and position data from disk, reading head position from the
head tracker through the serial port, filtering with an HRTF chosen
using the egocentric source position, and streaming head position
data to disk for storage. Figure 7A shows a trial in which a subject
tracks the sound source. The two trajectories are aligned and the
difference in the paths is evaluated. The error was separated into
overshoot and undershoot error based on the sign of the error and
whether the source trajectory was concave up or concave down.
This error metric allows us to consider error due to the accelera-
tion of the source. Changing the induced system latency produces
differences in source tracking performance. Figure 7B shows that
there is a significant difference in the overshoot error at 32.2 ms.

This preliminary data shows that there may be interesting ef-
fects for latencies smaller than those previously considered rele-
vant. Previous studies using statically located stimuli only found
statistically significant differences in performance when latencies
exceeded 70 ms [3]. The difference in results illustrates that the
effect of system latency is dependent on the task being performed.

7. CONCLUSION

The virtual display system described here will support psychophys-
ical experiments that including moving sources, multiple sources,
and head movement. The system has met our goals of being flexi-
ble and easy to use for users with different skill sets. Although the
models of spatialization still need to be explored, the system has
proven to be accurate and stable in realizing these models. The
ITD spatialization model has worked accurately and reliably. The
HRTF model gives a proper spatialization but suffers from issues
of spatial undersampling that need to be resolved independent of
the system. The advantages of this system are:

• System is versatile and easily usable by psychoacousticians
with typical skill sets.

– Matlab interface allows use of implemented models
and easy experimental design without knowledge of
how models are implemented.
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– Models are easily created and adapted without knowl-
edge of system architecture.

• Object-oriented approach allows for intuitive multi-source
experimental design.

• Ability to easily stream data to/from hard drive allows for
arbitrary input signals and position vectors, as well as for
recording of head movements.

• Low System Latency < 7 ms which can be improved to a
theoretical lag of 23 µs and negligible time jitter with im-
provements in tracker technology.

• The effects of small system latencies on human performance
need further investigation.

• System uses standard hardware and has modular software
components allowing for easy hardware upgrades.

• System is scalable allowing for more complicated algorithms
when processor speed is increased.

• System is open source and freely distributable, allowing for
others to easily implement and adapt to meet specialized
goals.
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