
NOVEL PATHWAY FOR MICROBIAL FE(III) REDUCTION:

ELECTRON SHUTTLING THROUGH NATURALLY OCCURRING THIOLS

A Dissertation
Presented to

The Academic Faculty

by

Seng Kew Wee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Biology

Georgia Institute of Technology
May 2014

Copyright © 2014 Seng Kew Wee



NOVEL PATHWAY FOR MICROBIAL FE(III) REDUCTION:
ELECTRON SHUTTLING THROUGH NATURALLY OCCURRING THIOLS

Approved by:

Dr. Thomas DiChristina, Advisor
School of Biology
Georgia Institute of Technology

Dr. Brian Hammer
School of Biology
Georgia Institute of Technology

Dr. Martial Taillefert
School of Earth and Atmospheric
Sciences
Georgia Institute of Technology

Dr. Ellery Ingall
School of Earth and Atmospheric
Sciences
Georgia Institute of Technology

Dr. Roger Wartell
School of Biology
Georgia Institute of Technology

Date Approved: January 8, 2014



iii

ACKNOWLEDGEMENTS

I would like to first thank my advisor, Dr. Thomas DiChristina, for giving me an

opportunity to be a member of this wonderful lab.  Thank you for valuable advices and guidance.

To my thesis committee, thank you for your time and for giving useful input to

my research.

To both current and former members of DiChristina Lab, Nadia Szeinbaum,

Rebecca Cooper, Ramanan Sekar, Justin Burns, Chistine Fennessey, Nalini Mehta, Omar

Elizondo, Dawayland Cobb, Brian Ginn, Ben Reed and Jennifer Goff; it’s been a pleasure to

work with you guys. To Eryn Eitel, thank you for providing useful data. Josh Parris, Keaton

Belli, Jordan Beckler, Collin Dean, Morris Jones and Anna Williams, thanks a lot for the moral

support.

To my family, especially to my late father, thank you for always being supportive.

To all friends, thanks you for never leave me alone.

Funding was provided by Government of Malaysia and National Science

Foundation.



iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS xi

SUMMARY xiii

CHAPTER

1 Introduction 1

Phylogeny of the Gammaproteobacteria 1

Phylogenetic diversity of DMRB 2

Metal-reducing members of genus Shewanella 2

Molecular mechanism of microbial metal respiration 4

Naturally occurring thiols in the environments 8

Detection of single microbial cells by fluorescent protein technology 10

References 13

2 Extracellular Fe(III) oxide reduction by Shewanella oneidensis proceeds through
microbial reduction of naturally occuring disulfide compounds 20

Summary 20

Introduction 21

Materials and methods 23

Results and discussion 25



v

References 38

3 Shewanella oneidensis mutants selected for their inability to reduce disulfide contain
mutations in outer membrane β-barrel protein MtrB 42

Summary 42

Introduction 44

Materials and methods 46

Results and discussion 51

References 58

4 Identification of a molecular signature unique to metal-reducing Gammaproteobacteria
60

Summary 60

Introduction 62

Materials and methods 64

Results and discussion 70

References 79

Supplemental materials 85

5 Design of a fluorescent protein reporter system for Shewanella oneidensis single cells
under anaerobic conditions 96

Summary 96

Introduction 97

Materials and Methods 99

Results and discussion 102

References 112

6 Conclusion 114



vi

APPENDIX A: Michealis-Menten plots for Vmax-Di 117

APPENDIX B: Michealis-Menten plots for Vmax-Fe 126

VITA 135



vii

LIST OF TABLES

Page

Table 2.1: Maximum rate of disulfide reduction (Vmax-Di) and Michaelis constant
(Km-Di) values for disulfide reduction 27

Table 2.2: Maximum rate of Fe(III) reduction (Vmax-Fe) and Km-Fe values for Fe(III)
reduction with disulfides added as electron shuttle 31

Table 3.1: Strains and plasmids used in chapter 3
46

Table 3.2: Overall respiratory capability of RSH mutants
52

Table 4.1: Strains and plasmids used in chapter 4
66

Table 4.2: Primers used for in-frame gene deletion mutagenesis, site-directed mutagenesis, and
DNA sequencing 69

Table 4.S1: MtrB homologs identified in the genomes of 22 metal-reducing Shewanella strains
87

Table 4.S2: MtrB homologs in MR-1 genome
88

Table 4.S3: Phylogenetic affiliation and amino acid similarity of 52 MtrB homologs
89

Table 5.1: Strains and plasmids used in chapter 5
99



viii

LIST OF FIGURES

Page

Figure 1.1: Phylogenetic affiliation of microorganisms contributing to iron cycling
3

Figure 1.2: Working model of the S. oneidensis electron transport chain
6

Figure 1.3: Schematic representation of the electron transfer pathway to external Fe(III)
oxides reduction via exogenous electron shuttles. 8

Figure 1.4: Chemical structures of naturally occurring thiols found in marine water,
freshwater, and estuarine and salt marsh porewaters 9

Figure 1.5: LOV domain of C. reinhardtii containing the FMN chromophore
12

Figure 2.1: Production of cysteine by S. oneidensis during cystine reduction
26

Figure 2.2: Comparison of maximum disulfide reduction rate (Vmax-Di)
28

Figure 2.3: Production of Fe(II) by S. oneidensis cultures amended with increasing
concentrations of cystine 30

Figure 2.4: Comparison of the maximum extent of Fe(III) reduction
32

Figure 2.5: Percent increase (compared to the no disulfide control) in the extent of 40
mM Fe(III) oxide reduction 33

Figure 2.6: Calculated disulfide shuttling frequencies
34

Figure 2.7: Calculated disulfide shuttling frequencies as a function of Vmax-Di
35

Figure 2.8: Maximum extent of Fe(III) reduction as a function of Vmax-Di
36

Figure 2.9: Abiotic reduction of 40 mM Fe(III) oxide by 500 µM cysteine
37

Figure 3.1: Photograph of screening plate during identification of Rsh13,Rsh35 and
Rsh38 51



ix

Figure 3.3: Genetic complementation of RSH35 mutant
53

Figure 3.4: Rsh35 mutant contains a point mutation at nucleotide coding amino acid
number 401 in β-barrel outer membrane protein MtrB 54

Figure 3.5: Restoration of wild-type Fe(III) citrate reduction activity to Rsh35
54

Figure 3.6: Genetic complementation of Rsh13
54

Figure 3.7: Rsh13 point mutation
55

Figure 3.8: Disulfide reduction deficiencies displayed by Mtr mutants
55

Figure 3.9: Correlation of disulfide (DTNB) and Fe(III) oxide reduction
56

Figure 4.1: LOGO diagrams comparing the amino acids in the N-terminal CXXC
motifs of MtrB homologs 74

Figure 4.2: Dissimilatory metal reduction activity of strains S. oneidensis wild-type,
wild-type containing pBBR1MCS, ∆mtrB, C45A and C42A 78

Figure 4.3: Dissimilatory metal reduction activity of V. parahaemolyticus and V.
harveyi wild-type strains 79

Figure 4.S1: Multiple sequence alignments generated by ClustalW analysis of the N-
termini of MtrB homologs identified in the genomes of 22 metal-reducing
Shewanella strains

92

Figure 4.S2: Multiple sequence alignments generated by ClustalW analysis of the N-
termini of three CXXC-containing MtrB paralogs identified in the S.
oneidensis genome

93

Figure 4.S3: Growth of S. oneidensis MR-1 wild-type and mtrB mutants , with either
O2 , DMSO , TMAO, fumarate, nitrite, thiosulfate, or nitrate as electron
acceptor.

94

Figure 5.1: Growth of recombinant S. oneidensis strain +pBAD_BS2 with O2,
fumarate, and  Fe(III) citrate as electron acceptor 100

Figure 5.2: Bulk fluorescence emitted by cultures of recombinant strain S.
oneidensis+pBAD_BS2 101



x

Figure 5.3: Bulk fluorescent profiles for S. oneidensis+pBAD_BS2 grown with O2 and
fumarate  as electron acceptor

102

Figure 5.4: Single cell fluorescent intensities emitted from S. oneidensis+pBAD_BS2
cells 103

Figure 5.5: Laser confocal microscopy images showing S. oneidensis+pBAD_BS2 cells
104

Figure 5.6: Intracelluar flavin and single cell fluorescent signal intensities for S.
oneidensis+pBAD_BS2 cells 106

Figure 5.7: Comparison of maximum intracellular flavin concentrations in S. oneidensis
wild-type and S. oneidensis+pBAD_BS2 107



xi

LIST OF SYMBOLS AND ABBREVIATIONS

ADP adenosine diphosphate

AOM anaerobic oxidation of methane

ATP adenosine triphosphate

AQDS anthraquinone-2,6-disulfonate

CSH cysteine

CSSC cystine

DMDS dimethyldisulfide

DMRB Dissimilatory metal-reducing bacteria

DMSP dimethylsulfoniopropionate

DNA deoxyribonucleic acid

DTDG dithiodiglycolate

DTDP dithiodipropionate

DTNB

5-(3-Carboxy-4-nitrophenyl)disulfanyl-2-nitrobenzoic acid

FAD flavin adenine dinucleotide

FbFP FMN_binding fluorescent protein

Fe iron

FMN flavin mononucleotide

GFP green fluorescent protein

GSH glutathione

GSSG oxidized glutathione

HFO hydrous Fe(III) oxide



xii

IM inner membrane

LB Luria-Bertani medium

LOV domain light, oxygen, voltage domain

Mn manganese

OM Outer membrane

PCR polymerase chain reaction

PMF proton motive force

RNA ribonucleic acid

SRB sulfate-reducing bacteria

T2SS type II secretion syctem

Vmax maximum reaction rate



xiii

SUMMARY

Dissimilatory metal-reducing bacteria (DMRB) play an integral role in the

biogeochemical cycling of metals in a broad range of environments including redox-stratified

water and sediments. DMRB are also involved in the cycling of other elements such as carbon,

nitrogen, and sulfur. The molecular mechanism of bacterial metal respiration, however, is not

fully understood. Understanding the mechanism by which DMRB mediate metal reduction will

contribute to a better understanding of their roles in the environment and to the development of

applications such as the bioremediation of metal- and radionuclide contaminated sites and

generation of electricity in microbial fuel cells.  Reduced organic sulfur compounds such as

thiols are widespread in natural environments where DMRB are found. These naturally occurring

thiols are redox reactive and abiotically reduce Fe(III) oxides at high rates. The readily available

pool of thiol compounds may thus provide DMRB with a suite of external electron shuttles for

Fe(III) reduction and provide them with a competitive advantage in metal-rich anaerobic

environments.

The main objectives of the thesis research were to i) determine if naturally occurring

thiols function as electron shuttles to deliver electrons to external Fe(III) oxides during microbial

Fe(III) oxide respiration (Chapter 2), ii) identify the genes involved in the thiol-based electron

shuttling pathway of Fe(III)-respiring S. oneidensis (Chapter 3), iii) determine if the CXXC

motif of the outer membrane beta-barrel protein MtrB is required for thiol-based electron

shuttling to external Fe(III) oxides by S. oneidensis (Chapter 4), and iv) design a flavin

mononucleotide (FMN)-based flourescent protein (FbFP) reporter system to monitor FMN
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concentrations in vivo in individual S. oneidensis cells during flavin-based electron shuttling to

external Fe(III) oxides (Chapter 5).

S. oneidensis reduced a suite of naturally occurring disulfide compounds commonly

found in marine and freswater environments, including cystine, oxidized glutathione,

dithiodiglycolate, dithiodipropionate, cystamine, and dimethyldisulfide to their corresponding

thiol forms. Addition of the disulfide compounds to anaerobic S. oneidensis cultures greatly

accelerated the rate and extent of Fe(III) oxide reduction by S. oneidensis.  The results of Chapter

2 indicate that thiol-based electron shuttling pathways provide S. oneidensis with a more efficient

pathway for electron transfer to external Fe(III) oxides during anaerobic Fe(III) oxide

respiration.

Application of a newly developed disulfide reduction mutant screening technique to

random chemical mutants resulted in identification of two respiratory mutants that were unable

to grow on Fe(III), Mn(III), and Mn(IV), but retained wild type reduction activity on all non-

metal electron acceptors.  Subsequent genetic complementation and nucleotide sequencing

analyses indicated that both mutants contained a point mutation in the gene encoding the outer

membrane beta-barrel protein MtrB, which is a central component in the extracellular electron

pathway terminating with the reduction of Fe(III), Mn(III), and Mn(IV). The disulfide reduction

deficiencies displayed by the disulfide reduction-deficient mutants correlated with their Fe(III)

reduction deficiencies. The results of Chapter 3 indicate that disulfide reduction by S. oneidensis

is catalyzed by the Fe(III)-, Mn(III)-, and Mn(IV)-reducing Mtr pathway.

MtrB plays a central role in Fe(III), Mn(III), Mn(IV), and disulfide reduction by S.

oneidensis, yet MtrB homologs are also found in non-Fe(III)-respiring bacteria. Nucleotide

sequence analysis revealed that MtrB homologs from metal-reducing Gammaproteobacteria
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contained a unique N-terminal CXXC motif that was missing from MtrB homologs of non-

metal-reducing Gammaproteobacteria and metal- and non-metal-reducing bacteria outside the

Gammaproteobacteria. The pathogen Vibrio parahaemolyticus, a Gammaproteobacterium

containing an MtrB homolog with a CXXC motif, was subsequently tested for metal respiration

capability.  The results of Chapter 4 indicate that MtrB homologs containing a N-terminal CXXC

motif represent a molecular signature unique to metal-reducing members of the

Gammaproteobacteria.

Applications of Green Fluorescent Protein (GFP) to examine molecular events in single

microbial cells are limited by the oxygen-dependent autocatalytic maturation of the GFP

chromophore.  GFP applications are thus restricted to aerobic microorganisms and are not

suitable for in vivo studies of molecular events in anaerobic microorganisms.  A novel group of

flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs), have been developed as

replacements for GFP.  FbFPs do not require oxygen for chromophore maturation, and can thus

be applied under both aerobic and anaerobic conditions to monitor molecular events in single

microbial cells.  FbFPs require FMN as cofactor, which also suggests that FbFP fluorescence

may be used as an in vivo reporter of internal FMN concentrations. The FbFP reporter system

constructed in Chapter 5 provided a novel technology for in vivo monitoring of internal FMN

concentrations in single S. oneidensis cells during anaerobic growth on an array of terminal

electron acceptors, including O2, fumarate, and Fe(III).
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CHAPTER 1

INTRODUCTION

Microbial (dissimilatory) metal respiration is a central component of a variety of

environmentally important processes, including the biogeochemical cycling of metals and other

elements including carbon, nitrogen, and sulfur [1-3]. In anaerobic marine and freshwater

systems, dissimilatory metal-reducing bacteria (DMRB) generate energy by coupling the

oxidation of organic compounds or molecular hydrogen (H2) to the reduction of alternative

electron acceptors, including soluble and insoluble forms of transition metals such as Fe(III),

Mn(III), and Mn(IV) [4].  DMRB also play an important role in the degradation of toxic

hazardous pollutants and the bioremediation of radionuclide-contaminated water and sediments

[5]. In addition, microbial metal respiration has recently received attention for its potential

applications in the generation of electricity in microbial fuel cells [6, 7].

Phylogeny of the Gammaproteobacteria

The phylum Proteobacteria contains gram-negative bacteria that display a diversity of

physiological attributes [8, 9].  The vast majority of gram-negative Proteobacteria include

phototrophs, heterotrophs, and lithotrophs [10]. Based on comparative analysis of 16S rRNA

sequences, Proteobacteria are phylogenetically divided into Alpha, Beta, Gamma, Delta,

Epsilon, and the newly reported Zeta classes [8, 10-13].  Among the classes within

Proteobacteria phylum, Gammaproteobacteria are more closely related to Betaproteobacteria

than the other classes [10, 14, 15].  The Gammaproteobacteria class includes many of the most

intensively studied model organisms, including Escherichia coli, Salmonella, Vibrio,

Pseudomonas, Yersinia, and Shewanella [9, 10, 14, 16, 17].  In total, the Gammaproteobacteria

are composed of approximately 250 genera, which is one of the highest numbers of genera

within all bacterial phyla [16, 18].
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Phylogenetic diversity of DMRB

Shewanella oneidensis MR-1 and Geobacter sulfurreducens were among the first

bacterial strains reported to conserve energy through dissimilatory metal reduction [19, 20].

DMRB have been subsequently identified throughout the domains Archaea and Bacteria [21,

22]. DMRB have been isolated from all major classes in the Proteobacteria, including the

classes Alpha (e.g., Acidiphilium acidophilum), Beta (e.g., Rhodoferax ferrireducens and

Ferribacterium limneticum), Gamma (e.g., Shewanella oneidensis, Ferrimonas balearica,

Aeromonas hydrophila, and Pantoea agglomerans SP1), Delta (Geobacter sulfurreducens,

Desulfovibrio profundus, Pelobacter carbinolicus, Desulfuromonas acetoxidans, and

Geothermobacter ehrlichii) and Epsilon (Sulfurospirillum barnesii) (Figure 1.1).  Facultative

anaerobes in the genus Shewanella and obligate anaerobes in the genus Geobacter, which belong

to the Gammaproteobacteria and Deltaproteobacteria classes, respectively, represent the most

comprehensively studied DMRB.  Recent advances on S. oneidensis MR-1 and G.

sulfurreducens, as well as some related strains, have provided insight into the mechanism of

microbial metal respiration.

Metal-Reducing Members of the Genus Shewanella

S. oneidensis MR-1 is a gram-negative facultative anaerobe formerly known as

Alteromonas putrefaciens MR-1. S. oneidensis MR-1 was isolated from the metal-rich,

freshwater anaerobic sediments of Oneida Lake (NY) and was one of the first microorganisms

found to generate energy by electron transport chain-linked metal reduction [19]. Most of the

other known Shewanella species were isolated from marine environments [23], including the

tissues of rotting fish and squid [23]. S. oneidensis MR-1 displays remarkable respiratory

versatility and respires a variety of terminal electron acceptors including O2, fumarate, nitrate,

nitrite, trimethylamine N-oxide, dimethyl sulfoxide, sulfite, thiolsulfate, elemental sulfur, and

soluble and insoluble transition metals such
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Figure 1.1 Phylogenetic affiliation of microorganisms contributing to iron cycling. Fe(III)-

reducing bactera are designated in red text, while Fe(II)-oxidizing bacteria are designated

in black text. Adapted from Weber et al[21].

as Fe(III) citrate, Fe(III) oxide, goethite, hematite, Mn(IV) oxide, and Mn(III) [19, 24-29]. The

respiratory versatility of Shewanella is thought to facilitate survival in fluctuating redox

conditions. In the food industry, Shewanella species have been identified as the main spoilage

bacteria during low temperature storage of fish [30-32]. Although human infections by

Shewanella species are rare, several infections have been attributed to S. algae and S.

putrefaciens [33].
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Molecular mechanism of microbial metal respiration

Respiration in gram-negative bacteria is based on the generation of a proton-

motive force (PMF) across the inner membrane (IM).  Electrons originating from the oxidation

of electron donors are transported down the redox gradient of an electron transport chain to

terminal reductases, while protons are translocated across the IM to generate PMF.  PMF drives

ATP synthesis as protons are translocated back into the cytoplasm through IM-localized

ATPases, catalyzing the phosporylation of ADP to ATP [34]. Bacterial terminal reductases for

soluble electron acceptors such as O2, nitrate, and fumarate are located on the IM or in the

periplasmic space. DMRB, however, are presented with a unique physiological problem: they are

required to respire anaerobically on terminal electron acceptors found largely in solid forms that

are presumably unable to contact IM-localized electron transport systems [5]. To overcome this

problem, S. oneidensis is postulated to employ a variety of novel respiratory strategies including

i) direct enzymatic reduction of  solid electron acceptors via outer membrane (OM)-localized

metal reductases [5, 35-37], ii) electron shuttling pathways using exogenous or endogenous

electron shuttling compounds [38-42], iii) chelation (solubilization) pathways in which the solid

electron acceptors are first nonreductively dissolved by endogenously synthesized organic

ligands prior to reduction [28, 43, 44], and iv) nanowire pathways in which electrically

conductive pili (nanowires) transfer electrons to external metal oxides [45, 46].

1. Direct enzymatic reduction of Fe(III) oxides. Direct enzymatic reduction of Fe(III)

oxides requires that the Fe(III) terminal reductases be localized at the OM (Fig. 1.2). S.

oneidensis has evolved extracellular electron transfer strategies requiring multiheme c-type

cytochromes [47]. The S. oneidensis OM proteins involved in the terminal steps of electron

transfer to insoluble electron acceptors include several c-type cytochromes [36, 47-49] that are a
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subset of the 42 predicted c-type cytochromes in the S. oneidensis genome [25]. One of the

proposed pathways of electron transfer to insoluble Fe(III) and Mn(IV) oxides is through the

OM-localized, extracellular electron conduit encoded by the omcA-mtrCAB gene cluster [19, 50-

52]. Disruption of the mtrC or omcA does not affect the ability of S. oneidensis MR-1 to reduce

soluble electrons acceptors such as fumarate or nitrate. Deletion of mtrC, however, decreases the

capacity of the mutant to reduce solid Fe(III) oxide to approximately 33% of the wild type rate.

While deletion of omcA alone does not affect solid Fe(III) oxide reduction, an mtrC/omcA double

deletion mutant displays a severe deficiency in Fe(III) oxide reduction activity. MtrC is therefore

postulated to transfer electrons to extracellular Fe(III) oxides [53, 54], or to extracellular electron

shuttles which in turn reduce the Fe(III) oxides [38, 55].  MtrC and OmcA are translocated

across the periplasm to the OM through the type II protein secretion system (T2SS)(Fig. 1)[56].

MtrC is also postulated to bind and transfer electrons to flavins secreted by S. oneidensis as

electron shuttles to transport electrons to external Fe(III) oxides [57] .

MtrA is a soluble decaheme c-type cytochrome located in the S. oneidensis periplasm

(Fig. 1.2)[35]. Amino acid sequence comparisons reveal that MtrA displays a high degree of

sequence similarity to NrfB, a c-type cytochrome involved in formate-dependent nitrite reduction

in E. coli [35]. MtrA associates in the OM as part of the extracellular electron conduit consisting

of MtrCAB in a 1:1:1 stoichiometry [53]. MtrB is a central component in the metal reduction

pathway, and deletion of the mtrB gene results in a severe loss of capability to respire on both

soluble and insoluble metals [35]. MtrB does not contain hemes and is postulated to function as

an OM anchor that facilitates electron transport from MtrA in the periplasm to MtrC or OmcA at
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Fig 1.2. Working model of the S. oneidensis electron transport chain terminating with

reduction of external Fe(III) oxides[5].

the cell surface [47]. The -barrel structure of MtrB may serve as a sheath for embedding MtrA

and MtrC at the inner and outer faces of the membrane, thereby facilitating electron transfer

across the OM to external metal oxides [58].  MtrA and MtrB homologs have also been reported

in Fe(II)-oxidizing bacteria such as Rhodopseudomonas palustris, Sideroxydans lithotropicus,

and Dechloromonas aromatica [59-61]. The presence of MtrAB homologs in both Fe(III)-

reducing and Fe(II)-oxidizing bacteria indicates that electron transfer across the OM through the

Mtr pathway may be bidirectional [62].

2.  Fe(III) chelation (solubilization) pathways. Some Fe(III)-reducing bacteria such as S.

putrefaciens, S. oneidensis, S. algae, and Geobacter fermentans generate soluble organic-Fe(III)

complexes in the absence of exogenous chelating compounds, an indication that such bacteria

synthesize and release organic ligands to solubilize Fe(III) prior to reduction [43, 63]. Soluble

organic-Fe(III) is detected electrochemically in S. oneidensis and S. putrefaciens cultures

incubated anaerobically with Fe(III) oxides [64]. Detection of soluble organic-Fe(III) prior to
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Fe(II) production suggests that soluble organic-Fe(III) is an intermediate in the reduction of solid

Fe(III) oxides [43, 64]. Recent genetic and biochemical analyses indicate that the well-known

Fe(III)-chelating hydroxamate-type siderophores do not function as Fe(III)-chelating ligands

during anaerobic respiration of solid Fe(III) oxides [44]. The identity of the Fe(III)-solubilizing

organic ligands and the proteins involved in their biosynthesis have not yet been identified.

3.  Extracellular electron transfer via nanowires. S. oneidensis cultures grown in rich

growth medium under O2-limiting conditions produce pilus-like external appendages termed

nanowires, which range from 50-to-150 nm in diameter and tens of microns in length [65].

Scanning tunneling microscopy analyses indicated that the nanowires were electrically

conductive [46]. The nanowires of S. oneidensis may facilitate electron transfer from the cell

surface to external Fe(III) oxides without the need for direct cell-Fe(III) oxide contact. Mutants

deficient in MtrC and OmcA and those lacking a functional Type II protein secretion system

produce poorly conductive nanowires.  Further investigations are required to determine the roles

of MtrC, OmcA, and Type II protein secretion in nanowire architecture.

4.  Electron shuttling pathways. S. oneidensis transfers electrons to Fe(III) oxides located

more than 50 µM (i.e., approximately 50 cell diameters) from the cell surface [63, 66].  Since

electrons require a carrier to traverse distances of more than 0.01 µM [67-69], electron shuttling

compounds may facilitate electron transfer to external Fe(III) oxides. S. oneidensis employs a

variety of exogenous redox-active compounds such as humic acids, phenazines, and AQDS as

electron shuttles to reduce extracellular Fe(III) oxides [4, 39, 70-72]. Potential endogenous

electron shuttles for Shewanella include flavins (FMN, FAD, riboflavin) [38, 40], menaquinone

[42], melanin [41], and organic sulfur (thiol) compounds (the subject of the present thesis; Figure

1.3). Shewanella proteins involved in thiol-based electron shuttling have not been identified and
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the molecular mechanism of the electron shuttling pathway is the subject of an ongoing

controversy.

Figure 1.3. Schematic representation of the electron transfer pathway to external Fe(III)
oxides reduction via exogenous electron shuttles.

Naturally occurring thiols in the environment

Reduced organic sulfur compounds such as thiols are widespread in marine and

freshwater systems.  Thiols have been reported in marine water [73-75], freshwater [76], and

estuarine and salt marsh porewaters [77-80], with concentrations ranging from nanomolar to

millimolar levels [81]. Thiols commonly found in these environments include cysteine,
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glutathione, mercaptopropionate, mercaptoacetate, mercaptosuccinic,  mercaptoethanol, and

methanethiol [75, 76, 78, 81](Figure 1.4).
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freshwater, and estuarine and salt marsh porewaters.
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the environment has gained attention due to the ability of thiols to form complexes with copper

[74, 78, 82] and mercury [81].  Thiols in the environment originate from both biological and

abiotic sources. Mercaptopropionate and methanethiol are produced by microbial degradation of

dimethylsulfoniopropionate (DMSP) [83, 84]. DMSP maintains intracellular osmostic balance in

micro and macro algae [85, 86] and halophytic plants [85, 87]. Cysteine and glutathione are

major intracellular thiols in many prokaryotic and eukaryotic organisms [88], and their detection
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release from decaying microorganisms [73, 89]. Mercaptoacetate, mercaptopyruvate, and

mercaptoethanol are generally produced by microbial degradation of cysteine and glutathione

[84].  Thiols also form abiotically from reactions between sulfide or polysulfide and unsaturated

organic compounds [90].

Thiols abiotically reduce Fe(III) oxides to form Fe(II) and their corresponding disulfide

[91]. Addition of cysteine to anaerobic cultures of the Fe(III)-reducing bacteria Geobacter

sulfurreducens and S. oneidensis enhances Fe(III) oxide reduction activity [92, 93]. Since thiols

are abundant in environments where Fe(III)-reducing bacteria are found, the use of naturally

occurring thiols as electron shuttles to Fe(III) oxideds may provide Fe(III)-reducing bacteria with

a competitive advantage in metal-rich anaerobic environments.

Detection of single microbial cells by fluorescent protein technology

Phycobiliprotein, a photosynthetic antenna pigment isolated from cyanobacteria, was the

first fluorescent protein tested for application as an intracellular fluorescent reporter [94].  The

applications of phycobiliprotein, however, were limited due to the requirement of tetrapyrrole as

cofactor [95].  Green flouorescent protein (GFP), on the other hand,  does not require a cofactor

for fluorescence and can be readily expressed in a variety of microorganisms [95-97]. GFP was

first recombinantly expressed in both prokaryotic and eukaryotic model organisms (E. coli and

C. elegans, respectively) [98].  GFP facilitates the study and in situ visualization of complex

molecular events in single cells and organisms using flow cytometry or fluorescent microscopy

[97, 99, 100]. Reflecting the significance of the discovery, the Nobel Prize in Chemistry in 2008

was recently awarded for “the discovery and development of the green fluorescent protein, GFP”

[96, 99].  GFP was first isolated from the jellyfish Aequorea aequorea [101].  The fluorescent

properties of GFP have been enhanced by improvements in fluorescent efficiency,

thermostability, photostability, and alteration of emission wavelength [95, 96, 99, 100].  GFP

variants now emit a wide range of fluorescent colors that nearly span the entire visible spectrum



11

[99, 100].  GFP is now widely used to examine molecular events in situ, including gene

expression, recombinant protein localization, promoter screening, and monitoring changes in

intra- or extracellular conditions [97].

GFP applications, however, are limited by the oxygen-dependent autocatalytic maturation

of the GFP chromophore [102].  GFP applications are thus restricted to aerobic systems [103,

104] and are not suitable for in situ studies of molecular events under anaerobic conditions.  A

novel group of fluorescent proteins, termed flavin mononucleotide (FMN)-based fluorescent

proteins (FbFPs), have been developed as replacements for GFP [103]. FbFPs do not require

oxygen for chromophore maturation, and can thus be applied under both aerobic and anaerobic

conditions [103].  FbFPs originate from LOV (light, oxygen, voltage) domain-containing

bacterial photoreceptor proteins that exhibit weak intrinsic autofluorescence when irradiated with

blue light [105-107].

Two of the photoreceptor FbFPs, YtvA from Bacillus subtilis and SB2 from

Pseudomonas putida, have been engineered to produce fluorescent quantum yields comparable

to GFP variants [103]. Site directed mutagenesis of a photoactive cysteine in the LOV domain in

both the truncated YtvA and wild type SB2 proteins, followed by codon optimization, resulted in

a 25-fold increase in fluorescent strength [97].  Recently, FbFPs have been used to monitor the

presence of single anaerobic bacterial cells with promising results .  FbFPs require FMN as

cofactor, which also suggests that FbFP fluorescence may be used as an in vivo reporter of

internal FMN concentrations.  FbFP fluorescence thus provides a novel technology for

monitoring internal FMN concentrations in vivo in individual S. oneidensis cells during flavin-

based electron shuttling to external Fe(III) oxides.
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Figure 1.5. LOV domain of C. reinhardtii containing the FMN chromophore. The protein is
shown in cartoon representation; the chromophore FMN is shown in Licorice
representation. A fluorescent signal is emitted upon photoexcitation of the FMN
chromophore. Adapted from the Beckman Institute at the Univeristy of Illinois-Chicago
(http://www.ks.uiuc.edu/images/ofmonth/2005-07a/lov-diagram.jpg)

The main objectives of the thesis were to i) determine if naturally occurring thiols

function as electron shuttles to deliver electrons to external Fe(III) oxides during microbial

Fe(III) oxide respiration (Chapter 2), ii) identify the genes involved in the thiol-based electron

shuttling pathway of Fe(III)-respiring S. oneidensis (Chapter 3), iii) determine if the CXXC

motif of the outer membrane beta-barrel protein MtrB is required for thiol-based electron

shuttling to external Fe(III) oxides by S. oneidensis (Chapter 4), and iv) design a FbFP-based

flourescent reporter system to monitor FMN concentrations in vivo in individual S. oneidensis

cells during FMN-based electron shuttling to external Fe(III) oxides by S. oneidensis (Chapter

5).
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CHAPTER 2

Extracellular Fe(III) Oxide Reduction by Shewanella oneidensis Proceeds

Through Microbial Reduction of Naturally Occurring Disulfide Compounds

[The abiotic thiol-catalyzed Fe(III) oxide reduction experiments described in Chapter 2 were

carried out in collaboration with Eryn Eitel, a PhD student in Dr. Taillefert’s research group.

Eryn’s contributions in Chapter 2 are denoted with an asterisk.]

Summary

The -proteobacterium Shewanella oneidensis MR-1 reduces a wide range of terminal

electron acceptors, including solid Fe(III) oxides.  Pathways for Fe(III) oxide reduction by S.

oneidensis include non-reductive (organic ligand-promoted) solubilization reactions, and either

direct enzymatic, or indirect electron shuttling pathways.  Results of the present study expand the

spectrum of electron acceptors reduced by S. oneidensis to include the naturally occurring

disulfide compounds cystine, oxidized glutathione, dithiodiglycolate, dithoidiproponiate and

cystamine.  Subsequent electron shuttling experiments demonstrated that S. oneidensis employs

the reduced (thiol) form of the disulfide compounds (cysteine, reduced glutathione,

mercaptoacetate, mercaptopropionate, and 2-nitro-5-thiobenzoate, cystamine) as electron shuttles

to transfer electrons to extracellular Fe(III) oxides. The results of the present study indicate that

microbial disulfide reduction may represent an important electron-shuttling pathway for electron

transfer to Fe(III) oxides in anaerobic marine and freshwater environments.
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Introduction

Fe(III)-reducing bacteria are critical components of a variety of environmentally

important processes, including the biogeochemical cycling of metals, carbon, and sulfur [1, 2],

the reductive immobilization of toxic radionuclides in contaminated subsurface sediments [3],

and the production of electricity in microbial fuel cells [4-6].  Fe(III) oxides exist as sparingly

soluble amorphous or crystalline (oxy)hydroxides at circumneutral pH [7].  Fe(III)-reducing

bacteria such as the -proteobacterium Shewanella oneidensis MR-1 are therefore required to

transfer electrons to external Fe(III) oxides unable to contact inner membrane (IM)-localized

electron transport chains [8-10].  To overcome this problem, S. oneidensis transfers electrons to

external Fe(III) oxides via a variety of novel respiratory strategies including i) direct enzymatic

reduction by Fe(III)-reducing c-type cytochromes located on the cell surface or along

extracellular nanowires [11-13],  ii) non-reductive Fe(III) oxide solubilization followed by

electron transfer to the resulting soluble organic-Fe(III) complexes [14-17], and iii) indirect

reduction by electron shuttling compounds such as flavins, fulvic acids, humic acids, and

melanin [18-25].

In the electron shuttling pathways, Fe(III)-reducing bacteria reduce the oxidized form of

the electron shuttle to its corresponding reduced form, which subsequently delivers the electrons

to external Fe(III) oxides via abiotic (purely chemical) electron transfer reactions [18, 26, 27].

The resulting oxidized electron shuttle is subsequently re-reduced by the Fe(III)-reducing

bacteria, thus resulting in a catalytic cycle that may be repeated hundreds-to-thousands of times

[21].  Microbial cycling of nanomolar amounts of electron shuttle may thus catalyze the

reduction of millimolar amounts of Fe(III) oxide.  Due to their high reactivity with Fe(III) oxides

[28, 29], naturally occurring thiols are predicted to function as electron shuttles to efficiently
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transfer electrons to external Fe(III) oxides during microbial Fe(III) oxide reduction.  Microbial

Fe(III) oxide reduction activity is enhanced, for example, by adding exogenous cysteine to

anaerobic cultures of Geobacter sulfurreducens and S. oneidensis [30, 31].

In addition to cysteine, a variety of other naturally occurring thiols are detected in marine

and freshwater environments, including glutathione, mercaptoacetate, mercaptopropionate,

mercaptosuccinate, mercaptoethanol, and methanethiol [32-37].  The sources of these thiols in

marine and freshwater environments include microbial deamination of amino acids [38],

microbial degradation of dimethylsulfoniopropionate (DMSP) [39], abiotic reactions between

sulfide or polysulfide and unsaturated organic compounds [40], and release of intracellular thiols

from metabolically active or decaying microorganisms [41].  Intracellular thiols such as

glutathione and cysteine, for example, are involved in a number of critical bacterial processes,

including maintenance of proper redox homeostasis and providing protection from reactive

oxygen (ROS), nitrogen (RNS), and electrophilic (RES) species [42-44].  Depth-dependent

profiles of glutathione in coastal marine waters co-vary with chlorophyll concentrations, thus

indicating that water column glutathione may be derived from the intracellular pool of

glutathione released by phytoplankton, algae, or cyanobacteria [45, 46].  If released into the

environment, the suite of intracellular thiols may represent a highly reactive, yet overlooked pool

of electron shuttling compounds that Fe(III)- and disulfide-reducing bacteria employ to transfer

electrons to Fe(III) oxides.  The main objectives of the present study were to determine the

ability of S. oneidensis to i) reduce the suite of disulfide compounds commonly found in marine

and freshwater environments, and ii) employ the corresponding thiols as electron shuttles to

catalyze electron transfer to external Fe(III) oxides.
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Materials and Methods

Bacterial strain and cultivation conditions. S. oneidensis MR-1 was isolated from the

metal-rich sediments of Oneida Lake (NY) [47]. All Fe(III) reduction and thiol-based electron

shuttling experiments were carried out under anaerobic conditions in defined minimal growth

medium (M1, pH 7.0) supplemented with lactate (18 mM), formate (15 mM), or hydrogen (2%)

as electron donor.  Overnight cultures were inoculated at initial cell densities of 2x107 cells ml−1.

Anaerobic conditions for incubations with lactate or formate as electron donor were maintained

by continuous sparging with N2 gas. Incubations with H2 as electron donor were conducted in a

Coy anaerobic chamber under an anaerobic atmosphere of 2% H2, 10% CO2, and the balance N2.

Poorly crystalline Fe(III) oxides were synthesized by neutralizing a solution of FeCl3 with NaOH

to pH 7 [48]. Dimethyldisulfide was purchased from MP Biomedicals. Cystine, cystamine,

dithiodiglycolate, dithiodiproprionate, and oxidized glutathione were purchased from Sigma-

Aldrich.

Determination of thiol and Fe(II) concentrations. Fe(III) reduction was monitored by

measuring HCl-extractable Fe(II) with ferrozine [49].  Disulfide reduction was monitored by

measuring thiol production in samples withdrawn and centrifuged under anaerobic conditions for

2 min at 16,000 rpm to pellet cell material and residual Fe(III) oxides.   Thiol concentrations

were determined by adding 100 μl of a 30 mM solution of 5,5'-dithiobis-(2-nitrobenzoic

acid)(DTNB; Ellmans Reagent) to 900 μl of culture supernatant and measuring absorbance at

412 nm [50].  Thiol concentrations were calculated from calibration curves with cysteine as the

model thiol. Maximum rate of reaction Vmax and Km value for disulfide and Fe(III) oxide

reduction were determined from Michaelis-Menten plots.
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Fe(III) oxide reduction and electron shuttling experiments. Disulfide shuttling

experiments consisted of incubating S. oneidensis cell cultures (2X107 initial cell densities) in

M1 minimal growth medium amended with 40 mM Fe(III) oxide as electron acceptor and lactate

(18 mM), formate (10 mM), or H2 (2%) as electron donor.  Disulfides were added at

concentrations ranging from 4 µM to 4 mM and incubations were carried out under anaerobic

conditions either by vigorous nitrogen sparging (lactate and formate as electron donor) or by

incubation in a Coy anaerobic chamber (H2 as electron donor) with an atmosphere consisting of

2% H2, 10% CO2, and the balance N2.  Aliquots were withdrawn for Fe(II) and thiol

measurements at select time intervals.  Disulfides were omitted in one set of incubations to

monitor microbial Fe(III) oxide reduction activity in the absence of thiol-based electron

shuttling.

Determination of electron shuttling frequency. To determine the efficiency of each

disulfide species as an electron shuttle for Fe(III) oxide reduction, the shuttling frequency (f,

defined as the number of times a disulfide cycled through successive microbial reduction/Fe(III)

oxidation reactions) was calculated by following formula:

= ( ) − ( )
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Results and Discussion

The  gram negative, -proteobacterium Shewanella oneidensis MR-1 respires a variety of

terminal electron acceptors, including oxygen, fumarate, nitrate, nitrite, trimethylamine-N-oxide,

dimethyl sulfoxide, sulfite, thiolsulfate, elemental sulfur, uranyl, pertechnetate, and soluble and

insoluble forms of Fe(III), Mn(III), and Mn(IV) [14, 51-56].  Such respiratory versatility is

thought to enhance the ability of S. oneidensis to survive in redox-stratified environments where

terminal electron acceptor identity and abundance fluctuate on small temporal and spatial scales

[57-59]. A variety of facultative and strict anaerobic bacteria reduce electron shuttling

compounds such as humic acids and flavins, however the microbial reduction of disulfides and

the use of the produced thiols as electron shuttles to external Fe(III) oxides is poorly understood.

Involvement of thiols as electron shuttles requires microbially-catalyzed disulfide bond

reduction, and subsequent electron transfer from the produced thiol to external Fe(III) oxides.

Thiol compounds such as cysteine were orginally described as mediators of interspecies electron

transfer between G. sulfurreducens and Wolinella succinogenes [60].  Electrons derived from

acetate oxidation by G. sulfurreducens are transferred to exogenous cystine as electron acceptor,

while the produced cysteine was reoxidized by W. succinogenes. Subsequent studies

demonstrated that addition of exogenous cysteine to S. oneidensis and G. sulfurreducens

accelerated the rate of Fe(III) oxide reduction [30, 31].  The ability of Fe(III)-reducing bacteria

to employ a suite of naturally occurring thiols detected in the environment as electron shuttles to

external Fe(III) oxides, however, has not been explored.

S. oneidensis reduces a variety of naturally occurring disulfides as terminal electron

acceptor. S. oneidensis was tested in anaerobic minimal growth medium for the ability to

reduce the disulfide compounds cystine, oxidized glutathione, dithiodiglycolate,



26

Figure 2.1.  (a) Production of cysteine by S. oneidensis during cystine reduction with H2 as
electron donor. (b) Michaelis-Menten plot of cystine reduction rates as a function of cystine
concentration.

dithiodipropionate, cystamine, and dimethyldisulfide to their corresponding thiol forms cysteine,

reduced glutathione, thioglycolate, mercaptopropionate, cysteamine and methanethiol. S.
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reduction of all disulfides tested.  The rate and extent of disulfide reduction by S. oneidensis

increased as a function of disulfide concentration (Figure 2.1a).  Disulfide reduction was not

detected in abiotic control experiments. The disulfide reduction rate for each disulfide followed

Michaelis-Menten kinetics (Figure 2.1b).

The maximum disulfide reduction rates (Vmax-Di) and Michaelis constant (Km-Di)

values of each electron donor-disulfide pair are summarized in Table 2.1. Disulfide reduction

rates were electron donor-dependent.  With the exception of cystine and dimethyldisulfide, all

disulfides were reduced at the highest rate with formate as electron donor, followed by H2 and

lactate.  Cystine was reduced at the highest rate with H2 as electron donor (350 µM/hr), which

was 5-fold greater than lactate (70 µM/hr) and 3-fold greater than formate (101 µM/hr) as

electron donor.  For dimethyldisulfide, which is reduced to the volatile gas  methanethiol, the

reduction rate was highest with lactate, followed by formate and H2.

Table 2.1. Maximum rate of disulfide reduction (Vmax-Di) and Michaelis constant (Km-Di)
values for disulfide reduction with H2, lactate, or formate as electron donor.  Michaelis-
Menten plots used to calculate Vmax-Di and Km-Di for each electron donor/disulfide pair
are provided in Appendix A.

Electron Donor H2 Lactate Formate

Disulfide Vmax (µM/hr)
Km
(mM)

Vmax
(µM/hr)

Km
(mM)

Vmax
(µM/hr)

Km
(mM)

Dithiodipropionate
1.5
+/-0.2

0.6
+/-0.1

1.4
+/-0.1

2.0
+/-0.2

2.5
+/-0.3

0.5
+/-0.05

Dithiodiglycolate
4.3
+/-1.8

1.0
+/-0.2

2.5
+/-0.4

4.8
+/-0.2

7.1
+/-0.2

4.0
+/-0.2

Oxidized Glutathione
2.0
+/-0.3 0.1  +/0.02

0.7
+/-0.1

3.0
+/-0.2

6.4
+/-0.5

0.5
+/-0.05

Dimethyldisulfide
2.0
+/-0.1

1.4
+/-0.2

7.5
+/-3.6

3.0
+/-0.1

5.7
+/-0.3

2.5
+/-0.2

Cystamine
9.3
+/-0.5

5.0
+/-0.2

12.5
+/-0.1

7.0
+/-0.2

22.3
+/-0.6

2.5
+/-0.2

Cystine
350
+/-30

3.0
+/-0.1

70
+/-10

3.0
+/-0.2

101
+/-7

1.5
+/-0.2



28

Although S. oneidensis reduced each of the naturally occurring disulfides, the Vmax-Di varied

over 500-fold, ranging from 0.7 µM/hr for oxidized glutathione with lactate as electron donor to

350 µM/hr for cystine with H2 as electron donor.  Overall, Vmax-Di followed in the order:

cystine> cystamine> dimethyldisulfide> dithiodiglycolate> oxidized glutathione >

dithiodipropionate (Figure 2.2). S. oneidensis also reduced the aminothiol disulfides cystine and

cystamine at rates 2-80 fold faster than the mercaptocarboxylate disulfides dithiodipropionate

and dithiodiglycolate.
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maximum extent of disulfide reduction by S. oneidensis with H2, lactate or formate as
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S. oneidensis employs disulfide compounds as electron shuttles to increase the rate

and extent of Fe(III) oxide reduction. The ability of S. oneidensis to employ disulfides as

electron shuttles to increase the rate and extent of Fe(III) oxide reduction was tested by adding

disulfides at environmentally relevant concentrations (ranging from 4 µM to 4 mM) to anaerobic

minimal growth media containing 40 mM Fe(III) oxide and either lactate, formate, or H2 as

electron donor.

Fe(III) oxide reduction activity by S. oneidensis increased as a function of added disulfide

concentration, with the Fe(III) reduction rates following Michaelis-Menten kinetics with respect

to disulfide concentration (Figure 2.3).  The maximum Fe(III) reduction rates (Vmax-Fe) and

Michaelis constant (Km-Fe) values of each electron donor-disulfide pair are summarized in

Table 2.2. The disulfides accelerated Vmax-Fe approximately 5-50 fold, with cystine

accelerating Vmax-Fe the greatest at more than 50-fold with H2 as electron donor.

Correspondingly, the addition of disulfides increased the extent of Fe(III) reduction by

approximately 2-20 fold (Figure 2.4).
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Figure 2.3. (a) Production of Fe(II) by S. oneidensis cultures amended with increasing
concentrations of cystine and H2 as electron donor. (b) Michaelis-Menten plot of Fe(III)
reduction rates as a function of cystine concentrations amended to S. oneidensis cultures
with H2 as electron donor.

The increased rate and extent of Fe(III) oxide reduction caused by disulfide addition

correlated with microbial disulfide reduction activity.  To attain the observed extents of

Fe(III) reduction, 4 µM cystamine and dimethyldisulfide were cycled nearly 100 times with H2

as electron donor, while 4 µM cystine was cycled 300 times with H2 as electron donor.   The

shuttling frequencies varied inversely with added disulfide concentrations, with the lowest
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Table 2.2. Maximum rate of Fe(III) reduction (Vmax-Fe) and Km-Fe values for Fe(III)
reduction with disulfides added as electron shuttle and H2, lactate, or formate as electron
donor.  Michaelis-Menten plots used to calculate Vmax-Fe and Km-Fe for each electron
donor/disulfide pair are provided in Appendix B.

Electron Donor H2 Lactate Formate

Disulfide
Vmax
(µM/hr)

Km
(mM)

Vmax
(µM/hr)

Km
(mM)

Vmax
(µM/hr)

Km
(mM)

None
7.1
+/-0.3 -

4.6
+/-0.4 -

4.0
+/-0.3 -

Dithiodipropionate
29.6
+/-5.9

0.6
+/-0.1

26.7
+/-0.1

0.75
+/-0.2

32.7
+/-2.6

0.6
+/-0.2

Dithiodiglycolate
31.4
+/-4.2

0.2
+/-0.05

48.6
+/-10.8

0.4
+/-0.2

26.2
+/-2.0

0.3
+/-0.05

Oxidized
Glutathione

31.0
+/-1.0

1.3
+/-0.1

44.0
+/-10.0

1.0
+/-0.3

36.5
+/-6.1

0.1
+/-0.05

Dimethyldisulfide
60.4
+/-1.0

0.2
+/-0.05

47.8
+/-0.6

0.3
+/-0.05

29.6
+/-0.3

0.25
+/-0.05

Cystamine
32.0
+/-1.6

0.02
+/-0.01

42.3
+/-3.3

0.02
+/-0.01

31.5
+/-1.0

0.03
+/-0.01

Cystine
317
+/-5

0.75
+/-0.1

253
+/-4

0.7
+/-0.2

119
+/-23

1.25
+/-0.2

2.6).  These results suggest that the higher disulfide concentrations may have converted the

disulfide electron shuttling pathway to an anaerobic respiratory pathway with disulfides as

terminal electron acceptor, as opposed to an electron shuttling pathway with Fe(III) oxides as

terminal electron acceptor.  To examine this possibility, future work will compare thiol

accumulation rates as a function of increasing disulfide concentrations in the presence and

absence of Fe(III) oxides.
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With the exception of DMDS, the increased rate and extent of Fe(III) oxide reduction by

the thiols and shuttling frequency of the disulfides correlated with increases in Vmax-Di (Figures

2.7 and  2.8).  These results suggest that microbial disulfide reduction rates, and not the rates of

abiotic Fe(III) reduction by thiol, was the limiting reaction in the thiol-based electron shuttling

pathway to Fe(III) oxides.  To test this possibility, the rates of abiotic Fe(III) reduction by

cysteine were measured voltammetrically in M1 growth medium supplemented with 600 µM

cysteine and 40 mM Fe(III) oxide (Figure 2.9). The abiotic rate of Fe(III) oxide reduction by

cysteine was approximately 10-fold greater than the corresponding rate at which S. oneidensis

reduced 300 µM cystine, again indicating that microbial disulfide reduction activity is the

limiting step in the electron shuttling pathway to Fe(III) oxides.  Reasons for the DMDS anomaly

are unclear, but may reflect the inability of the highly volatile reduced form of DMDS

(methanethiol)[61] to interact and transfer electrons to Fe(III) oxides in the abiotic Fe(III)

reduction step.  Interestingly, shuttling frequency for all the aminothiols and carboxylic thiols

also correlate with microbial disulfide reduction activity (Figure 2.7).

Figure 2.5. Percent increase (compared to the no disulfide control) in the extent of 40 mM
Fe(III) oxide reduction by the addition of 4 µM disulfide with H2, lactate, or formate as
electron donor.
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Figure 2.6. Calculated cystine shuttling frequencies as a function of disulfide concentration
with (a) H2 , (b) lactate, and (c) formate as electron donor.
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Figure 2.7. Calculated disulfide shuttling frequencies as a function of Vmax-Di with (a) H2 ,
(b) lactate, and (c) formate as electron donor.  Filled Square: CSSC; filled  triangle:
Cystamine; Filled Diamond: GSSG; open  circle: DTDG; open triangle: DTDP; cross:
DMDS
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Figure 2.8. Maximum extent of Fe(III) reduction as a function of Vmax-Di with (a) H2 , (b)
lactate, and  (c) formate as electron donor.  Filled Square: CSSC; filled  triangle:
Cystamine; Filled Diamond: GSSG; open  circle: DTDG; open triangle: DTDP; cross:
DMDS.  Filled Square: CSSC; filled  triangle: Cystamine; Filled Diamond: GSSG; open
diamond: Ellman’s; open  circle: DTDG; open triangle: DTDP; cross: DMDS
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*Figure 2.9 (Experiments carried out by Eryn Eitel of the Taillefert Laboratory). Abiotic
reduction of 40 mM Fe(III) oxide by 500 µM cysteine carried out under anaerobic
conditions in M1 growth medium.  Solid triangles, cysteine; open diamonds, Fe(II)
measured by the ferrozine method with HCl extraction.
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CHAPTER 3

Shewanella oneidensis respiratory mutants selected for

the inability to respire disulfides as anaerobic electron acceptor

contain mutations in outer membrane β-barrel protein MtrB

Summary

The -proteobacterium Shewanella oneidensis MR-1 reduces a wide range of anaerobic

electron acceptors, including transition metals Fe(III), Mn(III), and Mn(IV).  Results of the

present study expand the spectrum of electron acceptors reduced by S. oneidensis to include both

naturally-occurring (cystine) and synthetic (5,5'-dithiobis-(2-nitrobenzoic acid; DTNB)) disulfide

compounds.  Chemical mutagenesis procedures were combined with a newly developed mutant

screening technique to identify S. oneidensis (Rsh) mutants unable to reduce disulfides to their

corresponding thiol forms.  The Rsh mutants were tested for anaerobic growth on a battery of

eight metal- and non-metal electron acceptors with either lactate or H2 as electron donor. A broad

spectrum of respiratory mutants were identified, including a subset that failed to reduce Fe(III),

Mn(III), and Mn(IV), but retained the ability to reduce all non-metal electron acceptors.  Genetic

complementation and nucleotide sequence analyses of the metal reduction-deficient Rsh mutants

indicated that each contained a mutation in mtrB, which encodes the β-barrel component of the

MtrCAB extracellular electron conduit.  Subsequent tests of the anaerobic respiratory phenotypes

of an mtrB deletion mutant confirmed the disulfide- and metal reduction-deficent phenotypes of

the Rsh and mtrB mutants. S. oneidensis mutants lacking the MtrC and MtrA components of the

extracellular electron conduit also displayed disulfide reduction-deficient phenotypes. These
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results indicate that the disulfide and metal reduction pathways of S. oneidensis share the

extracellular electron conduit MtrCAB as a common electron transport chain component.
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Introduction

The  gram negative, facultative anaerobe Shewanella oneidensis MR-1 respires a variety

of terminal electron acceptors, including oxygen, fumarate, nitrate, nitrite, trimethylamine N-

oxide, dimethyl sulfoxide, sulfite, thiolsulfate, elemental sulfur, and the transition metals Fe(III),

Mn(III), and Mn(IV) [1-7]. Fe(III) precipitates as sparingly soluble amorphous or crystalline

(oxy)hydroxides at circumneutral pH [8]. S. oneidensis is therefore required to transfer electrons

to external Fe(III) oxides unable to contact inner membrane (IM)-localized electron transport

chains [9-11].  To overcome this problem, S. oneidensis transfers electrons to external Fe(III)

oxides via a variety of novel respiratory strategies including i) direct enzymatic reduction by

Fe(III)-reducing c-type cytochromes located on the cell surface or along extracellular nanowires

[12-14],  ii) non-reductive Fe(III) oxide solubilization followed by electron transfer to the

resulting soluble organic-Fe(III) complexes [6, 15-17], and iii) indirect reduction by electron

shuttling compounds such as flavins, fulvic acids, humic acids, melanin [18-25], and naturally

occurring disulfide compounds (see Chapter 2). The molecular mechanism of microbial

disulfide reduction has yet to be elucidated.

Intracellular disulfides (and their reduced thiol forms) are critical for numerous cellular

processes, including the maintenance of intracellular redox conditions and protection from

deleterious reactive oxygen, nitrogen, and electrophilic chemical species [26]. In most

eukaryotes and many gram-negative bacteria, glutathione is the dominant low molecular weight

thiol [27]. The cellular function of gluthathione in gram-positive bacteria is often replaced by

alternative thiols such as mycothiol in Actinobacteria [28, 29] and bacilithiol in Bacillus [30].

Other intracellular thiols include cysteine, homocysteine, trypanothione, ergothioneine,
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coenzyme M, and coenzyme B [31]. Intracellular disulfide-thiol conversions are catalyzed by

two different types of intracellular disulfide reductases.  The first consists of pyridine-nucleotide

disulfide oxidoreductases [32] that contain a redox center formed by a disulfide bridge coupled

to a flavin ring and catalyze a simultaneous two-electron transfer to disulfide substrates [33, 34].

Examples of pyridine-nucleotide disulfide oxidoreductases include dihydrolipoamide

dehydrogenase, coenzyme A disulfide reductases, glutathione reductases, mycothione reductases,

thioredoxin reductases, and trypanothione reductases. The second type of intracellular disulfide

reductase includes iron-sulfur proteins (e.g., heterodisulfide reductases) that catalyze disulfide

bond reduction via two successive one-electron transfer steps [35].

As compared to the molecular mechanism of intracellular disulfide reduction, the

mechanistic details of extracellular disulfide reduction by microorganisms has yet to be

elucidated. The main objectives of the present study were to i) develop a rapid mutant screening

to identify respiratory (designated Rsh) mutants of S. oneidensis that are unable to reduce

extracellular disulfides as terminal electron acceptor, ii) determine the overall respiratory

capability of the newly isolated bank of Rsh mutants, and iii) identify the genes required for

extracellular disulfide reduction via genetic complementation and nucleotide sequence analyses

of the Rsh mutants.
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Materials and methods

Growth media and cultivation conditions. All bacterial strains and plasmids used in

this study are listed in Table 1. For genetic manipulations, S. oneidensis MR-1 was cultured at

30°C in Luria-Bertani (LB) medium (10 g liter−1 NaCl, 5 g liter−1 yeast extract, 10 g liter−1

tryptone). For anaerobic-growth experiments, cells were cultured in M1 minimal media

supplemented with lactate (18 mM) or hydrogen (2%) as electron donor under a nitrogen

atmosphere. When required, antibiotics were added at the following final concentrations: for

gentamicin (Gm), 15 μg ml−1, chloramphenicol, 25 μg ml−1 and for tetracycline 10 μg ml−1. For

growth of Escherichia coli β2155 λ pir, diaminopimelate (DAP) was added at a final

concentration of 100 μg ml−1. Aerobic growth was monitored spectrophotometrically by

measuring changes in optical density at 600 nm.

Development of a rapid mutant screening technique to identify disulfide reduction-

deficient (Rsh) mutants. Chemical mutagenesis procedures were combined with a newly

developed Rsh mutant screening technique to isolate Rsh mutants based on their inability to

reduce extracellular disulfides. Random point mutants were generated via chemical

(ethylmethanesulfonate; EMS) mutagenesis and screened for impaired disulfide reduction

activity. Rsh mutants were detected after 48 hour anaerobic incubations in M1 minimal medium

Table 3.1. Strains and plasmids used in the present study

Strains Features Source

Shewanella oneidensis
MR-1 Wild-type strain
∆mtrB In-frame deletion mutant J. Burns
∆mtrA In-frame deletion mutant J. Burns
∆mtrC In-frame deletion mutant J. Burns
∆omcA In-frame deletion mutant J. Burns
∆omcA-∆mtrC In-frame deletion mutant J. Burns
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∆gspD In-frame deletion mutant J. Burns
Rsh03 Random point mutant This study
Rsh13 Random point mutant This study
Rsh18 Random point mutant This study
Rsh35 Random point mutant This study
Rsh38 Random point mutant This study
Escherichia coli β2155
λ pir

thrB1004 pro thi strA hsdS lacZ_M15
(F9 lacZ∆M15 laclq traD36 proA1
proB1) ∆dapA::erm pir::RP4 KmR

[36]

Plasmids Features Source
pKO2.0 4.5 kb γR6K, mobRP4 sacB GmR lacZ [37]

pBBR1MCS CmR lacZ [38]
pBB+mtrB pBBR1MCS containing wild-type copy

of mtrB This study
pBB+mtrA pBBR1MCS containing wild-type copy

of mtrA This Study
pBB+mtrC pBBR1MCS containing wild-type copy

of mtrC This Study
pBB+omcA pBBR1MCS containing wild-type copy

of omcA This Study
pBB+gspD pBBR1MCS containing wild-type copy

of gspD This Study

with lactate or hydrogen as electron donor and 320 µM of the disulfide compound 5,5’-dithiobis-

(2-nitrobenzoic acid) (DTNB; Ellmans reagent) as anaerobic electron acceptor and thiol-specific

indicator. To eliminate the possibility of cross-feeding of metabolites between colonies, colonies

arising from EMS-mutagenized cells were incubated in single wells of 96-well microtiter dishes.

DTNB was used as disulfide to identify Rsh mutants based on their inability to reduce DTNB to

2-nitro-5-thiobenzoate (TNB-), which ionizes to the yellow colored TNB2- dianion in water at

neutral pH [39]. The wild type strain turns yellow-colored after 30 hours of anaerobic incubation,

while putative Rsh mutants were chosen for their inability to produce the yellow colored TNB2-

dianion after 48 hours of anaerobic incubation. Approximately 7,000 mutagenized colonies were

screened and 5 putative Rsh mutants (designated Rsh03, Rsh13, Rsh18, Rsh35, and Rsh38) were

identified.
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Determination of the overall respiratory capability of the Rsh mutant strains.

The five Rsh mutants with impaired disulfide reduction activity were subsequently tested for

reduction of a suite of eight alternate electron acceptors with either lactate or H2 as electron

donor. S. oneidensis wild-type and Rsh mutant strains were incubated in minimal M1 medium

(initial concentration of 2X107 cells ml−1) amended with either 18 mM lactate or 2% H2 as

electron donor and either O2, 15 mM nitrate, 50 mM dimethyl sulfoxide (DMSO), 10 mM

fumarate, 50 mM Fe(III)-citrate, 10 mM MnO2, 10 mM Mn(III)-pyrophosphate, or 40 mM

hydrous Fe(III)-oxide (HFO) as electron acceptor [4].  Electron acceptors were synthesized as

previously described [7, 40-43]. Anaerobic conditions were maintained by continuous sparging

with N2 (g). Growth on O2, DMSO, and fumarate were monitored by measuring increases in cell

density at 600 nm.  NO2
- was measured spectrophotometrically with sulfanilic acid-N-1-

naphthyl-ethylene-diamine dihydrochloride solution [44]. Mn(III)-pyrophosphate concentration

was measured colorimetrically as previously described [45]. Mn(IV) concentration was

measured colorimetrically after reaction with benzidine hydrochloride as previously described

[1].   Fe(III) reduction was monitored by measuring HCl-extractable Fe(II) production with

ferrozine [46]. Disulfide reduction was monitored by measuring thiol production in samples

withdrawn and centrifuged under anaerobic conditions for 2 min at 16,000 rpm to pellet cell

material.   Thiol concentrations were determined by adding 100 μl of a 30 mM solution of 5,5'-

dithiobis-(2-nitrobenzoic acid)(DTNB; Ellmans Reagent) to 900 μl of culture supernatant and

measuring absorbance at 412 nm [39].  Thiol concentrations were calculated from  calibration

curves with cysteine as the model thiol.
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Genetic complementation and nucleotide sequence analyses. A previously constructed

clone library of partially digested HindIII chromosomal DNA fragments of the S. oneidensis MR-

1 (harbored in broad-host-range cosmid pVK100 and maintained in Escherichia coli strain β-

2155) were mobilized into the Rsh mutants via conjugal mating procedures.  The resulting

tranconjugates were screened for restored disulfide reduction activity. Genes involved in

disulfide reduction were identified via subcloning with broad host range cloning vector

pBBR1MCS, tests of the Rsh subclones for restore disulfide reduction activity, and nucleotide

sequencing of the smallest complementing subcloned DNA fragments. Point mutant phenotypes

were confirmed via in-frame gene deletion mutagenesis, and subsequent testing of the in-frame

gene deletion mutants for impaired disulfide reduction activity.

In-frame gene deletion mutagenesis and genetic complementation analysis.  Targeted

genes were deleted via a Shewanella in-frame gene deletion system designed in our laboratory

[37].  Regions corresponding to ~750 bp upstream and downstream of mtrB were independently

PCR-amplified and subsequently joined using overlap-extension PCR.  Primers for mtrB deletion

are listed in Table 2.  The resulting fragment was cloned into suicide vector pKO2.0, which does

not replicate in S. oneidensis.  This construct (designated pKO-mtrB) was mobilized into wild-

type MR-1 via conjugal transfer from E. coli donor strain β2155 λ pir. S. oneidensis strains with

the plasmid integrated into the genome were selected on solid LB medium containing

gentamycin (15 μg mL-1).  Single integrations were verified via PCR with primers flanking the

recombination region.  Plasmids were resolved from the genomes of single integrants by plating

on solid LB medium containing sucrose (10% w/v) with NaCl omitted.  In-frame deletions were

verified by PCR and direct DNA sequencing (GeneWiz, South Plainfield, NJ). Genetic



50

complementation of ∆mtrB was carried out by cloning wild-type mtrB into broad-host-range

cloning vector pBBR1MCS [38] and conjugally transferring the recombinant vector into ∆mtrB

via bi-parental mating procedures [47].
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Results and Discussion

Overall respiratory capability of the Rsh mutants.  Five putative Rsh mutants were

selected for their inability to reduce DTNB as terminal electron acceptor, and their overall

respiratory capability was determined (Table 3.2).  Based on their growth phenotypes, the

resulting mutants were placed into three mutant classes:  i) two mutants (Rsh03 and Rsh18) were

unable to grow with lactate as electron donor, but retained the ability to grow at wild type rates

with formate and hydrogen as electron donor on all electron acceptors (putative lactate

dehydrogenase mutants); ii) one mutant (Rsh13) only grew on O2 as electron acceptor and was

unable to grow on all other electron acceptors tested (putative anaerobic regulatory mutant), and

iii) two mutants (designated Rsh35 and Rsh38) grew at wild type rates on all non-metal electron

acceptors but were unable to grow on Fe(III) oxide, Mn(III)-pyrophophate, and Mn(IV) oxide,

and displayed a 36 hour lag prior to growth on Fe(III) citrate.

Figure 3.1. Photograph of screening plate during identification of Rsh13,Rsh35 and Rsh38.
Production of yellow colored TNB2- dianion is indicator of wild-type disulfide (DTNB)
reduction activity.
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Table 3.2.  Overall respiratory capability of RSH mutants
Terminal electron acceptor

Electron
acceptor O2

Fuma
rate

DMS
O Nitrate

Fe(III)
oxide

Fe(III)
citrate Mn(III) Mn(IV)

Strain L L L L H2 L H2 L H2 L H2 L H2

WT + + + + + + + + + + + + +
RSH03 - - - - + - + - + - + - +
RSH13 + - - - - - - - - - - - -
RSH18 - - - - + - + - + - + - +
RSH35 + + + + + - - - - - - - -
RSH38 + + + + + - - - - - - - -
L, Lactate as electron donor; H2, H2 as electron donor; +, > 70% of WT phenotype.
-, <30% of WT phenotype.

Genetic complementation analysis of Rsh35 mutant. Approximately 1,500 Rsh35

tranconjugates were screened and one (designated Rsh35-40) displayed restored disulfide

reduction activity identical to the wild type (Figure 3.3). Subsequent subcloning and anaerobic

growth experiments demonstrated that only those subclones containing a wild-type copy of mtrB

restored anaerobic growth capability to Rsh35 (Fig 3.4).  Rsh35 genomic DNA corresponding to

the mtrB region was PCR-amplified and sequenced.  A single nucleotide transition (CAA to

TAA, which resulted in a truncated mutant MtrB form) was identified in Rsh mutant mtrB at

amino acid position 401 (Figure 3.5).

Genetic complementation analysis of mutant Rsh13.  Rsh13 only grew with O2 as

electron acceptor and was unable to grow on all anaerobic electron acceptors tested. An

enrichment genetic complementation strategy was designed to exploit the anaerobic
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Figure 3.3.  Genetic complementation of RSH35 mutant. Left panel : Disulfide reduction
screening assay from which complementing transconjugate RSH35-40 was identified. Right
panel : Fe(III) citrate reduction plot. MR-1 (open diamond), RSH35-40 (open circle) and
WT (closed triangle). RSH-35-40 regained Fe(III) citrate reduction ability.

respiratory mutant phenotype. A previously constructed clone library of partially digested

HindIII chromosomal DNA fragments of the S. oneidensis MR-1 was mobilized into Rsh13

mutant by the two-way mating procedures described above. Rsh13 tranconjugates were then

incubated anaerobically with fumarate as electron acceptor until tranconjugates with restored

anaerobic respiratory ability emerged. Tranconjugates with restored fumarate reduction activity

were identified (Figure3.6), and subsequent subcloning and nucleotide sequence analysis

identified a point mutation in the gene coding CRP, the cAMP-responsive regulator of catabolite

repression (SO_0624).  The mutation consisted of a single nucleotide transition at amino acid

position 180 (TGC to TAC, with cysteine replaced by tyrosine) (Figure3.7).
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Figure 3.4.  Restoration of wild-type Fe(III) citrate reduction activity to Rsh35 and Rsh38
via complementation with recombinant pBBR1MCS containing a wild-type copy of mtrB.

Figure 3.5. Rsh35 mutant contains a point mutation at nucleotide coding amino acid
number 401 in β-barrel outer membrane protein MtrB.

Figure 3.6. Genetic complementation of Rsh13. Two tranconjugates Rsh13-62 (filled
square) and Rsh13-65 (X) selected from fumarate enrichment regained disulfide reduction
capability. WT (filled diamond); Rsh13 (open triangle).
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Figure 3.7 Identification of point mutation on nucleotide coding crp gene of Rsh13

Other mtr deletion mutants also display impaired disulfide reduction activities. A

previously contructed set of mtr deletion mutants (∆mtrB, ∆mtrA, ∆mtrC, ∆omcA and ∆mtrC-

∆omcA double mutant) were subsequently tested for disulfide and Fe(III) oxide reduction

activities. All the mtr deletion mutants showed disulfide reduction rate lower than wild type

(Figure3.8). ∆mtrB and ∆mtrA displayed the most severe deficiency with 6-20% of wild type

rate, while ∆mtrC and ∆omcA displayed reduction rate of 50-70% and 80-90% of wild type rate

respectively. In addition, ∆mtrC-∆omcA double mutant displayed the reduction rate of 20-30% of

wild type. Interestingly, the Fe(III) oxide reduction deficiencies displayed by the mtr mutants

Figure 3.8. Disulfide reduction deficiencies displayed by Mtr mutants with lactate and H2
as electron donor.

correlated with their disulfide reduction deficiencies (Figure 3.9).  Furthermore, S. oneidensis

mutants lacking the MtrC and MtrA components of the extracellular electron conduit also

displayed disulfide reduction-deficient phenotypes. These results indicate that the disulfide and

metal reduction pathways of S. oneidensis share the extracellular electron conduit MtrCAB as a
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common electron transport chain component.  The extracellular electron conduit MtrCAB thus

appears to be multi-functional, displaying the ability to transfer electrons to extracellular Fe(III)

citrate, Fe(III) oxide, flavins [9, 48-50], and disulfides (this study).  In this manner, S. oneidensis

may utilize a single terminal reductase complex (MtrCAB) to transfer electrons to multiple

external electron acceptors.

Figure 3.9. Correlation of disulfide (DTNB) and Fe(III) oxide reduction deficiencies of mtr
mutants.

Alternately, the findings of the present study suggest that Fe(III) reduction is the last step of a

multi-step electron shuttling pathway in which S. oneidensis secretes disulfides to the cell surface

where MtrCAB-catalyzed disulfide reduction reactions produce the corresponding thiols that

subsequently reduce oxidized flavin abiotically to their reduced flavin forms, which finally

reduce Fe(III) oxide abiotically in the terminal Fe(III) oxide reduction step.  Current work is
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focused on testing the hypothesis that microbial Fe(III) respiration is catalyzed by the multi-step

electron shuttling pathway which begins with enzymatic disulfide reduction at the cell surface

and terminates with abiotic Fe(III) oxide reduction outside the cell.
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CHAPTER 4

Identification of a Molecular Signature Unique to

Metal-Reducing Gammaproteobacteria

[The work described in Chapter 4 was done in collaboration with Dr. Justin Burns, a former

PhD student in Dr. DiChristina’s research group. Dr. Burn’s contributions in this chapter are

denoted with an asterisk. The work described in Chapter 4 has also recently been published

in FEMS Microbiology Letters: Wee, S., J. Burns and T. DiChristina. 2014. Identification of

a molecular signature unique to metal-reducing Gammaproteobacteria. FEMS Microbiology

Letters, 350: 90-99.

Summary

Functional genes required for microbial (dissimilatory) metal reduction display

high sequence divergence, which limits their utility as molecular biomarkers for tracking

the presence and activity of metal-reducing bacteria in natural and engineered systems.

In the present study, homologs of the outer membrane beta-barrel protein MtrB of metal-

reducing gammaproteobacteria were found to contain a unique N-terminal CXXC motif

that was missing from MtrB homologs of non-metal-reducing gammaproteobacteria and

metal- and non-metal-reducing bacteria outside the gammaproteobacteria. To determine

if the N-terminal CXXC motif of MtrB was required for dissimilatory metal reduction,
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each cysteine in the CXXC motif of the representative metal-reducing gamma-

proteobacterium Shewanella oneidensis was replaced with alanine, and the resulting site-

directed mutants were tested for metal reduction activity.  Anaerobic growth experiments

demonstrated that the first, but not the second, conserved cysteine was required for metal

reduction by S. oneidensis.  The ability to predict metal reduction by

gammaproteobacteria with unknown metal reduction capability was confirmed with

Vibrio parahaemolyticus, a pathogen whose genome encodes an MtrB homolog with an

N-terminal CXXC motif.  MtrB homologs with an N-terminal CXXC motif may thus

represent a molecular signature unique to metal-reducing members of the

Gammaproteobacteria.
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Introduction

Dissimilatory metal-reducing bacteria occupy a central position in a variety of

environmentally important processes, including the biogeochemical cycling of carbon

and metals, the bioremediation of radionuclides and organohalides, and the generation of

electricity in microbial fuel cells [1-3, 104]. Metal-reducing bacteria are scattered and

deeply rooted throughout both prokaryotic domains [105, 106].  Functional genes

required for microbial metal reduction display high sequence divergence, which limits

their use as molecular biomarkers to examine fundamental ecological principles and

environmental parameters controlling metal reduction in both natural and engineered

systems.  A variety of c-type cytochromes, for example, are key components of the

electron transport systems of many metal-reducing bacteria [11, 107], yet their

widespread occurrence in non-metal-reducing bacteria and high sequence divergence

limits their utility as molecular biomarkers for tracking the presence and activity of

metal-reducing bacteria as a functional group.  The gene encoding the eukaryotic-like

citrate synthase (gltA) in the Geobacteraceae family has received attention as a molecular

biomarker for tracking the presence and activity of metal-reducing Geobacteraceae in

subsurface environments [108, 109].  However, gltA is found only in members of the

Geobacteraceae family, thus limiting its application as a molecular biomarker for metal-

reducing bacteria outside the Geobacteraceae family.

The large -proteobacteria class within the phylum Proteobacteria [19] was

selected as a bacterial group to search for molecular signatures unique to metal-reducing

bacteria outside the Geobacteraceae family.  The large number of genera (over 250) and
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complete or nearly complete genomes (over 200) in the -proteobacteria class [19]

facilitates nucleotide sequence comparisons of genes in both metal- and non-metal-

reducing bacteria, potentially aiding in the identification of molecular signatures unique

to metal-reducing -proteobacteria.  The -proteobacteria class includes Shewanella

oneidensis, a gram-negative, facultative anaerobe that reduces a wide range of metals,

including Fe(III) and Mn(IV) as terminal electron acceptor [9, 110]. S. oneidensis

employs a number of novel respiratory strategies for dissimilatory metal reduction,

including: i) localization of c-type cytochromes on the cell surface (or along extracellular

nanowires) where they may deliver electrons to external metals [60, 111, 112];  ii) non-

reductive dissolution of metal oxides to form more readily reducible organic-metal

complexes [28, 59, 113]; and iii) delivery of electrons to external metals via endogenous

or exogenous electron shuttles [35, 114, 115].

S. oneidensis contains an electron transport chain that consists of IM-localized

primary dehydrogenases, menaquinone, and CymA, a menaquinol-oxidizing c-type

cytochrome that functions as a central branch point in electron transport to Fe(III),

Mn(IV), nitrate (NO3
-), nitrite (NO2

-), dimethylsulfoxide (DMSO) and fumarate [116].

CymA transfers electrons to the periplasmic c-type cytochrome MtrA [117], which

interacts with outer membrane (OM)-localized protein complexes composed of

transmembrane -barrel protein MtrB [31, 118] and decaheme c-type cytochrome MtrC

[48, 119].  Purified MtrC reduces Fe(III) [120, 121], and in proteoliposomes, purified

MtrB, MtrC, and MtrA form a lipid-embedded “porin-cytochrome” complex [122] that

transfers electrons from internal reduced methyl viologen to external Fe(III) substrates

[52, 123].
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Previous nucleotide sequence analyses indicated that the N-terminus of S.

oneidensis MtrB contained a unique CXXC motif [31].  The identification of a CXXC

motif in S. oneidensis MtrB was unusual since CXXC motifs are generally not found in

OM -barrel proteins, most likely to avoid protein folding problems caused by redox-

reactive cysteines during passage across the intermembrane space in eukaryotes or the

periplasmic space in bacteria [124-126].  The identification of an unusual CXXC motif in

the N-terminus of MtrB led us to hypothesize that this motif may represent a molecular

signature unique to metal-reducing -proteobacteria. To test this hypothesis, nucleotide

sequence analyses were carried out to correlate dissimilatory metal reduction capability

with the presence of MtrB homologs containing an N-terminal CXXC motif.  Site-

directed mutational analyses were performed to determine if the N-terminal CXXC motif

of MtrB was required for metal reduction by the representative metal-reducing -

proteobacterium S. oneidensis. The ability to predict dissimilatory metal reduction by a -

proteobacterium with unknown metal reduction capability was then tested with Vibrio

parahaemolyticus, a human pathogen whose genome encodes an MtrB homolog with an

N-terminal CXXC motif.
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Materials and methods

Bacterial strains and cultivation conditions

Bacterial strains and plasmids used in the present study are listed in Table 1.  For

genetic manipulations, all E. coli and S. oneidensis strains were cultured at 30°C in Luria

Bertani medium (10 g L-1 NaCl, 5 g L-1 yeast extract, 10 g L-1 tryptone).  For aerobic and

anaerobic growth experiments, all S. oneidensis strains were cultured in a defined salts

medium (M1) supplemented with 20 mM lactate as carbon/energy source [9]. V.

parahaemolyticus and V. harveyi were tested for anaerobic metal reduction activity in

Marine Broth (Difco) growth

Table 4.1. Strains and plasmids used in the present study

Strains Features Source

Shewanella oneidensis
MR-1 Wild-type strain ATCC
∆mtrB In-frame deletion mutant This study
C42A Site-directed mutant This study
C45A Site-directed mutant This study

C42A plus mtrB
C42A complemented with wild-type
mtrB This study

Escherichia coli
β2155 λ pir thrB1004 pro thi strA hsdS lacZ_M15 [162]

(F9 lacZ∆M15 laclq traD36 proA1
proB1)

∆dapA::erm pir::RP4 KmR

XL10 Gold KmR electrocompetent Agilent

Vibrio parahaemolyticus Wild-type strain RIMD 2210633 ATCC
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Vibrio harveyi Wild-type strain BB120 ATCC

Plasmids Features Source
pKO2.0 4.5 kb γR6K, mobRP4 sacB GmR lacZ [140]
pBBR1MCS CmR lacZ [141]
pKO2.0-mtrB pKO2.0 with in-frame deletion of mtrB This study

pKO2.0+mtrB
pKO2.0 containing wild-type copy of
mtrB This study

medium.  Bacterial growth experiments were carried out in a B. Braun Biostat B batch

reactor with automatic feedback control of pH, temperature, and dissolved O2

concentration. Electron acceptors were synthesized as previously described [29, 127-130]

and added at the following final concentrations: NO3
-, 10 mM; NO2

-, 2 mM; Fe(III)

citrate, 50 mM; amorphous MnO2, 15 mM; trimethylamine-N-oxide (TMAO), 25 mM;

S2O3
2-, 10 mM; fumarate, 30 mM; and dimethylsulfoxide (DMSO), 25 mM.  Gentamycin

[131] was supplemented at 15 g mL-1.  For growth of Escherichia coli 2155  pir,

diaminopimelate (DAP) was amended at 100 g mL-1.

Analytical procedures

Cell growth was monitored by direct cell counts via epifluorescence microscopy

and by measuring terminal electron acceptor depletion or end product accumulation.

Acridine orange-stained cells were counted (Zeiss AxioImager Z1 Microscope) according

to previously described procedures [24].  Cell numbers at each time point were calculated

as the average of 10 counts from two parallel yet independent anaerobic incubations.

NO2
- was measured spectrophotometrically with sulfanilic acid-N-1-naphthyl-ethylene-
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diamine dihydrochloride solution [132].  Fe(III) reduction was monitored by measuring

HCl-extractable Fe(II) production with ferrozine [133].  Mn(IV) concentration was

measured colorimetrically after reaction with benzidine hydrochloride as previously

described [24].  Mn(III)-pyrophosphate concentration was measured colorimetrically as

previously described [134].  S2O3
2- concentrations were measured by cyanolysis as

previously described [135].  Growth on O2, TMAO, DMSO, and fumarate were

monitored by measuring increases in cell density at 600 nm.  Control experiments

consisted of incubations with cells that were heat-killed at 80oC for 30 min prior to

inoculation.

Nucleotide and amino acid sequence analyses

Genome sequence data for S. oneidensis MR-1, S. putrefaciens 200, S.

putrefaciens CN32, S. putrefaciens W3-18-1, S. amazonensis SB2B, S. denitrificans

OS217, S. baltica OS155, S. baltica OS195, S. baltica OS185, S. baltica OS223, S.

frigidimarina NCIMB400, S. pealeana ATCC 700345, S. woodyi ATCC 51908, S. sp.

ANA-3, S. sp. MR-4, S. sp. MR-7, S. loihica PV-4, S. halifaxens HAW-EB4, S.

piezotolerans WP3, S. sediminis HAW-EB3, and S. benthica KT99 were obtained from

the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov)

or the Department of Energy Joint Genome Institute (DOE-JGI, http://jgi.doe.gov). MtrB

homologs in the NCBI databases were identified via BLAST analysis [136] using S.

oneidensis MtrB as the search query.  Multiple alignments of MtrB homologs were

generated with ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html) [137]. -



69

barrel architecture of the MtrB homologs was predicted using the program PRED-TMBB

[138].  LOGO diagrams were generated using the ClustalW alignment files [139].

In-frame gene deletion mutagenesis * and genetic complementation analysis

mtrB was deleted from the S. oneidensis genome via application of a Shewanella

in-frame gene deletion system [140].  Regions corresponding to ~750 bp upstream and

downstream of mtrB were independently PCR-amplified and subsequently joined using

overlap-extension PCR.  Primers for mtrB deletion are listed in Table 2.  The resulting

fragment was cloned into suicide vector pKO2.0, which does not replicate in S.

oneidensis.  This construct (designated pKO-mtrB) was mobilized into wild-type MR-1

via conjugal transfer from E. coli donor strain β2155 λ pir.

Table 4.2. Primers used for in-frame gene deletion mutagenesis, site-directed
mutagenesis, and DNA sequencing

Deletion mutagenesis primers
MtrBD1 GACTGGATCCCTCCTCTAAGAGTCCAATGGCTGGC
MtrBD2 CAGCATCAGCATTTGTGCGGTGTAGCCTGTGTTGGCTAATAACGCTAGAGT
MtrBD3 ACTCTAGCGTTATTAGCCAACACAGGCTACACCGCACAAATGCTGATGCTG
MtrBD4 GACTGTCGACACATTTAGCCAAGCCCTAAGCCGT
MtrBDTF CAGAGCAAGTCGAAGCCACCTTAG
MtrBDTR CCATCGGTACTATGGCAAACAGAGC

Site-directed mutagenesis primers

C42A-Sense GTGAAATTATCCGCATGGAGCGCAAAAGGCTGCGTCGTTGAAACG
C42A-Anti CGTTTCAACGACGCAGCCTTTTGCGCTCCATGCGGATAATTTCAC
C45A-Sense GCATGGAGCTGTAAAGGCGCAGTCGTTGAAACGGGCACA
C45A-Anti TGTGCCCGTTTCAACGACTGCGCCTTTACAGCTCCATGC

Sequencing primers
MtrB-SeqF GATCACTCTAGCGTTATTAGCCAAC
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MtrB-SeqR GTTGCTTGAACCTGCTGTTATC

MtrB cloning primers
MtrB-CompF GACTGGATCCGGTTCTAACCATCCAT
MtrB-CompR GACTGTCGACCAGAGGCGGGCTTTT

S. oneidensis strains with the plasmid integrated into the genome were selected on solid

LB medium containing gentamycin (15 μg mL-1).  Single integrations were verified via

PCR with primers flanking the recombination region.  Plasmids were resolved from the

genomes of single integrants by plating on solid LB medium containing sucrose (10%

w/v) with NaCl omitted.  In-frame deletions were verified by PCR and direct DNA

sequencing (GeneWiz, South Plainfield, NJ). Genetic complementation of ∆mtrB was

carried out by cloning wild-type mtrB into broad-host-range cloning vector pBBR1MCS

[141] and conjugally transferring the recombinant vector into ∆mtrB via bi-parental

mating procedures [111].

Site-directed mutagenesis*

Single amino acid mutations in MtrB (C42A or C45A) were constructed using the

Quickchange Lightning site-directed mutagenesis kit (Agilent Technologies, Santa Clara,

CA).  The mtrB gene and regions ~750 bp upstream and downstream were PCR-

amplified as a single fragment and subsequently cloned into pBBR1MCS.  Mutagenesis

primers C42A-Sense, C42A-Antisense, C45A-Sense, and C45A-Antisense (Table 2)

were used in mutagenesis PCR reactions according to the manufacturer’s instructions.

The resulting PCR products were subsequently transformed into XL10 Gold KanR



71

competent cells (Agilent Technologies, Santa Clara, CA).  Correct amino acid mutations

(C42A or C45A) were verified by direct DNA sequencing using primers MTRB-SeqF

and MTRB-SeqR (Table 2).  The mutated mtrB constructs were subsequently cloned into

suicide vector pKO2.0, and were “knocked-in” to the native chromosomal position.

Nucleotide sequence changes were verified by PCR and DNA sequencing of S.

oneidensis “knock-in” transformants.  Genetic complementation of mutant C42A was

carried out by cloning wild-type mtrB into broad-host-range cloning vector pBBR1MCS

[141] and conjugally transferring the recombinant vector into mutant C42A via bi-

parental mating procedures [111].
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Results and discussion

Identification of N-terminal CXXC motifs in MtrB homologs within the genus

Shewanella

Recent proteoliposome studies indicated that electrons are transferred from

internal reduced methyl viologen to external Fe(III) substrates by a porin-cytochrome

complex composed of S. oneidensis -barrel protein MtrB and decaheme cytochromes

MtrA and MtrC [107, 122, 142]. S. oneidensis MtrB was predicted to contain a 55-amino

acid N-terminus followed by 28 -sheets that form a transmembrane -barrel domain

[123].  MtrB homologs with high sequence similarity were identified in the genomes of

22 metal-reducing members of the genus Shewanella (Table S1, Fig. S1), but not in the

genome of non-metal-reducing S. denitrificans [143].  Multiple sequence alignment of

the 22 Shewanella MtrB homologs indicated that each consisted of a 46-82 amino acid N-

terminus followed by a C-terminus with 25-30 -sheets (Table S1, Fig. S1).  The N-

terminus of all 22 Shewanella MtrB homologs contained a CKXC motif corresponding to

amino acid positions 42-45 in S. oneidensis MtrB (Fig. 1, Table S1, Fig. S1).  The S.

oneidensis genome also contains three additional MtrB paralogs (MtrE, DmsF, and

SO4359)[144] with lower overall amino acid sequence similarity to MtrB (43%-55%, and

e-values ranging from 1e-38 to 4e-127).  Each of the three additional MtrB paralogs also

contained a conserved N-terminal CKXC motif (Table S2, Fig. S2).

The identification of N-terminal CXXC motifs in the MtrB homologs of all 22 metal-

reducing Shewanella strains was unusual since CXXC motifs are generally not found in
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transmembrane -barrel proteins, most likely to avoid protein folding problems caused by

the redox reactive cysteines during passage across the intermembrane space or periplasm

[124-126].  CXXC motifs are generally found in cytoplasmic and periplasmic proteins

where they carry out a diverse array of functions such as catalyzing disulfide bond

exchanges, binding transition metals, or acting as the redox-sensing module of

transcriptional activators [145-147]. Transmembrane -barrel proteins found in the

mitochondria and chloroplast of higher eukaryotes and the OM of Gram-negative bacteria

are generally involved in active ion transport or passive nutrient uptake [148]. S.

oneidensis MtrB appears to function as a structural sheath facilitating interaction and

electron transfer from MtrA to MtrC in a transmembrane porin-cytochrome complex [52,

123, 149, 150].  The N-terminal CXXC motif of the Shewanella MtrB homologs may

facilitate such electron transfer via as yet unknown molecular interactions.

Identification of N-terminal CXXC motifs in MtrB homologs outside the genus

Shewanella

Nine MtrB homologs displaying amino acid sequence similarity to S. oneidensis

MtrB had been previously reported in bacterial genomes outside the genus Shewanella,

including metal- and non metal-reducing Acidobacteria and -, -, -, and -

proteobacteria [52].  Four additional MtrB homologs were subsequently identified in the

MtrAB modules of Fe(II)-oxidizing - and -proteobacteria [54].  The rapid expansion

of sequenced bacterial genomes has resulted in a sharp increase in the number of proteins

displaying similarity to S. oneidensis MtrB.  As of July 2013, the list of MtrB homologs
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identified outside the Shewanella genus numbered 52 (Table S3, Fig. S3), including one

each from the phyla Acidobacteria and NC10 group, and 50 from the -, -, -, and -

proteobacteria.  The 52 MtrB homologs facilitated amino acid sequence analysis of MtrB

homologs in bacteria that cross phylogenetic and phenotypic lines, including metal- and

non-metal-reducing strains.

Fig4. 1. LOGO diagrams comparing the amino acids in the N-terminal CXXC motifs of MtrB
homologs identified in the genomes of 22 metal-reducing Shewanella strains (top panel) and  20
CXXC-containing MtrB homologs in -proteobacteria outside the genus Shewanella (bottom
panel) (corresponding to amino acid positions 42-45 of S. oneidensis MtrB).  Strain designations
are listed in Table S1.
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Literature searches were conducted to determine the dissimilatory metal reduction

capability of the host strains harboring each of the 52 MtrB homologs (Table S3).

Correlations between the similarity of the 52 MtrB homologs and the ability of the

corresponding host strains to catalyze dissimilatory metal reduction were not observed.

The 52 MtrB homologs found outside the Shewanella genus were subsequently ranked

according to e-value, ranging from the MtrB homolog of the metal-reducing -

proteobacterium Ferrimonas balearica (e-value of 7.00e-145) to the MtrB homolog of

the metal-reducing -proteobacterium Geobacter metallireducens (e-value of 0.28).

ClustalW analyses of the 52 MtrB homologs (Table S3) indicated that N-terminal length

varied from 4-132 amino acids, while the number of C-terminal -sheets varied from 22-

32 sheets.  MtrB homologs of the -proteobacteria Ferrimonas, Aeromonas, and Vibrio

were represented in 20 of the top 21 MtrB homologs, and each of the 20 Ferrimonas,

Aeromonas, and Vibrio homologs contained an N-terminal CXXC motif (Fig. 1, Table

S3).  The threshold e-value for MtrB homologs containing an N-terminal CXXC motif

was 4.00e-43 displayed by the MtrB homolog of Vibrio vulnificus YJ016. Ferrimonas

and Aeromonas species are facultatively anaerobic -proteobacteria capable of

dissimilatory metal reduction [151-153], while Vibrio species have not been previously

examined for dissimilatory metal reduction activity.  Of the top 21 MtrB homologs, only

the MtrB homolog of the -proteobacterium Nitrosococcus halophilus Tc4 lacked an N-

terminal CXXC motif (Table S3). N. halophilus Tc4 is a nitrifying chemolithotroph that

obligately respires oxygen as terminal electron acceptor [154].  These results indicate that

N-terminal CXXC motifs are found in MtrB homologs of -proteobacteria capable of
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dissimilatory metal reduction, while N-terminal CXXC motifs are missing from the MtrB

homolog of an obligately aerobic, non-metal-reducing -proteobacterium.

The remaining 29 MtrB homologs were found in one Acidobacterium, one NC10

group strain, and 27 -, -, -, and -proteobacteria (Table S3).  None of the remaining

29 MtrB homologs contained an N-terminal CXXC motif. - and -proteobacteria were

represented in 18 of the 29 MtrB homologs lacking an N-terminal CXXC motif,

including the MtrB homologs of the Fe(II)-oxidizing -proteobacteria Dechloromonas

aromatica, Gallionella capsiferriformans, and Sideroxydans lithotrophicus [155-157].

CXXC motifs were also missing from the N-terminus of PioB, the MtrB homolog of the

Fe(II)-oxidizing -proteobacterium Rhodopseudomonas palustris [53], and from the

MtrB homolog of the -proteobacterium Halorhodospira halophila, a sulfur-oxidizing

anoxygenic phototroph [158].  Three of the 29 MtrB homologs lacking an N-terminal

CXXC motif were found in metal-reducing bacteria, including the -proteobacterium

Rhodoferax ferrireducens [159] and the -proteobacteria Geobacter sp. M21, G.

metallireducens and G. uraniireducens [160].    These results indicate that MtrB

homologs of metal-reducing -proteobacteria contain an N-terminal CXXC motif that is

missing from MtrB homologs of non-metal-reducing -proteobacteria and from all

bacteria outside the -proteobacteria, including those catalyzing dissimilatory metal

reduction or oxidation reactions.

The first conserved cysteine in the N-terminal CXXC motif of MtrB is required for

dissimilatory metal reduction by S. oneidensis
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To determine if the N-terminal CXXC motif of MtrB was required for dissimilatory

metal reduction, the N-terminal CXXC motif of S. oneidensis MtrB was selected for site-

directed mutational analysis, and the resulting CXXC mutants were tested for

dissimilatory metal reduction activity. S. oneidensis mutant strain C42A was unable to

reduce Fe(III) or Mn(IV) as terminal electron acceptor (i.e., displayed metal reduction-

deficient phenotypes identical to ∆mtrB; Fig. 2), yet retained wild-type respiratory

activity on all non-metal electron acceptors, including O2, NO3
-, NO2

-, S2O3
2-, fumarate,

DMSO, and TMAO (Fig. S3). S. oneidensis mutant strain C45A, on the other hand,

displayed wild-type reduction activity of all electron acceptors, including Fe(III) and

Mn(IV) (Figs. 2 and S3).  The involvement of C42 in metal reduction activity was

confirmed via restoration of wild-type metal reduction activity to C42A transconjugates

provided with wild-type mtrB on pBBR1MCS (Fig. 2).  These findings indicate that the

first, but not the second, cysteine in the N-terminal CXXC motif of MtrB is required for

dissimilatory metal reduction by S. oneidensis.  These findings also indicate that

overlapping MtrB function is not provided by the MtrB paralogs MtrE, DmsF, and

SO4359, or that these paralogs are expressed under metal-reducing conditions different

than those employed in the present study [118, 144].

The involvement of C42 in metal reduction by S. oneidensis and the absence of

the corresponding N-terminal CXXC motif in MtrB homologs of metal-reducing

Rhodoferax and Geobacter species indicate that the molecular mechanism of metal

reduction by -, - and -proteobacteria differs in at least one fundamental aspect.  The

biochemical function of C42 in metal reduction by S. oneidensis is currently unknown.

Based on the participation of CXXC motifs in metal binding, redox sensing, and disulfide
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bond formation [145-147], potential roles for C42 include the binding of metals or co-

factors required for electron transport by the MtrCAB complex, sensing redox conditions

via sulfur redox chemistry, or enhancing MtrB interaction with other cysteine-containing

metabolites and proteins via heterologous disulfide bond formation.  Current work is

focused on examining these possibilities during metal reduction by S. oneidensis.

Prediction of dissimilatory metal reduction activity by -proteobacteria with

unknown metal reduction capability.

As described above, 20 of the top 21 MtrB homologs were identified in the genera

Ferrimonas, Aeromonas, and Vibrio (Table S3).  Although Ferrimonas and Aeromonas

Figure 4.2 Dissimilatory metal reduction activity of strains S. oneidensis wild-type,
wild-type containing pBBR1MCS, ∆mtrB, C45A, C42A, and C42A complemented
by wild-type mtrB with either Fe(III) (left panel) or Mn(IV) (right panel) as terminal
electron acceptor.  Values are the means of two parallel but independent anaerobic
incubations; error bars represent standard deviations.  Some error bars cannot be
seen due to small standard deviations.
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species are known to catalyze dissimilatory metal reduction [152, 153, 161], the

dissimilatory metal reduction capability of Vibrios is not well studied. The ability to

predict dissimilatory metal reduction by a -proteobacterium with unknown metal

reduction capability was tested with Vibrio parahaemolyticus, a pathogen whose genome

encodes an MtrB homolog with an N-terminal CXXC motif.  A CSEC motif was

identified in the N-terminus of the V. parahaemolyticus MtrB homolog VP1218

(87QD1_VIBPA; Table S3).  Subsequent anaerobic incubations demonstrated that V.

parahaemolyticus reduced Fe(III) and Mn(IV) as terminal electron acceptors (Fig. 3),

Figure 4.3 Dissimilatory metal reduction activity of V. parahaemolyticus and V. harveyi
wild-type strains with either Fe(III) (left panel) or Mn(IV) (right panel) as terminal
electron acceptor.  Values are the means of two parallel but independent anaerobic
incubations; error bars represent standard deviations.  Some error bars cannot be seen due
to small standard deviations.
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while V. harveyi, a Vibrio control strain lacking the MtrB homolog, was deficient in

Fe(III) and Mn(IV) reduction activity (Fig.4.3).

Results of the present study indicate that MtrB homologs of metal-reducing -

proteobacteria contain an N-terminal CXXC motif that is missing from the MtrB

homologs of and NC10 group strains, non-metal-reducing -proteobacteria, and all -, -

, and -proteobacteria, including those catalyzing dissimilatory metal reduction or

oxidation reactions.  The N-terminal CXXC motif of MtrB is required for dissimilatory

metal reduction by the representative metal-reducing -proteobacterium S. oneidensis,

and the ability to predict dissimilatory metal reduction by a -proteobacterium with

unknown metal reduction capability was confirmed with Vibrio parahaemolyticus, a

pathogen whose genome encodes an MtrB homolog with an N-terminal CXXC motif.

MtrB homologs with N-terminal CXXC motifs may thus represent a molecular signature

unique to metal-reducing members of the -proteobacteria, with the potential for further

development as a biomarker for tracking the presence and activity of metal-reducing -

proteobacteria in natural and engineered systems.
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Supplementary Table 4.S1.  Amino acid sequence identity (ID), similarity (Sim),
expect-value (e-value), N-terminal CXXC motif (CXXC motif), number of amino acid
residues in the N-terminus (N-term length), and number of β-sheets in the C-terminus
(No. β-sheets) of the MtrB homologs identified in the genomes of 22 metal-reducing
Shewanella strains.
Microorganism Locus Tag ID

(%)
Sim
(%)

e-
valu
e

CXXC
motif

N-
term
lengt
h

No.
β-
sheet
s

S. oneidensis
MR-1

SO_1776 100 100 0 CKGC 54 28

Shewanella sp.
MR-4

Shewmr4_2512 93 97 0 CKGC 46 28

Shewanellasp.
ANA3

Shewana3_2678 93 97 0 CKGC 46 28

Shewanella sp.
MR-7

Shewmr7_2580 93 97 0 CKGC 46 28

Shewanella sp.
HN41

SOHN41_
01518

90 96 0 CKGC 50 28

Shewanella sp.
W3-18-1

Sputw3181_
2625

89 96 0 CKGC 46 28

S. baltica OS223 Sbal223_2767 88 96 0 CKGC 54 28
S. baltica OS185

1.1 Shew185_1576
88 96 0 CKGC 54 28

S. baltica OS183 Sbal183DRAFT_1149 88 96 0 CKGC 54 28
S. baltica OS625 Sbal625DRAFT_1717 88 96 0 CKGC 54 28
S. baltica OS195 Sbal195_1610 88 96 0 CKGC 54 28
S. baltica OS155 Sbal_1587 88 96 0 CKGC 54 28
S. putrefaciens
CN32

Sputcn32_1476 84 91 0 CKGC 46 30

S. woodyi
ATCC 51908

Swoo_3127 72 84 0 CKRC 82 25

S. loihica PV-4 Shew_2527 71 83 0 CKRC 52 26
S. sediminis
HAW-EB3

Ssed_1523 68 83 0 CKRC 58 26

S.  piezotolerans
WP3

Swp_3280 67 83 0 CKRC 54 27

S.  benthica
KT99

KT99_05757 66 83 0 CKRC 81 25

S.  pealeana
ATCC 700345

Spea_2700 67 82 0 CKNC 54 26

S. halifaxensis
HAW-EB4

Shal_2786 65 81 0 CKNC 55 26
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S. frigidimarina
NCIMB 400

Sfri_2639 67 81 0 CKAC 80 28

S. amazonensis
SB2B

Sama_120 63 79 0 CKGC 53 27

Supplementary Table 4.S2.  Amino acid sequence identity (ID), similarity (Sim),
expect-value (e-value), N-terminal CXXC motif (CXXC motif), number of amino acid
residues in the N-terminus (N-term length), and number of β-sheets in the C-terminus
(No. β-sheets) of the three MtrB paralogs identified in the genome of S. oneidensis MR-1.

Locus Tag
ID
(%)

Sim
(%)

E
value

CXX
C
motif

N-term
length

No. β
sheets

SO_1776 MtrB 100 100 0 CKGC 54 28

SO_1781 MtrE 36 55
4.00E-
127 CKQC 61 24

SO_1428 Extracellular DMSO
respiration system 35 54

4.00E-
114 CKSC 49 28

SO_4359 DMSO reductase system 25 43
1.00E-
38 CKQC 50 27
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Supplementary Table 4.S3. Phylogenetic affiliation (Class), amino acid sequence
identity (ID, %), similarity (Sim, %), expect-value (e-value), N-terminal CXXC motif,
(CXXC motif) number of amino acid residues in the N-terminus (N-term length), number
of β-sheets in the C-terminus (No. β-sheets), and reported dissimilatory metal reduction
or oxidation activity of the host strain (metal redox) for 52 MtrB homologs displaying
similarity to S. oneidensis MtrB.

Microorganism
Clas
s Locus Tag ID

Si
m

E-
value

CXXC
motif

N-
term
leng
th

No.
β-
she
ets

Metal
redox

Ferrimonas
balearica DSM 9799 γ Fbal_1355 41 57

2.00E-
148 CKRC 79 26

Fe(III)
reducti
on1

Ferrimonas
balearica DSM 9799 γ Fbal_2477 39 56

7.00E-
145 CKRC 76 24

Ferrimonas
balearica DSM 9799 γ Fbal_1363 28 49

1.00E-
84 CERC 77 25

Nitrosococcus
halophilus Nc 4 γ Nhal_1654 29 49

3.00E-
83 - - - 5 32

Aeromonas veronii
AMC34 γ

HMPREF1
168_03370 29 47

5.00E-
70 CASC 51 25

Aeromonas
hydrophila
ATCC 7966 γ AHA_2766 27 47

3.00E-
65 CKSC 51 26

Fe(III)
reducti
on2

Aeromonas
hydrophila SSU γ

HMPREF1
171_01918 27 47

7.00E-
65 CKSC 51 26

Aeromonas
hydrophila
ML09-119 γ

AHML_
14660 27 46

2.00E-
64 CKSC 51 26

Aeromonas
aquariorum γ

WP_01063
3518.1 27 46

4.00E-
61 CNSC 51 26

Aeromonas diversa γ
G114_
06847 28 45

4.00E-
60 CNAC 45 27

Vibrio
parahaemolyticus
BB22OP γ

VPBB_114
2 27 44

1.00E-
51 CSEC 46 22

Vibrio sp. Ex25 γ
VEA_
003778 26 43

2.00E-
49 CSEC 46 22

Vibrio
parahaemolyticus
10329 γ

VP10329_
20255 27 44

8.00E-
49 CSEC 46 22

Vibrio
parahaemolyticus
RIMD 2210633 γ

NP_
797597.1 27 43

9.00E-
49 CSEC 46 22

Fe(III)
reducti
on3

Vibrio sp. EJY3 γ
VEJY3_
05885 26 46

2.00E-
48 CTDC 46 26

Vibrio alginolyticus
E0666 γ C408_1584 26 43

2.00E-
48 CSEC 46 22

Vibrio
parahaemolyticus
AQ4037 γ

VIPARAQ
4037_2777 27 43

3.00E-
48 CSEC 46 22

Vibrio vulnificus γ VVMO6_ 26 43 9.00E- CEPC 46 26
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MO6-24/O 03631 46
Vibrio vulnificus
CMCP6 γ VV2_0135 26 42

1.00E-
45 CEPC 46 26

Vibrio vulnificus
YJ016 γ VVA_0644 26 42

5.00E-
43 CEPC 51 26

Halorhodospira
halophila SL1 γ Hhal_2380 24 43

1.00E-
31 - - - 39 29

Dechloromonas
aromatica RCB β Daro_1403 23 41

8.00E-
31 - - - 41 25

Fe(II)
oxidati
on4

Rhodovulum sp.
PH10 α A33M2094 26 44

9.00E-
26 - - - 73 29

Azoarcus sp. KH32C β
AZKH_
4036 24 41

2.00E-
25 - - - 136 23

Azoarcus sp. KH32C β
AZKH_
4372 24 42

6.00E-
25 - - - 38 27

Gallionella
capsiferriformans
ES-2 β Galf_2003 22 39

2.00E-
22 - - - 106 28

Fe(II)
oxidati
on5

Rhodanobacter
fulvus Jip2 γ

UU9_1012
7 24 38

1.00E-
21 - - - 97 31

Candidatus
Methylomirabilis
oxyfera

NC1
0

DAMO_
0819 22 39

5.00E-
20 - - - 49 29

Nitrosococcus
halophilus Nc 4 γ Nhal_1191 22 39

1.00E-
18 - - -

4 34

Magnetospirillum
magneticum
AMB-1 α Amb3018 23 41

1.00E-
18 - - - 48 26

Sideroxydans
lithotrophicus

ES-1 β Slit_2496 22 40
2.00E-
17 - - - 43 28

Fe(II)
oxidati
on6

Azoarcus sp. KH32C β
AZKH_
1287 23 40

2.00E-
17 - - - 44 28

Thauera linaloolentis β
C666_
11635 23 41

4.00E-
17 - - - 81 26

Rhodanobacter
thiooxydans γ

UUA_
11468 23 38

2.00E-
16 - - - 99 29

Geobacter
uraniireducens Rf4 δ Gura_3627 23 38

3.00E-
15 - - - 33 31

Fe(III)
reducti
on7

Pseudoxanthomona
s spadix
BD-a59 γ

DSC_0926
0 23 37

5.00E-
15 - - - 30 30

Geobacter sp. M21 δ
GM21_039
8 22 42

1.00E-
13 - - - 29 29

Rhodoferax
ferrireducens T118 β Rfer_4081 21 39

1.00E-
11 - - - 71 24

Fe(III)
reducti
on8

Rhodopseudomonas
palustris BisB18 α RPC_2959 22 41

5.00E-
11 - - - 72 28
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Rhodopseudomonas
palustris BisA53 α RPE_0832 22 39

3.00E-
10 - - - 48 32

Burkholderiales
bacterium
JOSHI_001 β

BurJ1Draft
_0794 23 37

1.00E-
09 - - - 32 28

Thauera linaloolentis β
C666_
11670 21 38

2.00E-
09 - - - 104 24

Rhodopseudomonas
palustris DX-1 α

Rpdx1_
0795 21 41

1.00E-
08 - - - 46 28

Thioflavicoccus
mobilis 8321 γ

Thimo_
2811 22 36

2.00E-
08 - - - 132 26

Rhodopseudomonas
palustris TIE-1 α

Rpal_0816
(pioB) 21 38

1.00E-
05 - - - 46 28

Fe(II)
oxidati
on9

Rhodopseudomonas
palustris CGA009 α RPA_0745 21 38

1.00E-
05 - - - 46 28

Thiocystis
violascens DSM198 γ Thivi_3491 22 40

4.00E-
05 - - - 6 24

Rubrivivax
benzoatilyticus β

RBXJAZT_
07418 21 38

5.00E-
05 - - - 92 22

Thiorhodococcus
drewsii γ

ThidrDRAF
T_0680 20 36

3.00E-
04 - - - 68 32

Nitrosococcus
oceani γ

NOC27_
3054 24 39

6.00E-
04 - - - 25 20

Solibacter usitatus
Ellin6076 Acido Acid_6725 28 56 0.006 - - - 38 26
Geobacter
metallireducens
GS15 δ

Gmet_174
5 24 47 0.28 - - - 119 26

Fe(III)
reducti
on10

1Nolan et al., 2010, Nakagawa et al., 2005; [151-153] 3This study; 4Chakraborty et al.,
2005, 5,6Emerson & Moyer, 1997, Hedrich et al., 2011, 7Shelobolina et al., 2008,
8Finneran et al., 2003, 9Jiao & Newman 2007, 10Bond et al., 2005
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MtrB
S._sediminis_HAW-EB3 MKFKLNLVTLALLANAGVAGTLMTSTAVAAEGYGLQNANTSKVKFEKWVC 50
S._benthica_KT99 MKFKLNLVTLALLANAG-----FVSTAMAAGGYGIQDANTDKVKFDKWAC 45
S._woodyi_ATCC_51908 MKFKLNLVTLALLANAG-----IASTAMAAGGYGLQNANTDKVKFDKWDC 45
S._pealeana_ATCC_700345 MKFKLNLVTLALLTNAG---MLS-GAAIAADGYGIQNANTEKVKFEKWVC 46
S._halifaxensis_HAW-EB4 MKFKLNLVTLALLTNAG---MFMSGAAIAADGYGIQNANTEKVKFDKWVC 47
S._piezotolerans_WP3 MKFKLNLVTLALLASAG---AVAPSIAMA-DGYGIQNANTDKVKFEKWDC 46
S._loihica_PV-4 MKFKLNVVTLALIANAG----IVIPGMALADGYGIQNANTEKVKFDNWAC 46
Shewanella_sp._MR-4 MKFKLNLITLALLANTS--------LAVAADGYGLANANTDKVKLSAWSC 42
Shewanella_sp._MR-7 MKFKLNLITLALLANTG--------LAVAADGYGLANANTDKVKFAAWSC 42
Shewanella_sp._ANA-3 MKFKLNLITLALLANTG--------FAVAADGYGLANANTDKVKLSAWSC 42
S_oneidensis_MR-1 MKFKLNLITLALLANTG--------LAVAADGYGLANANTEKVKLSAWSC 42
Shewanella_sp._HN-41 MKFKLNLITLALLANTG--------FAVAADGYGINNANTDKVKFSAWSC 42
Shewanella_sp._W3-18-1 MKFKLNLITLALLANTG--------FAVAADGYGIANANTEKVKLSAWSC 42
S._putrefaciens_CN-32 MKFKLNLITLALLANTG--------FAVAADGYGIANANTEKVKLSAWSC 42
S._baltica_OS223 MKFKLNLITLALLANTG--------FAIAADGYGLANANTEKVKMSAWSC 42
S._baltica_OS155 MKFKLNLITLALLANTG--------FAIAADGYGLANANTEKVKMSAWSC 42
S._baltica_OS625 MKFKLNLITLALLANTG--------FAIAADGYGLANANTEKVKMSAWSC 42
S._baltica_OS195 MKFKLNLITLALLANTG--------FAIAADGYGLANANTEKVKMSAWSC 42
S._baltica_OS185 MKFKLNLITLALLANTG--------FAIAADGYGLANANTEKVKMSAWSC 42
S._baltica_OS183 MKFKLNLITLALLANTG--------FAIAADGYGLANANTEKVKMSAWSC 42
S._frigidimarina_NCIMB_400 MNTKLNLITLALLTSTS--------FSLMADGYGLANAKTDNIKYDAWNC 42
S._amazonensis_SB2B MRFQLNMITLALLAASA---------PALAGGYSLNNANTDKVKFDAWAC 41

*. :**::****:: :.              **.: :*:*.::*   * *

S._sediminis_HAW-EB3 KRCEVETGFAGTVGVGVGYNDSDDIRSANAFAAEDEFAGKVDADLTYAGK 100
S._benthica_KT99 KRCVVETGVNGTVGVGMGYNDSDDIRSANAFAAEDEFAYKVDADLKYISE 95
S._woodyi_ATCC_51908 KRCVVETGVNGTVGVGVGYNDSNDIRSANAFAAENEFAGKVDADLTYVGK 95
S._pealeana_ATCC_700345 KNCKVEKGVSGTVGIGAGYSDSDDIRSANAFATEDGFAGKVDADVKYTGE 96
S._halifaxensis_HAW-EB4 KNCKVEKGVAGTVGIGAGYSDSDDIRSANAFATEDGFAGKVDADVKYTGE 97
S._piezotolerans_WP3 KRCTVETGYSGSIGVGVGYNDSDDIHSANAFAAEDEFAGKVDADLKYSGK 96
S._loihica_PV-4 KRCKIETGVTGTIGAGVGYNDSDDIRSANAFAAENEFVGKVDADVSYISE 96
Shewanella_sp._MR-4 KGCVVETGVSGTVGVGVGYNGEEDIRSANAFGSKNEVAGKFDADLAYRGE 92
Shewanella_sp._MR-7 KGCVVETGVSGTVGVGVGYNGEEDIRSANAFGSKNEVAGKFDADLAYRGE 92
Shewanella_sp._ANA-3 KGCVVETGVSGTVGVGVGYNGEEDIRSANAFGSKNEVAGKFDADLAYRGE 92
S_oneidensis_MR-1 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKFDADLNFKGE 92
Shewanella_sp._HN-41 KGCVVETGTSGTVGVGVGYNSEDDIRSANAFGSSNEVAGKLDADLSFKGE 92
Shewanella_sp._W3-18-1 KGCIVETGVSGTVGVGVGYNSEDDIRSANAFGTSNEVAGKFDADLAYSGE 92
S._putrefaciens_CN-32 KGCIVETGVSGTVGVGVGYNSEDDIRSANAFGTSNEVAGKFDADLAYSGE 92
S._baltica_OS223 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKLDADVTFRGE 92
S._baltica_OS155 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKLDADVTFRGE 92
S._baltica_OS625 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKLDADVTFRGE 92
S._baltica_OS195 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKLDADVTFRGE 92
S._baltica_OS185 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKLDADVTFRGE 92
S._baltica_OS183 KGCVVETGTSGTVGVGVGYNSEEDIRSANAFGTSNEVAGKLDADVTFRGE 92
S._frigidimarina_NCIMB_400 KACAVETGTTGNVGVGIGYNSEDDINSANAFNSSNQTAGKIDADIKYRGN 92
S._amazonensis_SB2B KGCTLETGTQGNIGIGVGYQDTDDVRSANSFGSDEEVPYKVDADVRHVTE 91

* * :*.*  *.:* * **.. :*:.***:* :.:    *.***: .  :
Fig.4. S1. Multiple sequence alignments generated by ClustalW analysis of the N-
termini of MtrB homologs identified in the genomes of 22 metal-reducing Shewanella
strains. N-terminal CXXC motifs are found at amino acid positions corresponding to
C42-C45 of S. oneidensis MtrB.
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SO_1776_MtrB -----MKFKLNLITLALLANTG----LAVAADGYGLANANTEKVKLSAWSCKGCVVETGT
51
SO_1781_MtrE MQIVNISTPKVCFSLTLLAWTMSGVLNTAHAEGYEIQKANRSGVKNEAWSCKQCQPQTGR
60
SO_1428_DmsF -----MSFKLNIITLGLLAATS-----GVSAADFSVHKANLQGLKLDAYQCKSCIGEKRY
50
SO_4359 -----MKLSKTTIALAMAGFCF-----QAYALDTTFVNKEPQLVDIKNWTCKQCS-EKTM
49

:.     ::* : .         . * .  . : : . :. . : ** *  :.

SO_1776_MtrB SGTVGVGVGYNSEEDIRSANAFGTSN-EVAGKFDADLNFKGEKGYRASVDAYQLGMDGGR
110
SO_1781_MtrE QGNVSATLAHNDGDDSRFGNRTGIDKDGLVGAIGADMKYKAESGYQTSLMADKLGFDTGS
120
SO_1428_DmsF QGELQLSAGWAENDDIHAGNAFGDASDGMRAAMDADVRYRN-AGYEANVQAYQLGLENSY
109
SO_4359 SGNMQVGVAHTDSDNKRTLNSLGTTA-GLDALVDANVKMRT-GSQQLHAKAYMTDPNIAY
107

.* :    .  . :: :  *  *     : . ..*::. :   . .    *   . : .

Fig. 4.S2. Multiple sequence alignments generated by ClustalW analysis of the N-
termini of three CXXC-containing MtrB paralogs identified in the S. oneidensis genome.
The three MtrB paralogs included another member of the Mtr gene cluster (MtrE;
SO1781), and two proteins involved in extracellular DMSO reduction (DmsF; SO1428),
and SO4359.
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Figure 4. S3. Growth of S. oneidensis MR-1 wild-type (●), ∆mtrB (∆), C42A (□), and C45A (×)
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CHAPTER 5

Design of a flavin mononucleotide (FMN)-based

fluorescent protein reporter for in vivo detection of

intracellular FMN concentrations in Shewanella oneidensis

Summary

Applications of the Green Fluorescent Protein (GFP) to examine molecular events in

single microbial cells are limited by the oxygen-dependent autocatalytic maturation of the GFP

chromophore.  GFP applications are thus restricted to aerobic microorganisms and are not

suitable for in situ studies of molecular events in anaerobic microorganisms.  A novel group of

flavin mononucleotide (FMN)-based fluorescent reporter proteins (FbFPs), have been developed

as replacements for GFP.  FbFPs do not require oxygen for chromophore maturation, and can

thus be applied under both aerobic and anaerobic conditions to monitor molecular events in

single microbial cells.  FbFPs require FMN as cofactor, which also suggests that FbFP

fluorescence may be used as an in vivo reporter of internal FMN concentrations. The FbFP

reporter system constructed in Chapter 5 provided a novel technology for monitoring internal

FMN concentrations in single S. oneidensis cells during anaerobic growth on an array of terminal

electron acceptors, including O2, fumarate, and Fe(III).
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Introduction

Phycobiliprotein, a photosynthetic antenna pigment isolated from cyanobacteria, was the

first fluorescent protein tested for application as an intracellular fluorescent reporter [1].  The

applications of phycobiliprotein, however, were limited due to the requirement of tetrapyrrole as

cofactor [2]. Green fluorescent protein (GFP), on the other hand, does not require a cofactor for

fluorescence and can be readily expressed in a variety of microorganisms [2-4]. GFP was first

recombinantly expressed in the prokaryotic and eukaryotic model organisms Eschericia coli and

Caenorhabditis elegans, respectively [5]. GFP facilitates the study and in situ visualization of

complex molecular events in single cells and organisms using flow cytometry or fluorescent

microscopy [4, 6, 7]. Reflecting the significance of the discovery, the Nobel Prize in Chemistry

in 2008 was recently awarded for “the discovery and development of the green fluorescent

protein, GFP” [3, 6].  GFP was first isolated from the jellyfish Aequorea aequorea [8].  The

fluorescent properties of GFP have since been enhanced by improvements in fluorescent

efficiency, thermostability, photostability, and alteration of emission wavelength [2, 3, 6, 7].

GFP variants now emit a wide range of fluorescent colors that nearly span the entire continuum

of the visible spectrum [6, 7]. GFP is now widely used to examine molecular events in situ,

including gene expression, recombinant protein localization, promoter screening, and monitoring

changes in intra- or extracellular conditions [4].

GFP applications, however, are limited by the oxygen-dependent autocatalytic maturation

of the GFP chromophore [9].  GFP applications are thus restricted to aerobic systems [10, 11]

and are not suitable for in situ studies of molecular events in anaerobic microorganims.  A novel

group of fluorescent proteins, termed flavin mononucleotide (FMN)-based fluorescent proteins

(FbFPs), have been developed as replacements for GFP [10]. FbFPs do not require oxygen for

chromophore maturation, and can thus be applied under both aerobic and anaerobic conditions

[10].  FbFPs originate from LOV (light, oxygen, voltage) domain-containing bacterial
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photoreceptor proteins that exhibit weak intrinsic autofluorescence when irradiated with blue

light (see Figure 1.5 in Chapter 1) [12-14].

Two of the photoreceptor FbFPs, YtvA from Bacillus subtilis and SB2 from

Pseudomonas putida, have been engineered to produce fluorescent quantum yields comparable

to GFP variants [10]. Site directed mutagenesis of the photoactive cysteine in the LOV domain in

both the truncated YtvA and wild type SB2 proteins, followed by codon optimization, resulted in

a 25-fold increase in fluorescent strength [4].  Recently, FbFPs have been used to monitor the

presence of single anaerobic bacterial cells with promising results [11, 15-17].  FbFPs require

FMN as cofactor, which also suggests that FbFP fluorescence may be used as an in vivo reporter

of internal FMN concentrations.  FbFP fluorescence thus provides a novel technology for

monitoring internal FMN concentrations in vivo in individual S. oneidensis cells during flavin-

based electron shuttling to external Fe(III) oxides. The main objectives of the present study were

to i) design a FMN-based FbFP reporter system for in vivo monitoring of molecular events in

single S. oneidensis cells grown under anaerobic conditions, and ii) to employ the newly

developed FbFP reporter system to monitor internal FMN concentrations in single S. oneidensis

cells during anaerobic growth on an array of terminal electron acceptors, including O2, fumarate,

and Fe(III).
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Materials and methods

Bacterial strains and cultivation conditions

Bacterial strains and plasmids used in the present study are listed in Table 1.  For genetic

manipulations, all E. coli and S. oneidensis strains were cultured at 30°C in Luria Bertani

medium (10 g L-1 NaCl, 5 g L-1 yeast extract, 10 g L-1 tryptone).  For aerobic and anaerobic

growth experiments, all S. oneidensis strains were cultured in a defined salts medium (M1)

supplemented with 20 mM lactate as carbon/energy source [18]. Electron acceptors were

synthesized as previously described [19-23] and added at the following final concentrations:

Fe(III) citrate, 50 mM; fumarate, 15 mM; anhydrous Fe(III)-oxide (HFO), 40 mM.   For BS2

expression on pBAD202, arabinose was amended at 2 mM, kanamycin was supplemented at 50

g mL-1.

Table 5. 1. Strains and plasmids used in the present study

Strains Features Source

Shewanella oneidensis
MR-1 Wild-type strain ATCC
S.oneidensis+pBAD_BS2 S. oneidensis containing pBAD_BS2 This study

S.oneidensid+pBAD S. oneidensis containing pBAD202 This study

Plasmids Features Source
pBAD202 Arabinose inducible expression vector Invitrogen
pBAD_BS2 pBAD202 containing FbFP BS2 gene This Study
Evoglow BS2 plasmid Plasmid containing FbFP BS2 gene Evocatal, Germany
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Construction of the FbFP expression vector pBAD_BS2

The BS2 gene encoding FbFP, was PCR-amplified from Evoglow BS2 plasmid (Evocatal,

Germany) using the following primers: BS2_pBad_For, 5’-CACCATGGCGTCGTTCCAGTCG

TTCGG-3’ and BS2_Rev_Stop, 5’-TTACTCGAGCAGCTTTTCATATTCCTTCTGC-3’. The

BS2 gene was cloned into expression vector pBAD202 (Invitrogen) according to manufacturer’s

instructions. The resulting construct (pBAD_BS2) was electroporated (0.55kV, 200Ω) into S.

oneidensis electrocompetent cells that were previously washed with 1 M Sorbitol.

Analytical procedures

Cell growth was monitored by direct cell optical density or by measuring Fe(III) reduction.

Fe(III) reduction was monitored by measuring HCl-extractable Fe(II) production with ferrozine

[24]. Control experiments consisted of incubations with S.oneidensis MR-1 wild type strain with

and without the empty pBAD202 plasmid.

In vivo fluorescence measurement, fluorescence imaging of living cells, and

spectrophotometric analysis

Confocal laser scanning microscopy (LSM 510, Carl Zeiss, Germany) was used for in vivo

fluorescence imaging of S. oneidensis cells expressing BS2-FbFP. Cell cultures (8 µL ) were

placed on a microscope slide and illuminated with laser light at a wavelength of 458 nm, and the

emission was detected in the range of 475-525 nm. For anaerobic cell cultures, slides were
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prepared anaerobically in a Coy anaerobic chamber during processing. Documentation and single

cell fluorescent intensity measurements were carried out using the Zen 2011 software ( Carl

Zeiss Microscopy). Bulk fluorescent signals were measured photometrically on a plate reader by

irradiating 200 µl of samples with light of 449 nm and detecting fluorescence emissions at 495

nm.

Determination of intracellular flavin concentration and protein concentration

Aliquots of cell cultures (10 mL) were harvested by centrifugation, the cell pellet was washed

twice with Tris-HCl buffer and resuspended in 0.5 ml Tris-HCl buffer. Harvested cells were

lysed by sonication (2 cycles of 30 s on, 15 s off, 70% power) followed by centrifugation to

separate the cells debris. Flavins concentration in the cell lysate were measured in Biotek

Synergy H4 plate reader with an excitation wavelength of 440 nm and an emission wavelength

of 525 nm as previously described [25]. Protein concentrations were determined by the Bradford

assay [26].
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Results and discussion

The gene encoding BS2-FbFP was cloned into the arabinose inducible plasmid pBAD202

to generate pBAD_BS2. pBAD_BS2 was subsequently mobilized into wild type S. oneidensis

electrocompetent cells via electroporation to produce the recombinant strain S. oneidensis

+pBAD_BS2.  FbFP expression was examined by incubating S. oneidensis + pBAD_BS2 in M1

minimum growth medium with lactate as electron donor and O2, fumarate, Fe(III) citrate, or

anhydrous Fe(III) oxide (HFO) as the terminal electron acceptor.

Effect of FbFP expression on cell growth

Effects of FbFP expression on cell growth were examined by monitoring cell growth

during FBFP expression induced by different concentrations of arabinose. Addition of 1-to-4

mM arabinose did not affect aerobic growth (Figure 5.1a). However, concentration of arabinose

>4 mM resulted in significantly slower anaerobic growth rates with fumarate and Fe(III) citrate

as the terminal electron acceptor (Figure 5.1b, 5.1c). In a parallel experiment, the bulk



103

Figure 5.1. Growth of recombinant S. oneidensis strain +pBAD_BS2 with (a) O2, (b)
fumarate, and (c) Fe(III) citrate as electron acceptor and amended with 0-4 mM arabinose.
Cell growth with O2 and fumarate were monitored by OD600 measurements, while growth
with Fe(III) was monitored by Fe(II) production.

fluorescence intensity was monitored during aerobic growth. Although the aerobic growth rates

were unaffected by addition of different arabinose concentrations, higher arabinose oncentrations

displayed stronger fluorescent intensities (Figure 5.2), thus demonstrating that FbFP expression

is induced by arabinose.
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Figure 5.2. Bulk fluorescence emitted by cultures of recombinant strain S.
oneidensis+pBAD_BS2 amended with 0-4 mM of arabinose.

Bulk fluorescent profiles

Bulk fluorescence emitted by FbFP-expressing S.oneidensis+pBAD_BS2 cell cultures

with O2 and fumarate electron acceptor increased during the different growth phases (Figure

5.3). Maximum fluorescence intensities were detected when the cell cultures reached late

exponential growth phase. Higher fluorescent intensity was detected with cells grown on

fumarate, although the cell density is much lower than O2-grown cells.  The bulk fluorescence

intensity emitted by cells grown on different electron acceptors are not equivalent. The bulk

fluorescence intensity of cells grown with Fe(III) citrate as electron acceptor were not detectable

due to interference of the fluorescent signals by Fe(III) citrate.
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Figure 5.3. Bulk fluorescent profiles for S. oneidensis+pBAD_BS2 grown with O2 (triangle)
and fumarate (circle) as electron acceptor. Fluorescent intensities are shown in solid lines,
while cell growth is shown in dashed lines.

Single cell fluorescence

S. oneidensis growth rates are electron acceptor-dependent, thus bulk fluorescence

measurements only provide rough estimates of the fluorescence emitted from individual cells. To

gain more insight into the differences in FbFP expression during S. oneidensis growth on various

terminal electron acceptors, single cell fluorescence for cells grown on different electron

acceptors was measured via laser confocal microscopy. Visualization inspection of single cell

fluorescence indicated that wild-type S.oneidensis cells do not produce detectable fluorescence
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under all conditions tested. S. oneidensis+pBAD_BS2 produced intense fluorescent signals

during growth on O2, fumarate, Fe(III) citrate, and Fe(III) oxide, yet the fluorescent signal

intensities of single cells varied according to growth stage and electron acceptor. S. oneidensis

cells grown on O2, fumarate, and Fe(III) oxide displayed the brightest fluorescent signals at late

exponential growth phase (Figure 5.4 a, b, and d), while cells grown on Fe(III) citrate displayed

the brightest fluorescent signal at mid-exponential growth phase (Figure 5.4 c).

Figure 5.4. Single cell fluorescent intensities emitted from S. oneidensis+pBAD_BS2 cells
grown with (a) O2, (b) fumarate, (c) Fe(III) citrate, and (d) Fe(III) oxides. Single cell
fluorescent intensities are shown in solid lines, cell growth is shown in dashed line. Error
bars represent standard deviations of single cell intensities detected from 15-30 randomly
chosen individual cells.

Maximum fluorescence intensity emitted by single cells grown with fumarate as electron

acceptor is slightly higher than cells grown with O2 as electron acceptor. For cells grown with

Fe(III) citrate and Fe(III) oxide  as electron acceptor, the maximum single cell fluorescence
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intensities were at least 10-fold lower than the maximum single cell fluorescence intensities

emitted by cells grown with O2 and fumarate as electron acceptor. These results indicate that the

FbFP fluorescent signals emitted by S. oneidensis+pBAD_BS2 cells is electron acceptor-

dependent.

Figure 5.5. Laser confocal microscopy images showing S. oneidensis+pBAD_BS2 cells
respiring on different electron acceptors. (a) O2; (b) fumarate; (c) Fe(III) citrate; (d) Fe(III)
oxide. FbFP was expressed on pBAD202 expression vector induced by 2 mM arabinose. (e)
normalized average fluorescent intensity emitted by 15-30 single cells grown with various
electron accetors.

Intracellular flavin

Flavins play an important role during anaerobic Fe(III) oxide respiration by S. oneidensis

[27]. Although the exact role of flavins is a subject of an ongoing controversy, S.oneidensis is
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postulated to secrete flavins to function as electron shuttles to external Fe(III) oxides [28].

Alternately, flavins may function as cofactors for the Fe(III) oxide-reducing outer membrane c-

type cytochrome MtrC. To determine if differences in fluorescence intensities emitted by

individual S. oneidensis cells grown on different electron acceptors is due to the concentration of

intracellular flavin, the intracellular flavin content of both wild type and S.

oneidensis+pBAD_BS2 cells was determined during growth with O2, fumarate, and Fe(III)

citrate as terminal electron acceptor. Such analyses with Fe(III) oxide-grown cells was not

possible due to the inability to separate the S. oneidensis cells from the insoluble Fe(III) oxide

particles. For cells grown on O2, fumarate, and Fe(III) citrate, intracellular flavin concentrations

correlated with single cell fluorescent signals (Figure 5.6).

Since FbFP employs flavin as cofactor, the increases in single cell fluorescent intensities

may be attributed to increased intracellular flavin levels. Wild-type S. oneidensis cells (i.e.,

lacking pBAD_BS2) grown on O2, fumarate, and Fe(III) citrate contained 2.05 µmol, 1.93 µmol,

and 2.88 µmol of flavin per gram protein, respectively (Figure 5.7). Wild-type cells grown on

Fe(III) citrate thus contain approximately 40-50% more intracellular flavin than the O2- and

fumarate-grown cells. Surprisingly, the intracellular flavin concentrations in S.

oneidensis+pBAD_BS2 cells was approximately 10-fold greater than that of the S. oneidensis

wild-type cells (Figure 5.7).  The intracellular concentration of flavins in S.

oneidensis+pBAD_BS2 cells grown on O2 and fumarate were nearly identical (22.2 µmol and

22.8 µmol per gram protein, respectively), while S. oneidensis+pBAD_BS2 cells grown with
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Figure 5.6. Intracelluar flavin and single cell fluorescent signal intensities for S.
oneidensis+pBAD_BS2 cells grown with (a) O2, (b) fumarate, and (c) Fe(III) citrate as
electron acceptor. Flavin profiles are given as solid lines, while single cell fluorescent signal
intensities are given as dashed lines.

Fe(III) citrate displayed 23% lower flavin concentration (17.1 µmol per gram protein) than the

O2- and fumarate-grown S. oneidensis+pBAD_BS2 cells. Reasons for the differences in
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intracellular flavin concentrations measured directly in S. oneidensis wild-type and S. oneidensis

+pBAD_BS2 cells are currently under investigation.

Figure 5.7.  Comparison of maximum intracellular flavin concentrations in S. oneidensis
wild-type and S. oneidensis+pBAD_BS2 cells grown on O2, fumarate, and Fe(III) citrate.

In summary, applications of GFP to examine molecular events in single microbial cells

are limited by the oxygen-dependent autocatalytic maturation of the GFP chromophore.  GFP

applications are thus restricted to aerobic microorganisms and are not suitable for in situ studies

of molecular events in anaerobic microorganisms.  A novel group of FbFPs, have been

developed as replacements for GFP.  FbFPs do not require oxygen for chromophore maturation,

and can thus be applied under both aerobic and anaerobic conditions to monitor molecular events

in single microbial cells.  FbFPs require FMN as cofactor, which also suggests that FbFP

fluorescence may be used as an in vivo reporter of internal FMN concentrations. The FbFP

reporter system constructed in Chapter 5 provided a novel technology for monitoring internal

FMN concentrations in single S. oneidensis cells during anaerobic growth on an array of terminal

electron acceptors, including O2, fumarate, and Fe(III).
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CHAPTER 6

CONCLUSION

S. oneidensis reduced a suite of naturally occurring disulfide compounds commonly

found in marine and freshwater environments, including cystine, oxidized glutathione,

dithiodiglycolate, dithiodipropionate, cystamine, and dimethyldisulfide to their corresponding

thiol forms. Addition of the disulfide compounds to anaerobic S. oneidensis cultures greatly

accelerated the rate and extent of Fe(III) oxide reduction by S. oneidensis.  The results of Chapter

2 indicate that thiol-based electron shuttling pathways provide S. oneidensis with a more efficient

pathway for electron transfer to external Fe(III) oxides during anaerobic Fe(III) oxide

respiration. Higher disulfide concentrations may convert the disulfide electron shuttling pathway

to an anaerobic respiratory pathway with disulfides as terminal electron acceptor, as opposed to

an electron shuttling pathway with Fe(III) oxides as terminal electron acceptor. Thiols can also

be absorbed to Fe(III) oxide surface and act as ligands in promoting non-reductive dissolution of

Fe(III) oxide. To examine these possibilities, future work will compare thiol accumulation rates

as a function of increasing disulfide concentrations in the presence and absence of Fe(III) oxides.

Application of a newly developed disulfide reduction mutant screening technique to

random chemical mutants resulted in identification of two respiratory mutants that both mutants

contained a point mutation in the gene encoding the outer membrane beta-barrel protein MtrB,

which is a central component in the extracellular electron pathway terminating with the reduction

of Fe(III), Mn(III), and Mn(IV). The disulfide reduction deficiencies displayed by the disulfide

reduction-deficient mutants correlated with their Fe(III) reduction deficiencies.  The results of

Chapter 3 indicate that disulfide reduction by S. oneidensis is catalyzed by the Fe(III)-, Mn(III)-,
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and Mn(IV)-reducing Mtr pathway. The results of Chapter 4 indicate that MtrB homologs

containing a N-terminal CXXC motif represent a molecular signature unique to metal-reducing

members of the Gammaproteobacteria with the potential for further development as a biomarker

for tracking the presence and activity of metal-reducing -proteobacteria in natural and

engineered systems.

Mtr deletion mutants display impaired disulfide reduction activities. A previously

contructed set of mtr deletion mutants (∆mtrB, ∆mtrA, ∆mtrC, ∆omcA and ∆mtrC-∆omcA double

mutant) were subsequently tested for disulfide and Fe(III) oxide reduction activities.

Interestingly, the Fe(III) oxide reduction deficiencies displayed by the mtr mutants correlated

with their disulfide reduction deficiencies. Furthermore, S. oneidensis mutants lacking the MtrC

and MtrA components of the extracellular electron conduit also displayed disulfide reduction-

deficient phenotypes. These results indicate that the disulfide and metal reduction pathways of S.

oneidensis share the extracellular electron conduit MtrCAB as a common electron transport

chain component. The extracellular electron conduit MtrCAB thus appears to be multi-

functional, displaying the ability to transfer electrons to extracellular Fe(III) citrate , Fe(III)

oxide , flavins , and disulfides . In this manner, S. oneidensis may utilize a single terminal

reductase complex (MtrCAB) to transfer electrons to multiple external electron

acceptors. Alternately, the findings of the present study suggest that Fe(III) reduction is the last

step of a multi-step electron shuttling pathway in which S. oneidensis secretes disulfides to the

cell surface where MtrCAB-catalyzed disulfide reduction reactions produce the corresponding

thiols that subsequently reduce oxidized flavin abiotically to their reduced flavin forms, which

finally reduce Fe(III) oxide abiotically in the terminal Fe(III) oxide reduction step. Current work

is focused on testing the hypothesis that microbial Fe(III) respiration is catalyzed by the multi-
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step electron shuttling pathway which begins with enzymatic disulfide reduction at the cell

surface and terminates with abiotic Fe(III) oxide reduction outside the cell.

A novel group of flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs), have

been developed as replacements for GFP.  FbFPs can be applied under both aerobic and

anaerobic conditions to monitor molecular events in single microbial cells. The FbFP reporter

system constructed in Chapter 5 provided a novel technology for in vivo monitoring of internal

FMN concentrations in single S. oneidensis cells during anaerobic growth on an array of terminal

electron acceptors, including O2, fumarate, and Fe(III). Limited brightness of FbFPs is still a

major setback for its application as GFP replacements. Additional genetic modifications of the

FbFP system will be required to further enhance the brightness of the FbFPs expressed under

anaerobic conditions, possibly by enhancing FMN cofactor binding efficiency.
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APPENDIX A

Michaelis-Menten plots used to calculate Vmax-Di and Km-Di for each electron
donor/disulfide pair summarized in Table 2.1.
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APPENDIX B

Michaelis-Menten plots used to calculate Vmax-Fe and Km-Fe foreach electron
donor/disulfide pair summarized in Table2.2.
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