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SUMMARY 

 

 The horizontal and vertical distributions of ozone and its precursors over North 

America during the spring and the summer are frequently determined by several factors: 

cloud convection, lightning NOX production, mixing depth, and long-range transport. The 

critical factors that contribute to the spatial distribution of air pollutants are studied using 

the Regional chEmical trAnsport Model (REAM) with diverse satellite measurements as 

well as in-situ surface and aircraft measurements. Among the space-borne measurements, 

GOME and OMI NO2 column measurements show enhanced lightning NOX over the 

continent and the western North Atlantic. Concurrent convective transport-causing CO 

column peaks and high CO enhancements in the upper troposphere (UT) over the ocean 

are shown from the modeling analysis of the CO column by MOPITT and UT CO by 

TES. Likewise, TOMS-SAGE II and OMI-MLS O3 column peaks and TES UT O3 

enhancements due to convective outflow and lightning NOX are also observed. Lightning 

NOX production in REAM is much larger than that in GEOS-CHEM, resulting in better 

simulations of GOME NO2 columns over the western North Atlantic. Consequently, 

REAM simulates larger O3 increasing trends in better agreement with TOMS-SAGE II 

and OMI-MLS O3 columns over the southern United States and the western North 

Atlantic than GEOS-CHEM. Another factor, mixing depth, is a key parameter for the 

boundary layer structure of the model. Simulated spring to summer transitions of O3 and 

its precursors over North America indicate that the simulated boundary layer structure 

plays a key role in differentiating REAM from GEOS-CHEM. Large enhancements of 

columns and upper tropospheric O3 comparable to those over the eastern United States 



 xxi

are found over the western North Atlantic in the satellite measurements and REAM 

simulations. The O3 enhancement region migrates northward from the spring to the 

summer.  A model analysis indicates that the northward shift is driven by O3 in the 

stratospheric flux, convective outflow and production from lightning NOX. In addition, 

long-range transport affects the spatial distributions of air pollutants, particularly during 

the spring. During the late spring, large enhancements of NOX, PAN, O3, CO, CFCs, and 

Halon-1211 in UT are found over North America due to a surge of trans-Pacific pollutant 

transport from observations during the TOPSE 2000 experiment. The transition occurs 

later than that of the typical low-altitude trans-Pacific transport, which peaks around 

March or April.  

 Surface and aircraft measurements show a large amount of reactive nitrogen 

tracers over the Antarctic plateau during the summer. These enhanced measurements are 

investigated, and their photochemical impact is assessed by 1-D CTM and 3-D CTM, 

REAM. The 1-D model and REAM reasonably simulate the surface measurements of NO, 

HNO3, HNO4, and balloon NO measurements at the South Pole. However, compared 

with the Twin Otter NO measurements, REAM underestimates NO concentrations over 

plateau regions because parameterization based on surface measurements at the South 

Pole underestimates emissions in higher-elevation plateau regions. After all, around 50% 

of reactive nitrogen is scavenged by deposition, and the other is lost by transport. Thus, a 

shallow but highly active oxidizing canopy surrounds the Antarctic plateau due to snow 

NOX emissions. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 North America is a large source of O3, aerosols, and their precursors in the 

Northern Hemisphere, which results in air pollution and adversely affects climate [IPCC, 

2001].  Well-established as a typical climate issue, ozone in the UT functions as an 

efficient greenhouse gas, particularly in the mid-latitude Northern Hemisphere [Lacis et 

al., 1990; Mickley et al., 2004].  A critical aspect of determining air pollution caused by 

O3 and its precursors and their impact on climate is to better constrain their horizontal 

and vertical distributions. The spatial distributions of O3 and its precursors during the 

spring and the summer are affected by several factors: convection, lightning NOX 

production, mixing depth, long-range transport, and their associated chemistry. Among 

these factors, cloud convection, along with the warm conveyor belt (WCB), is a major 

pathway for the outflow of North American pollution [Li et al., 2005]. With cloud 

convection, lightning NOX production is a dominant factor for O3 production in the UT 

over North America during the summer [Li et al., 2005; Cooper et al., 2006]. From 

space-borne measurements, lightning NO2 signals are evident in the Global Ozone 

Monitoring Experiment (GOME) [Richter and Burrows, 2002] and the Scanning Imaging 

Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) [Martin et al., 

2006]. Martin et al. [2006] and Hudman et al. [2007] quadrupled the northern mid-

latitude lightning NOX emissions in the global 3-D CTM, the Goddard Earth Observing 

System-CHEMistry (GEOS-CHEM) to reproduce observed lightning-caused NO2 
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enhancements over North America.  In the model, simulating plausible lightning NOX 

production consistent with in-situ and satellite observed lightning occurrence is still 

difficult. Another factor that affects the spatial distributions of air pollutants, the mixing 

depth, changes rapidly as the season advances towards the summer [Holzworth, 1964, 

1967]. Since O3 concentrations over the surface are sensitive to uncertainties in the 

mixing depth [Rao et al., 1994; Sistla et al., 1996], a reliable mixing depth is critical for 

reasonable model performance [Berman et al., 1999]. Long-range transport also affects 

the spatial distributions of air pollutants. Increasing pollution from Asia, driven by rapid 

regional economic growth, affects O3 concentration in the United States [Bernsen et al., 

1999; Jacob et al., 1999]. Due to the subsidence of the trans-Pacific transported high O3, 

the National Ambient Air Quality Standard could be significantly exceeded at California 

mountain sites [Hudman et al., 2004].  

 Thus, it is imperative that a three-dimensional regional chemical transport model 

(CTM) be used with higher temporal and spatial resolutions that incorporate detailed 

cloud convection, an observation-constraint lightning scheme, regional scale mixing 

depth, and increased vertical resolution. Various regional and global 3-D CTM’s 

[McKeen et al., 1991; Brasseur et al., 1998, Wang et al., 1998; Lawrence et al., 1999; 

Levy et al., 1999; Hess et al., 2000; Bey et al., 2001, Song and Carmichael, 2001] have 

been developed to study the chemical and physical processes of air pollutants in the 

atmosphere. Meanwhile, to explain the various tropospheric chemistry problems, we have 

also developed a regional CTM. In this thesis, we apply the resulting CTM (hereafter 

referred to as REAM: the Regional chEmical trAnsport Model) to examine spring-to-

summer transitions of O3 and its precursors, largely driven by rapid changes in the factors 
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and their associated photochemistry. We also examine the role of the factors on the 

optimization of NOX emissions and the budget of the tracers. 

 Even with regional-scale CTMs such as REAM, estimating the quantitative 

impact of the various factors on air pollutants is still difficult because of the lack of in-

situ surface or aircraft measurements in extreme environments such as thunderstorms. 

Despite the drawback of cloud interference of space-borne measurements, satellite 

observations can potentially be a complementary method of overcoming this limitation 

[e.g., Li et al., 2005; Jing et al., 2006].  Therefore, the validation of REAM and an 

examination of the impact of these factors on O3 and its precursors necessitate the 

following:  corresponding surface observations of O3, NOx, and CO from the EPA 

AIRNow and the Southeastern Aerosol Research and Characterization Study (SEARCH); 

the vertical profiles of O3 from the Measurement of Ozone and Water Vapor by Airbus 

In-Service Aircraft (MOZAIC) and ozonesondes; NO2 tropospheric columns from the 

Global Ozone Monitoring Experiment (GOME) and the Ozone Monitoring Instrument 

(OMI); CO columns from the Measurement of Pollution in the Troposphere (MOPITT); 

O3 and CO vertical profiles from the Tropospheric Emission Spectrometer (TES); and 

tropospheric O3 columns from the Total Ozone Mapping Satellite (TOMS) and the 

Stratospheric Aerosol and Gas Experiment II (SAGE II), and OMI and the Microwave 

Limb Sounder (MLS). 

 From the Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) 

experiments during 1998 and 2000, high concentrations of NO at the South Pole (SP) 

have been identified.   NO concentrations reached over 500 pptv [Davis et al., 2001, 

2004], significantly higher than those in the Arctic [Honrath et al., 1999; Ridley et al., 
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2000]. The high NO concentrations occurred due to the emissions of NOX, resulting from 

nitrate photolysis inside snow pack [Davis et al., 2001, and references therein]. As a 

result, measurements show higher 24-hour average concentrations of OH at SP than they 

show in the tropical marine boundary [Mauldin et al., 2001, 2004]. In addition, active 

photochemistry driven by snow NO emissions leads to significant ozone production [e.g., 

Crawford et al., 2001, Chen et al., 2004]. Davis et al. [2004] further speculated that 

given the rate of nitrate photolysis, most of the plateau should exhibit high levels of O3 as 

well as OH near the surface. Today, the spatial extent and overall impact of snow NOX 

emissions on photochemistry over Antarctica is not clear. Interestingly, flux estimated by 

Jones et al. [2001] at the German Antarctica station, Neumayer (70°S, 8°W), was only 

about one-third of that estimated by Oncley et al. [2004] at SP. Snow emissions clearly 

vary over Antarctica.  In order to address the various issues related to reactive nitrogen 

and its coupling to atmospheric oxidizing species such as OH, we need to extend the 

measurements of NOX so that they include a larger area of Antarctica and extend the 

previous box model analysis to 1-D CTM and 3-D CTM, REAM analyses. 

    

1.2  Space-borne Measurements and Models 

1.2.1  Tropospheric NO2 Column from GOME and OMI 

 The GOME instrument is on board the European Remote Sensing-2 (ERS-2) 

satellite that passes over the equator at 1030 AM local time and its horizontal resolution 

is 40 km latitude by 320 km longitude. In the Differential Optical Absorption 

Spectroscopy (DOAS) algorithm, an air mass factor (AMF), is used to translate a slant 

column to a vertical column, as described by previous studies [Palmer et al., 2001; 
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Martin et al., 2002]. AMF considers not only the geometrical configuration of the 

atmosphere but also its atmospheric states. In other words, AMF is mathematically 

expressed by an integral of the products of the relative vertical profiles, the shape factors 

of NO2 from the two models, REAM and GEOS-CHEM, and the sensitivity of 

backscattered radiance to changes in tracer concentration [Martin et al., 2002].  

Sensitivity is estimated from the linearized discrete ordinate radiative transfer (LIDORT) 

model [Spurr et al., 2001], one of the exact algorithms that accurately accounts for 

multiple scatterings in the atmosphere. The detailed retrieval method of tropospheric NO2 

columns from GOME measurements and the estimation of its uncertainty are described in 

a previous study by Martin et al. [2002]:  First, fitting directly backscattered radiance 

spectra from GOME instruments produces a slant column; then a stratospheric column 

determined from an NO2 column over the central Pacific is subtracted from the total 

column with an assumption that stratospheric columns are zonally constant; and finally, 

the subtracted slant column is converted into a vertical column using AMF.  The 

calculation of AMF requires information about clouds and aerosols.  The cloud fraction 

and cloud-top pressure are from GOME [Kurosu et al., 1999].  Also, the monthly mean 

fields of aerosol mass concentrations between February and May of 2000 are from the 

Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model [Chin, 

2002], which includes 3-D dimensional sulfate, mineral dust, sea salt, hydrophobic and 

hydrophilic black carbon, and organic carbon [Mian Chin, Personal Comm., 2004].  Data 

that show >40% cloud cover are disregarded, as suggested by Martin et al. [2002]. 

Retrieval uncertainties are mostly due to spectral fitting, spectral artifacts from a diffuser 
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plate, the removal of stratospheric columns, and the AMF calculation [Martin et al., 

2002].  

 OMI onboard the NASA Aura satellite, which passes over the equator at 1345 PM 

local time have horizontal resolutions of 13 km × 24 km. Algorithms for retrieving the 

OMI total and tropospheric NO2 columns are described in previous studies by Boersma et 

al. [2001] and Bucsela et al. [2006]. Parameters such as viewing geometry, surface 

albedo, and the shape factor of NO2 are needed to estimate AMF. Two AMF’s are 

estimated using two shape factors from the Goddard Space Flight Center (GSFC) CTM 

and GEOS-CHEM, which are for unpolluted (the stratosphere and upper troposphere) and 

polluted (the lower and middle troposphere) NO2 profiles, respectively. The radiance-

weighted sum of clear and cloudy conditions is used to estimate each AMF. A detailed 

explanation about OMI NO2 retrievals and total and tropospheric NO2 data are available 

from http://disc.gsfc.nasa.gov/Aura/OMI/omno2.shtml. 

  

1.2.2  Total CO Column from MOPITT  

 The MOPITT instrument on board the NASA Terra satellite provides the 

capability of globally monitoring CO through observations of two spectral bands: a solar 

band around 2.3 μm and a thermal band around 4.6 μm. The satellite passes over the 

equator at around 1045 AM and 2245 PM local time, and the horizontal resolution of 

MOPITT is 22 × 22 km2.  MOPITT detectors measure filtered radiance from the top of 

the atmosphere (TOA) from a gas correlation radiometer that produces gas correlation 

spectroscopy composed of an average response signal (A) and a different response signal 

(D) rather than capturing TOA radiance directly [Pan et al., 1995, 1998]. The retrieval 
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procedure of passive remote sensing measurements does not allow one to get delta 

function-type vertical profiles. Therefore, the solution of an inverse problem needs to be 

solved by an optimum estimate method with a priori information, filtered radiances, and 

data from the gas correlation radiometer [Rodgers, 2000]. If the probability distribution 

function (PDF) of a state vector (CO vertical profile) is proportional to that of an 

observed signal measured by a MOPITT instrument, an inverse problem with an ill-posed 

condition is resolved by minimizing the cost function.  

MOPITT CO columns are obtained from a data pool of the NASA Langley 

Atmospheric Science Data Center (ASDC). The uncertainty of the CO columns, as 

reported by the data, averages 2 × 1017 molecules cm-2 for each datum. When compared 

to the MOPITT observations, simulated CO concentrations are processed with the 

MOPITT retrieval averaging kernel (AK), described in previous studies by Deeter et al. 

[2003] and Emmons et al. [2004].  First, corresponding simulated CO concentrations are 

estimated for the standard pressure levels of MOPITT: surface, 850, 700, 500, 350, 250 

and 150 hPa; second, the AK matrix is estimated from the retrieval error covariance and 

the a priori covariance matrix; then the seven levels of CO concentrations processed with 

AK are calculated; and finally, the total number of CO columns is estimated with the 

retrieved CO concentrations at the pressure levels. 

  

1.2.3 Tropospheric O3 from TOMS-SAGE II and OMI-MLS 

 TOMS on board the Earth Probe satellite with an equator crossing time of 1116 

AM local time measures incident solar radiation and backscattered ultraviolet sunlight, 

resulting in deriving total ozone; TOMS has a horizontal resolution of 39 × 39 km2 and a 
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measurement uncertainty of about 5% (the random error is 2% and the systematic error 

about 3%) [ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF]. 

SAGE II on board the Earth Radiation Budget Satellite (ERBS) measures the Earth’s 

limb extinction via the solar occultation technique during each spacecraft sunrise and 

sunset. The horizontal and vertical resolutions of SAGE are about 30×250 km2 and 1 km, 

respectively. The scatter-plots of SAGE II (retrieval version 6.2) O3 versus potential 

vorticity (PV) on isentropic surfaces are used to produce the O3 profiles in the 

stratosphere [Jing et al., 2004], which are coincident with the TOMS (version 8) total 

column O3 measurements in latitude, longitude, and time.  When the TOMS data indicate 

a reflectivity less than 20%, tropospheric O3 columns are inferred by subtracting the 

SAGE II-based stratospheric columns from the TOMS columns. The PV values are 

obtained from the NCEP reanalysis data set, and the value of the 3.5 PV units is used to 

define the location of the tropopause. Based on comparisons with the ozonesondes, two 

previous studies by H. J. Wang et al. [2002, 2006] indicate that SAGE O3 has an 

accuracy of 10% or better down to the tropopause with SAGE values almost 5% higher 

than the ozonesondes at an altitude between 15 and 20 km. A previous study by Jing et al. 

[2004] suggested that mapping produces individual O3 values in the stratosphere with a 

precision of about 10%. However, this error tends to be random, and stratospheric 

columns averaged several days, for example, are expected to have significantly better 

precision. 

 OMI and MLS onboard the NASA Aura satellite that passes over the equator at 

1345 PM local time have horizontal resolution of 13 km × 24 km and spatial resolution of 

30 km × 150 km × 2.5 km, respectively. To derive a tropospheric O3 column by 
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implementing a residual method, we have used a combination of MLS profiles above 215 

hPa and averaged OMI level 2 total O3, which satisfies a coincidence criterion with MLS 

profiles. OMI and MLS coincidence criteria are ± 1.25° longitude by 1.25° latitude and 

on the same day. The location of the tropopause is derived from the NCEP reanalysis data. 

Mid-latitude stratospheric O3 columns for between 215 hPa and the tropopause are 

obtained by the SAGE II mapping profiles. Tropospheric O3 columns are then obtained 

by subtracting the stratospheric O3 columns from the OMI total columns. To prevent 

interference from clouds on the OMI total O3 column, we use only total columns obtained 

under clear conditions, which is defined by a reflectivity of less than 10% based on OMI 

360 nm reflectivity datasets. Yang et al. [2007] provide a detailed explanation. 

 

1.2.4   3-D Global Chemical Transport Model, GEOS-CHEM 

In order to prepare the initial and boundary chemical conditions for and cross- 

validate REAM, we use the GEOS-CHEM model [Bey et al., 2001] driven by the 

assimilated meteorological observations for 2000, updated three to six hours from the 

GEOS of the NASA Data Assimilation Office (DAO) [Schubert et al., 1993] for the 2000 

simulations, and the assimilated meteorological data from GEOS-4 at the NASA Global 

Modeling and Assimilation Office (GMAO) for the 2005 simulations. The horizontal 

resolution of the used model (GEOS-CHEM 7.2) is 2° latitude by 2.5° longitude. The 

model has thirty vertical layers on a sigma level, reaching from the surface to 0.01 hPa. 

Thirty chemical tracers describing tropospheric O3 chemistry are transported. A detailed 

photochemistry module, algorithms for dry and wet deposition, and emissions from 

vegetation and soils are described in a study by Bey et al. [2001].   
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1.2.5  3-D Regional Chemical Transport Model, REAM 

1.2.5.1 Model framework 

 GEOS-CHEM is used to specify the initial and boundary conditions of chemical 

species in REAM. Lateral and top boundary conditions are updated hourly or daily. The 

REAM domain covers North America and the portion of the North Atlantic with a 70 km 

horizontal resolution. The numbers of horizontal grid points are 80 and 60, respectively, 

for west to east and south to north on a Lambert conformal map projection. REAM has 

23 vertical layers from the surface to 10 hPa, and terrain-following σ coordinates are 

used. MM5 is run with four-dimensional data assimilation (FDDA) with the National 

Center Environmental Prediction (NCEP) reanalysis, rawinsonde, and surface 

observations [Zeng et al., 2003].  Meteorological fields are also provided for 23 vertical 

sigma-coordinate levels from MM5. For the advection and diffusion processes, 

meteorological and physical variables are stored every half hour and interpolated every 

five minutes. The variables are archived every 2.5 minutes for cloud convection and 

lightning NOX production. The integration of the chemical reaction, wet and dry 

deposition, and emissions are performed every hour. 

 For the transport of air pollutants, MM5 produces input variables (in unit): 

temperature (K), wind scalar velocities (m s-1), cloud water mixing ratio (kg kg-1), the 

rain water mixing ratio (kg kg-1), diffusion coefficients (m2 s-1), pressure (Pa), convective 

precipitation (cm), non-convective precipitation (cm), surface albedo (fraction), land use 

(category), the periodic boundary layer (PBL), the top layer (dimensionless), PBL height 

(m), PBL regime (dimensionless), sensible heat flux (Wm-2), frictional velocity (ms-1), 

surface radiation (Wm-2), soil temperature (K), 10-meter horizontal velocities (ms-1), and 
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surface roughness (cm).  As described, these variables are similarly used in other studies 

[McKeen et al., 1991; Hess et al., 2000].  A photochemical module, the algorithms for 

dry and wet deposition, and emissions from vegetation and soils are adopted from GEOS-

CHEM [Bey et al., 2001, and references hereafter]. REAM includes a detailed 

photochemical mechanism that includes about 200 reactions, the chemical concentration 

changes of 120 species are estimated, and 24 tracers (family or species) are transported to 

describe O3-NOX-hydrocarbon [Bey et al., 2001].  Detailed explanations follow. 

  

1.2.5.2 Model components 

 Like conservation of energy and momentum, a chemical tracer needs to be 

conserved during the transport and vertical mixing processes. A transport module consists 

of horizontal advection, deep and shallow vertical convections, and diffusion. Transport 

caused by diffusion includes molecular diffusion caused by molecular collisions and eddy 

diffusion driven by mechanical shear and thermal buoyancy. The strength of the former is 

substantially weaker than that of the latter, so the former is not considered in REAM. The 

deposition process includes dry and wet depositions. The dry deposition of oxidants and 

soluble gases is estimated using a resistance-in-series model [Wesely et al., 1989] with 

some modifications [Wang et al., 1998]. Large-scale wet deposition consists of washout 

and rainout. The former is caused by wet scavenging inside a cloud, and the latter rain 

scavenging below a cloud [Liu et al., 2001]. The convective scavenging of soluble 

species is separately considered in REAM, as described by Liu et al., [2001].  

 

1.2.5.3   Advection and convection 
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 We adopt an efficient and accurate tracer transport model scheme [Walcek, 2000, 

Zeng et al., 2003] to treat advection. Among the four different cumulus convection 

schemes [Jacobson, 1999], which include the moist convective adjust, Kuo, Arakawa-

Schubert, and Grell schemes, we use the Grell scheme [1993] for cumulus convection 

parameterization in order to be consistent with the dynamic model, MM5. Transport 

through a cloud, which is on a sub-grid scale, is parameterized based on earlier studies 

[Lin et al., 1994; Jacobson, 1999]. In order to incorporate deep cumulus convections in 

the model, we use the top levels of cloud, originating levels, and air mass fluxes for 

updraft and downdraft processes from MM5. The sub-grid scale updrafts of air masses 

are considered during updrafts from originating levels to cloud-top levels. The convective 

wet scavenging of soluble tracers is also considered during an updraft process. Large-

scale downward subsidence follows. In nature, the mass of species is conserved. 

Likewise, during a downdraft process, as in an updraft process, a downdraft flux to the 

bottom layer is considered, and large-scale transport follows a downdraft process. The 

Grell scheme assumes that an entrainment occurs at the cloud bottom, a detrainment 

occurs at the cloud top, and neither entrainment nor detrainment occurs between the 

cloud top and bottom [Grell, 1993]. 

 For shallow convection, the top and bottom layers of a shallow convection are 

determined by MM5, and a cloud fraction is estimated using relative humidity, as 

described by Geleyn [1981] and Lin et al. [1994]. A shallow convection that mixes 

chemical tracers between the two adjacent layers at a time exhibits neither precipitation 

nor a downdraft process. 
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1.2.5.4 Diffusion 

 For stable and weakly unstable conditions, turbulent (i.e., eddy) diffusion 

transports are considered using the K-theory (i.e., the gradient transport theory) [Holton, 

1992; Jacob, 1999; Jacobson, 1999], which allows mixing between two adjacent layers. 

Under strong, unstable conditions, a full mixing method such as a free convective-plume 

scheme [Blackadar, 1978; Zhang and Anthes, 1982] is used to simultaneously mix a 

tracer for all layers within a boundary layer. Eddy diffusivities for the K-theory are from 

MM5, which depend on wind speed, surface roughness, surface heating, and altitude. 

 

1.2.5.5 Chemical and photolysis reactions 

 We incorporate a chemistry module using a fast and numerically accurate Gear-

type solver [Jacobson and Turco, 1994] in which an original Gear’s code is combined 

with a sparse-matrix and computer optimization technique [Jacobson, 1999]. Inside the 

chemistry module, one hundred twenty species are included in a chemistry mechanism. 

Moreover, the surface areas of sulfate aerosols are calculated using the concentrations of 

aerosols from Chin et al., [1996], as described by Y. Wang et al., [1998]. Photolysis rates 

are calculated with the fast and flexible FAST-J algorithm of Wild et al. [2000], which 

accounts for cloud, aerosol, and Mie scattering. Cloud optical depths are calculated using 

MM5 cloud water content [Stephens et al., 1978; Weele et al., 1993; Salby, 1996]. The 

source of UV surface albedo is the TOMS satellite [Herman and Celarier, 1997]. 

 

1.2.5.6 Dry and wet depositions 
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 Dry deposition velocities are calculated using a resistance-series scheme [Wesley, 

1989; Seinfeld and Pandis, 1998]. These resistances are calculated, with some 

modifications, using Monin-Obukhov length, momentum, temperature, friction velocity, 

solar irradiation, and resistance variables on the basis of the formulas of Wesely [1989] 

[Y. Wang et al., 1998; Bey et al., 2001]. Variables are calculated or directly archived 

from MM5. Ozone, NO2, nitric acid (HNO3), hydrocarbon peroxide (H2O2), 

formaldehyde (HCHO), peroxyacetic acid (PAN), and NO are considered in the dry 

deposition process. For the wet scavenging process, two scavenging processes are 

considered:  One accounts for scavenges that occur during the updraft convection of deep 

cumulus convection [Hess et al., 2000; Liu et al., 2001], and the other is from large-scale 

precipitation due to rainout and washout by stratiform and convective anvil precipitation, 

respectively [Giorgi and Chameides, 1986; Liu et al., 2001].  Wet scavenging accounts 

for the scavenging of tracers with high solubility, which include HNO3, H2O2, HCHO, 

and methyl hydroperoxide (CH3OOH). 

 

1.2.5.7 Emissions 

 For NOX emissions, the EPA 1999 National Emission Inventory (referred to as 

NEI99) Version 2, the National Acid Precipitation Assessment Program (NAPAP), and 

the Global Emission Inventory Activity (GEIA) [Benkovitz et al., 1996; Yienger and 

Levy, 1995] are used in the United States, Canada, and Mexico, respectively. For CO 

emissions, NEI99 is used in the United States, and CO emissions developed at Harvard 

[Bey et al., 2001] are used in the other regions. Industrial non-methane hydrocarbon 

(NMHC) emissions are based on a study by Y. Wang et al. [1998]. For biogenic 
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emissions, the emission rates of isoprene and monoterpene are estimated by a modified 

version by Y. Wang et al. [1998] using an algorithm by Guenther et al. [1995].  The 

biogenic emissions of acetone are by Jacob et al. [2002]. Propene and CO productions 

due to the oxidation of isoprene and monoterpene are scaled to isoprene and monoterpene 

emissions as described by Bey et al. [2001].  The monthly averaged leaf area index (LAI) 

is from 1 km Advanced Very High Resolution Radiometer (AVHRR) data between April 

1992 and March 1993 [Bonan et al., 2002]. A detailed explanation of lightning NOX 

production parameterization follows. 

 

1.2.5.8   Lightning NOX parameterization 

 NOX production due to lightning flash is estimated, and the produced NO 

molecules are distributed vertically to the top cloud layer in the model. There are two 

flash types, cloud-to-ground (CG) and intracloud (IC) flashes. Lightning consists of a 

number of strokes, but NOX is primarily produced during the high-energy return stroke 

phase of the flash [Price et al., 1997]. The NO molecules per IC flash are estimated to be 

one-tenth that of a CG flash (6.7×1026 NO molecules flash-1) in some previous studies 

[Prince et al., 1997; Pickering et al., 1998; Allen et al., 2000; Allen and Pickering, 2002]. 

Compared with the NO production rates of CG flash, equivalent rates are used for IC 

flash in several more recent studies [DeCaria et al., 2000; Ott et al., 2003; Zhang et al., 

2003; Fehr et al., 2004; Choi et al., 2005, 2007a, 2007b]. Based on cloud-resolving 

modeling output compared with anvil aircraft NOX observations over the U.S., the 

average NO production per flash for both IC and CG flashes is about 2-4×1026 NO 

molecules [K. Pickering, Personal Comm., 2005]. Ott et al. [2003] use 3.0×1026 
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molecules per flash for IC and CG flashes. We assume that NO production per IC flash is 

the same as that per CG flash. The NO production rate per flash used by Choi et al. [2005, 

2007a] is 6.0×1026 NO molecules during the spring of 2000 and 3.0×1026 molecules 

[Choi et al., 2007b] during the summer of 2005. Sensitivity results suggest that these 

values show better agreement with GOME and OMI measurements. Lightning NOX is 

distributed vertically following a mid-latitude profile by Pickering et al. [1998]. 

 Two separate parameterizations are constructed for continental and oceanic 

regions [Price and Rind, 1993] using measurements from the National Lightning 

Detection Network (NLDN). The detection efficiency reported by Cummins et al. [1981] 

is used. We parameterize the lightning NOX production rate as a function of 

meteorological variables so that the emissions are consistent with the dynamic model, 

MM5. We experiment with cloud top height [Price and Rind, 1993], convective mass flux 

[Allen and Pickering, 2002], and convective available potential energy (CAPE) [Choi et 

al., 2005, 2007a, 2007b]. We use both CAPE and cloud mass fluxes to take advantage of 

the different distributions of the two variables. However, the two meteorological 

variables must be normalized. The CG flashing rate for continental and oceanic regions 

are mathematically expressed in terms of normalized convective mass flux (M) and 

CAPE (C): 

 

LFcg = a0 + aM + bM 2 + cM 3 + dC + eC2 + fC3 + gMC

+hM 2C + iMC2 + jM 4 + kM 3C + lM 2C2 + mMC 3 + nC 4
 , 

 

where for a continental region, a0 = 0.00495, a = 4.219, b = 15.5064, c = -112.492, d = -

2.089, e = 48.143, f = -53.983, g = -121.956, h = 358.118, i = 208.105, j = 108.613, k = -
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216.226, l = -330.354, m = -134.307, n = 16.742 and for an ocean region, a0 = 0.126, a = 

2.669, b = -0.854, c = -61.793, d = -2.482, e = 24.35, f = 26.739, g = -31.732, h = 

288.129, i = -185.419, j = 63.089, k = -178.063, l = -151.659, m = 204.120, n = -34.408. 

 Once the CG flashing rate is estimated, the IC to CG flash rate ratio is calculated 

following Y. Wang et al. [1998].  

  

1.3  Scope of This Dissertation 

 This dissertation focuses on the modeling analysis of the transitions of O3 and its 

precursors over North America from the spring to the summer and the photochemistry 

over Antarctica from in-situ and satellite observations. Chapter 2 provides evidence from 

satellite observations over North America of lightning NOX production and the 

convective transport of pollutants.  Column observations of NO2 and CO by GOME and 

MOPITT, measured separately over North America for April 2000, are investigated using 

REAM and the transient enhancements in these measurements due to lightning NOX 

production and the convective process are examined. Chapter 3 presents the modeling 

analysis of the transition of air pollutants over North America from late winter to spring 

on the basis of in situ and satellite measurements. Trace gas simulations using REAM 

over North America between February and May of 2000 are analyzed to elucidate the 

impact of the springtime transition derived by the following factors: cloud convection, 

lightning NOX production, soil NOX emissions, and mixing depth on the concentrations 

and exports of key tracers.  In situ observations from the EPA AIRNow and SEARCH 

ground network, aircraft observations from the TOPSE and MOZAIC experiments, 
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ozonesondes, and space-borne observations from GOME, MOPITT, TOMS and SAGE II 

satellite measurements are analyzed. 

 Chapter 4 presents a modeling analysis of the spring to summer transitions of O3 

and its precursors over North America between April and August of 2005 on the basis of 

satellite observations and examines the seasonal trend of tropospheric O3 from OMI-MLS 

satellite observations. O3 column peaks are generally constrained by the stratospheric 

input, convective outflows of the O3 precursors and lightning NOX production during the 

spring and the summer. Chapter 5 shows the late-spring increases of the transport of 

trans-Pacific pollution in UT using O3 and other key tracers. In this chapter, large 

enhancements of air pollutants such as NOX, PAN, CO, CFCs, and Halon-1211 in UT are 

shown over North America in the late spring.  An analysis of these observations and 

model results indicates that enhancements are driven by trans-Pacific pollutant transport. 

Chapter 6 presents a modeling analysis that assesses the photochemical impact of snow 

NOX emissions over Antarctica during ANTCI 2003.  1-D CTM and 3-D CTM, REAM 

are used to analyze these measurements and assess the photochemical impact of snow 

emissions. The polar version of MM5 with a modification of the ETA turbulence scheme 

is used to simulate the heights of the boundary layer from Sound Detecting and Ranging 

(SODAR) measurements at SP. Daytime snow NOX emissions are parameterized as a 

function of temperature and wind speed.  The emission fluxes, deposition fluxes, and 

transported fluxes of nitrogen tracers over Antarctica are also estimated. Chapter 7 

concludes. 
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CHAPTER II 

 

EVIDENCE OF LIGHTNING NOX AND CONVECTIVE TRANSPORT OF 
POLLUTANTS IN SATELLITE OBSERVATIONS OVER NORTH AMERICA 

 

2.1 Introduction 

 Convective outflow is an important pathway for ventilating pollutants from the 

boundary layer to the free troposphere; subsequent transport of these pollutants has 

significant ramifications for hemispheric and global air quality. The effects of such 

processes over North America have been previously investigated using 3-D chemical 

transport simulations and surface and aircraft observatio1ns [e.g., Thompson et al., 1994; 

Horowitz et al., 1998; Liang et al., 1998; Park et al., 2004b; Li et al., 2005]. However, in 

situ observations of convective outflow are limited because of the sporadic nature of 

convection and aircraft operational difficulties. Recent advancements in satellite 

observations could potentially provide additional constraints on model simulated 

convective outflow.  

 Satellite observations of trace gases and aerosols have been used to detect forest 

fire plumes [Thomas et al., 1998; Spichtinger et al., 2001; Lamarque et al., 2003]. In 

comparison, convective outflow is more difficult to detect due in part to cloud 

interference. Li et al. [2005] showed that despite this interference, satellite observations 

of CO and aerosol optical depth are useful for mapping convective outflow from North 

America to the western North Atlantic. In addition, indications were found for lightning 

                                                 
1 This chapter is for “Evidence of lightning NOx and convective transport of pollutants in satellite 
observations over North America,” published at Geophysical Research Letter in January 2005 (32, L02805, 
doi:10.1029/2004GL021436). Authors are Y. Choi, Y. Wang, T. Zeng, R. Martin, T. Kurosu, and K. 
Chance. 
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activity in the monthly/seasonally averaged NO2 columns over the tropical Atlantic 

observed by the Global Ozone Monitoring Experiment (GOME) [Richter and Burrows, 

2002; Edwards et al., 2003]. 

 In this work, we make use of GOME NO2 observations and Measurements Of 

Pollution In The Troposphere (MOPITT) observations of CO to evaluate the simulations 

of REAM. Both NO2 and CO are good chemical tracers for convection. Lightning during 

convection provides a major source of NOX (NO+NO2) in the free troposphere [e.g., 

Price and Rind, 1993]. 

 We analyze model simulations and satellite observations for April 2000 because 

of frequent cyclonegenesis and convective events over North America during that period. 

The analysis is carried out on a daily basis to emphasize the transient nature of 

convection. We conduct two model simulations with and without lightning NOX 

production and compare these results with GOME observations. Carbon monoxide has 

much higher concentrations near the surface due to combustion and industrial emissions 

over North America. To test the effects of convection on CO concentrations, we conduct 

a sensitivity simulation in which convective transport of CO is turned off and then the 

standard and sensitivity simulations in light of MOPITT observations are compared. 

 

2.2  GOME and MOPITT Retrievals  

 The retrieval of tropospheric NO2 columns from GOME measurements and its 

uncertainty are calculated using the algorithms by Martin et al. [2002]. The retrieval 

uncertainties are due to spectral fitting, spectral artifact from the diffuser plate, the 

removal of the stratospheric column, and the calculation of the air mass factor. The 
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MOPITT CO columns are obtained from the data pool at the NASA Langley 

Atmospheric Science Data Center (ASDC). Only MOPITT retrievals with an a priori 

fraction of <50% were used. The uncertainty of CO columns as reported by the data is 

about 2×1017 molecules cm-2 in this work. When compared with the observations, the 

simulated CO results were processed using the MOPITT retrieval averaging kernel 

described by Deeter et al. [2003] and Emmons et al. [2004]. The horizontal resolutions of 

GOME and MOPITT are 40 × 320 and 22 × 22 km2, respectively. 

 

2.3  Model Description 

 REAM has a horizontal resolution of 70 km with 20 vertical layers below 100 hPa. 

The National Center for Atmospheric Research/Penn State MM5 was used to simulate the 

meteorological fields using four-dimensional data assimilation with the National Center 

for Environmental Prediction reanalysis, surface, and rawinsonde observations. Most 

meteorological variables were archived every 2.5 minutes. The horizontal domain of 

MM5 has five extra grids beyond that of REAM on each side to minimize potential 

transport anomalies near the boundary.  As in the work by Zeng et al. [2003], spring 2000 

simulations using the global GEOS-CHEM model [Bey et al., 2001] provide the initial 

and boundary conditions for trace gases. The regional simulations were spun up during 

the last week of March. 

 REAM was updated from the previous model by McKeen et  al. [1991]. The 

transport scheme by Walcek [2000] was adopted. Twenty-four chemical tracers 

describing tropospheric O3 chemistry [Bey et al., 2001] were transported. The convective 

scheme by Grell [1993] was implemented so that it was consistent with the 
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meteorological model. The photochemistry module, and the algorithms for dry and wet 

deposition and emissions from vegetation and soils are adopted from GEOS-CHEM [Bey 

et al. 2001, and references therein]. Biogenic emissions of hydrocarbons are limited to 

the regions south of 30°N in April. The monthly mean leaf area index distribution was 

derived from the Advanced Very High Resolution Radiometer data by Bonan et al. 

[2002]. Emission inventories for combustion and industrial sources were also taken from 

GEOS-CHEM [Bey et al., 2001], except that fossil fuel NOX and CO emissions over the 

United States were taken from the 1999 US Environmental Protection Agency National 

Emission Inventory. The lightning NOX algorithm is described in Appendix 2.A. Cloud-

to-ground flashes in the model are constrained by observations from the National 

Lightning Detection Network (NLDN). 

 

2.4  Results and Discussion 

2.4.1  Is Lightning NOX Evident in GOME Observations? 

 Monthly mean-simulated tropospheric NO2 column compares well with the 

GOME observations (not shown). We find a correlation coefficient of 0.95 with little 

mean bias (-3%). Our main goal in this work is to determine if transient convection 

features such as lightning NOX production can be detected in the GOME observations. 

Large convective or cyclonegenesis events were simulated on April 7-10, 14-16, 18-22, 

25-27, and 29-30. Generally, we find corresponding NO2 column enhancements 

associated with these events. We illustrate four specific days of April 20, 21, 27, and 29 

(Figure 2.1).  
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Figure 2.1 GOME retrieved and the corresponding REAM simulated tropospheric NO2 
vertical column on April 20, 21, 27, and 29, 2000. GOME columns less than the spectral 
fitting uncertainties are not included. Simulations with and without lightning NOX 
production are shown. The last column shows the simulated lightning NO2 enhancements. 
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 The model simulations with lightning NOX are clearly in much better agreement 

with the observations. All four cases show various degrees of lightning enhancements 

over the western North Atlantic. The April 29 case also shows significant continental 

enhancements from western Texas to Kansas. However, the lightning signals are more 

difficult to detect over the continent because of surface emissions. The standard model 

underestimates NOX concentrations over the western North Atlantic on April 20 and 21 

but tends to overestimate them on April 27. 

 The lightning enhancements are 0.5-1 × 1015 molecules cm-2 on April 20 and 21 

and >1 × 1015 molecules cm-2 on April 27 and 29. Following Martin et al. [2002], we 

estimate the uncertainties of GOME NO2 vertical columns to be 50-100% of the lightning 

enhancements simulated in the model. The relative uncertainties are at the high end for 

April 20 and 21, when the model underestimates lightning NOX enhancements over the 

western North Atlantic. Satellite observations with improved spatial coverage and lower 

uncertainty than GOME should provide better quantitative constraints on lightning 

production of NOX.  

 We select a grid box with large lightning NOX enhancements on April 27 to 

illustrate the altitude dependence of the lightning NOX contribution to the NO2 column 

(Figure 2.2).  NO2 lightning enhancements are in the lower and upper troposphere, 

corresponding to the “C”-shaped NOX profile by Pickering et al. [1998].  Enhancement 

of the upper tropospheric NO is far more prominent than that of NO2 because the 

NO/NO2 ratio increases with decreasing temperature. The large enhancements in the 

lower troposphere are due to convective downdrafts. The contribution to column 

enhancement  
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Figure 2.2 Scattering weights under clear and cloudy sky conditions for the standard 
model NO2 simulation on April 27 over the grid box indicated by the black circle in 
Figure 2.1. Also shown as a function of pressure is the simulated enhancement of NO2 
due to lightning NOX production. The scattering weight represents the sensitivity of 
backscattering radiance measured by GOME to NO2 concentrations at a given level. 
 

 



 26

 

by NO2 above 600 hPa is larger than in the lower troposphere (below 850 hPa) in part 

because of the larger scattering weight at higher altitudes (Figure 2.2). 

 

2.4.2 Signals of Convective Transport in MOPITT CO Observations  

 The simulated monthly mean CO column also compares well with MOPITT 

observations (not shown). We find a linear correlation coefficient of 0.88 with little mean 

bias (-2%). As in the previous section, we select three cases on April 20, 21, and 27 to 

illustrate the effects of convection on CO column concentrations (Figure 2.3). The effects 

are found over the ocean because the only difference between standard and sensitivity 

simulations is the convective transport of CO. Its effect is to lift CO, emitted from the 

surface, into a higher altitude, where wind speeds are higher than they are near the 

surface. As a result, higher-altitude CO lifted by convection is carried over the ocean 

faster in a more westerly flow compared to that near the surface, creating the 

enhancements seen in Figure 2.3. The April 29 case is not shown because the convection 

is mostly limited to land (Figure 2.1). 

 The simulations without the convective transport of CO clearly underestimate CO 

columns over the western North Atlantic. The standard simulations agree much better 

with the observations. The model tendencies that underestimate CO enhancements on 

April 20 and 21 but overestimate CO enhancements on April 27 are consistent with the 

results for lightning NOX enhancements. The simulated CO column enhancements are 

above the MOPITT retrieval uncertainty of 2 × 1017 molecules cm-2. 
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Figure 2.3 The same as Figure 2.1, but for MOPITT-retrieved and REAM-simulated CO 
columns on April 20, 21, and 27, 2000. The model results with and without convective 
transport have been processed with the MOPITT averaging kernel. 
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Figure 2.4 Simulated CO concentrations with and without convective transport as a 
function of pressure on April 27 over the grid box indicated by the orange circle in Figure 
2.3. 
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The altitude dependence of the CO enhancement contribution for a selected grid box on 

April 27 is shown in Figure 2.4. The profile with the convective transport of CO 

compared to that without is much higher at 300 hPa and 700-980 hPa, but it is lower near 

the surface due to the redistribution of CO by convective transport. The 700-980 hPa 

enhancement due to shallow convection is much larger than that at 300 hPa due to deep 

convection. This result is consistent with our finding that mass fluxes of shallow 

convection are much larger than deep convection in MM5 simulations during this period. 

 

2.5  Conclusions 

 Chemical tracer distributions are strongly affected by convective transport and, in 

the case of NOX, lightning production. We show that column observations of NO2 by 

GOME and CO by MOPITT can be used to identify these transient features when used in 

combination with 3-D chemical transport model simulations. The two independent 

measurements show consistent convection related enhancements in terms of geographic 

location and model bias. While the middle and upper tropospheric contribution from 

lightning NO2 to the column enhancements is more significant, the major contribution to 

CO column enhancements is from the lower troposphere. The model results indicate large 

enhancements in the lower atmosphere of lightning NO2 (due to convective downdrafts) 

and transported CO (due to shallow convection), suggesting that low-altitude aircraft in 

situ observations can potentially provide valuable and critical observations for evaluating 

model simulations and validating satellite observations. 

 

Appendix 2.A: Lightning NOX parameterization 
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 We parameterize the lightning NOX production rate as a function of 

meteorological variables so that this emission is consistent with model dynamics. In our 

work, we experimented with cloud top height [Price and Rind, 1993], convective mass 

flux [Allen and Pickering, 2002], and convective available potential energy (CAPE). We 

found that the parameterization with CAPE produces a similar but better lightning flash 

distribution than cloud top height when compared with NLDN observations and that 

CAPE is a better variable for parameterizing lightning flashes than convective mass flux 

over the southern part of North America and the western Atlantic. To take advantage of 

the distribution difference between CAPE and convective mass flux, both variables are 

used in the parameterization (up to the 4th order, including cross terms). Two 

parameterizations are created separately for the land and the ocean. The intracloud (IC) to 

cloud-ground (CG) flash ratio is calculated following Y. Wang et al. [1998]. We assume 

that IC and CG flashes have the same energy [Ott et al., 2003]. The rate of NO produced 

per unit energy is that of Pickering et al. [1998]. Lightning NOX is distributed vertically 

following the mid-latitude profile by Pickering et al. [1998]. 
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CHAPTER III 

 

MODELING ANALYSIS OF SPRINGTIME TRANSITION OF NO2, CO, AND O3 
OVER NORTH AMERICA ON THE BASIS OF IN SITU AND SATELLITE 

MEASUREMENTS 
 

3.1  Introduction 

Ozone (O3), carbon monoxide (CO) and nitric oxides (NOX = NO+NO2), which 

are regulated under EPA’s National Ambient Air Quality Standards, are among the six 

EPA criterion pollutants that adversely affect human health and biological ecosystems 

[NRC, 1991].  Ozone is a major precursor of the hydroxyl radical (OH), which plays a 

key role in oxidation chemistry in the troposphere. It is also considered a greenhouse gas, 

particularly in the upper t2roposphere. NOX and CO are major O3 precursors produced 

during combustion. NOX is also emitted from soils and lightning, and CO is produced 

during the oxidation of anthropogenic and biogenic hydrocarbons.  

Previous studies show that spring is the season of rapid transitions in trace gas 

concentrations and photochemical activity [Blake et al., 2003; Cantrell et al., 2003; Davis 

et al., 2003; Emmons et al., 2003; Y. Wang et al., 2003; Kondo et al., 2004]. Besides 

changes in solar insolation, a number of physical processes change drastically during the 

spring. Among them, we are particularly interested in NOx emissions from lightning and 

soils, convective transport, and the mixing depth in the boundary layer. These factors lead 

to higher surface concentrations and tropospheric columns of ozone. They also affect the 

                                                 
2This chapter is for “Modeling analysis of springtime transition of NO2, CO, and O3 over North America on 
the basis of in situ and satellite measurements,” prepared for the submission to Journal of Geophysical 
Research in 2007. Authors are Y. Choi, et al. 
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export of pollutants from North America. The following will discuss each factor and its 

observational constraints. 

Warmer temperature and the increasing abundance of water vapor result in more 

frequent convection and lightning [Rind, 1998; Price, 2000; Soden, 2000]. Choi et al. 

[2005] showed that day-to-day enhancements of lightning NOX can be detected from 

Global Ozone Monitoring Experiment (GOME) measurements but stressed that satellite 

retrieval uncertainties [Martin et al., 2002] must be taken into account. Edward et al. 

[2003] showed a linkage between lightning NOX over southern Africa and South America, 

and the Total Ozone Mapping Spectrometer (TOMS) measured O3 in the tropical 

southern Atlantic. Therefore, lightning NOx production could be a major contributor to 

the increase in the tropospheric O3 column over North America during the spring. In this 

study, we use TOMS total ozone columns and the Stratospheric Aerosol and Gas 

Experiment (SAGE) II stratospheric ozone columns to derive tropospheric ozone 

columns and investigate any trends.  We then evaluate the derived tropospheric ozone 

columns with ozonesonde measurements.  We find that CO is a good tracer for 

convective transport [e.g., Choi et al., 2005]. In situ observations of free tropospheric CO 

are available from the Tropospheric Ozone Production about the Spring Equinox 

(TOPSE) experiment of 2000. Although the measurement region is not affected by 

convective transport, these measurements can be used to evaluate the results of the 

Measurement of Pollution In The Troposphere (MOPITT).  Soil NOX emissions also 

increase during spring as temperature increases [Yienger and Levy II, 1995]. Although no 

direct in situ measurements are available to constrain this source, GOME measurements 

may be useful to constrain this source [e.g., Martin et al., 2003; Jaegle et al., 2005]. It 
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remains to be seen if this source is large enough to detect in the satellite measurements in 

the spring. 

For the identification of seasonal changes in ozone, CO, and NOx, a large number 

of surface in situ measurements from AIRNow and Southeastern Aerosol Research and 

Characterization Study (SEARCH) observation networks can be examined.  These 

networks show that one key process that affects pollutant surface concentrations is the 

rapid change of mixing depth during the spring [Holzworth, 1964, 1967]. Although 

routine meteorological measurements do not provide measurements of daytime mixing 

depth, 3-D CTMs can be used to determine this effect.  

Regional [McKeen et al., 1991; Hess et al., 2000; Song and Carmichael, 2001; 

Choi et al., 2005] and global 3-D CTM [Brasseur et al., 1998; Y. Wang et al., 1998; 

Lawrence et al., 1999; Levy et al., 1999; Lelieveld and Denter, 2000; Bey et al., 2001; 

Park et al., 2004a] have been developed to explain chemical and physical processes in the 

atmosphere. In this work, we apply the Regional chEmical trAnsport Model (REAM) 

[Zeng et al., 2003, 2006; Choi et al., 2005; Jing et al., 2006; Y. Wang et al., 2006, 2007] 

to simulate the seasonal transition of ozone and its precursors over North America during 

spring 2000.  The model results will be evaluated based on surface, balloon, aircraft, and 

satellite measurements. 

 Through the combination of model simulations and satellite measurements, “top-

down” estimates of emissions have been used to constrain “bottom-up” inventories [Leue 

et al., 2001; Martin et al., 2003, 2006; Arellano et al., 2004; Jaegle et al., 2004, 2005]. In 

this work, we apply the same approach to estimate surface NOX emissions and compare 

them with the a priori inventories. In particular, we test the sensitivities of the a posteriori 
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inventories to the air mass factor (AMF), which is calculated using the vertical profiles of 

NO2 from the model results. For this purpose, two model results will be used in the 

comparison.  Finally, using the results of the REAM model, we examine the export of O3 

and its precursors from the boundary layer of North America [Horowitz et al., 1998; 

Liang et al., 1998; Park et al., 2004b] and the springtime transitions of pollutant exports. 

We also examine the vertical profiles of the import and export fluxes of these tracers and 

the factors affecting the fluxes. 

 We first described the measurement data, including the surface measurements of 

O3 from the EPA AIRNow network and of NO, CO, and O3 from the surface SEARCH, 

aircraft measurements of CO from the TOPSE experiment and of O3 from the 

Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) 

program, and ozonesondes. Satellite measurements include GOME NO2, MOPITT CO, 

and TOMS-SAGE II O3. The regional REAM and global GEOS-CHEM models are 

described in Section 3.3. We evaluate the REAM simulated springtime transitions of O3 

and its precursors with surface, ozonesonde, aircraft, and satellite measurements in 

Section 3.4. In this section, we also analyze the top constraints of surface NOX emissions 

and the exports of O3 and its precursors from North America. Conclusions are given in 

Section 3.5. 

 

3.2  In situ and Satellite Measurements  

3.2.1 Surface Measurements 

3.2.1.1 The EPA AIRNow network 
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 Hourly O3 concentrations are obtained from the EPA AIRNow data archives 

[www.epa.gov/ttnairs1/airsaqs/detaildata/downloadaqsdata.htm].  The EPA network 

contains considerably more O3 measurement sites than NOX and CO sites.  The sites are 

divided into three categories: urban, suburban, and rural.  Since they are more 

representative of the region, the 291 rural sites are used. The CO and NOX measurements 

are not used because of their high method detection limits (MDL) of 0.5 ppmv of CO and 

5 ppbv of NOx [Jake Summers, Personal Comm., 2004].  However, rural CO and NOX 

measurements are usually below the MDL values, reported at one-half the MDL. The 

MDL value for O3 was 5 ppbv. We focus on the afternoon (1300 to 1700 LT) when 

surface observations are more representative due to strong turbulent mixing in the 

planetary boundary layer (PBL).  

 

3.2.1.2  The SEARCH network 

 Hourly O3, NO, and CO are measured at eight SEARCH sites:  Yorkville (YRK, 

rural), Jefferson Street (JST, urban), Centreville (CTR, rural), Outlying Landing Field #8 

(OLF, suburban), Pensacola (PNS, urban), Gulfport (GFP, urban), Oak Grove (OAK, 

rural), and North Birmingham (BHM, urban). The SEARCH data of trace gases are 

obtained from the web [www.atmospheric-research.com/public/index.html]. For our 

analysis, we use observations from the following rural and suburban sites: YRK, CTR, 

OLF, and OAK. The detection limits of O3, NO, and CO are 1 ppbv, 50 pptv, and 10 

ppbv, respectively [E. S. Edgerton, Personal Comm., 2007]. 

 

3.2.2 Aircraft Observations 

http://www.epa.gov/ttnairs1/airsaqs/detaildata/downloadaqsdata.htm
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3.2.2.1 MOZAIC 

 The MOZAIC program was designed to automatically collect O3 and water vapor 

data on five commercial Airbus A340 aircraft [Marenco et al., 1998]. For recent updates, 

see http://www.aero.obs-mip.fr/mozaic/. We use MOZAIC O3 measurements recorded 

from February to May 2000. For the ascent and descent portions of the flights, MOZAIC 

raw data (4s time resolution) are averaged over 150 m height intervals. The MOZAIC 

analyzer is the dual-beam UV absorption Model 49-103 from Thermo Environment 

Instruments [Thouret et al., 1998]. The instruments are laboratory-calibrated before and 

after flight and re-calibrated every 12 to 18 months. During any flight operation, each 

instrument is checked for zero and the calibration factor using a built-in ozone generator. 

  

3.2.2.2 TOPSE 

 The TOPSE experiment took place from February to May 2000 [Atlas et al., 

2003]. The objective of TOPSE was to investigate the chemical and dynamical changes 

in the tropospheric chemical components over North America covering the region from 

Colorado to north of Thule, Greenland, during the late winter to spring transition. Thirty-

eight science flights were conducted in seven deployments that were one to two weeks 

apart. Diverse trace gases related to tropospheric O3 chemistry were measured from the 

surface up to 8 km. Several aircraft flights between March and May are concurrent with 

MOPITT overpasses. 

 

3.2.3 Ozonesondes 

http://www.aero.obs-mip.fr/mozaic/
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 We use ozonesonde data from February to May of 2000 from six mid-latitude 

stations located between 35°N and 53°N: Huntsville (35°N, 87°W), Wallops Island 

(38°N, 75°W), Boulder (40°N, 105°W), Trinidad Head (41°N, 124°W), Richland (46°N, 

119°W), and Goose Bay (53°N, 50°W). The electrochemical concentration cell (ECC) 

sensor is typically used and the accuracy is about ±6% on the ground and -7% to 17% in 

the middle and upper troposphere [Komhyr et al., 1995]. The ozonesonde data are mainly 

obtained from the World Ozone and Ultraviolet Data Center (WOUDC) 

[http://www.woudc.org]. 

 

3.2.4 Satellite Retrievals 

 The GOME instrument is on board the European Remote Sensing-2 (ERS-2) 

satellite that passes over the equator at 1030 AM local time, and its horizontal resolution 

is 40 km latitude by 320 km longitude. The DOAS algorithm with AMF calculation is 

described by Chance et al. [2000] and Martin et al. [2002]: First, the slant column is 

determined by fitting directly backscattered radiance spectra from GOME; then a 

stratospheric column determined from the NO2 column over the central Pacific [Martin et 

al., 2002] is subtracted from the total column; and finally, the subtracted columns are 

converted to a vertical column with AMF, which is an integral of the product of the shape 

factor from model-calculated vertical profiles and the perturbation of backscattered 

radiance of NO2. The radiance perturbation due to the change of NO2 is calculated from 

the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model [Spurr et al., 

2001], which considers multiple scattering in the atmosphere.  Data of the cloud optical 

depth and fraction are from GOME [Kurosu et al., 1999]. The monthly mean fields of 

http://www.woudc.org
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aerosol mass concentrations are taken from the Global Ozone Chemistry Aerosol 

Radiation and Transport (GOCART) model [Chin, 2002], which simulates 3-D 

distributions of sulfate, mineral dust, sea salt, hydrophobic and hydrophilic black carbon, 

and organic carbon [Mian Chin, Personal Comm., 2004]. We do not use the 

measurements when the cloud cover is >40% [Martin et al., 2002]. The retrieval 

uncertainties are mostly due to spectral fitting, spectral artifact related to the diffuser 

plate, removal of the stratospheric column, and AMF calculations [Martin et al., 2002; 

Choi et al., 2005]. The uncertainties are generally 0.6-1.2 × 1015 molecules cm-2 over the 

ocean and 1.0-3.5×1015 molecules cm-2 over the continent.  

 The MOPITT instrument on board the NASA Terra satellite is capable of globally 

monitoring CO through observations of two spectral bands: a solar band around 2.3 μm 

and a thermal band around 4.6 μm. The satellite passes over the equator at around 1045 

AM and 2245 PM local time, and the horizontal resolution of MOPITT is 22×22 km2. 

MOPITT measures filtered radiance from the top of the atmosphere (TOA) from a gas 

correlation radiometer that produces gas correlation spectroscopy composed of an 

average response signal (A) and a different response signal (D) rather than capturing 

TOA radiance directly [Pan et al., 1995, 1998]. If the probability distribution function 

(PDF) of a state vector (CO vertical profile) is proportional to that of an observed signal 

measured by a MOPITT instrument, an inverse problem with an ill-posed condition is 

resolved by minimizing a cost function.  MOPITT CO columns are obtained from the 

data pool of the NASA Langley Atmospheric Science Data Center (ASDC). The 

uncertainty of CO columns, as reported by the data, averages 2 × 1017 molecules cm-2.  In 

our model evaluation, simulated CO concentrations are processed with the MOPITT 
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retrieval averaging kernel (AK), described in previous studies [Deeter et al., 2003, 

Emmons et al., 2004].  

 TOMS on board the Earth Probe satellite that crosses the equator at 1116 AM 

local time measures incident solar radiation and backscattered ultraviolet sunlight, 

resulting in deriving total ozone. TOMS has a horizontal resolution of 39×39 km2 and a 

measurement uncertainty of about 5% (the random error is 2% and the systematic error is 

about 3%) [ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF]. 

SAGE II on board the Earth Radiation Budget Satellite (ERBS) measures the Earth’s 

limb extinction via the solar occultation technique during each spacecraft sunrise and 

sunset. The horizontal and vertical resolutions of SAGE are about 30×250 km2 and 1 km, 

respectively. Scatter-plots of SAGE II (retrieval version 6.2) O3 versus Potential Vorticity 

(PV) on isentropic surfaces are used to produce the O3 profiles in the stratosphere [Jing et 

al., 2004], which are coincident in latitude, longitude, and time with TOMS (version 8) 

total column O3 measurements. When the TOMS data indicate a reflectivity less than 

20%, tropospheric ozone columns are inferred by subtracting the SAGE II-based 

stratospheric from the TOMS columns. The PV values are obtained from the NCEP 

reanalysis data set, and a value of 3.5 PV units is used to define the location of the 

tropopause. 

 By comparison with the ozonesonde measurements, two previous studies [H.-J. 

Wang et al., 2002, 2006] indicate that SAGE O3 has an accuracy of 10% or better down 

to the tropopause, the SAGE values being almost 5% higher than the ozonesonde values 

at an altitude between 15 and 20 km.  A previous study [Jing et al., 2004] suggested that 

PV mapping produces individual O3 values in the stratosphere with a precision of about 
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10%. Thus, the measurement uncertainties of TOMS-SAGE become about 21%. 

However, this error tends to be random, and stratospheric columns averaged for several 

days, for example, are expected to have significantly better precision, resulting in smaller 

measurement uncertainties of TOMS-SAGE II. 

 

3.3  Model Descriptions 

3.3.1  Regional chEmical trAnsport Model (REAM) 

3.3.1.1  General description 

 In this work, REAM has a horizontal resolution of 70 km with 23 vertical layers 

reaching 10 hPa, 20 of which are below 100 hPa. The National Center for Atmospheric 

Research/Penn State MM5 is used to simulate meteorological fields using four-

dimensional data assimilation (FDDA) [Stauffer et al., 1991] with the National Center for 

Environmental Prediction reanalysis, surface, and rawinsonde observations. Most of the 

meteorological variables are archived every 30 minutes, except convection and lightning, 

which are archived every 2.5 minutes because of the highly variable nature of these 

processes. The horizontal domain of MM5 has five extra grids beyond that of REAM on 

each side to minimize potential transport anomalies near the boundary. We use the ETA 

Mellor-Yamada-Janjic (MYJ) 2.5-order closure scheme [Black, 1994] for turbulent 

calculations. 

 The photochemical, dry, and wet deposition modules of REAM are adopted from 

the GEOS-CHEM model [Bey et al., 2001]. The altitude-dependent cloud optical depth is 

calculated using MM5 liquid water content [Stephens et al., 1978]. The UV surface 

albedo for photolysis rate calculations is obtained from TOMS observations [Herman and 
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Celarier, 1997]. The transport scheme is from Walcek [2000]. The convective scheme by 

Grell [1993] is implemented to be consistent with the meteorological model; sub-grid 

scale updraft and downdraft processes and large-scale subsidence are considered. The top 

and bottom layers of shallow convection are determined by MM5 simulations; the cloud 

fraction is determined using the scheme described by Geleyn [1981]. Previously, the 

model was used to analyze the effects of lightning and convection [Choi et al., 2005], the 

trans-Pacific transport [Y. Wang et al., 2006], the tropospheric O3 column [Jing et al., 

2006], and polar tropospheric chemistry [Zeng et al., 2003; Y. Wang et al., 2007].  

 Spring 2000 GEOS-CHEM model simulations provide initial and boundary 

conditions for trace gases. Regional simulations are spun up in the last week of January 

2000. Emission inventories for combustion and industrial sources are taken from GEOS-

CHEM [Bey et al., 2001], except the fossil fuel NOX and CO emission inventories over 

the United States, which are taken from the 1999 US Environmental Protection Agency 

National Emission Inventory (NEI99). These values are scaled with the national total 

emissions of 2000 [EPA, 2003]. Emission algorithms for vegetation and soils are taken 

from GEOS-CHEM, but meteorological inputs are from MM5. The monthly mean leaf 

area index (LAI) distribution is derived from 1-km Advanced Very High Resolution 

Radiometer data [Bonan et al., 2002].  The lightning NOX algorithm follows. 

  

3.3.1.2 Lightning NOX parameterizations 

 NOX production due to lightning is estimated and distributed vertically up to the 

cloud top layer in the model. NOX is primarily produced during the high-energy return 

stroke phase of a flash [Price et al., 1997]. There are two flash types:  cloud-to-ground 
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(CG) and intracloud (IC) flashes. The NO produced per IC flash is estimated to be one-

tenth that of a CG flash (6.7×1026 NO molecules flash-1) in some previous studies [Price 

et al., 1997; Pickering et al., 1998; Allen et al., 2000; Allen and Pickering, 2002]. Higher 

or equivalent NO production per IC as CG flash is used in several more recent studies 

[DeCaria et al., 2000; Ott et al., 2003; Zhang et al., 2003; Fehr et al., 2004; Choi et al., 

2005]. Based on cloud-resolving modeling output compared with anvil aircraft NOX 

observations over the U.S., the average NO production per flash for both IC and CG 

flashes is about 2-4×1026 molecules [K. Pickering, Personal Comm., 2005]. Ott et al. 

[2003] use 3.0×1026 NO molecules per flash for IC and CG flashes. We assume that NO 

production per IC flash is the same as that per CG flash. The NO production rate per flash 

used by Choi et al. [2005] is 6×1026 NO molecules per flash. Sensitivity results suggest 

that this value gives better agreement with GOME measurements. Lightning NOX is 

distributed vertically following the mid-latitude profile by Pickering et al. [1998]. 

 Two separate parameterizations are constructed for continental and oceanic 

regions [Price and Rind, 1993] using measurements from the National Lightning 

Detection Network (NLDN). The detection efficiency reported by Cummins et al. [1998] 

is used. We parameterize the lightning NOX production rate as a function of 

meteorological variables so that this emission is consistent with the dynamic model.  

Using the parameterizations, we experimented with cloud top height [Price and Rind, 

1993], convective mass flux [Allen and Pickering, 2002], and convective available 

potential energy (CAPE) [Choi et al., 2005]. To take advantage of the different 

distributions, we use both CAPE and cloud mass flux and had to normalize them. The CG 
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flashing rate for continental and oceanic regions are mathematically expressed in terms of 

normalized convective mass flux (M) and CAPE (C): 

 

LFcg = ao + aM + bM 2 + cM 3 + dC + eC2 + fC3 + gMC

+hM 2C + iMC2 + jM 4 + kM 3C + lM 2C2 + mMC 3 + nC 4
, 

 

where for continental regions, ao = 0.00495, a = 4.219, b = 15.5064, c = -112.492, d = -

2.089, e = 48.143, f = -53.983, g = -121.956, h = 358.118, i = 208.105, j = 108.613, k = -

216.226, l = -330.354, m = -134.307, n = 16.742 and for ocean regions, ao = 0.126, a = 

2.669, b = -0.854, c = -61.793, d = -2.482, e = 24.35, f = 26.739, g = -31.732, h = 

288.129, i = -185.419, j = 63.089, k = -178.063, l = -151.659, m = 204.120, n = -34.408. 

Once the CG flashing rate is determined, the IC to CG flash rate ratio is calculated 

following Y. Wang et al. [1998]. 

  

3.3.2 Global Earth Observing System (GEOS)-CHEM 

GEOS-CHEM is driven by GEOS assimilated meteorological fields (GEOS-3) for 

2000 [Schubert et al., 1993]. The horizontal resolution of GEOS-CHEM is 2° latitude by 

2.5° longitude. Thirty chemical tracers describing tropospheric O3 chemistry are 

transported. Detailed algorithms for photochemistry, dry and wet deposition, and 

emissions are described by Bey et al. [2001]. Chemical initial and hourly boundary 

conditions for REAM are taken from GEOS-CHEM model simulations (version 7.2) 

[Bey et al., 2001]. In addition, the results of GEOS-CHEM are compared with those of 

the REAM simulations.  
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3.4  Seasonal Transitions of NOX, CO, and O3 

3.4.1  Nitrogen Oxides (NOX = NO+NO2)  

3.4.1.1 Time series of SEARCH NO 

 We compare REAM simulated NO mixing ratios with SEARCH observations at 

four rural or suburban sites, CTR, OAK, OLF, and YRK, during February and May of 

2000, in order to examine the seasonal trends of surface NO data. Hourly NO 

concentrations vary significantly between day and night because of the shallow boundary 

layer at night. We show only daily 1-5 pm (LT) NO comparisons between SEARCH and 

REAM (Figure 3.1). Simulated mean NO concentrations during the four months (CTR: 

290 pptv, OAK: 216 pptv, OLF: 314 pptv, YRK: 936 pptv) agree with the observed 

means (240 pptv, 241 pptv, 275 pptv and 1048 pptv) to within 10% and 20%. The 

correlation coefficients between REAM and SEARCH NO are 0.66, 0.56, 0.40, and 0.23 

at the sites. High NO peaks at YRK are due to nearby power plant emissions [B. Hartsell 

and E. S. Edgerton, Personal Comm., 2006]. The model resolution is too coarse to 

simulate the influence of power plant plumes. As a result, of the four sites, YRK has the 

lowest correlation coefficient. Decreasing NO concentrations from spring to summer are 

clear from both observations and REAM simulations, reflecting in part an increasing 

photochemical loss of NOX. 

 

3.4.1.2  GOME tropospheric NO2 column  

 3.4.1.2.1  Dependence of GOME NO2 retrievals on the a priori profiles  

 The monthly means of tropospheric NO2 columns derived from GOME 

measurements are calculated between February and May 2000 in order to investigate  
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Figure 3.1 Averaged observed and simulated NO mixing ratios (ppbv) during the 
afternoon (1300-1700, LT) at four SEARCH surface sites: Centerville (CTR), Oak Grove 
(OAK), Outlying Landing Field #8 (OLF), and Yorkville (YRK). The solid black lines 
represent the SEARCH measurements and red lines the REAM results.  
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seasonal changes in tropospheric NO2 patterns. The retrieval process is described in 

Section 3.2.4. Both GEOS-CHEM and REAM vertical profiles are applied to calculate 

the AMFs as a way of examining the sensitivity of GOME retrievals to the simulated 

NO2vertical profiles. GEOS-CHEM and REAM have different profiles due in part to the 

shallower boundary layers in MM5 than GEOS-3 (to be discussed in Section 3.4.3.3). 

Despite the differences in the NOx profiles (to be shown in Figure 3.11), Figure 3.2 

shows good agreement between GOME NO2 column retrievals using the REAM and 

GEOS-CHEM profiles. The correlation coefficient is > 0.99. The monthly mean NO2 

columns of the retrievals using REAM profiles are higher by 6.1, 12.0, 5.5, and 0.4% 

from February to May than that using GEOS-CHEM because the AMF values are smaller. 

Generally, about 40% is used to calculate the AMF-associated retrieval uncertainty for 

each datum [Martin et al., 2002], which is in agreement with our results. 

  

3.4.1.2.2  Comparisons of the model results with GOME NO2 retrievals 

 Figure 3.2 also shows that the REAM and GEOS-CHEM simulated NO2 columns 

are generally in agreement with the GOME NO2 retrievals. The mean biases are within 

11%, and the correlations are high (R>0.85).  In February, compared with GOME 

observations, both models overestimate the NO2 columns due to the negative retrieval 

values over high-latitude regions.  While REAM tends to overestimate GOME NO2 

columns in April and May due to larger lightning NOX productions in REAM, GEOS-

CHEM tends underestimate them in the same months. 

 Due to its coarse spatial resolution, the GEOS-CHEM model fails to capture NO2 

column peaks (>5×1015 molecules cm-2) in California, but REAM captures GOME NO2  
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Figure 3.2  Monthly mean tropospheric NO2 vertical columns (in molecules cm-2) during 
February-May 2000 from GOME retrievals using the REAM-derived shape factor (first 
column), the REAM model (second), GOME retrievals using the GEOS-CHEM-derived 
shape factor (third), and the GEOS-CHEM model (last). The text provides more details. 
The model results are obtained by averaging NO2 data during the satellite overpass time 
period (1000-1100, LT).  
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columns. In April and May, both models slightly underestimate NO2 columns in the 

western United States likely due to underestimated soil NOX emissions [Martin et al., 

2003; Bertram et al., 2005; Jaegle et al., 2005]. The GEOS-CHEM model also 

underestimates NO2 columns in GOME over the western North Atlantic due to their 

lower lightning NOX production over the region. 

 

3.4.1.2.3  NO2 column sensitivities to lightning and soil emissions and convection 

 We compute the contributions of lightning production, convective transport, and 

soil emissions by comparing sensitivity simulations with each process turned off and the 

standard REAM simulation. Figure 3.3 shows monthly mean column differences between 

the standard model and sensitivity simulations. The largest impact on the tropospheric 

NO2 column appears to be from lightning production, and enhancements are found over 

the southern United States, the Gulf, and the western North Atlantic. The smallest impact 

is from convection, and some enhancements are seen over western Texas and some 

regions of the western North Atlantic Ocean. Enhancements from soil emissions are seen 

over the central United States.  

 In contrast to the decreasing trend of tropospheric NO2 columns (Figure 3.2), 

lightning and soil contributions increase significantly as solar insolation and atmospheric 

moisture increase. Surface heating and abundant moisture, which lead to more convection 

and lightning and soil emissions, are driven in part by surface temperature. The lightning 

and soil emission contributions increase to about 10% and 7%, respectively, in May. The 

contribution of lightning is larger than that of soil emission, except in February. 
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Figure 3.3  The monthly mean contributions of lightning production, convection, and soil 
emissions to tropospheric NO2 vertical columns (in molecules cm-2).  
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In February and March, lightning NO2 enhancements are typically less than 3.0×1014 

molecules cm-2, but in April and May, they increase to 0.5 - 2.0×1015 molecules cm-2 over 

the southern United States, the Gulf, and the western North Atlantic. By using an 

algorithm in Martin et al. [2002], we estimate monthly mean uncertainties for GOME 

retrievals to 1 - 2×1014 molecules cm-2 over the ocean and 1 - 8×1014 molecules cm-2 over 

the continent. Therefore, the detection of lightning enhancements is much easier over the 

ocean than it is on land. Large enhancements from lightning and soil emissions simulated 

in May are larger than the retrieval errors on a monthly mean basis. 

 

3.4.1.3  Optimization of fossil fuel NOX emissions 

 Optimized NOX emissions are estimated by combining top-down NOX emissions 

from satellite measurements with a priori bottom-up emissions, weighted by relative 

errors for the two estimates [Martin et al., 2003]. NOX emission inventories used in 

REAM [Choi et al., 2005; Jing et al., 2006; Y. Wang et al., 2006] and GEOS-CHEM 

[Bey et al., 2001; Martin et al., 2002, 2003; Jaegle et al., 2005] are used as a priori 

bottom-up emissions. REAM and GEOS-CHEM use the same EPA 1999 NEI inventory 

for surface fossil fuel NOX emissions in the United States.  

 The top-down NOX fossil fuel emission inventory (Et) is first calculated following 

Martin et al. [2003] by fitting Et to a priori bottom-up emission Ea with the ratio of the 

retrieved NO2 column (Ωr) to the simulated column (Ωs): 

Et = Ea ×Ωr /Ωs .      (3.1) 

Monthly a posteriori emissions (E) are then calculated by the weighted averages of Ea 

and Et [Martin et al., 2003]: 
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where εa and εt are the a priori inventory and retrieval errors, respectively. The inventory 

errors are from a study by Martin et al. [2003].  Table 3.1 shows the monthly a priori, 

top-down, and a posteriori emissions derived using REAM and GEOS-CHEM results, 

respectively. The a priori emissions from REAM and GEOS-CHEM are almost the same, 

but the top-down estimates sometimes differ significantly. The top-down emissions  

 
Table 3.1 Monthly North America (20 - 62°N) fossil fuel NOX emissions (Tg N month-1) 
 
 REAM derived GEOS-CHEM derived 
 A priori Top-down A posteri A priori Top-down A posteri 
Feb 0.57 0.49 0.52 0.55 0.41 0.47 
Mar 0.61 0.76 0.69 0.61 0.66 0.64 
Apr 0.59 0.66 0.63 0.58 0.64 0.61 
May 0.61 0.59 0.60 0.60 0.71 0.66 
Avg. 0.60 0.63 0.61 0.59 0.61 0.60 
 

derived by REAM are larger by 3% to 16% than those of GEOS-CHEM between 

February and April, but lower by 20% than those of GEOS-CHEM in May. REAM 

generally has lower mixing depths than GEOS-CHEM, which results in lower AMFs and 

higher NO2 retrievals (discussed previously). Therefore, the emissions derived by REAM 

are usually larger than those derived by GEOS-CHEM. In May, however, REAM has 

larger lightning NOX production than GEOS-CHEM, which results in smaller top-down 

emissions. 

 Optimized emissions derived by REAM are 3% to 9% higher than those derived 

by GEOS-CHEM during the period of February to April, but lower by 10% in May. 

Differences between the two a posteriori emissions are caused by top-down emissions. 
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The seasonal agreement between top-down and a posteriori emissions are fortuitous 

because the boundary layer height and lightning NOX production differences in the 

models are not correlated. We note that the difference between the two model-derived a 

posteriori emissions is well within the uncertainties of the GOME NO2 retrievals. The 

large month-to-month variation in top-down emissions also suggests that this approach 

requires that GOME measurements be taken throughout the entire season. 

 

3.4.2  Carbon Monoxide 

3.4.2.1  Time series of SEARCH CO 

 Figure 3.4 shows a comparison of REAM simulations with SEARCH surface CO 

measurements between February and May. The seasonal change in CO is small during 

the spring. Increasing CO loss due to increasing OH oxidation is compensated by faster 

CO production from VOC oxidation. Observations show that simulated seasonal change 

is small.  REAM also simulates multi-day variations in CO observations reasonably well, 

but the simulated mean CO concentrations (CTR: 242 ppbv, OAK: 213 ppbv, OLF: 228 

ppbv and YRK: 261 ppbv) are higher than the observed concentrations (CTR: 226 ppbv, 

OAK: 187 ppbv, OLF: 168 ppbv and YRK: 193 ppbv). The EPA NEI emissions used in 

the model may also have a high bias. The correlation coefficients between hourly REAM 

simulations and SEARCH CO observations are 0.52, 0.56, 0.63, and 0.48 at the four sites, 

respectively. 

 

3.4.2.2  MOPITT CO 

3.4.2.2.1  Evaluation of MOPITT CO with TOPSE observations 
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Figure 3.4   The same as Figure 3.1, but for hourly observed and REAM simulated CO 
mixing ratios at four surface SEARCH sites. 
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Figure 3.5 The monthly mean cross sections of the MOPITT CO concentrations (ppbv) 
(left column) along TOPSE aircraft tracks, corresponding TOPSE CO concentrations 
processed with the MOPITT averaging kernel (middle), and TOPSE CO observations 
(right). Data selection criteria are described in the text. 
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 TOPSE CO observations processed with MOPITT AK are compared with   

MOPITT CO observations (Figure 3.5) in order to validate MOPITT retrievals. In order 

to maximize data coverage, we use TOPSE observations as long as MOPITT passing 

over the same region was within a day. MOPITT retrievals with a priori fraction <60 % 

are used. MOPITT CO retrievals are in reasonably good agreement with AK-processed 

TOPSE CO concentrations, although high CO peaks from TOPSE observations near 6 

km, particularly in May. Those high peaks are caused by long-range trans-Pacific 

transports in the upper troposphere [Y. Wang et al., 2006]. These upper tropospheric 

enhancements are not captured by MOPITT mostly likely due to the low vertical 

resolution of MOPITT measurements [Deeter et al., 2004]. 

 To further illustrate the AK effects, we group the MOPITT CO profiles along the 

TOPSE flight tracks into three latitudinal bins (< 52°N, 52-57°N, >57°N), as a vertical 

sampling by TOPSE is inadequate to construct the profiles (Figure 3.5). We obtain a ratio 

of TOPSE measurements to REAM simulations at the measurement altitudes and then 

apply the ratio-to-scale REAM simulations for the altitudes without measurements. 

Figure 3.6 shows the regional profile comparison for March to May 2000. Close 

agreement between MOPITT and TOPSE-REAM is found except in May at higher 

latitudes because very few TOPSE measurements went into the profile.  In addition, after 

AK processing, the vertical information in the TOPSE-REAM profiles is clearly lost. 

 

3.4.2.2.2  Comparison of simulated CO columns with MOPITT 

 For the model evaluation, we compare only the column concentrations because of 

insufficient vertical information obtained from MOPITT measurements. During March  
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Figure 3.6 Regional profiles by latitudes for the MOPITT measurements and the 
TOPSE-REAM results with and without AK processing. Region 1 covers the lower-
latitude region of the TOPSE aircraft campaign (latitude < 52°N, in the left column), 
region 2 the middle-latitude region (52°N < latitude < 57°N, in the middle column), and 
region 3 the higher-latitude region (latitude > 57°N, in the right column).  The scaling of 
the REAM results with the TOPSE measurements is explained in the text. 
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Figure 3.7 Mean CO columns (in molecules cm-2) from MOPITT (left panel) during 
April-May of 2000, the corresponding REAM CO columns processed with the MOPITT 
averaging kernel (middle), and the GEOS-CHEM CO columns processed with the 
averaging kernel (right). Model results are sampled at the MOPITT measurement time 
and location.  
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2000, the first month when MOPITT data were collected, large amounts of data are 

missing due to calibrations. Therefore, we show only comparisons in April and May 2000. 

REAM and GEOS-CHEM CO columns processed using MOPITT AK reproduce 

MOPITT CO retrievals well (Figure 3.7). The correlation coefficients between simulated  

and MOPITT monthly mean CO columns are about 0.9 for both REAM and GEOS-

CHEM. REAM mean biases are 1.1 and -1.1% in April and May, respectively. The 

GEOS-CHEM mean biases are 2.45% and -0.49%, respectively. REAM mean columns 

are slightly lower than GEOS-CHEM due to the lower mixing depth in REAM (to be 

discussed in Section 3.4.3.3). 

 

3.4.3  Ozone 

3.4.3.1  Time series of SEARCH surface O3 

 REAM simulated O3 concentrations are compared with SEARCH observations 

from February to May 2000 (Figure 3.8).  In addition to capturing background 

concentrations and multi-day episodes of O3,  REAM reproduces the gradual increase in 

surface O3 at SEARCH sites well from spring to early summer. Simulated mean O3 

concentrations during the four months (CTR: 34 ppbv, OAK: 38 ppbv, OLF: 42 ppbv and 

YRK: 33 ppbv) are in good agreement with observed mean concentrations (CTR: 38 

ppbv, OAK: 43ppbv, OLF: 40 ppbv and YRK: 36 ppbv). The correlation coefficients 

between hourly REAM simulations and SEARCH observations at these sites are 0.69, 

0.69, 0.65 and 0.68, respectively. 

  

3.4.3.2  Monthly mean EPA AIRNow O3 
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Figure 3.8 The same as Figure 3.4 but for surface O3. The black lines are SEARCH 
measurements, and the red lines are REAM results. 
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Figure 3.9 Monthly mean afternoon (1300-1700, LT) surface O3 concentrations (ppbv) 
over the United States in February-May 2000. Shown are the EPA AIRNow observations 
(left column), the REAM simulation results (middle), and the GEOS-CHEM simulation 
results (right). 
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Monthly mean afternoon (1300-1700, LT) O3 concentrations measured by the 

EPA AIRNow surface sites are compared with REAM and the GEOS-CHEM simulations 

from February to May (Figure 3.9). High O3 peaks are generally captured by REAM to 

within 10 ppbv. The correlation coefficients of the REAM results and the EPA 

measurements range between 0.56 and 0.65. The correlation coefficients of the GEOS-

CHEM results and the EPA observations range from 0.44 to 0.68.  The correlations of the 

GEOS-CHEM and EPA observations decrease as the season progresses towards summer.  

Surface O3 concentrations are low in February in part because weak solar influx limits 

photochemical activity. In addition, the titration of O3 by high NO emissions from 

automobiles and power plants can occur. As the season processes towards summer, 

increasing solar influx and water vapor activates photochemistry [Y. Wang et al., 2003]. 

Both REAM and GEOS-CHEM simulate a resulting increase in surface O3. The rate of 

photochemical activation and surface O3 increase are better simulated in REAM than in 

GEOS-CHEM. The global model simulates higher O3 concentrations over the eastern 

United States in April and May than the EPA observations. Inspections of the model 

difference between REAM and GEOS-CHEM reveal that a major contributing factor is 

the differences in the mixing heights used in the model. 

 

3.4.3.3  Mixing depth and surface O3  

 From February to May, both MM5 and GEOS-3 predict increasing boundary layer 

mixing depths as solar insolation increases (Figure 3.10). However, MM5 predicted 

mixing depths used in REAM are in general lower than GEOS-3 predictions used in 

GOES-CHEM. The difference is particularly large over the eastern United States, where  
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Figure 3.10 Average afternoon (1200-1600, LT) mixing depths over North America in 
February-May 2000. The data used in REAM (left column) are simulated by MM5, and 
those used in GEOS-CHEM (right column) are simulated by GEOS-3.  
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Figure 3.11 The comparisons of averaged afternoon (1200-1600, LT) vertical profiles of 
CO and NOX concentrations from the REAM and GEOS-CHEM models. The solid lines 
represent the REAM simulations, and the dotted lines represent the GEOS-CHEM 
simulations. 
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of difference up to a factor of 2 is observed. The shallower mixing depth in REAM 

results in a stronger boundary layer vertical gradient and higher surface concentrations of 

CO and NOX than GEOS-CHEM (Figure 3.11). Surface CO and NOX over North 

America are larger by 15-20 ppbv and 200-300 pptv in the REAM results. In contrast, 

GEOS-CHEM CO and NOX are generally higher at the pressure altitudes of 600-800 hPa. 

During the spring, when the radical source largely driven by photon flux and water vapor 

[Y. Wang et al., 2003] is limited, high concentrations of NOX decrease photochemical 

activity because of increasing radical loss through the reaction of OH and NO2.  Thus, 

less active mixing in REAM predicts lower surface O3 concentrations than in GEOS-

CHEM, and the simulated O3 concentration in REAM is in better agreement with the 

EPA surface measurements (Figure 3.9). 

 

3.4.3.4  MOZAIC O3 

 Most of the MOZAIC flights are in the upper troposphere. We first look at the 

measurements below 350 hPa. The data coverage is limited in these take-off and landing 

flights. Figure 3.12 shows a comparison of the MOZAIC data and the REAM results. 

Most of the data are for the eastern United States because the measurements are taken on 

commercial flights between the United States and Europe. Tropospheric O3 mixing ratios 

are between 30 and 80 ppbv, showing a clear O3 increase as the season shifts towards 

summer, which is consistent with the ozone climatology by Thouret et al. [2006]. REAM 

results reproduce reasonably well MOZAIC observations, except in the southern United 

States in March and May, when REAM overestimates O3 (<10 ppbv) in the lower 

troposphere.    
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Figure 3.12 O3 concentration (ppbv) below 350 hpa from the MOZAIC measurements 
during February-May 2000 (left column) and the corresponding REAM results (right 
column). The REAM data for comparison with the MOZAIC data are sampled along 
MOZAIC aircraft tracks. 
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Figure 3.13  The same as Figure 3.12, but for 250-350 hPa. The O3 data > 200 ppbv from 
MOZAIC and REAM are filtered out. 
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Figure 3.14 Observed and simulated O3 monthly mean vertical profiles (ppbv) for six 
ozonesonde sites at 30-55°N in February-May 2000.  The solid lines represent the 
ozonesonde measurements, and the dotted lines represent the corresponding REAM 
results. The error bars represent the standard deviations of the measurements. 
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Figure 3.14 (continued.) 
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MOZAIC measurements in the upper troposphere show large influences from 

stratospheric air masses, which have high O3 concentrations. We filtered out mixing 

ratios > 200 ppbv in the measurements (and model results) to minimize the effects of 

extreme values. Figure 3.13 shows a comparison of MOZAIC measurements with REAM 

results at 250-350 hPa.  In general, REAM underestimates high O3 concentration 

measurements, except in May. Thouret et al. [2006] found that maximum ozone in the 

MOZAIC measurements is found in the spring in the lower stratosphere, where ozone 

concentrations range from 150 to 500 ppb with a strong vertical gradient near the 

tropopause region. REAM underestimates O3 concentrations compared with MOZAIC at 

that level. We will show the model bias in the comparison of the REAM results with the 

ozonesonde measurements (Figure 3.14). The upper tropospheric O3 simulations in 

REAM are strongly affected by the specified upper boundary conditions at 100 hPa from 

GEOS-CHEM, which exhibits difficulties in simulating the sharp O3 gradient across the 

tropopause [Bey et al., 2001]. 

  

3.4.3.5  Ozonesonde measurements 

 Ozonesonde observations at the six sites over North America are compared with 

the REAM results in Figure 3.14. The observed seasonal trend of increasing tropospheric 

O3 concentration is captured reasonably well by REAM. However, the large 

concentration gradients near the tropopause in the ozonesonde observations are 

underestimated in the model. Stratospheric intrusion events are more frequent in the 

winter and the spring than in the summer. Therefore, the discrepancies between the 

REAM results and the MOZAIC and ozonesonde measurements decrease as the season 
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shifts towards summer. The monthly ozone concentrations and their changes below 350 

hPa are better simulated than they are in the region above. 

 Simulated low-altitude O3 concentrations are generally close to the ozonesondes 

measurements (within 10 ppbv). While the measurements at Boulder, Huntsville, and 

Wallops Island show O3 increases in the lower troposphere, those at Trinidad Head and 

Goose Bay do not undergo large seasonal changes. The latter two stations are not as 

affected by North American NOX emissions as the other stations. The underestimation of 

REAM is the largest at Wallops Island, located at a baroclinic zone that has large ozone 

gradients, described previously by Thouret et al. [2006]. 

 

3.4.3.6  TOMS-SAGE II tropospheric column O3  

 Section 3.2.4 describes tropospheric column O3 derived from TOMS and SAGE II 

measurements.  PV mapping is a promising method of deriving tropospheric O3 at mid-

latitudes. However, the resolution and accuracy of PV mappings largely depend on the 

relatively sparse number of ozonesonde observations [Bithell et al., 1999], and 

ozonesonde observations are usually not coincident with SAGE measurements. Therefore, 

capturing events in synoptic or smaller scales is difficult using the PV mapping method. 

We use tropospheric O3 products here to qualitatively examine the seasonal transition. 

Figure 3.15 compares TOMS-SAGE II tropospheric O3 column with REAM and GEOS-

CHEM results from February to May 2000. Both the satellite products and the models 

show a springtime increase in tropospheric O3 over North America, even though absolute 

amounts of column O3 from the PV mapping method do not agree well with either model. 

High O3 columns are clearly shown over the western North Atlantic in the satellite  
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Figure 3.15 Monthly mean tropospheric O3 columns derived from TOMS total columns 
and SAGE II stratospheric columns (first column), the REAM standard simulation 
(second), the REAM sensitivity simulation without lightning NOX production (third), and 
the GEOS-CHEM simulation (last). 
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derived columns, particularly in May. The standard REAM model produces significant 

enhancements over the region while GEOS-CHEM does not. A sensitivity REAM 

simulation without lightning NO production exhibits much weaker enhancements, 

suggesting that lightning NO production is the main contributor to O3 enhancements over 

the western North Atlantic. REAM-simulated lightning NOx enhancements (Figure 3.3) 

cover regions similar to TOMS-SAGE-derived O3 enhancements. However, the resulting 

O3 enhancements are mainly in the southern region, where solar influx is large. 

  

3.4.4  Pollutant Export/Import Fluxes and Budget Calculations 

3.4.4.1  Longitudinal pollutant fluxes  

 Fluxes of NOX, NOy, CO, and O3 imported to and exported from the troposphere 

in North America are estimated using the REAM results.  Fluxes throughout the western 

and eastern boundaries are a factor of 18 larger than throughout the north and south 

boundaries.  Here, we focus on longitudinal fluxes. Figure 3.16 shows the longitudinal 

import and export fluxes of these pollutants as a function of latitude. We find net import 

in the western boundary region and net export in the eastern boundary region. Import 

fluxes are generally smaller than export fluxes. The import and export fluxes of NOX are 

smaller than those of NOy, CO, and O3 due to the relatively low concentrations of NOx 

caused by its shorter lifetimes. The latitudes of maximum NOX export are different from 

those of NOy, CO and O3. The shorter lifetimes of NOX dictate that the export flux 

reflects more the locations of NOx emissions, where longer-lived species are affected 

more by meteorology. The latitudes of NOX, NOy, CO, and O3 export peaks in May are 

similar to those in June 1985 from PK04 [Park et al., 2004b, hereafter referred to as  
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Figure 3.16 The longitudinal import and export fluxes of NOX, NOy, CO, and O3 over 
North America in the troposphere as a function of latitude. The western and eastern 
boundaries are the same as those depicted in Figure 3.15. The solid lines represent export 
fluxes while the dotted lines represent import fluxes. 
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Figure 3.17  The same as Figure 3.16, but for altitude. 
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PK04], but the NOX export in May in this study is higher by a factor of 3 than that by 

PK04, reflecting higher lightning NOx production. The peak NOy export in this study is 

also higher than PK04 by 25%. The net export of NOx increases from February to May 

because of increasing emissions from lightning and soils (Figure 3.3). The net exports of 

CO and O3 at 20-40 °N are most significant in May, driven in part by more activate 

convection in the region. 

 Figure 3.17 shows longitudinal import and export fluxes as a function of altitude. 

REAM shows that significant pollution import from the West takes place in the upper 

troposphere, and that export fluxes of NOX and NOy are much larger than import fluxes at 

high altitudes. This trend is also shown in PK04. The peak NOX export in May in this 

study is larger than that from PK04 by a factor of 5. The peak export of NOy in this study 

is larger than that of PK04 by 38%.  Import fluxes of NOX and NOy in this study are 

similar to those from PK04.  In addition, in PK04, less CO was exported than imported 

above 7 km in March-May due to a stronger jet stream over the Pacific than over the 

Atlantic, which is also shown in this study. PK04 shows that less O3 is exported than 

imported above 9 km.  By comparison, we find that O3 export fluxes are similar to the 

import fluxes in the upper troposphere in this study, likely due to higher lightning NOX 

production. 

 Export of NOX in the upper troposphere is enhanced due to lightning production 

[Pickering et al., 1998; Choi et al., 2005].  Simulated NOX export fluxes at 12 km 

increase from 1.8×107 moles day-1 to 4×107 moles day-1 from February to May. This 

increase is associated with active lightning NOX production as the season shifts towards 

summer. Sensitivity studies (not shown) indicate that lightning production enhances NOX 
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and NOy exports in the upper troposphere (8-12 km) by 252% and 66%, respectively, in 

May. 

 Maximum NOX fluxes occur at about 10 km in February, March, and April, and at 

about 12 km in May due to lightning NOX enhancements at high altitudes. The maximum 

O3 and NOy fluxes are located at about 10-15 km.  Maximum CO fluxes occur at about 9 

km. Maximum CO fluxes take place at a lower altitude because the source of CO 

emissions is primarily at the surface. By comparison, the sources of NOX (and hence, 

NOy) are aircraft and lightning in the upper troposphere, and O3 has net production in the 

upper troposphere [e.g., Y. Wang et al., 2003]. 

 

3.4.4.2  Net fluxes in the free troposphere and boundary layer   

3.4.4.2.1  Net flux in the lower and middle troposphere 

 We chose 7 km as the top of the middle troposphere in order to compare our 

results with those of PK04.  Net fluxes of NOX in the lower and middle troposphere (<7 

km) are 0.037, 0.014, 0.023, and 0.024 Gmol day-1, and those of NOy are 0.47, 0.32, 0.36, 

and 0.43 Gmol day-1 from February to May 2000 (Table 3.2a). NOX and NOy net fluxes 

decrease from February to March, but beginning in April, the net fluxes increase due to 

enhanced lightning and soil NOX emissions. Compared with the net fluxes of NOX and 

NOy in June from PKO4, NOX, and NOy the net fluxes in May in this study are larger by 

50% and 79%, respectively.  

 Export CO fluxes from North America in the lower and middle troposphere are 93, 

61, 53, and 49 Gmol day-1 from February to May, compared with imports of 61, 61, 52, 

39 Gmol day-1 (Table 3.2a). The import and export fluxes in May in this study are larger 
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than those from PK04. However, the net CO flux over North America in May is 10 Gmol 

day-1, which is similar to the 12 Gmol day-1 in June from PK04. Net flux is largest in the 

winter due to slow photochemical loss, but net flux in May is larger than in March and 

April in part due to the increase of photochemical CO production. The difference in 

import CO fluxes between PK04 (20 Gmol day-1) and those in this study (39 Gmol day-1 

in May) could stem from a number of factors, including an underestimation of Asian 

fossil fuel emissions and an overestimation of OH concentrations in the spring and the 

summer in PK04 [Park et al., 2004a]. Other contributors could be the month and 

interannual differences.    

 The net O3 flux in the lower and middle troposphere in May in this study (6 Gmol 

day-1) is smaller than that in PK04 (10 Gmol day-1 in June). Photochemistry is more 

active in June than it is in May. PK04 used meteorological fields from GEOS-3 Stretched 

Grid Data Assimilation System (SG-DAS) [Fox-Rabinovitz et al., 2002], which may also  

 
Table 3.2a The import and export fluxes of tracers in the lower and middle troposphere 

(<7 km) over North America (20 – 62°N, Gmol day-1) 
 
 Import fluxes Export fluxes 
 Feb Mar Apr May Feb Mar Apr May 
NOx 0.003 0.006 0.007 0.006 0.04 0.02 0.03 0.03 
NOy 0.11 0.14 0.13 0.09 0.58 0.46 0.49 0.52 
CO 61 61 52 39 93 61 53 49 
O3 21 21 20 16 30 22 21 22 
 
Table 3.2b Same as table 3.2a, but in the boundary layer (<2.5 km) 
 
 Import fluxes Export fluxes 
 Feb Mar Apr May Feb Mar Apr May 
NOx 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 
NOy 0.01 0.02 0.02 0.007 0.31 0.20 0.19 0.21 
CO 18 17 13 9 33 19 14 16 
O3 5.2 4.5 3.8 2.5 8.2 5.2 4.2 5.3 
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have deeper mixing depths than MM5 simulations in REAM, resulting in higher O3 

concentrations near the surface, as in the case of GEOS-CHEM (see Figure 3.9). 

  

3.4.4.2.2  Net flux in the boundary layer  

 We chose 2.5 km as the top of the boundary layer in order to compare our results 

with those of PK04. NOX exports in the boundary layer are 0.02, 0.01, 0.01, and 0.01 

Gmol day-1, and NOy exports 0.31, 0.20, 0.19, and 0.21 Gmol day-1 from February to 

May, respectively (Table 3.2b). PK04 shows NOx and NOy exports of 0.01 and 0.11 

Gmol day-1, respectively, in the boundary layer in the month. Whereas the net flux 

difference in NOX in the troposphere (<12 km) of the two studies is large, the net fluxes 

of NOX in the boundary are the same (Table 3.2b) because the impact of lightning NOX is 

primarily in the upper troposphere. Some of the lightning NOX in the free troposphere is 

transported to the boundary layer. During transport, NOX is oxidized into longer-lived 

NOy species such as HNO3. As a result, the NOy export is larger. 

 Export CO fluxes in the boundary layer are 33, 19, 14, and 16 Gmol day-1 and 

import CO fluxes 18, 17, 13, and 9 Gmol day-1 from February to May, respectively. Net 

CO fluxes over North America are 15, 2, 1, and 7 Gmol day-1 for the February to May 

period. The net CO flux in May is comparable to that of 7.2 Gmol day-1 in June from 

PK04. 

 Exports of O3 in the boundary layer are 8.2, 5.2, 4.2, and 5.3 Gmol day-1 and 

imports 5.2, 4.5, 3.8, and 2.5 Gmol day-1 from February to May.  Net exports are 3.0, 0.7, 

0.4 and 2.8 Gmol day-1 from February to May. The net flux in May is smaller than the 
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4.88 Gmol day-1 in June from PK04 for the same reasons discussed for the lower and 

middle tropospheric flux comparison. 

 

3.4.4.2.3  Export efficiencies for NOX 

 North American NOX emissions (20-62°N) are about 1.47 Gmol day-1. About 

1.4%, 0.7%, 0.6%, and 0.7% of the emission are exported as NOX, and 20%, 12%, 12%, 

and 14% are exported as NOy from the boundary layer from February to May, 

respectively. Because of more active convection (and lightning production) towards May, 

the export efficiency of NOx increases while that of photo-oxidation decreases. The ratio 

of NOX fluxes in the boundary layer to total emissions in May is comparable to that of 

PK04 (0.6%), but the ratio for NOy is twice as large as that of PK04 (7%), suggesting a 

large difference between the two models with regard to reactive nitrogen speciation. 

Considering the region below 7 km, 2.5%, 1.0%, 1.6%, and 1.6% are exported as NOX 

and 32%, 22%, 24%, and 29% as NOy from February to May, respectively.  PK04 

showed that 1% and 15% of NOX emissions were exported as NOX and NOy, respectively. 

The export efficiencies of NOX and NOy fluxes from the lower and middle troposphere in 

this study are 60% and 100% larger than those of PK04, respectively. 

 

3.5  Conclusions 

 We apply a regional chemical transport model (REAM) to analyze surface, 

ozonesonde, aircraft, and satellite measurements over North America from February to 

May 2000, in order to investigate the transitions of the concentrations and fluxes of O3 

and its precursors during the rapid photochemical and dynamical changes that occur in 



 80

the spring. The GEOS-CHEM model is used to provide not only chemical initial and 

boundary conditions but also targeted comparisons with REAM results. Pollutant fluxes 

from this work are compared with earlier work by PK04. Surface observations from the 

EPA AIRNow and SEARCH networks, aircraft observations from the TOPSE and 

MOZAIC experiments, ozonesondes, and satellite measurements from GOME, MOPITT, 

TOMS, and SAGE II are analyzed.  

 The REAM results are generally in good agreement with observations in the 

troposphere. Comparisons of surface measurements from EPA AIRNow (O3) and 

SEARCH networks (O3, CO, and NOX) show that REAM performs reasonably well in 

simulating multi-day variations and seasonal transitions. The model is in reasonable 

agreement with MOZAIC and ozonesonde O3 measurements in terms of seasonal 

transitions, but simulated O3 concentrations above 350 hPa are biased low because the 

specified upper boundary condition for O3 is also biased low. The low bias decreases 

towards May as tropospheric chemistry becomes more important. Qualitative agreement 

between the model results and TOMS-SAGE II-derived tropospheric O3 column are 

found. Lightning NOX production is found to contribute large O3 enhancements over the 

western North Atlantic in May. 

 MOPITT CO measurements are found to be in good agreement with column 

concentrations derived from TOPSE in situ measurements and REAM-simulated vertical 

CO profiles. However, after AK processing, the vertical information in the in situ 

measurements is clearly lost.  The two model results are in good agreement with 

MOPITT CO columns with high correlation coefficients (R>0.89) and small mean biases 
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(< ±2.45%). The mixing depth in REAM is lower than in GEOS-CHEM, contributing to 

slightly lower a REAM mean CO column.  

Comparisons of GOME NO2 columns with REAM and GEOS-CHEM show that 

the model captures GOME spatial variation well in the spring (R> 0.85) with small mean 

biases (<±11%). While active photochemical oxidation leads to lower NO2 columns from 

February to May, NOx emissions from lightning and soils also increase. The resulting 

monthly mean enhancements are 0.5-2×1015 and 0.5-1.0×1015 molecules cm-2, 

respectively. Some NOX enhancements in May due to lightning and soil emissions are 

larger than GOME retrieval uncertainties, suggesting that satellite measurements may be 

used to constrain the emissions.  

 A major difference found between REAM and GEOS-CHEM simulations is that 

the increase in surface O3 concentrations from February to May over the eastern United 

States in GEOS-CHEM is larger than it is in the REAM or EPA surface observations. A 

key factor driving the model difference is mixing depth, which is much lower in REAM 

(simulated by MM5) than it is in GEOS-CHEM (simulated by GEOS-3). With limited 

supplies of radicals in the springtime, a larger mixing depth in GEOS-CHEM results in 

faster photochemical activation because radical loss by the reaction of OH and NO2 

decreases. 

 Another difference between REAM and GEOS-CHEM is that lightning NOx 

production is larger in REAM, particularly over the western North Atlantic, where 

REAM results are in better agreement with GOME NO2 measurements. Because the 

mixing depth is shallower and lightning NOX production is larger, REAM simulates 

larger NOx vertical gradients in the lower and upper troposphere than GEOS-CHEM. 
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Higher surface concentrations and a larger boundary layer gradient in REAM leads to 

smaller AMFs in GOME NO2 retrievals, which leads to higher top-down estimates of 

fossil fuel NOX emissions (3-16%) than GEOS-CHEM from February to April. In May, 

however, higher lightning NOX emissions in REAM leads to a smaller top-down estimate 

(20%) than those in GEOS-CHEM. Over the course of the season, the top-down 

estimates from the two models are essentially the same and in close agreement with those 

from the EPA NEI inventory. 

 Lightning NOX production is a major contributor to the seasonal increase in the 

exports of NOX and NOy from North America in the upper troposphere. As a result, 

simulated NOX export fluxes at 12 km increase by more than a factor of 2 from February 

to May (1.8 to 4 × 107 moles day-1). In May, lightning production enhances NOX and NOy 

exports in the upper troposphere (8-12 km) by 252% and 66%, respectively. The effects 

of lightning on the net fluxes of NOX and NOy in the lower and middle troposphere are 

smaller. The model estimates 0.6-0.7 and 12-14% of NOX and NOy, respectively, are 

exported from the boundary layer from March to May.  
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CHAPTER IV 

EVIDENCE OF SPRING-SUMMER NORTHWARD MIGRATION OF HIGH O3 
OVER THE WESTERN NORTH ATLANTIC 

 
4.1 Introduction 

 A major pathway for North American pollution outflow is cloud convection along 

with the warm conveyor belt (WCB) during the spring and summer [Li et al., 2005; Kiley 

et al., 2006]. Cloud convection, which is associated with lightning, enhances the 

precursor of ozone in the upper troposphere (UT) during the spring and summer. Due to 

convection, the enhanced precursors in the upper troposphere (UT) [Bertram et al., 2007] 

are largely exported to the North Atlantic due to stronger westerly winds [Park et al., 

2004; Choi et al., 2005, 2007a]. The chemical consequences of the addition of NOX in 

the UT due to aircraft or lightning NOX production on HOX and O3 chemistry over the 

western North Atlantic have been studied from previous aircraft campaigns such as the 

3 SASS (Subsonic Assessment) Ozone and NOX Experiment (SONEX), the NOAA 

Intercontinental Transport and Chemical Transformation (ITCT 2004), and the NASA 

Intercontinental Transport Experiment-North America, Phase A (INTEX-A) [Brune et al., 

1999; Jaegle et al., 1999; Liu et al., 1999; Singh et al., 1999; Crawford, J., 2000; Bertram 

et al., 2007; Hudman et al., 2007]. Jaegle et al. [1998, 1999] also showed that NOX 

concentration to transfer North America from NOX-limited to NOX-saturated regimes in 

the spring is higher than that in the fall. Choi et al. [2005] also demonstrated that the 

transient enhancements of lightning NOX and the convective transport of CO have large 

enough signals for satellites to detect. Their impact on pollutant distributions averaged 

over a long time period become more difficult over land, but the signals are easier to 
                                                 
3This Chapter is for “Evidence of spring-summer northward migration of high O3 over the western North 
Atlantic,” prepared for the submission to Geophysical Research Letter in 2007. Authors are Y. Choi, et al.  
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detect over the ocean [e.g., Li et al., 2005; Choi et al., 2005, 2007a]. In this work, we 

examine pollutant enhancements and their chemical consequences over the western North 

Atlantic during the transition from spring to summer in 2005 using measurements from 

recent satellite instruments, OMI, MLS, and TES, onboard the NASA Aura satellite. The 

Regional chEmical and trAnsport Model (REAM) [Choi et al., 2005, 2007a] is applied to 

analyze the satellite measurements.  

 Many investigators have reported better agreement between the satellite 

measurements and the model results in tropical regions than at mid- and high-latitudes 

[e.g., Chandra et al., 2003, 2004; Edwards et al., 2003; Martin et al., 2006a, 2006b; 

Ziemke et al., 2006].  Recent GEOS-CHEM studies show increased lightning NOx 

production at higher latitudes from the standard model [e.g., Martin et al., 2006b; 

Hudman et al., 2007].  In the REAM model, lightning NOx production shows reasonably 

good agreement with measurements [Choi et al., 2005]. Convective transport of CO is in 

agreement with MOPITT measurements [Choi et al., 2005]. Simulated transient 

tropospheric O3 column changes are in general agreement with OMI-MLS derived 

tropospheric O3 column observations [Jing et al., 2006]. More detailed REAM 

evaluations with surface, ozonesonde, aircraft, and satellite measurements are presented 

by Choi et al. [2007a]. In this work, we conduct sensitivity analyses to investigate the 

effects of surface pollutant emissions and lightning NO production on the spring-summer 

migration of high O3 over the western North Atlantic. 

 
4.2 Satellite Measurements: OMI-MLS Tropospheric Column O3, OMI 
Tropospheric Column NO2, and TES O3 and CO 
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 OMI, MLS, and TES are onboard the NASA Aura satellite, which passes over the 

equator at 1345 PM local time.  The horizontal resolutions of OMI, MLS and TES are 13 

km×24 km, 30 km×150 km×2.5 km, and 5 km×8 km.  The tropospheric O3 column is 

derived using a residual method. We use a combination of MLS profiles above 215 hPa 

and OMI level 2 total column O3. The OMI and MLS coincidence criteria are ± 1.25° 

longitude by 1.25° latitude on the same day. The mid-latitude stratospheric O3 columns 

between 215 hPa and the tropopause are obtained by SAGE II mapping profiles [Yang et 

al., 2007].  The tropospheric O3 column is then obtained by subtracting stratospheric O3 

columns from the OMI total columns. To avoid the interference of clouds on satellite 

measurements, we use only the OMI total column obtained under clear sky conditions 

defined as the reflectivity of < 10% based on OMI 360 nm reflectivity data.  A detailed 

validation of the OMI-MLS tropospheric O3 products was performed by Yang et al. 

[2007].  

The retrieval of tropospheric NO2 columns from OMI measurements [Bucsela et 

al., 2006] and their uncertainty are obtained from the NASA Goddard Earth Sciences 

Distributed Active Archive Center (GES DAAC). We use only OMI tropospheric NO2 

column data with a cloud fraction of < 40%. TES O3, and CO data are obtained from the 

NASA Langeley Atmospheric Science Data Center (ASDC).  Only TES O3 and CO 

retrieval data with a degree of freedom (DFS) of > 3.5 and 1.0, respectively, are used. 

When compared with the results of the observations, the REAM results are processed 

with TES retrieval averaging kernels for O3 and CO, described by Worden et al. [2007] 

and Luo et al. [2007], respectively. TES O3 and CO are interpolated onto 3° latitude by 

4° longitude using measurement locations. 
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4.3 Model Description 

 The model set up in this study is the same as that set up by Choi et al. [2005, 

2007a].  REAM has a horizontal resolution of 70 km, with 23 vertical layers reaching 10 

hPa. The National Center for Atmospheric Research/Penn State MM5 is used to simulate 

meteorological fields using four-dimensional data assimilation (FDDA) [Stauffer et al., 

1991] with the National Center for Environmental Prediction reanalysis, surface, and 

rawinsonde observations. Most meteorological variables are archived every 30 minutes. 

For convection and lightning, they are archived every 2.5 minutes. Spring and summer 

2005 GEOS-CHEM model simulations provide initial and boundary conditions for trace 

gases. Regional simulations were spun up during the last two weeks of March 2005. 

Emission inventories for combustion and industrial sources are taken from GEOS-CHEM 

[Bey et al., 2001], except for the fossil fuel NOX and CO emissions over the United 

States, which are taken from the 1999 US Environmental Agency National Emission 

Inventory. Our previous lightning NOX production in REAM using convective available 

potential energy and cloud mass flux resulted in evidence of the lightning-caused NOX 

signals over North America seen in GOME during spring [Choi et al., 2005, 2007a]. The 

model produces 3.0 × 1026 NO molecules per flash of intracloud and cloud-to-ground 

flashes.  

 

4.4 Results and Discussion 

4.4.1 OMI-MLS Tropospheric O3 
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Figure 4.1 Monthly mean tropospheric O3 columns from April to August 2005 derived 
from OMI-MLS satellite measurements (first column), REAM simulations (second 
column), O3 produced due to lightning NO production (third column), and O3 produced 
due to surface emissions (last column). 
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Figure 4.1 shows the monthly mean tropospheric column O3 derived from OMI-

MLS satellite measurements and the corresponding model simulations from April to 

August 2005. The model-simulated O3 concentrations are added to the level that located 

on the tropopause level from NCEP reanalysis data. OMI-MLS column shows high O3 

over the eastern United States and the western North Atlantic. Despite large surface 

emissions of O3 precursors over North America, O3 enhancements over the western North 

Atlantic are as high as they are over the eastern United States. In fact, in April and May, 

O3 enhancements (> 45 DU) over the ocean regions are higher than they are over land. As 

the season progresses from spring to summer, the high O3 regions over the western North 

Atlantic move northward from the coast off Florida to New England. In comparison, over 

the eastern United States, little O3 enhancement occurs in April. The O3 enhancement 

first reaches the southeastern United States in May, and by June, it covers the entire 

eastern United States. Photochemistry and O3 production slow in April, so the O3 

enhancements are further downwind from the source regions than they are during the 

summer months. 

Compared with the OMI-MLS measurements, REAM-simulated tropospheric O3 

columns tend to be lower in June but higher in August. Overall, the model reproduces the 

aforementioned features in the OMI-MLS measurements.  The measurements indicate 

that some of the enhancements over Canada and its coast in April and May are probably 

related to ozone from the stratosphere, but they are not captured by the model.  A detailed 

comparison with MOZAIC aircraft O3 measurements and ozonesondes by Choi et al. 

shows that REAM exhibits a tendency of underpredicting upper tropospheric ozone (<  
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Figure 4.2 Tropospheric O3 columns measured by ozonesondes, derived from OMI-MLS 
and simulated by REAM at Wallops Island from April to August 2005. Coincidence 
criteria for OMI-MLS-derived column ozone are at ±3° longitude, ±2.5° latitude on the 
same day as the ozonesonde measurements. Ozonesonde data are obtained from the 
World Ozone and Ultraviolet Data Center (WOUDC). 
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350 hPa) due to the low bias in the prescribed upper boundary condition of O3 from 

GEOS-CHEM simulations. Yang et al. [2007] has conducted comprehensive 

comparisons of the OMI-MLS tropospheric O3 columns with ozonesonde measurements. 

As an illustration, we show the comparison of OMI-MLS tropospheric O3 columns with 

ozonesonde measurements at Wallops Island (38°N, 75°W) in April-August, 2005 

(Figure 4.2). The tropopause levels for ozonesonde column calculations are also taken 

from the NCEP reanalysis data. We also show the corresponding REAM simulation 

results. Compared with ozonesondes, both OMI-MLS and REAM underestimate 

tropospheric O3 columns, the mean biases being -3 and -4 DU for OMI-MLS and REAM, 

respectively, and the correlation coefficients 0.81 and 0.82, respectively. The more 

extensive evaluation with 8 ozonesonde stations by Yang et al. [2007] shows a bias (-4.7 

DU) at 35-60°N in summer. The OMI-MLS biases do not affect the results of this study. 

 

4.4.2  OMI Tropospheric Column NO2   

NOx is a major precursor for tropospheric O3 production. Figure 4.3 shows the 

average tropospheric NO2 columns retrieved from OMI and simulated by REAM in the 

summer of 2005. Overall, the model results are in reasonably good agreement with OMI 

retrievals. Compared with the OMI tropospheric NO2 column, REAM overestimates NO2 

columns by ~1 × 1015 molecules cm-2 over the Ohio Valley, where power plant NOx 

emissions are large. Frost et al. [2006] and Kim et al. [2006] found large reductions of 

NOx emissions from power plants. That reduction was not taken into account in the 

model. We compute the contribution of lightning to the NO2 column by comparing the 

standard model results to a sensitivity simulation in which lightning NO production is  
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Figure 4.3 Monthly mean tropospheric NO2 columns during summer 2005 from OMI 
satellite measurements, those from REAM simulations (second column), and those 
contributed by lightning production in the model (third column). Only OMI data with 
cloud fractions of < 40 % are used. Corresponding model results are sampled at the same 
time as the OMI measurements. 
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turned off.   Results show that the contribution of lightning appears to be overestimated 

over northern Mexico. REAM also simulates higher NO2 column over the ocean than 

OMI. Compared to GOME [Choi et al., 2005, 2007a] and SCIAMACHY [Martin et al., 

2006], the NO2 columns retrieved from OMI over the western North Atlantic are lower. 

The reasons for this finding are unclear. 

 

4.4.3  TES UT O3 and CO Measurements 

 Due to insufficient spatial coverage of TES O3 and CO measurements over North 

America from April to June 2005, we use only TES observations in July and August. 

TES O3 distributions are patchy due in part to measurement uncertainties. Compared with 

TES O3 at 300 hPa (250-350 hPa), monthly mean REAM O3 concentrations have a low 

bias of 5-6% and a correlation coefficient of 0.5.  Comparisons with in situ measurements 

such as ozonesondes show that UT TES measurements tend to overestimate O3 [Worden 

et al., 2007] but the lightning-derived UT O3 enhancements in the model are consistent 

with lightning-caused O3 column peaks (Figure 4.1).  Monthly mean UT O3 

enhancements due to lightning are larger than 20 ppbv over a large portion of the western 

North Atlantic, the southeastern and Gulf coasts, and the southern United States (Figure 

4.4). These enhancements are larger than the uncertainties of monthly mean TES O3 

retrievals, which range from 5 to 20 ppbv. 

 Compared with TES CO at 300 hPa, REAM CO concentrations exhibit larger 

mean differences in July and August of -6.4% (R=0.44) and -7.4% (R=0.41), respectively 

(not shown), due to the approximately 30% overestimated CO emissions in the 1999 EPA 

NEI [Hudman et al., 2007] and the UT CO underestimation of TES, as shown by Luo et  
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Figure 4.4 Monthly mean tropospheric O3 concentrations at 300 hPa (250-350) for July 
and August 2005 from measurements from the TES satellite measurements (first 
column,), those from REAM (second), and those from the difference between REAM and 
the model turning off lightning NOX production (third). Only TES O3 data with a degree 
of freedom of > 3.5 are used. Corresponding model results are sampled at the same time 
as the TES measurements. 
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al. [2007] from the comparisons with MOPITT CO.  UT CO enhancements due to cloud 

convection that occurs over the southeastern coast, the southern United States, and the 

western North Atlantic, are generally consistent with O3 column peaks due to convective 

outflow during the summer (Figure 4.1), but the REAM CO enhancements ranging from 

6 to 20 ppbv are comparable to the uncertainties of monthly mean TES CO retrievals 

ranging from 10 to 15 ppbv. 

 

4.5 Conclusions  

 The spatial distribution of O3 and its precursors are strongly affected by cloud 

outflow and lightning NOX production. The tropospheric O3 column by OMI and MLS, 

the tropospheric NO2 column by OMI, and UT CO and O3 by TES can be used to identify 

the impact of these transient factors using REAM. The OMI-MLS and TES independent 

satellite measurements show consistent convective outflow and lightning. Large 

enhancements of column and upper tropospheric O3 comparable to those over the eastern 

United States are found over the western North Atlantic both in the satellite 

measurements and REAM simulations. The O3 column peak region moves from the 

southern to northern North Atlantic due to convective outflow and lightning during spring 

to summer. Results of the model indicate large UT O3 and CO enhancements due to 

lightning and cloud convection during the summer, suggesting that high-altitude aircraft 

campaigns will provide pivotal observations for evaluating model simulations and 

validating satellite observations. However, satellite uncertainties are still too large, so that 

model sensitivity is still critical to examine the underlying the detail mechanism of the 

factors. This study also provide opportunities for the future study of the impact of spatial 
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perturbations in the amount of O3, aerosols, and their precursors driven by cloud 

convection, lightning, and photochemistry on global climate change. 
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CHAPTER V 

LATE-SPRING INCREASE OF TRANS-PACIFIC POLLUTION 
TRANSPORT IN THE UPPER TROPOSPHERE 

 

5.1 Introduction 

Researchers have been concerned about the trans-Pacific transport of pollutants to 

North America [e.g., Andreae et al., 1988; Merrill et al., 1989; Kritz et al., 1990; Parrish 

et al., 1992].  They have been most concerned about the increase of pollution from Asia, 

particularly China, which has recently undergone dramatic economic growth, due to the 

resulting O3 concentrations and their impact on the United States [e.g., Jacob et al., 1999; 

Berntsen et al., 1999].  For example, subsidence caused by high O3 transported from Asia 

and produced catalytically by NOx (NO+NO2) during the oxidation of CO in addition to 

volatile organic compounds (VOCs) could significantly exceed standards set by the 

National Ambient Air Quality Standard at California mountain sites [Hudman et al., 

2004]. 

Previous analyses of the effects of trans-Pacific transport have focused on 

measurements of low-altitude O3, CO, and peroxyacetyl nitrate (PAN) [Jaffe et al., 1999; 

Lin et al., 2000; Jaffe et al4., 2003].  However, this study will focus on two unexplored 

issues and evaluate current methods of simulating these observed features.  One is to 

ascertain the differences between the characteristics of upper tropospheric trans-Pacific 

transport and those at lower altitudes; and the other is to determine the effects over North 

America of trans-Pacific transport on O3 and its most critical precursor, NOx. To our 

                                                 
4This chapter is for “Late-spring increase of trans-Pacific pollution transport in the upper troposphere,” 
published at Geophysical Research Letter (33, L01811, doi:10.1029/2005GL024975). Authors are Y. 
Wang, Y. Choi, T. Zeng, B. Ridley, N. Blake, D. Blake, and F. Flocke. 
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knowledge, no one has examined the impact of trans-Pacific transport on North American 

NOx. 

This study will analyze the data from the Tropospheric Ozone Production about 

the Spring Equinox (TOPSE) experiment between February and May of 2000 [Atlas et al., 

2003].  The experiment, comprised of thirty-eight science flights in seven deployments 

(one to two weeks apart), took place in a region that spanned from Colorado to north of 

Thule, Greenland.  The purpose of the experiment was to measure a comprehensive suite 

of chemical species relating to tropospheric O3 chemistry from the surface up to 8 km.  

This research will analyze the measurements of the TOPSE experiment using 

REAM [Choi et al., 2005] and the global GEOS-CHEM model [Bey et al., 2001].  

Within the continental United States and Canada, the REAM model domain covers a 

horizontal resolution of 70x70 km2 and 21 layers up to 100 hPa in the vertical [Choi et al., 

2005].  To simulate the meteorological fields, this study employed the National Center 

for Atmospheric Research/Penn State MM5 using four-dimensional data assimilation 

along with the National Center for Environmental Prediction reanalysis, surface, and 

rawinsonde observations. Initial and hourly boundary conditions for trace gases were 

provided by the spring 2000 simulations that used the global GEOS-CHEM model 

(version 7.2.4 with a horizontal resolution of 2°x2.5° and 30 layers up to 0.01 hPa, 

GEOS-3 meteorological fields). REAM shares the chemistry and deposition modules of 

GEOS-CHEM. More importantly, convective transport and lightning NOx production 

schemes in the REAM are implemented [Choi et al., 2005]. 
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5.2  Results and Discussion 

Results of the analysis of TOPSE 2000 showed that upper tropospheric reactive 

nitrogen NOx and PAN increased the most during the late spring [Y. Wang et al., 2003a].   

Based on observed and simulated NOx mixing ratios from March to May TOPSE aircraft 

observations, an initial investigation identified large increases of NOx concentrations 

above 5 km, shown in Figure 5.1.  The REAM is in reasonable agreement with the low 

concentrations in the upper troposphere observed in February (not shown) and March. 

However, since it simulates some enhancements in April, but none in May, it 

underestimates NOx concentrations to a great extent.  April REAM enhancements, which 

were not simulated in the global GEOS-CHEM model, are the result of localized 

convective transport and lightning NOx production.   

Because of the presence of a high-pressure ridge system residing over the western 

United States in May, neither the REAM nor the CEOS-CHEM model shows significant 

lightning and convective activity over the region, but measurements in each flight during 

this time (not shown) reveal four enhancements, which reach 200 km horizontally and 2 

km vertically, with NOx mixing ratios of >50 pptv at altitude >6 km.  However, these 

measurements are often restricted by sampling. Two of the enhancements (not shown) 

were discernable but underestimated by the corresponding model simulations.  Previous 

NOx simulations that used differing regional (HANK [Hess et al., 2000]) and global 

(MOZART-2 [Horowitz et al., 2003]) CTMs also found model underestimations of 50% 

to 60% with several data points of simulated NOx mixing ratios >50 pptv above 5 km 

[Emmons et al., 2003].  Nevertheless, these researchers did not provide reasons for such 

significant underestimation. 
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Figure 5.1 Observed and REAM-simulated monthly mean distributions of NOx from 
March to May 2000. The REAM data were sampled along the TOPSE flight tracks.  

 

 

 

 



100 

Overall, four different models with largely independent model formulations of 

convective transport and lightning parameterization and often drastically different 

meteorological fields and chemical formulations show that the models greatly 

underestimate upper tropospheric NOx concentrations in April and May.  However, this 

finding does not appear to be a poor representation of convection or lightning NO 

production. Model simulated NOx enhancements due to local convection and associated 

lightning NOx production are low due to the prevailing high-pressure ridge system over 

the western United States. In addition, previous comparisons of REAM simulations with 

satellite NOx and CO observations indicate that the model reasonably captures observed 

day-to-day variations in lightning NO emissions and convective activity [Choi et al., 

2005].  Thus, we hypothesize that the trans-Pacific transport of pollutants in the upper 

troposphere into the region was underestimated in the models. This hypothesis can be 

better tested by examining the observations and simulations of other chemical tracers. We 

focus on a comparison in May when the pollutant enhancements are most significant. 

Figure 5.2 shows a comparison of observed and simulated CO, PAN, and O3 

concentrations in May. The REAM has distributions similar to GEOS-CHEM but with 

more localized enhancements. Hence, only the former is shown. Carbon monoxide is a 

good tracer for anthropogenic emissions, and peroxyacetyl nitrate is the reaction product 

of NO2 and peroxyacetyl radicals formed during the oxidation of VOC’s.  Therefore, it is 

a good tracer for tropospheric chemical activity of O3 precursors. While in reasonable 

agreement below 6 km, the simulated CO, PAN, and O3 concentrations are much lower  

than those from the observations at higher altitudes. The observed upper tropospheric 

enhancements of CO, PAN, and O3 tend to be collocated with those of NOx (Figure 5.1).  
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Figure 5.2  The same as Fig. 5.1, but for CO, PAN, and O3 in May. To filter out the 
effect of stratospheric O3 when constructing the observed O3 distribution, we did not 
include measurements with mixing ratios >110 ppbv.  
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A close inspection of the simulated O3 concentrations reveals slight enhancements in the 

upper tropospheric regions where high O3 was observed. The enhancements, which 

correspond to those in the GEOS-CHEM-simulated western boundary conditions, are not 

caused by photochemical production in the regional model, suggesting that the global 

model has some capability of simulating trans-Pacific transport [e.g., Hudman et al., 

2004]; however, the simulated magnitudes are too small.  

The discrepancies between simulated and observed CO and PAN concentrations 

are much larger in May than they are in the three previous months (not shown).  At lower 

altitudes (<6 km), the model reproduces the observed rapid decrease of CO well from 

April to May, but the decrease reflects more active photochemical oxidation towards 

summer. While the observations show a large increase of CO at higher altitudes (>6 km), 

the simulated concentrations are lower in May than April. The simulated PAN 

concentrations in May are similar to those in April at high altitudes, while the 

observations also show a large increase. The observed O3 mixing ratios at high altitudes 

show a clear increase from 50-60 ppbv in February to >80 ppbv in May (Figure 5.2) 

[Browell et al., 2003]; the model does not reproduce the large increase.  

We previously attributed 60% and 80% of the observed springtime O3 increase to 

photochemical production at mid and high latitudes, respectively [Y. Wang et al., 2003b]. 

Thus, the upper tropospheric O3 problem in the model may be attributed to the large 

underestimation of NOx. In addition, a direct observational evidence for the importance 

of photochemical O3 production catalyzed by NOx  can be seen in Figure 5.3, which 

shows the observed correlation between NOx and O3 above 4 km in May. By examining 

the deviation from a normal mode in the CO cumulative probability distribution in May, 
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we identify two distinct data groups, CO <110 ppbv (lower 10th percentile) and CO >135 

ppbv (upper 30th percentile).  Low CO mixing ratios reflect a strong influence by either 

stratospheric or clean marine boundary layer air, while high CO mixing ratios indicate 

polluted air masses. The low CO data points show high O3 mixing ratios of 150-220 ppbv 

with NOx of 80-110 pptv, reflecting the influence of stratospheric air since O3 mixing 

ratios in the clean marine boundary layer are low.  

The high CO data points show that O3 mixing ratios increase to 120 ppbv while 

NOx mixing ratios reach 250 pptv. These high O3 concentrations mainly reflect 

photochemical production of O3 in polluted tropospheric air masses. Lightning affects the 

concentrations of CO or O3 negligibly. Fresh local convection tends to produce higher 

CO and NOx concentrations through transport but relatively low O3 concentrations and 

PAN/NOx ratios due in part to the time required for photochemical processing. Both the 

high PAN/NOx ratios of 5-40 (not shown) and >80 ppbv of O3 with a moderate amount of 

NOx (~150 pptv) suggests that the air masses are photochemically aged and not 

significantly affected by local lightning or convective transport. Furthermore, inspection 

of back trajectories [Y. Wang et al., 2003b] for data points with NOx >50 pptv in Figure 

5.3 reveals that they are driven by trans-Pacific transport, not Pacific recirculation of 

pollutants emitted from the West Coast.  

Our hypothesis that the observed large enhancements of upper tropospheric NOx, 

CO, PAN, and O3 are due to trans-Pacific transport is also supported by the 

measurements of CFCs and Halon-1211 and back trajectory calculations.  The production 

of CFCs and Halon-121 was phased out in developed countries in 1995 and will be  

 



104 

 

 

 

 

 

  

Figure 5.3 Observed correlations between O3 and NOx, grouped by CO mixing ratios 
(ppbv) in May. Only coincidental measurements of all three species above 4 km are 
included. 
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phased out in developing countries by 2010. Therefore, they are good tracers for air 

masses from East Asia.  Observed CFCs and Halon-1211 exhibit similar features.  Figure 

5.4 shows the distribution of CFC-12 in May.  The large enhancements at high altitudes 

(> 6 km) tend to be consistent with those of NOx, CO, PAN, and O3. A close inspection 

of the measurements, which correspond to the enhancements of NOx and CFC-12 

observed at 45-50° N at high altitudes, reveals a general association of high NOx 

concentrations with high CFC-12. However, the point-to-point correspondence is poor for 

two possible reasons. First, CFC-12 was sampled at a much lower frequency than NOx. 

Secondly, the surface sources of NOx and CFCs are not necessarily collocated, and NOx 

concentrations are also affected by lightning production. 

 A major limitation of this work is that we do not know the exact origins for the 

observed trace gas enhancements. While TOPSE measurements are useful for examining 

the impact of trans-Pacific transport, the effects of specific distant sources become 

difficult to diagnose.  Previous studies indicate that emissions of NOx and CO are too low 

in China by ~50% [Heald et al., 2004; Y. Wang et al., 2004].  In one sensitivity study 

(not shown), we doubled the Chinese surface emissions of these two gases. The large 

underestimation of upper tropospheric NOx in TOPSE regions persists, likely reflecting 

the low export efficiency from the boundary layer and the short chemical lifetime of NOx. 

Observed upper tropospheric CO enhancements are simulated well north of 50° N but 

still underestimated at lower latitudes. However, GEOS-CHEM now overestimates CO in 

February and March. TOPSE measurements do not show a strong increase in CH3Cl in 

May, implying that the contribution from biomass burning to seasonal increases is limited.  
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Figure 5.4 Observed monthly mean distribution of CFC-12 in May. 
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It is possible that trans-Pacific pollutant transport surges in May due to a significant 

increase in convection and lightning over East Asia or the western Pacific (not simulated 

in the models).  This possibility must be explored in a detailed analysis of other field 

measurements. 

 

5.3  Conclusions 

 TOPSE observations show large enhancements of NOx, PAN, CO, O3, and CFCs 

at an altitude of  >6 km in May. We hypothesize that these enhancements are due to 

trans-Pacific transport. This hypothesis is supported by our analysis of the observations 

and model result. First, we find that these chemical tracers show consistent enhancement 

patterns at high altitudes. Both CFC enhancements and back trajectory calculations imply 

trans-Pacific transport from East Asia.  In addition, we find that the NOx-O3 correlation 

for high CO data points indicates significant tropospheric photochemical production. We 

also find that the relatively high PAN/NOx ratios of >5 indicate photochemically-aged air 

masses. Finally, we show that separate regional/global chemical transport models using 

different meteorological fields and chemical formulations consistently underestimate the 

enhancements of NOx, PAN, and CO. The contribution by North American surface 

emissions is limited in these simulations because the high-pressure ridge system over the 

western United States suppresses convection and lightning in May. 

 Our results indicate that the rapid late-spring increase of reactive nitrogen NOx 

and PAN in the northern mid-latitude upper troposphere during TOPSE is most likely due 

to enhancements of these species by trans-Pacific transport.  Such enhancements result in 

significant increases in photochemical oxidation and O3 production. The trace gas 
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enhancements, including those of CO, continue to increase in May.  This phenomenon is 

very different from trans-Pacific transport-driven CO enhancements at low altitudes, 

which peaks in March and April [e.g., Weiss-Penzias et al., 2004]. The current global 

CTMs do not capture this rapid seasonal transition, which results in a significant 

underestimation of the photochemical production of O3 in the models. The problem raises 

concerns about our capability to assess the effects of intercontinental transport on 

regional air quality. 
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CHAPTER VI 

 

ASSESSING THE PHOTOCHEMICAL IMPACT OF SNOW NOX EMISSIONS 
OVER ANTARCTICA DURING ANTCI 2003 

 
 
6.1  Introduction   

In late November and December of 2003, the Antarctic Tropospheric Chemistry 

Investigation (ANTCI) took place [Esiele et al., 2007]. Unlike the ISCAT 1998 and 2000 

studies, both the tethered balloon observations at SP [Helmig et al., 2007] and the Twin 

Otter aircraft plateau measurements gathered the critical spatial information about NO 

over Antarctica [Davis et al., 2007]. We examined these measurements along with SP 

surface measurements by employing the 1-D and regional REAM models. On the basis of 

SP measurements, the 1-D model is to co 5 nstruct a snowpack NOx emission 

parameterization and then run 1-D model simulations to analyze the effects of vertical 

transport on reactive nitrogen.  On the basis of balloon and Twin Otter measurements, the 

snowpack NOx emission parameterization is implemented in REAM to examine the 

effects of transport by advection and the spatial heterogeneity of snowpack NOx 

emissions.  The focus of this modeling analysis is the plateau region, where NOx 

emission rates are expected to be the highest.  Section 6.2 describes the models ; Section 

6.3 presents a 3-D model construct of a snow NOx emission parameterization, and then 

Section 6.4 evaluates the 1-D and REAM simulations with surface measurements of 

reactive nitrogen.  Finally, Section 6.5 presents a comparison of the 1-D and REAM 

model simulations with the balloon and Twin Otter measurements and then assesses the 
                                                 
5This chapter is for “Assessing the photochemical impact of snow NOx emissions over Antarctica during 
ANTCI 2003,” accepted in Atmospheric Environment in 2007. Authors are Y. Wang, Y. Choi, T. Zeng, D. 
Davis, M. Buhr, G. Huey, and W. Neff. 
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impact of snow NOx emissions on the reactive nitrogen budget and photochemistry over 

Antarctica.  Finally, Section 6.6 concludes. 

 

6.2  3-D Model Descriptions and the 1-D Model Setup 

The regional 3-D modeling system has two components, the polar version of the 

Penn State/National Center for Atmospheric Research mesoscale model MM5 and a 

regional chemistry and transport model. The models have a horizontal spatial resolution 

of 80 × 80 km2. There are 27 vertical layers up to 10 hPa, 13 of which are placed in the 

lowest 1 km in order to simulate the vertical distribution of trace gases in the boundary 

layer. In our simulations, the MM5 simulation domain is five grid boxes larger on each 

side than the chemical transport simulation domain such that any dynamic anomaly near 

the boundary does not affect transport in the chemical model.  

We use the polar version of MM5 [Bromwich et al., 2001; Cassano et al., 2001], 

which provides better meteorological simulations in comparison to regular MM5 or other 

similar models because the model has specific physical parameterizations for polar 

regions. In our simulations over Antarctica, we use four-dimensional data assimilation 

conducted using the ECMWF reanalysis, rawinsondes, and surface observations. Most 

meteorological data are archived every 30 minutes. We archive turbulence statistics every 

2.5 minutes in order to resolve turbulent transport in the boundary layer. We use the ETA 

Mellor-Yamada-Janjic (MYJ) 2.5-order closure scheme [Black, 1994] for the turbulence 

calculation.  

The regional chemical transport model [Zeng et al., 2003, 2006; Choi et al., 2005, 

2007a, 2007b; Y. Wang et al., 2006; Jing et al., 2006] adopts the photochemical and dry 
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and wet deposition modules from the GEOS-CHEM model [Bey et al., 2001]. The model 

includes a detailed photochemical mechanism with about 200 reactions and 120 

concentration-varying chemical species; 24 tracers (family or species) are transported to 

describe O3-NOx-hydrocarbon chemistry. Recent kinetics data on HNO4 photolysis and 

thermal decomposition [Roehl et al., 2002; Gierczak et al., 2005] are used in this work. 

The transport scheme is that by Walcek [2000].  We apply the simulation results of the 

global GEOS-CHEM model to specify the initial and daily boundary conditions of trace 

gas concentrations in the regional model. GEOS-CHEM (version 5.02 4° latitude by 5° 

longitude resolution) is driven by GEOS-4 assimilated fields for 2003 by the NASA 

Global Modeling and Assimilation Office.  

A 1-D model derived from the 3-D model with vertical transport only by 

turbulence is used to analyze the interaction of snow NOx emissions, photochemistry, dry 

deposition, and turbulent transport in the boundary layer at SP.  Therefore, the 1-D and 3-

D models share the same vertical structure and meteorological fields (for SP in the 3-D 

model). GEOS-CHEM results are used for initial and upper chemical boundary 

conditions at 1 km in 1-D simulations, which is well above the shallow atmospheric 

boundary layer at SP [Neff et al., 2007].  One objective of the 1-D simulations is to 

construct, on the basis of SP measurements, a parameterization of snow NOx emissions 

that can be used in the 3-D model for Antarctica.  We use the 1-D model for this purpose 

because the iterative 1-D NOx flux analysis detailed in the next section cannot be 

executed within the 3-D model. We chose not to include the snow emissions of H2O2 and 

CH2O [Hutterli et al., 2004] in this work for three reasons. First, measurements of H2O2 

at the SP show magnitudes (~270 pptv) similar to those in 2000 reported by Hutterli et al. 
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[2004]. However, CH2O mixing ratios (20-60 ppbv) are lower than the values in 2000 

(50-150 ppbv). Model simulations for ANTCI 2003, constrained by observed 

concentrations of O3, NO, hydrocarbons, and water vapor and photolysis rates of J(O1D) 

and J(NO2), show CH2O values in the range of the 2000 measurements (50-120 ppbv) but 

higher than the 2003 measurements, implying a photochemical sink for CH2O in snow 

rather than a source during ANTCI 2003. Second, measurements of H2O2 in 2003 are 

fairly constant (~200 ppbv higher than the model results). We are unable to parameterize 

the diagnosed emissions as functions of other variables as we did with snow NOx 

emissions. Without H2O2 measurements in other regions, we cannot extend the emissions 

to other regions of Antarctica in the 3-D model. Finally, as discussed in Chen et al. 

[2004], the photochemical model (without snow emissions of H2O2) overestimates OH 

measurements. Similar discrepancies were found in the 2003 experiment. Inclusion of 

snow H2O2 emissions will further increase model overestimates. Thus, more targeted 

measurements will be needed to resolve the disagreement between simulated and 

measured OH [Chen et al., 2004]. We will take this uncertainty into consideration when 

analyzing the results of the 3-D model, but we will not further discuss the model-

measurement comparisons with regard to HOx chemistry, which would largely be a 

duplication of work by Chen et al. [2004]. 

 

6.3  Snow NOx Emission Flux Parameterization 

 We apply the 1-D model to estimate the snow NOx emissions based on trace gas 

measurements at SP. We assume that the emissions are in the form of NO2 [Jones et al., 

2000].  Davis et al. [2004], however, showed that NO and NO2 are in photochemical 
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equilibrium at the surface, based on measurements taken at -20 cm to the surface. 

Whether the emissions are in the form of NO or NO2 does not change the simulation 

results because these species reach photochemical equilibrium in minutes in the plateau 

atmosphere with the amount of O3 present. We first compare simulated meteorological 

variables to the measurements at SP. 

 

6.3.1 Effects of Turbulence on Boundary Layer Height and Surface Temperature and 

Wind Speed 

 A key measurement pertinent to the model flux estimation is that of boundary 

layer height, estimated using the Sound Detection and Ranging (SODAR) instrument. 

Based on the backscattered signals (due to boundary layer turbulence structures), an 

automatic algorithm [Neff et al., 2007] that identifies the boundary layer height was 

applied.  The maximum range of the instrument, as configured for the ANTCI 2003 study, 

was 180 m. The simulated diffusion coefficient drops rapidly to a minimum value at the 

top of the boundary layer. Therefore, we define the boundary layer height in the model as 

the altitude at which the turbulence diffusion coefficient drops to a value equivalent to 10 

times the minimum value specified in the model. Based on this approach, the polar MM5 

simulation using the original ETA MYJ 2.5-order closure scheme clearly underestimates 

SODAR measurements since the boundary layer only occasionally extends beyond the 

first model layer (Figure 6.1). Further analysis reveals a problematic assumption in the 

MM5 MYJ turbulence scheme implementation, i.e., the default minimum diffusion 

coefficient is set at 0.09 m2 s-1. While a reasonable minimum value for mid-latitude North 

America, it is too high over the polar region, where the surface roughness of snow is very  
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Figure 6.1 Observed and simulated daily boundary layer heights at SP during ANTCI 
2003. Simulation results using the original and modified ETA MYJ turbulence scheme 
are shown. The vertical bar shows the daily standard deviation. The maximum altitude 
measurable by SODAR is 180 m. 
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Figure 6.2 The same as Figure 6.1, but for temperature and wind speed. “T” denotes 
temperature and “V” denotes wind speed. 
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low. Thus, we decreased the minimum value to 0.001 m2 s-1.  With this adjustment, the 

simulated boundary layer height is much higher and in reasonable agreement with the 

SODAR measurements, particularly in light of the model's vertical resolution and the 

uncertainty in the SODAR boundary layer height detection algorithm [Neff et al., 2007]. 

The correlation coefficient of observed and simulated boundary layer heights improves 

from 0.44 to 0.73. 

 Simulated surface wind speed and temperature at SP are not strongly affected by 

the modification of the turbulence scheme (Figure 6.2). However, some improvement in 

temperature simulations can be observed. Polar MM5 has a warm bias in late November. 

When the minimum diffusion coefficient is reduced to 0.001 m2 s-1, the warm bias is 

reduced (but not eliminated). Model-simulated friction velocity (u∗) values are in good 

agreement with sonic anemometer measurements in the second half of December (not 

shown). The surface stress simulation is not significantly affected by changing the 

minimum diffusion coefficient in the model.  Additional evidence was found in our 

recent model analysis of (halogen-driven) ozone depletion events in Alert, Canada, in 

which the model simulations of surface ozone in Alert were much improved in May when 

the minimum diffusion coefficient decreased from 0.09 to 0.001 m2 s-1 [Zeng et al., 2006]. 

Thus, we adjusted the minimum diffusion coefficient to the lower value for our 

simulations. 

 

6.3.2 Snow NOx Emission Flux Estimation and Parameterization 

 We constrain the 1-D model with observed concentrations of O3, hydrocarbons, 

water vapor, and the photolysis rates of J(O1D) and J(NO2). Trace gas measurements 
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were made on the second floor of the Atmospheric Research Observatory (ARO), 

approximately 10 m above the snow surface. The presence of the ARO building induces 

local-scale mixing; thus, we consider these measurements as averages for the lowest 

model layer (0-10 m). All measurements have higher measurement frequencies than hour-

1; hourly averages are used in the model analyses. The surface NOx concentrations in the 

model are determined by an influx from the snow pack, an outflux to higher altitudes, and 

chemical production and loss. Other than the snow emission flux, all other terms are 

calculated in the 1-D model. With measurements of NO, we can therefore derive snow 

NOx emission fluxes using the model. Our initial guess of the snow emission is 3.9x108 

molec cm-2 s-1 [Oncley et al., 2004]. This emission flux is adjusted iteratively until 

model-simulated surface NO concentrations match the measurements (to <1% each hour) 

or if the flux is reduced to 0. The derived daily snow NOx flux is shown in Figure 6.3. 

The average emission flux derived from the 1-D model is 3.2x108 molec cm-2 s-1, which 

is 20% lower than the mean flux of 3.9x108 molec cm-2 s-1 estimated by Oncley et al. 

[2004] using sonic anemometer/thermometers and NO measurements in late 

November/early December of the ISCAT 2000 study.  The reasonable agreement found 

between NOx flux estimates for ISCAT 2000 and ANTCI 2003 could be fortuitous. 

However, additional flux measurements/model analyses are needed to provide more 

substantial constraints on the year-to-year variability of snow emissions at the site. 

Superimposed on the NOx flux are observed and simulated temperature and wind 

speed in Figure 6.3. The derived flux appears to show anti-correlations with temperature 

and to some extent with wind speed. Other variables, such as surface pressure and 

humidity, do not significantly correlate or anti-correlate with the derived NOx flux.  Here, 
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Figure 6.3 1-D model derived daily snow NOX emissions, and observed and simulated 
temperature and wind speed at SP. The black line shows model-derived snow NOX 
emissions. “T” denotes temperature (K) and “V” denotes wind speed (m s-1). 
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Figure 6.4 Parameterized snow pack NOx emission flux as a function of temperature (K) 
at a wind speed of 5 m s-1 and as a function of wind speed (m s-1) at a temperature of 250 
K. 
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the emission flux was parameterized on a daily basis as polynomials of simulated wind 

speed and temperature up to the 2nd order and obtained  

 NOx flux = -1009 + 8.38T - 0.0173T2 + 2.008v + 0.0689v2 -0.011vT, (1) 

where the flux is in 108 molec m-2 s-1, temperature T in K, and wind speed v in m s-1. 

Figure 6.4 shows the parameterized flux as a function of temperature at a wind 

speed of 5 m s-1 and as a function of wind speed at a temperature of 245 K. We see that 

the derived snow NOx emission tends to increase as the temperature decreases; but the 

rate of change increases as the temperature increases at the high end. By comparison, the 

flux dependence on wind speed is relatively weak and nonlinear.  Generally speaking, the 

derived snow emission rate tends to increase as wind speed decreases at the low end, but 

tends to increase as wind increases at the high end. The flux variation with wind speed is 

relatively small. 

The ranges in temperature and wind speed in the parameterization are limited by 

the measurements at SP (a temperature from 238 to 252 K and a wind speed from 2 to 9 

m/s). When applied in the 3-D model, both the temperature and the wind speed can 

exceed these ranges. We linearly extrapolate the parameterization for temperatures up to 

260 K when flux is >0.  The flux dependence on wind speed is weak; we do not use any 

extrapolation, i.e., out-of-bound wind speeds are replaced by the respective bound values. 

We did not find significant correlations of the derived snow NOx emission flux with 

ozone column density, solar zenith angle, or values of J(O1D) or J(NO2). It appears that 

the lack of any correlation is due in part to the relatively small range of values for these 

photochemical parameters at SP. Emissions of NOx from the snow pack are allowed only 

during daylight conditions in the 3-D simulations. 



121 

An empirical emission parameterization is constructed here to sidestep the lack of 

fundamental and quantitative knowledge of the snow NOx emission process such that 

measurements from ANTCI 2003 can be analyzed via the model simulations to improve 

our understanding of photochemical processes over Antarctica. As a result, use of the 

emission parameterization in other periods may lead to significant errors. A more 

process-based parameterization of the snow pack NOx emission rate should consider, for 

example, nitrate concentrations in snow [Simpson et al., 2002; Wolff et al. 2002]. 

However, available snow nitrate measurements over Antarctica are currently very limited 

in space and time [e.g., Kreutz and Mayewski, 1999] and we do not have the necessary 

measurements to test the structure of snow nitrate distribution as simulated by Wolff et al. 

[2002]. Interestingly, model estimated snow pack NOx emissions at SP by Wolff et al. 

[2002] are a factor of 3-4 lower than the measurement by Oncley et al. [2004] during 

ISCAT 2000 or the derived average flux from this study. The discrepancy underscores 

the need for additional laboratory and field measurements that constrain the process-

based snow pack emission models. 

 

6.4  Evaluations with Surface Reactive Nitrogen Measurements at SP 

 We apply the derived snow pack NOx emission parameterization in the 1-D and 3-

D models. We compare 1-D and 3-D model-simulated NO mixing ratios with the 

observations at SP in Figure 6.5a.  Additional input to the 1-D model consisted of surface 

measurements of O3, hydrocarbon concentrations, water vapor, and the photolysis rates 

for J(O1D) and J(NO2). However, these measurement constraints could not be applied to 

the 3-D simulations.  In the 1-D simulation, snow NOx parameterization as a function of 
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Figure 6.5a Observed and 1-D and REAM model simulated near-surface NO mixing 
ratios at SP. In the second 3-D simulation, parameterized snow NOX emissions increase 
by 30%. 
 
 

 

Figure 6.5b Simulated surface NOX mixing ratios (pptv) and wind at 1200 UT on 
November 25 and 30, 2003. 
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temperature and wind speed is used. In the first 3-D simulation, the original model-

derived daytime snow emission parameterization is applied over the entire Antarctic 

continent. In the second 3-D simulation, the parameterized snow emissions are increased 

by 30%.  

The observed high NO episodes on November 25, 30, and December 8, 23 are 

generally reproduced by the model simulations. Sensitivity results indicate that stable and 

shallow boundary layers during those periods are main drivers for the developments of 

high surface NOx concentrations [Davis et al., 2004]. The correlation coefficient between 

observed and 1-D simulated surface NO concentrations is 0.79. In the 3-D simulation 

with  the original  snow  NOx  emission  parameterization,   the  model  has a tendency to 

underpredict the observed values; the correlation coefficient is slightly lower at 0.74. 

Sensitivity analysis indicates that downward advection of lower NOx concentrations from 

above in general and horizontal advection of low NOx air on occasion are key factors in 

reducing surface NOx concentrations at SP in the 3-D model compared to the 1-D model. 

The assumption of zero mean vertical and horizontal advection used in eddy correlation 

measurements and in the 1-D model could be in error because of large-scale downslope 

katabatic flow over Antarctica. The 3-D model results are improved by increasing snow 

NOx emissions by 30%. The increase in NOx during high NOx episodes is higher than 

30%, partly because of the nonlinear relationship between NOx lifetime and its mixing 

ratio [Davis et al., 2004]. The difference between the 1-D and 3-D models indicates the 

the eddy correlation method tends to underestimate snow NOx emissions, as it does not 

account for advection. Therefore, all the 3-D model results presented hereafter are taken 

from the simulation with a 30% increase in snow NOx emissions.  
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The 3-D model was able to simulate low NOx concentrations around December 2, 

not captured by the 1-D model. However, the 3-D model clearly underestimates the NOx 

episode around November 30 while reproducing the earlier episode around November 25. 

Horizontal gradients and transport appear to play important roles.  Figure 6.5b compares 

surface NOx concentrations and wind transport over Antarctica between November 25 

and 30 (1200 UT). The model predicts more extensive high surface NOx concentrations 

on November 25 than on November 30. While the high NOx distribution is nearly 

homogeneous around SP on November 25, a large spatial gradient is simulated around SP 

on November 30. Simulated surface winds are in good agreement with ANTCI 

measurements on November 25 and with Automatic Weather Station (AWS) 

measurements on November 30.  We use AWS data for the latter day, when ANTCI wind 

measurements were unavailable. Along the 0° meridian, prevailing transport on 

November 25 is from the high-elevation plateau, where NOx emissions are high; 

prevailing transport on November 30 is from a northern low-elevation region, where NOx 

emissions are low.  Low-NOx transport is important for the creation of the spatial NO 

gradient around SP on November 30 in the 3-D model.  Thus, the underestimation in the 

3-D model, but not in the 1-D model, suggests that this low-NOx transport is exaggerated 

in the 3-D model; possible reasons for these findings are errors in the snow NOx emission 

distribution or wind transport and coarse model spatial resolution.  

 Figure 6.6 shows compares observed and simulated surface HNO3 at SP. Since 

HNO3 concentrations strongly depend on NOx concentrations, model errors in NO will 

propagate into HNO3 simulations. To eliminate this error, we added another 1-D 

simulation in which surface NO concentrations are specified as observed, so snow NOx  
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Figure 6.6  The same as Figure 6.5a, but for HNO3. In the first 1-D simulation, surface 
NO is specified as observed. In the second 1-D simulation, snow NOX emission 
parameterization is used. In the 3-D simulation, parameterized snow NOX emissions (Eq, 
(6.1)) are increased by 30%. The measurement accuracy of HNO3 is 20% [Huey et al., 
2004]. 
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emission parameterization is not used in this simulation. The dry deposition velocity in 

the models is calculated with the resistance-in-series scheme by Wesely [1989]. The 

aerodynamic resistance is computed based on ETA MYJ turbulence output. The snow 

surface resistance of HNO3 also follows Wesely [1989]. The calculated average 

deposition velocity during ANTCI 2003 is 0.15 cm s-1. The model result shows 

reasonable agreement with the measurements, revealing low HNO3 concentrations 

between December 3 and 20 and high concentrations between December 21 and 24. The 

correlation coefficients are 0.85 and 0.77 for the 1-D and 3-D models, respectively. Both 

models  tend to  overestimate HNO3  concentrations at low  HNO3  values.   However, the 

positive bias of the 3-D model is considerably larger; after presenting the results for 

HNO4, we will discuss the reasons for the bias. 

 In the HNO4 simulations, we assume that dry deposition of HNO4 to snow is as 

fast as it is of HNO3 [Slusher et al., 2002]. Therefore, the average of calculated dry 

deposition velocities for HNO4 is 0.15 cm s-1.  Figure 6.7a, in which observed and 

simulated HNO4 at SP are compared, the 1-D simulations generally show agreement of 

the measurements, except for low bias before December 9.  However, the observed 

variability is severely underestimated.  The correlation coefficients are 0.63.   

In the 1-D model, near-surface HNO4 is determined by chemical production and 

loss, turbulent diffusion transport, and dry deposition. We examine each term to 

investigate which of these factors is likely the major contributor to the high-frequency 

variations in the measurements. Figure 6.7b shows the time series of each term in 

December. In this simulation, surface NO is specified as observed. The magnitudes of the 

four terms are comparable. Chemical production is generally larger than chemical loss, 
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Figure 6.7a Same as Figure 6.6, but for HNO4. The measurement accuracy of HNO4 is 

30%. 

 
Figure 6.7b Simulated chemical production, loss, turbulent diffusion transport, and dry 
deposition rates for HNO4 near the surface (0-10 m) in the 1-D model. 
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and dry deposition loss is generally larger than turbulent influx from above. During the 

episode on December 21-24, both turbulent transport and dry deposition are low because 

of the establishment of a shallow stable boundary layer (Figure 6.1). Neither thermal 

deposition nor photolysis exhibits high-frequency variations, nor does the simulated 

aerodynamic resistance vary in high frequency. Major portions of high-frequency 

variations in chemical loss and dry deposition rates are driven by variability in the 

simulated HNO4 concentration. The chemical production rate does exhibit large high-

frequency variations, particularly between December 12 and 19. However, the high-

frequency variation is modulated by turbulent transport. The initial large pulse of HNO4 

production is compensated by a decrease in turbulent transport from above. If high HNO4 

production driven by snow NOx emissions continues, the production of HNO4 in the 

layers above also increases as NOx is transported upward by turbulence, resulting in an 

accumulation of HNO4 and an increase in turbulent influx of HNO4 to the surface layer. 

The slower response of the 1-D model-simulated HNO4 to NO variation may indicate that 

turbulent transport between the lower model layers is overestimated. The correlation 

coefficient between 3-D model-simulated and observed HNO4 is 0.61. The 3-D model 

simulation is considerably lower than 1-D simulated and measured HNO4 during the 

high-concentration episode on  December 21-24.  Increasing the snow resistance to 

HNO4 deposition  decreases  dry  deposition  and  increases   HNO4 concentrations.  A 

50% increase in snow resistance pushes the HNO4 mixing ratios to the upper bound of 

observed values prior to December 20, but the model still underestimates the values on 

December 21-24 since aerodynamic resistance during this period is high, reducing the dry 

deposition velocity by a factor of 4 from the earlier period.  An inspection of the 3-D 
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model results reveals that advection of low HNO4 to SP on December 21-24 contributes 

significantly to the low bias in the model.  

To further clarify the model results, we compare the 1-D and 3-D simulated mean 

vertical profiles of NO, HNO3, HNO4 during ANTCI 2003 (Figure 6.8). The 1-D 

simulation with surface NO concentrations specified to the measurements are similar to 

that with parameterized snow NOx emissions. Despite 30% higher emissions, the 

simulated NO profiles in the 3-D model are very similar to the 1-D profiles.  A clear drop 

off in the NO profiles is evident at about 50 m, the altitude at which the boundary layer 

top generally resides under stable conditions. The difference between the 1-D and 3-D 

model vertical profiles is much larger for HNO3 and HNO4. Both gases show higher 

values at 50 m than at the surface, suggesting that vertical mixing together with advection 

might represent an effective loss process for reactive nitrogen from the plateau. It is also 

noteworthy that the estimated concentrations of both gases over the altitude range of 50-

500 m when calculated using the 3-D are higher than they are using the 1-D model.  

These higher concentrations in the 3-D model are driven in part by advection from high 

plateau regions, a process not simulated in the 1-D model. While not affecting surface 

HNO4 concentrations significantly, the accumulation extends to the surface for HNO3 

because HNO3 has a longer chemical lifetime than HNO4. Although model-calculated dry 

deposition is adequate in the 1-D simulations, the overestimates of HNO3 in the 3-D 

model indicate a need for lower snow resistance and thus higher HNO3 deposition. The 

slightly lower HNO4 concentration at 0-50 m in the 3-D than that in the 1-D model is due 

in part to underestimation during the episode on December 21-24. 
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Figure 6.8  1-D and 3-D model-simulated mean vertical profiles of NO, HNO3, and 
HNO4 during ANTCI 2003. In the first 1-D simulation, surface NO is specified as 
observed. In the second simulation, snow NOX emission parameterization is used. 
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Using a box model analysis of ISCAT 2000 measurements, Slusher et al. [2002] 

estimated that the lifetimes of HNO3 and HNO4 against deposition are 3.5 hours. With 

ANTCI data, a similar calculation results in a dry deposition lifetime of 10 hours. Slower 

dry deposition during ANTCI likely reflects a meteorological environment different from 

that of ISCAT 2000. Scaling a boundary layer depth to 50-100 m with a deposition 

velocity of 0.15 cm s-1 yields a lifetime in the range of 9 to 18 hours. We note that a 

simple scaling of the boundary layer height with dry deposition velocity underestimates 

the deposition lifetime of HNO4 because its concentrations increase by a factor of 2 in the 

boundary layer (Figure 6.8). Estimating dry deposition lifetimes using a box model is 

reasonable in a well-mixing boundary layer, but it is problematic over Antarctica because 

the boundary layer is frequently stable. The large vertical gradients of HNO4 and NOx, 

which exhibit opposite trends, cannot be taken into account properly in a box model. 

Furthermore, Figure 6.7b shows that diffusion influx is as important as chemical 

production or deposition loss. In a shallow box near the surface, a box-model calculation 

would overestimate the loss by dry deposition because it accounts for both dry deposition 

and diffusion influx. However, the finding by Slusher et al. [2002] that HNO4 deposition 

accounts for a significant portion of nitrogen deposition to snow is still valid in our 

results since the deposition flux is the product of deposition velocity and trace gas 

concentration. The deposition velocities are the same for HNO3 and HNO4, and their 

concentrations are in comparable ranges. 

 
6.5  Comparison with Balloon and Aircraft NO Measurements and Assessments of 
Plateau Reactive Nitrogen Budget and Photochemical Impact Over Antarctica 
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 We extend the comparison of model-simulated reactive nitrogen with surface 

measurements to include the vertical distributions of NO as recorded by the tethered 

balloon platform at SP [Helmig et al., 2007] and the Twin Otter data recorded within 400 

km of SP but still over the plateau [Davis et al., 2007]. For this purpose, the construction 

of a rather crude empirical daytime snow NOx emission parameterization (Section 3.2), 

without which it would be difficult to simulate the spatial variability of surface NOx over 

Antarctica, is critically important.  

The tethered balloon was used to measure NO vertical distributions at SP on 

December 17-28. High NOx concentrations were measured near the surface on December 

21 and 23 (Figure 6.5a); we separate these data from the periods of December 17-20 and 

25-28. During the high-NOx period of December 21 and 23 (no balloon measurements 

were made on December 24), simulated median values at low altitudes are lower than the 

measurements because of the model underestimation on December 21 (Figure 6.5a). The 

observed and simulated means are closer. The observed decrease in NO with altitude is 

simulated by the models. During the low-NOx periods, the simulated median values are 

too low; although low bias is still evident above 60 m, the agreements among the mean 

values are better. The concentrations in the 3-D model are higher than those in the 1-D 

model due in part to the 30% higher emissions, and they are in better agreement with 

those in the observations.  

 The spatial distribution of the NO mixing ratios measured by the Twin Otter at 

20-60 m above the surface on December 4-6 is shown in Figure 6.10a.  From here, it can 

be seen that the observed NO concentrations tend to be higher at higher elevations. Such  
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Figure 6.9  Balloon measurements of NO profiles on December 17-28 and the 
corresponding model results.  The horizontal bar shows the standard deviation. There are 
6 profiles for December 21-23 and 21 profiles for December 17-20 and 25-28. 
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Figure 6.10a  Twin Otter observed- and model-simulated NO mixing ratios (pptv) at 20-
60 m above the surface on December 4-6.  Model results are sampled along flight tracks 
at the time of the measurements. 
 

 
Figure 6.10b Twin Otter observed- and model-simulated vertical distributions of NO on 
December 4-6.  
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a spatial distribution is captured by the model simulation. However, the model has a clear 

low bias, which is also shown in the vertical distribution (Figure 6.10b).   While the 

measurements show NO mixing ratios up to 550 pptv, the model results reach only 350 

pptv.  Surface measurements of 100-200 pptv at SP on December 4-6 are also 

underestimated by the 3-D model, but to a lesser extent (Figure 6.5a).  Because the 

model-simulated variability is driven mostly by temperature (Figure 6.4), the colder 

temperatures at higher elevations lead to more NOx emissions and thus to higher NO 

concentrations. The resulting spatial gradient/variability is, however, underestimated by 

the model.  Several important factors that contribute significantly to the spatial variability 

of snow NOx emissions might not be accounted for in the parameterization.  An adequate 

evaluation of this issue necessitates more extensive spatial and temporal aircraft 

measurements that improve on their "representativeness" as well as detailed laboratory 

studies of the nitrate photochemical mechanisms. 

 The comparison of model simulations with the measurements from the ANTCI 

2003 experiment demonstrates that the 3-D model can capture some of the essential 

features of airborne data. Given this level of agreement, we applied the 3-D model to 

explore the reactive nitrogen budget over the plateau and the photochemical impact of 

snow NOx emissions over the entire Antarctic continent.  In general, the simulated low-

altitude NOx concentrations have low bias at SP during low-NOx periods of balloon 

measurements and over the plateau regions sampled by Twin Otter, implying that the 

simulated nitrogen source and photochemical impact (in terms of OH concentrations) 

may have low bias.  
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 Using the 3-D model results, we construct the nitrogen budget for the plateau 

region (elevation above 2.5 km).  For December 2003, we estimate emissions of 0.25 kg 

N km-2 month-1. The reactive nitrogen deposition flux is 0.13 kg N km-2 month-1. 

Depositions of HNO3 and HNO4 account for 73% and 21%, respectively, and the rest is 

largely deposition of NO2. The net outflux of reactive nitrogen is 0.12 kg N km-2 month-1.  

About 90% of the outflux takes place within 1 km above the surface. Outfluxes of HNO3 

and NOx account for 61% and 26%, respectively, and the rest is mostly HNO4. Figure 

6.11 shows the near-surface fluxes of HNO3. As indicated in the figure, most of the 

transport is over eastern Antarctica. The implications of the outflux on plateau nitrogen 

chemistry are discussed by Davis et al. [2007]. 

Figure 6.12 shows model-simulated surface NOx and OH concentrations over Antarctica 

during the ANTCI 2003 period. The emission parameterization predicts higher NOx 

emissions and thus concentrations over the eastern Antarctic plateau. The concentration 

of OH does not maximize in regions with the highest NOx concentrations because of the 

nonlinearity of HOx chemistry [Chen et al., 2001, 2004, Davis et al., 2004]. Thus, the 

model predicts some of the highest OH levels in the downslope drainage areas of eastern 

Antarctica.  Predicted mean surface OH concentrations exceed 2x106 molec cm-3 over 

most of the Antarctic continent.  Using a box model having as its input the Twin Otter 

plateau NO data set, Davis et al. [2007] showed a strong vertical gradient in OH with 

estimated concentrations reaching as high as 4 x 106 molec cm-3.  Based on these results, 

the authors hypothesized that upon consideration of the vertical NO structure across the 

larger plateau, it is likely that NOx snow emissions likely lead to an oxidizing canopy that 

enshrouds the entire plateau. Showing a shallow canopy of high OH concentrations above  
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Figure 6.11 Simulated monthly mean near-surface HNO3 fluxes for December 2003. 

 

 

 

Figure 6.12 Simulated mean surface NOX and OH concentrations during ANTCI 2003. 
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Figure 6.13a  Simulated cross section of OH concentrations (106 molec cm-3) along the 
90°W - 90°E meridian during ANTCI 2003. 
 
 
 

 
Figure 6.13b Simulated depth (m) of the oxidizing canopy over Antarctica ([OH] > 
3×106 molec cm-3) during ANTCI 2003. 
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the Antarctic plateau driven by snow NOx emissions, a model-simulated cross-section of 

the OH concentration level along the 90°W-90°E meridian (Figure 6.13a) supports their 

hypothesis, Figure 6.13b shows the simulated distribution of the oxidizing canopy 

thickness over Antarctica. For illustrative purposes, we define the highly active oxidizing 

canopy as the region with [OH] ≥ 3x106 molec cm-3, the highest median value found in 

the marine boundary layer over the tropical Pacific [Y. Wang et al., 2001]. The simulated 

OH canopy is deeper, generally in the range of 50-150 m, over the eastern Antarctic 

plateau than it is over other regions. The spatial distribution of the canopy depth reflects a 

combination of surface NOx emissions, boundary layer height, and transport. 

 

6.6  Conclusions 

 We apply 1-D chemistry-diffusion and 3-D chemical transport models to analyze 

surface, balloon, and aircraft measurements of reactive nitrogen during ANTCI 2003. The 

emphasis of the model analysis is on high NOx-emitting plateau regions. We simulate the 

meteorological fields using the polar version of MM5. The default ETA MYJ 2.5-order 

closure scheme predicts much lower boundary layer heights than SODAR measurements 

at SP. We decrease the minimum eddy diffusion coefficient from a default value of 0.09 

to 0.001 m2 s-1 and obtain reasonable simulations of SP boundary layer heights. 

 Using the 1-D chemistry-diffusion model and surface measurements at SP, we 

derive the necessary snow NOx emission fluxes that explain the observed NO 

concentrations. The average emission flux of 3.2x108 molec cm-2 s-1 is 20% lower than 

the mean flux of 3.9x108 molec cm-2 s-1 estimated by Oncley et al. (2004) using sonic 

anemometers, temperature sensors, and high-speed NO measurements during ISCAT 
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2000. We parameterize the derived daytime snow emissions as a function of temperature 

and wind speed. The empirical parameterization is essential for simulating the spatial 

variability of observed NO concentrations by Twin Otter. Vertical advection, not 

accounted for in the 1-D model, decreases surface NO concentrations at SP; daytime 

snow emissions increased 30% in the 3-D model to an average of 4.2 x108 molec cm-2 s-1 

at SP in order to reproduce the observed NO concentrations. We calculate an average dry 

deposition velocity of 0.15 cm s-1 for HNO3 and HNO4 at SP. We find reasonable 

agreement between observed and simulated HNO3 and HNO4 at SP. 

 To our knowledge, this is first 3-D chemical transport model analysis of reactive 

nitrogen at SP or over Antarctica in general. Meteorological fields, snow NOx emission 

parameterization, and HOx photochemistry [Chen et al., 2004] all contribute to the 

overall uncertainties in the simulations. In particular, simulated NO concentrations are 

too low compared with those of the Twin Otter measurements during December 4-6. 

However, a longer measurement period is needed to assess whether the bias is 

representative. Quantifying each of these uncertainties will require much larger datasets 

than those currently available during ANTCI 2003, and new laboratory studies of the 

snow nitrate photochemical process. Below, we focus the discussion on two major 

implications from the model results.  

 First, inefficient turbulence transport in the relatively stable Antarctic boundary 

layer leads to large gradients in NO (> a factor of 2 change within the lowest 50 m, 

Figure 6.8), which implies that the vertical structure needs to be simulated if 

photochemistry in the region is to be understood. For the oxidation products HNO3 and 

HNO4, extensive mixing up to 500 m is simulated. These 1-D vertical profiles are further 
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modified by 3-D transport. The vertical distribution of HNO3 is affected most. The much 

longer lifetime of HNO3 than NOx or HNO4 allows for large accumulations of this 

species in the upper portion of the boundary layer, resulting in HNO3 concentrations near 

the surface that are significantly higher in the 3-D model than in the 1-D model. In order 

to reduce the “excess” HNO3, the dry deposition velocity of HNO3 needs to be increased 

in the 3-D model. Diagnostics using 1-D models will tend to underestimate HNO3 

deposition velocity. While the shape of the NOx vertical profile is not affected by 3-D 

transport, snow emissions need to be increased by 30% in the 3-D model compared to 1-

D model. The vertical distribution of HNO4 is also affected by 3-D transport. By 

definition, the flux measurements of snow emissions or deposition by the eddy 

correlation technique assume zero mean advection of trace gases, which is inconsistent 

with the prevailing downslope circulation driven by katabatic flow over Antarctica. As a 

result, the effect of advection needs to be taken into account in the interpretation of any 

eddy-correlation flux measurements. 

 Second, the empirical daytime snow NOx emission parameterization based on 

temperature and wind speed is obviously an oversimplification of the snow emission 

process. A more sophisticated process-based emission model that can be coupled with 1-

D and 3-D chemical transport models will require additional detailed laboratory studies 

and more extensive field measurements (particularly by aircraft). Despite the above-cited 

simplifications, the 3-D model has shown that it can capture the observed spatial 

variability of near-surface NO recorded on the Twin Otter even though the magnitudes 

are underestimated. These model results suggest that the Antarctic plateau is a major 

source region for NOx and that snow NOx production takes place through a common 
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mechanism. For December 2003, the model estimates an average NOx emission flux of 

0.25 kg N km-2 month-1 over the plateau (elevation above 2.5 km).  About 50% of 

reactive nitrogen is lost by deposition and the other 50% by transport. HNO3 and HNO4 

are major deposition species (73% and 21%, respectively); nitrogen outflux is largely in 

the form of HNO3 and NOx (61% and 26%, respectively). At the simulated NOx levels, 

most of the Antarctic continent during ANTCI 2003 has near-surface mean OH 

concentrations of > 2x106 molec cm-3. The depth of the layer with [OH] > 3x106 molec 

cm-3 is estimated to be 50-150 m over the plateau. This result shows a highly 

photochemically active oxidizing canopy enshrouding the entire Antarctic plateau, which 

was previously hypothesized by Davis et al. [2004]. 
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CHAPTER VII 

 

CONCLUSIONS 
 
 

Column observations of NO2 by GOME and CO by MOPITT over North America 

and surrounding oceans for April 2000 are analyzed using the Regional chEmical 

trAnsport Model (REAM). Transient enhancements in these measurements due to 

lightning NOX production or convective transport are examined.  The analyses produce 

clear evidence for lightning enhancements of NO2 over the continent and western North 

Atlantic and for convective transport enhancements of CO over the ocean. Two 

independent satellite measurements show consistent enhancements related to convective 

events.  Results of the model suggest that the enhancements are particularly large in the 

lower troposphere due to convective downdrafts of lightning NOX and shallow 

convection of CO, implying that low-altitude aircraft in situ observations are potentially 

critical for evaluating the model simulations and validating the satellite observations of 

these transient features. 

 The 3-D REAM is used to simulate trace gas from February to May 2000 over 

North America.  Once applied, the simulations result in an analysis of surface, aircraft, 

and satellite measurements that explain the springtime transitions of key trace gas 

concentrations and export. The global GEOS-CHEM model is used to provide chemical 

initial and boundary conditions. Surface observations from EPA AIRNow and SEARCH 

networks, aircraft observations from the TOPSE and MOZAIC experiments, ozonesondes, 

and remote sensing measurements from GOME, MOPITT, TOMS and SAGE II are then 

analyzed. Generally, the model results are in good agreement with the observations in the 
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troposphere.  REAM is also used to simulate decreases in surface CO and NOx 

concentrations and MOPITT CO columns from spring to summer.  Results show that the 

seasonal change of the GOME NO2 tropospheric column is not as large as that of the CO 

column because of increasing lightning and soil NOx emissions. Differences between 

simulated and GOME NO2 columns on a monthly mean basis are averaged over the four-

month period. Results show that the total NOx emissions derived from the inversion of 

the GOME NO2 column are in good agreement with those of the model a priori inventory. 

In addition, although REAM has a low bias (above 350 hPa) due to specified upper 

boundary concentrations, REAM-simulated surface ozone concentrations are in good 

agreement with AIRNow measurements. By comparison, GEOS-CHEM-simulated 

surface ozone concentrations show a much faster increasing trend. We find that the 

simulated boundary layer structure is a key process that differentiates the REAM results 

from GEOS-CHEM.  The MM5-simulated mixing layer heights used in REAM are lower 

than those used in GEOS-CHEM. As a result, the activation of photochemistry in the 

boundary layer is much faster in GEOS-CHEM than it is in REAM.   REAM results also 

indicate that the main contributor of the significant increase in the tropospheric ozone 

column over the western North Atlantic is lightning NOx production. The impact of 

lightning is also evident in model-simulated pollutant exports.   

 The tropospheric O3 column retrieved from OMI and MLS measurements, the 

NO2 column from OMI measurements, and the upper tropospheric O3 and CO 

concentrations from TES over North America and the western North Atlantic from April 

to August 2005 are analyzed using REAM. The satellite measurements and REAM 

simulations showed large enhancements of column and upper tropospheric O3 over the 
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western North Atlantic comparable to those over the eastern United States.  These 

measurements show that the O3 enhancement region migrates northward from spring to 

summer. An analysis of the model indicates that the northward shift is driven by O3 in the 

stratospheric flux, convective outflow and production from lightning NOX. As their 

uncertainties improve, the satellite measurements of O3 and its precursors will provide 

more quantitative constraints on pollutant outflow from the continents. 

The observations during the TOPSE experiment show large enhancements of NOx, 

PAN, O3, CO, CFCs, and Halon-1211 in the upper troposphere over North America in the 

late spring. Analyses of these observations and model results indicate that the 

enhancements are most likely driven by a surge of trans-Pacific pollutant transport during 

the late spring. The rapid seasonal transition is particularly striking for upper tropospheric 

NOx, resulting in large increases in photochemical oxidation and O3 production during 

the period. The transition occurs later in the season than that of low-altitude trans-Pacific 

transport, which peaks in March and April. The current generation of global chemical 

transport models clearly underestimates this long-range transport of pollutants, implying 

that the model-projected impact on regional air quality over North America has been 

underestimated (through subsidence). 

The results of surface and aircraft measurements reveal a large amount of reactive 

nitrogen tracers over the Antarctic plateau in the summer.  These measurements are then 

subjected to the 1-D CTM and REAM for the purpose of assessing the photochemical 

impact of snow NOx emissions.  Then, after slightly modifying the ETA turbulence 

scheme, we simulated the boundary layer heights, measured by SODAR at SP, 

reasonably well with the polar version of MM5.  Results show that the average level of 
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model-derived snow NOx emissions (3.2-4.2×108 molec cm-2 s-1) at SP is similar to the 

measured flux of 3.9×108 molec cm-2 s-1 during ISCAT 2000.   Daytime snow NOx 

emissions are parameterized as a function of temperature and wind speed. Surface 

measurements of NO, HNO3, and HNO4, and balloon measurements of NO at the South 

Pole are reasonably simulated by 1-D CTM and REAM.  Compared with the Twin Otter 

measurements of NO over the plateau regions, REAM-simulated NO concentrations are 

at the low end, which indicates that either the parameterization based on surface 

measurements at SP underestimates emissions at higher-elevation plateau regions or the 

limited aircraft database may not totally represent the season of the year sampled. 

However, the model captures the spatial variability of near-surface NO measured by 

aircraft to a large extent, indicating that snow NOx emissions are produced through a 

common mechanism. An average emission flux of 0.25 kg N km-2 month-1 is calculated 

for December 2003 over the plateau (with an elevation above 2.5 km). Deposition is 

responsible for the loss of about half of reactive nitrogen, and scavenging by transport the 

other half. The REAM results show that snow NOx emissions are responsible for a 

shallow but highly photochemically active oxidizing “canopy” enshrouding the entire 

Antarctic plateau.  
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