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SUMMARY

Lattice cryptography has many compelling features, like security under worst-case hard-

ness assumptions, apparent security against quantum attacks, efficiency and parallelism, and

powerful constructions like fully homomorphic encryption. While standard constructions

such as lattice-based key exchange are starting to be deployed in real-world scenarios, the

most powerful lattice cryptosystems are still limited to research prototypes. This is due in

part to the difficulty of implementing, instantiating, and using these schemes.

In this work we present a collection of tools to facilitate broader use of lattice cryp-

tography by improving accessibility and usability. The foundation of this work is Λ∘𝜆, a

general-purpose software framework for lattice cryptography. The Λ∘𝜆 library has several

features which distinguish it from prior implementations, including high-level abstractions

for lattice operations, advanced functionality needed for applications like homomorphic

encryption, and safe interfaces.

Many efficient lattice cryptosystems are based on the relatively new Learning With

Errors over Rings (Ring-LWE) problem. In order to attract cryptanalytic effort and improve

concrete security estimates for this widely used problem , we publish challenges for Ring-

LWE and the related Learning With Rounding over Rings problem. Unlike challenges for

other cryptographic problems like integer factorization, a dishonest challenger can make

Ring-LWE challenges which are much harder to solve than properly generated ones. Thus

we propose and implement a non-interactive, publicly verifiable cut-and-choose protocol

which provides reasonably convincing evidence that the challenges are properly generated.

Finally, we introduce ALCHEMY, a domain-specific language and compiler for homo-

morphic computations. In existing implementations of homomorphic encryption, users must

manually represent a desired plaintext computation as a much more complex sequence of

operations on ciphertexts. ALCHEMY automates most of the steps in this process, which

dramatically reduces the expertise needed to use homomorphic encryption.

xii



CHAPTER 1

INTRODUCTION

The field of cryptography is concerned with all aspects of information security in the

presence of an untrusted or malicious party. There are a host of cryptographic primitives

such as hash functions, pseudo-random functions, public- and private-key encryption,

signature schemes, which can be used to solve particular problems in cryptography. At their

core, all cryptographic primitives rely on a computationally intractable or “hard” problem.

Typically these problems are well-studied and believed to be computationally intractible,

e.g., mathematical problems like factoring [RSA78; Rab79], quadratic residuocity [GM84],

decoding error correcting codes [McE78], and computing discrete logarithms [DH76]. Since

Ajtai’s seminal work in 1996 [Ajt04], cryptographers have additionally created primitives

which derive their security from hard problems on lattices.

1.1 Advantages of Lattice Cryptography

Lattice cryptography refers to a diverse set of cryptographic constructions that derive their

security from hard problems on point lattices in R𝑛, i.e., a discrete additive subgroup of R𝑛.

These objects have been studied since 1842 by the likes of Dirichlet and Minkowski [Ajt04].

Lattice cryptography has many features which make it a compelling alternative to number-

theoretic cryptography. Among these are its apparent quantum security, its ability to

have security from worst-case hardness assumptions, and powerful constructions like fully

homomorphic encryption. We explore the many advantages in more detail below.

Performance. Early lattice cryptosystems [AD97; GGH97] were impractical due to large

keys and ciphertexts. In particular, the [AD97] public-key encryption scheme had public

keys of size �̃�(𝑛4) and ciphertexts of size �̃�(𝑛2), with similar runtimes for encryption and

1



decryption, respectively. However, the NTRU public-key encryption scheme introduced

by [HPS98] demonstrated how the use of algebraically structured lattices (corresponding

to polynomial rings) can lead to very efficient cryptography using lattices. Efficiency was

further improved with the introduction of the Learning with Errors (LWE) problem [Reg09].

These two improvements were eventually combined into the flexible and efficient Ring-LWE

problem [LPR13b], which has been widely used in lattice cryptosystems. These efficient

schemes are broadly known as ring-based cryptography.

Parallelism. Most modern hardware supports some form of parallelism, e.g., via vector

instruction sets, multiple cores, or graphics processing units (GPUs). Lattice cryptosystems

are well-poised to take advantage of this hardware parallelism because lattice operations in

R𝑛 can be performed in𝒪(log 𝑛) or even𝒪(1) parallel operations on 𝑛 processors. This has

the potential to make expensive applications, like fully homomorphic encryption, usable in

practice. Parallelism in lattice cryptography has only recently been explored using hardware

vector instructions [Alk+16; Bou+17] and GPUs [Wan+12].

Quantum Security. In some cryptographic applications (like message authentication), we

only need to consider the current computational abilities of an adversary. With applications

like encryption though, we might require that an adversary who collects encrypted data today

should not be able to read it for (say) the next 100 years. This means we must account for

computational and algorithmic advances which may take place over that period, including

the possibility that future attackers may have access to more powerful computational models

that do not exist today.

One such model that has been widely studied is the quantum computer. Considerable

work been done towards actually constructing a large-scale quantum computer. Further-

more, it appears that quantum computers offer additional computation power compared

to classical devices. In particular, Peter Shor [Sho97] showed that cryptography relying

on the intractibility of factoring large numbers or computing discrete logarithms would be

2



insecure with mature quantum computing (though these problems are apparently secure

against a classical adversary). Researchers have also tried to attack lattice problems with

quantum algorithms, but have so far come up empty handed. This gives lattice cryptography

the distinguished property of having (apparent) quantum security, which has led to interest

outside academia [Age15; Bra16a].

Worst-case vs. Average-case hardness. Traditionally, the standard for a “hard problem”

was worst-case hardness, which says that some instances of the problem are hard to solve.

There might not be very many of these instances, or they might be difficult to find.

Cryptographic primitives choose a random instance of a hard problem from some

distribution, so we require that all but a negligible fraction of instances from this distribution

are hard to solve. This is known as average-case hardness. It can be difficult to choose a

distribution for which most instances of the problem are hard, though.

As an example, we consider integer factorization. Although most integers of a fixed size

are easy to factor (because they likely have small prime factors), cryptographers believe that

when integers have exactly two equal-size prime factors, their product is hard to factor. Thus

this is the distribution used for factoring-based cryptography, despite the lack any theoretical

evidence suggesting that this integers from this distribution are indeed hard to factor.

One way to avoid the problem of crafting a “hard” distribution is with a worst-case to

average-case reduction, which says that an algorithm which solves some noticeable fraction

of random instances of some problem can be used to solve every instance of a (possibly

different) problem. In 1996, Ajtai showed that lattices admit this strong property [Ajt04].

Specifically, he showed that finding the shortest vector in a lattice chosen randomly from a

certain class is as hard as solving three problems on any lattice.

Applications. Almost all cryptographic applications that can be constructed from number-

theoretic assumptions can also be constructed with lattices. However, some advanced

constructions like attribute-based encryption (e.g., [GPV08; GVW13]), which reveals data
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only to parties satisfying some arbitrary predicate, and fully homomorphic encryption

(e.g., [Gen09b; BGV14; GSW13]), which allows arbitrary computation on encrypted data,

have only been constructed from lattices. It is not known how to construct these applications

from any other cryptographic assumptions, making lattice cryptography the only choice for

this advanced functionality.

1.2 Lattice Cryptography Today

Lattice cryptography has seen enormous growth over the past decade. A broad movement

toward the practical implementation of lattice/ring-based schemes in the past few years

has led to an impressive array of results (e.g., [HPS98; Ber+16; Lyu+08; GLP12; Duc+13;

Bos+15; Alk+16; Bos+16b; HS; May16; LCP17]). While these have all been research

prototypes, there has been very recent progress in experimenting with lattice-based key

exchange [Duc+13] on the internet, e.g., in Google’s Chrome web browser [Bra16b], the

strongSwan IPSec implementation [Ste14], and the Tor protocol [LS16].

The most powerful lattice-based constructions, however, have not yet seen this level of

deployment. There are many possible explanations for this state of affairs, but we contend

that the challenges facing advanced lattice cryptosystems are primarily practical rather than

theoretical in nature. Specifically, advanced cryptosystems require functionality that is not

included in implementations of simpler schemes, hence it is difficult to build and test them.

Next, despite its great promise, homomorphic encryption remains difficult to use: only

experts can write satisfactory homomorphic computations and select parameters for HE

schemes. Another problem facing all lattice cryptosystems is that it is difficult to estimate

their security in practice. We explore these problems in more detail below.

1.2.1 Lattice Operations

All efficient lattice cryptosystems rely on a handful of shared techniques such as integer mod-

ular arithmetic and rounding, error sampling, “gadget” operations including discrete Gaus-
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sian sampling, ring switching, ring arithmetic, and inter-ring operations [Mic07; LPR13b;

MP12; Gen+13]. Each of these components is much more complex than the tools used in

more traditional number-theoretic cryptography. Nevertheless, these primitive lattice opera-

tions have been implemented many times in various one-off implementations which, to date,

have been specialized to a particular cryptographic primitive, like collision-resistant hash-

ing [Lyu+08], digital signatures [GLP12; Duc+13], key-establishment protocols [Bos+15;

Alk+16; Bos+16b], and homomorphic encryption [NLV11; HS].

These tailored implementations typically use fixed parameter sets and have few reusable

interfaces, making them hard to implement other primitives upon. Those interfaces that do

exist are quite low-level; e.g., they require the programmer to explicitly convert between

various representations of ring elements, which calls for specialized expertise and can

be error prone. Finally, prior implementations either do not support, or use suboptimal

algorithms for, the important class of arbitrary cyclotomic rings, and thereby lack related

classes of homomorphic encryption functionality.

Thus with the current collection of implementations, it is difficult to rapidly prototype

lattice cryptosystems (especially those requiring advanced functionality) and to experiment

with parameters, parallelism, and more. Lattice cryptography is also in need of well-designed

abstractions which make it easier and safer to implement lattice cryptosystems.

1.2.2 Complexity of Homomorphic Encryption

Homomorphic Encryption (HE) is a powerful cryptographic concept that allows a worker to

perform computations on client-encrypted data, without learning anything about the data

itself. There are two types of homomorphic encryption schemes: somewhat-homomorphic

encryption (SHE) schemes restrict the set of computations that can be performed (e.g.,

to a certain multiplicative depth), while fully homomorphic encryption (FHE) schemes

allow arbitrary computations.1 Although first envisioned almost 40 years ago [RAD78]

1In much of this work, the distinction between these two concepts is not needed, and we use the generic
term “homomorphic encryption” (HE) for statements that apply to both.
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as a cryptographic “holy grail,” no plausible candidate FHE scheme was known until

Gentry’s seminal work in 2009 [Gen09b; Gen09a], which showed how to turn somewhat-

homomorphic schemes into fully homomorphic schemes. Prompted by HE’s potential to

enable new privacy-aware applications or enhance existing ones, a flurry of research activity

has led to schemes with better efficiency, stronger security assurances, and specialized

features. (See [Dij+10; SV14; BV11b; Cor+11; CNT12; BV14a; BGV14; Bra12; GHS12b;

GHS12a; Che+13; AP13; Gen+13; BV14b; AP14] for a sampling.)

The power of HE translates to a heavy burden on users of HE, because there are a

large number of tunable parameters and different routes to the user’s end goal. In current

implementations, merely expressing a homomorphic computation requires expertise in

the intricacies of the homomorphic encryption scheme and its particular implementation.

Some recent implementations like [LCP17] attempt to partially resolve this complexity by

automatically choosing (some) parameters, but many details are still left for the user to

manage. This usability challenge limits the impact and usefulness of an otherwise powerful

application.

1.2.3 Security Estimates

The security of factoring-based cryptography like RSA is reasonably well-understood:

there is a single parameter 𝑛 (size of the modulus), and increasing 𝑛 makes the problem

harder. Futhermore, the runtime of the general number field sieve, the most efficient known

algorithm for factoring large numbers, is easily expressed as a function of 𝑛. By contrast,

lattice cryptography uses a large number of parameters, all of which interact in complex

ways to affect security. Moreover, the best algorithms for attacking lattice problems (like

the Block Korkin-Zolotarev (BKZ) basis-reduction algorithm [SE94; CN11]) are poorly

understood, and it is notoriously difficult to estimate their runtime. As a result, it is very

difficult to accurately estimate the concrete hardness of lattice schemes, for any combination

of parameters.
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Lacking concrete security estimates, instantiations could rely on strong worst-case

hardness guarantees. In practice, the parameters needed to obtain this security guarantee

are so large as to be impractical when compared to alternative types of cryptography. There

remains, however, a large gap between parameters required for worst-case guarantees and

parameters that are known to be insecure against concrete attacks. Thus many proposed

instantiations live somewhere in this gap, with parameters that apparently thwart practical

attacks, but that do not support worst-case hardness guarantees [Lyu+08; Duc+13; Alk+16;

Bos+16b].

As lattice cryptography becomes more widely used in practice, especially with param-

eters that lack much (if any) theoretical support, there is an increasing need for further

cryptanalytic effort and higher-confidence security estimates for its underlying computa-

tional problems.

1.3 Our Contributions

In this work we present a collection of tools which address the practical needs of lattice

cryptography. The goal of these tools is to facilitate broader use of lattice cryptography

by improving accessibility for researchers, implementors, and end-users. Specifically, we

aim to make lattice cryptography easier to get right, simpler to use, and help set the stage

for widespread adoption of this leading post-quantum candidate. Our software frameworks

emphasize safety through programming language features like strong, static typing and

domain-specific languages.

The foundation of this thesis is a software framework for lattice cryptography that

provides modular and reusable interfaces for operations which appear in a variety of cryp-

tosystems. We also introduce ALCHEMY, a domain-specific language and compiler for

simplifying the process of writing homomorphic computations. Finally, we propose cryptan-

alytic challenges for a wide range of parameters for two related problems which are broadly

used in efficient lattice cryptosystems. We explain these tools in more detail below.
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1.3.1 A Functional Library for Lattice Cryptography

At the core of this work is Λ∘𝜆, a general-purpose software framework for lattice-based

cryptography. The Λ∘𝜆 framework has several novel properties that address the limitations

of prior implementations of lattice cryptosystems, including the following:

Generality, modularity, concision: Λ∘𝜆 defines a collection of general, highly composable

interfaces for mathematical operations used across lattice cryptography, allowing for a

wide variety of schemes to be expressed very naturally and at a high level of abstraction.

For example, we implement an advanced somewhat-homomorphic encryption scheme

in as few as 2–5 lines of code per feature, via code that very closely matches the

scheme’s mathematical definition.

Theory affinity: Λ∘𝜆 is designed from the ground-up around the specialized ring repre-

sentations, fast algorithms, and worst-case hardness proofs that have been developed

for the Ring-LWE problem and its cryptographic applications. In particular, it imple-

ments fast algorithms for sampling from theory-recommended error distributions over

arbitrary cyclotomic rings, and provides tools for maintaining tight control of error

growth in cryptographic schemes.

Safety: Λ∘𝜆 has several facilities for reducing code complexity and programming errors,

thereby aiding the correct implementation of lattice cryptosystems. In particular,

it uses strong typing to statically enforce—i.e., at compile time—a wide variety of

constraints among the various parameters.

Advanced features: Λ∘𝜆 exposes the rich hierarchy of cyclotomic rings to cryptographic

applications. We use this to give the first-ever implementation of an important HE

operation known as “ring switching,” and also define and analyze a more efficient

variant that we call “ring tunneling.”
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Lastly, this work defines and analyzes a variety of mathematical objects and algorithms

for the recommended usage of Ring-LWE in cyclotomic rings, which we believe will serve

as a useful knowledge base for future implementations.

1.3.2 A Language and Compiler for Homomorphic Encryption

Homomorphic encryption (HE) allows a worker to perform computations on client-encrypted

data, without learning anything about the data itself. Since the first plausible construction in

2009, a variety of real-world HE implementations have been given and used for particular

applications of interest. Unfortunately, using HE is currently very complicated, and a great

deal of expertise is required to satisfactorily implement a desired homomorphic computation.

This work introduces ALCHEMY, a modular and extensible system that greatly acceler-

ates and simplifies the implementation of homomorphic computations. With ALCHEMY,

one expresses a desired “in the clear” computation on plaintexts in a simple domain-specific

language, and then uses a compiler to automatically transform it into a corresponding ho-

momorphic program on ciphertexts. The compiler deals with the cumbersome but rote tasks

of tracking the ciphertext “noise” and scheduling appropriate “maintenance” operations to

control it, choosing (most of) the parameters, generating keys and hints, etc. In addition,

ALCHEMY compilers can be composed together to provide other useful functionality, such

as pretty-printing a representation of the programs, logging the empirical noise rates of

ciphertexts throughout a computation, etc. In short, ALCHEMY lets programmers write

clear and concise code describing what they really care about—the plaintext computation—

and easily get a corresponding homomorphic computation without needing any particular

expertise in HE.

To demonstrate the simplicity of creating homomorphic computations with ALCHEMY,

we propose a design and implementation of ring-rounding on encrypted values. This opera-

tion is the main component of “bootstrapping” (which makes any somewhat-homomorphic

encryption scheme fully homomorphic), the Ring-LWR problem, and symmetric encryption
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using lattice-based pseudorandom functions like [BPR12; BP14]. The key idea behind our

design is to exploit the close “algebraic fit” between ring-rounding and known lattice-based

homomorphic encryption constructions.

1.3.3 Cryptanalytic Challenges for Ring Cryptography

Recent lattice cryptography implementations use constructions based on the Learning

With Errors (LWE) problem, its more efficient ring-based variant Ring-LWE, and their

“deterministic error” counterparts Learning With Rounding (LWR) and Ring-LWR. As these

problems are the most widely used in practice (especially the efficient ring variants), it is

important to have a better understanding of their concrete security.

The standard approach for attracting cryptanalytic effort and obtaining better security

estimates for problems in cryptography is by issuing challenges (see, e.g., [91; 97; PS13a;

15; Yas+15]). Following these works, we give a broad collection of challenges for Ring-LWE

and Ring-LWR instantiations over cyclotomics rings. The challenges cover a wide variety

of instantiations, involving two-power and non-two-power cyclotomics; moduli of various

sizes and arithmetic forms; small and large numbers of samples; and error distributions

satisfying the bounds from worst-case hardness theorems related to ideal lattices, along with

narrower errors that still appear to yield hard instantiations. We estimate the hardness of

each challenge by giving the approximate Hermite factor and BKZ block size needed to

solve it via lattice-reduction attacks.

A central issue in the creation of challenges for LWE-like problems is that dishonestly

generated instances can be much harder to solve than properly generated ones, or even

impossible. To address this, we devise and implement a simple, non-interactive, publicly

verifiable protocol which gives reasonably convincing evidence that the challenges are

properly distributed, or at least not much harder than claimed.
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1.3.4 Organization

The rest of this thesis is organized as follows:

Chapter 2 contains the technical background needed to understand this thesis, including

mathematical background and a primer for the functional programming language

Haskell, which was used to implement Λ∘𝜆 and ALCHEMY.

Chapters 3 and 4 are devoted to Λ∘𝜆. Chapter 3 introduces the main library component

of Λ∘𝜆 which contains the primary interfaces. In chapter 4, we implement advanced

SHE with Λ∘𝜆, and give a detailed evaluation of the overall framework.

Chapters 5 and 6 introduce ALCHEMY. We discuss the design and interfaces in chapter 5,

and use it to implement homomorphic evaluation of symmetric-key primitives in chap-

ter 6. This implementation serves as our primary method of evaluating the ALCHEMY

system.

Chapter 7 introduces our cryptanalytic challenges for ring-based cryptography, including

the cut-and-choose protocol for providing convincing evidence that the challenges are

honestly generated.
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CHAPTER 2

BACKGROUND

This chapter provides the necessary background to understand the technical content of

this thesis. Section 2.1 includes basic concepts related to algebra, the ring of integers,

an introduction to lattices, the theory of Gaussian distributions, and other miscellaneous

topics. In section 2.2 we introduce the concept and structure of cyclotomic rings, and

also formally define two important computational problems used in lattice cryptography.

Finally, section 2.3 gives a brief introduction to Haskell.

2.1 Mathematical Background and Notation

Notation. We write �̃�(𝑛) for 𝒪(𝑛 log(𝑛)) and similarly for Θ̃(𝑛) and Ω̃(𝑛). For a vector

𝑥 ∈ R𝑛, we write ‖𝑥‖ to denote the standard Euclidean (or ℓ2) norm, i.e., ‖𝑥‖ = ‖𝑥‖2 =√︀
(⟨𝑥, 𝑥⟩).

Rings and Ideals. For an arbitrary ring 𝑅, an ideal ℐ ⊆ 𝑅 is a nontrivial additive

subgroup that is also closed under multiplication by 𝑅, i.e., 𝑥 · 𝑟 ∈ ℐ for any 𝑥 ∈ ℐ, 𝑟 ∈ 𝑅.

When an ideal 𝐼 = 𝑎𝑅 for some 𝑎 ∈ 𝐼 , we say 𝐼 is generated by 𝑎 and write 𝐼 = (𝑎).

Kronecker Product The Kronecker product of two matrices gives their corresponding

tensor product. For example 𝑀 = 𝐴 ⊗ 𝐵 (where 𝐴 is 𝑟𝐴 × 𝑐𝐴 and 𝐵 is 𝑟𝐵 × 𝑐𝐵) is the

𝑟𝐴 · 𝑟𝐵 × 𝑐𝐴 · 𝑐𝐵 matrix corresponding to replacing each 𝑎𝑖𝑗 with the matrix 𝑎𝑖𝑗𝐵. We show
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two special cases of interest below, namely 𝐴⊗ 𝐼𝑘 and 𝐼𝑘 ⊗ 𝐴:

[︂
𝑎1 𝑎2
𝑎3 𝑎4

]︂
⊗𝐼3 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎1 𝑎2

𝑎1 𝑎2
𝑎1 𝑎2

𝑎3 𝑎4
𝑎3 𝑎4

𝑎3 𝑎4

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝐼3⊗
[︂
𝑎1 𝑎2
𝑎3 𝑎4

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎1 𝑎2
𝑎3 𝑎4

𝑎1 𝑎2
𝑎3 𝑎4

𝑎1 𝑎2
𝑎3 𝑎4

⎤⎥⎥⎥⎥⎥⎥⎦

Tensoring with identity (on either side) corresponds to applying 𝐴 to certain “slices” of

the input vector, giving a simple and efficient parallel algorithm for multiplying by a tensor

with the identity matrix.

A useful fact about the Kronecker product which we use frequently is called the mixed-

product property: (𝐴⊗𝐵) · (𝐶 ⊗𝐷) = 𝐴𝐶 ⊗𝐵𝐷 (when we can form the matrix products

𝐴𝐶 and 𝐵𝐷).

2.1.1 Integers

Euler’s Totient Function We frequently need Euler’s totient function 𝜙(𝑛), which counts

the number of integers that are both less than 𝑛 and coprime with 𝑛. 𝜙(1) = 1, and for a

prime power 𝑝𝑒 with 𝑒 ≥ 1, 𝜙(𝑝𝑒) = (𝑝− 1)𝑝𝑒−1. For an arbitrary positive integer 𝑚 with

prime-power factorization 𝑚 = 𝑝𝑒11 . . . 𝑝𝑒𝑘𝑘 , 𝜙(𝑚) =
∏︀𝑘

𝑖=1 𝜙(𝑝𝑒𝑖𝑖 ), i.e., the totient function is

multiplicative.

Modular Arithmetic. As usual, Z denotes the ring of integers, and the quotient ring

Z𝑞 ∼= Z/(𝑞Z) is the ring of integers modulo 𝑝, i.e., the cosets 𝑥+ 𝑞Z with the usual addition

and multiplication operations.

Rounding. For integers 𝑞 ≥ 𝑝 ≥ 2, we define the rounding function ⌊·⌉ : Z𝑞 → Z𝑝

by ⌊𝑥⌉𝑝 = ⌊(𝑝/𝑞) · �̄�⌋, where �̄� ∈ Z ≡ 𝑥 mod 𝑞. We extend this function to vectors

component-wise.
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Chinese Remainder Theorem. The Chinese remainder theorem (CRT) gives an isomor-

phism between Z𝑞1·𝑞2 and the ring product Z𝑞1 × Z𝑞2 when 𝑞1 and 𝑞2 are coprime. In fact,

the CRT holds in a more general setting, which we will also need (see below).

2.1.2 Lattices

In cyclotomic ring-based lattice cryptography, we use the space 𝐻 ⊆ C𝑛 for some even

integer 𝑛, defined as

𝐻 := {x = (𝑥1, . . . , 𝑥𝑛) ∈ C𝑛 : 𝑥𝑖 = 𝑥𝑖+𝑛/2, 𝑖 ∈ {1, . . . , 𝑛/2}}.

It is easy to check that 𝐻 , with the inner product ⟨x,y⟩ =
∑︀

𝑖 𝑥𝑖𝑦𝑖 of the ambient space C𝑛,

is an 𝑛-dimensional real inner product space, i.e., it is isomorphic to R𝑛 via an appropriate

rotation. Therefore, the reader may mentally replace 𝐻 with R𝑛 in all that follows. We let

ℬ = {x ∈ 𝐻 : ‖x‖ ≤ 1} denote the closed unit ball in 𝐻 (in the Euclidean norm).

For the purposes of this work, a lattice ℒ is discrete additive subgroup of 𝐻 that is full

rank, i.e., spanR(ℒ) = 𝐻 . A lattice is generated as the set of integer linear combinations of

some linearly independent basis vectors B = {b1, . . . ,b𝑛}:

ℒ = ℒ(B) :=
{︁∑︁

𝑖

𝑧𝑖b𝑖 : 𝑧𝑖 ∈ Z
}︁
.

The volume (or determinant) of a lattice ℒ is vol(ℒ) := vol(𝐻/ℒ) = |det(B)|, where B

denotes any basis of ℒ. The minimum distance of ℒ is 𝜆1(ℒ) := min0 ̸=v∈ℒ‖v‖, the length

of a shortest nonzero lattice vector. The dual lattice ℒ∨ of a lattice ℒ is the set of all points

in 𝐻 having integer inner products with every vector of the lattice: ℒ∨ := {w ∈ 𝐻 :

⟨w,ℒ⟩ ⊆ Z}.
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2.1.3 Gaussians.

The Gaussian function 𝜌 : 𝐻 → R+ is defined as 𝜌(x) := exp(−𝜋‖x‖2), and is scaled to

have parameter (or width) 𝑟 > 0 by defining 𝜌𝑟(x) := 𝜌(x/𝑟). The (spherical) Gaussian

probability distribution 𝐷𝑟 over 𝐻 is defined to have probability density function 𝑟−𝑛 · 𝜌𝑟.

(We usually omit the subscript when 𝑟 = 1.)

The following bounds use the function

𝑓(𝑥) =
√

2𝜋𝑒 · 𝑥 · exp(−𝜋𝑥2), (2.1.1)

which is strictly decreasing and at most 1 for 𝑥 ≥ 1/
√

2𝜋.

Lemma 2.1.1 ([Ban93, Lemma 1.5]). For any 𝑐 > 1/
√

2𝜋 defining 𝐶 = 𝑓(𝑐) < 1, and

any lattice ℒ ⊂ 𝐻 ,

𝜌(ℒ ∖ 𝑐
√
𝑛ℬ) < 𝐶𝑛 · 𝜌(ℒ).

The analogous continuous bound𝐷(𝐻 ∖𝑐
√
𝑛ℬ) < 𝐶𝑛 follows by taking an arbitrarily dense

lattice ℒ and using a limiting argument. The following is a result of rearranging terms.

Corollary 2.1.2. If 𝜋𝑐2 − ln 𝑐 ≥ 1
𝑛

ln(1
𝜀
) + 1

2
ln(2𝜋𝑒) for some 𝑐 > 1/

√
2𝜋 and 𝜀 > 0, then

𝐷(𝐻 ∖ 𝑐
√
𝑛ℬ) < 𝜀.

The following is an immediate corollary of Lemma 2.1.1 and [MR07, Lemma 4.1].

Lemma 2.1.3. For any latticeℒ ⊂ 𝐻 and 𝑟 >
√︀
𝑛/2𝜋/𝜆1(ℒ∨) defining𝐶 = 𝑓(𝑟𝜆1(ℒ∨)/

√
𝑛) <

1, the statistical distance between 𝐷𝑟 mod ℒ and the uniform distribution over 𝐻/ℒ is less

than 1
2
𝐶𝑛/(1− 𝐶𝑛).
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2.2 Cyclotomic Rings

2.2.1 Introduction

Polynomial Rings. For a ring 𝑅 and indeterminate 𝑋 , a polynomial ring 𝑅[𝑋] is the set

of all finite-degree formal sums
∑︀𝑛

𝑖=0 𝑎𝑖 ·𝑋 𝑖, where each 𝑎𝑖 ∈ 𝑅 and 𝑋 is an indeterminate.

For example, 3𝑋2 − 5𝑋 + 1 ∈ Z[𝑋]. As with the integers, we can take quotients of the

form 𝑅[𝑋]/(𝑓(𝑋)) where 𝑓(𝑋) ∈ 𝑅[𝑋] and (𝑓(𝑋)) = 𝑓(𝑋) ·𝑅[𝑋] is the ideal generated

by 𝑓(𝑋). Continuing our example, we set 𝑓(𝑋) = 𝑋2 + 2 so that 3𝑋2 − 5𝑋 + 1 =

3(𝑋2 + 2) − 5𝑋 − 5 ∼= −5𝑥 − 5 ∈ Z[𝑋]/(𝑋2 + 2). In particular, if 𝑓(𝑋) has degree 𝑛,

the quotient is a polynomial of degree < 𝑛.

Basic Cyclotomic Rings. For a positive integer 𝑚, let 𝑅 = Z[𝜁𝑚] denote the 𝑚th cyclo-

tomic ring, where 𝜁𝑚 is an abstract element of multiplicative order 𝑚, i.e., 𝜁𝑚𝑚 = 1 and

𝜁𝑗𝑚 ̸= 1 for all positive 𝑗 < 𝑚. For example, the first cyclotomic ring is 𝒪1 = Z. The

parameter𝑚 is known as the index or conductor of the cyclotomic ring. For a positive integer

𝑞, we frequently use the quotient ring 𝑅𝑞 = 𝑅/𝑞𝑅 = Z𝑞[𝜁𝑚], i.e., the 𝑚th cyclotomic over

base ring Z𝑞. As with the integers, we can represent 𝑅𝑞1·𝑞2 as a ring product 𝑅𝑞1 ×𝑅𝑞2 , with

component-wise operations, via the Chinese Remainder Theorem. (Note that we also use the

Chinese Remainder Theorem on the factorization of 𝑝𝑅 into prime ideals below. These two

uses are independent, but we refer to their combined use as “double CRT” representation.)

The 𝑚th cyclotomic ring is the ring of algebraic integers of (and therefore contained

in) the 𝑚th cyclotomic number field 𝐾 = Q(𝜁𝑚), the ring extension of the rationals Q

obtained by adjoining an element 𝜁𝑚. The minimal polynomial Φ𝑚(𝑋) (over the rationals)

of 𝜁𝑚 is called the 𝑚th cyclotomic polynomial. This polynomial has degree 𝑛 = 𝜙(𝑚), so

deg(𝐾/Q) = deg(𝑅/Z) = 𝑛.

We may also view 𝐾 (respectively, 𝑅, 𝑅𝑞) as a polynomial ring via the isomorphism

Q(𝜁𝑚) ∼= Q[𝑋]/(Φ𝑚(𝑋)) (resp. Z[𝜁𝑚] ∼= Z[𝑋]/(Φ𝑚(𝑋)), Z𝑞[𝜁𝑚] ∼= Z𝑞[𝑋]/(Φ𝑚(𝑋)), by
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identifying 𝜁𝑝 with 𝑋 . In particular, this means we write may cyclotomic ring elements as a

vector of coefficients with respect to some fixed basis, e.g., the standard polynomial basis

{1, 𝑋,𝑋2, . . .}. That is, an element of 𝐾 (respectively, 𝑅, 𝑅𝑞) can be uniquely represented

as a rational (resp., integral, 𝑍𝑞) polynomial in 𝑋 of degree less than 𝑛.

Cyclotomic Heierarchy. The 𝑚th cyclotomic ring 𝑅 = Z[𝜁𝑚] can be seen as a subring

of the 𝑚′th cyclotomic ring 𝑅′ = Z[𝜁𝑚′ ] if and only if 𝑚|𝑚′, and in such a case we can

embed 𝑅 into 𝑅′ by identifying 𝜁𝑚 with 𝜁𝑚
′/𝑚

𝑚′ . The dimension of the ring extension 𝑅/𝑅′

is dim(𝑅/𝑅′) = 𝜙(𝑚)/𝜙(𝑚′).

The trace function Tr𝑅′/𝑅 : 𝑅′ → 𝑅 is the 𝑅-linear function defined as follows: fixing

any 𝑅-basis of 𝑅′, multiplication by an 𝑥 ∈ 𝑅′ can be represented as a matrix 𝑀𝑥 over 𝑅

with respect to the basis, which acts on the multiplicand’s vector of 𝑅-coefficients. Then

Tr𝑅′/𝑅(𝑥) is simply the trace of 𝑀𝑥, i.e., the sum of its diagonal entries. (This is invariant

under the choice of basis.) Because 𝑅′/𝑅 is Galois, the trace can also be defined as the sum

of the automorphisms of 𝑅′ that fix 𝑅 pointwise. All of this extends to the field of fractions

of 𝑅′ (i.e., its ambient number field) in the same way.

Notice that the trace does not fix 𝑅 (except when 𝑅′ = 𝑅), but rather Tr𝑅′/𝑅(𝑥) =

deg(𝑅′/𝑅) · 𝑥 for all 𝑥 ∈ 𝑅. For a tower 𝑅′′/𝑅′/𝑅 of ring extensions, the trace satisfies the

composition property

Tr𝑅′′/𝑅 = Tr𝑅′/𝑅 ∘Tr𝑅′′/𝑅′ .

2.2.2 Tensor Product of Rings

Let 𝑅, 𝑆 be arbitrary rings with common subring 𝐸 ⊆ 𝑅, 𝑆. The ring tensor product of 𝑅

and 𝑆 over 𝐸, denoted 𝑅 ⊗𝐸 𝑆, is the set of 𝐸-linear combinations of pure tensors 𝑟 ⊗ 𝑠
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for 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, with ring operations defined by 𝐸-bilinearity, i.e.,

(𝑟1 ⊗ 𝑠) + (𝑟2 ⊗ 𝑠) = (𝑟1 + 𝑟2)⊗ 𝑠

(𝑟 ⊗ 𝑠1) + (𝑟 ⊗ 𝑠2) = 𝑟 ⊗ (𝑠1 + 𝑠2)

𝑒(𝑟 ⊗ 𝑠) = (𝑒𝑟)⊗ 𝑠 = 𝑟 ⊗ (𝑒𝑠)

for any 𝑒 ∈ 𝐸, and the mixed-product property

(𝑟1 ⊗ 𝑠1) · (𝑟2 ⊗ 𝑠2) = (𝑟1𝑟2)⊗ (𝑠1𝑠2).

We need the following facts about tensor products of cyclotomic rings. Let 𝑅 = 𝒪𝑚1

and 𝑆 = 𝒪𝑚2 . Their largest common subring and smallest common extension ring (called

the compositum) are, respectively,

𝐸 = 𝒪𝑚1 ∩ 𝒪𝑚2 = 𝒪gcd(𝑚1,𝑚2)

𝑇 = 𝒪𝑚1 +𝒪𝑚2 = 𝒪lcm(𝑚1,𝑚2).

Moreover, the ring tensor product𝑅⊗𝐸𝑆 is isomorphic to 𝑇 , via the𝐸-linear map defined by

sending 𝑟⊗𝑠 to 𝑟 ·𝑠 ∈ 𝑇 . In particular, for coprime𝑚1,𝑚2, we have𝒪𝑚1⊗Z𝒪𝑚2
∼= 𝒪𝑚1𝑚2 .

2.2.3 Powerful Basis

Prime cyclotomics. For a prime 𝑝, the 𝑝th cyclotomic ring is𝒪𝑝 = Z[𝜁𝑝], where 𝜁𝑝 denotes

a primitive 𝑝th root of unity, i.e., 𝜁𝑝 has multiplicative order 𝑝. The minimal polynomial

over Z of 𝜁𝑝 is Φ𝑝(𝑋) = 1 +𝑋 +𝑋2 + · · ·+𝑋𝑝−1, so𝒪𝑝 has degree 𝜙(𝑝) = 𝑝− 1 over Z,

and we have the ring isomorphism 𝒪𝑝 ∼= Z[𝑋]/(Φ𝑝(𝑋)) by identifying 𝜁𝑝 with 𝑋 . The
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power basis 𝑝𝑝 of 𝒪𝑝 is the Z-basis consisting of the first 𝑝− 1 powers of 𝜁𝑝, i.e.,

𝑝𝑝 := (1, 𝜁𝑝, 𝜁
2
𝑝 , . . . , 𝜁

𝑝−2
𝑝 ).

For example, the 5th cyclotomic polynomial is 1+𝑋+𝑋2 +𝑋3, and the 5th cyclotomic

ring is isomorphic to Z[𝑋]/(1 +𝑋 +𝑋2 +𝑋3). The power basis for 𝒪5 is (1, 𝜁5, 𝜁
2
5 , 𝜁

3
5 ).

Prime-power cyclotomics. Now let 𝑚 = 𝑝𝑒 for 𝑒 ≥ 2 be a power of a prime 𝑝. Then we

can inductively define 𝒪𝑚 = 𝒪𝑚/𝑝[𝜁𝑚], where 𝜁𝑚 denotes a primitive 𝑝th root of 𝜁𝑚/𝑝. Its

minimal polynomial over 𝒪𝑚/𝑝 is 𝑋𝑝 − 𝜁𝑚/𝑝, so 𝒪𝑚 has degree 𝑝 over 𝒪𝑚/𝑝, and hence

has degree 𝜙(𝑚) = (𝑝− 1)𝑝𝑒−1 over Z.

The above naturally yields the relative power basis of the extension 𝒪𝑚/𝒪𝑚/𝑝, which is

the 𝒪𝑚/𝑝-basis

𝑝𝑚,𝑚/𝑝 := (1, 𝜁𝑚, . . . , 𝜁
𝑝−1
𝑚 ).

More generally, for any powers 𝑚,𝑚′ of 𝑝 where 𝑚|𝑚′, we define the relative power basis

𝑝𝑚′,𝑚 of 𝒪𝑚′/𝒪𝑚 to be the 𝒪𝑚-basis obtained as the Kronecker product of the relative

power bases for each level of the tower:

𝑝𝑚′,𝑚 := 𝑝𝑚′,𝑚′/𝑝 ⊗ 𝑝𝑚′/𝑝,𝑚′/𝑝2 ⊗ · · · ⊗ 𝑝𝑚𝑝,𝑚. (2.2.1)

Notice that because 𝜁𝑝𝑖 = 𝜁
𝑚′/𝑝𝑖

𝑚′ for 𝑝𝑖 ≤ 𝑚′, the relative power basis 𝑝𝑚′,𝑚 consists of

all the powers 0, . . . , 𝜙(𝑚′)/𝜙(𝑚)− 1 of 𝜁𝑚′ , but in “base-𝑝 digit-reversed” order (which

turns out to be more convenient for implementation). Finally, we also define 𝑝𝑚 := 𝑝𝑚,1

and simply call it the powerful basis of 𝒪𝑚.

Of special interest are the two-power cyclotomic rings, which have especially simple

representations and are widely used in practical instantiations of lattice cryptography. When

𝑚 = 2𝑘 ≥ 2 is a power of two, the 𝑚th cyclotomic polynomial is Φ𝑚(𝑋) = 𝑋𝑛 + 1,

where 𝑛 = 𝜙(𝑚) = 2𝑘−1. Thus the 8th cyclotomic field is 𝐾 = Q[𝑋]/(𝑋4 + 1) and the
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corresponding ring is 𝑅 = Z[𝑋]/(𝑋4 +1). For this special case, the power basis is identical

to the powerful basis 𝑝 and the “tweaked” decoding basis 𝑡 · 𝑑 of 𝑅 as defined below.

Arbitrary cyclotomics. Now let 𝑚 be any positive integer, and let 𝑚 =
∏︀𝑡

ℓ=1𝑚ℓ be its

factorization into maximal prime-power divisors 𝑚ℓ (in some canonical order). Then we

can define

𝒪𝑚 := Z[𝜁𝑚1 , 𝜁𝑚2 , . . . , 𝜁𝑚𝑡 ].
1

It is known that the rings Z[𝜁ℓ] are linearly disjoint over Z, i.e., for any Z-bases of the

individual rings, their Kronecker product is a Z-basis of 𝒪𝑚. In particular, the powerful

basis of 𝒪𝑚 is defined as the Kronecker product of the component powerful bases:

𝑝𝑚 :=
⨂︁
ℓ

𝑝𝑚ℓ
. (2.2.2)

Similarly, for 𝑚|𝑚′ having factorizations 𝑚 =
∏︀

ℓ𝑚ℓ, 𝑚′ =
∏︀

ℓ𝑚
′
ℓ, where each 𝑚ℓ,𝑚

′
ℓ

is a power of a distinct prime 𝑝ℓ (so some 𝑚ℓ may be 1), the relative powerful basis of

𝒪𝑚′/𝒪𝑚 is

𝑝𝑚′,𝑚 :=
⨂︁
ℓ

𝑝𝑚′
ℓ,𝑚ℓ

. (2.2.3)

Notice that for 𝑚|𝑚′|𝑚′′, we have that 𝑝𝑚′′,𝑚 and 𝑝𝑚′′,𝑚′ ⊗ 𝑝𝑚′,𝑚 are equivalent up to order,

because they are tensor products of the same components, but possibly in different orders.

2.2.4 Canonical Embedding

There are 𝑛 distinct ring embeddings (i.e., injective ring homomorphisms) 𝜎𝑖 : 𝐾 → C,

indexed by 𝑖 ∈ Z*
𝑚, which are defined by 𝜎𝑖(𝜁𝑚) = 𝜔𝑖𝑚 where 𝜔𝑚 = exp(2𝜋

√
−1/𝑚) ∈ C

is the principal 𝑚th complex root of unity. These embeddings come in conjugate pairs

(𝜎𝑖, 𝜎𝑚−𝑖), because 𝜔𝑖𝑚 is the complex conjugate of 𝜔𝑚−𝑖
𝑚 = 𝜔−𝑖

𝑚 . The canonical embedding

is the concatenation of all the embeddings (under a suitable reindexing of Z*
𝑚 as {1, . . . , 𝑛}),

1Equivalently, 𝒪𝑚 =
⨂︀

ℓ𝒪𝑚ℓ
is the ring tensor product over Z of all the 𝑚ℓth cyclotomic rings.
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i.e., the injective function

𝜎 : 𝐾 → 𝐻

𝜎(𝑎) = (𝜎𝑖(𝑎))𝑖∈Z*
𝑚

where 𝐻 ⊂ C𝑛 is the subspace defined above in subsection 2.1.2.

We endow𝐾 and𝑅 with a geometry using the canonical embedding 𝜎, i.e., all geometric

quantities on 𝐾 and 𝑅 are defined in terms of the canonical embedding. For example, we

define the ℓ2 norm on 𝐾 as ‖𝑥‖2 = ‖𝜎(𝑥)‖2 =
√︀
⟨𝜎(𝑥), 𝜎(𝑥)⟩, and use this to define the

continuous Gaussian distribution 𝐷𝑟 over 𝐾.2 A key property is that both addition and

multiplication in the ring are coordinate-wise in the canonical embedding:

𝜎(𝑎+ 𝑏) = 𝜎(𝑎) + 𝜎(𝑏)

𝜎(𝑎 · 𝑏) = 𝜎(𝑎)⊙ 𝜎(𝑏).

This property aids analysis and allows for sharp bounds on the growth of errors in crypto-

graphic applications.

For two-power cyclotomics, this geometry is particulary simple: 𝜎 is just a scaling

by a
√
𝑛 factor, followed by a rigid rotation (an isometry). Therefore, a sample from

the Gaussian distribution 𝐷𝑟 over 𝐻 (and over 𝐾, via 𝜎−1) has independent power-basis

coefficients, drawn from 𝐷𝑟/
√
𝑛.

2.2.5 (Tweaked) Decoding Basis

Ideal lattices. Recall that an ideal ℐ ⊆ 𝑅 is a nontrivial additive subgroup that is also

closed under multiplication by 𝑅. The norm is defined as N(ℐ) := |𝑅/ℐ|, the index

2To be formal, the continuous Gaussian is defined over 𝐾R := 𝐾 ⊗Q R, which is analogous to 𝐾 as the
reals R are to the rationals Q, and which is in bijective correspondence with 𝐻 via the natural extension of 𝜎.
Because precision is always finite in any computational context, in this work we ignore the formal distinction
between 𝐾 and 𝐾R.
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of ℐ in 𝑅. A fractional ideal 𝒥 ⊂ 𝐾 is a set that can be expressed as 𝒥 = 𝑑−1 · ℐ for

some ideal ℐ ⊆ 𝑅 and 𝑑 ∈ 𝑅. (We sometimes omit the word “fractional” when it is

clear from context.) Its norm is defined as N(𝒥 ) := N(ℐ)/N(𝑑). The fractional ideals

form a group under multiplication (with 𝑅 as the identity), where ideal multiplication is

defined by ℐ𝒥 = {
∑︀

𝑖 𝑥𝑖𝑦𝑖 : 𝑥𝑖 ∈ ℐ, 𝑦𝑖 ∈ 𝒥 }. The norm map is then multiplicative:

N(ℐ𝒥 ) = N(ℐ) N(𝒥 ).

Any (fractional) ideal ℐ yields a lattice 𝜎(ℐ) ⊂ 𝐻 under the canonical embedding.

As usual, we often leave 𝜎 implicit and refer to ℐ itself as a lattice. The following lower

bound on the minimum distance of an ideal lattice is an immediate consequence of the

arithmetic-mean/geometric-mean inequality.

Lemma 2.2.1. For any fractional ideal ℐ ⊂ 𝐾, we have 𝜆1(ℐ) ≥
√
𝑛 · N(ℐ)1/𝑛.

The dual ideal, and a “tweak.” Any fractional ideal ℐ ⊂ 𝐾 has a dual (fractional)

ideal ℐ∨, which under the canonical embedding corresponds to (the complex conjugate of)

the dual lattice of ℐ, i.e., 𝜎(ℐ) and 𝜎(ℐ∨) are duals. In particular, the dual ideal 𝑅∨ of 𝑅,

also called the codifferent ideal, is defined as the dual of 𝑅 under the trace, i.e.,

𝑅∨ := {fractional 𝑎 : Tr𝑅/Z(𝑎 ·𝑅) ⊆ Z}.

The dual ideal 𝐼∨ is related to the inverse ideal via the codifferent: ℐ∨ = ℐ−1𝑅∨. (See,

e.g., [Con09] for further details and proofs.) By the composition property of the trace,

(𝑅′)∨ is the set of all fractional 𝑎 such that Tr𝑅′/𝑅(𝑎 · 𝑅′) ⊆ 𝑅∨. In particular, we have

Tr𝑅′/𝑅((𝑅′)∨) = 𝑅∨.

Concretely, the dual ideal is the principal fractional ideal 𝑅∨ = (𝑔𝑚/�̂�)𝑅, where

�̂� = 𝑚/2 if 𝑚 is even and �̂� = 𝑚 otherwise, and the special element 𝑔𝑚 ∈ 𝑅 is as follows:

• for 𝑚 = 𝑝𝑒 for prime 𝑝 and 𝑒 ≥ 1, we have 𝑔𝑚 = 𝑔𝑝 := 1 − 𝜁𝑝 if 𝑝 is odd, and

𝑔𝑚 = 𝑔𝑝 := 1 if 𝑝 = 2;
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• for 𝑚 =
∏︀

ℓ𝑚ℓ where the 𝑚ℓ are powers of distinct primes, we have 𝑔𝑚 =
∏︀

ℓ 𝑔𝑚ℓ
.

The dual ideal 𝑅∨ plays a very important role in the definition, hardness proofs, and

cryptographic applications of Ring-LWE (see [LPR13b; LPR13a] for details). However,

for implementations it seems preferable to work entirely in 𝑅, so that we do not to have to

contend with fractional values or the dual ideal explicitly. Following [AP13], we achieve

this by multiplying all values related to 𝑅∨ by the “tweak” factor 𝑡𝑚 = �̂�/𝑔𝑚 ∈ 𝑅; recall

that 𝑡𝑚𝑅∨ = 𝑅. To compensate for this implicit tweak factor, we replace the trace by what

we call the twace (for “tweaked trace”) function Tw𝑚′,𝑚 = Tw𝑅′/𝑅 : 𝑅′ → 𝑅, defined as

Tw𝑅′/𝑅(𝑥) := 𝑡𝑚 · Tr𝑅′/𝑅(𝑥/𝑡𝑚′) = (�̂�/�̂�′) · Tr𝑅′/𝑅(𝑥 · 𝑔𝑚′/𝑔𝑚). (2.2.4)

A nice feature of the twace is that it fixes the base ring pointwise, i.e., Tw𝑅′/𝑅(𝑥) = 𝑥 for

every 𝑥 ∈ 𝑅. It is also easy to verify that it satisfies the same composition property that the

trace does.

We stress that this “tweaked” perspective is mathematically and computationally equiva-

lent to using 𝑅∨, and all the results from [LPR13b; LPR13a] can translate to this setting

without any loss.

Decoding Basis. The work of [LPR13a] defines a certain Z-basis �⃗�𝑚 = (𝑏𝑗) of 𝑅∨, called

the decoding basis. It is defined as the dual of the conjugated powerful basis 𝑝𝑚 = (𝑝𝑗)

under the trace:

Tr𝑅/Z(𝑏𝑗 · 𝑝−1
𝑗′ ) = 𝛿𝑗,𝑗′

for all 𝑗, 𝑗′. The key geometric property of the decoding basis is, informally, that the Z-

coefficients of any 𝑒 ∈ 𝑅∨ with respect to �⃗�𝑚 are optimally small in relation to 𝜎(𝑥), the

canonical embedding of 𝑒. In other words, short elements like Gaussian errors have small

decoding-basis coefficients.
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With the above-described “tweak” that replaces 𝑅∨ by 𝑅, we get the Z-basis

𝑑𝑚 = (𝑑𝑗) := 𝑡𝑚 · �⃗�𝑚 ,

which we call the (tweaked) decoding basis of 𝑅. By definition, this basis is dual to the

conjugated powerful basis 𝑝𝑚 under the twace:

Tw𝑅/Z(𝑑𝑗 · 𝑝−1
𝑗′ ) = 𝛿𝑗,𝑗′ .

Because 𝑔𝑚 · 𝑡𝑚 = �̂�, it follows that the coefficients of any 𝑒 ∈ 𝑅 with respect to 𝑑𝑚 are

identical to those of 𝑔𝑚 · 𝑒 ∈ 𝑔𝑚𝑅 = �̂�𝑅∨ with respect to the Z-basis 𝑔𝑚 · 𝑑𝑚 = �̂� · �⃗�𝑚 of

𝑔𝑚𝑅. Hence, they are optimally small in relation to 𝜎(𝑔𝑚 · 𝑒).3

Relative decoding basis. Generalizing the above, the relative decoding basis 𝑑𝑚′,𝑚 of

𝑅′/𝑅 is dual to the (conjugated) relative powerful basis 𝑝𝑚′,𝑚 under Tw𝑅′/𝑅. As such, 𝑑𝑚′,𝑚

(and in particular, 𝑑𝑚′ itself) has a Kronecker-product structure mirroring that of 𝑝𝑚′,𝑚 from

Equations (2.2.1) and (2.2.3). Furthermore, by the results of [LPR13a, Section 6], for a

positive power 𝑚 of a prime 𝑝 we have

𝑑𝑡𝑚,𝑚/𝑝 =

⎧⎪⎪⎨⎪⎪⎩
𝑝𝑡𝑚,𝑚/𝑝 · 𝐿𝑝 if 𝑚 = 𝑝

𝑝𝑡𝑚,𝑚/𝑝 otherwise,
(2.2.5)

where 𝐿𝑝 is the lower-triangular matrix with 1s throughout its lower triangle.

3This is why Invariant 4.2.2 of our somewhat-homomorphic encryption scheme (section 4.3) requires
𝜎(𝑒 · 𝑔𝑚) to be short, where 𝑒 is the error in the ciphertext.
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2.2.6 Chinese Remainder Bases

This section contains a relatively brief summary of the Chinese Remainder sets and bases

used throughout this thesis; see [LPR13b; LPR13a] for many more mathematical and

computational details.

Prime splitting. As usual, let𝑅 denote the𝑚th cyclotomic ring and 𝑛 = 𝜙(𝑚). Let 𝑝 ∈ Z

be a prime integer, which for simplicity we assume does not divide 𝑚. The factorization

of the ideal 𝑝𝑅 into prime ideals is as follows. Let 𝑑 be the order of 𝑝 modulo 𝑚, i.e.,

the smallest positive integer such that 𝑝𝑑 = 1 (mod 𝑚), and note that 𝑑 | 𝑛. Let ⟨𝑝⟩ =

{1, 𝑝, 𝑝2, . . . , 𝑝𝑑−1} ⊆ Z*
𝑚 denote the multiplicative subgroup generated by 𝑝. Then 𝑝𝑅

factors as

𝑝𝑅 =
∏︁
𝑖

p𝑖 ,

where the p𝑖 are indexed by the quotient group 𝐺 = Z*
𝑚/⟨𝑝⟩, i.e., the multiplicative group

of cosets 𝑖⟨𝑝⟩ of the subgroup ⟨𝑝⟩ of Z*
𝑚. These are called the prime ideals lying over 𝑝 in

𝑅, and their number 𝑛/𝑑 is called the splitting number of 𝑝 in 𝑅.

Concretely, the ideals lying over 𝑝 are as follows: let 𝜔𝑚 be some arbitrary element of

order 𝑚 in the finite field F𝑝𝑑 . (Such an element exists because the multiplicative group F*
𝑝𝑑

is cyclic and has order 𝑝𝑑−1 = 0 (mod 𝑚).) For each 𝑖 ∈ Z*
𝑚, define a ring homomorphism

ℎ𝑖 : 𝑅→ F𝑝𝑑 by ℎ𝑖(𝜁𝑚) = 𝜔𝑖𝑚. Then the prime ideal p𝐼 corresponding to the coset 𝐼 of ⟨𝑝⟩

is the kernel of the homomorphism ℎ𝑖, where 𝑖 ∈ 𝐼 denotes some arbitrary element of the

coset. It is easy to verify that this is an ideal, and that it is invariant under the choice of

representative, because ℎ𝑖·𝑝(𝑟) = ℎ𝑖(𝑟)
𝑝 for any 𝑟 ∈ 𝑅 since F𝑝𝑑 has characteristic 𝑝 and

therefore (𝑎+ 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 for any 𝑎, 𝑏 ∈ F𝑝𝑑 . Because p𝐼 is the kernel of ℎ𝑖, the induced

ring homomorphisms ℎ𝑖 : 𝑅/p𝐼 → F𝑝𝑑 for all 𝑖 ∈ 𝐼 are in fact isomorphisms.

The Chinese Remainder Theorem states (in particular) that the natural ring homomor-

phism from 𝑅𝑝 := 𝑅/𝑝𝑅 to the product ring
∏︀

𝐼(𝑅/p𝐼)
∼= (F𝑝𝑑)𝑛/𝑑, where 𝐼 ranges
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over all cosets of ⟨𝑝⟩ ⊆ Z*
𝑚, is a ring isomorphism. In particular, the concatenation

ℎ = (ℎ𝑖)𝑖∈Z*
𝑚

: 𝑅𝑝 → F𝑛
2𝑑

is a ring embedding (an injective ring homomorphism). We refer

to the set �⃗� = {𝑐𝐼} ⊂ 𝑅𝑝, where 𝑐𝐼 = 1 (mod p𝐼) and 𝑐𝐼 = 0 (mod p𝐽) for all cosets 𝐼 ̸= 𝐽

of ⟨𝑝⟩, as the mod-𝑝 CRT set of 𝑅. In particular, for the CRT set �⃗� of 𝑅𝑝, for any 𝑧 ∈ 𝑅𝑝 we

have

Tr𝑅𝑝/Z𝑝(𝑧 · �⃗�) = TrF
𝑝𝑑
/F𝑝(ℎ(𝑧)). (2.2.6)

Similarly, for a prime power 𝑝ℓ the natural ring homomorphism from 𝑅𝑝ℓ to
∏︀

𝐼(𝑅/p
ℓ
𝐼) is a

ring isomorphism, and the mod-𝑝ℓ CRT set is defined analogously.

Finally, consider the general case where 𝑝 may divide 𝑚. It turns out that this case easily

reduces to the one where 𝑝 does not divide 𝑚, as follows. Let 𝑚 = 𝑝𝑘 · �̄� for 𝑝 - �̄�, and let

�̄� = 𝒪�̄� and 𝑝�̄� =
∏︀

𝑖 p̄𝑖 be the prime-ideal factorization of 𝑝�̄� as described above. Then

the ideals p̄𝑖 ⊂ �̄� are totally ramified in 𝑅, i.e., we have p̄𝑖𝑅 = p
𝜙(𝑚)/𝜙(�̄�)
𝑖 for some distinct

prime ideals p𝑖 ⊂ 𝑅. This implies that the CRT set for 𝑅𝑝 is exactly the CRT set for �̄�𝑝,

embedded into 𝑅𝑝. Therefore, in what follows we restrict our attention to the case where 𝑝

does not divide 𝑚.

CRT Set Extensions. As above, let 𝑝 be a prime integer not dividing 𝑚, let 𝑝 have order

𝑑′|𝑛′ in Z*
𝑚′ , and let p𝐼′ ⊂ 𝑅′ be the prime ideals lying over 𝑝 in 𝑅′, where 𝐼 ′ ranges over

the cosets of ⟨𝑝⟩ ⊆ Z*
𝑚′ . Then each p𝐼 lies over exactly one p𝐼′ , i.e., it is a divisor of exactly

one ideal p𝐼′𝑅, namely, the one for which 𝐼 ′ = 𝐼 mod 𝑚′. Therefore, there are exactly

(𝑛/𝑑)/(𝑛′/𝑑′) prime ideals lying over each p𝐼′; this number is called the relative splitting

number of 𝑝 in the extension 𝑅/𝑅′.

CRT Basis When the order of 𝑝 modulo 𝑚 is 1, 𝑝𝑅 factors into 𝑛 distinct prime ideals,

and the mod-𝑝 CRT set becomes a Chinese remainder (or CRT) Z𝑝-basis �⃗� = �⃗�𝑚 ∈ 𝑅𝜙(𝑚)
𝑝 ,

whose entries are indexed by Z*
𝑚. This happens precisely when 𝑝 is a prime congruent to
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1 (mod 𝑚). The key property satisfied by this basis is

𝑐𝑖 · 𝑐𝑖′ = 𝛿𝑖,𝑖′ · 𝑐𝑖 (2.2.7)

for all 𝑖, 𝑖′ ∈ Z*
𝑚. Therefore, multiplication of ring elements represented in the CRT basis is

coefficient-wise (and hence linear time): for any coefficient vectors a,b ∈ Z𝜙(𝑚)
𝑝 , we have

(�⃗�𝑡 · a) · (�⃗�𝑡 · b) = �⃗�𝑡 · (a⊙ b).

Also by Equation (2.2.7), the matrix corresponding to multiplication by 𝑐𝑖 (with respect to

the CRT basis) has one in the 𝑖th diagonal entry and zeros everywhere else, so the trace

of every CRT basis element is unity: Tr𝑅/Z(�⃗�) = 1 (mod 𝑝). For completeness, in what

follows we describe the explicit construction of the CRT basis.

Arbitrary cyclotomics. For an arbitrary index 𝑚, the CRT basis is defined in terms of

the prime-power factorization 𝑚 =
∏︀𝑡

ℓ=1𝑚ℓ. Recall that 𝑅𝑝 = Z𝑝[𝜁𝑚1 , . . . , 𝜁𝑚𝑡 ], and that

the natural homomorphism 𝜑 : Z*
𝑚 →

∏︀
ℓ Z*

𝑚ℓ
is a group isomorphism. Using this, we can

equivalently index the CRT basis by
∏︀

ℓ Z*
𝑚ℓ

. With this indexing, the CRT basis �⃗�𝑚 of 𝑅𝑝 is

the Kronecker product of the CRT bases �⃗�𝑚ℓ
of Z𝑝[𝜁𝑚ℓ

]:

�⃗�𝑚 =
⨂︁
ℓ

�⃗�𝑚ℓ
,

i.e., the 𝜑(𝑖)th entry of �⃗�𝑚 is the product of the 𝜑(𝑖)ℓth entry of �⃗�𝑚ℓ
, taken over all ℓ. It is

easy to verify that Equation (2.2.7) holds for �⃗�𝑚, because it does for all the �⃗�𝑚ℓ
.

Prime-power cyclotomics. Now let 𝑚 be a positive power of a prime 𝑝, and let 𝜔𝑚 ∈ Z*
𝑝

be an element of order 𝑚 (i.e., a primitive 𝑚th root of unity), which exists because Z*
𝑝 is a

cyclic group of order 𝑝− 1, which is divisible by 𝑚. We rely on two standard facts:
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1. the Kummer-Dedekind Theorem, which implies that the ideal 𝑝𝑅 =
∏︀

𝑖∈Z*
𝑚
p𝑖 factors

into the product of 𝜙(𝑚) distinct prime ideals p𝑖 = (𝜁𝑚 − 𝜔𝑖𝑚)𝑅 + 𝑝𝑅 ⊂ 𝑅; and

2. the Chinese Remainder Theorem (CRT), which implies that the natural homomor-

phism from 𝑅𝑝 to the product ring
∏︀

𝑖∈Z*
𝑚
𝑅/p𝑖 is a ring isomorphism.

Using this isomorphism, the basis �⃗�𝑚 is defined so that its 𝑖th entry 𝑐𝑖 ∈ 𝑅𝑝 satisfies

𝑐𝑖 = 𝛿𝑖,𝑖′ (mod p𝑖′) for all 𝑖, 𝑖′ ∈ Z*
𝑚. Observe that this definition clearly satisfies Equa-

tion (2.2.7).

Like the powerful and decoding bases, for any extension 𝑅′
𝑝/𝑅𝑝 where 𝑅′ = 𝒪𝑚′ ,

𝑅 = 𝒪𝑚 for powers 𝑚|𝑚′ of 𝑝, there is a relative CRT 𝑅𝑝-basis �⃗�𝑚′,𝑚 of 𝑅′
𝑝, which has a

Kronecker-product factorization mirroring the one in Equation (2.2.1). The elements of this

𝑅𝑝-basis satisfy Equation (2.2.7), and hence their traces into 𝑅𝑝 are all unity.

2.2.7 Computational Problems for Cyclotomic Rings

Learning with Errors Ring-Learning-With-Errors (Ring-LWE) is a family of computa-

tional problems that was defined and analyzed in [LPR13b; LPR13a]. Those works use a

form of Ring-LWE involving the dual ideal 𝑅∨. Formally, for an integer 𝑞 > 1 defining

𝑅𝑞 := 𝑅/𝑞𝑅, a secret 𝑠 ∈ 𝑅∨, and an error distribution 𝜓 over 𝐾R, 𝑅-LWE is a distribution

𝐴𝑞,𝑠,𝜓 where samples are generated by choosing a uniformly random 𝑎 ∈ 𝑅𝑞, 𝑒← 𝜓, and

outputting

(𝑎, 𝑏 = 𝑎 · 𝑠+ 𝑒 mod 𝑞𝑅∨) ∈ 𝑅𝑞 × (𝐾R/(𝑞𝑅
∨)).

Typically, 𝜓 is either a continuous spherical Gaussian or its discretization to 𝑅∨; these

respectively give us continuous (where 𝑏𝑖 ∈ 𝐾/𝑞𝑅∨) and discrete (where 𝑏𝑖 ∈ 𝑅∨
𝑞 ) forms of

the following problems:

Search-Ring-LWE The search problem is to recover the secret 𝑠 given polynomially many

samples from 𝐴𝑞,𝑠,𝜓.
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Decision-Ring-LWE The decision problem is to distinguish (with non-negligible advantage

in 𝑛) between independent samples from 𝐴𝑞,𝑠,𝜓 and uniformly random samples.

It is often more convenient for implementations to use an equivalent form of Ring-LWE

that does not involve 𝑅∨. As first suggested in [AP13], this can be done with no loss in

security or efficiency by working with an equivalent “tweaked” form of the problem, which

is obtained by multiplying the noisy products 𝑏𝑖 by the tweak factor 𝑡 = 𝑡𝑚 = �̂�/𝑔𝑚 ∈ 𝑅.

Doing so yields new noisy products

𝑏′𝑖 := 𝑡 · 𝑏𝑖 = 𝑎𝑖 · (𝑡 · 𝑠) + (𝑡 · 𝑒𝑖) = 𝑎𝑖 · 𝑠′ + 𝑒′𝑖 mod 𝑞𝑅,

where both 𝑎𝑖 and 𝑠′ = 𝑡 · 𝑠 reside in 𝑅/𝑞𝑅, and the error terms 𝑒′𝑖 = 𝑡 · 𝑒𝑖 come from

the “tweaked” distribution 𝑡 · 𝜓. Note that when 𝜓 corresponds to a spherical Gaussian

(in the canonical embedding), its tweaked form 𝑡 · 𝜓 may be highly non-spherical, but this

is not a problem: the tweaked form of Ring-LWE is entirely equivalent to the above one

involving 𝑅∨, because the tweak is reversible.

In this paper, our exposition primarily uses the original form of Ring-LWE involving 𝑅∨,

so that we can use sharp concentration bounds on spherical Gaussians. Our implementations,

however, uses the tweaked form, where equivalent bounds follow by ‖𝑔 · 𝑒′‖ = ‖𝑔 · 𝑡 · 𝑒‖ =

�̂� · ‖𝑒‖, where 𝑒 is the original error term and 𝑒′ = 𝑡 · 𝑒 is its tweaked counterpart.

Learning with Rounding Ring-Learning-With-Rounding (Ring-LWR) is closely related

to Ring-LWE. It replaces the error term from a distribution with deterministic roundoff

error. For two integers 𝑞 ≥ 𝑝 ≥ 2 and a secret 𝑠 ∈ 𝑅𝑞, 𝑅-LWR is a distribution 𝐿𝑠,𝑞,𝑝 over

𝑅𝑞 ×𝑅𝑝. Samples are obtained by sampling a uniformly random 𝑎 ∈ 𝑅𝑞 and outputting

(𝑎, 𝑏 = ⌊𝑎 · 𝑠⌉𝑝).

Like Ring-LWE, there is a search and decision variant of Ring-LWR , defined analogously.
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2.3 Haskell Background

In this section we give a brief primer on the basic syntax, concepts, and features of Haskell

needed to understand the material in the rest of the paper. For further details, see the

excellent tutorial [Lip11].

2.3.1 Types

Every well-formed Haskell expression has a particular type, which is known statically (i.e.,

at compile time). An expression’s type can be explicitly specified by a type signature using

the :: symbol, e.g., 3 :: Integer or True :: Bool. However, such low-level type

annotations are usually not necessary, because Haskell has very powerful type inference,

which can automatically determine the types of arbitrarily complex expressions (or declare

that they are ill-typed).

Every function, being a legal expression, has a type, which is written by separating the

types of the input(s) and the output with the arrow -> symbol, e.g., xor :: Bool -> Bool

-> Bool. Functions can be either fully or only partially applied to arguments having the

appropriate types, e.g., we have the expressions xor False False :: Bool and xor True

:: Bool -> Bool, but not the ill-typed xor 3. Partial application works because -> is

right-associative, so the “true” type of xor is Bool -> (Bool -> Bool), i.e., it takes a

boolean as input and outputs a function that itself maps a boolean to a boolean. Functions

can also take functions as inputs, e.g.,

selfCompose :: (Integer -> Integer) -> (Integer -> Integer)

takes any f :: Integer -> Integer as input and outputs another function (presumably

representing f ∘ f).

The names of concrete types, such as Integer or Bool, are always capitalized. This is

in contrast with lower-case type variables, which can stand for any type (possibly subject to

some constraints; see the next subsection). For example, the function alwaysTrue :: a
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-> Bool takes a value of any type, and outputs a boolean value (presumably True). More

interestingly, cons :: a -> [a] -> [a] takes a value of any type, and a list of values all

having that same type, and outputs a list of values of that type.

Types can be parameterized by other types. For example:

• The type [] seen just above is the generic “(ordered) list” type, whose single argument

is the type of the listed values, e.g., [Bool] is the “list of booleans” type. (Note that

[a] is just syntactic sugar for [] a.)

• The type Maybe represents “either a value (of a particular type), or nothing at all;” the

latter is typically used to signify an exception. Its single argument is the underlying

type, e.g., Maybe Integer.

• The generic “pair” type (,) takes two arguments that specify the types being paired

together, e.g., (Integer,Bool).

Only fully applied types can admit values, e.g., there are no values of type [], Maybe, or

(Integer,).

2.3.2 Type Classes

Type classes, or just classes, define abstract interfaces that types can implement, and are

therefore a primary mechanism for obtaining polymorphism. For example, the Additive

class (from the numeric prelude [TTJ15]) represents types that form abelian additive groups.

As such, it introduces the terms4

zero :: Additive a => a

negate :: Additive a => a -> a

(+), (-) :: Additive a => a -> a -> a

4Operators like +, -, *, /, and == are merely functions introduced by various type classes. Function names
consisting solely of special characters can be used in infix form in the expected way, but in all other contexts
they must be surrounded by parentheses.
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In type signatures like the ones above, the text preceding the => symbol specifies the class

constraint(s) on the type variable(s). The constraints Additive a seen above simply mean

that the type represented by a must be an instance of the Additive class. A type is made an

instance of a class via an instance declaration, which simply defines the actual behavior of

the class’s terms for that particular type. For example, Integer and Double are instances of

Additive. While Bool is not, it could be made one via the instance declaration

instance Additive Bool where

zero = False

negate = id

(+) = xor -- same for (-)

Using class constraints, one can write polymorphic expressions using the terms associ-

ated with the corresponding classes. For example, we can define double :: Additive a

=> a -> a as double x = x + x. The use of (+) here is legal because the input x has type

a, which is constrained to be an instance of Additive by the type of double. As a slightly

richer example, we can define

isZero :: (Eq a, Additive a) => a -> Bool

isZero x = x == zero

where the class Eq introduces the function (==) :: Eq a => a -> a -> Bool to represent

types whose values can be tested for equality.5

The definition of a class C can declare other classes as superclasses, which means that

any type that is an instance of C must also be an instance of each superclass. For example,

the class Ring from numeric prelude, which represents types that form rings with identity,

has Additive as a superclass; this is done by writing class Additive r => Ring r in

the class definition.6 One advantage of superclasses is that they help reduce the complexity
5Notice the type inference here: the use of (==) means that x and zero must have the same type a (which

must be an instance of Additive), so there is no ambiguity about which implementation of zero to use.
6It is generally agreed that the arrow points in the wrong direction, but for historical reasons we are stuck

with this syntax.
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of class constraints. For example, we can define f :: Ring r => r -> r as f x = one

+ double x, where the term one :: Ring r => r is introduced by Ring, and double is

as defined above. The use of (+) and double is legal here, because f’s input x has type r,

which (by the class constraint on f) is an instance of Ring and hence also of Additive.

So far, the discussion has been limited to single-parameter classes: a type either is,

or is not, an instance of the class. In other words, such a class can be seen as merely the

set of its instance types. More generally, multi-parameter classes express relations among

types. For example, the two-argument class definition class (Ring r, Additive a) =>

Module r a represents that the additive group a is a module over the ring r, via the scalar

multiplication function (*>) :: Module r a => r -> a -> a.

33



CHAPTER 3

Λ∘𝜆: FUNCTIONAL LATTICE CRYPTOGRAPHY

Recent theoretical improvements in lattice cryptography have paved the way for the practical

implementation of lattice/ring-based schemes, with many impressive results. To date, each

such implementation has been specialized to a particular cryptographic primitive (and

sometimes even to a specific computational platform), e.g., collision-resistant hashing (using

SIMD instruction sets) [Lyu+08], digital signatures [GLP12; Duc+13], key-establishment

protocols [Bos+15; Alk+16; Bos+16b], and homomorphic encryption (HE) [NLV11; HS]

(using GPUs and FPGAs [Wan+12; Cou+14]), to name a few.

However, the state of lattice cryptography implementations is also highly fragmented:

they are usually focused on a single cryptosystem for fixed parameter sets, and have few

reusable interfaces, making them hard to implement other primitives upon. Those interfaces

that do exist are quite low-level; e.g., they require the programmer to explicitly convert

between various representations of ring elements, which calls for specialized expertise and

can be error prone. Finally, prior implementations either do not support, or use suboptimal

algorithms for, the important class of arbitrary cyclotomic rings, and thereby lack related

classes of HE functionality. (See subsection 3.1.4 for a more detailed review of related

work.)

With all this in mind, we contend that there is a need for a general-purpose, high-

level, and feature-rich framework that will allow researchers to more easily implement and

experiment with the wide variety of lattice-based cryptographic schemes, particularly more

complex ones like HE.
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3.1 Contributions

This work describes the design, implementation, and evaluation of Λ∘𝜆, a general-purpose

framework for lattice-based cryptography in the compiled, functional, strongly typed pro-

gramming language Haskell.1,2 Our primary goals for Λ∘𝜆 include: (1) the ability to

implement both basic and advanced lattice cryptosystems correctly, concisely, and at a high

level of abstraction; (2) alignment with the current best theory concerning security and

algorithmic efficiency; and (3) acceptable performance on commodity CPUs, along with the

capacity to integrate specialized backends (e.g., GPUs) without affecting application code.

3.1.1 Novel Attributes of Λ∘𝜆

The Λ∘𝜆 framework has several novel properties that distinguish it from prior lattice-crypto

implementations.

Generality, modularity, and concision: Λ∘𝜆 defines a collection of simple, modular

interfaces and implementations for the lattice cryptography “toolbox,” i.e., the collection

of operations that are used across a wide variety of modern cryptographic constructions.

This generality allows cryptographic schemes to be expressed very naturally and concisely,

via code that closely mirrors their mathematical definitions. For example in chapter 4,

we implement a full-featured SHE scheme (which includes never-before-implemented

functionality) in as few as 2–5 lines of code per feature.

While Λ∘𝜆’s interfaces are general enough to support most modern lattice-based cryp-

tosystems, our main focus (as with most prior implementations) is on systems defined over

cyclotomic rings, because they lie at the heart of practically efficient lattice-based cryp-

tography (see, e.g., [HPS98; Mic07; LPR13b; LPR13a]). However, while almost all prior

1The name Λ∘𝜆 refers to the combination of lattices and functional programming, which are often signified
by Λ and 𝜆, respectively. The recommended pronunciation is “L O L.”

2Λ∘𝜆 is available under the free and open-source GNU GPL2 license. It can be installed from Hackage,
the Haskell community’s central repository, via stack install lol. The source repository is also available
at https://github.com/cpeikert/Lol.
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implementations are limited to the narrow subclass of power-of-two cyclotomics (which are

the algorithmically simplest case), Λ∘𝜆 supports arbitrary cyclotomic rings. Such support

is essential in a general framework, because many advanced techniques in ring-based cryp-

tography, such as “plaintext packing” and homomorphic SIMD operations [SV10; SV14],

inherently require non-power-of-two cyclotomics when using characteristic-two plaintext

spaces (e.g., F2𝑘).

Theory affinity: Λ∘𝜆 is designed from the ground-up around the specialized ring represen-

tations, fast algorithms, and worst-case hardness proofs developed in [LPR13b; LPR13a] for

the design and analysis of ring-based cryptosystems (over arbitrary cyclotomic rings), partic-

ularly those relying on Ring-LWE. To our knowledge, Λ∘𝜆 is the first-ever implementation

of these techniques, which include:

• fast and modular algorithms for converting among the three most useful represen-

tations of ring elements, corresponding to the powerful, decoding, and Chinese

Remainder Theorem (CRT) bases;

• fast algorithms for sampling from “theory-recommended” error distributions—i.e.,

those for which the Ring-LWE problem has provable worst-case hardness—for use in

encryption and related operations;

• proper use of the powerful- and decoding-basis representations to maintain tight

control of error growth under cryptographic operations, and for the best error tolerance

in decryption.

We especially emphasize the importance of using appropriate error distributions for Ring-

LWE, because ad-hoc instantiations with narrow error can be completely broken by certain

attacks [Eli+15; CLS15; CIV16], whereas theory-recommended distributions are provably

immune to the same class of attacks [Pei16].

In addition, Λ∘𝜆 is the first lattice cryptography implementation to expose the rich

hierarchy of cyclotomic rings, making subring and extension-ring relationships accessible
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to applications. In particular, Λ∘𝜆 support the homomorphic operations known as ring-

switching [BGV14; Gen+13; AP13], which enables efficient homomorphic evaluation of

certain structured linear transforms. Ring-switching has multiple applications, such as

ciphertext compression [BGV14; Gen+13] and asymptotically efficient “bootstrapping”

algorithms for FHE [AP13].

Safety: Building on its host language Haskell, Λ∘𝜆 has several facilities for reducing

programming errors and code complexity, thereby aiding the correct implementation of

lattice cryptosystems. This is particularly important for advanced constructions like HE,

which involve a host of parameters, mathematical objects, and algebraic operations that

must satisfy a variety of constraints for the scheme to work as intended.

More specifically, Λ∘𝜆 uses advanced features of Haskell’s type system to statically

enforce (i.e., at compile time) a variety of mathematical constraints. This catches many

common programming errors early on, and guarantees that any execution will perform only

legal operations.3 For example, Λ∘𝜆 represents integer moduli and cyclotomic indices as

specialized types, which allows it to statically enforce that all inputs to modular arithmetic

operations have the same modulus, and that to embed from one cyclotomic ring to another,

the former must be a subring of the latter. We emphasize that representing moduli and

indices as types does not require fixing their values at compile time; instead, one can (and

we often do) reify runtime values into types, checking any necessary constraints just once at

reification.

Additionally, Λ∘𝜆 aids safety by defining high-level abstractions and narrow interfaces

for algebraic objects and cryptographic operations. For example, it provides an abstract data

type for cyclotomic rings, which hides its choice of internal representation (powerful or

CRT basis, subring element, etc.), and automatically performs any necessary conversions.

Moreover, it exposes only high-level operations like ring addition and multiplication, bit

decomposition, sampling uniform or Gaussian ring elements, etc.

3A popular joke about Haskell code is “if you can get it to compile, it must be correct.”
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Finally, Haskell itself also greatly aids safety because computations are by default pure:

they cannot mutate state or otherwise modify their environment. This makes code easier to

reason about, test, or even formally verify, and is a natural fit for algebra-intensive appli-

cations like lattice cryptography. We stress that “effectful” computations like input/output

or random number generation are still possible, but must be embedded in a structure that

precisely delineates what effects are allowed.

Multiple backends: Λ∘𝜆’s architecture sharply separates its interface of cyclotomic ring

operations from the implementations of their corresponding linear transforms. This allows

for multiple “backends,”, e.g., based on specialized hardware like GPUs or FPGAs via

tools like [Cha+11], without requiring any changes to cryptographic application code. (By

contrast, prior implementations exhibit rather tight coupling between their application and

backend code.) We have implemented two interchangeable backends, one in the pure-Haskell

Repa array library [Kel+10; Lip+12], and one in C++.

3.1.2 Other Technical Contributions

Our work on Λ∘𝜆 has also led to several technical novelties of broader interest and applica-

bility.

Abstractions for lattice cryptography. As already mentioned, Λ∘𝜆 defines composable

abstractions and algorithms for widely used lattice operations, such as rounding (or rescal-

ing) Z𝑞 to another modulus, (bit) decomposition, and other operations associated with

“gadgets” (including in “Chinese remainder” representations). Prior works have documented

and/or implemented subsets of these operations, but at lower levels of generality and com-

posability. For example, we derive generic algorithms for all the above operations on product

rings, using any corresponding algorithms for the component rings. And we show how

to generically “promote” these operations on Z or Z𝑞 to arbitrary cyclotomic rings. Such
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modularity makes our code easier to understand and verify, and is also pedagogically helpful

to newcomers to the area.

DSL for sparse decompositions. As shown in [LPR13a] and further in this work, most

cryptographically relevant operations on cyclotomic rings correspond to linear transforms

having sparse decompositions, i.e., factorizations into relatively sparse matrices, or tensor

products thereof. Such factorizations directly yield fast and highly parallel algorithms; e.g.,

the Cooley-Tukey FFT algorithm arises from a sparse decomposition of the Discrete Fourier

Transform.

To concisely and systematically implement the wide variety of linear transforms associ-

ated with general cyclotomics, Λ∘𝜆 includes an embedded domain-specific language (DSL)

for expressing sparse decompositions using natural matrix notation, and a “compiler” that

produces corresponding fast and parallel implementations. This compiler includes generic

combinators that “lift” any class of transform from the primitive case of prime cyclotomics,

to the prime-power case, and then to arbitrary cyclotomics. (See section 3.4 for details.)

Algorithms for the cyclotomic hierarchy. Recall that Λ∘𝜆 is the first lattice cryptography

implementation to expose the rich hierarchy of cyclotomic rings, i.e., their subring and

extension-ring relationships. As the foundation for this functionality, in section 3.3 we

derive sparse decompositions for a variety of objects and linear transforms related to the

cyclotomic hierarchy. In particular, we obtain simple linear-time algorithms for the embed

and “tweaked” trace operations in the three main bases of interest (powerful, decoding, and

CRT), and for computing the relative analogues of these bases for cyclotomic extension

rings. To our knowledge, almost all of this material is new. (For comparison, the Ring-

LWE “toolkit” [LPR13a] deals almost entirely with transforms and algorithms for a single

cyclotomic ring, not inter-ring operations.)
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3.1.3 Limitations and Future Work

Security. While Λ∘𝜆 has many attractive functionality and safety features, we stress that

it is still an early-stage research prototype, and is not yet recommended for production

purposes—especially in scenarios requiring high security assurances. Potential issues

include, but may not be limited to:

• Most functions in Λ∘𝜆 are not constant time, and may therefore leak secret information

via timing or other side channels. (Systematically protecting lattice cryptography

from side-channel attacks is an important area of research.)

• While Λ∘𝜆 implements a fast algorithm for sampling from theory-recommended error

distributions, the current implementation is somewhat naïve in terms of precision.

By default, some Λ∘𝜆 functions use double-precision floating-point arithmetic to

approximate a sample from a continuous Gaussian, before rounding. (But one can

specify an alternative data type having more precision.) We have not yet analyzed

the associated security implications, if any. We do note, however, that Ring-LWE is

robust to small variations in the error distribution (see, e.g., [LPR13b, Section 5]).

Discrete Gaussian sampling. Many lattice-based cryptosytems, such as digital signatures

and identity-based or attribute-based encryption schemes following [GPV08], require sam-

pling from a discrete Gaussian probability distribution over a given lattice coset, using an

appropriate kind of “trapdoor.” Supporting this operation in Λ∘𝜆 is left to future work,

for the following reasons. While it is straightforward to give a clean interface for discrete

Gaussian sampling (similar to the Decompose class described in subsection 3.2.4), providing

a secure and practical implementation is very subtle, especially for arbitrary cyclotomic

rings: one needs to account for the non-orthogonality of the standard bases, use practically

efficient algorithms, and ensure high statistical fidelity to the desired distribution using

finite precision. Although there has been good progress in addressing these issues at the
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theoretical level (see, e.g., [DN12; LPR13a; DP15a; DP15b]), a complete practical solution

still requires further research.

Applications. Our focus in this chapter is mainly on the Λ∘𝜆 framework itself. We

provide two reference implementations in other chapters: chapter 4 has an implementa-

tion of somewhat-homomorphic encryption [BGV14], and section 6.6 includes the weak

pseudorandom function from [BPR12]. We leave further implementations of lattice-based

cryptosystems with Λ∘𝜆 for future work. While digital signatures and identity/attribute-

based encryption use discrete Gaussian sampling, many other primitives should be straight-

forward to implement using Λ∘𝜆’s existing functionality. These include standard Ring-

LWE-based [LPR13b; LPR13a] and NTRU-style encryption [HPS98; SS11], public-key

encryption with security under chosen-ciphertext attacks [MP12], and strong pseudorandom

functions (PRFs) [BPR12; Bon+13; BP14].

3.1.4 Comparison to Related Work

As mentioned above, there are many implementations of various lattice- and ring-based

cryptographic schemes, such as NTRU (Prime) encryption [HPS98; Ber+16], the SWIFFT

hash function [Lyu+08], digital signature schemes like [GLP12] and BLISS [Duc+13],

key-exchange protocols [Bos+15; Alk+16; Bos+16b], and HE libraries like HElib [HS].

In addition, there are some high-performance backends for power-of-two cyclotomics,

like NFLlib [Mel+16] and [Wan+12], which can potentially be plugged into these other

systems. Also, in a Masters thesis developed concurrently with this work, Mayer [May16]

implemented the “toolkit” algorithms from [LPR13a] for arbitrary cyclotomic rings (though

not the inter-ring operations that Λ∘𝜆 supports).

On the whole, the prior works each implement just one cryptographic primitive (some-

times even on a specific computational platform), and typically opt for performance over

generality and modularity. In particular, none of them provide any abstract data types
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for cyclotomic rings, but instead require the programmer to explicitly manage the repre-

sentations of ring elements (e.g., as polynomials) and ensure that operations on them are

mathematically meaningful. Moreover, with the exception of [May16], they do not support

general cyclotomic rings using the current best theory for cryptographic purposes.

HElib. Our work compares most closely to HElib [HS], which is an “assembly language”

for BGV-style HE over cyclotomic rings [BGV14]. It holds speed records for a variety of

HE benchmarks (e.g., homomorphic AES computation [GHS12c]), and appears to be the

sole public implementation of many advanced HE features, like bootstrapping for “packed”

ciphertexts [HS15].

On the downside, HElib does not use the best known algorithms for cryptographic oper-

ations in general (non-power-of-two) cyclotomics. Most significantly, it uses the univariate

representation modulo cyclotomic polynomials, rather than the multivariate/tensored repre-

sentations from [LPR13a], which results in more complex and less efficient algorithms, and

suboptimal noise growth in cryptographic schemes. The practical effects of this can be seen

in our performance evaluation (subsection 4.4.2), which shows that Λ∘𝜆’s C++ backend is

about nine times slower than HElib for power-of-two cyclotomics, but is significantly faster

(by factors of two or more) for indices involving two or more small primes. Finally, HELib

is targeted toward just one class of cryptographic construction (HE), so it lacks functionality

necessary to implement a broader selection of lattice schemes (e.g., CCA-secure encryption).

Computational algebra systems. Algebra packages like Sage and Magma provide very

general-purpose support for computational number theory. While these systems do offer

higher-level abstractions and operations for cyclotomic rings, they are not a suitable platform

for attaining our goals. First, their existing implementations of cyclotomic rings do not

use the “tensored” representations (i.e., powerful and decoding bases, and CRT bases

over Z𝑞) and associated fast algorithms that are preferred for cryptographic purposes. Nor

do they include support for special lattice operations like bit decomposition and other
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“gadget” operations, so to use such systems we would have to reimplement essentially all

the mathematical algorithms from scratch. Perhaps more significantly, the programming

languages of these systems are relatively weakly and dynamically (not statically) typed, so

all type-checking is deferred to runtime, where errors can be much harder to debug.

3.1.5 Architecture and Chapter Organization

The components of Λ∘𝜆 are arranged in a few main layers, and the remainder of the chapter

is organized correspondingly. From the bottom up, the layers are:

Integer layer (section 3.2): This layer contains abstract interfaces and implementations for

domains like the integers Z and its quotient rings Z𝑞 = Z/𝑞Z, including specialized

operations like rescaling and “(bit) decomposition.” It also contains tools for working

with moduli and cyclotomic indices at the type level, which enables static enforcement

of mathematical constraints.

Tensor layer (section 3.3 and 3.4): This layer’s main abstract interface, called Tensor,

defines all the linear transformations and special values needed for working efficiently

in cyclotomic rings (building on the framework developed in [LPR13a]), and permits

multiple implementations. This low-level interface is completely hidden from typical

cryptographic applications by the cyclotomic layer (below). These sections describe

the interface and include the definitions and analysis of several linear transforms and

algorithms that, to our knowledge, have not previously appeared in the literature.

Additionally, section 3.4 describes the “sparse decomposition” DSL and compiler that

underlie our pure-Haskell Tensor implementation.

Cyclotomic layer (section 3.5): This layer defines data types and high-level interfaces for

cyclotomic rings and their cryptographically relevant operations. Our implementations

are relatively thin wrappers which modularly combine the integer and tensor layers,
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and automatically manage the internal representations of ring elements for more

efficient operations.

Cryptography layer: This layer consists of implementations of cryptographic schemes.

We defer our main application to chapter 4, which uses Λ∘𝜆 to implement a full-

featured somewhat-homomorphic encryption scheme. We expand this layer with a

second application in chapter 6.

Acknowledgments. We thank the anonymous CCS’16 reviewers for many useful com-

ments.

3.2 Integer and Modular Arithmetic

At its core, lattice-based cryptography is built around arithmetic in the ring of integers Z

and quotient rings Z𝑞 = Z/𝑞Z of integers modulo 𝑞. In addition, a variety of specialized

operations are also widely used, e.g., lifting a coset in Z𝑞 to its smallest representative in Z,

rescaling (or rounding) one quotient ring Z𝑞 to another, and decomposing a Z𝑞-element as a

vector of small Z-elements with respect to a “gadget” vector.

Here we recall the relevant mathematical background for all these domains and opera-

tions, and describe how they are represented and implemented in Λ∘𝜆. This will provide

a foundation for the next section, where we show how all these operations are very easily

“promoted” from base rings like Z and Z𝑞 to cyclotomic rings, to support ring-based cryp-

tosystems. (Similar promotions can also easily be done to support cryptosystems based

on plain-LWE, but we elect not to do so in Λ∘𝜆, mainly because those systems are not as

practically efficient.)

3.2.1 Representing Z and Z𝑞

We exclusively use fixed-precision primitive Haskell types like Int and Int64 to represent

the integers Z, and define our own specialized types like ZqBasic q z to represent Z𝑞. Here
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the q parameter is a “phantom” type that represents the value of the modulus 𝑞, while z is an

integer type (like Int64) specifying the underlying representation of the integer residues

modulo 𝑞.

This approach has many advantages: by defining ZqBasic q z as an instance of Ring,

we can use the (+) and (*) operators without any explicit modular reductions. More

importantly, at compile time the type system disallows operations on incompatible types—

e.g., attempting to add a ZqBasic q1 z to a ZqBasic q2 z for distinct q1, q2—with no

runtime overhead. Finally, we implement ZqBasic q z as a newtype for z, which means

that they have identical runtime representations, with no additional overhead.

CRT/RNS representation. Some applications, like homomorphic encryption, can require

moduli 𝑞 that are too large for standard fixed-precision integer types. Many languages

have support for unbounded integers (e.g., Haskell’s Integer type), but the operations are

relatively slow. Moreover, the values have varying sizes, which means they cannot be stored

efficiently in “unboxed” form in arrays. A standard solution is to use the Chinese Remainder

Theorem (CRT), also known as Residue Number System (RNS), representation: choose 𝑞

to be the product of several pairwise coprime and sufficiently small 𝑞1, . . . , 𝑞𝑡, and use the

natural ring isomorphism from Z𝑞 to the product ring Z𝑞1 × · · · × Z𝑞𝑡 , where addition and

multiplication are both component-wise.

In Haskell, using the CRT representation—and more generally, working in product

rings—is very natural using the generic pair type (,): whenever types a and b respectively

represent rings 𝐴 and 𝐵, the pair type (a,b) represents the product ring 𝐴×𝐵. This just

requires defining the obvious instances of Additive and Ring for (a,b)—which in fact

has already been done for us by the numeric prelude. Products of more than two rings are

immediately supported by nesting pairs, e.g., ((a,b),c), or by using higher-arity tuples

like (a,b,c). A final nice feature is that a pair (or tuple) has fixed representation size if
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all its components do, so arrays of pairs can be stored directly in “unboxed” form, without

requiring any layer of indirection.

3.2.2 Reduce and Lift

Two basic, widely used operations are reducing a Z-element to its residue class in Z𝑞,

and lifting a Z𝑞-element to its smallest integer representative, i.e., in Z ∩ [− 𝑞
2
, 𝑞
2
). These

operations are examples of the natural homomorphism, and canonical representative map,

for arbitrary quotient groups. Therefore, we define class (Additive a, Additive b)

=> Reduce a b to represent that b is a quotient group of a, and class Reduce a b =>

Lift b a for computing canonical representatives.4 These classes respectively introduce

the functions

reduce :: Reduce a b => a -> b

lift :: Lift b a => b -> a

where reduce ∘ lift should be the identity function.

Instances of these classes are straightforward. We define an instance Reduce z

(ZqBasic q z) for any suitable integer type z and q representing a modulus that fits

within the precision of z, and a corresponding instance for Lift. For product groups (pairs)

used for CRT representation, we define the natural instance Reduce a (b1,b2) whenever

we have instances Reduce a b1 and Reduce a b2. However, we do not have (nor do we

need) a corresponding Lift instance, because there is no sufficiently generic algorithm to

combine canonical representatives from two quotient groups.

3.2.3 Rescale

Another operation commonly used in lattice cryptography is rescaling (sometimes also called

rounding) Z𝑞 to a different modulus. Mathematically, the rescaling operation ⌊·⌉𝑞′ : Z𝑞 →

4Precision issues prevent us from merging Lift and Reduce into one class. For example, we can reduce an
Int into Z𝑞1 × Z𝑞2 if both components can be represented by Int, but lifting may cause overflow.
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Z𝑞′ is defined as

⌊𝑥+ 𝑞Z⌉𝑞′ :=
⌊︁
𝑞′

𝑞
· (𝑥+ 𝑞Z)

⌉︁
=

⌊︁
𝑞′

𝑞
· 𝑥

⌉︁
+ 𝑞′Z ∈ Z𝑞′ , (3.2.1)

where ⌊·⌉ denotes rounding to the nearest integer. (Notice that the choice of representa-

tive 𝑥 ∈ Z has no effect on the result.) In terms of the additive groups, this operation is at

least an “approximate” homomorphism: ⌊𝑥+ 𝑦⌉𝑞′ ≈ ⌊𝑥⌉𝑞′ + ⌊𝑦⌉𝑞′ , with equality when 𝑞|𝑞′.

We represent the rescaling operation via class (Additive a, Additive b) => Rescale

a b, which introduces the function

rescale :: Rescale a b => a -> b

Instances. A straightforward instance, whose implementation just follows the mathemati-

cal definition, is Rescale (ZqBasic q1 z) (ZqBasic q2 z) for any integer type z and

types q1, q2 representing moduli that fit within the precision of z.

More interesting are the instances involving product groups (pairs) used for CRT repre-

sentation. A naïve implementation would apply Equation (3.2.1) to the canonical represen-

tative of 𝑥+ 𝑞Z, but for large 𝑞 this would require unbounded-integer arithmetic. Instead,

following ideas from [GHS12c], here we describe algorithms that avoid this drawback.

To “scale up” 𝑥 ∈ Z𝑞1 to Z𝑞1𝑞2 ∼= Z𝑞1×Z𝑞2 where 𝑞1 and 𝑞2 are coprime, i.e., to multiply

by 𝑞2, simply output (𝑥 · 𝑞2 mod 𝑞1, 0). This translates easily into code that implements

the instance Rescale a (a,b). Notice, though, that the algorithm uses the value of the

modulus 𝑞2 associated with b. We therefore require b to be an instance of class Mod, which

exposes the modulus value associated with the instance type. The instance Rescale b

(a,b) works symmetrically.

To “scale down” 𝑥 = (𝑥1, 𝑥2) ∈ Z𝑞1 × Z𝑞2 ∼= Z𝑞1𝑞2 to Z𝑞1 , we essentially need to divide

by 𝑞2, discarding the (signed) remainder. To do this,

1. Compute the canonical representative �̄�2 ∈ Z of 𝑥2.
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(Observe that (𝑥′1 = 𝑥1 − (�̄�2 mod 𝑞1), 0) ∈ Z𝑞1 × Z𝑞2 is the multiple of 𝑞2 closest to

𝑥 = (𝑥1, 𝑥2).)

2. Divide by 𝑞2, outputting 𝑞−1
2 · 𝑥′1 ∈ Z𝑞1 .

The above easily translates into code that implements the instance Rescale (a,b) a, using

the Lift and Reduce classes described above. The instance Rescale (a,b) b works

symmetrically.

3.2.4 Gadget, Decompose, and Correct

Many advanced lattice cryptosystems use special objects called gadgets [MP12], which

support certain operations as described below. For the purposes of this work, a gadget

is a tuple over a quotient ring 𝑅𝑞 = 𝑅/𝑞𝑅, where 𝑅 is a ring that admits a meaningful

“geometry.” For concreteness, one can think of 𝑅 as merely being the integers Z, but later

on we generalize to cyclotomic rings.

Perhaps the simplest gadget is the powers-of-two vector g = (1, 2, 4, 8, . . . , 2ℓ−1)

over Z𝑞, where ℓ = ⌈lg 𝑞⌉. There are many other ways of constructing gadgets, either

“from scratch” or by combining gadgets. For example, one may use powers of integers other

than two, mixed products, the Chinese Remainder Theorem, etc. The salient property of a

gadget g is that it admits efficient algorithms for the following tasks:

1. Decomposition: given 𝑢 ∈ 𝑅𝑞, output a short vector x over 𝑅 such that ⟨g,x⟩ =

g𝑡 · x = 𝑢 (mod 𝑞).

2. Error correction: given a “noisy encoding” of the gadget b𝑡 = 𝑠 · g𝑡 + e𝑡 mod 𝑞,

where 𝑠 ∈ 𝑅𝑞 and e is a sufficiently short error vector over 𝑅, output 𝑠 and e.
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A key property is that decomposition and error-tolerant encoding relate in the following way

(where the notation is as above, and ≈ hides a short error vector over 𝑅):

𝑠 · 𝑢 = (𝑠 · g𝑡) · x ≈ b𝑡 · x (mod 𝑞).

We represent gadget vectors and their associated operations via the following classes:

class Ring u => Gadget gad u where

gadget :: Tagged gad [u]

encode :: u -> Tagged gad [u]

class (Gadget gad u, Reduce r u) => Decompose gad u r where

decompose :: u -> Tagged gad [r]

class Gadget gad u => Correct gad u where

correct :: Tagged gad [u] -> (u, [LiftOf u])

The class Gadget gad u says that the ring u supports a gadget vector indexed by the type

gad; the gadget vector itself is given by the term gadget. Note that its type is actually

Tagged gad [u]: this is a newtype for [u], with the additional type-level context Tagged

gad indicating which gadget the vector represents (recall that there are many possible

gadgets over a given ring). This tagging aids safety, by preventing the nonsensical mixing

of values associated with different kinds of gadgets. In addition, Haskell provides generic

ways of “promoting” ordinary operations to work within this extra context. (Formally, this

is because Tagged gad is an instance of the Functor class.)

The class Decompose gad u r says that a u-element can be decomposed into a vector

of r-elements (with respect to the gadget index by gad), via the decompose method.5 The

5For simplicity, here we have depicted r as an additional parameter of the Decompose class. Our actual
code adopts the more idiomatic practice of using a type family DecompOf u, which is defined by each instance
of Decompose.
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class Correct gad u says that a noisy encoding of a u-element (with respect to the gadget)

can be error-corrected, via the correct method.

Note that we split the above functionality into three separate classes, both because their

arguments are slightly different (e.g., Correct has no need for the r type), and because in

some cases we have meaningful instances for some classes but not others.

Instances. For our type ZqBasic q z representing Z𝑞, we give a straightforward instan-

tiation of the “base-𝑏” gadget g = (1, 𝑏, 𝑏2, . . .) and error correction and decomposition

algorithms, for any positive integer 𝑏 (which is represented as a parameter to the gadget

type). In addition, we implement the trivial gadget g = (1) ∈ Z1
𝑞 , where the decomposition

algorithm merely outputs the canonical Z-representative of its Z𝑞-input. This gadget turns

out to be useful for building nontrivial gadgets and algorithms for product rings, as described

next.

For the pair type (which, to recall, we use to represent product rings in CRT represen-

tation), we give instances of Gadget and Decompose that work as follows. Suppose we

have gadget vectors g1,g2 over 𝑅𝑞1 , 𝑅𝑞2 , respectively. Then the gadget for the product ring

𝑅𝑞1 ×𝑅𝑞2 is essentially the concatenation of g1 and g2, where we first attach 0 ∈ 𝑅𝑞2 com-

ponents to the entries of g1, and similarly for g2. The decomposition of (𝑢1, 𝑢2) ∈ 𝑅𝑞1×𝑅𝑞2

with respect to this gadget is the concatenation of the decompositions of 𝑢1, 𝑢2. All this

translates easily to the implementations

gadget = (++) <$> (map (,zero) <$> gadget) <*> (map (zero,) <$> gadget)

decompose (a,b) = (++) <$> decompose a <*> decompose b

In the definition of gadget, the two calls to map attach zero components to the entries of

g1,g2, and (++) appends the two lists. (The syntax <$>, <*> is standard applicative notation,

which promotes normal functions into the Tagged gad context.)
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3.2.5 CRTrans

Fast multiplication in cyclotomic rings is made possible by converting ring elements to

the Chinese remainder representation, using the Chinese Remainder Transform (CRT)

over the base ring. This is an invertible linear transform akin to the Discrete Fourier

Transform (over C) or the Number Theoretic Transform (over appropriate Z𝑞), which has a

fast algorithm corresponding to its “sparse decomposition” (see Equation 3.3.1 and [LPR13a,

Section 3] for further details).

Applying the CRT and its inverse requires knowledge of certain roots of unity, and the

inverse of a certain integer, in the base ring. So we define the synonym type CRTInfo r =

(Int -> r, r), where the two components are (1) a function that takes an integer 𝑖 to the

𝑖th power of a certain principal6 𝑚th root of unity 𝜔𝑚 in r, and (2) the multiplicative inverse

of �̂� in r, where �̂� = 𝑚/2 if 𝑚 is even, else �̂� = 𝑚. We also define the class CRTrans,

which exposes the CRT information:

class (Monad mon, Ring r) => CRTrans mon r where

crtInfo :: Int -> mon (CRTInfo r)

Note that the output of crtInfo is embedded in a Monad mon, the choice of which can reflect

the fact that the CRT might not exist for certain 𝑚. For example, the CRTrans instance for

the complex numbers C uses the trivial Identity monad, because the complex CRT exists

for every 𝑚, whereas the instance for ZqBasic q z uses the Maybe monad to reflect the fact

that the CRT may not exist for certain combinations of 𝑚 and moduli 𝑞.

We give nontrivial instances of CRTrans for ZqBasic q z (representing Z𝑞) for prime 𝑞,

and for Complex Double (representing C). In addition, because we use tensors and cyclo-

tomic rings over base rings like Z and Q, we must also define trivial instances of CRTrans

for Int, Int64, Double, etc., for which crtInfo always returns Nothing.

6A principal 𝑚th root of unity in r is an element 𝜔𝑚 such that 𝜔𝑚
𝑚 = 1, and 𝜔

𝑚/𝑡
𝑚 − 1 is not a zero divisor

for every prime 𝑡 dividing 𝑚. Along with the invertibility of �̂� in r, these are sufficient conditions for the
index-𝑚 CRT over r to be invertible.
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3.2.6 Type-Level Cyclotomic Indices

Recall that there is one cyclotomic ring for every positive integer 𝑚. The index 𝑚 of a

cyclotomic ring, and in particular its factorization, plays a major role in the definitions of

the ring operations. For example, the index-𝑚 “Chinese remainder transform” is similar to a

mixed-radix FFT, where the radices are the prime divisors of 𝑚. In addition, cyclotomic

rings can sometimes be related to each other based on their indices. For example, the 𝑚th

cyclotomic can be seen as a subring of the 𝑚′th cyclotomic if and only if 𝑚|𝑚′; the largest

common subring of the 𝑚1th and 𝑚2th cyclotomics is the gcd(𝑚1,𝑚2)th cyclotomic, etc.

In Λ∘𝜆, a cyclotomic index 𝑚 is specified by an appropriate type m, and the data types

representing cyclotomic rings (and their underlying coefficient tensors) are parameterized

by such an m. Based on this parameter, Λ∘𝜆 generically derives algorithms for all the

relevant operations in the corresponding cyclotomic. In addition, for operations that involve

more than one cyclotomic, Λ∘𝜆 expresses and statically enforces (at compile time) the laws

governing when these operations are well defined.

We achieve the above properties using Haskell’s type system, with the help of the pow-

erful data kinds extension [Yor+12] and the singletons library [EW12; ES14]. Essentially,

these tools enable the “promotion” of ordinary values and functions from the data level to

the type level. More specifically, they promote every value to a corresponding type, and

promote every function to a corresponding type family, i.e., a function on the promoted

types. We stress that all type-level computations are performed at compile time, yielding the

dual benefits of static safety guarantees and no runtime overhead.

We provide a brief overview of the interface for type-level factored numbers below. In

subsection 3.2.7 below we give more details on how cyclotomic indices are represented and

operated upon at the type level. Then in subsection 3.2.8 we describe how all this is used to

generically derive algorithms for arbitrary cyclotomics.
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Interface. Concretely, Λ∘𝜆 defines a special data type Factored that represents positive

integers by their factorizations, along with several functions on such values. Singletons

then promotes all of this to the type level. This yields concrete “factored types” Fm for

various useful values of m, e.g., F1, . . . , F100, F128, F256, F512, etc. In addition, it yields

the following type families, where m1, m2 are variables representing any factored types:

• FMul m1 m2 (synonym: m1 * m2) and FDiv m1 m2 (synonym: m1 / m2) respectively

yield the factored types representing 𝑚1 ·𝑚2 and 𝑚1/𝑚2 (if it is an integer; else it

yields a compile-time error);

• FGCD m1 m2 and FLCM m1 m2 respectively yield the factored types representing

gcd(𝑚1,𝑚2) and lcm(𝑚1,𝑚2);

• FDivides m1 m2 yields the (promoted) boolean type True or False, depending on

whether 𝑚1|𝑚2. In addition, m1 `Divides` m2 is a convenient synonym for the

constraint True ~ Divides m1 m2. (This constraint is used section 3.5 below.)

Finally, Λ∘𝜆 also provides several entailments representing number-theoretic laws that

the compiler itself cannot derive from our data-level code. For example, transitivity of the

“divides” relation is represented by the entailment

(k `Divides` l, l `Divides` m) :- (k `Divides` m)

which allows the programmer to satisfy the constraint 𝑘|𝑚 in any context where the con-

straints 𝑘|ℓ and ℓ|𝑚 are satisfied.

3.2.7 Promoting Factored Naturals

Operations in a cyclotomic ring are governed by the prime-power factorization of its index.

Therefore, we define the data types PrimeBin, PrimePower, and Factored to represent

factored positive integers (here the types Pos and Bin are standard Peano and binary

encodings, respectively, of the natural numbers):
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-- Invariant: argument is prime

newtype PrimeBin = P Bin

-- (prime, exponent) pair

newtype PrimePower = PP (PrimeBin, Pos)

-- List invariant: primes appear in strictly increasing order

-- (no duplicates).

newtype Factored = F [PrimePower]

To enforce the invariants, we hide the P, PP, and F constructors from clients, and instead only

export operations that verify and maintain the invariants. In particular, we provide functions

that construct valid PrimeBin, PrimePower, and Factored values for any appropriate

positive integer, and we define the following arithmetic operations, whose implementations

are straightforward:

fDivides :: Factored -> Factored -> Bool

fMul, fGCD, fLCM :: Factored -> Factored -> Factored

We use data kinds and singletons to mechanically promote the above data-level defi-

nitions to the type level. Specifically, data kinds defines an (uninhabited) Factored type

corresponding to each Factored value, while singletons produces type families FDivides,

FMul, etc. that operate on these promoted types. We also provide compile-time “macros”

that define F𝑚 as a synonym for the Factored type corresponding to positive integer 𝑚,

and similarly for PrimeBin and PrimePower types. Combining all this, e.g., FMul F2 F2

yields the type F4, as does FGCD F12 F8. Similarly, FDivides F5 F30 yields the promoted

type True.

In addition, for each Factored type m, singletons defines a type Sing m that is inhabited

by a single value, which can be obtained as sing :: Sing m. This value has an internal

structure mirroring that of the corresponding Factored value, i.e., it is essentially a list of

singleton values corresponding to the appropriate PrimePower types. (The same goes for
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the singletons for PrimePower and PrimeBin types.) Lastly, the withSingI function lets us

go in the reverse direction, i.e., it lets us “elevate” a particular singleton value to instantiate

a corresponding type variable in a polymorphic expression.

3.2.8 Applying the Promotions

Here we summarize how we use the promoted types and singletons to generically derive

algorithms for operations in arbitrary cyclotomics. We rely on the “sparse decomposition”

framework described in section 3.4 below; for our purposes here, we only need that a

value of type Trans r represents a linear transform over a base ring r via some sparse

decomposition.

A detailed example will illustrate our approach. Consider the polymorphic function

crt :: (Fact m, CRTrans r, ...) => Tagged m (Trans r)

which represents the index-m Chinese Remainder Transform (CRT) over a base ring r (e.g.,

Z𝑞 or C). Equation (3.3.1) gives a sparse decomposition of CRT in terms of prime-power

indices, and Equations (3.3.2) and (3.3.3) give sparse decompositions for the prime-power

case in terms of the CRT and DFT for prime indices, and the “twiddle” transforms for

prime-power indices.

Following these decompositions, our implementation of crt works as follows:

1. It first obtains the singleton corresponding to the Factored type m, using sing ::

Sing m, and extracts the list of singletons for its PrimePower factors. It then takes

the Kronecker product of the corresponding specializations of the prime power-index

CRT function

crtPP :: (PPow pp, CRTrans r, ...) => Tagged pp (Trans r)

The specializations are obtained by “elevating” the PrimePower singletons to instanti-

ate the pp type variable using withSingI, as described above.
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(The above-described transformation from Factored to PrimePower types applies

equally well to all our transforms of interest. Therefore, we implement a generic

combinator that builds a transform indexed by Factored types from any given one

indexed by PrimePower types.)

2. Similarly, crtPP obtains the singleton corresponding to the PrimePower type pp, ex-

tracts the singletons for its PrimeBin (base) and Pos (exponent) types, and composes

the appropriate specializations of the prime-index CRT and DFT functions

crtP, dftP :: (Prim p, CRTrans r, ...) => Tagged p (Trans r)

along with prime power-indexed transforms that apply the appropriate “twiddle”

factors.

3. Finally, crtP and dftP obtain the singleton corresponding to the PrimeBin type p,

and apply the CRT/DFT transformations indexed by this value, using naïve matrix-

vector multiplication. This requires the pth roots of unity in r, which are obtained via

the CRTrans interface.

3.3 Tensor Interface and Sparse Decompositions

In this section we detail the “backend” representations and algorithms for computing in

cyclotomic rings. We implement these algorithms using the sparse decomposition framework

outlined in section 3.4. This section relies heavily on the background and notation given

in section 2.2.

An element of the 𝑚th cyclotomic ring over a base ring r (e.g., Q, Z, or Z𝑞) can be

represented as a vector of 𝑛 = 𝜙(𝑚) coefficients from r, with respect to a particular r-basis

of the cyclotomic ring. We call such a vector a (coefficient) tensor to emphasize its implicit

multidimensional nature, which arises from the tensor-product structure of the bases we use.

The class Tensor (see Figure 3.1) represents the cryptographically relevant operations

on coefficient tensors with respect to the powerful, decoding, and CRT bases. An instance
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of Tensor is a data type t that itself takes two type parameters: an m representing the

cyclotomic index, and an r representing the base ring. So the fully applied type t m r

represents an index-m cyclotomic tensor over r.

The Tensor class introduces a variety of methods representing linear transformations

that either convert between two particular bases (e.g., lInv, crt), or perform operations

with respect to certain bases (e.g., mulGPow, embedDec). It also exposes some important

fixed values related to cyclotomic ring extensions (e.g., powBasisPow, crtSetDec). An

instance t of Tensor must implement all these methods and values for arbitrary (legal)

cyclotomic indices.

3.3.1 Single-Index Transforms

In this and the next subsection we describe sparse decompositions for all the Tensor

operations. We start here with the dimension-preserving transforms involving a single

index 𝑚, i.e., they take an index-𝑚 tensor as input and produce one as output.

Prime-Power Factorization

For an arbitrary index 𝑚, every transform of interest factors into the tensor product of the

corresponding transforms for prime-power indices. More specifically, let 𝑇𝑚 denote the

matrix for any of the linear transforms on index-𝑚 tensors that we consider below. Then

letting 𝑚 =
∏︀

ℓ𝑚ℓ be the factorization of 𝑚 into its maximal prime-power divisors 𝑚ℓ (in

some canonical order), we have the factorization

𝑇𝑚 =
⨂︁
ℓ

𝑇𝑚ℓ
. (3.3.1)

This follows directly from the Kronecker-product factorizations of the powerful, decoding,

and CRT bases (e.g., Equation (2.2.2)), and the mixed-product property. Therefore, for the

57



class Tensor t where
-- single-index transforms

scalarPow :: (Ring r, Fact m) => r -> t m r
scalarCRT :: (CRTrans mon r, Fact m) => mon (r -> t m r)

l, lInv :: (Ring r, Fact m) => t m r -> t m r

mulGPow, mulGDec :: (Ring r, Fact m)
=> t m r -> t m r

divGPow, divGDec :: (IntegralDomain r, Fact m)
=> t m r -> Maybe (t m r)

crt, crtInv, mulGCRT, divGCRT :: (CRTrans mon r, Fact m)
=> mon (t m r -> t m r)

tGaussianDec :: (OrdFloat q, Fact m, MonadRandom rnd, ...)
=> v -> rnd (t m q)

gSqNormDec :: (Ring r, Fact m) => t m r -> r

-- two-index transforms and values

embedPow, embedDec :: (Ring r, m `Divides` m’) => t m r -> t m’ r
twacePowDec :: (Ring r, m `Divides` m’) => t m’ r -> t m r

embedCRT :: (CRTrans mon r, m `Divides` m’) => mon (t m r -> t m’ r)
twaceCRT :: (CRTrans mon r, m `Divides` m’) => mon (t m’ r -> t m r)

coeffs :: (Ring r, m `Divides` m’) => t m’ r -> [t m r]

powBasisPow :: (Ring r, m `Divides` m’) => Tagged m [t m’ r]

crtSetDec :: (PrimeField fp, m `Divides` m’, ...)
=> Tagged m [t m’ fp]

Figure 3.1: Representative methods from the Tensor class. For the sake of concision, the
constraint TElt t r is omitted from every method.
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remainder of this subsection we only deal with prime-power indices 𝑚 = 𝑝𝑒 for a prime 𝑝

and positive integer 𝑒.

Embedding Scalars

Consider a scalar element 𝑎 from the base ring, represented relative to the powerful basis 𝑝𝑚.

Because the first element of 𝑝𝑚 is unity, we have

𝑎 = 𝑝𝑡𝑚 · (𝑎 · e1),

where e1 = (1, 0, . . . , 0). Similarly, in the CRT basis �⃗�𝑚 (when it exists), unity has the

all-ones coefficient vector 1. Therefore,

𝑎 = �⃗�𝑡𝑚 · (𝑎 · 1).

The Tensor methods scalarPow and scalarCRT use the above equations to represent

a scalar from the base ring as a coefficient vector relative to the powerful and CRT bases,

respectively. Note that scalarCRT itself is wrapped by Maybe, so that it can be defined as

Nothing if there is no CRT basis over the base ring.

Converting Between Powerful and Decoding Bases

Let 𝐿𝑚 denote the matrix of the linear transform that converts from the decoding basis to

the powerful basis:

𝑑𝑡𝑚 = 𝑝𝑡𝑚 · 𝐿𝑚 ,

i.e., a ring element with coefficient vector v in the decoding basis has coefficient vector

𝐿𝑚 · v in the powerful basis. Because 𝑑𝑚 = 𝑝𝑚,𝑝 ⊗ 𝑑𝑝,1 and 𝑑𝑡𝑝,1 = 𝑝𝑡𝑝,1 · 𝐿𝑝 (both by
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Equation (2.2.5)), we have

𝑑𝑡𝑚 = (𝑝𝑡𝑚,𝑝 · 𝐼𝑚/𝑝)⊗ (𝑝𝑡𝑝 · 𝐿𝑝)

= 𝑝𝑡𝑚 · (𝐼𝑚/𝑝 ⊗ 𝐿𝑝)⏟  ⏞  
𝐿𝑚

.

Recall that 𝐿𝑝 is the square 𝜙(𝑝)-dimensional lower-triangular matrix with 1s throughout

its lower-left triangle, and 𝐿−1
𝑝 is the lower-triangular matrix with 1s on the diagonal,−1s on

the subdiagonal, and 0s elsewhere. We can apply both 𝐿𝑝 and 𝐿−1
𝑝 using just 𝑝− 1 additions,

by taking partial sums and successive differences, respectively.

The Tensor methods l and lInv represent multiplication by 𝐿𝑚 and 𝐿−1
𝑚 , respectively.

Multiplication by 𝑔𝑚

Let 𝐺pow
𝑚 denote the matrix of the linear transform representing multiplication by 𝑔𝑚 in the

powerful basis, i.e.,

𝑔𝑚 · 𝑝𝑡𝑚 = 𝑝𝑡𝑚 ·𝐺pow
𝑚 .

Because 𝑔𝑚 = 𝑔𝑝 ∈ 𝒪𝑝 and 𝑝𝑚 = 𝑝𝑚,𝑝 ⊗ 𝑝𝑝, we have

𝑔𝑚 · 𝑝𝑚 = 𝑝𝑚,𝑝 ⊗ (𝑔𝑝 · 𝑝𝑝)

= (𝑝𝑚,𝑝 · 𝐼𝑚/𝑝)⊗ (𝑝𝑝 ·𝐺pow
𝑝 )

= 𝑝𝑚 · (𝐼𝑚/𝑝 ⊗𝐺pow
𝑝 )⏟  ⏞  

𝐺
pow
𝑚

,
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where 𝐺pow
𝑝 and its inverse (which represents division by 𝑔𝑝 in the powerful basis) are the

square (𝑝− 1)-dimensional matrices

𝐺pow
𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

−1
. . . 1

. . . 1
...

−1 1 1

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (𝐺pow
𝑝 )−1 = 𝑝−1·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝− 1 · · · −1 −1 −1

... . . . ...
...

...

3 · · · 3 3− 𝑝 3− 𝑝

2 · · · 2 2 2− 𝑝

1 · · · 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Identical decompositions hold for 𝐺dec
𝑚 and 𝐺crt

𝑚 (which represent multiplication by 𝑔𝑚

in the decoding and CRT bases, respectively), where

𝐺dec
𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 · · · 1

−1 1

. . . . . .

−1 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (𝐺dec
𝑝 )−1 = 𝑝−1 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2− 𝑝 3− 𝑝 · · · −1

1 2 3− 𝑝 · · · −1

1 2 3 · · · −1

...
...

... . . . ...

1 2 3 · · · 𝑝− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and 𝐺crt
𝑝 is the diagonal matrix with 1 − 𝜔𝑖𝑝 in the 𝑖th diagonal entry (indexed from 1 to

𝑝− 1), where 𝜔𝑝 is the same primitive 𝑝th root of unity in the base ring used to define the

CRT basis.
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The linear transforms represented by the above matrices can be applied in time linear in

the dimension. For 𝐺pow
𝑝 , 𝐺dec

𝑝 , and 𝐺crt
𝑝 and its inverse this is obvious, due to their sparsity.

For (𝐺dec
𝑝 )−1, this follows from the fact that every row (apart from the top one) differs from

the preceding one by a single entry. For (𝐺pow
𝑝 )−1, we can compute the entries of the output

vector from the bottom up, by computing the sum of all the input entries and their partial

sums from the bottom up.

The Tensor methods mulGPow and mulGDec represent multiplication by 𝐺pow
𝑚 and 𝐺dec

𝑚 ,

respectively. Similarly, the methods divGPow and divGDec represent division by these

matrices; note that their outputs are wrapped by Maybe, so that the output can be Nothing

when division fails. Finally, mulGCRT and divGCRT represent multiplication and division by

𝐺crt
𝑚 ; note that these methods themselves are wrapped by Maybe, because 𝐺crt

𝑚 and its inverse

are well-defined over the base ring exactly when a CRT basis exists. (In this case, division

always succeeds, hence no Maybe is needed for the output of divGCRT.)

Chinese Remainder and Discrete Fourier Transforms

Consider a base ring, like Z𝑞 or C, that admits an invertible index-𝑚 Chinese Remainder

Transform CRT𝑚, defined by a principal 𝑚th root of unity 𝜔𝑚. Then as shown in [LPR13a,

Section 3], this transform converts from the powerful basis to the CRT basis (defined by the

same 𝜔𝑚), i.e.,

𝑝𝑡𝑚 = �⃗�𝑡𝑚 · CRT𝑚 .
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Also as shown in [LPR13a, Section 3], CRT𝑚 admits the following sparse decompositions

for 𝑚 > 𝑝:7

CRT𝑚 = (DFT𝑚/𝑝 ⊗ 𝐼𝑝−1) · 𝑇𝑚 · (𝐼𝑚/𝑝 ⊗ CRT𝑝) (3.3.2)

DFT𝑚 = (DFT𝑚/𝑝 ⊗ 𝐼𝑝) · 𝑇𝑚 · (𝐼𝑚/𝑝 ⊗DFT𝑝) . (3.3.3)

(These decompositions can be applied recursively until all the CRT and DFT terms have

subscript 𝑝.) Here DFT𝑝 is a square 𝑝-dimensional matrix with rows and columns indexed

from zero, and CRT𝑝 is its lower-left (𝑝 − 1)-dimensional square submatrix, with rows

indexed from one and columns indexed from zero. The (𝑖, 𝑗)th entry of each matrix is 𝜔𝑖𝑗𝑝 ,

where 𝜔𝑝 = 𝜔
𝑚/𝑝
𝑚 . Finally, 𝑇𝑚, 𝑇𝑚 are diagonal “twiddle” matrices whose diagonal entries

are certain powers of 𝜔𝑚.

For the inverses CRT−1
𝑚 and DFT−1

𝑚 , by standard properties of matrix and Kronecker

products, we have sparse decompositions mirroring those in Equations (3.3.2) and (3.3.3).

Note that DFT𝑝 is invertible if and only if 𝑝 is invertible in the base ring, and the same goes

for CRT𝑝, except that CRT2 (which is just unity) is always invertible. More specifically,

DFT−1
𝑝 = 𝑝−1 · DFT*

𝑝, the (scaled) conjugate transpose of DFT𝑝, whose (𝑖, 𝑗)th entry is

𝜔−𝑖𝑗
𝑝 . For CRT−1

𝑝 , it can be verified that for 𝑝 > 2,

CRT−1
𝑝 = 𝑝−1 ·

(︀
𝑋 − 1 · (𝜔1

𝑝, 𝜔
2
𝑝, . . . , 𝜔

𝑝−1
𝑝 )𝑡

)︀
,

where𝑋 is the upper-right (𝑝−1)-dimensional square submatrix of DFT*
𝑝. Finally, note that

in the sparse decomposition for CRT−1
𝑚 (for aribtrary𝑚), we can collect all the individual 𝑝−1

factors from the CRT−1
𝑝 and DFT−1

𝑝 terms into a single �̂�−1 factor. (This factor is exposed

by the CRTrans interface; see subsection 3.2.5.)

7In these decompositions, the order of arguments to the Kronecker products is swapped as compared with
those appearing in [LPR13a]. This is due to our corresponding reversal of the factors in the Kronecker-product
decompositions of the powerful and CRT bases. The ordering here is more convenient for implementation,
but note that it yields bases and twiddle factors in “digit-reversed” order. In particular, the twiddle matrices
𝑇𝑚, 𝑇𝑚 here are permuted versions of the ones defined in [LPR13a].
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The Tensor methods crt and crtInv respectively represent multiplication by CRT𝑚

and its inverse. These methods themselves are wrapped by Maybe, so that they can be

Nothing when there is no CRT basis over the base ring.

Generating (Tweaked) Gaussians in the Decoding Basis

Cryptographic applications often need to sample secret error terms from a prescribed distri-

bution. For the original definition of Ring-LWE involving the dual ideal 𝑅∨ (see section 2.2),

it is particularly useful to use distributions 𝐷𝑟 that correspond to (continuous) spherical

Gaussians in the canonical embedding. For sufficiently large 𝑟, these distributions are

supported by worst-case hardness proofs [LPR13b]. Note that the error can be discretized in

a variety of ways, with no loss in hardness.

With the “tweaked” perspective that replaces 𝑅∨ by 𝑅 via the tweak factor 𝑡𝑚 ∈ 𝑅, we

are interested in sampling from tweaked distributions 𝑡𝑚 ·𝐷𝑟. More precisely, we want a

randomized algorithm that samples a coefficient vector over R, with respect to one of the

standard bases of 𝑅, of a random element that is distributed as 𝑡𝑚 ·𝐷𝑟. This is not entirely

trivial because (except in the power-of-two case) 𝑅 does not have an orthogonal basis, so

the output coefficients will not be independent.

The material in [LPR13a, Section 6.3] yields a specialized, fast algorithm for sampling

from 𝐷𝑟 with output represented in the decoding basis �⃗�𝑚 of 𝑅∨. Equivalently, the very

same algorithm samples from the tweaked Gaussian 𝑡𝑚 ·𝐷𝑟 relative to the decoding basis

𝑑𝑚 = 𝑡𝑚 · �⃗�𝑚 of 𝑅. The algorithm is faster (often much moreso) than the naïve one that

applies a full CRT*
𝑚 (over C) to a Gaussian in the canonical embedding. The efficiency

comes from skipping several layers of orthogonal transforms (namely, scaled DFTs and

twiddle matrices), which is possible due to the rotation-invariance of spherical Gaussians.

The algorithm also avoids complex numbers entirely, instead using only reals.
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The algorithm. The sampling algorithm simply applies a certain linear transform over R,

whose matrix 𝐸𝑚 has a sparse decomposition as described below, to a vector of i.i.d.

real Gaussian samples with parameter 𝑟, and outputs the resulting vector. The Tensor

method tGaussianDec implements the algorithm, given 𝑣 = 𝑟2. (Note that its output type

rnd (t m q) for MonadRandom rnd is necessarily monadic, because the algorithm is

randomized.)

As with all the transforms considered above, we describe the sparse decomposition

of 𝐸𝑚 where 𝑚 is a power of a prime 𝑝, which then generalizes to arbitrary 𝑚 as described

in subsection 3.3.1. For 𝑚 > 𝑝, we have

𝐸𝑚 =
√︀
𝑚/𝑝 · (𝐼𝑚/𝑝 ⊗ 𝐸𝑝),

where 𝐸2 is unity and 𝐸𝑝 for 𝑝 > 2 is

𝐸𝑝 = 1√
2
· CRT*

𝑝 ·

⎛⎜⎜⎜⎜⎜⎝
𝐼 −

√
−1𝐽

𝐽
√
−1𝐼

⎞⎟⎟⎟⎟⎟⎠ ∈ R(𝑝−1)×(𝑝−1) ,

where CRT𝑝 is over C, and 𝐽 is the “reversal” matrix obtained by reversing the columns

of the identity matrix.8 Expanding the above product, 𝐸𝑝 has rows indexed from zero and

columns indexed from one, and its (𝑖, 𝑗)th entry is

√
2 ·

⎧⎪⎪⎨⎪⎪⎩
cos 𝜃𝑖·𝑗 for 1 ≤ 𝑗 < 𝑝/2

sin 𝜃𝑖·𝑗 for 𝑝/2 < 𝑗 ≤ 𝑝− 1

, 𝜃𝑘 = 2𝜋𝑘/𝑝.

Finally, note that in the sampling algorithm, when applying 𝐸𝑚 for arbitrary 𝑚 with

prime-power factorization 𝑚ℓ =
∏︀

ℓ𝑚ℓ, we can apply all the
√︀
𝑚ℓ/𝑝ℓ scaling factors

8We remark that the signs of the rightmost block of the above matrix (containing −
√
−1𝐽 and

√
−1𝐼) is

swapped as compared with what appears in [LPR13a, Section 6.3]. The choice of sign is arbitrary, because
any orthonormal basis of the subspace spanned by the columns works equally well.
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(from the 𝐸𝑚ℓ
terms) to the parameter 𝑟 of the Gaussian input vector, i.e., use parameter

𝑟
√︀
𝑚/ rad(𝑚) instead.

Gram Matrix of Decoding Basis

Certain cryptographic applications need to obtain the Euclidean norm, under the canonical

embedding 𝜎, of cyclotomic ring elements (usually, error terms). Let �⃗� denote any Q-basis

of the ambient number field and let 𝜏 denote conjugation, which maps any root of unity to

its inverse. Then the squared norm of 𝜎(𝑒), where 𝑒 = �⃗�𝑡 · e for some rational coefficient

vector e, is

‖𝜎(𝑒)‖2 = ⟨𝜎(𝑒), 𝜎(𝑒)⟩ = Tr𝑅/Z(𝑒 · 𝜏(𝑒)) = e𝑡 · Tr𝑅/Z(⃗𝑏 · 𝜏 (⃗𝑏𝑡)) · e = ⟨e, 𝐺e⟩ ,

where 𝐺 = Tr𝑅/Z(⃗𝑏 · 𝜏 (⃗𝑏𝑡)) denotes the Gram matrix of the basis �⃗�. So computing the

squared norm mainly involves multiplication by the Gram matrix.

As shown below, the Gram matrix of the decoding basis �⃗�𝑚 of 𝑅∨ has a particularly

simple sparse decomposition. Now, because the tweaked decoding basis 𝑑𝑚 = 𝑡𝑚 · �⃗�𝑚

of 𝑅 satisfies 𝑔𝑚 · 𝑑𝑚 = �̂� · �⃗�𝑚, the same Gram matrix also yields ‖𝜎(𝑔𝑚 · 𝑒)‖2 (up to

a �̂�2 scaling factor) from the coefficient tensor of 𝑒 with respect to 𝑑𝑚. This is exactly

what is needed when using tweaked Gaussian errors 𝑒 ∈ 𝑅, because the “untweaked” error

𝑔𝑚 · 𝑒 is short and (near-)spherical in the canonical embedding (see, e.g., Invariant 4.2.2).

The Tensor method gSqNormDec maps the coefficient tensor of 𝑒 (with respect to 𝑑𝑚) to

�̂�−1 · ‖𝜎(𝑔𝑚 · 𝑒)‖2.9

9The �̂�−1 factor compensates for the implicit scaling between �⃗�𝑚 and 𝑔𝑚 · 𝑑𝑚, and is the smallest such
factor that guarantees an integer output when the input coefficients are integral.
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Recall that �⃗�𝑚 is defined as the dual, under Tr𝑅/Z, of the conjugate powerful basis 𝜏(𝑝𝑚).

From this it can be verified that

�⃗�𝑝 = 𝑝−1 ·
(︀
𝜁𝑗𝑝 − 𝜁−1

𝑝

)︀
𝑗=0,...,𝑝−2

�⃗�𝑚,𝑝 = (𝑚/𝑝)−1 · 𝑝𝑚,𝑝 .

Using the above, an elementary calculation shows that

𝑝 · Tr𝑝,1(⃗𝑏𝑝 · 𝜏 (⃗𝑏𝑝)) = 𝐼𝑝−1 + 1

(𝑚/𝑝) · Tr𝑚,𝑝(⃗𝑏𝑚,𝑝 · 𝜏 (⃗𝑏𝑚,𝑝)) = 𝐼𝑚/𝑝 ,

where 1 denotes the all-1s matrix. (Note that for 𝑝 = 2, the Gram matrix of �⃗�𝑝 is just unity.)

Combining these, we have

𝑚 · Tr𝑅/Z(⃗𝑏𝑚 · 𝜏 (⃗𝑏𝑚)𝑡) = 𝑝 · Tr𝑝,1((𝑚/𝑝) · Tr𝑚,𝑝(⃗𝑏𝑚,𝑝 · 𝜏 (⃗𝑏𝑡𝑚,𝑝))⊗ (⃗𝑏𝑝 · 𝜏 (⃗𝑏𝑡𝑝)))

= 𝐼𝑚/𝑝 ⊗ 𝑝 · Tr𝑝,1(⃗𝑏𝑝 · �⃗�𝑡𝑝)

= 𝐼𝑚/𝑝 ⊗ (𝐼𝑝−1 + 1) .

3.3.2 Two-Index Transforms and Values

We now consider transforms and special values relating the 𝑚th and 𝑚′th cyclotomic

rings, for 𝑚|𝑚′. These are used for computing the embed and twace functions, the relative

powerful basis, and the relative CRT set.

Prime-Power Factorization

As in the subsection 3.3.1, every transform of interest for arbitrary 𝑚|𝑚′ factors into the

tensor product of the corresponding transforms for prime-power indices having the same

prime base. More specifically, let 𝑇𝑚,𝑚′ denote the matrix of any of the linear transforms
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we consider below. Suppose we have factorization 𝑚 =
∏︀

ℓ𝑚ℓ, 𝑚′ =
∏︀

ℓ𝑚
′
ℓ where

each 𝑚ℓ,𝑚
′
ℓ is a power of a distinct prime 𝑝ℓ (so some 𝑚ℓ may be 1). Then we have the

factorization

𝑇𝑚,𝑚′ =
⨂︁
ℓ

𝑇𝑚ℓ,𝑚
′
ℓ
,

which follows directly from the Kronecker-product factorizations of the powerful and

decoding bases, and the mixed-product property. Therefore, from this point onward we deal

only with prime-power indices 𝑚 = 𝑝𝑒, 𝑚′ = 𝑝𝑒
′ for a prime 𝑝 and integers 𝑒′ > 𝑒 ≥ 0.

We mention that for the transforms we consider below, the fully expanded matrices 𝑇𝑚,𝑚′

have very compact representations and can be applied directly to the input vector, without

computing a sequence of intermediate vectors via the sparse decomposition. For efficiency,

our implementation does exactly this.

Coefficients in Relative Bases

We start with transforms that let us represent elements with respect to relative bases, i.e., to

represent an element of the 𝑚′th cyclotomic as a vector of elements in the 𝑚th cyclotomic,

with respect to a relative basis. Due to the Kronecker-product structure of the powerful,

decoding, and CRT bases, it turns out that the same transformation works for all of them.

The coeffs method of Tensor implements this transformation.

One can verify the identity (�⃗�⊗ �⃗�)𝑡 · a = �⃗�𝑡 · 𝐴 · �⃗�, where 𝐴 is the “matricization” of

the vector a, whose rows are (the transposes of) the consecutive dim(�⃗�)-dimensional blocks

of a. Letting �⃗�ℓ denote either the powerful, decoding, or CRT basis in the ℓth cyclotomic,

which has factorization �⃗�𝑚′ = �⃗�𝑚′,𝑚 ⊗ �⃗�𝑚, we have

�⃗�𝑡𝑚′ · a = �⃗�𝑡𝑚′,𝑚 · (𝐴 · �⃗�𝑚).
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Therefore, 𝐴 · �⃗�𝑚 is the desired vector of 𝑅-coefficients of 𝑎 = �⃗�𝑡𝑚′ · a ∈ 𝑅′. In other words,

the 𝜙(𝑚)-dimensional blocks of a are the coefficient vectors (with respect to basis �⃗�𝑚) of

the 𝑅-coefficients of 𝑎 with respect to the relative basis �⃗�𝑚′,𝑚.

Embed Transforms

We now consider transforms that convert from a basis in the 𝑚th cyclotomic to the same

type of basis in the 𝑚′th cyclotomic. That is, for particular bases �⃗�𝑚′ , �⃗�𝑚 of the 𝑚′th and

𝑚th cyclotomics (respectively), we write

�⃗�𝑡𝑚 = �⃗�𝑡𝑚′ · 𝑇

for some integer matrix 𝑇 . So embedding a ring element from the𝑚th to the𝑚′th cyclotomic

(with respect to these bases) corresponds to left-multiplication by 𝑇 . The embedB methods

of Tensor, for B ∈ {Pow, Dec, CRT}, implement these transforms.

We start with the powerful basis. Because 𝑝𝑚′ = 𝑝𝑚′,𝑚 ⊗ 𝑝𝑚 and the first entry of 𝑝𝑚′,𝑚

is unity,

𝑝𝑡𝑚 = (𝑝𝑡𝑚′,𝑚 · e1)⊗ (𝑝𝑡𝑚 · 𝐼𝜙(𝑚))

= 𝑝𝑡𝑚′ · (e1 ⊗ 𝐼𝜙(𝑚)) ,

where e1 = (1, 0, . . . , 0) ∈ Z𝜙(𝑚′)/𝜙(𝑚). Note that (e1⊗ 𝐼𝜙(𝑚)) is the identity matrix stacked

on top of an all-zeros matrix, so left-multiplication by it simply pads the input vector by

zeros.

For the decoding bases 𝑑𝑚′ , 𝑑𝑚, an identical derivation holds when 𝑚 > 1, because

𝑑𝑚′ = 𝑝𝑚′,𝑚 ⊗ 𝑑𝑚. Otherwise, we have 𝑑𝑚′ = 𝑝𝑚′,𝑝 ⊗ 𝑑𝑝 and 𝑑𝑡𝑚 = (1) = 𝑑𝑡𝑝 · v, where
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v = (1,−1, 0, . . . , 0) ∈ Z𝜙(𝑝). Combining these cases, we have

𝑑𝑡𝑚 = 𝑑𝑡𝑚′ ·

⎧⎪⎪⎨⎪⎪⎩
e1 ⊗ 𝐼𝜙(𝑚) if 𝑚 > 1

e1 ⊗ v if 𝑚 = 1.

For the CRT bases �⃗�𝑚′ , �⃗�𝑚, because �⃗�𝑚 = �⃗�𝑚′,𝑚 ⊗ �⃗�𝑚 and the sum of the elements of

any (relative) CRT basis is unity, we have

�⃗�𝑡𝑚 = (�⃗�𝑡𝑚′,𝑚 · 1)⊗ (�⃗�𝑡𝑚 · 𝐼𝜙(𝑚))

= �⃗�𝑡𝑚′ · (1⊗ 𝐼𝜙(𝑚)) .

Notice that (1⊗ 𝐼𝜙(𝑚)) is just a stack of identity matrices, so left-multiplication by it just

stacks up several copies of the input vector.

Finally, we express the relative powerful basis 𝑝𝑚′,𝑚 with respect to the powerful

basis 𝑝𝑚′; this is used in the powBasisPow method of Tensor. We simply have

𝑝𝑡𝑚′,𝑚 = (𝑝𝑡𝑚′,𝑚 · 𝐼𝜙(𝑚′)/𝜙(𝑚))⊗ (𝑝𝑚 · e1)

= 𝑝𝑡𝑚′ · (𝐼𝜙(𝑚′)/𝜙(𝑚) ⊗ e1) .

Twace Transforms

We now consider transforms that represent the twace function from the 𝑚′th to the 𝑚th

cyclotomic for the three basis types of interest. That is, for particular bases �⃗�𝑚′ , �⃗�𝑚 of the

𝑚′th and 𝑚th cyclotomics (respectively), we write

Tw𝑚′,𝑚(⃗𝑏𝑡𝑚′) = �⃗�𝑡𝑚 · 𝑇

70



for some integer matrix 𝑇 , which by linearity of twace implies

Tw𝑚′,𝑚(⃗𝑏𝑡𝑚′ · v) = �⃗�𝑡𝑚 · (𝑇 · v).

In other words, the twace function (relative to the these bases) corresponds to left-multiplication

by 𝑇 . The twacePowDec and twaceCRT methods of Tensor implement these transforms.

To start, we claim that

Tw𝑚′,𝑚(𝑝𝑚′,𝑚) = Tw𝑚′,𝑚(𝑑𝑚′,𝑚) = e1 ∈ Z𝜙(𝑚′)/𝜙(𝑚). (3.3.4)

This holds for 𝑑𝑚′,𝑚 because it is dual to (conjugated) 𝑝𝑚′,𝑚 under Tw𝑚′,𝑚, and the first

entry of 𝑝𝑚′,𝑚 is unity. It holds for 𝑝𝑚′,𝑚 because 𝑝𝑚′,𝑚 = 𝑑𝑚′,𝑚 for 𝑚 > 1, and for 𝑚 = 1

one can verify that

Tw𝑚′,1(𝑝𝑚′,1) = Tw𝑝,1(Tw𝑚′,𝑝(𝑝𝑚′,𝑝)⊗ 𝑝𝑝,1) = (1, 0, . . . , 0)⊗ Tw𝑝,1(𝑝𝑝,1) = e1.

Now for the powerful basis, by linearity of twace and Equation (3.3.4) we have

Tw𝑚′,𝑚(𝑝𝑡𝑚′) = Tw𝑚′,𝑚(𝑝𝑡𝑚′,𝑚)⊗ 𝑝𝑡𝑚

= (1 · e𝑡1)⊗ (𝑝𝑡𝑚 · 𝐼𝜙(𝑚))

= 𝑝𝑡𝑚 · (e𝑡1 ⊗ 𝐼𝜙(𝑚)) .

An identical derivation holds for the decoding basis as well. Notice that left-multiplication

by the matrix (e𝑡1 ⊗ 𝐼𝜙(𝑚)) just returns the first 𝜙(𝑚′)/𝜙(𝑚) entries of the input vector.

Finally, we consider the CRT basis. Because 𝑔𝑚′ = 𝑔𝑝 (recall that 𝑚′ ≥ 𝑝), by definition

of twace in terms of trace we have

Tw𝑚′,𝑚(𝑥) = (�̂�/�̂�′) · 𝑔−1
𝑚 · Tr𝑚′,𝑚(𝑔𝑝 · 𝑥). (3.3.5)
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Also recall that the traces of all relative CRT set elements are unity: Tr𝑚′,ℓ(�⃗�𝑚′,ℓ) =

1𝜙(𝑚′)/𝜙(ℓ) for any ℓ|𝑚′. We now need to consider two cases. For 𝑚 > 1, we have 𝑔𝑚 = 𝑔𝑝,

so by Equation (3.3.5) and linearity of trace,

Tw𝑚′,𝑚(�⃗�𝑚′,𝑚) = (�̂�/�̂�′) · 1𝜙(𝑚′)/𝜙(𝑚) .

For 𝑚 = 1, we have 𝑔𝑚 = 1, so by �⃗�𝑚′,1 = �⃗�𝑚′,𝑝 ⊗ �⃗�𝑝,1 and linearity of trace we have

Tw𝑚′,1(�⃗�𝑚′,1) = (�̂�/�̂�′) · Tr𝑝,1(Tr𝑚′,𝑝(�⃗�𝑚′,𝑝)⊗ (𝑔𝑝 · �⃗�𝑝,1))

= (�̂�/�̂�′) · 1𝜙(𝑚′)/𝜙(𝑝) ⊗ Tr𝑝,1(𝑔𝑝 · �⃗�𝑝,1) .

Applying the two cases, we finally have

Tw𝑚′,𝑚(�⃗�𝑡𝑚′) = (1 · Tw𝑚′,𝑚(�⃗�𝑡𝑚′,𝑚))⊗ (�⃗�𝑡𝑚 · 𝐼𝜙(𝑚))

= �⃗�𝑡𝑚 · (�̂�/�̂�′) ·

⎧⎪⎪⎨⎪⎪⎩
1𝑡𝜙(𝑚′)/𝜙(𝑚) ⊗ 𝐼𝜙(𝑚) if 𝑚 > 1

1𝑡𝜙(𝑚′)/𝜙(𝑝) ⊗ Tr𝑝,1(𝑔𝑝 · �⃗�𝑡𝑝,1) if 𝑚 = 1.

Again because Tr𝑝,1(�⃗�𝑝,1) = 1𝜙(𝑝), the entries of Tr𝑝,1(𝑔𝑝 · �⃗�𝑝,1) are merely the CRT coeffi-

cients of 𝑔𝑝. That is, the 𝑖th entry (indexed from one) is 1− 𝜔𝑖𝑝, where 𝜔𝑝 = 𝜔
𝑚′/𝑝
𝑚′ for the

value of 𝜔𝑚′ used to define the CRT set of the 𝑚′th cyclotomic.

3.3.3 CRT Sets

In this final subsection we describe an algorithm for computing a representation of the

relative CRT set �⃗�𝑚′,𝑚 modulo a prime-power integer. CRT sets are a generalization of CRT

bases to the case where the prime modulus may not be 1 modulo the cyclotomic index (i.e.,

it does not split completely), and therefore the cardinality of the set may be less than the

dimension of the ring. CRT sets are used for homomorphic SIMD operations [SV14] and in
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the bootstrapping algorithm of [AP13]. See subsection 2.2.6 for the necessary background

information.

Computing CRT Sets

We start with an easy calculation that, for a prime integer 𝑝, “lifts” the mod-𝑝 CRT set to the

mod-𝑝𝑒 CRT set.

Lemma 3.3.1. For 𝑅 = 𝒪𝑚, a prime integer 𝑝 where 𝑝 - 𝑚, and a positive integer 𝑒, let

(𝑐𝑖)𝑖 be the CRT set of𝑅𝑝𝑒 , and let 𝑐𝑖 ∈ 𝑅 be any representative of 𝑐𝑖. Then (𝑐𝑝𝑖 mod 𝑝𝑒+1𝑅)𝑖

is the CRT set of 𝑅𝑝𝑒+1 .

Corollary 3.3.2. If 𝑐𝑖 ∈ 𝑅 are representatives for the mod-𝑝 CRT set (𝑐𝑖)𝑖 of 𝑅𝑝, then

(𝑐𝑝
𝑒−1

𝑖 mod 𝑝𝑒𝑅)𝑖 is the CRT set of 𝑅𝑝𝑒 .

Proof of Lemma 3.3.1. Let 𝑝𝑅 =
∏︀

𝑖 p𝑖 be the factorization of 𝑝𝑅 into distinct prime ideals

p𝑖 ⊂ 𝑅. By hypothesis, we have 𝑐𝑖 ∈ 𝛿𝑖,𝑖′ + p𝑒𝑖′ for all 𝑖, 𝑖′. Then

𝑐𝑝𝑖 ∈ 𝛿𝑖,𝑖′ + 𝑝 · p𝑒𝑖′ + p𝑒𝑝𝑖′ ⊆ 𝛿𝑖,𝑖′ + p𝑒+1
𝑖′ ,

because 𝑝 divides the binomial coefficient
(︀
𝑝
𝑘

)︀
for 0 < 𝑘 < 𝑝, because 𝑝𝑅 ⊆ p𝑖′ , and because

p𝑒𝑝𝑖′ ⊆ p𝑒+1
𝑖′ .

CRT sets modulo a prime. We now describe the mod-𝑝 CRT set for a prime integer 𝑝,

and an efficient algorithm for computing representations of its elements. To motivate

the approach, notice that the coefficient vector of 𝑥 ∈ 𝑅𝑝 with respect to some arbitrary

Z𝑝-basis �⃗� of 𝑅𝑝 can be obtained via the twace and the dual Z𝑝-basis �⃗�∨ (under the twace):

𝑥 = �⃗�𝑡 · Tw𝑅𝑝/Z𝑝(𝑥 · �⃗�∨).
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In what follows we let �⃗� be the decoding basis, because its dual basis is the conjugated

powerful basis, which has a particularly simple form. The following lemma is a direct

consequence of Equation (2.2.6) and the definition of twace (Equation (2.2.4)).

Lemma 3.3.3. For 𝑅 = 𝒪𝑚 and a prime integer 𝑝 - 𝑚, let �⃗� = (𝑐𝑖) be the CRT set of 𝑅𝑝,

let 𝑑 = 𝑑𝑚 denote the decoding Z𝑝-basis of 𝑅𝑝, and let 𝜏(𝑝) = (𝑝−1
𝑗 ) denote its dual, the

conjugate powerful basis. Then

�⃗�𝑡 = 𝑑𝑡 · Tw𝑅𝑝/Z𝑝(𝜏(𝑝) · �⃗�𝑡) = 𝑑𝑡 · �̂�−1 · TrF
𝑝𝑑
/F𝑝(𝐶),

where 𝐶 is the matrix over F𝑞𝑑 whose (𝑗, �̄�)th element is 𝜌�̄�(𝑔𝑚) · 𝜌�̄�(𝑝−1
𝑗 ).

Notice that 𝜌�̄�(𝑝−1
𝑗 ) is merely the inverse of the (̄𝚤, 𝑗)th entry of the matrix CRT𝑚

over F𝑝𝑑 , which is the Kronecker product of CRT𝑚ℓ
over all maximal prime-power divisors

of 𝑚. In turn, the entries of CRT𝑚ℓ
are all just appropriate powers of 𝜔𝑚ℓ

∈ F𝑝𝑑 . Similarly,

𝜌�̄�(𝑔𝑚) is the product of all 𝜌�̄� mod 𝑚ℓ
(𝑔𝑚ℓ

) = 1−𝜔 �̄�𝑚ℓ
. So we can straightforwardly compute

the entries of the matrix 𝐶 and takes their traces into F𝑝, yielding the decoding-basis

coefficient vectors for the CRT set elements.

Relative CRT sets. We conclude by describing the relative CRT set �⃗�𝑚′,𝑚 modulo a

prime 𝑝, where 𝑅 = 𝒪𝑚, 𝑅′ = 𝒪𝑚′ for 𝑚|𝑚′ and 𝑝 - 𝑚′. The key property of �⃗�𝑚′,𝑚 is that

the CRT sets �⃗�𝑚′ , �⃗�𝑚 for 𝑅𝑝, 𝑅
′
𝑝 (respectively) satisfy the Kronecker-product factorization

�⃗�𝑚′ = �⃗�𝑚′,𝑚 ⊗ �⃗�𝑚 . (3.3.6)

The definition of �⃗�𝑚′,𝑚 arises from the splitting of the prime ideal divisors p𝑖 (of 𝑝𝑅) in 𝑅′,

as described next.

Recall from above that the prime ideal divisors p′𝑖′ ⊂ 𝑅′ of 𝑝𝑅′ and the CRT set

�⃗�𝑚′ = (𝑐′𝑖′) are indexed by 𝑖′ ∈ 𝐺′ = Z*
𝑚′/⟨𝑝⟩, and similarly for p𝑖 ⊂ 𝑅 and �⃗�𝑚 = (𝑐𝑖). For
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each 𝑖 ∈ 𝐺 = Z*
𝑚/⟨𝑝⟩, the ideal p𝑖𝑅′ factors as the product of those p′𝑖′ such that 𝑖′ = 𝑖

(mod 𝑚), i.e., those 𝑖′ ∈ 𝜑−1(𝑖) where 𝜑 : 𝐺′ → 𝐺 is the natural mod-𝑚 homomorphism.

Therefore,

𝑐𝑖 =
∑︁

𝑖′∈𝜑−1(𝑖)

𝑐′𝑖′ . (3.3.7)

To define �⃗�𝑚′,𝑚, we partition 𝐺′ into a collection ℐ ′ of |𝐺′|/|𝐺| equal-sized subsets 𝐼 ′,

such that 𝜑(𝐼 ′) = 𝐺 for every 𝐼 ′ ∈ ℐ ′. In other words, 𝜑 is a bijection between each 𝐼 ′

and 𝐺. This induces a bijection 𝜓 : 𝐺′ → ℐ ′ ×𝐺, where the projection of 𝜓 onto its second

component is 𝜑. We index the relative CRT set �⃗�𝑚′,𝑚 = (𝑐𝐼′) by 𝐼 ′ ∈ ℐ ′, defining

𝑐𝐼′ :=
∑︁
𝑖′∈𝐼′

𝑐′𝑖′ .

By Equation (3.3.7) and the fact that (𝑐′𝑖′) is the CRT set of 𝑅′
𝑝, it can be verified that

𝑐𝑖′ = 𝑐𝐼′ · 𝑐𝑖 for 𝜓(𝑖′) = (𝐼 ′, 𝑖), thus confirming Equation (3.3.6).

3.4 Sparse Decompositions and Haskell Framework

As shown in section 3.3, the structure of the powerful, decoding, and CRT bases yield sparse

decompositions, and thereby efficient algorithms, for cryptographically important linear

transforms relating to these bases. Here we explain the principles of sparse decompositions,

and summarize our Haskell framework for expressing and evaluating them.

3.4.1 Sparse Decompositions

A sparse decomposition of a matrix (or the linear transform it represents) is a factorization

into sparser or more “structured” matrices, such as diagonal matrices or Kronecker products.

Recall that the Kronecker (or tensor) product 𝐴 ⊗ 𝐵 of two matrices or vectors 𝐴 ∈

ℛ𝑚1×𝑛1 , 𝐵 ∈ ℛ𝑚2×𝑛2 over a ring ℛ is a matrix in ℛ𝑚1𝑚2×𝑛1𝑛2 . Specifically, it is the

𝑚1-by-𝑛1 block matrix (or vector) made up of 𝑚2-by-𝑛2 blocks, whose (𝑖, 𝑗)th block is
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𝑎𝑖,𝑗 ·𝐵 ∈ ℛ𝑚2×𝑛2 , where 𝐴 = (𝑎𝑖,𝑗). The Kronecker product satisfies the properties

(𝐴⊗𝐵)𝑡 = (𝐴𝑡 ⊗𝐵𝑡)

(𝐴⊗𝐵)−1 = (𝐴−1 ⊗𝐵−1)

and the mixed-product property

(𝐴⊗𝐵) · (𝐶 ⊗𝐷) = (𝐴𝐶)⊗ (𝐵𝐷),

which we use extensively in what follows.

A sparse decomposition of a matrix 𝐴 naturally yields an algorithm for multiplication

by 𝐴, which can be much more efficient and parallel than the naïve algorithm. For example,

multiplication by 𝐼𝑛 ⊗ 𝐴 can be done using 𝑛 parallel multiplications by 𝐴 on appropriate

chunks of the input, and similarly for 𝐴⊗ 𝐼𝑛 and 𝐼𝑙⊗𝐴⊗ 𝐼𝑟. More generally, the Kronecker

product of any two matrices can be expressed in terms of the previous cases, as follows:

𝐴⊗𝐵 = (𝐴⊗ 𝐼height(𝐵)) · (𝐼width(𝐴) ⊗𝐵) = (𝐼height(𝐴) ⊗𝐵) · (𝐴⊗ 𝐼width(𝐵)).

If the matrices 𝐴,𝐵 themselves have sparse decompositions, then these rules can be applied

further to yield a “fully expanded” decomposition. All the decompositions we consider

in this work can be fully expanded as products of terms of the form 𝐼𝑙 ⊗ 𝐴 ⊗ 𝐼𝑟, where

multiplication by 𝐴 is relatively fast, e.g., because 𝐴 is diagonal or has small dimensions.

3.4.2 Haskell Framework

We now describe a simple, deeply embedded domain-specific language for expressing

and evaluating sparse decompositions in Haskell. It allows the programmer to write such

factorizations recursively in natural mathematical notation, and it automatically yields fast

evaluation algorithms corresponding to fully expanded decompositions. For simplicity, our
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implementation is restricted to square matrices (which suffices for our purposes), but it

could easily be generalized to rectangular ones.

As a usage example, to express the decompositions

𝐴 = 𝐵 ⊗ 𝐶

𝐵 = (𝐼𝑛 ⊗𝐷) · 𝐸

where 𝐶, 𝐷, and 𝐸 are “atomic,” one simply writes

transA = transB @* transC -- 𝐵 ⊗ 𝐶

transB = ( Id n @* transD) .* transE -- (𝐼𝑛 ⊗𝐷) · 𝐸

transC = trans functionC -- similarly for transD, transE

where functionC is (essentially) an ordinary Haskell function that left-multiplies its input

vector by 𝐶. The above code causes transA to be internally represented as the fully

expanded decomposition

𝐴 = (𝐼𝑛 ⊗𝐷 ⊗ 𝐼dim(𝐶)) · (𝐸 ⊗ 𝐼dim(𝐶)) · (𝐼dim(𝐸) ⊗ 𝐶).

Finally, one simply writes eval transA to get an ordinary Haskell function that left-

multiplies by 𝐴 according to the above decomposition.

Data types. We first define the data types that represent transforms and their decomposi-

tions (here Array r stands for some arbitrary array type that holds elements of type r)

-- (dim(f), f) such that (f l r) applies 𝐼𝑙 ⊗ 𝑓 ⊗ 𝐼𝑟

type Tensorable r = (Int, Int -> Int -> Array r -> Array r)

-- transform component: a Tensorable with particular 𝐼𝑙, 𝐼𝑟

type TransC r = (Tensorable r, Int, Int)
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-- full transform: a sequence of zero or more components

data Trans r = Id Int -- identity sentinel

| TSnoc (Trans r) (TransC r)

• The client-visible type alias Tensorable r represents an “atomic” transform (over

the base type r) that can be augmented (tensored) on the left and right by identity

transforms of any dimension. It has two components: the dimension 𝑑 of the atomic

transform 𝑓 itself, and a function that, given any dimensions 𝑙, 𝑟, applies the 𝑙𝑑𝑟-

dimensional transform 𝐼𝑙 ⊗ 𝑓 ⊗ 𝐼𝑟 to an array of r-elements. (Such a function could

use parallelism internally, as already described.)

• The type alias TransC r represents a transform component, namely, a Tensorable

r with particular values for 𝑙, 𝑟. TransC is only used internally; it is not visible to

external clients.

• The client-visible type Trans r represents a full transform, as a sequence of zero or

more components terminated by a sentinel representing the identity transform. For

such a sequence to be well-formed, all the components (including the sentinel) must

have the same dimension. Therefore, we export the Id constructor, but not TSnoc,

so the only way for a client to construct a nontrivial Trans r is to use the functions

described below (which maintain the appropriate invariant).

Evaluation. Evaluating a transform is straightforward. Simply evaluate each component

in sequence:

evalC :: TransC r -> Array r -> Array r

evalC ((_,f), l, r) = f l r

eval :: Trans r -> Array r -> Array r
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eval (Id _) = id -- identity function

eval (TSnoc rest f) = eval rest . evalC f

Constructing transforms. We now explain how transforms of type Trans r are con-

structed. The function trans wraps a Tensorable as a full-fledged transform:

trans :: Tensorable r -> Trans r

trans f@(d,_) = TSnoc (Id d) (f, 1, 1) -- 𝐼𝑑 · 𝑓

More interesting are the functions for composing and tensoring transforms, respectively

denoted by the operators (.*), (@*) :: Trans r -> Trans r -> Trans r. Composition

just appends the two sequences of components, after checking that their dimensions match;

we omit its straightforward implementation. The Kronecker-product operator (@*) simply

applies the appropriate rules to get a fully expanded decomposition:

-- 𝐼𝑚 ⊗ 𝐼𝑛 = 𝐼𝑚𝑛

(Id m) @* (Id n) = Id (m*n)

-- 𝐼𝑛 ⊗ (𝐴 ·𝐵) = (𝐼𝑛 ⊗ 𝐴) · (𝐼𝑛 ⊗𝐵), and similarly

i@(Id n) @* (TSnoc a (b, l, r)) = TSnoc (i @* a) (b, (n*l), r)

(TSnoc a (b, l, r)) @* i@(Id n) = TSnoc (a @* i) (b, l, (r*n))

-- (𝐴⊗𝐵) = (𝐴⊗ 𝐼) · (𝐼 ⊗𝐵)

a @* b = (a @* Id (dim b)) .* (Id (dim a) @* b)

(The dim function simply returns the dimension of a transform, via the expected implemen-

tation.)
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3.5 Cyclotomic Rings

In this section we summarize Λ∘𝜆’s interfaces and implementations for cyclotomic rings.

In subsection 3.5.1 we describe the interfaces of the two data types, Cyc and UCyc, that

represent cyclotomic rings: Cyc completely hides and transparently manages the internal

representation of ring elements (i.e., the choice of basis in which they are represented),

whereas UCyc is a lower-level type that safely exposes and allows explicit control over

the choice of representation. Lastly, in subsection 3.5.2 we describe key aspects of the

implementations, such as Cyc’s subring optimizations, and how we generically “promote”

base-ring operations to cyclotomic rings.

3.5.1 Cyclotomic Types: Cyc and UCyc

In this subsection we describe the interfaces of the two data types, Cyc and UCyc, that

represent cyclotomic rings.

• Cyc t m r represents the mth cyclotomic ring over a base ring r—typically, one of

Q, Z, or Z𝑞—backed by an underlying Tensor type t (see section 3.3 for details on

Tensor). The interface for Cyc completely hides the internal representations of ring

elements (e.g., the choice of basis) from the client, and automatically manages the

choice of representation so that the various ring operations are usually as efficient as

possible. Therefore, most cryptographic applications can and should use Cyc.

• UCyc t m rep r represents the same cyclotomic ring as Cyc t m r, but as a

coefficient vector relative to the basis indicated by rep. This argument is one of the

four valueless types P, D, C, E, which respectively denote the powerful basis, decoding

basis, CRT r-basis (if it exists), and CRT basis over an appropriate extension ring of r.

Exposing the representation at the type level in this way allows—indeed, requires—

the client to manage the choice of representation. (Cyc is one such client.) This can

lead to more efficient computations in certain cases where Cyc’s management may
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be suboptimal. More importantly, it safely enables a wide class of operations on

the underlying coefficient vector, via category-theoretic classes like Functor; see

sections 3.5.1 and 3.5.2 for further details.

Clients can easily switch between Cyc and UCyc as needed. Indeed, Cyc is just a relatively

thin wrapper around UCyc, which mainly just manages the choice of representation, and

provides some other optimizations related to subrings (see subsection 3.5.2 for details).

Instances

The Cyc and UCyc types are instances of many classes, which comprise a large portion of

their interfaces.

Algebraic classes. As one might expect, Cyc t m r and UCyc t m rep r are instances

of Eq, Additive, Ring, and various other algebraic classes for any appropriate choices of t,

m, rep, and r. Therefore, the standard operators (==), (+), (*), etc. are well-defined for

Cyc and UCyc values, with semantics matching the mathematical definitions.

We remark that UCyc t m rep r is an instance of Ring only for the CRT representations

rep = C, E, where multiplication is coefficient-wise. In the other representations, multiplica-

tion is algorithmically more complicated and less efficient, so we simply do not implement

it. This means that clients of UCyc must explicitly convert values to a CRT representation

before multiplying them, whereas Cyc performs such conversions automatically.

Category-theoretic classes. Because UCyc t m rep r for rep = P, D, C (but not

rep =E) is represented as a vector of r-coefficients with respect to the basis indicated

by rep, we define the partially applied types UCyc t m rep (note the missing base type r)

to be instances of the classes Functor, Applicative, Foldable, and Traversable. For

example, our instantiation of Functor for f = UCyc t m rep defines fmap :: (r ->

r’) -> f r -> f r’ to apply the given r -> r’ function independently on each of the

r-coefficients.
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By contrast, Cyc t m is not an instance of any category-theoretic classes. This is because

by design, Cyc hides the choice of representation from the client, so it is unclear how (say)

fmap should be defined: using the current internal representation (whatever it happens to

be) would lead to unpredictable and often unintended behavior, whereas always using a

particular representation (e.g., the powerful basis) would not be flexible enough to support

operations that ought to be performed in a different representation.

Lattice cryptography classes. Lastly, we “promote” instances of our specialized lattice

cryptography classes like Reduce, Lift, Rescale, Gadget, etc. from base types to UCyc

and/or Cyc, as appropriate. For example, the instance Reduce z zq, which represents

modular reduction from Z to Z𝑞, induces the instance Reduce (Cyc t m z) (Cyc t m

zq), which represents reduction from 𝑅 to 𝑅𝑞. All these instances have very concise and

generic implementations using the just-described category-theoretic instances for UCyc; see

subsection 3.5.2 for further details.

Functions

We now describe the remaining functions that define the interface for Cyc; see Figure 3.2

for their type signatures. (UCyc admits a very similar collection of functions, which we omit

from the discussion.) We start with functions that involve a single cyclotomic index m.

scalarCyc embeds a scalar element from the base ring r into the mth cyclotomic ring

over r.

mulG, divG respectively multiply and divide by the special element 𝑔𝑚 in the 𝑚th cyclo-

tomic ring. These operations are commonly used in applications, and have efficient

algorithms in all our representations, which is why we define them as special functions

(rather than, say, just exposing a value representing 𝑔𝑚). Note that because the input

may not always be divisible by 𝑔𝑚, the output type of divG is a Maybe.
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scalarCyc :: (Fact m, CElt t r) => r -> Cyc t m r
mulG :: (Fact m, CElt t r) => Cyc t m r -> Cyc t m r
divG :: (Fact m, CElt t r) => Cyc t m r -> Maybe (Cyc t m r)
liftPow, liftDec

:: (Fact m, Lift b a, ...) => Cyc t m b -> Cyc t m a
advisePow, adviseDec, adviseCRT

:: (Fact m, CElt t r) => Cyc t m r -> Cyc t m r

-- error sampling
tGaussian ::

(OrdFloat q, ToRational v, MonadRandom rnd, CElt t q, ...)
=> v -> rnd (Cyc t m q)

errorRounded :: (ToInteger z, ...) => v -> rnd (Cyc t m z)
errorCoset :: (ToInteger z, ...) =>

v -> Cyc t m zp -> rnd (Cyc t m z)
gSqNorm :: (Fact m, CElt t r) => Cyc t m r -> r

-- inter-ring operations
embed :: (m `Divides` m’, CElt t r) => Cyc t m r -> Cyc t m’ r
twace :: (m `Divides` m’, CElt t r) => Cyc t m’ r -> Cyc t m r
coeffsPow, coeffsDec

:: (m `Divides` m’, CElt t r) => Cyc t m’ r -> [Cyc t m r]
powBasis :: (m `Divides` m’, CElt t r) => Tagged m [Cyc t m’ r]
crtSet :: (m `Divides` m’, CElt t r, ...) => Tagged m [Cyc t m’ r]

Figure 3.2: Representative functions for the Cyc data type. (The CElt t r constraint
is a synonym for a collection of constraints that include Tensor t, along with various
constraints on the base type r.)

liftB for B = Pow, Dec lifts a cyclotomic ring element coordinate-wise with respect to the

specified basis (powerful or decoding).

adviseB for B = Pow, Dec, CRT returns an equivalent ring element whose internal represen-

tation might be with respect to (respectively) the powerful, decoding, or a Chinese

Remainder Theorem basis. These functions have no externally visible effect on the

results of any computations, but they can serve as useful optimization hints. E.g.,

if one needs to compute v * w1, v * w2, etc., then advising that v be in CRT
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representation can speed up these operations by avoiding duplicate CRT conversions

across the operations.

The following functions relate to sampling error terms from cryptographically relevant

distributions:

tGaussian samples an element of the number field 𝐾 from the “tweaked” continuous

Gaussian distribution 𝑡 · 𝐷𝑟, given 𝑣 = 𝑟2. (See section 2.2 above for background

on, and the relevance of, tweaked Gaussians. The input is 𝑣 = 𝑟2 because that is

more convenient for implementation.) Because the output is random, its type must be

monadic: rnd (Cyc t m r) for MonadRandom rnd.

errorRounded is a discretized version of tGaussian, which samples from the tweaked

Gaussian and rounds each decoding-basis coefficient to the nearest integer, thereby

producing an output in 𝑅.

errorCoset samples an error term from a (discretized) tweaked Gaussian of parameter

𝑝 · 𝑟 over a given coset of 𝑅𝑝 = 𝑅/𝑝𝑅. This operation is often used in encryption

schemes when encrypting a desired message from the plaintext space 𝑅𝑝.10

gSqNorm yields the scaled squared norm of 𝑔𝑚 · 𝑒 (typically for a short error term 𝑒) under

the canonical embedding, namely, �̂�−1 · ‖𝜎(𝑔𝑚 · 𝑒)‖2.

Finally, the following functions involve Cyc data types for two indices m|m’; recall that

this means the mth cyclotomic ring can be viewed as a subring of the m’th one. Notice that in

the type signatures, the divisibility constraint is expressed as m `Divides` m’, and recall

from subsection 3.2.6 that this constraint is statically checked by the compiler and carries

no runtime overhead.
10The extra factor of 𝑝 in the Gaussian parameter reflects the connection between coset sampling as used in

cryptosystems, and the underlying Ring-LWE error distribution actually used in their security proofs. This
scaling gives the input 𝑣 a consistent meaning across all the error-sampling functions.
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embed, twace are respectively the embedding and “tweaked trace” functions between the

mth and m’th cyclotomic rings.

coeffsB for B = Pow, Dec expresses an element of the m’th cyclotomic ring with respect

to the relative powerful or decoding basis (𝑝𝑚′,𝑚 and 𝑑𝑚′,𝑚, respectively), as a list of

coefficients from the mth cyclotomic.

powBasis is the relative powerful basis 𝑝𝑚′,𝑚 of the m’th cyclotomic over the mth one.11

Note that the Tagged m type annotation is needed to specify which subring the basis

is relative to.

crtSet is the relative CRT set �⃗�𝑚′,𝑚 of the m’th cyclotomic ring over the mth one, modulo a

prime power. (See subsection 3.3.3 for its formal definition and a novel algorithm for

computing it.) We have elided some constraints which say that the base type r must

represent Z𝑝𝑒 for a prime 𝑝.

We emphasize that both powBasis and crtSet are values (of type Tagged m [Cyc t

m’ r]), not functions. Due to Haskell’s laziness, only those values that are actually used

in a computation are ever computed; moreover, the compiler usually ensures that they are

computed only once each and then memoized.

In addition to the above, we also could have included functions that apply automorphisms

of cyclotomic rings, which would be straightforward to implement in our framework. We

leave this for future work, merely because we have not yet needed automorphisms in any of

our applications.

3.5.2 Implementation

We now describe some notable aspects of the Cyc and UCyc implementations. As previously

mentioned, Cyc is mainly a thin wrapper around UCyc that automatically manages the choice

11We also could have defined decBasis, but it is slightly more complicated to implement, and we have not
needed it in any of our applications.

85



of representation rep, and also includes some important optimizations for ring elements

that are known to reside in cyclotomic subrings. In turn, UCyc is a thin wrapper around

an instance of the Tensor class. (Recall that Tensor encapsulates the cryptographically

relevant linear transforms on coefficient vectors for cyclotomic rings; see section 3.3 for

details.)

Representations

Cyc t m r can represent an element of the mth cyclotomic ring over base ring r in a few

possible ways:

• as a UCyc t m rep r for some rep = P, D, C, E;

• when applicable, as a scalar from the base ring r, or more generally, as an element of

the kth cyclotomic subring for some k|m, i.e., as a Cyc t k r.

The latter subring representations enable some very useful optimizations in memory and

running time: while cryptographic applications often need to treat scalars and subring

elements as residing in some larger cyclotomic ring, Cyc can exploit knowledge of their

“true” domains to operate more efficiently, as described in subsection 3.5.2 below.

UCyc represents a cyclotomic ring element by its coefficients tensor with respect to the

basis indicated by rep. That is, for rep = P, D, C, a value of type UCyc t m rep r is

simply a value of type (t m r). However, a CRT basis over r does not always exist, e.g.,

if r represents the integers Z, or Z𝑞 for a modulus 𝑞 that does not meet certain criteria. To

handle such cases we use rep =E, which indicates that the representation is relative to a

CRT basis over a certain extension ring CRTExt r that always admits such a basis, e.g., the

complex numbers C. That is, a UCyc t m E r is a value of type (t m (CRTExt r)).

We emphasize that the extension ring CRTExt r is determined by r itself, and UCyc is

entirely agnostic to it. For example, ZqBasic uses the complex numbers, whereas the pair

type (a,b) (which, to recall, represents a product ring) uses the product ring (CRTExt a,

CRTExt b).
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Operations

Most of the Cyc functions shown in Figure 3.2 (e.g., mulG, divG, the error-sampling func-

tions, coeffsB, powBasis, crtSet) simply call their UCyc counterparts for an appropriate

representation rep (after converting any subring inputs to the full ring). Similarly, most of

the UCyc operations for a given representation just call the appropriate Tensor method. In

what follows we describe some operations that depart from these patterns.

The algebraic instances for Cyc implement operations like (==), (+), and (*) in the

following way: first they convert the inputs to “compatible” representations in the most

efficient way possible, then they compute the output in an associated representation. A few

representative rules for how this is done are as follows:

• For two scalars from the base ring r, the result is just computed and stored as a scalar,

thus making the operation very fast.

• Inputs from (possibly different) subrings of indices k1, k2|m are converted to the

compositum of the two subrings, i.e., the cyclotomic of index k = lcm(k1, k2) (which

divides m), then the result is computed there and stored as a subring element.

• For (+), the inputs are converted to a common representation and added entry-wise.

• For (*), if one of the inputs is a scalar from the base ring r, it is simply multiplied

by the coefficients of the other input (this works for any r-basis representation).

Otherwise, the two inputs are converted to the same CRT representation and multiplied

entry-wise.

The implementation of the inter-ring operations embed and twace for Cyc is as follows:

embed is “lazy,” merely storing its input as a subring element and returning instantly. For

twace from index m’ to m, there are two cases: if the input is represented as a UCyc value

(i.e., not as a subring element), then we just invoke the appropriate representation-specific

twace function on that value (which in turn just invokes a method from Tensor). Otherwise,

the input is represented as an element of the k’th cyclotomic for some k’|m’, in which case
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we apply twace from index k’ to index k = gcd(m, k’), which is the smallest index where

the result is guaranteed to reside, and store the result as a subring element.

Promoting Base-Ring Operations

Many cryptographic operations on cyclotomic rings are defined as working entry-wise on the

ring element’s coefficient vector with respect to some basis (either a particular or arbitrary

one). For example, reducing from 𝑅 to 𝑅𝑞 is equivalent to reducing the coefficients from Z

to Z𝑞 in any basis, while “decoding” 𝑅𝑞 to 𝑅 (as used in decryption) is defined as lifting

the Z𝑞-coefficients, relative to the decoding basis, to their smallest representatives in Z. To

implement these and many other operations, we generically “promote” operations on the

base ring to corresponding operations on cyclotomic rings, using the fact that UCyc t m

rep is an instance of the category-theoretic classes Functor, Applicative, Traversable,

etc.

As a first example, consider the Functor class, which introduces the method

fmap :: Functor f => (a -> b) -> f a -> f b

Our Functor instance for UCyc t m rep defines fmap g c to apply g to each of c’s

coefficients (in the basis indicated by rep). This lets us easily promote our specialized

lattice operations from section 3.2. For example, an instance Reduce z zq can be promoted

to an instance Reduce (UCyc t m P z) (UCyc t m P zq) simply by defining reduce =

fmap reduce. We similarly promote other base-ring operations, including lifting from Z𝑞

to Z, rescaling from Z𝑞 to Z𝑞′ , discretization of Q to either Z or to a desired coset of Z𝑝, and

more.

As a richer example, consider gadgets and decomposition (subsection 3.2.4) for a

cyclotomic ring𝑅𝑞 over base ring Z𝑞. For any gadget vector over Z𝑞, there is a corresponding
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gadget vector over 𝑅𝑞, obtained simply by embedding Z𝑞 into 𝑅𝑞. This lets us promote a

Gadget instance for zq to one for UCyc t m rep zq:12,13

gadget = fmap (fmap scalarCyc) gadget

Mathematically, decomposing an𝑅𝑞-element into a short vector over𝑅 is defined coefficient-

wise with respect to the powerful basis. That is, we decompose each Z𝑞-coefficient into a

short vector over Z, then collect the corresponding entries of these vectors to yield a vector

of short 𝑅-elements. To implement this strategy, one might try to promote the function (here

with slightly simplified signature)

decompose :: Decompose zq z => zq -> [z]

to Cyc t m zq using fmap, as we did with reduce and lift above. However, a moment’s

thought reveals that this does not work: it yields output of type Cyc t m [z], whereas we

want [Cyc t m z]. The solution is to use the Traversable class, which introduces the

method

traverse :: (Traversable v, Applicative f) =>

(a -> f b) -> v a -> f (v b)

In our setting, v is UCyc t m P, and f is the list type [], which is indeed an instance of

Applicative.14 We can therefore easily promote an instance of Decompose from zq to

UCyc t m P zq, essentially via:

decompose v = traverse decompose v

We similarly promote the error-correction operation correct :: Correct zq z => [zq]

-> (zq, [z]).
12The double calls to fmap are needed because there are two Functor layers around the zq-entries of

gadget :: Tagged gad [zq]: the list [], and the Tagged gad context.
13Technically, we only instantiate the gadget-related classes for Cyc t m zq, not UCyc t m rep zq. This

is because Gadget has Ring as a superclass, which is instantiated by UCyc only for the CRT representations
rep = C, E; however, for geometric reasons the gadget operations on cyclotomic rings must be defined in
terms of the P or D representations. This does not affect the essential nature of the present discussion.

14Actually, the Applicative instance for [] models nondeterminism, not the entry-wise operations we need.
Fortunately, there is a costless newtype wrapper around [], called ZipList, that instantiates Applicative in
the desired way.
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Rescaling. Mathematically, rescaling 𝑅𝑞 to 𝑅𝑞′ is defined as applying ⌊·⌉𝑞′ : Z𝑞 → Z𝑞′

(represented by the function rescale :: Rescale a b => a -> b; see subsection 3.2.3)

coefficient-wise in either the powerful or decoding basis (for geometrical reasons). However,

there are at least two distinct algorithms that implement this operation, depending on the

representation of the ring element and of Z𝑞 and Z𝑞′ . The generic algorithm simply converts

the input to the required basis and then rescales coefficient-wise. But there is also a more

efficient, specialized algorithm [GHS12c] for rescaling a product ring 𝑅𝑞 = 𝑅𝑞1 × 𝑅𝑞2

to 𝑅𝑞1 . For the typical case of rescaling an input in the CRT representation to an output in

the CRT representation, the algorithm requires only one CRT transformation for each of 𝑅𝑞1

and 𝑅𝑞2 , as opposed to two and one (respectively) for the generic algorithm. In applications

like HE where 𝑅𝑞1 itself can be a product of multiple component rings, this reduces the

work by nearly a factor of two.

In more detail, the specialized algorithm is analogous to the one for product rings

Z𝑞1 × Z𝑞2 described at the end of subsection 3.2.3. To rescale 𝑎 = (𝑎1, 𝑎2) ∈ 𝑅𝑞1 × 𝑅𝑞2

to 𝑅𝑞1 , we lift 𝑎2 ∈ 𝑅𝑞2 to a relatively short representative �̄�2 ∈ 𝑅 using the powerful or

decoding basis, which involves an inverse-CRT for𝑅𝑞2 . We then compute �̄�′2 = �̄�2 mod 𝑞1𝑅

and output 𝑞−1
2 · (𝑎1 − �̄�′2) ∈ 𝑅𝑞1 , which involves a CRT for 𝑅𝑞1 on �̄�′2.

To capture the polymorphism represented by the above algorithms, we define a class

called RescaleCyc, which introduces the method rescaleCyc. We give two distinct in-

stances of RescaleCyc for the generic and specialized algorithms, and the compiler auto-

matically chooses the appropriate one based on the concrete types representing the base

ring.
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CHAPTER 4

STATE-OF-THE-ART HOMOMORPHIC ENCRYPTION WITH Λ∘𝜆

Homomorphic encryption is a powerful cryptographic construction which allows com-

putation on encrypted data. It has numerous applications, such as securely offloading

computation to an untrusted third party, private information retrieval [Yi+13], multi-party

computation [MW15], statistical analysis on a large-scale multidimensional corpus [WH12],

and advertising [NLV11], to name a few. Following the first plausible construction by Gentry

in 2009 [Gen09b; Gen09a], improvement in the theory of homomorphic encryption has led

to schemes with better efficiency, stronger security assurances, and specialized features (see,

e.g., [Dij+10; SV14; BV11b; Cor+11; CNT12; BV14a; BGV14; Bra12; GHS12b; GHS12a;

Che+13; AP13; Gen+13; BV14b; AP14].)

The promise of efficient homomorphic encryption has led to several implementations of

somewhat-homomorphic encryption (SHE) schemes, all of which highlight particular aspects

of SHE/FHE (e.g., efficient bootstrapping [DM15], good performance [HS], parallelism

using GPUs [Wan+12], and partial parameter generation [LCP17]). However, each lacks

important theoretical developments in homomorphic encryption which results in suboptimal

performance and functionality.

In this chapter, we define an advanced SHE scheme that incorporates and refines a

wide collection of features from a long series of works [LPR13b; BV11b; BV14a; BGV14;

GHS12c; Gen+13; LPR13a; AP13]. Our scheme has several distinguishing features, includ-

ing:

• advanced SHE functionality like efficient ring switching;

• support for large plaintext spaces, which is more efficient than encrypting individual

bits;
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• the ability for plaintext and ciphertext spaces to be defined over different cyclotomic

rings, which permits certain optimizations;

• and strict separation of the interface from the computational details, so it is easy to

use our SHE scheme on, e.g., multi-core CPUs, GPUs, etc.

4.1 SHE with Λ∘𝜆

Our implementation uses the Λ∘𝜆 library defined in chapter 3 to achieve its advanced

functionality. The high level interfaces exposed in Λ∘𝜆make our implementation particularly

simple, closely and concisely matching the SHE scheme’s mathematical definition.

Using Λ∘𝜆’s support for the cyclotomic hierarchy, we also devise and implement a

more efficient variant of ring-switching for HE, which we call ring tunneling. A prior

technique [AP13] homomorphically evaluates a linear function by “hopping” from one

ring to another through a common extension ring. The extension ring can be very large

(dimension 200,000 or more), leading to a significant performance bottleneck. Our new

approach avoids this problem by “tunneling” through a common subring, which has a

much smaller dimension resulting in improved performance. Moreover, we show that the

linear function can be integrated into the accompanying key-switching step, thus unifying

two operations into a simpler and even more efficient one. (See section 4.2 for details.)

This implementation is the foundation for the homomorphic evaluation of a lattice-based

symmetric-key primitives (chapter 6).

4.1.1 Example: SHE in Λ∘𝜆

For illustration, here we briefly give a flavor of our SHE implementation in Λ∘𝜆; see

Figure 4.1 for representative code, and section 4.3 for many more details of the scheme’s

mathematical definition and implementation. While we do not expect the reader (especially

one who is not conversant with Haskell) to understand all the details of the code, it should be

clear that even complex operations like modulus-switching and key-switching/relinearization
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have very concise and natural implementations in terms of Λ∘𝜆’s interfaces (which include the

functions errorCoset, reduce, embed, twace, liftDec, etc.). Indeed, the implementations

of the SHE functions are often shorter than their type declarations! (For the reader who

is new to Haskell, section 2.3 gives a brief tutorial that provides sufficient background to

understand the code fragments appearing in this paper.)

As a reader’s guide to the code from Figure 4.1, by convention the type variables z, zp,

zq always represent (respectively) the integer ring Z and quotient rings Z𝑝 = Z/𝑝Z,Z𝑞 =

Z/𝑞Z, where 𝑝 ≪ 𝑞 are respectively the plaintext and ciphertext moduli. The types m, m’

respectively represent the indices 𝑚,𝑚′ of the cyclotomic rings 𝑅,𝑅′, where we need 𝑚|𝑚′

so that 𝑅 can be seen as a subring of 𝑅′. Combining all this, the types Cyc m’ z, Cyc m zp,

and Cyc m’ zq respectively represent 𝑅′, the plaintext ring 𝑅𝑝 = 𝑅/𝑝𝑅, and the ciphertext

ring 𝑅′
𝑞 = 𝑅′/𝑞𝑅′.

The declaration encrypt :: (m `Divides` m’, ...) => ... defines the type of the

function encrypt (and similarly for decrypt, rescaleCT, etc.). Preceding the arrow =>,

the text (m `Divides` m’, ...) lists the constraints that the types must satisfy at compile

time; here the first constraint enforces that 𝑚|𝑚′. The text following the arrow => defines

the types of the inputs and output. For encrypt, the inputs are a secret key in 𝑅′ and a

plaintext in 𝑅′
𝑝, and the output is a random ciphertext over 𝑅′

𝑞. Notice that the full ciphertext

type also includes the types m and zp, which indicate that the plaintext is from 𝑅𝑝. This

aids safety: thanks to the type of decrypt, the type system prevents the programmer from

incorrectly attempting to decrypt the ciphertext into a ring other than 𝑅𝑝.

Finally, each function declaration is followed by an implementation, which describes

how the output is computed from the input(s). Because the implementations rely on the

mathematical definition of the scheme, we defer further discussion to section 4.3.
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encrypt :: (m `Divides` m’, MonadRandom rnd, ...)
=> SK (Cyc m’ z) -- secret key ∈ 𝑅′

-> PT (Cyc m zp) -- plaintext ∈ 𝑅𝑝

-> rnd (CT m zp (Cyc m’ zq)) -- ciphertext over 𝑅′
𝑞

encrypt (SK s) mu = do -- in randomness monad
e <- errorCoset (embed mu) -- error ← 𝜇+ 𝑝𝑅′

c1 <- getRandom -- uniform from 𝑅′
𝑞

return $ CT LSD 0 1 [reduce e - c1 * reduce s, c1]

decrypt :: (Lift zq z, Reduce z zp, ...)
=> SK (Cyc m’ z) -- secret key ∈ 𝑅′

-> CT m zp (Cyc m’ zq) -- ciphertext over 𝑅′
𝑞

-> PT (Cyc m zp) -- plaintext in 𝑅𝑝

decrypt (SK s) (CT LSD k l c) =
let e = liftDec $ evaluate c (reduce s)
in l *> twace (iterate divG (reduce e) !! k)

-- homomorphic multiplication
(CT LSD k1 l1 c1) * (CT _ k2 l2 c2) =

CT d2 (k1+k2+1) (l1*l2) (mulG <$> c1 * c2)

-- ciphertext modulus switching
rescaleCT :: (Rescale zq zq’, ...)
=> CT m zp (Cyc m’ zq ) -- ciphertext over 𝑅′

𝑞

-> CT m zp (Cyc m’ zq’) -- to 𝑅′
𝑞′

rescaleCT (CT MSD k l [c0,c1]) =
CT MSD k l [rescaleDec c0, rescalePow c1]

-- key switching/linearization
keySwitchQuad :: (MonadRandom rnd, ...)
=> SK r’ -> SK r’ -- target, source keys
-> rnd (CT m zp r’q -> CT m zp r’q) -- recrypt function

keySwitchQuad sout sin = do -- in randomness monad
hint <- ksHint sout sin
return $ \(CT MSD k l [c0,c1,c2]) ->
CT MSD k l $ [c0,c1] + switch hint c2

switch hint c =
sum $ zipWith (*>) (reduce <$> decompose c) hint

Figure 4.1: Representative (and approximate) code from our implementation of an SHE
scheme in Λ∘𝜆.
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4.1.2 Related Work

FHEW. FHEW [DM15] is an implementation of a very fast bootstrapping algorithm for

“third-generation” FHE schemes [GSW13; AP14]. However, it is not intended for general-

purpose homomorphic computations, since the scheme encrypts only one bit per ciphertext.

Our implementation supports large plaintext rings, which allows much higher throughtput.

HElib. HElib [HS] is an “assembly language” for BGV-style HE over cyclotomic rings [BGV14].

It holds speed records for a variety of HE benchmarks (e.g., homomorphic AES compu-

tation [GHS12c]), and appears to be the sole public implementation of many advanced

HE features, like bootstrapping for “packed” ciphertexts [HS15]. However, it does not

use the best known algorithms for cryptographic operations in general (non-power-of-two)

cyclotomics, which results in more complex and less efficient algorithms, and suboptimal

noise growth in cryptographic schemes.

Our SHE scheme is implemented with Λ∘𝜆, which uses a much better representation for

arbitrary cyclotomic rings. This results in improved efficiency compared to HELib, despite

its emphasis on performance (see subsection 4.4.2 for details.)

Computational Platform. Several SHE implementations target specialized computational

platforms like FPGAs [Cou+14] and GPUs [Wan+12]. Since our implementation uses Λ∘𝜆,

the hardware platform is completely abstracted away from the FHE functionality. This

means it is easy to make our SHE scheme run on FPGAs, GPUs, use vector instruction sets,

multi-core CPUs, and more. In particular, it is possible to include the highly-optimized code

from [HS] for two-power cyclotomic rings into an Λ∘𝜆 backend to obtain the efficiency

of HELib, while simultaneoulsy enjoying the safety and advanced functionality of our

implementation.
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4.1.3 Organization

The rest of this chapter is organized as follows:

Section 4.2 describes ring-tunneling for HE, a method of ring-switching which improves

upon prior work of [AP13].

Section 4.3 gives the design and implementation of our SHE scheme using Λ∘𝜆, including

the implementation of ring-tunneling.

Section 4.4 uses the SHE implementation to evaluate Λ∘𝜆 in terms of code quality and

runtime performance, and gives a comparison to HElib [HS].

Acknowledgments. We thank Tancrède Lepoint for providing HElib benchmark code and

Victor Shoup for helpful discussions regarding HElib performance.

4.2 Efficient Ring-Switching

The term “ring switching” encompasses a collection of techniques, introduced in [BGV14;

Gen+13; AP13], that allow one to change the ciphertext ring for various purposes. These

techniques can also induce a corresponding change in the plaintext ring, at the same time

applying a desired linear function to the underlying plaintext.

In this section we describe an new, more efficient instantiation of homomorphic ring-

switching which we call “ring-tunneling”. This operation was first described in [Gen+12],

and an improved version called ring-hopping was given in [AP13]. These prior works focus

mainly on the mathematical description and analysis and the procedures, and do not give

many details regarding efficient algorithms or concrete implementation.

Ring-switching provides the following functionality: given a ciphertext over a certain

cyclotomic ring 𝑅, it transforms it into a ciphertext over another cyclotomic ring 𝑆, with

the effect of applying a linear function to the original plaintext coefficients (with respect to

a certain basis of 𝑅). The transformation is implemented by passing through a sequence
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of “hybrid” rings which gradually interpolate between 𝑅 and 𝑆, while also gradually

transforming the coefficients via a sequence of linear functions..

We observed that the ring-hopping procedure as described in [AP13] has a significant

bottleneck in its use of so-called compositum rings, which in practice can be very large (of

dimension 200,000 or more) and thus expensive to work in. Here we describe an alternative

procedure that avoids compositum rings altogether, working entirely within rings whose

dimensions are essentially only as large as they need to be for security (e.g., in the low

thousands in our application). This yields a major runtime improvement, of at least an order

of magnitude (as compared with the procedure described in [AP13]).

In a bit more detail, the relationship between [AP13] and our work is as follows. To

“hop” from one hybrid ring to the next, the procedure from [AP13] embeds into their

compositum ring (i.e., smallest common super-ring), and then uses ring-switching [Gen+12]

to map into the target hybrid ring. Here we show how to avoid the compositum by instead

decomposing elements over the largest common subring; this also leaves no explicit need

for key-switching. See Figure 4.2 for a visual comparison of the two methods.
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Figure 4.2: Comparison of ring hopping and ring tunneling from a ring 𝐻 to a ring 𝐻 ′. On
the left is the method from [AP13], which passes through the (large) compositum ring 𝑇 .
On the right is our more efficient version, which decomposes the secret key and ciphertext
into 𝐸-elements, then combines them appropriately while embedding into 𝐻 ′.
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4.2.1 Linear Functions

Here we recall the main algebraic facts needed to explain our instantiation of ring-hopping.

This section relies heavily on section 2.2, especially regarding mod-𝑝 CRT sets (subsec-

tion 2.2.6). In addition, we will need some basic theory of linear functions on rings. Let 𝐸

be a common subring of some rings 𝑅, 𝑆. A function 𝐿 : 𝑅 → 𝑆 is 𝐸-linear if for all

𝑟, 𝑟′ ∈ 𝑅 and 𝑒 ∈ 𝐸,

𝐿(𝑟 + 𝑟′) = 𝐿(𝑟) + 𝐿(𝑟′) and 𝐿(𝑒 · 𝑟) = 𝑒 · 𝐿(𝑟).

From this it follows that for any 𝐸-basis �⃗� of 𝑅, an 𝐸-linear function 𝐿 is uniquely deter-

mined by its values 𝑦𝑗 = 𝐿(𝑏𝑗) ∈ 𝑆. Specifically, if 𝑟 = �⃗�𝑡 · �⃗� ∈ 𝑅 for some �⃗� over 𝐸, then

𝐿(𝑟) = 𝐿(⃗𝑏)𝑡 · �⃗� = �⃗�𝑡 · �⃗�.

Extending linear functions. Now let 𝐸 ′, 𝑅′, 𝑆 ′ respectively be cyclotomic extension

rings of 𝐸,𝑅, 𝑆 satisfying certain conditions described below. As part of ring switching we

will need to extend an 𝐸-linear function 𝐿 : 𝑅→ 𝑆 to an 𝐸 ′-linear function 𝐿′ : 𝑅′ → 𝑆 ′

that agrees with 𝐿 on 𝑅, i.e., 𝐿′(𝑟) = 𝐿(𝑟) for every 𝑟 ∈ 𝑅. The following lemma gives a

sufficient condition for when and how this is possible.

Lemma 4.2.1. Let 𝑒,𝑟,𝑠,𝑒′,𝑟′,𝑠′ respectively be the indices of cyclotomic rings𝐸,𝑅,𝑆,𝐸 ′,𝑅′,𝑆 ′,

and suppose 𝑒 = gcd(𝑟, 𝑒′), 𝑟′ = lcm(𝑟, 𝑒′), and lcm(𝑠, 𝑒′)|𝑠′. Then:

1. The relative decoding bases 𝑑𝑟,𝑒 of 𝑅/𝐸 and 𝑑𝑟′,𝑒′ of 𝑅′/𝐸 ′ are identical.

2. For any𝐸-linear function𝐿 : 𝑅→ 𝑆, the function𝐿′ : 𝑅′ → 𝑆 ′ defined by𝐿′(𝑑𝑟′,𝑒′) =

𝐿(𝑑𝑟,𝑒) is 𝐸 ′-linear and agrees with 𝐿 on 𝑅.

Proof. First observe that 𝐿′ is indeed well-defined and is 𝐸-linear, by definition of the

ring operations of 𝑅′ ∼= 𝑅 ⊗𝐸 𝐸 ′. Now observe that 𝐿′ is in fact 𝐸 ′-linear: any 𝑒′ ∈ 𝐸 ′

embeds into 𝑅′ as 1⊗ 𝑒′, so 𝐸 ′-linearity follows directly from the definition of 𝐿′ and the
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mixed-product property. Also, any 𝑟 ∈ 𝑅 embeds into 𝑅′ as 𝑟⊗ 1, and 𝐿′(𝑟⊗ 1) = 𝐿(𝑟) · 1,

so 𝐿′ agrees with 𝐿 on 𝑅.

Finally, observe that because 𝑅′ ∼= 𝑅 ⊗𝐸 𝐸 ′, the index of 𝐸 is the gcd of the indices

of 𝑅,𝐸 ′, and the index of 𝑅′ is their lcm. Then by the Kronecker-product factorization

of decoding bases, the relative decoding bases of 𝑅/𝐸 and of 𝑅′/𝐸 ′ are the Kronecker

products of the exact same components, in the same order. (This can be seen by considering

each prime divisor of the index of 𝑅′ in turn.)

4.2.2 Error Invariant

In cryptographic applications, error terms are combined in various ways, and thereby grow

in size. To obtain the best concrete parameters and security levels, the accumulated error

should be kept as small as possible. More precisely, its coefficients with respect to some

choice of Z-basis should have magnitudes that are as small as possible.

As shown in [LPR13a, Section 6], errors 𝑒 whose coordinates 𝜎𝑖(𝑒) in the canonical

embedding are small and (nearly) independent have correspondingly small coefficients with

respect to the decoding basis of 𝑅∨. In the tweaked setting, where errors 𝑒′ and the decoding

basis both carry an extra 𝑡𝑚 = �̂�/𝑔𝑚 factor, an equivalent hypothesis is the following,

which we codify as an invariant that applications should maintain:

Invariant 4.2.2 (Error Invariant). For an error 𝑒′ ∈ 𝑅, every coordinate

𝜎𝑖(𝑒
′/𝑡𝑚) = �̂�−1 · 𝜎𝑖(𝑒′ · 𝑔𝑚) ∈ C

should be nearly independent (up to conjugate symmetry) and have relatively “light” (e.g.,

subgaussian or subexponential) tails.

As already mentioned, the invariant is satisfied for fresh errors drawn from tweaked

Gaussians, as well as for small linear combinations of such terms. In general, the invariant

is not preserved under multiplication, because the product of two tweaked error terms
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𝑒′𝑖 = 𝑡𝑚 · 𝑒𝑖 carries a 𝑡2𝑚 factor. Fortunately, this is easily fixed by introducing an extra 𝑔𝑚

factor:

𝑔𝑚 · 𝑒′1 · 𝑒′2 = 𝑡𝑚 · (�̂� · 𝑒1 · 𝑒2)

satisfies the invariant, because multiplication is coordinate-wise under 𝜎. We use this

technique in the implementation of our SHE scheme in section 4.3.

4.2.3 Ring tunneling as key switching.

Abstractly, ring tunneling is an operation that homomorphically evaluates a desired𝐸𝑝-linear

function 𝐿𝑝 : 𝑅𝑝 → 𝑆𝑝 on a plaintext, by converting its ciphertext over 𝑅′
𝑞 to one over 𝑆 ′

𝑞.

Operationally, it can be implemented simply as a form of key switching.

Ring tunneling involves two phases: a preprocessing phase where we use the desired

linear function𝐿𝑝 and the secret keys to produce appropriate hints, and an online phase where

we apply the tunneling operation to a given ciphertext using the hint. The preprocessing

phase is as follows:

1. Extend 𝐿𝑝 to an 𝐸 ′
𝑝-linear function 𝐿′

𝑝 : 𝑅′
𝑝 → 𝑆 ′

𝑝 that agrees with 𝐿𝑝 on 𝑅𝑝, as

described above.

2. Lift 𝐿′
𝑝 to a “small” 𝐸 ′-linear function 𝐿′ : 𝑅′ → 𝑆 ′ that induces 𝐿′

𝑝. Specifically,

define 𝐿′ by 𝐿′(𝑑𝑟′,𝑒′) = �⃗�, where �⃗� (over 𝑆 ′) is obtained by lifting �⃗�𝑝 = 𝐿′
𝑝(𝑑𝑟′,𝑒′)

using the powerful basis.

The above lifting procedure is justified by the following considerations. We want 𝐿′ to

map ciphertext errors in 𝑅′ to errors in 𝑆 ′, maintaining Invariant 4.2.2 in the respective

rings. In the relative decoding basis 𝑑𝑟′,𝑒′ , ciphertext error 𝑒 = 𝑑𝑡𝑟′,𝑒′ · �⃗� ∈ 𝑅′ has

𝐸 ′-coefficients �⃗� that satisfy the invariant for 𝐸 ′, and hence for 𝑆 ′ as well. Because

we want

𝐿′(𝑒) = 𝐿′(𝑑𝑡𝑟′,𝑒′ · �⃗�) = �⃗�𝑡 · �⃗� ∈ 𝑆 ′
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to satisfy the invariant for 𝑆 ′, it is therefore best to lift �⃗�𝑝 from 𝑆 ′
𝑝 to 𝑆 ′ using the

powerful basis, for the same reasons that apply to modulus switching when rescaling

the 𝑐1 component of a ciphertext.1

3. Prepare an appropriate key-switching hint using keys 𝑠in ∈ 𝑅′ and 𝑠out ∈ 𝑆 ′. Let �⃗�

be an arbitrary 𝐸 ′-basis of 𝑅′ (which we also use in the online phase below). Using

a gadget vector �⃗� over 𝑆 ′
𝑞, generate key-switching hints 𝐻𝑗 for the components of

𝐿′(𝑠in · �⃗�𝑡), such that

(1, 𝑠out) ·𝐻𝑗 ≈ 𝐿′(𝑠in · 𝑏𝑗) · �⃗�𝑡 (mod 𝑞𝑆 ′). (4.2.1)

(As usual, the approximation hides appropriate Ring-LWE errors that satisfy Invari-

ant 4.2.2.) Recall that we can interpret the columns of 𝐻𝑗 as linear polynomials.

The online phase proceeds as follows. As input we are given an MSD-form, linear

ciphertext 𝑐(𝑆) = 𝑐0 + 𝑐1𝑆 (over 𝑅′
𝑞) with associated integer 𝑘 = 0 and arbitrary 𝑙 ∈ Z𝑝,

encrypting a message 𝜇 ∈ 𝑅𝑝 under secret key 𝑠in.

1. Express 𝑐1 uniquely as 𝑐1 = �⃗�𝑡 · �⃗� for some �⃗� over 𝐸 ′
𝑞 (where �⃗� is the same 𝐸 ′-basis

of 𝑅′ used in step 3 above).

2. Compute 𝐿′(𝑐0) ∈ 𝑆 ′
𝑞, apply the core key-switching operation to each 𝑒𝑗 with hint 𝐻𝑗 ,

and sum the results. Formally, output a ciphertext having 𝑘 = 0, the same 𝑙 ∈ Z𝑝 as

the input, and the linear polynomial

𝑐′(𝑆) = 𝐿′(𝑐0) +
∑︁
𝑗

𝐻𝑗 · 𝑔−1(𝑒𝑗) (mod 𝑞𝑆 ′). (4.2.2)

1The very observant reader may notice that because 𝐿′
𝑝(𝑑𝑟′,𝑒′) = 𝐿𝑝(𝑑𝑟,𝑒) is over 𝑆𝑝, the order in which

we extend and lift does not matter.
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For correctness, notice that we have

𝑐0 + 𝑠in · 𝑐1 ≈ 𝑞
𝑝
· 𝑙−1 · 𝜇 (mod 𝑞𝑅′)

=⇒ 𝐿′(𝑐0 + 𝑠in · 𝑐1) ≈ 𝑞
𝑝
· 𝑙−1 · 𝐿(𝜇) (mod 𝑞𝑆 ′), (4.2.3)

where the error in the second approximation is 𝐿′ applied to the error in the first approxima-

tion, and therefore satisfies Invariant 4.2.2 by design of 𝐿′. Then we have

𝑐′(𝑠out) ≈ 𝐿′(𝑐0) +
∑︁
𝑗

𝐿′(𝑠in · 𝑏𝑗) · �⃗�𝑡 · 𝑔−1(𝑒𝑗) (Equations (4.2.2), (4.2.1))

= 𝐿′(𝑐0 + 𝑠in · �⃗�𝑡 · �⃗�) (𝐸 ′-linearity of 𝐿′)

= 𝐿′(𝑐0 + 𝑠in · 𝑐1) (definition of �⃗�)

≈ 𝑞
𝑝
· 𝑙−1 · 𝐿(𝜇) (mod 𝑞𝑆 ′) (Equation (4.2.3))

as desired, where the error in the first approximation comes from the hints 𝐻𝑗 .

Comparison to ring hopping. We now describe the efficiency advantages of ring tun-

neling versus ring hopping. We analyze the most natural setting where both the input and

output ciphertexts are in CRT representation; in particular, this allows the process to be

iterated as in [AP13].

Both ring tunneling and ring hopping convert a ciphertext over 𝑅′
𝑞 to one over 𝑆 ′

𝑞, either

via the greatest common subring 𝐸 ′
𝑞 (in tunneling) or the compositum 𝑇 ′

𝑞 (in hopping). In

both cases, the bottleneck is key-switching, where we compute one or more values𝐻 ·𝑔−1(𝑐)

for some hint 𝐻 and ring element 𝑐 (which may be over different rings). This proceeds in

two main steps:

1. We convert 𝑐 from CRT to powerful representation for 𝑔−1-decomposition, and then

convert each entry of 𝑔−1(𝑐) to CRT representation. Each such conversion takes

Θ(𝑛 log 𝑛) = Θ̃(𝑛) time in the dimension 𝑛 of the ring that 𝑐 resides in.
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2. We multiply each column of 𝐻 by the appropriate entry of 𝑔−1(𝑐), and sum. Because

both terms are in CRT representation, this takes linear Θ(𝑛) time in the dimension 𝑛

of the ring that 𝐻 is over.

The total number of components of 𝑔−1(𝑐) is the same in both tunneling and hopping, so we

do not consider it further in this comparison.

In ring tunneling, we switch dim(𝑅′/𝐸 ′) elements 𝑒𝑗 ∈ 𝐸 ′
𝑞 (see Equation (4.2.2)) using

the same number of hints over 𝑆 ′
𝑞. Thus the total cost is

dim(𝑅′/𝐸 ′) · (Θ̃(dim(𝐸 ′)) + Θ(dim(𝑆 ′))) = Θ̃(dim(𝑅′)) + Θ(dim(𝑇 ′)).

By contrast, in ring hopping we first embed the ciphertext into the compositum 𝑇 ′
𝑞 and

key-switch there. Because the compositum has dimension dim(𝑇 ′) = dim(𝑅′/𝐸 ′)·dim(𝑆 ′),

the total cost is

Θ̃(dim(𝑇 ′)) + Θ(dim(𝑇 ′)).

The second (linear) terms of the above expressions, corresponding to step 2, are essentially

identical. For the first (superlinear) terms, we see that step 1 for tunneling is at least a

dim(𝑇 ′/𝑅′) = dim(𝑆 ′/𝐸 ′) factor faster than for hopping. In typical instantiations, this

factor is a small prime between, say, 3 and 11, so the savings can be quite significant in

practice.

4.3 Somewhat-Homomorphic Encryption in Λ∘𝜆

In this section we describe a full-featured somewhat-homomorphic encryption scheme and its

implementation in Λ∘𝜆, using the interfaces described in chapter 3. At the mathematical level,

the system refines a variety of techniques and features from a long series of works [LPR13b;

BV11b; BV14a; BGV14; Gen+13; LPR13a; AP13]. In addition, we describe some important

generalizations and include new operations like ring-tunneling. Along with the mathematical
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description of each main component, we present the corresponding Haskell code, showing

how the two forms match very closely.

Note that like all prior implementations of SHE, our implementation has a relatively

low-level interface which corresponds directly to the mathematical operations described

in the literature. Actually using this interface requires a great deal of expertise. Chapter 5

describes a compiler which drastically simplifies the use of this powerful application.

4.3.1 Keys, Plaintexts, and Ciphertexts

The cryptosystem is parameterized by two cyclotomic rings: 𝑅 = 𝒪𝑚 and 𝑅′ = 𝒪𝑚′ where

𝑚|𝑚′, making 𝑅 a subring of 𝑅′. The spaces of keys, plaintexts, and ciphertexts are derived

from these rings as follows:

• A secret key is an element 𝑠 ∈ 𝑅′. Some operations require 𝑠 to be “small;” more

precisely, we need 𝑠 · 𝑔𝑚′ to have small coordinates in the canonical embedding

of 𝑅′ (Invariant 4.2.2). Recall that this is the case for “tweaked” spherical Gaussian

distributions.

• The plaintext ring is 𝑅𝑝 = 𝑅/𝑝𝑅, where 𝑝 is a (typically small) positive integer, e.g.,

𝑝 = 2. For technical reasons, 𝑝 must be coprime with every odd prime dividing 𝑚′. A

plaintext is simply an element 𝜇 ∈ 𝑅𝑝.

• The ciphertext ring is 𝑅′
𝑞 = 𝑅′/𝑞𝑅′ for some integer modulus 𝑞 ≥ 𝑝 that is coprime

with 𝑝. A ciphertext is essentially just a polynomial 𝑐(𝑆) ∈ 𝑅′
𝑞[𝑆], i.e., one with

coefficients from 𝑅′
𝑞 in an indeterminant 𝑆, which represents the (unknown) secret

key. We often identify 𝑐(𝑆) with its vector of coefficients (𝑐0, 𝑐1, . . . , 𝑐𝑑) ∈ (𝑅′
𝑞)
𝑑+1,

where 𝑑 is the degree of 𝑐(𝑆).

In addition, a ciphertext carries a nonnegative integer 𝑘 ≥ 0 and a factor 𝑙 ∈ Z𝑝 as

auxiliary information. These values are affected by certain operations on ciphertexts,

as described below.
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Data types. Following the above definitions, our data types for plaintexts, keys, and

ciphertexts as follows. The plaintext type PT rp is merely a synonym for its argument

type rp representing the plaintext ring 𝑅𝑝.

The data type SK representing secret keys is defined as follows:

data SK r’ where SK :: ToRational v => v -> r’ -> SK r’

Notice that a value of type SK r’ consists of an element from the secret key ring 𝑅′, and in

addition it carries a rational value (of “hidden” type v) representing the parameter 𝑣 = 𝑟2

for the (tweaked) Gaussian distribution from which the key was sampled. Binding the

parameter to the secret key in this way allows us to automatically generate ciphertexts and

other key-dependent information using consistent error distributions, thereby relieving the

client of the responsibility for managing error parameters across multiple functions.

The data type CT representing ciphertexts is defined as follows:

data Encoding = MSD | LSD

data CT m zp r’q = CT Encoding Int zp (Polynomial r’q)

The CT type is parameterized by three arguments: a cyclotomic index m and a Z𝑝-representation zp

defining the plaintext ring 𝑅𝑝, and a representation r’q of the ciphertext ring 𝑅′
𝑞. A CT value

has four components: a flag indicating the “encoding” of the ciphertext (MSD or LSD; see

below); the auxiliary integer 𝑘 and factor 𝑙 ∈ Z𝑝 (as mentioned above); and a polynomial

𝑐(𝑆) over 𝑅′
𝑞.

Decryption relations. A ciphertext 𝑐(𝑆) (with auxiliary values 𝑘 ∈ Z, 𝑙 ∈ Z𝑝) encrypting

a plaintext 𝜇 ∈ 𝑅𝑝 under secret key 𝑠 ∈ 𝑅′ satisfies the relation

𝑐(𝑠) = 𝑐0 + 𝑐1𝑠+ · · ·+ 𝑐𝑑𝑠
𝑑 = 𝑒 (mod 𝑞𝑅′) (4.3.1)
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for some sufficiently “small” error term 𝑒 ∈ 𝑅′ such that

𝑒 = 𝑙−1 · 𝑔𝑘𝑚′ · 𝜇 (mod 𝑝𝑅′). (4.3.2)

By “small” we mean that the error satisfies Invariant 4.2.2, so that all the coefficients of 𝑒

with respect to the decoding basis have magnitudes smaller than 𝑞/2. This will allow us to

correctly recover 𝑒′ ∈ 𝑅′ from its value modulo 𝑞, by “lifting” the latter using the decoding

basis.

We say that a ciphertext satisfying Equations (4.3.1) and (4.3.2) is in “least significant

digit” (LSD) form, because the message 𝜇 is encoded as the error term modulo 𝑝. An

alternative form, which is more convenient for certain homomorphic operations, is the “most

significant digit” (MSD) form. Here the relation is

𝑐(𝑠) ≈ 𝑞
𝑝
· (𝑙−1 · 𝑔𝑘𝑚′ · 𝜇) (mod 𝑞𝑅′), (4.3.3)

where the approximation hides a small fractional error term (in 1
𝑝
𝑅′) that satisfies Invari-

ant 4.2.2. Notice that the message is represented as a multiple of 𝑞
𝑝

modulo 𝑞, hence the

name “MSD.” One can losslessly transform between LSD and MSD forms in linear time,

just by multiplying by appropriate Z𝑞-elements (see [AP13, Appendix A]). Each such

transformation implicitly multiplies the plaintext by some fixed element of Z𝑝, which is why

a ciphertext carries an auxiliary factor 𝑙 ∈ Z𝑝 that must be accounted for upon decryption.

4.3.2 Encryption and Decryption

To encrypt a message 𝜇 ∈ 𝑅𝑝 under a key 𝑠 ∈ 𝑅′, one does the following:

1. sample an error term 𝑒 ∈ 𝜇+ 𝑝𝑅′ (from a distribution that should be a 𝑝 factor wider

than that of the secret key);

2. sample a uniformly random 𝑐1 ← 𝑅′
𝑞;
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3. output the LSD-form ciphertext 𝑐(𝑆) = (𝑒− 𝑐1 · 𝑠) + 𝑐1 · 𝑆 ∈ 𝑅′
𝑞[𝑆], with 𝑘 = 0, 𝑙 =

1 ∈ Z𝑝.

(Observe that 𝑐(𝑠) = 𝑒 (mod 𝑞𝑅′), as desired.)

This translates directly into just a few lines of Haskell code, which is monadic due to its use

of randomness:

encrypt :: (m `Divides` m’, MonadRandom rnd, ...)

=> SK (Cyc m’ z)

-> PT (Cyc m zp)

-> rnd (CT m zp (Cyc m’ zq))

encrypt (SK v s) mu = do

e <- errorCoset v (embed mu) -- error from 𝜇+ 𝑝𝑅′

c1 <- getRandom -- uniform from 𝑅′
𝑞

return $ CT LSD zero one $ fromCoeffs [reduce e - c1 * reduce s, c1]

To decrypt an LSD-form ciphertext 𝑐(𝑆) ∈ 𝑅′
𝑞[𝑆] under secret key 𝑠 ∈ 𝑅′, we first

evaluate 𝑐(𝑠) ∈ 𝑅′
𝑞 and then lift the result to 𝑅′ (using the decoding basis) to recover the

error term 𝑒, as follows:

errorTerm :: (Lift zq z, m `Divides` m’, ...)

=> SK (Cyc m’ z) -> CT m zp (Cyc m’ zq) -> Cyc m’ z

errorTerm (SK _ s) (CT LSD _ _ c) = liftDec (evaluate c (reduce s))

Following Equation (4.3.2), we then compute 𝑙 · 𝑔−𝑘𝑚′ · 𝑒 mod 𝑝𝑅′. This yields the embedding

of the message 𝜇 into 𝑅′
𝑝, so we finally take the twace to recover 𝜇 ∈ 𝑅𝑝 itself:

decrypt :: (Lift zq z, Reduce z zp, ...)

=> SK (Cyc m’ z) -> CT m zp (Cyc m’ zq) -> PT (Cyc m zp)

decrypt sk ct@(CT LSD k l _) =

let e = reduce (errorTerm sk ct)

in (scalarCyc l) * twace (iterate divG e !! k)
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4.3.3 Homomorphic Addition and Multiplication

Homomorphic addition of ciphertexts with the same values of 𝑘 and 𝑙 is simple: convert the

ciphertexts to the same form (MSD or LSD), then add their polynomials. It is also possible

adjust the values of 𝑘, 𝑙 as needed by multiplying the polynomial by an appropriate factor,

which only slightly enlarges the error. Accordingly, we define CT m zp (Cyc m’ zq) to be

an instance of Additive, for appropriate argument types.

Now consider homomorphic multiplication: suppose ciphertexts 𝑐1(𝑆), 𝑐2(𝑆) encrypt

messages 𝜇1, 𝜇2 in LSD form, with auxiliary values 𝑘1, 𝑙1 and 𝑘2, 𝑙2 respectively. Then

𝑔𝑚′ · 𝑐1(𝑠) · 𝑐2(𝑠) = 𝑔𝑚′ · 𝑒1 · 𝑒2 (mod 𝑞𝑅′),

𝑔𝑚′ · 𝑒1 · 𝑒2 = (𝑙1𝑙2)
−1 · 𝑔𝑘1+𝑘2+1

𝑚′ · (𝜇1𝜇2) (mod 𝑝𝑅′),

and the error term 𝑒 = 𝑔𝑚′ · 𝑒1 · 𝑒2 satisfies Invariant 4.2.2, because 𝑒1, 𝑒2 do (see subsec-

tion 4.2.2). Therefore, the LSD-form ciphertext

𝑐(𝑆) := 𝑔𝑚′ · 𝑐1(𝑆) · 𝑐2(𝑆) ∈ 𝑅′
𝑞[𝑆]

encrypts 𝜇1𝜇2 ∈ 𝑅𝑝 with auxiliary values 𝑘 = 𝑘1 + 𝑘2 + 1 and 𝑙 = 𝑙1𝑙2 ∈ Z𝑝. Notice that

the degree of the output polynomial is the sum of the degrees of the input polynomials.

More generally, it turns out that we only need one of 𝑐1(𝑆), 𝑐2(𝑆) to be in LSD form; the

product 𝑐(𝑆) then has the same form as the other ciphertext.2 All this translates immediately

to an instance of Ring for CT m zp (Cyc m’ zq), with the interesting case of multiplication

having the one-line implementation

(CT LSD k1 l1 c1) * (CT d2 k2 l2 c2) =

CT d2 (k1+k2+1) (l1*l2) (mulG <$> c1 * c2)

2If both ciphertexts are in MSD form, then it is possible to use the “scale free” homomorphic multiplication
method of [Bra12], but we have not implemented it because it appears to be significantly less efficient than
just converting one ciphertext to LSD form.
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(The other cases just swap the arguments or convert one ciphertext to LSD form, thus

reducing to the case above.)

4.3.4 Modulus Switching

Switching the ciphertext modulus is a form of rescaling typically used for decreasing

the modulus, which commensurately reduces the absolute magnitude of the error in a

ciphertext—though the error rate relative to the modulus stays essentially the same. Because

homomorphic multiplication implicitly multiplies the error terms, keeping their absolute

magnitudes small can yield major benefits in controlling the error growth. Modulus switch-

ing is also sometimes useful to temporarily increase the modulus, as explained in the next

subsection.

Modulus switching is easiest to describe and implement for ciphertexts in MSD form

(Equation (4.3.3)) that have degree at most one. Suppose we have a ciphertext 𝑐(𝑆) =

𝑐0 + 𝑐1𝑆 under secret key 𝑠 ∈ 𝑅′, where

𝑐0 + 𝑐1𝑠 = 𝑑 ≈ 𝑞
𝑝
· 𝛾 (mod 𝑞𝑅′)

for 𝛾 = 𝑙−1 · 𝑔𝑘𝑚′ · 𝜇 ∈ 𝑅𝑝. Switching to a modulus 𝑞′ is just a suitable rescaling of each

𝑐𝑖 ∈ 𝑅′
𝑞 to some 𝑐′𝑖 ∈ 𝑅′

𝑞′ such that 𝑐′𝑖 ≈ (𝑞′/𝑞) · 𝑐𝑖; note that the right-hand sides here are

fractional, so they need to be discretized using an appropriate basis (see the next paragraph).

Observe that

𝑐′0 + 𝑐′1𝑠 ≈
𝑞′

𝑞
(𝑐0 + 𝑐1𝑠) = 𝑞′

𝑞
· 𝑑 ≈ 𝑞′

𝑝
· 𝛾 (mod 𝑞′𝑅′),

so the message is unchanged but the absolute error is essentially scaled by a 𝑞′/𝑞 factor.

Note that the first approximation above hides the extra discretization error 𝑒0+𝑒1𝑠 where

𝑒𝑖 = 𝑐′𝑖 −
𝑞′

𝑞
𝑐𝑖, so the main question is what bases of 𝑅′ to use for the discretization, to best

maintain Invariant 4.2.2. We want both 𝑒0 and 𝑒1𝑠 to satisfy the invariant, which means
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we want the entries of 𝜎(𝑒0 · 𝑔𝑚′) and 𝜎(𝑒1𝑠 · 𝑔𝑚′) = 𝜎(𝑒1) ⊙ 𝜎(𝑠 · 𝑔𝑚′) to be essentially

independent and as small as possible; because 𝑠 ∈ 𝑅′ itself satisfies the invariant (i.e., the

entries of 𝜎(𝑠 · 𝑔𝑚′) are small), we want the entries of 𝜎(𝑒1) to be as small as possible. It

turns out that these goals are best achieved by rescaling 𝑐0 using the decoding basis 𝑑, and 𝑐1

using the powerful basis 𝑝. This is because 𝑔𝑚′ · 𝑑 and 𝑝 respectively have nearly optimal

spectral norms over all bases of 𝑔𝑚′𝑅′ and 𝑅′, as shown in [LPR13a].

Our Haskell implementation is therefore simply

rescaleLinearCT :: (Rescale zq zq’, ...)

=> CT m zp (Cyc m’ zq) -> CT m zp (Cyc m’ zq’)

rescaleLinearCT (CT MSD k l (Poly [c0,c1])) =

let c’0 = rescaleDec c0

c’1 = rescalePow c1

in CT MSD k l $ Poly [c’0, c’1]

4.3.5 Key Switching and Linearization

Recall that homomorphic multiplication causes the degree of the ciphertext polynomial to

increase. Key switching is a technique for reducing the degree, typically back to linear.

More generally, key switching is a mechanism for proxy re-encryption: given two secret

keys 𝑠in and 𝑠out (which may or may not be different), one can construct a “hint” that lets

an untrusted party convert an encryption under 𝑠in to one under 𝑠out, while preserving the

secrecy of the message and the keys.

Key switching uses a gadget �⃗� ∈ (𝑅′
𝑞)
ℓ and associated decomposition function 𝑔−1 : 𝑅′

𝑞 →

(𝑅′)ℓ (both typically promoted from Z𝑞; see sections 3.2.4 and 3.5.2). Recall that 𝑔−1(𝑐)

outputs a short vector over 𝑅′ such that �⃗�𝑡 · 𝑔−1(𝑐) = 𝑐 (mod 𝑞𝑅′).

The core operations. Let 𝑠in, 𝑠out ∈ 𝑅′ denote some arbitrary secret values. A key-

switching hint for 𝑠in under 𝑠out is a matrix 𝐻 ∈ (𝑅′
𝑞)

2×ℓ, where each column can be seen as
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a linear polynomial over 𝑅′
𝑞, such that

(1, 𝑠out) ·𝐻 ≈ 𝑠in · �⃗�𝑡 (mod 𝑞𝑅′). (4.3.4)

Such an 𝐻 is constructed simply by letting the columns be Ring-LWE samples with se-

cret 𝑠out, and adding 𝑠in · �⃗�𝑡 to the top row. In essence, such an 𝐻 is pseudorandom by the

Ring-LWE assumption, and hence hides the secrets.

The core key-switching step takes a hint 𝐻 and some 𝑐 ∈ 𝑅′
𝑞, and simply outputs

𝑐′ = 𝐻 · 𝑔−1(𝑐) ∈ (𝑅′
𝑞)

2, (4.3.5)

which can be viewed as a linear polynomial 𝑐′(𝑆). Notice that by Equation (4.3.4),

𝑐′(𝑠out) = (1, 𝑠out)·𝑐′ = ((1, 𝑠out)·𝐻)·𝑔−1(𝑐) ≈ 𝑠in·�⃗�𝑡·𝑔−1(𝑐) = 𝑠in·𝑐 (mod 𝑞𝑅′), (4.3.6)

where the approximation holds because 𝑔−1(𝑐) is short. More precisely, because the error

terms in Equation (4.3.4) satisfy Invariant 4.2.2, we want all the elements of the decompo-

sition 𝑔−1(𝑐) to have small entries in the canonical embedding, so it is best to decompose

relative to the powerful basis.

Following Equation (4.3.5), our Haskell code for the core key-switching step is simply

as follows (here knapsack computes the inner product of a list of polynomials over 𝑅′
𝑞 and

a list of 𝑅′
𝑞-elements):

switch :: (Decompose gad zq z, r’q ~ Cyc m’ zq, ...)

=> Tagged gad [Polynomial r’q] -> r’q -> Polynomial r’q

switch hint c =

untag $ knapsack <$> hint <*> (fmap reduce <$> decompose c)
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Switching ciphertexts. The above tools can be used to switch MSD-form ciphertexts of

degree up to 𝑑 under 𝑠in as follows: first publish a hint 𝐻𝑖 for each power 𝑠𝑖in, 𝑖 = 1, . . . , 𝑑,

all under the same 𝑠out. Then to switch a ciphertext 𝑐(𝑆):

• For each 𝑖 = 1, . . . , 𝑑, apply the core step to coefficient 𝑐𝑖 ∈ 𝑅′
𝑞 using the correspond-

ing hint 𝐻𝑖, to get a linear polynomial 𝑐′𝑖 = 𝐻𝑖 · 𝑔−1(𝑐𝑖). Also let 𝑐′0 = 𝑐0.

• Sum the 𝑐′𝑖 to get a linear polynomial 𝑐′(𝑆), which is the output.

Then 𝑐′(𝑠out) ≈ 𝑐(𝑠in) (mod 𝑞𝑅′) by Equation (4.3.6) above, so the two ciphertexts encrypt

the same message.

Notice that the error rate in 𝑐′(𝑆) is essentially the sum of two separate quantities: the

error rate in the original 𝑐(𝑆), and the error rate in 𝐻 times a factor corresponding to the

norm of the output of 𝑔−1. We typically set the latter error rate to be much smaller than

the former, so that key-switching incurs essentially no error growth. This can be done

by constructing 𝐻 over a modulus 𝑞′ ≫ 𝑞, and scaling up 𝑐(𝑆) to this modulus before

decomposing.

Haskell functions. Our implementation includes a variety of key-switching functions,

whose types all roughly follow this general form:

keySwitchFoo :: (MonadRandom rnd, ...) => SK r’ -> SK r’

-> Tagged (gad, zq’) (rnd (CT m zp r’q -> CT m zp r’q))

Unpacking this, the inputs are the two secret keys 𝑠out, 𝑠in ∈ 𝑅′, and the output is essentially

a re-encryption function that maps one ciphertext to another. The extra Tagged (gad,zq’)

context indicates what gadget and modulus are used to construct the hint, while the rnd

wrapper indicates that randomness is used in constructing (but not applying) the function;

this is because constructing the hint requires randomness.

Outputting a re-encryption function—rather than just a hint itself, which would need to

be fed into a separate function that actually does the switching—has advantages in terms
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of simplicity and safety. First, it reflects the abstract re-encryption functionality provided

by key switching. Second, we implement a variety of key-switching functions that each

operate slightly differently, and may even involve different types of hints (e.g., see the

next subsection). With our approach, the hint is abstracted away entirely, and each style of

key-switching can be implemented by a single client-visible function, instead of requiring

two separate functions and a specialized data type.

A prototypical implementation of a key-switching function is as follows (here ksHint is

a function that constructs a key-switching hint for 𝑠in under 𝑠out, as described above):

-- switch a linear ciphertext from one key to another

keySwitchLinear sout sin = tag $ do -- rnd monad

hint :: Tagged gad [Polynomial (Cyc m’ zq’)] <- ksHint sout sin

return $ \ (CT MSD k l (Poly [c0,c1])) ->

CT MSD k l $ Poly [c0] + switch hint c1

4.3.6 Ring Tunneling

We provide a simple implementation of ring tunneling in Λ∘𝜆, which to our knowledge is

the first realization of ring-switching of any kind.

Linear functions. Since ring-tunneling induces a linear function on the plaintext, we

introduce a useful abstract data type to represent linear functions on cyclotomic rings:

newtype Linear z e r s = D [Cyc s z]

The parameters z represents the base type, while the parameters e, r, s represent the indices

of the cyclotomic rings 𝐸, 𝑅, 𝑆. For example, Cyc s z represents the ring 𝑆. An 𝐸-linear

function 𝐿 is internally represented by its list �⃗� = 𝐿(𝑑𝑟,𝑒) of values on the relative decoding

basis 𝑑𝑟,𝑒 of 𝑅/𝐸, hence the constructor named D. (We could also represent linear functions

via the relative powerful basis, but so far we have not needed to do so.) Using our interface

for cyclotomic rings (section 3.5), evaluating a linear function is straightforward:
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evalLin :: (e `Divides` r, e `Divides` s, ...)

=> Linear z e r s -> Cyc r z -> Cyc s z

evalLin (D ys) r =

dotprod ys (fmap embed (coeffsCyc Dec r :: [Cyc e z]))

Lemma 4.2.1 leads to the following very simple Haskell function to extend a linear

function; notice that the constraints use the type-level arithmetic described in subsection 3.2.6

to enforce the hypotheses of Lemma 4.2.1.

extendLin :: (e ~ FGCD r e’, r’ ~ FLCM r e’, (FLCM s e’) `Divides` s’)

=> Linear z e r s -> Linear z e’ r’ s’

extendLin (Dec ys) = Dec (fmap embed ys)

Tunneling. Next we give our implementation of ring tunneling.

tunnel f sout sin (CT MSD 0 s c) = tag $ do -- rnd monad

hints :: [Tagged gad [Polynomial (Cyc t s’ zq)]] <-

tunnelHint f sout sin

let f’ = extendLin $ lift f :: Linear t z e’ r’ s’

f’q = reduce f’ :: Linear t zq’ e’ r’ s’

[c0,c1] = coeffs c

-- apply E-linear function to constant term c0

c0’ = evalLin f’q c0

-- apply E-linear function to c1 via key-switching

c1s = coeffsPow c1 :: [Cyc t e’ zq’]

c1s’ = zipWith switch hints (embed <$> c1s)

c1’ = sum c1s’

return CT MSD 0 s $ P.const c0’ + c1’)

Here, tunnelHint is a function that outputs the hints 𝐻𝑗 with respect to the powerful basis

as defined in subsection 4.2.3. The rest of the algorithm matches exactly with the steps
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outlined in that section: we first lift and extend the linear function, compute 𝐿′(𝑐0), and

apply key switching with the appropriate hint to the powerful basis coefficients of 𝑐1. Finally,

we sum the results and produce the output ciphertext over 𝑆𝑞.

4.4 Evaluation

Recall that Λ∘𝜆 primarily aims to be a general, modular, and safe framework for lattice

cryptography, while also achieving acceptable performance. Λ∘𝜆 has proven to be extremely

flexible and has been used (at least) for the following purposes:

• implementing advanced features of somewhat-homomorphic encryption (section 4.3);

• and creating a homomorphic compiler for homomorphic encryption (chapter 5);

• implementing the pseudorandom functions of [BPR12; BP14]; (chapter 6);

• generating RLWE/RLWR cryptanalytic challenges (chapter 7);

• exploring opportunities for parallelism of lattice cryptography using vector (SIMD)

instruction sets (the C++ tensor backend), multi-core CPUs (the Repa tensor backend),

and GPUs (currently in progress);

• master’s thesis on FHE [Muk16];

• and implementing identity-based encryption [Ret17].

While Λ∘𝜆’s modularity and static safety properties are demonstrated elsewhere in the

paper, here we evaluate two of its lower-level characteristics: code quality and runtime

performance.

For comparison, we also give a similar analysis for HElib [HS], which is Λ∘𝜆’s closest

analogue in terms of scope and features. (Recall that HElib is a leading implementation

of homomorphic encryption.) We emphasize two main caveats regarding such a compar-

ison: first, while Λ∘𝜆 and HElib support many common operations and features, they
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are not functionally equivalent—e.g., Λ∘𝜆 supports ring-switching, error sampling, and

certain gadget operations that HElib lacks, while HElib supports ring automorphisms and

sophisticated plaintext “shuffling” operations that Λ∘𝜆 lacks. Second, Λ∘𝜆’s host language

(Haskell) is somewhat higher-level than HElib’s (C++), so any comparisons of code quality

or performance will necessarily be “apples to oranges.” Nevertheless, we believe that such a

comparison is still meaningful and informative, as it quantifies the relative trade-offs of the

two approaches in terms of software engineering values like simplicity, maintainability, and

performance.

Summary. Our analysis shows that Λ∘𝜆 offers high code quality, with respect to both the

size and complexity. In particular, Λ∘𝜆’s code base is about 7–8 times smaller than HElib’s.

Also, Λ∘𝜆 currently offers good performance, always within an order of magnitude of

HElib’s, and we expect that it can substantially improve with focused optimization. Notably,

Λ∘𝜆’s C++ backend is already faster than HElib in Chinese Remainder Transforms for

non-power-of-two cyclotomic indices with small prime divisors, due to the use of better

algorithms associated with the “tensored” representations. For example, a CRT for index

𝑚 = 2633 (of dimension 𝑛 = 576) takes about 99 𝜇s in Λ∘𝜆, and 153 𝜇s in HElib on our

benchmark machine (and the performance gap grows when more primes are included).

4.4.1 Source Code Analysis

We analyzed the source code of all “core” functions from Λ∘𝜆 and HElib, and calculated

a few metrics that are indicative of code quality and complexity: actual lines of code,

number of functions, and cyclotomatic complexity [McC76]. “Core” functions are any

that are called (directly or indirectly) by the libraries’ intended public interfaces. These

include, e.g., algebraic, number-theoretic, and cryptographic operations, but not unit tests,

benchmarks, etc. Note that HElib relies on NTL [Sho06] for the bulk of its algebraic

operations (e.g., cyclotomic and finite-field arithmetic), so to give a fair comparison we
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include only the relevant portions of NTL with HElib, referring to their combination as

HElib+NTL. Similarly, Λ∘𝜆 includes a Tensor backend written in C++ (along with a pure

Haskell one), which we identify separately in our analysis.

Source Lines of Code

A very basic metric of code complexity is program size as measured by source lines of code

(SLOC). We measured SLOC for Λ∘𝜆 and HElib+NTL using Ohcount [Bla14] for Haskell

code and metriculator [KW11] for C/C++ code. Metriculator measures logical source lines

of code, which approximates the number of “executable statements.” By contrast, Ohcount

counts physical lines of code. Both metrics exclude comments and empty lines, so they do

not penalize for documentation or extra whitespace. While the two metrics are not identical,

they provide a rough comparison between Haskell and C/C++ code.

Table 4.1 shows the SLOC counts for Λ∘𝜆 and HElib+NTL. Overall, Λ∘𝜆 consists of

only about 5,000 lines of code, or 4,200 if we omit the C++ portion (whose functionality is

redundant with the Haskell code). By contrast, HElib+NTL consists of about 7–8 times as

much code.

Table 4.1: Source lines of code for Λ∘𝜆 and HElib+NTL.

Codebase SLOC Total

Λ∘𝜆
Haskell C++

4,257 734 4,991

HElib+NTL
HElib NTL

14,709 20,073 34,782

Cyclomatic Complexity and Function Count

McCabe’s cyclomatic complexity (CC) [McC76] counts the number of “linearly independent”

execution paths through a piece of code (usually, a single function), using the control-

flow graph. The theory behind this metric is that smaller cyclomatic complexity typically
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corresponds to simpler code that is easier to understand and test thoroughly. McCabe

suggests limiting the CC of functions to ten or less.

Results. Table 4.2 gives a summary of cyclomatic complexities in Λ∘𝜆 and HElib+NTL.

A more detailed breakdown is provided in Figure 4.3. In both codebases, more than 80 % of

the functions have a cyclomatic complexity of 1, corresponding to straight-line code having

no control-flow statements; these are omitted from Figure 4.3.

Table 4.2: Number of functions per argon grade: cyclomatic complexities of 1–5 earn an
‘A,’ 6–10 a ‘B,’ and 11 or more a ‘C.’

Codebase A B C Total

Λ∘𝜆 1,234 14 5 1,253

HElib+NTL 6,850 159 69 7,078

Only three Haskell functions and two C++ functions in Λ∘𝜆 received a grade of ‘C.’ The

Haskell functions are: adding Cyc elements (CC=23); multiplying Cyc elements (CC=14);

and comparing binary representations of positive integers, for promotion to the type level

(CC=13). In each of these, the complexity is simply due to the many combinations of cases

for the representations of the inputs (see subsection 3.5.2). The two C++ functions are the

inner loops of the CRT and DFT transforms, with CC 16 and 18, respectively. This is due

to a case statement that chooses the appropriate unrolled code for a particular dimension,

which we do for performance reasons.

For comparison, HElib+NTL has many more functions than Λ∘𝜆 (see Table 4.2), and

those functions tend to be more complex, with 68 functions earning a grade of ‘C’ (i.e., CC

more than 10).
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Figure 4.3: Cyclomatic complexity (CC) of functions in Λ∘𝜆 and HElib+NTL. The case
CC=1 accounts for more than 80% of the functions in each codebase, and is suppressed.

4.4.2 Performance

Here we report on the runtime performance of Λ∘𝜆. As a general-purpose library, we do not

expect it to be competitive with highly optimized (but inflexible) C implementations like

SWIFFT [Lyu+08] and BLISS [Duc+13], but we aim for performance in the same league as

higher-level libraries like HElib.

Here we give microbenchmark data for various common operations and parameter

sets, to show that performance is reasonable and to establish a baseline for future work.

All benchmarks were run by the standard Haskell benchmarking tool criterion [OSu14]

on a mid-2012 model Asus N56V laptop with 2.3GHz Core i7-3610QM CPU and 6 GB

1600MHz DDR3 RAM, using GHC 8.0.1. All moduli in our benchmarks are smaller than 32

bits, so that all mod-𝑞 arithmetic can be performed naïvely in 64-bit registers.

We benchmarked the two Tensor backends currently included in Λ∘𝜆: the “CT” backend

is sequential and written in relatively unoptimized C++. The “RT” backend uses the Repa
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array library [Kel+10; Lip+12]. For operations that Λ∘𝜆 and HElib have in common, we

also include HElib benchmarks.

Most of our optimization efforts have been devoted to the CT backend, which partially

explains the poor performance of the Repa backend; we believe that similarly tuning RT

could speed up benchmarks considerably. However, RT performance is currently limited

by the architecture of our tensor DSL, which is blocking many compiler optimizations.

Specifically, the higher-rank types that make the DSL work for arbitrary cyclotomic indices

also make specialization, inlining, and fusion opportunities much more difficult for the

compiler to discover. Addressing this issue to obtain a fast and general pure-Haskell

implementation is an important problem for future work.

Cyclotomic Ring Operations

Table 4.3, Table 4.4, and Table 4.5 show runtimes for the main cyclotomic ring operations.

We compare Λ∘𝜆’s C++ (CT) and Repa (RT) Tensor backends, and HElib whenever it

supports analogous functionality. For CT and RT, operations scale approximately linearly in

the number of moduli in the RNS representation, so all the runtimes are shown for a single

modulus. For a cyclotomic ring 𝒪𝑚, we consider only “good” prime moduli 𝑞 = 1 mod 𝑚,

so that the CRT exists over Z𝑞. Benchmarks are reported for the UCyc interface; times for

analogous operations in the Cyc interface are essentially identical, except where noted. All

times are reported in microseconds (𝜇s).
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Table 4.3: Runtimes (in microseconds) for conversion between the powerful (P) and CRT (C)
bases, and between the decoding (D) and powerful bases (P). For comparison with our P↔C
conversions, we include HElib’s conversions between its “polynomial” and “Double CRT”
(with one modulus) representations. Note that HElib is primarily used with many (small)
moduli, where the conversion from Double CRT to polynomial representation is closer in
speed to the other direction.

Index 𝑚 𝜙(𝑚) UCyc P→C UCyc C→P UCyc D→P UCyc P→D

HElib CT RT HElib CT RT CT RT CT RT

210 = 1,024 512 15.9 139 2,344 38.3 142 2,623 0.7 0.02 0.7 0.02

211 = 2,048 1,024 32.4 307 5,211 74.4 314 5,618 1.3 0.02 1.2 0.02

2633 = 1,728 576 153 99 3,088 361 122 3,284 4.0 80.3 4.0 64.2

2634 = 5,184 1,728 638 364 10,400 1,136 426 11,030 11.8 226 11.7 186

263252 = 14,400 3,840 2,756 1,011 24,330 5,659 1,258 25,170 65.8 1,199 61.5 938

Table 4.4: Runtimes (in microseconds) for multiplication by 𝑔 in the powerful (P) and
CRT (C) bases, division by 𝑔 in the powerful and decoding (D) bases, lifting from 𝑅𝑞 to 𝑅 in
the powerful basis, and multiplication of ring elements in the CRT basis. (Multiplication by 𝑔
in the decoding and powerful bases takes about the same amount of time, and multiplication
and division by 𝑔 in the CRT basis take about the same amount of time.)

Index 𝑚 (*) for UCyc C (*g) for UCyc P (*g) for UCyc C (/g) for UCyc P (/g) for UCyc D lift UCyc P

HElib CT RT CT RT CT RT CT RT CT RT CT RT

1,024 1.8 7.8 73.0 0.7 0.02 5.4 72.0 5.9 56.8 5.9 56.7 1.0 39.8

2,048 4.4 15.6 142 1.2 0.02 11.4 140 11.6 110 11.6 108 2.0 77.0

1,728 2.6 9.3 82.1 10.5 107 6.1 84.0 52.6 390 33.4 385 1.2 45.8

5,184 6.2 26.3 248 30.4 333 18.1 245 155 1,148 102 1,115 3.4 128

14,400 11.6 58.9 589 134 1,515 39.6 575 663 4,679 400 5,283 13.3 297
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Table 4.5: Runtimes (in microseconds) of twace and embed for UCyc. (For both CT and
RT, twace UCyc D has essentially the same performance as twace UCyc P.) Due to an
unresolved compiler issue, embed (in any basis) with the Cyc interface is considerably slower
than the analagous UCyc operation benchmarked here.

𝑚 𝑚′ twace UCyc P twace UCyc C embed UCyc P embed UCyc D embed UCyc C

CT RT CT RT CT RT CT RT CT RT

728 2,912 0.7 25.9 22.7 305 3.8 57.2 4.9 58.3 38.7 92.9

728 3,640 0.7 27.1 22.9 258 3.8 56.8 8.5 83.6 39.6 95.5

128 11,648 0.2 7.0 92.5 967 10.8 164 19.7 189 166 393

SHE Scheme

Table 4.6 and Table 4.7 show runtimes for certain main operations of the SHE scheme

described in section 4.3. All times are reported in milliseconds (ms). We stress that unlike

for our cyclotomic operations above, we have not yet designed appropriate “hints” to assist

the compiler’s optimizations, and we expect that performance can be significantly improved

by such an effort.

Table 4.6: Runtimes (in milliseconds) for basic SHE functionality, including encrypt,
decrypt, ciphertext multiplication, addPublic, and mulPublic. All ciphertext operations
were performed on freshly encrypted values. The plaintext index for both parameter sets is
𝑚 = 16. For encrypt, the bottleneck is in Gaussian sampling and randomness generation,
which was done using the HashDRBG pseudorandom generator with SHA512.

𝑚′ 𝜙(𝑚′) encrypt decrypt ciphertext (*) addPublic mulPublic

CT RT CT RT CT RT CT RT CT RT

2,048 1,024 371 392 2.3 20.5 1.4 2.9 1.3 10.1 1.4 3.1

14,400 3,840 1,395 1,454 12.8 81.6 13.8 18.1 6.5 35.0 4.6 7.0
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Table 4.7: Runtimes (in milliseconds) for SHE noise and ciphertext management operations
like rescaleCT and keySwitch (relinearization) from a quadratic ciphertext, with a circular
hint. The rescaleCT benchmark scales from (the product of) two moduli to one. The
keySwitch benchmark uses a single ciphertext modulus and a hint with two moduli, and a
two-element gadget for decomposition (subsection 3.2.4).

𝑚′ 𝜙(𝑚′) rescaleCT keySwitch

CT RT CT RT

2,048 1,024 2.3 17.9 7.4 53.4

14,400 3,840 15.2 65.2 37.0 308

Ring Tunneling

In the ring-tunneling algorithm ( subsection 4.3.6), we convert a ciphertext in a cyclotomic

ring 𝑅′ to one in a different cyclotomic ring 𝑆 ′ which has the side effect of evaluating

a desired 𝐸-linear function, where 𝐸 = 𝑅 ∩ 𝑆 is the intersection of the corresponding

plaintext rings. The performance of this algorithm depends on the dimension dim(𝑅′/𝐸 ′)

because the procedure performs dim(𝑅′/𝐸 ′) key switches. Since ring switching can only

apply an 𝐸-linear function on the plaintexts, there is a tradeoff between performance and

the class of functions that can be evaluated during ring switching. In particular, when

dim(𝑅′/𝐸 ′) = dim(𝑅/𝐸) is small, ring switching is fast but the plaintext function is highly

restricted because 𝐸 is large. When dim(𝑅′/𝐸 ′) is large, we can apply a wider class of

functions to the plaintexts, at the cost of many more (expensive) key switches. Indeed, in

many applications it is convenient to switch between rings with a small common subring,

e.g. 𝐸 = 𝒪1.

As shown in [AP13], we can get both performance and a wide class of linear functions

by performing a sequence of switches through adjacent hybrid rings, where the intersection

between adjacent hybrid rings is large. Figure 4.4 gives a sequence of hybrid rings from

𝑅 = 𝐻0 = 𝒪128 to 𝑆 = 𝐻5 = 𝒪4,095. It also gives the corresponding ciphertext superring,
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which needs to be larger than small plaintext rings for security. Such a sequence of hybrid

rings could be used for bootstrapping ([AP13]) or for the homomorphic evaluation of the

PRF in [BP14].

𝒪128

𝑅 = 𝐻0

𝑅′ = 𝐻 ′
0

𝒪128·7·13

𝒪64·7
𝐻1

𝐻 ′
1

𝒪64·7·13

𝒪32·7·13
𝐻2

𝐻 ′
2

𝒪32·7·13

𝒪8·5·7·13
𝐻3

𝐻 ′
3

𝒪8·5·7·13

𝒪4·3·5·7·13
𝐻4

𝐻 ′
4

𝒪4·3·5·7·13

𝒪9·5·7·13
𝐻5 = 𝑆

𝐻 ′
5 = 𝑆 ′

𝒪9·5·7·13

Figure 4.4: A real-world example of hybrid plaintext/ciphertext rings that could be used to
efficiently tunnel from 𝑅 = 𝒪128 to 𝑆 = 𝒪4,095.

Table 4.8 includes timing data for each ring tunnel in Figure 4.4, using only good moduli

as above. As with other operations, ring tunneling scales linearly in the number of moduli,

so the numbers below are reported for a single modulus.

Table 4.8: Runtimes (in milliseconds) for ring tunneling, using one ciphertext modulus and
TrivGad for constructing key-switch hints.

Tunnel CT RT

𝐻0 → 𝐻1 46.4 185

𝐻1 → 𝐻2 32.3 127

𝐻2 → 𝐻3 50.0 128

𝐻3 → 𝐻4 32.9 84.2

𝐻4 → 𝐻5 33.2 96.4
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CHAPTER 5

ALCHEMY: A LANGUAGE AND COMPILER FOR HOMOMORPHIC

ENCRYPTION MADE EASY

5.1 Introduction

The concept of homomorphic encryption was first envisioned almost 40 years ago as a

powerful way to enable new privacy-aware applications. In the eight years since Gentry

gave the first plausible construction [Gen09b; Gen09a], there have been a number of imple-

mentations targeting particular applications of interest (see, e.g., [GH11; NLV11; GHS12c;

HS15; DM15; CLP17] and chapter 4). Unfortunately, the impact of this cryptographic “holy

grail” has been tempered by the difficulty of using it. The primary usability challenge in

all existing implementations is the level of expertise needed to satisfactorily implement a

desired homomorphic computation:

1. First, one must express the “in the clear” computation (on plaintexts) in terms of the

FHE scheme’s native homomorphic operations, or “instruction set.” This is non-trivial

because the native instructions, which can vary based on the scheme, are typically

algebraic operations like addition and multiplication on finite fields, and sometimes

other functions like permutations on fixed-sized arrays of field elements. So one needs

to “arithmetize” the desired computation in terms of these operations, as efficiently

as possible for the instruction set at hand. (Moreover, the native instruction set can

sometimes depend on the choice of plaintext and ciphertext rings, which also affects

the third step below.)

2. Second, HE ciphertexts accumulate “errors” or “noise” under homomorphic opera-

tions, and too much noise causes the result to decrypt incorrectly—so proper noise

management is essential. In addition, the ciphertext size (or degree) increases under
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certain homomorphic operations, but can be brought back down via additional steps.

So along with the homomorphic operations that perform “real work,” one must also

carefully schedule appropriate “maintenance” operations, such as linearization and

other forms of key switching, and rescaling (also called modulus switching) to keep

the noise as small as possible.

3. Third, one must choose appropriate parameters for the desired level of security, i.e.,

appropriate ciphertext dimensions and moduli relative to the noise rates at the various

stages of the computation (and subject to any restrictions inherited from the first step).

Importantly, the choice of parameters feeds back to affect the noise growth incurred

by the homomorphic operations, so one may need many cycles of trial and error until

the parameters stabilize.

4. Lastly, one also needs to generate all the needed keys and auxiliary key-switching

“hints” that are needed for the maintenance operations, and to encrypt the input

plaintexts under the appropriate keys.

In summary, the above process requires a great deal of expertise in both the theory of HE

and the quirks of its particular implementation, in addition to a lot of manual programming

and trial-and-error. Perhaps for this reason, most applications of HE to date have been ad-

hoc, one-off implementations, with complex code that is hard to debug and which obscures

the nature of the underlying computation.

A new approach. This work introduces ALCHEMY, a system that greatly accelerates

and simplifies the implementation of homomorphic computations. 1 With ALCHEMY, one

expresses a desired “in the clear” computation on plaintexts in a domain-specific language

of simple operations, and higher-level functions built out of them. A key point is that this

1ALCHEMY is now publicly available under a free/open-source license at https://github.com/
cpeikert/lol/tree/alchemy-args-debruijn-monad.
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requires no detailed knowledge of the HE scheme; one simply writes (and runs, and debugs)

a program that describes what should be computed on the plaintexts.

One then uses an ALCHEMY compiler to automatically transform the plaintext program

into a corresponding homomorphic program on ciphertexts. The compiler deals with the

cumbersome but rote tasks of tracking the noise and scheduling appropriate “maintenance”

operations to control it, choosing (most of) the parameters, generating keys and hints, etc.

In addition, compilers can be composed together to provide other useful functionality.

In short, ALCHEMY lets programmers write clear and concise code describing what

they really care about—the plaintext computation—and get a corresponding homomorphic

computation without needing any particular expertise in HE. ALCHEMY fits seamlessly into

typical HE usage scenarios to reduce the overhead of producing homomorphic computations.

In the rest of this introduction we describe the approach in more detail, and give some simple

examples that show ALCHEMY’s convenience and flexibility. (A richer example application

and is detailed in chapter 6.)

5.1.1 Principles of ALCHEMY

ALCHEMY is a collection of domain-specific languages (DSLs) for expressing plaintext and

(homomorphic) ciphertext computations, and interpreters that act on programs written in

these languages. The word “interpreters” is meant broadly, and encompasses (among others)

evaluators, optimizers, and, most significantly, “compilers” that transform programs from

one language to another.

ALCHEMY is highly modular and extensible: the DSLs are made up of small components

that each yield particular language features, are easy to define, and can be combined

arbitrarily. Interpreters can be defined to support any subset of the language components,

and can easily be extended to support new ones. In addition, ALCHEMY’s interpreters

can easily be composed with each other to perform a variety of different tasks on the

same program, e.g., evaluating a plaintext computation “in the clear,” compiling it to a
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corresponding homomorphic computation, printing a representation thereof, and tracking

the noise growth as it is evaluated.

Another primary goal of ALCHEMY is safety: only well-formed programs should be

accepted, and the possibility of runtime errors or internal bugs should be minimized, or even

eliminated. For these purposes, the ALCHEMY DSLs are functional (pure), statically typed

with a rich type system, and have strong type inference.

• Purity means that a function always yields the same output when given the same

inputs (no side-effects or global variables), which is a good match for the arithmetic

functions and “circuits” that are common targets for homomorphic computation.

• Static typing means that every expression has a type that is known at compile time, and

only well-formed expressions typecheck. This allows many common programming

errors—in DSL code, and in ALCHEMY’s own interpreters—to be caught early on.

The type system is very rich, allowing many safety properties to be encoded into types

and automatically verified by the type checker.

• Type inference ensures that the types of almost all DSL expressions are automatically

determined by the type checker, and need not be specified by the programmer. This

makes code more concise and readable, and easier to check for correctness.

We obtain all the above-described properties by defining the DSLs and interpreters in

the metalanguage Haskell, from which ALCHEMY directly inherits its basic syntax, data

types and structures, and safety features—with no special implementation effort or extra

complexity. As its underlying HE implementation, ALCHEMY uses a BGV-style [BGV14]

SHE cryptosystem as refined and implemented in Λ∘𝜆 [CP16b]. We emphasize that much

of the framework could be reused without modification for any target SHE or FHE scheme.

Languages. Domain-specific languages (DSLs) have long been appreciated as useful

tools for working in a specific problem domain; e.g., LATEX is a (Turing-complete) DSL for
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typesetting documents, and MATLAB is a DSL targeted toward numerical computing and

linear algebra.

ALCHEMY’s first major component is a collection of modular and extensible DSLs for

expressing both “in the clear” computations on plaintexts, and homomorphic computations

on ciphertexts. Following the powerful “typed tagless final” approach to embedded language

design [Kis10], each DSL is the union of several independent and composable language

components. ALCHEMY provides language components that introduce the following features

into the DSLs:

• data types for plaintexts rings and HE ciphertexts;

• simple data structures like tuples and lists;

• arithmetic operations like addition and multiplication, and also arbitrary linear func-

tions between plaintext rings;

• ciphertext operations corresponding to the interface of the underlying SHE implemen-

tation;

• programmer-defined functions, including higher-order functions (i.e., those that take

other functions as input);

• and even specifically limited side-effects, via monads.

It is easy to introduce additional data types and language features as needed, simply by

defining more language components.

Both the plaintext and ciphertext DSLs include the generic language components for

data structures, arithmetic operations, and functions. In addition, each one includes cer-

tain components that relate specifically to plaintext or ciphertext operations. Because the

plaintext DSL involves relatively simple data types and operations, it is easy for the pro-

grammer to hand-write code to express a desired computation. By contrast, proper use of the

ciphertext DSL is significantly more complicated—e.g., ciphertext types involve many more
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parameters, and HE operations must be appropriately scheduled—so it is not intended for

human use (though nothing prevents this). Instead, it is the target language for ALCHEMY’s

plaintext-to-ciphertext compiler. As we will see, having a dedicated ciphertext DSL allows

for homomorphic computations to be operated upon in various useful ways beyond just

executing them, e.g., tracking noise growth or optimizing away redundant operations.

In addition to the DSLs themselves, ALCHEMY provides a variety of useful higher-

level functions and combinators that are written in the DSLs. These include “arithmetized”

versions of functions that are not natively supported by HE schemes, but can be expressed

relatively efficiently in terms of native operations. A particularly important example is

the function that “rounds” from Z2𝑘 , the ring of integers modulo 2𝑘, to Z2. This function

is central to efficient “boostrapping” algorithms for FHE and the related Learning With

Rounding problem [BPR12]. Efficient arithmetizations are given in [AP13] and a closely

related algorithm from [GHS12a]). We give a different arithmetiziaton in section 6.3

(which is better for particular parameters), and provide an ALCHEMY implementation

in subsection 6.6.1.

Interpreters and compilers. ALCHEMY’s other main component is its collection of

composable interpreters for programs written in the DSLs. Each interpreter defines how

it acts on each relevant language component to perform a particular task. Some of the

interpreters are actually compilers that translate programs from one collection of DSL

components to another. Example interpreters in ALCHEMY include:

• a (metacircular) evaluator, which simply interprets the plaintext and ciphertext DSLs

using the corresponding Haskell and Λ∘𝜆 operations;

• various utility interprets that, e.g., “pretty print” DSL programs, or compute useful

metrics like program size, multiplicative depth, etc.;

• a diagnostic compiler that modifies any ciphertext-DSL program to also log the noise

rate of every ciphertext it produces;
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• and most significantly, a compiler that transforms any program written in the plaintext

DSL to a corresponding homomorphic computation in the ciphertext DSL.

The plaintext-to-ciphertext compiler is the most substantial and nontrivial of the in-

terpreters, and is one of ALCHEMY’s central contributions. This compiler automatically

performs several important tasks that in all current HE systems must done manually by the

programmer. In particular, it:

• generates all necessary keys and auxiliary “hints” for ciphertext operations like

key-switching and ring-switching.

• properly schedules all necessary ciphertext maintenance operations like key-switching

(e.g., for “linearization” after homomorphic multiplication) and modulus-switching

(for noise management).

• statically infers, using compile-time type arithmetic, the approximate noise rates of

every ciphertext, and chooses an appropriate ciphertext modulus from a provided pool.

If any inferred noise rate is too small relative to the provided moduli, typechecking

fails with an informative error.

• generates encrypted inputs for the resulting homomorphic computation, with appro-

priate noise rates to ensure correct decryption of the ultimate encrypted output.

5.1.2 Example Usage

Here we give a few concrete examples of programs in the ALCHEMY DSLs, and the various

ways they can be interpreted and compiled. We start with the following very simple program:

ex1 = lam $ lam $ v0 *: (v0 +: v1)

The two calls to lam say that ex1 is a function of two inputs, which respectively bind the

De Bruijn-indexed variables v1, v0. (De Bruijn variables are numbered and bound from the
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“inside out.”) The function represents addition of v0 and v1 using the DSL operator (+:),

followed by multiplication of the result by v0 using the DSL operator (*:).

The Haskell typechecker automatically infers the full type of ex1, which is:

(Lambda expr, Mul expr a, Add expr (PreMul expr a)) =>

expr e (PreMul expr a -> PreMul expr a -> a)

This type carries a great deal of important information; let us unpack its various components:

• First, the type is polymorphic in the type variables expr, a, and e. These type variables

can represent arbitrary Haskell types. . .

• . . . subject to the constraints (Lambda expr, ...), which say that expr must be able

to interpret the Lambda, Mul, and Add language components. The second arguments

of Mul and Add say that multiplication can produce a value of type a as the product

of two values of type PreMul expr a, and that we can add values of the latter type.

(The purpose of PreMul will be explained below, when we describe the plaintext-to-

ciphertext homomorphic compiler.)2

• Finally, expr e (PreMul expr a -> PreMul expr a -> a) means that ex1

represents a DSL function that takes two inputs of type PreMul expr a and outputs a

value of type a. The type argument e represents the expression’s environment, which

must hold the values of any unbound variables. Because v0 and v1 are bound by the

two lams, there are no unbound variables—the code is closed—so e is completely

unconstrained.

Because ex1 is polymorphic in expr, after writing it once we can interpret it in several

different ways by specializing expr to various concrete types. One simple interpreter is the

“pretty printer” P, which has easy implementations for all the requisite language components.

Its public interface
2As the reader may have guessed, Lambda introduces programmer-defined functions and variables via lam,

v0, v1, etc., whereas Mul and Add respectively introduce the multiplication and addition operators *: and +:.
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pprint :: P () a -> String

converts any closed P-expression to a string representing it. Calling pprint ex1 implicitly

specializes expr to P and the environment e to (), resulting in the following:3

pprint ex1

-- "(\v0 -> (\v1 -> ((mul v1) ((add v1) v0))))"

Another very simple interpreter is the metacircular evaluator E, which interprets all of the

language components using corresponding Haskell (or Λ∘𝜆) operations. Its public interface

eval :: E () a -> a

converts any closed DSL expression representing a value of type a into a Haskell value of

type a, as follows:

eval ex1

-- (Ring a) => a -> a -> a

eval ex1 7 11

-- 198

Because eval implicitly specializes expr to E, which itself defines PreMul E a = a, the

call to eval ex1 produces a polymorphic Haskell function of type a -> a -> a, for an

arbitrary Ring type a. The Ring constraint arises because the E interpreter uses Haskell’s

operators (+) and (*) to interpret Add and Mul. The eval ex1 7 11 call actually evaluates

the Haskell function, producing 11 · (11 + 7) = 198.

We stress that eval ex1 :: (Ring a) => a -> a -> a is polymorphic in a, so it can

be applied to elements of any plaintext ring, or even to ciphertexts from Λ∘𝜆’s SHE scheme

(both of which are Ring types). However, in the latter case ex1 lacks the extra ciphertext
3For convenience of implementation, the pretty printer indexes variables from the “outside in,” which is the

reverse of De Bruijn indexing; this accounts for the swapping of v0 and v1 in the pretty-printed code, relative
to the definition of ex1. Note that the two representations are equivalent.
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“maintenace” operations, like relinearization and modulus-switching, that are needed in

more complex homomorphic computations. For these we use ALCHEMY’s homomorphic

compiler, described shortly.

Ring switching. Here we exhibit a small program that illustrates another important lan-

guage component, for “switching” from one cyclotomic ring to another. Ring-switching in

homomorphic encryption was developed and refined in a series of works [BGV14; Gen+13;

AP13; CP16b], which showed its utility for tasks like “bootstrapping” and efficiently com-

puting a wide class of linear functions.

ex2 = linearCyc_ (decToCRT @F28 @F182) .:

linearCyc_ (decToCRT @F8 @F28)

Here decToCRT @F8 @F28 is a Haskell expression representing a certain linear function

from the 8th to the 28th cyclotomic ring, and similarly for decToCRT @F28 @F182. (The

exact linear functions do not matter here, and could be arbitrary.) The operator (.:) denotes

composition of DSL functions; the type checker enforces that the output type of the first

function must equal the input type of the second.

The Haskell compiler automatically infers that ex2 has the following type (several

component types and constraints have been simplified or suppressed for readability):

ex2 :: (LinearCyc expr cycrep, ...) =>

expr env (cycrep F8 zp -> cycrep F182 zp)

This says that ex2 is a (closed) DSL function that is well-defined for any interpreter expr

of the LinearCyc language component (which introduces linearCyc_). Essentially, the

function maps from cycrep F8 zp, which should represent the 8th cyclotomic ring modulo

some integer 𝑝, to cycrep F28 zp, which should represent the 28th cyclotomic ring

modulo 𝑝. The type cycrep is specified in the LinearCyc expr cycrep constraint, and

could be, e.g., the concrete Cyc type from Λ∘𝜆.
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As with the previous example, we can pretty-print and evaluate ex2 “in the clear.” More

interesting is to homomorphically evaluate it on HE ciphertexts, using a special form of

key-switching as shown in [Gen+13] and subsection 4.3.6. For this we use ALCHEMY’s

homomorphic compiler.

Compiling to the ciphertext DSL. We now show how the above example programs,

which should now be thought of as computations on plaintexts, can be compiled into

programs that operate on HE ciphertexts to homomorphically compute the original programs

on the underlying plaintexts. The compiler is given by a data type PT2CT, whose public

interface is the Haskell function pt2ct (the signature is in subsection 5.5.1). In order to do

its job, the compiler needs to be given types that specify what ciphertext rings and moduli to

use. We define such types here:

type CTRingMap = [ (F8,F16), ... ]

type Zq1 = Zq $(mkModulus 34594561)

type Zq2 = Zq $(mkModulus 35642881)

...

type CTModuli = [ Zq1, Zq2, ... ]

The type CTRingMap says that when the plaintext ring is the 8th cyclotomic, the ciphertext

ring should be the 16th cyclotomic, etc. The type Zq1 represents Z𝑞1 , the ring of integers

modulo 𝑞1 = 34594561, and similarly for Zq2 etc. (The macro mkModulus represents its

argument as a type, which is also augmented with the number of “units of noise” the modulus

can hold; see below.)

Having defined the needed types, we can now compile our plaintext-DSL programs to

get new ciphertext-DSL programs, which can in turn be handled by any suitable ciphertext-

DSL interpreter. One small subtlety is that because pt2ct automatically generates the

needed random keys and key-switch hints, it is necessarily monadic (i.e., it has side effects).
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We therefore use Haskell’s “do notation” to invoke it with the above-defined types on

plaintext-DSL program ex1, and then pretty-print the result:

do ct1 <- pt2ct @CTRingMap @CTModuli @TrivGad ex1

pprint ct1

-- "(\v0 -> (\v1 ->

-- (((\v2 -> (\v3 ->

-- (modSwitch

-- (keySwitchQuad <HINT>

-- (modSwitch ((mul v3) v2))))))

-- ((add v1) v0)) v1)))"

Despite the abundant parentheses, the structure of the program is not too hard to discern.

First, because this is a program in the ciphertext DSL, we should think of all the variables

as ciphertexts. In the “inner” layer, the variable v2 is bound to ((add v1) v0), and v3 is

bound to v1.4 These two ciphertexts are multiplied, resulting in a “quadratic” ciphertext.

This is modulus-switched to match the key-switching hint, then key-switched to a “linear”

ciphertext (using a “circularly” encrypted hint), then finally switched back to a modulus

corresponding to its inherent noise rate.

As another example, we can compile the ring-switching program ex2 = linearCyc_

(...) .: linearCyc_ (...), and print the resulting program:

do ct2 <- pt2ct @CTRingMap @CTModuli @TrivGad ex2

pprint ct2

-- "(\v0 ->

4Note that both expressions are eligible for “inlining” using 𝛽-reduction; while our compiler does not
perform such optimizations at the DSL level, the Haskell compiler may do so. In any case, the performance cost
of not inlining is negligible when compared with homomorphic operations. One could add this optimization
by defining a new interpreter which outputs a beta-reduced expression.
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-- ((\v0 ->

-- (modSwitch (tunnel <HINT> (modSwitch v0))))

-- ((\v0 -> (modSwitch

-- (tunnel <HINT> (modSwitch v0))))

-- v0)))"

Again the structure is reasonably clear: the program takes a ciphertext as input, switches it

to the modulus of the “tunneling hint” that encodes the desired linear function, then switches

rings by “tunneling” with the hint (thereby homomorphically evaluating the linear function),

then switches back to an appropriate ciphertext modulus. The same cycle is repeated for the

next linear function. (As we shall see, some of the modulus-switches may turn out to be null

operations.)

Evaluating and logging. While it is nice to be able to see a representation of ciphertext-

DSL programs, we are more interested in the useful task of evaluating them to perform a

homomorphic computation on ciphertexts. Fortunately, this is extremely simple: just replace

pprint with eval in the above code! This specializes the (polymorphic) interpreter of the

ciphertext-DSL program to the evaluator E rather than the pretty-printer P.

In addition, for diagnostic purposes we may wish to log the “error rates” of the ciphertexts

as the homomorphic evaluation proceeds. (Recall that error rates must be kept small enough

so that in the end, decryption gives the correct plaintext output.) In ALCHEMY such logging

is very easy using the ErrorRateWriter interpreter, which transforms any ciphertext-DSL

program into an equivalent one that additionally logs the error rates of all intermediate

ciphertexts. The output program can then be evaluated (or printed, or sized, etc.) as usual.

For example:

do logct2 <- writeErrorRates ct2

inputCT <- encrypt inputPT

(result, log) = runWriter $ eval logct2 inputCT
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print log

-- "Error rates:

-- ("modSwitch_Q539360641*Q537264001",6.8495e-7),

-- ("tunnel_Q539360641*Q537264001",3.3651e-6),

-- ("modSwitch_Q537264001",7.3408e-6),

-- ("modSwitch_Q537264001",7.3408e-6),

-- ("tunnel_Q537264001",1.8010e-4),

-- ("modSwitch_Q537264001",1.8010e-4)"

The log shows the error rates of the ciphertexts produced by each ciphertext-DSL operation

(which is also conveniently augmented by the ciphertext modulus of the result). We can

see that the first tunnel operation increases the error rate by roughly 5x; the switch to

the smaller modulus increases the rate by roughly 2x; and the second tunnel operation

increases the rate by roughly 25x. (The other modSwitch operations do not actually change

the modulus, and are therefore null.)

5.1.3 ALCHEMY In The Real World

In this section we explain how ALCHEMY can be used in the context of an actual crypto-

graphic application. In a typical HE scenario, Alice would like Bob to perform a computation

for her, but does not want Bob to learn anything about the input or output of the computation.

Alice first generates appropriate symmetric keys and encrypts her data with an HE scheme,

then sends the ciphertext to Bob. In order to compute the function on encrypted data, Alice

must write a homomorphic version of the function that she wants Bob to compute, and send

it to Bob.5 Then Bob runs the computation on Alice’s input and sends the (encrypted) result

back to her.
5It is also possible for Alice to send the plaintext computation and let Bob turn it into computation on

encrypted inputs. This requires Alice to send some additional information to Bob, but otherwise the procedure
is identical.
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Using ALCHEMY, many of Alice’s steps are automated. Alice first writes an ALCHEMY

DSL expression for the plaintext computation, and then compiles it locally to obtain a

homomorphic computation. The compilation process automatically creates all necessary

cryptographic keys and provides them to Alice for future use. Alice can then serialize this

expression (using a serialization interpreter) and send it to Bob. Bob then uses ALCHEMY

to deserialize the computation, executes it on Alice’s data, and sends back the encrypted

result. Alice uses they secret keys provided by the compilation process to decrypt the result.

Thus ALCHEMY simplifies the process of turning Alice’s plaintext computation into a

computation that Bob can actually use. All keys remain under Alice’s (and only Alice’s)

control, and ALCHEMY is used by both Alice and Bob to respectively create and evaluate a

desired homomorphic computation.

5.1.4 Related Work

As far as we are aware, there is no prior compiler for HE; all existing HE implementations

require the programmer to manually call all the needed plaintext and ciphertext-maintenance

operations, generate parameters and keys, etc.

For example, ALCHEMY currently targets the BGV-style SHE scheme as implemented

with the Λ∘𝜆 Haskell framework for lattice-based cryptography introduced in chapter 3.6

This provides ALCHEMY with its underlying HE implementation, which supports advanced

features like ring-switching. However, up until now those who wished to use Λ∘𝜆 for HE

still had to write code directly to its interface, which is somewhat low-level.

Probably the most well-known HE implementation is HElib [HS], an “assembly lan-

guage” for homomorphic encryption, which is implemented in C++ on top of NTL [Sho06].

HElib has been used for many homomorphic computations of interest [GHS12c; HS14;

HS15], but it requires quite a lot of expertise to use, because computations must be written

directly in the “assembly language” itself.

6We emphasize that ALCHEMY contains many generic components which can be reused outside the context
of Λ∘𝜆 or BGV-style homomorphic encryption.
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FHEW [DM15] is an implementation of a very fast bootstrapping algorithm for “third-

generation” FHE schemes [GSW13; AP14]. However, it is not intended for general-purpose

homomorphic computations, since the scheme encrypts only one bit per ciphertext.

The SEAL library [CLP17] goes one step farther than these three implementations by

introducing heuristic parameter selection, an important step towards practical HE. However,

users must still write homomorphic computations manually, including the ciphertext mainte-

nance operations like (re)linearlization, and the management of cryptographic keys. These

operations obscure the underlying plaintext computation and require knowledge of HE to

use correctly. By contrast, the ALCHEMY compiler handles both of these components, and

more, automatically.

Systems such as [JZ12] and TASTY [Hen+10] provide tools for describing interac-

tive cryptogrphic protocols. They therefore solve a fundamentally different problem than

ALCHEMY. In particular, they do not address the complexity of writing homomorphic

computations. Instead, they provide tools for writing secure interactive protocols which can

be instantianted with a number of different concrete cryptographic primitives like HE or

MPC.

5.1.5 Chapter Organization

The rest of the chapter is organized as follows.

Section 5.2 gives the relevant background on the (typed) tagless final style of DSL design

and implementation, and describes ALCHEMY’s plaintext DSL.

Section 5.3 describes ALCHEMY’s ciphertext DSL, which is the target language of the

compiler.

Section 5.4 describes several simple DSL interpreters, including a transformation which

logs the error rates of homomorphic computations at runtime.

Section 5.5 describes the central piece of ALCHEMY, the plaintext-to-ciphertext compiler.
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We defer the evaluation of ALCHEMY to chapter 6, where we provide full-scale homo-

morphic application written in ALCHEMY.

5.2 ALCHEMY Domain-Specific Languages

In this section we provide the requisite background on the “typed tagless final” style of

embedded DSL design and implementation, provide some simple example interpreters, and

describe our plaintext DSL.

5.2.1 Typed Tagless Final Style

The elegant and powerful “typed tagless final” approach to DSLs, also called object lan-

guages, was introduced by Carette et al. [CKS09], and further explicated in the lecture notes

of Kiselyov [Kis10]. The more widely known “initial” approach represents object-language

terms as values of a special data type in a metalanguage, e.g., an abstract syntax tree. By

contrast, the “tagless final” approach represents object-language terms as combinations

of ordinary polymorphic terms in the metalanguage. The polymorphism allows an object-

language term to be written once and interpreted in many ways, by monomorphizing it in

different ways.

The tagless-final approach makes language design and interpretation highly modular,

extensible, and safe: different object-language features can be defined independently and

combined together arbitrarily, and interpreters can be defined to handle any subset of the

available components. Interpreters can be extended to support new object-language features

without changes to existing code. An interpreter is able to interpret an object-language term

exactly when it is able to interpret all the language components used by the term; otherwise,

type checking fails at compile time. More generally, the full strength of the metalanguage’s

type system, including type inference, can directly be inherited by the object language.

Here we give an introduction to the approach by providing a running example of several

general-purpose language components and interpreters from [CKS09; Kis10], which are also
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part ALCHEMY. In later subsections we describe more specialized language components for

the plaintext and ciphertext languages.

Language components. In the tagless-final approach as realized in the metalanguage

Haskell, an object-language component is defined by a class. A Haskell class introduces

one or more polymorphic methods, which may be functions or just values. For example, to

introduce pairs as an object-language feature, we define

class Pair expr where

pair_ :: expr e (a -> b -> (a,b))

fst_ :: expr e ((a,b) -> a)

snd_ :: expr e ((a,b) -> b)

Here pair_ is a metalanguage value which represents an object-language function. The

function takes (object-language) values of type a and b, and returns an (object-language)

value of the pair type (a,b). Similarly, fst_ and snd_ represent object-language functions

that respectively extract the first and second components of a pair. (By convention, names

of object-language terms always end in underscore, to distinguish them from metalanguage

terms.)

Notice the common form expr e x of the method types. Here the type expr is the

instance of the Pair class; it serves as the interpreter of object-language terms involving

pairs. In turn, expr is parameterized by an environment type e (discussed below) and a

metalanguage type x, which serves as the type of the object-language term.

Interpreters. An interpreter of a language component is just a data type that is defined

to be an instance the component’s class. As running examples, we describe two simple

interpreters: the metacircular evaluator E is defined as

newtype E e a = E (e -> a)
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which says that value of type E e a is equivalent (isomorphic) to a function that maps

e-values to a-values. The particular function will (usually) be the one that maps any e-

value to the (metalanguage) value of type a represented by the object-language term. The

pretty-printer P is defined as

newtype P e a = P String

which says that a value of type P e a is equivalent to a String. The particular string will

be the printed representation of the object-language expression of type a that P interprets.

We make E and P interpreters of the Pair language component by making them instances

of the Pair class. Observe that when expr is specialized to E, the type of pair_ is equivalent

to e -> a -> b -> (a,b). We give a partial instance definition below;7 the definition of

fst_ and snd_ are similarly trivial:

instance Pair E where

pair_ = E $ \e -> \a -> \b -> (a,b)

When expr is specialized to P, the type of pair_ is equivalent to just String, which leads

us to the easy instance definition

instance Pair P where

pair_ = P $ "pair_"

Extending the language and interpreters. We can introduce more language features

simply by defining more classes, e.g., for addition:

class Add expr a where

add_ :: expr e (a -> a -> a)

neg_ :: expr e (a -> a)

7Since E is an applicative functor, a shorter definition is pair_ = E $ pure (,).
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This says that add_ is an object-language function that takes two values of type a and returns

a value of type a. Similarly, neg_ is an object-language function of one argument. Notice,

however, that the type a here is specific, not arbitrary: it is an argument to the Add class.

This means that an interpreter may support add_ and neg_ for certain types a, but not others.

The (partial) instances of Add for E and P are straightforward:

instance Additive a => Add E a where

add_ = E $ \e -> \x -> \y -> x+y

instance Add P a where

add_ = P $ "add_"

Notice that E is an instance of Add only for types a that are themselves instances of the

Additive class. This class defines the polymorphic addition function (+) :: Additive a

=> a -> a -> a used in the definition of add_ for E.

Functions and environments. The above classes define object-language functions, but so

far we have no way of actually applying them to arguments! Nor do we have a way to create

new functions of our own in the object language. Both of these features are introduced by

the Lambda class:

class Lambda expr where

($:) :: expr e (a -> b) -> expr e a -> expr e b

lam :: expr (e,a) b -> expr e (a -> b)

v0 :: expr (e,a) a

s :: expr e a -> expr (e,x) a

The ($:) operator applies an object-language function of type a -> b to a object-language

value of type a to yield an object-language value of type b. Before describing the remaining

methods, we show the easy definitions of ($:) for the E and P interpreters:
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(E f) $: (E a) = E $ \e -> (f e) (a e)

(P f) $: (P a) = P $ "(" ++ f ++ " " ++ a ++ ")"

For the first line, recall that f is a function of type e -> a -> b and a is a function of

type e -> a, and we need to produce a function of type e -> b; the right-hand side of

the definition does exactly what it should. For the second line, recall that f and a are just

Strings representing their respective object-language terms, so to pretty-print the function

application we just separate them with a space and wrap in parentheses to avoid ambiguity.

The function lam denotes lambda-abstraction. Notice its use of the environment: it

converts any object-language term that has type b, in any environment whose “topmost”

entry has type a, into an object-language function of type a -> b. Similarly, v0 is an object-

language value of type a in any environment whose topmost entry has type a. Essentially,

the environment can be thought of as a stack of values, and v0 represents the value at the

top. Finally, s “shifts” an object-language expression by pushing a value (of arbitrary type)

onto the environment, so v1 = s v0 represents the next value on the stack, v2 = s v1

represents the next value, etc. Putting these piece together, for example, lam v0 has type

expr e (a -> a) and represents the identity function.

The definitions of lam, v0, and s are trivial for the evaluator E, and are almost as

trivial for the pretty-printer P; however, the type just needs to be redefined to be a function

from the “lam depth” to String, so that the proper variable indices can be pretty-printed.

See subsection 5.4.1 for the actual ALCHEMY definition of this interpreter.

5.2.2 Generic Language Components

ALCHEMY includes two loosely defined and overlapping languages: a plaintext language

for expressing “in-the-clear” computations, and a ciphertext language for computations

on encrypted inputs. Each of these languages is divided into many language components,

some of which are shared between the languages. In addition to the Pair, Add, and Lambda
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components that we have seen in the previous section, we briefly describe the remaining

language components which are common to both DSLs.

Multiplication. The Mul class adds multiplication to the object language:

class Mul expr a where

type PreMul expr a

mul_ :: expr e (PreMul expr a -> PreMul expr a -> a)

The type of mul_ is similar to add_, except that the two (object-language) inputs have type

PreMul expr a instaead of just a. The PreMul type family generalizes the input types to

mul_ so that they are a function of the output type and the interpreter. This is necessary in

the compilation step (see section 5.5). In practice, PreMul expr a is always isomorphic to

a, but some interpreters need to augment the input with additional information at the type

level. We give the Mul instance for E below:

instance (Ring a) => Mul E a where

type PreMul E a = a

mul_ = E $ \e -> \x -> \y -> x*y

Similar to the Add instance for E, the Mul instance works for any object language type which

is a Ring. The definition of mul_ is defined directly in terms of Haskell’s multiplcation

operator (*) :: Ring a => a -> a -> a. This implementation in fact determines the

definition of PreMul for E: the type of the object-language function represented by mul_

must have the same type as (*).

Since the P interpreter represents any object language type as a string, we are free to

defined PreMul P a as we like. However, it turns out to be convenient to also define it

simply as a.
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Lists. Just as the Pair class introduces pairs into the object language, the List class adds

support for object language lists. We only give the language component definition here as

the E and P instances are trivial:

class List expr where

nil_ :: expr e [a]

cons_ :: expr e (a -> [a] -> [a])

The nil_ value represents an empty object language list (of an arbitrary type), while cons_

appends an object language value of type a to an object language list of the same type.

Strings. The String language component adds literal strings to the object language.

string_ embeds any Haskell string as a DSL expression:

class String expr where

string_ :: Prelude.String -> expr e Prelude.String

Category Theoretical Abstractions. Haskell provides several abstractions from category

theory, including functors, applicatives, and monads. These features are important for

advanced interpreters which require effects at the object level. We emphasize that these

features are used in interpreters which produce effects at the object-language runtime

(like the error logger in subsection 5.4.4), rather than “monadic interpreters” which use

effects at the object-language compile time (like the HE compiler in section 5.5, which uses

randomness to create keys and hints).

We give the class definitions of these language features here and defer usage details

to subsection 5.4.4. The following classes introduce functionality identical to the corre-

sponding Haskell classes (without the trailing underscore).

class Lambda expr => Functor_ expr where

fmap_ :: (Functor f) => expr e ((a -> b) -> f a -> f b)
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class (Functor_ expr) => Applicative_ expr where

pure_ :: (Applicative f) => expr e (a -> f a)

ap_ :: (Applicative f) => expr e (f (a -> b) -> f a -> f b)

class (Applicative_ expr) => Monad_ expr where

bind_ :: (Monad m) => expr e (m a -> (a -> m b) -> m b)

class (Monad_ expr) => MonadWriter_ expr where

tell_ :: (MonadWriter w m) => expr e (w -> m ())

listen_ :: (MonadWriter w m) => expr e (m a -> m (a,w))

5.2.3 Plaintext DSL

In addition to these generic language components, there are several language components

which are unique to the plaintext DSL for BGV-style HE ([BGV14] and section 4.3). It

is trivial to extend the plaintext language with these new features: we simply define a

corresponding class and give instances for the appropriate interpreters. Note that while

the generic language components can by definition be supported by any interpreter, the

components which are part of the plaintext DSL but not the ciphertext DSL may only be

supported by a subset of the interpreters. This is simple to encode: we simply omit instances

of language components for interpreters that do not make sense. See section 5.5 for more

details.

In this section, we give only the language definitions; their implementations for P and E

are very simple.
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Arithmetic with Public Values. The AddLit language component provides the addLit_

operation to add a meta-language literal of type a to an object-language expression of type

a:

class AddLit expr a where

addLit_ :: a -> expr e (a -> a)

Similarly, the MulLit language component introduces mulLit_, which multiplies a public

meta-language value with an object-language value. These language features are useful for

performing arithmetic with known constants.

Division by two. The Div2 language gives the div2_ operation to divide a value that is

known to be even by two, simultaneously reducing its modulus by a factor of two. Like

the Mul class, Div2 has an associated type family PreDiv2 which allows the interpreter to

specify how the input to the operation depends on the output. Concretely, our interpreters

all require that the input have a modulus that is twice that of the output.

class Div2 expr a where

type PreDiv2 expr a

div2_ :: expr e (PreDiv2 expr a -> a)

Applying linear functions. The linearCyc_ operation evaluates the given Linear func-

tion from a cyclotomic ring 𝑅 to a cyclotomic ring 𝑆. Like PreDiv2, the PreLinearCyc

type family determines the interpreter-specific input type cyclotomic representation from

the output’s representation. This is useful, e.g., in the PT2CT compiler, subsection 5.5.2.

In addition, the LinearCyc class has an associated constraint which permits interpreters

to require the types to satisfy certain relationships. This power is also available to other

lanuage components like Add because the object language type a appears as a parameter

to the class. Since LinearCyc has so many parameters, it is simpler to use a constraint

synonym to achieve the same effect.
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class LinearCyc expr rep where

type LinearCycCtx expr rep e r s zp :: Constraint

type PreLinearCyc expr rep :: * -> *

linearCyc_ :: (LinearCycCtx expr rep e r s zp)

=> Linear zp e r s

-> expr env ((PreLinearCyc expr rep) (Cyc r zp)

-> rep (Cyc s zp))

Higher-level operations. Before compiling a computation into one which operates on

encrypted inputs, we must first express the computation in terms of “native” HE operations.

These native operations have a straightforward translation into homomrphic operations;

non-native operations can be expressed in the HE scheme in many different ways, some of

which are more efficient than others.

However, the set of native HE operations can be rather restrictive, and the user may

want to perform a computation which includes more advanced operations. We would like

to provide a way for the user to write computation using these high-level (i.e. non-native)

operations.

This is easy to do using the existing design of the plaintext DSL. The basic idea is to

extend the plaintext DSL with an expression which “arithmetizes” a non-native operation in

terms of basic arithmetic operations which are native to the HE scheme. The expression is

written entirely in terms of other plaintext DSL expressions, so the expression itself can be

considered as a native extension to the plaintext DSL. The type of this expression is similar

to the type of basic plaintext operations like add_ or div2_, so it can be used in the same

way to express computation which involve non-native HE operations. See subsection 6.6.1

for one such higher-level operation and its implementation in ALCHEMY.
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5.3 Ciphertext DSL

The ciphertext DSL is composed of all of the generic language components, plus a few

features which make sense for ciphertexts, but not plaintexts. For example, we can change

the encryption key of a ciphertext, but this operation makes no sense on plaintexts, so this

operation is not part of the plaintext DSL. In general, the ciphertext DSL for any HE scheme

is closely coupled with the (implementation of the) HE scheme itself. Since ALCHEMY

targets BGV-style SHE as implemented in section 4.3, the ciphertext DSL operations use

types (for ciphertexts, keys, etc) from Λ∘𝜆.

5.3.1 BGV-style SHE in Λ∘𝜆

We give a brief overview of the relevant SHE types in Λ∘𝜆. Some unnecessary details have

been suppressed for clarity.

In this cryptosystem, a plaintext is an element of the 𝑚th cyclotomic ring mod 𝑝, i.e.

𝑅𝑝 = Z𝑝[𝑋]/(Φ𝑚(𝑋)), where Φ𝑚(𝑋) is the 𝑚th cyclotomic polynomial. In Λ∘𝜆, this

ring is represented with the data type Cyc m zp, where m is a (type-level) natural number

representing the parameter 𝑚 (known as the cyclotomic index) and zp is a type for integer

arithmetic mod 𝑝 (i.e., Z𝑝 arithmetic).

A ciphertext is a polynomial over the 𝑚′th cyclotomic ring mod 𝑞, where the plaintext

index 𝑚 divides the ciphertext index 𝑚′. We denote this ring by 𝑅′
𝑞. Λ∘𝜆 represents

ciphertexts with the type CT m zp (Cyc m’ q), where m and zp are the plaintext parameters,

and m’, q are the ciphertext parameters.

The secret key for a ciphertext with type CT m zp (Cyc m’ zq) is encoded as SK (Cyc

m’ z), where z represents the ring of integers (not mod anything).

Arithmetic Operations. Λ∘𝜆 defines the native SHE operations on these types. Concretely,

the CT data type is an instance of Haskell’s Additive and Ring classes, so we can use the

(+) and (*) operators on ciphertexts. Note that the Add and Ring instances for E given
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in subsection 5.2.1 and subsection 5.2.3 suffice to obtain addition and multiplication for

ciphertexts, with no extra work.

In addition to adding and multiplying ciphertexts, we can also add and multiply a public

plaintext value with a ciphertext. These operations are captured with the DSL expressions

addPublic_ and mulPublic_, which are part of the SHE ciphertext language component:

addPublic_ :: (SHE expr, ct ~ CT m zp (Cyc m’ zq), ...)

=> Cyc m zp -> expr env (ct -> ct)

mulPublic_ :: (SHE expr, ct ~ CT m zp (Cyc m’ zq), ...)

=> Cyc m zp -> expr env (ct -> ct)

Here, Cyc m zp represents a plaintext value in 𝑅𝑝. The functions take a public plaintext

value and output an expression from a ciphertext encrypting an 𝑅𝑝 value to a new ciphertext.

Rescaling Plaintexts. The SHE scheme also allows us to rescale an encrypted plaintext

while simultaneously changing the modulus of the plaintext. The DSL operation for this is:

modSwitchPT_ :: (SHE expr, ...)

=> expr env (CT m zp (Cyc m’ zq) -> CT m zp’ (Cyc m’ zq))

Ring switching. We can apply a linear function to an encrypted plaintext (which possibly

moves the plaintext to a new ring) using the tunnel_ operation:

tunnel_ :: (SHE expr, ...) => TunnelHint gad e r s e’ r’ s’ zp zq

-> expr env (CT r zp (Cyc r’ zq) -> CT s zp (Cyc s’ zq))

tunnel_ corresponds to Λ∘𝜆’s implementation of ring switching called ring tunneling,

which moves an (encrypted) plaintext in the 𝑟th cyclotomic ring 𝑅 to an encrypted plaintext

in the 𝑠th cyclotomic ring 𝑆. In the process, tunneling applies any function 𝑓 : 𝑅→ 𝑆 to

the plaintext, as long as 𝑓 is linear over the 𝑒th cyclotomic ring (for some 𝑒 dividing both
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𝑟 and 𝑠). Each of the plaintext indices 𝑒,𝑟,𝑠 has a corresponding ciphertext index 𝑒′,𝑟′,𝑠′,

subject to divisibility constraints. The public TunnelHint input encodes the linear function

𝑓 that will be applied to the plaintext. The hint data type is parameterized by the gadget used

to make the hint, all relevant cyclotomic indices, and the plaintext and ciphertext moduli.

Ciphertext management. Many SHE operations are most convenient to perform when

the ciphertext is a linear polynomial (in the secret key) over 𝑅′
𝑞. Ciphertext multiplication

produces a quadratic polynomial. Thus to perform more operations, we have to “linearize”

the ciphertext using a (circular) key switch with keySwitchQuadCirc:

keySwitchQuad_ :: (ct ~ CT m zp (Cyc m’ zq), ...)

=> KSQuadCircHint gad (Cyc m’ zq) -> expr env (ct -> ct)

The DSL operation requires additional (public) information in the form of a hint. The hint

data type, KSQuadCircHint, is parameterized by a gadget used to perform the key switch,

as well as the type for the ciphertext ring.

Measuring and Managing Ciphertext Noise. Ciphertexts have an implicit error term

which grows as homomorphic operations are performed. If this noise becomes too large,

the ciphertext cannot be decrypted, and the plaintext is lost. Thus an important part of

the cryptosystem is controlling the noise growth by augmenting a computation with noise

management operations.

We first consider an operation which helps to control the size of the absolute error in a

ciphertext by rescaling the ciphertext modulus:

modSwitch_ :: (SHE expr, ...)

=> expr env (CT m zp (Cyc m’ zq) -> CT m zp (Cyc m’ zq’))

See section 4.3 for details.
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It is difficult to predict how the (relative) error rate changes throughout a computation.

In practice, it is simplest to just decrypt the ciphertext, observing the error rate in the process.

This is captured with a new ciphertext language component:

class ErrorRate expr where

errorRate_ :: (...)

=> SK (Cyc m’ z) -> expr e (CT m zp (Cyc m’ zq) -> Double)

Since extracting and measuring the error term requires the decrypting the ciphertext,

errorRate_ takes the secret key under which the input (object-language) ciphertext is

encrypted.

Connection to SHE implementation. Recall that the SHE language component is tightly

coupled with the underlying implementation in Λ∘𝜆. Each of the functions from the SHE

language component correspond directly with a similarly named function from the Λ∘𝜆

SHE interface. For example, the DSL operation addPublic_ corresponds to addPublic

from the SHE implementation, which has the following signature:

addPublic :: (AddPublicCtx m m’ zp zq)

=> Cyc m zp -> CT m zp (Cyc m’ zq) -> CT m zp (Cyc m’ zq)

The addPublic_ operation is a Haskell function which takes a value in the plaintext ring

and produces an expression for an object language function which takes a ciphertext and

produces a ciphertext. Similarly, addPublic takes a plaintext element and a ciphertext and

produces a new ciphertext.

The coupling between the interfaces becomes even more apparent with the evaluation

interpreter. To evaluate any SHE DSL operation, we simply call the corresponding function

from Λ∘𝜆’s SHE interface, as in this partial instance:

instance SHE E (CT m zp (Cyc m’ zq)) =>

addPublic_ a = E $ \e -> \ct -> addPublic a ct
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With the exception of errorRate_, the other ciphertext language features described above

similarly match the functionality of the corresponding function from the Λ∘𝜆 interface,

and have equally simple implementations. For errorRate_, we first use the Λ∘𝜆’s SHE

interface to obtain the error term, then compute the associated error rate.

5.4 Interpreters

We now describe a selection of the interpreters included with ALCHEMY. We describe our

flagship interpreter, the homomorphic compiler, in section 5.5. We have already seen one

interpreter in its entirety: the evaluation interpreter E described in subsection 5.2.1.

5.4.1 Pretty-printer

The pretty-print interpreter turns an ALCHEMY DSL expression into a string representing

the expression. This interpreter was simplified in subsection 5.2.1; we describe the actual

implementation here. The pretty-printer P is defined as:

newtype P e a = P (Int -> String)

pprint :: P () a -> String -- same as previous definition

A pretty-print expression is thus represented by a Int -> String function. The argument

indicates how many variables are in scope for this expression. This value is ignored for most

language components like Add, Mul, Pair, etc:

instance Add P a where

add_ = P $ \i -> "add_"

However, the scoping information is needed to pretty-print a lambda expression:

instance Lambda P where

lam (P f) =
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P $ \i -> "(\\v" ++ show i ++ " -> " ++ f (i+1) ++ ")"

(P f) $: (P a) =

P $ \i -> "(" ++ f i ++ " " ++ a i ++ ")"

v0 = P $ \i -> "v" ++ show (i-1)

s (P v) = P $ \i -> v (i-1)

lam creates a string with a lambda for variable 𝑖, then recursively prints the rest of the

expression, adding one more variable to the scope. The ($:) operator is object-language

function application, which doesn’t introduce or hide any variable, so ($:) appends the

two subexpressions without changing the variable counter. Since the body of any lambda

has at least one bound variable (by definition), v0 uses 𝑖 − 1 so that variables are zero-

indexed. Finally, since s is used to refer to a variable in an extended scope (as opposed to

the closest-bound variable), it recursively interprets the subexpression in a context with one

fewer variables.

5.4.2 Expression Size

A useful metric for evaluating the complexity of an expression is its size, in term of the

number of DSL operations used. The size interpreter S is defined as:

newtype S e a = S { size :: Int }

size :: S () a -> Int

Thus all expressions are simply represented by an integer, which can be extracted using

size. This simple definition leads to equally simple instances:

instance AddLit S a where

addLit_ _ = S 1

instance Lambda S where
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lam (S i) = S $ i+1

(S f) $: (S a) = S $ f + a

v0 = S 1

s (S i) = S i

The most interesting instance is Lambda. Clearly v0 should have size one. The same should

be true for any other variable, so uses of s don’t increase 𝑖. Lambdas increase the size of

an expression by one, so lam increments 𝑖. Finally, the function application operation ($:)

simply adds the size of the function and the size of the argument.

5.4.3 Expression Duplicator

So far, we have seen that each ALCHEMY interpreter uses a concrete representation for

expressions. However, the expressions themselves are written using only DSL operations,

which are abstract and not tied to any specific interpreter (i.e., ALCHEMY expressions are

polymorphic in their interpreter). Thus expressions can be interpreted with any interpreter

that supports the language components used in the expression.

Unfortunately, there is a caveat to this polymorphism: once an interpreter is chosen

for a particular expression, the type of the expression is “monomorphized” for that inter-

preter. This limitation of Haskell’s type system8 precludes the possibility of interpreting

a given expression in multiple ways, which severely restricts the flexibility of ALCHEMY

expressions.

However, [Kis10] provides a simple way to work around this restriction, by first dupli-

cating an expression into two new expressions which have possibly different interpreters.

The duplicator interpreter D is defined as:

data Dup intp1 intp2 e a = Dup (intp1 e a) (intp2 e a)

8The functionality we seek is known as impredicative polymorphism, which is not available in the GHC
Haskell compiler.
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dup :: Dup intp1 intp2 e a -> (intp1 e a, intp2 e a)

This is the first interpreter we have seen so far which is parameterized by another interpreter.

This is because rather than producing a Haskell value like an Int or String, dup produces

expressions which can be further interpreted. Specifically, dup produces two new expres-

sions, each of which have their own interpreter. Naturally this technique can be applied

recursively to interpret an expression in arbitrarily many ways.

The instances for D are all very similar and mechanical. We show the Add instance

below:

instance (Add intp1 a, Add intp2 a)

=> Add (Dup intp1 intp2) a where

add_ = Dup add_ add_

neg_ = Dup neg_ neg_

The constraints on the instance meant that in order to add two Dup intp1 intp2 expressions

of (object-language) type a, we must be able to individually add intp1 expressions of type

a and intp2 expressions of type a. The implementation mirrors these constraints: add_ for

Dup intp1 intp2 simply uses add_ for the intp1 interpreter and the intp2 interpreter.

Using Dup is very simple:

expr = lam $ add_ $: v0 $: v0

(ex1, ex2) = dup expr

pprint ex1

-- "(\\v0 -> ((add v0) v0))"

eval ex2 3

-- 6
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5.4.4 Logging Error Rates

HE ciphertexts include an error term which grows with homomorphic operations. If the

error term gets too large (as measured by the error rate), the underlying plaintext is lost.

The amount of noise growth depends on the homomorphic operation and the cryptosystem

parameters, but it is difficult to predict in advance exactly how the parameters will affect

noise growth. Yet noise growth must be taken into account when choosing parameters:

if the parameters are too small, we will be unable to decrypt the ciphertext, while overly

conservative parameters cause the noise to grow more quickly than necessary, limiting the

homomorphic capacity of the cryptosystem.

We can iterate on an optimal parameter combination by measuring the size of the error

term after each homomorphic operation, and then adjusting the parameters to increase or

decrease noise growth as needed. Thus we would like a way to dynamically log the empirical

error rates throughout a homomorphic computation.

In ALCHEMY, homomorphic operations happen at object-language runtime, so the

logging functionality also must happen at runtime. However, the accumulation of error rates

is an effect, so this functionality requires monads in the object language. The language

components for this collection of features were given in subsection 5.2.2. Note that these

features need not be used in top-level expressions; rather, we provide an interpreter which

logs error rates by inserting monadic operations from these language components. We

introduce the ErrorRateWriter interpreter for this purpose:

newtype ErrorRateWriter

intp -- | the underlying interpreter

k -- | (reader) monad that supplies keys

w -- | (writer) monad for logging error rates

e -- | environment

a -- | represented type
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= ERW (k (intp (Monadify w e) (Monadify w a)))

type family Monadify w a where

Monadify w (a,b) = (Monadify w a, Monadify w b)

Monadify w (a -> b) = Monadify w a -> Monadify w b

Monadify w a = w a

type ErrorRateLog = [(String,Double)]

writeErrorRates :: (MonadWriter ErrorRateLog w,

MonadReader Keys k)

=> ErrorRateWriter intp z k w e a

-> k (intp (Monadify w e) (Monadify w a))

ErrorRateWriter represents expressions with object-language type a by a (monadic)

sub-expression using the intp interpreter with a “monadified" object-language type. The

Monadify type family pushes the writer monad w into the expression type, e.g., turning a

-> (b,c) into w a -> (w b, w c). If we instantiate intp with the evaluation interpreter E

and run both interpreters, we are left with a monadic Haskell function which dynamically

logs error rates. The log consists of a list of (String,Double) pairs. The Double is the

empirical error rate for an intermediate ciphertext, and the string serves as an annotation to

help identify the intermediate step within the larger expression.

To interpret a DSL operation, ErrorRateWriter uses the following steps:

1. Use one or more inputs to perform the operation with the inner intp interpreter,

producing a ciphertext.

2. Obtain the secret key used to encrypt the ciphertext using the k reader monad.
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3. Compute the error rate of the ciphertext by passing the ciphertext and secret key to

errorRate_.

4. Append the error rate to a log using the monadic object-language features with the

writer monad w.

These steps are clear in the Add instance for ErrorRateWriter:

instance (Add expr ct, ...) =>

Add (ErrorRateWriter expr k w) (CT m zp (Cyc m’ zq)) where

add_ = ERW $ do

Just sk <- lookupKey

return $ lam $ lam $ tellError "add_" sk $:

(liftA2_ $: add_ $: v1 $: v0)

tellError :: (MonadWriter_ expr, ErrorRate expr, Pair expr, ...)

=> String -> SK (Cyc m’ z)

-> expr e (CT m zp (Cyc m’ zq) -> mon ())

tellError str sk =

lam (tell_ $: (pair_ $: (LS.string_ str) $:

(errorRate_ sk $: v0)))

Notice that the ErrorRateWriter instance of Add is defined only when the object language

type is a ciphertext. lookupKey uses the reader monad to obtain the correct key for this

ciphertext. The key is determined by the (inferred) type alone, so no arguments are needed.

We pass the result of adding the inputs with the intp interpreter to tellError. This helper

function uses errorRate_ to obtain the error rate of the input ciphertext v0, string_ to

turn the annotation into a DSL expression, and pair_ to glue these pieces together as an
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object-language pair. tell_ logs this value using the object-language writer monad w. The

implementation for other language components is similar.

The effect of this interpreter is best seen with a simplified example; see chapter 6 for a

full example.

expr = lam $ add_ $: v0 $: v0

(ex1,ex) = dup expr

pprint ex1

-- "(\\v0 -> ((add v0) v0))"

(ex2,ex3) = dup $ runReader [] $ writeErrorRates ex

pprint $ ex2

-- \v0 -> bind (ap (fmap add v0) v0)

-- (\v1 -> bind (tell (pair "add_Q268440577" (errorRate v1)))

-- (\v2 -> pure v1))

(result,log) = runWriter $ eval ex3 $ encrypt 3

print log

-- [("add_",7.301429694065961e-7)]

This example uses the duplicator twice to get three copies of expr with three different inter-

preters. Concretely, the interpreters are P, ErrorRateWriter P k w, and ErrorRateWriter

E k w. We first pretty-print ex1 to show the unmodified expression. Printing the result of

running ErrorRateWriter shows that ex2 is a new expression which is equivalent to the

original expression (note the ap (fmap v0) v0), but which additionally logs the error rate

of the output. Evaluating ex3 produces a list of pairs giving the error rate at each step of the

computation. Note that error rates near 0.5 indicate a decryption failure, and all subsequent
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ciphertexts in the computation will have a similar error rate. Thus it isn’t hard to identify

precisely where the parameters are invalid.

While repeatedly evaluating an expression with different parameters to find an optimal

parameter combination is possible, it’s a very tedious process. In section 5.5 we automate

parts of this process by using estimates for noise growth which we obtained by using this

interpreter.

5.5 Plaintext-to-Ciphertext Compiler

In this section we describe the design and implementation of a “plaintext-to-ciphertext”

compiler that, given an “in the clear” program in the plaintext DSL, interprets it as a

corresponding “homomorphic” program in the ciphertext DSL for BGV-style SHE. The

resulting program can in turn be handled by any ciphertext-DSL interpreter, such as the

evaluator, the pretty-printer, or another transformation like an optimizer or the error-rate

logger described in subsection 5.4.4. The compiler automatically generates all necessary

keys, hints and other auxiliary information, and input ciphertexts. And it statically (i.e.,

at compile time) infers the approximate noise rate of each ciphertext in the computation,

choosing appropriate moduli based on their “noise capacity,” and emitting a compile error if

the programmer has not provided moduli that have enough capacity.

5.5.1 Interface

The plaintext-to-ciphertext compiler is a data type PT2CT, defined as follows:

newtype PT2CT

m’map -- | list of (PT index 𝑚, CT index 𝑚′)

zqs -- | list of coprime Z𝑞 components

gad -- | gadget type for key-switch hints

ctex -- | ciphertext-DSL interpreter

mon -- | monad for creating keys/noise
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e -- | environment type

a -- | plaintext type

= PC (mon (ctex (Cyc2CT m’map zqs e)

(Cyc2CT m’map zqs a)))

PT2CT is parameterized by several types, which are needed to transform from plaintext

operations to ciphertext operations:

• m’map is a mapping from (the indices of) plaintext cyclotomic rings to (the indices of)

their corresponding ciphertext rings;

• zqs is a list of types representing Z𝑞-components that can be multiplied (forming

product rings) to form ciphertext moduli;

• gad indicates what kind of decomposition “gadget” to use for creating and using

key-switch hints;

• ctex is the target ciphertext-DSL interpreter;

• mon is a monad in which keys and hints can be generated and accumulated;

• e is the usual notion of environment; and

• a is the type of the plaintext DSL expression.

Based on these parameters, PT2CT simply “wraps” a (monadic) ciphertext-DSL expression

of type (Cyc2CT m’map zqs a), interpreted by ctex.

Cyc2CT is a type family—i.e., a function from types to types—that converts an “in the

clear” plaintext type a to a corresponding “homomorphic” type. For example, it converts

the cyclotomic ring type (Cyc m zp) to the type of a ciphertext over the cyclotomic ring of

index (Lookup m m’map), with an appropriate ciphertext modulus (as determined by the

associated “noise rate;” see subsection 5.5.2 below.) Similarly, it converts the type a ->

b of a function by recursing on both arguments a, b. In this way, functions on plaintexts
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(even higher-order ones) correspond to functions on ciphertexts of corresponding types. We

emphasize that all these type conversions occur statically at compile time, with no runtime

overhead.

The public interace of PT2CT is the function

pt2ct :: (MonadRandom mon, MonadAccum Keys mon,

MonadAccum Hints mon, ...)

=> PT2CT m’map zqs gadget ctex mon () a

-> mon (ctex () (Cyc2CT m’map zqs a))

which converts any closed PT2CT-expression of “plaintext” type a to a closed ctex-expression

of the corresponding “homomorphic” type. The MonadAccum constraints on pt2ct indicate

that the compilation must take place in a context which permits the accumulation of both

secret keys and key-switch hints. In subsection 5.5.3, we will see that PT2CT automatically

generates secret keys and hints (which requires randomness), and reuses them wherever pos-

sible for efficiency. Furthermore, the accumulated keys are used to encrypt plaintext values

to ciphertexts under the appropriate key, and to decrypt ciphertexts, e.g., for decrypting a

result or to log an intermediate error rate.

5.5.2 Tracking Noise, Statically

Many homomorphic operations, e.g., multiplication and ring switching, introduce (addi-

tional) noise into the resulting ciphertext. The amount of noise growth is a function of the

gadget, ciphertext ring, and the noise capacity of ciphertext modulus components. When

chaining multiple operations together, we must track the noise growth to ensure correct

homomorphic evaluation: if the noise rate grows too large, the result cannot be decrypted.

For a fixed computation, we can work backwards from a target noise rate to determine the

maximum noise rate permitted in the input ciphertexts.

The PT2CT compiler performs this analysis statically, so there is no runtime overhead.

Given an expression and a target output noise rate (typically the maximum allowed for a
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successful decryption), it infers the maximum allowable noise rate of a ciphertext at any

step in the computation.

In order to track this information, PT2CT annotates each occurrence of a cyclotomic ring

in the plaintext expression with a (type-level) natural number 𝑝. This value indicates that

the corresponding ciphertext should have noise rate 𝛼 ≤ 2−𝑝·𝑢, where 𝑢 is a global rational

constant representing one “unit” of noise. We introduce the data type PNoise p a to hold

this value, where p represents a natural number. When a is a cyclotomic ring, PNoise p a

represents a corresponding ciphertext with noise rate 𝛼 satisfying 𝑝 ≤ − lg𝛼
𝑢

, which explains

the name “pNoise”. PT2CT compiles expressions involving annotated cyclotomic rings9

into a ciphertext expression which is guaranteed to satisfy the requirements on the noise

rates. The compiler achieves this guarantee by statically selecting ciphertext moduli which

are large enough to support the requested noise rate. For example, if a cyclotomic ring is

annotated with pNoise 𝑝, the corresponding ciphertext might need to be at least 𝑝 · 𝑢 + 𝑐

bits, for some constant 𝑐.

We now show how PT2CT calculates pNoise for two operations: (*:) and linearCyc.

Their types indicate that an interpreter may require the input and output types of the operation

to be different:

linearCyc :: Linear zp e r s

-> expr env ((PreLinearCyc expr rep) (Cyc r zp))

-> expr env rep (Cyc s zp))

(*:) :: expr e (PreMul expr a) -> expr e (PreMul expr a) -> expr e a

The type families PreLinearCyc and PreMul determine the input type to these operations.

PT2CT defines them as:
9Since PT2CT requires expressions involving PNoise, we extend all relevant interpreters to support opera-

tions on this data type.
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type PreLinearCyc (PT2CT m’map zqs gad z ctex mon)

(PNoise p) = PNoise (p :+: N1)

type PreMul (PT2CT m’map zqs gadget ctex mon) (PNoise p a) =

PNoise (Units2PNoise (TotalUnits zqs (p + 3))) a}.

Example Consider the example from subsection 5.1.2:

ex1 = lam $ lam $ v0 *: (v0 +: v1)

We can specialize the type of this expression to

PT2CT m’map zqs gadget ctex mon () (PNoise pin a -> PNoise 0 a).

Setting the output pNoise to zero indicates that when we homomorphically evaluate this

expression, we will immediately decrypt the result without doing any further homomorphic

operations. Based on the signatures of (*:) and (+:), the compiler infers that v0, v1 have

type

PT2CT m’map zqs gadget ctex mon () (PreMul expr b).

Using the definition of the PreMul type family for PT2CT given above, we find that the input

ciphertexts must have pNoise 𝑝𝑖𝑛 = 0 + 3 = 3.

Similarly, PT2CT gives a type family that converts annotated plaintext types into cipher-

text types:

Cyc2CT m’map zqs (PNoise p (Cyc m zp)) =

CT m zp (Cyc (Lookup m m’map) (ZqPairsWithUnits zqs (p + 2)))

which indicates that input ciphertext modulus must have at least 3 + 2 = 5 total units, or

about 31 bits.
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5.5.3 Implementation

We now show how PT2CT implements several instructive language components. Some

plaintext operations, like addition, translate directly into addition on ciphertexts. This leads

to a very simple Add instance for PT2CT:

instance (Add ctex (Cyc2CT m’map zqs a), Applicative mon)

=> Add (PT2CT m’map zqs gad ctex mon) a where

add_ = PC $ pure add_

neg_ = PC $ pure neg_

The implementation of add_ for PT2CT simply embeds the (pure) function add_ on cipher-

texts into the applicative mon.

By contrast, plaintext multiplication becomes much more involved when translated to its

homomorphic counterpart:

instance

(Lambda ctex, Mul ctex ctin, SHE ctex, MonadRandom mon,

MonadAccumulator Keys mon, MonadAccumulator Hints mon, ...)

=> Mul (PT2CT m’map zqs gad ctex mon) (PNoise p (Cyc m zp)) where

mul_ = PC $ do

-- lookup or generate a key switch hint

hint <- getQuadCircHint

return $ lam $ lam $

-- switch from the hint modulus to the output modulus

modSwitch_ $:

-- perform a quadratic key switch using the hint

(keySwitchQuad_ hint $:

-- switch the ciphertext modulus to the hint modulus
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(modSwitch_ $:

-- multiply the input ciphertexts

(v1 *: v0)))

We need the Mul ctex ctin constraint to multiply the ctex terms bound to the input

variables v0 and v1. The result is a quadratic ciphertext, which must be converted via

key switching back to a linear ciphertext; this requires an appropriate key-switch hint. The

function getQuadCircHint relies on the MonadAccumulator Hints mon constraint to look

up an existing hint, or, failing that, to generate and store (accumulate) a random hint, where

randomness generation relies on the MonadRandom mon constraint. Generating a hint in turn

requires knowledge of the secret key under which the ciphertext is encrypted, which can be

looked up (or, failing that, generated and stored) thanks to the MonadAccumulator Keys

mon constraint.

The hint is typically generated with a larger modulus than the ciphertext modulus (the

exact size depends on the choice of gadget), so that the amount of noise introduced when

key-switching is small compared to the existing ciphertext noise. As a result, we must

rescale the ciphertext to the key-switch modulus, perform the key switch, and then rescale

the ciphertext modulus again to the final output modulus.

Another plaintext operation with a non-trivial homomorphic counterpart is linearCyc_:

instance (MonadAccumulator Keys mon, MonadRandom mon,

SHE ctex, Lambda ctex, ...)

=> LinearCyc (PT2CT m’map zqs gad z ctex mon) (PNoise p) where

linearCyc_ f = PC $ do

hint <- getTunnelHint f -- generate a hint for tunneling

return $ lam $

modSwitch_ $: -- scale back to the target modulus

(tunnel_ hint $: -- tunnel with the hint

(modSwitch_ $: v0)) -- scale up to the hint modulus
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We can homomorphically apply a linear function from one ring to another using a special

type of ring-switching called tunneling (see chapter 3). This process is a special form of

key-switching, which requires an appropriate hint. As with multiplication, we perform

these key switches with a larger modulus to minimize noise growth, so we must switch

the ciphertext modulus up before tunneling, and back down after tunneling. As before,

performing a key-switch requires an appropriate hint, which depends on the secret keys.

These keys are obtained or generated as above. Note that there is no MonadAccumulator

Hints mon constraint because in typical use cases, hints for tunneling cannot be reused,

so we do not attempt to explicitly store them after they are generated. (However, they are

embedded in the ultimate compiled ciphertext-DSL term.)

5.6 Future Work

ALCHEMY represents a large step towards making practical HE a reality. We explore some

areas for future improvement below.

Interpreters. It is possible to conceive of a huge number of interesting and useful inter-

preters. A large class of these interpreters come in the form of optimizers, which turn an

expression (in some DSL) into an equivalent expression that is more efficient. We have

already seen how an interpreter for beta-reducing expressions could be useful for simplifying

expressions. Note that beta-reduced expressions are no more efficient than the original, but

some interpreters benefit from this optimization. In particular, beta-reduced expressions

have a much simpler representation using the P interpreter, and the S interpreter gives a more

accurate estimate of the size of beta-reduced expressions.

HE Parameters. Although the PT2CT compiler automatically chooses ciphertext moduli

at each step of the computation, users must still provide some ciphertext parameters. In

particular, the user must provide a pool of ciphertext moduli that the compiler can choose

from, as well as all ciphertext cyclotomic indices. Ideally, ALCHEMY would be a black
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box that chooses all ciphertext parameters to achieve both optimal performance as well

as the desired security level. However, much more theoretical work must be done before

such an tool can be realized. Specifically, this functionality would require a much better

understanding of the concrete security level for a given parameter combination.

Bootstrapping for Fully Homomorphic Encryption ALCHEMY currently compiles

computations to a target SHE scheme. The only known way of achieving FHE is to

periodically perform Gentry’s bootstrapping procedure [Gen09a]. Like many of the steps

automated by ALCHEMY, it should be relatively easy to predict when bootstrapping needs

to occur. Ideally, bootstrapping would be inserted seamlessly into (arbitrary) homomorphic

computations; we leave this for future work.

Meta-language Function Application. We finish this summary by noting that there is

a powerful technique called higher-order abstract syntax (HOAS), which uses the meta-

language’s variable-binding and function-creation facilities for creating object-language

functions, thus obviating the need for environments and De Bruijn-indexed variables as

in subsection 5.2.1. However, this technique seems unsuitable for some of our advanced

needs, specifically monadic interpreters. Some initial progress has recently been made on

this front [KKS15], but as the authors caution, it is not yet ready for general-purpose use.

The implementation of object-language functions has far-reaching implications through-

out ALCHEMY. It not only affects how easy it is to read and write plaintext expressions,

but it also affects properties of the interpreters. For example, we cannot write the Dup or

ErrorRateWriter interpreter using HOAS. Yet HOAS is simpler to use in expressions, and

De Bruijn variables bring their own challenges. Concretely, we have been unable to obtain

sharing fo subexpressions in the ErrorRateWriter interpreter. The only impact is that error

rates for shared expressions appear multiple times in the log, however it is an indicator that

De Bruijn variables do not provide all the solutions for this complex problem. It remains an

active area of research in the programming language community.
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CHAPTER 6

FAST HOMOMORPHIC EVALUATION OF SYMMETRIC KEY PRIMITIVES

Some recent works (e.g., [NLV11; GHS12c; WH12; Che+13]) have examined the suit-

ability of homomorphic encryption for evaluating “non-trivial” functions that can offer

practically useful functionality. In this chapter, we explore the homomorphic evaluation

of ring rounding, which appears as the main operation in a surprising number of lattice

primitives including SHE [BGV14], the RLWR problem [BPR12], and pseudorandom func-

tions [BPR12; BP14]. The homomorphic evaluation of this operation therefore becomes an

important part of the bootstrapping procedure for FHE, which evaluates the SHE decryption

circuit homomorphically.

Another particularly important application, which serves as a motivating example

throughout this chapter, is the homomorphic evaluation of symmetric-key cryptographic

primitives. For instance, given a ciphertext HE(𝑘) encrypting a key 𝑘 for a symmetric-key

encryption scheme Enc𝑘, and a ciphertext 𝑐 = Enc𝑘(𝑚) encrypting a message 𝑚, one

can homomorphically compute HE(Dec𝑘(𝑐)) = HE(𝑚) by homomorphically applying the

function 𝑓(𝑥) = Dec𝑥(𝑐) to HE(𝑘). This particular instance of homomorphic evaluation is

extremely powerful, and even seems necessary for many practical usage scenarios of HE, as

we explain in the next section.

6.1 Homomorphic Evaluation of Symmetric-Key Primitives

Perhaps the most straightforward application of the homomorphic evaluation of a symmetric-

key decryption algorithm is in reducing communication and computation for a weak client

(Alice) who delegates her computation to the “cloud” (Bob). The simplest form of this

application is described in subsection 5.1.3, and requires Alice to encrypt her data with an

HE scheme and send those ciphertexts to Bob. However, all known HE schemes that can
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evaluate reasonably complex functionalities have quite large keys and ciphertexts, so a weak

client like Alice may not be able to directly encrypt its data under such a scheme. Instead,

it can encrypt the data under a lightweight symmetric-key scheme, and then the cloud

can homomorphically transform that encrypted data into HE-encrypted data as described

above, which could then be processed further (homomorphically). Since plain symmetric

encryption will almost certainly remain much more time- and space-efficient than HE

encryption, this approach provides major savings in communication and computation by

the weak device. (The relatively heavy computation of HE(𝑘), where 𝑘 is the key of the

symmetric encryption scheme, can be done once and for all in an offline preprocessing

phase, and then subsequently used in all homomorphic computations.)

This example illustrates a more general template for enhancing the performance of

HE-based applications, especially ones in which there is a large amount of plaintext data.

For example, Wu and Haven [WH12] proposed an efficient implementation of SHE in

the context of large-scale statistical analysis (e.g., linear regression on a multidimensional

encrypted corpus). Since the plaintext-to-ciphertext expansion of HE schemes is large,

it may be impractical to directly encrypt a large corpus under such a scheme. Instead,

one could encrypt the data under a (nearly) length-preserving symmetric scheme, then

homomorphically decrypt as needed. Moreover, symmetric encryption can allow for random

access to the data, which is desirable if a particular homomorphic evaluation needs to use

only a small part of the data.

Another appealing instantiation of this template is in the construction of a private

information retrieval (PIR) scheme. As suggested by Brakerski and Vaikuntanathan [BV11a],

any efficient procedure for homomorphic symmetric decryption can be efficiently converted

into a single-server PIR protocol, by having the client encrypt its query under a symmetric

scheme, rather than an HE. The server then homomorphically decrypts the query and then

additionally evaluates an arithmetic circuit of size 𝑁 and depth only log log𝑁 , where 𝑁 is
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the size of the database held by the server. Efficient homomorphic decryption can therefore

greatly enhance the efficiency of the protocol for both the server and client.

One final application is that of key derivation in the cloud. Here a client generates

a master key 𝑘, and wishes to use it for deriving a large number of pseudorandom keys

𝑘𝑖 = 𝐹𝑘(𝑖) for different uses, where 𝐹𝑘 is a pseudorandom function (PRF). The client

can delegate these derivations to the cloud, and also obtain some robustness against the

compromise or loss of secret keys, as follows. The client stores an encryption 𝑐 = HE(𝑘)

on the cloud and erases 𝑘, keeping only the HE decryption key. The client can later request

that the cloud homomorphically compute HE(𝐹𝑘(𝑖)) for any desired 𝑖, and then decrypt

the result locally. The cloud (or an attacker who compromises it) learns nothing about the

master key 𝑘, whereas an attacker who compromises the client alone learns only the HE

secret key. This might allow the attacker to compute several session keys, but only with the

cloud’s continued help, which might mitigate the damage if, e.g., the client learns of the

intrusion and notifies the cloud.

6.1.1 Homomorphic Evaluation of AES

To date, the only attempts to homomorphically evaluate symmetric-key primitives [GHS12c;

Che+13] have focused on the AES-128 function. The suitability of AES as a benchmark is

justified by its wide deployment and extensive use in security-aware applications, as well

as by its non-trivial yet manageable circuit size and depth. Moreover, the AES circuit has

a regular and quite “algebraic” structure, which is very amenable to parallelism and other

optimizations in the context of homomorphic evaluation. For precisely those reasons, it

seemed plausible that a specially designed and optimized implementation would result in

reasonable performance, and yield considerable practical utility.

Unfortunately, despite many clever optimizations and careful adaptations to the structure

of AES, the best reported homomorphic evaluations of the AES function are very far from

practical. As is to be expected, the inefficiency lies in the extremely high degree of the
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AES function, which induces an arithmetic circuit depth of at least 50. To securely evaluate

such a circuit homomorphically requires exceedingly large keys for the HE, and very large

runtimes. The work of [GHS12c] reports that homomorphic evaluation of AES on a single

block takes around 36 hours on a server-class machine, and uses up to 256 gigabytes of

memory. “Batching,” i.e., computing several hundred blocks at a time, brings the runtime

down to as low as 5 minutes per block, but takes about 2.5 days to complete, and none of

the results are available until the end. Similar (but slightly worse) experimental results were

recently reported in [Che+13], which used a quite different underlying SHE scheme for the

homomorphic computation.

6.1.2 In Search of Efficient Alternatives

Practical homomorphic evaluation of symmetric primitives seems quite far off, if the search

is limited to standard candidates like AES. Motivated by this state of affairs, we consider

whether different symmetric constructions can support significantly faster homomorphic

evaluation. This would enable the applications mentioned above, and would undoubtedly

broaden the applicability of HE in practice.

Towards this end, we consider a weak pseudorandom function 𝐹𝑠 : {0, 1}𝑘 → {0, 1}𝑛

indexed by a randomly chosen key 𝑠, which is widely applicable in symmetric-key cryptog-

raphy. Recall that a weak PRF cannot be efficiently distinguished from a uniformly random

function, given polynomially many pairs of the form (𝑥𝑖, 𝐹𝑠(𝑥𝑖)), where the 𝑥𝑖 ∈ {0, 1}𝑘

are uniformly random and independent (not chosen by the adversary). It is well known that

weak PRFs can be used in a generic manner to implement symmetric-key encryption, in the

following way:

Enc𝑠(𝑚; 𝑟) = (𝑟, 𝐹𝑠(𝑟)⊕𝑚), Dec𝑠(𝑟, 𝑐) = 𝐹𝑠(𝑟)⊕ 𝑐,
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where 𝑚 ∈ {0, 1}𝑛 and 𝑟 ∈ {0, 1}𝑘. The scheme is IND-CPA secure provided that 𝐹𝑠 is a

weak PRF for sufficiently large input length 𝑘, and 𝑟 is chosen uniformly at random in each

invocation.

Notice that homomorphically computing a PRF 𝐹𝑠, i.e., computing HE(𝐹𝑠(𝑟)) from

HE(𝑠) and 𝑟, followed by a single homomorphic exclusive-or operation, corresponds to ho-

momorphically computing HE(Dec𝑠(𝑐)) = HE(𝐹𝑠(𝑟)⊕ 𝑐) from HE(𝑠) and 𝑐 = Enc𝑠(𝑚; 𝑟).

Thus, efficient homomorphic evaluation of the PRF directly translates to efficient homomor-

phic symmetric decryption. So for all applications described above (including homomorphic

key management, which is attained just by evaluating the PRF itself), it is sufficient to focus

on fast homomorphic evaluation of pseudorandom functions.

6.1.3 Our Results

Our primary technical contribution is the design and implementation for the efficient homo-

morphic evaluation of the non-trivial ring rounding operation, including a novel arithme-

tization of an operation for rounding integer coefficients of a ring element. As a concrete

application, we use ring rounding to implement homomorphic evaluation of the weak pse-

duorandom function of Banerjee, Peikert, and Rosen (BPR) [BPR12]. Our experimental

results show that the homomorphic evaluation of the BPR PRF is dramatically more efficient

than the homomorphic evaluation of AES. For instance, on a standard laptop computer we

can homomorphically evaluate one useful and apparently secure instantiation of the BPR

weak PRF on a single input in less than 90 seconds, and requiring less than 150 megabytes

of memory. This is more than 1,400 times faster (on weaker hardware) than the best reported

total runtime for AES evaluation, and uses less memory by a factor of more than 1,500.

Figure 6.1 gives a high-level performance comparison between our implementation and

prior ones that homomorphically evaluate the AES function.

The key idea behind our design is to exploit the simple (yet still seemingly secure)

algebraic structure of the BPR pseudorandom function, and its tight “algebraic fit” with
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lattice-based HE constructions. Most importantly, this relationship allows us to use an HE

plaintext space that perfectly coincides with the domain of the PRF key elements, and the

operations that the PRF performs on them. From the perspective of homomorphic evaluation,

this correspondence translates into two main advantages:

1. It yields relatively compact encryptions of the PRF key element under the HE scheme,

and allows for significant savings in the amount of auxiliary data (i.e., key-switching

“hints”) needed for homomorphic evaluation.

2. It leads to very simple, small, and low-depth arithmetic circuits (and hence fast

homomorphic evaluation) for the main operation in the PRF computation, namely,

“rounding” a public multiple of the secret to a smaller modulus.

Table 6.1: Performance comparison with prior homomorphic evaluations of AES [GHS12c;
Che+13].

total runtime (sec) time/block (sec) memory

AES-128, 54-block batch 130,000 2,400 256 GB

AES-128, 720-block batch 216,000 300 256 GB

BPR weak PRF 90 90 160 MB

To date, a large roadblock for implementing homomorphic computations like pseudoran-

dom functions has been the complexity of using existing HE implementations. We give a

concise implementation using ALCHEMY (chapter 5), which automatically handles complex-

ities such as parameter generation, key/hint management, and noise management operations.

We compare our ALCHEMY implementation with a reference implementation using the

interface from section 4.3, and find that ALCHEMY greatly reduces the implementation

burden with no loss in performance.

Organization. The rest of the chapter is organized as follows.
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Section 6.2 defines the important ring-rounding operation and our method for evaluating it

homomorphically.

Section 6.3 gives our novel arithmetization (in terms of operations natively supported

by our target SHE scheme) of the integer rounding operation that is central to the

homomoprhic evaluation of ring-rounding. This arithmetization is more suitable for

rounding small moduli like those used in our PRF instantiation.

Section 6.4 introduces the BPR weak PRF, our concrete instantiation, and the homomorphic

evaluation fo the PRF.

Section 6.5 analyzes the concrete security of our BPR instantiation against known classes

of attacks.

Section 6.6 describes the implementation of homomorphic ring-rounding and PRF evalua-

tion using ALCHEMY.

Section 6.7 quantitatively measures the savings of using ALCHEMY compared to the current

method of hand-writing homomorphic computations. Note that the PRF application is

primarily a tool for evaluating ALCHEMY; for evaluating the BPR PRF implementa-

tion, see the discussion above this paragraph which compares it to prior homomorphic

evaluation of symmetric-key primitives.

6.2 Homomorphic Computation of Ring Rounding

We start by describing the ring rounding function and the technical ideas underlying its

homomorphic evaluation. Let𝑅 be a cyclotomic ring of arbitrary index𝑚, and let 𝑛 = 𝜙(𝑚).

The ring rounding function is ⌊·⌉𝑞 : 𝑅𝑝 → 𝑅𝑞. This operation is highly non-linear (which

leads to its usefulness in lattice primitives), so it is not obvious how to efficiently evaluate in

homomorphically.
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We call upon the literature on bootstrapping, which is Gentry’s technique [Gen09b;

Gen09a] for transforming an SHE into an FHE by homomorphically evaluating the SHE’s

decryption function. Since the rounding function ⌊·⌉𝑞 : 𝑅𝑝 → 𝑅𝑞 is essentially the same

nonlinear step performed in the decryption algorithm of lattice-based cryptosystems (but

for a much smaller modulus 𝑝), bootstrapping techniques from several prior works provide

exactly what we need here. In more detail, the rounding step proceeds in two phases:

• Ring-switch: First, we homomorphically move the Z𝑝-coefficients of the input into

separate plaintext “slots” of a different plaintext ring 𝑆𝑝, using the ring-tunneling

technique from section 4.2.

• Batch-round: Then, we apply the integer rounding function ⌊·⌉𝑞 : Z𝑝 → Z𝑞 in batch

to all the slots at once, at the cost of just one homomorphic evaluation of the integer

rounding function.

Starting with the latter step, Smart and Vercauteren [SV11] first proposed the idea of

batched (or SIMD) homomorphic operations. There are several known arithmetizations

of the integer rounding step in the special case where 𝑝 = 2𝑘 is a power of two and

𝑞 = 2. Gentry, Halevi and Smart [GHS12a] described a simple arithmetic circuit for these

parameters (slightly improved in [AP13]) which has depth exactly log(𝑝/2) and performs

about log2(𝑝)/2 multiplications and additions. In section 6.3 we give a quite different

circuit for the same specialized parameters, having the same log(𝑝/2) depth, which can be

evaluated using exactly 𝑝/4 multiplications (and no additions). This is asymptotically worse

but concretely better than log2(𝑝)/2 when 𝑝 ≤ 32, which is the case in our implementation.

We emphasize that all of these parameters are restricted to the case where 𝑝 = 2𝑘 and 𝑞 = 2;

an arithmetization for somewhat more general parameters is given in [HS15].

Moving coefficients into separate slots is more involved. Gentry et al. [GHS12a]

gave a procedure for doing this, but it requires working in more complex cyclotomic

rings than are convenient for our PRF, and it appears very difficult to implement and

inefficient. In particular, it relies on a general-purpose circuit compiler for HE [GHS12b],
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and seems primarily of theoretical interest. Instead we rely on the ring-tunneling technique

given in chapter 4, which improves upon the work of Alperin-Sheriff and Peikert [AP13].

Tunneling gives a simple linear procedure for transferring the coefficients of an 𝑅𝑝-element

into the plaintext slots of a different ring 𝑆𝑝, in which we can batch-round and finally decrypt

the resulting bits. To our knowledge, our weak PRF provides the first implementation of a

batched rounding circuit.

Altogether, for the full evaluation of ring rounding, we obtain a very simple and regular

arithmetic circuit, consisting of: (1) a sequence of (at most) log 𝑛 ring-tunnels (which,

despite being a linear operation, performs operations and induces noise growth roughly

matching those of a homomorphic multiplication for each tunnel), and (2) a complete binary

tree of multiplications for the (batched) integer rounding. The total effective multiplicative

depth is therefore bounded by log 𝑛+ log(𝑝/2).

6.3 Rounding Circuit for Small Moduli

In this section we describe a simple arithmetic circuit that for any 𝑝 = 2ℓ computes the

rounding function ⌊·⌉2 : Z𝑝 → Z2, i.e., it returns the bit indicating whether the input is

closer (modulo 𝑝) to 0, or to 𝑝/2.1 This operation is useful in a variety of contexts: it is an

important part of the bootstrapping step for FHE and is also the central component needed

for the RLWR problem and the strong and weak PRFs given in [BPR12], as well as for the

strong PRF in [BP14]. While this operation is easy to implement in-the-clear, it is not a

“native” operation for our SHE scheme.

Gentry, Halevi, and Smart [GHS12a] described an algebraic procedure (slightly im-

proved in [AP13, Appendix B]) that can be used to (homomorphically) compute the rounding

function in log2(𝑝/2) multiplicative depth, using a total of about log2
2(𝑝)/2 (homomorphic)

multiplications and additions each. Here we describe a very different procedure that com-

putes the function in log2(𝑝/2) multiplicative depth, exactly 𝑝/4 homomorphic multiplica-
1We thank Jacob Alperin-Sheriff (personal communication) for important observations that contributed to

the results of this section.
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tions, and no homomorphic additions.2 While our procedure is clearly worse asymptotically,

it actually performs fewer operations in the same depth when 𝑝 ≤ 32, which is the case for

our PRF instantiation. The procedure is also very simple to implement, especially with the

help of ALCHEMY (see chapter 5).

For 𝑖 ∈ [ℓ], define functions 𝑓𝑖 : Z𝑝 → Z𝑝/2𝑖 recursively as follows: let 𝑓0(𝑥) = 𝑥 be the

identity function, and for 1 ≤ 𝑖 ≤ ℓ− 1 define

𝑓𝑖+1(𝑥) =
𝑓𝑖(𝑥) · 𝑓𝑖(𝑥− 2𝑖)

2
mod 𝑝/2𝑖+1. (6.3.1)

Note that due to the division by two in Equation (6.3.1), in order for 𝑓𝑖+1 to be well defined,

at least one of 𝑓𝑖(𝑥), 𝑓𝑖(𝑥− 2𝑖) must be even for all 𝑥 ∈ Z𝑝. The following lemma (for the

special case 𝑘 = 1) proves this fact in a more general form, which we will need for our final

claim.

Lemma 6.3.1. Let 0 ≤ 𝑖 ≤ ℓ and 0 ≤ 𝑘 ≤ ℓ− 𝑖, and let 𝑥 ∈ Z𝑝 be arbitrary. Then over all

𝑗 ∈ [2𝑘], exactly one of 𝑓𝑖(𝑥− 𝑗 · 2𝑖) ∈ Z𝑝/2𝑖 is divisible by 2𝑘, namely, the one for which

𝑗 = ⌊𝑥/2𝑖⌋ (mod 2𝑘).

Proof. We proceed by induction on 𝑖. First consider the base case 𝑖 = 0, where 𝑓0(𝑥) = 𝑥 is

the identity function. Since 2𝑘 ≤ 2ℓ ≤ 𝑝, the 2𝑘 consecutive residue classes 𝑥, 𝑥−1, . . . , 𝑥−

(2𝑘− 1) ∈ Z𝑝 are all distinct, and clearly, 𝑥− 𝑗 for 𝑗 = 𝑥 (mod 2𝑘) is the only one divisible

by 2𝑘.

To prove the lemma for positive 𝑖 ≤ ℓ and any 𝑘 ≤ ℓ− 𝑖, assume that it holds for 𝑖− 1

and any 𝑘 ≤ ℓ− 𝑖+ 1. By definition of 𝑓𝑖, for any 𝑗 ∈ Z we have

𝑓𝑖
(︀
𝑥− 𝑗 · 2𝑖

)︀
=
𝑓𝑖−1(𝑥− (2𝑗) · 2𝑖−1) · 𝑓𝑖−1(𝑥− (2𝑗 + 1) · 2𝑖−1)

2
mod 𝑝/2𝑖.

2Our procedure also adds several fixed constants to a ciphertext, but these steps take essentially no time,
and incur no growth in the ciphertext noise.
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By the inductive hypothesis applied with 𝑥− (2𝑗) · 2𝑖−1 and 𝑘 = 1, exactly one of the two

terms in the numerator is even, and so the largest power of two that divides 𝑓𝑖(𝑥− 𝑗 · 2𝑖)

is exactly half that of the even term. In addition, over all 𝑗 ∈ [2𝑘], each 𝑓𝑖−1(𝑥− 𝑗′ · 2𝑖−1)

for 𝑗′ ∈ [2𝑘+1] appears in the numerator exactly once. By the inductive hypothesis, exactly

one of those terms is divisible by 2𝑘+1, so exactly one of 𝑓𝑖(𝑥 − 𝑗 · 2𝑖) is divisible by 2𝑘.

Specifically, it is the one for which 𝑗 = ⌊𝑗′/2⌋, where 𝑗′ = ⌊𝑥/2𝑖−1⌋ (mod 2𝑘+1) by the

inductive hypothesis. Therefore, 𝑗 = ⌊𝑥/2𝑖⌋ (mod 2𝑘), as claimed.

Corollary 6.3.2. The function 𝑓ℓ−1 : Z𝑝 → Z2 is 𝑓ℓ−1(𝑥) = msb𝑝(𝑥) = ⌊𝑥/2ℓ−1⌋.

Proof. Letting 𝑖 = ℓ− 1 and 𝑘 = 1 in Lemma 6.3.1, we have that 𝑓ℓ−1(𝑥) ∈ Z2 is even (i.e.,

equals 0) exactly when ⌊𝑥/2ℓ−1⌋ = 0 (mod 2), i.e., when 𝑥 ∈ {0, . . . , 𝑝/2− 1} (mod 𝑝).

By fully expanding 𝑓ℓ−1(𝑥 + 𝑝/4) in terms of 𝑓0 using Equation (6.3.1), we see that

the rounding function ⌊𝑥⌉2 can be expressed as a complete binary tree with 𝑝/2 leaf

nodes and depth log2(𝑝/2) = ℓ − 1, where the leaf nodes hold the terms 𝑥 − 𝑗 for 𝑗 ∈

{−𝑝/4, . . . , 𝑝/4−1}, and the internal nodes are all “multiply-and-divide-by-two” arithmetic

gates. Given an encryption 𝑐 = (𝑐0, 𝑐1) of 𝑥, we can trivially get an encryption of each 𝑥− 𝑗

by just subtracting 𝑗 from the constant term 𝑐0. We can then homomorphically compute ⌊𝑥⌉2

by evaluating the gates of the tree, which takes exactly 𝑝/2−1 homomorphic multiplications

(and no additions).

Finally, the above method can be improved to require only 𝑝/4 multiplications, thus

halving the total work. The idea is to restructure the tree so that leaves (𝑥−𝑗), (𝑥−(−𝑗−1))

for 𝑗 ∈ {−𝑝/4, . . . ,−1} are paired as siblings, and more generally, every internal node

at level 𝑖 = 1, 2, . . . , ℓ (where level 0 is the leaf level) has one descendant leaf from each

residue class modulo 2𝑖. It is straightforward to generalize the proof of Lemma 6.3.1 to

show that any such tree correctly computes the rounding function. With these pairings, the

nodes at level 1 are encryptions of (𝑥− 𝑗)(𝑥− (−𝑗− 1))/2 = (𝑥2 +𝑥− (𝑗2 + 𝑗))/2, which

just differ by known constants. Therefore, all the encryptions at level 1 can be computed
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using just one homomorphic multiplication, then adjusting its constant term. It is tempting

to think that this trick could be generalized to reduce the number of multiplications further

(perhaps to only log2(𝑝)), by efficiently deriving many of the level-2 ciphertexts from just a

few others, but so far we have not found a way to do this. In any case, the rounding function

is not the main bottleneck in our implementations.

6.4 Homomorphic Computation of the BPR Weak PRF

In this section, we use the homomorphic evaluation of ring rounding as a building block for

the homomorphic evaluation of the BPR weak pseudorandom function [BPR12]. We give

concrete parameters for our instantiation and a security analysis against known attacks on

the PRFs.

6.4.1 BPR Weak PRF

Let 𝑅 be a cyclotomic ring of arbitrary index 𝑚, and 𝑛 = 𝜙(𝑚)) be the dimension of the

ring over the integers. For 𝑝 = 2𝑘 a power of two, the BPR family of weak pseudorandom

functions is the set of functions 𝑓𝑠 : 𝑅𝑝 → {0, 1}𝑛, indexed by a ring element 𝑠 ∈ 𝑅𝑝, and

defined as the “rounded product”

𝑓𝑠(𝑎) := ⌊𝑎 · 𝑠⌉2.

Here ⌊·⌉2 : 𝑅𝑝 → 𝑅2 denotes the “rounding function” that maps each of its input polyno-

mial’s 𝑛 coefficients to Z2 = {0, 1} depending on whether the coefficient is closer (modulo

𝑝) to 0 or to 𝑝/2. (Formally, the integer rounding function maps 𝑎 ∈ Z𝑝 to ⌊2
𝑝
·𝑎⌉ ∈ Z2.) The

resulting polynomial is interpreted as an 𝑛-bit string simply by reading off its coefficients in

order.

It is proved in [BPR12] that when 𝑠 ∈ 𝑅𝑝 is drawn from an appropriate distribution,

and 𝑝 is sufficiently large, the above function family is a weak PRF family—or equivalently,
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that the ring-Learning With Rounding (ring-LWR) problem is hard—assuming that the ring-

LWE problem [LPR13b] is hard in 𝑅𝑝. This proof provides strong evidence that the family

has a sound design and is indeed a secure weak PRF, at least in an asymptotic sense. The

intuition behind the proof is that the rounding function destroys all but the most-significant

bits of the product 𝑎 · 𝑠, and that the round-off term can be seen as a kind of “small” error,

though one that is generated deterministically from 𝑎 · 𝑠 rather than as an independent

random variable (as in the LWE problem).

We note that the known proofs of security (under ring-LWE) require 𝑝 to be super-

polynomial in 𝑛. (More precisely, 𝑝 has to be lower bounded by the total number of samples

observed by the adversary, times a poly(𝑛) factor [Alw+13]). However, as discussed

in [BPR12], the family may not require such large parameters for concrete security. Indeed,

even for rather small values of 𝑛 and 𝑝—much smaller than those typically required for

public-key schemes—the family appears to be secure against all classes of attacks that are

usually employed against lattice-based cryptography. (See section 6.5 for further details.)

6.4.2 PRF Instantiation

We instantiate this PRF with 𝑚 = 128 (corresponding to 𝑛 = 64) and 𝑝 = 32. Our

implementation uses the arithmetization given in section 6.3, which is the most efficient for

this choice of 𝑝. We emphasize that these parameters are substantially more aggressive than

those that have been proven secure based on LWE and worst-case lattice problems [BPR12;

Alw+13]. However, as we show in section 6.5, they still appear to provide more than 100

bits of security against all known attacks. This state of affairs may be explained by the fact

that the known proofs of security (which only provide lower bounds on security) appear

quite loose in terms of parameters.

Here we summarize how the parameters 𝑛 and 𝑝 affect the security of our PRF instantia-

tion and the efficiency of its homomorphic evaluation.
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• The ring dimension 𝑛 of 𝑅 is the primary security parameter of the PRF, i.e., security

grows exponentially with 𝑛 (for large enough 𝑝). Since secret-key elements from 𝑅𝑝

are encrypted under the SHE, this ring will be the initial SHE plaintext space; however,

for security it must be embedded in a much larger ciphertext ring (see section 4.3).

Therefore, 𝑛 turns out to have almost no effect on the efficiency of the homomorphic

(subset-)product. However, it does moderately affect the efficiency of the rounding

step, because we need to switch to a different ring 𝑆 (via the tunneling procedure

in section 4.2; see below) having at least 𝑛 CRT slots.

• The weak PRF is evaluated homomorphically by composing the ring-tunneling proce-

dure with the (batch) integer rounding procedure. The former operation is linear in

the plaintext, but the computation and noise growth of each of the (at most) log(𝑛)

ring switches is roughly comparable to that of a homomorphic multiplication. The

latter procedure has multiplicative depth log(𝑝/2).

Since the efficiency of homomorphic encryption schemes degrades primarily with the

multiplicative depth supported, for efficiency we want to minimize 𝑛 and 𝑝 while ensuring

that the weak PRF is secure. In section 6.5 we argue that 𝑛 ≥ 64, 𝑝 ≥ 32 suffices against all

known attacks.

The full evaluation of the BPR weak PRF has the same multiplicative depth as the ring

rounding evaluation, namely, log 𝑛+ log(𝑝/2), which for our choices of parameters ranges

between 8 and 10, and the total number of homomorphic multiplications (of two ciphertexts)

is only 𝑝/4. We note that while an arithmetic depth of 8 might initially seem a bit worrisome

in terms of security (certainly compared to the depth of AES, say), the operations performed

at each level of the circuit are much more complex than simple binary logic gates, since they

correspond to arithmetic operations in complex rings.
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6.4.3 Homomorphic Evaluation

Given an encryption of 𝑠 ∈ 𝑅𝑝 and an input 𝑎 ∈ 𝑅𝑝 (in the clear), the homomorphic

evaluation of 𝑓𝑠(𝑎) proceeds in two steps:

• Multiply: The (encrypted) key element 𝑠 and the input 𝑎 are homomorphically

multiplied to obtain the (encrypted) element 𝑎 · 𝑠 ∈ 𝑅𝑝. Since 𝑎 is public, the

product is cheaply computed as a “scalar” multiplication with the encryption of 𝑠 (i.e.,

no key-switching or degree/modulus reduction is required, and there is little noise

growth.)3

• Round: The coefficients of the product 𝑎 · 𝑠 ∈ 𝑅𝑝 are homomorphically rounded,

resulting in an element of the quotient ring 𝑅2 (representing the 𝑛-bit output). This

step uses the homomorphic evaluation of ring rounding described in the previous

section.

See subsection 6.5.1 for a security analysis of the PRF instantiation, and subsection 6.5.2

for details about the parameters used for homomorphic evaluation, as well as a security

analysis of the SHE instantiation.

We note that for fast evaluation “in the clear,” it is best if the modulus 𝑝 is a prime

congruent to 1 modulo 128, so that efficient Chinese remaindering techniques can be used.

But for such moduli, it is somewhat cumbersome to round in a way that produces unbiased

output bits. In our setting, we can conveniently set 𝑝 to be a power of 2, thus ensuring

unbiased rounding, while using Chinese remaindering on the HE ciphertexts to speed up

computation.

3If 𝑎 were also encrypted, then the product could still be computed using a “true” homomorphic multiplica-
tion, but at greater expense.
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6.5 Security of the PRF Instantiation

In this section we analyze the security of our BPR instantiation from section 6.4, and its

homomorphic evaluation, against known classes of attacks. To summarize:

• The security of the weak PRF is syntactically equivalent to the hardness of the

corresponding ring-LWR problem. The best known attacks against ring-LWR are those

against the corresponding ring-LWE problem, where the round-off term is viewed as

the error.

• Our parameters are such that the corresponding ring-LWR/LWE problem enjoys more

than 100 bits of security against all known attacks.

• We choose conservative parameters for our SHE scheme, which should offer at least

128 bits of security.

6.5.1 Security of PRF

We briefly point out that the input space of the weak PRF is 𝑝𝑛, which for our parameters is

more than enough to defeat birthday attacks on the standard weak-PRF encryption scheme.

PRF Attacks as Learning Problems Breaking the weak PRF is syntactically equivalent

to the ring-LWR𝑅,𝑝,2 problem, which is to distinguish between uniformly random pairs in

𝑅𝑝 × 𝑅2, and pairs of the form (𝑎 ← 𝑅𝑝, 𝑏 = ⌊𝑎 · 𝑠⌉2) for some unknown 𝑠 ∈ 𝑅𝑝. By

scaling 𝑏 up by a factor of 𝑝/2, we can equivalently interpret the latter pairs as ring-LWE

pairs (𝑎, 𝑝
2
· 𝑏 = 𝑎 · 𝑠+ 𝑒) ∈ 𝑅𝑝×𝑅𝑝, where 𝑒 ∈ 𝑅 is the uniquely determined “small” error

term with coefficients in [−𝑝
4
, 𝑝
4
) ∩ Z that makes (𝑎 · 𝑠+ 𝑒) a multiple of 𝑝/2. Note that if

𝑠 ∈ 𝑅*
𝑝 (i.e., it is a unit), then 𝑒 is uniformly random in its domain, over the random choice

of 𝑎. Therefore, the LWR problem can be modelled as LWE with uniformly random error of

rate 1/2, i.e., the range of the error term’s coefficients covers half of Z𝑝 (although unlike in

LWE, the error is not independent of 𝑎).
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Hardness of the Learning Problems

For relatively small values of 𝑛 and 𝑝—quite a bit smaller than those typically required for

public-key lattice cryptography—the ring-LWR𝑅,𝑝,2 problem appears to be secure against all

attacks that are usually employed against lattice-based cryptography and related learning

problems. This is primarily because the 1/2 error rate is much larger than the inverse-

polynomial (or smaller) rates required in public-key cryptography.

The main classes of attacks against noisy learning problems like LWR and LWE are:

(1) brute-force attacks on the secret, (2) combinatorial attacks [BKW03; Wag02; MR09],

(3) lattice attacks, and (4) algebraic attacks [AG11]. We consider each of these in turn.

Brute-force and combinatorial attacks. A brute-force attack on the weak PRF involves

searching for the secret 𝑠 ∈ 𝑅𝑝, or for the error terms in enough samples to uniquely

determine 𝑠. The secret and rounding errors come from sets of size at least (𝑝/2)𝑛, which

is prohibitively large for all our parameters. Combinatorial (or “generalized birthday”)

attacks [BKW03; Wag02] work by drawing an exponential number of samples (𝑎𝑖, 𝑏𝑖) and

finding (via birthday collisions) a small combination of the 𝑎𝑖 that sums to zero, then testing

whether the same combination applied to the 𝑏𝑖 is small, or noticeable non-uniform. This

works for small error rates because the combination of the 𝑏𝑖 is exactly the combination of

their error terms. However, because our error terms are so large, even an optimally small

combination does not yield a small value when applied to the 𝑏𝑖, nor is the value statistically

biased in any way that is efficiently exploitable. Therefore, combinatorial attacks do not

appear to work at all in this setting.

Lattice attacks. Lattice attacks on (ring-)LWE/LWR typically work by casting it as a

bounded-distance decoding (BDD) problem on a lattice (see, e.g., [MR09; LP11; LN13;

PS13b]). At a high level, the attack draws a sufficiently large number 𝐿 of samples

(𝑎𝑖, 𝑏𝑖) ∈ 𝑅𝑝 × 𝑅𝑝, so that the secret (in the LWE case) is uniquely determined with good
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probability. With error rate 1/2, we need 𝐿 ≥ log(𝑝/2) by a simple information-theoretic

argument. The attack collects the samples into vectors �⃗�, �⃗� ∈ 𝑅𝐿
𝑝 , and considers the “𝑝-ary”

lattice ℒ of dimension𝑁 = 𝑛𝐿 (over Z) corresponding to the set of vectors 𝑠 · �⃗� ∈ 𝑅𝐿
𝑝 for all

𝑠 ∈ 𝑅𝑝. It then attempts to determine whether �⃗� is sufficiently close to ℒ, which corresponds

to whether (𝑎𝑖, 𝑏𝑖) are LWE samples or uniform. In our setting, because the error rate 1/2 is

so large, the distance from �⃗� to ℒ (in the LWE case) is nearly the minimum distance of the

lattice, up to a constant factor no larger than four (this is a conservative bound). Therefore,

for the attack to succeed it needs to solve BDD (or the shortest vector problem SVP) on ℒ to

within an very small constant approximation factor. For the parameters in our instantiations,

the lattice dimension is at least 𝑁 ≥ 𝑛 log(𝑝/2) ≥ 256 (and likely more). For this setting,

the state of the art in BDD and SVP algorithms [CN11; LN13; MV10b], take time at least

2120, and likely more. Moreover, the SVP algorithm of [MV10b], which appears to provide

the best heuristic runtime in this setting, as a most conservative estimate requires space at

least 20.18𝑁 ≥ 246.

Algebraic attacks. Finally, the algebraic “linearization” attack of Arora and Ge [AG11]

yields a lower bound on 𝑝 for security. The attack is applicable when every coefficient of

every error term is guaranteed to belong to a known set of size 𝑑; in our setting, 𝑑 = 𝑝/2.

The attack requires at least 𝑁/𝑛 ring-LWE samples to set up and solve a dense linear system

of dimension 𝑁 , where

𝑁 =

(︂
𝑛+ 𝑑

𝑛

)︂
≈ 2(𝑛+𝑑)·𝐻(𝑛/(𝑛+𝑑))

and 𝐻(𝛿) = −𝛿 log(𝛿) − (1 − 𝛿) log(1 − 𝛿) is the binary entropy function for 𝛿 ∈ (0, 1).

Therefore, the attack requires time and space at least 𝑁2, which is at least 2109 for all our

parameters.
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Table 6.2: Sequence of plaintext (PT) and ciphertext (CT) cyclotomic ring indices used for
ring tunneling from 𝑅 = 𝒪128 to 𝑆 = 𝒪7,680.

PT index CT index CT dim

128 128 · 243 10,368

64 · 17 64 · 27 · 17 9,216

16 · 13 · 17 16 · 9 · 13 · 17 9,216

4 · 5 · 13 · 17 4 · 5 · 7 · 13 · 17 9,216

3 · 5 · 13 · 17 3 · 5 · 13 · 17 7,680

6.5.2 Security of Homomorphic Evaluation

We use what we believe to be quite conservative parameters in our SHE scheme, i.e., large

dimensions for the noise rates in our SHE ciphertexts and key-switching hints. Following

the methodology of [MR09] for estimating the security of LWE-based encryption, in order

to break (ring-)LWE according to lattice attacks it is necessary to have 22
√
𝑛 log𝑄 log 𝛿 < 𝑄,

where 𝑛 is the dimension of the problem, 𝑄 is the largest modulus ever used, and 𝛿 ≥ 1

is the parameter that the lattice reduction algorithm can obtain. This means that breaking

the SHE scheme at a minimum requires obtaining 𝛿 < 2log(𝑄)/(4𝑛). Obtaining 𝛿 ≤ 1.005 is

considered completely out of reach, offering at least 128 bits of security [CN11; LN13].

Concretely, we implement the weak PRF with 𝑝 = 32, 𝑛 = 64. The homomorphic

rounding step switches from the 128th cyclotomic ring (corresponding to 𝑛 = 64) to a ring

𝑆 with cyclotomic index 7,680, which contains (at least) 𝑛 = 64 Z𝑝 slots. The ring switch

for proceeds using a sequence of tunneling operations which moves the ring element through

a series of hybrid cyclotomic rings; the full schedule is given in Table 6.2.

In order to support correct evaluation of the weak PRF, we use moduli 𝑄 no larger than

2152 in our ciphertexts and key-switch hints, with error terms having Gaussian coefficients

with parameter at least 5 (times 𝑝, the plaintext modulus, but we do not use this factor in

evaluating security). Except for the final ring of dimension 7,680 (in which the noise rate is
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very large), the minimal ring dimension across all rings we use in the evaluation is 9,216.

This means that breaking the scheme requires obtaining 𝛿 < 1.0035, which is a very large

security margin (see Table 7.3 for reference.)

6.6 ALCHEMY Implementation

In this section we describe our implementation of the BPR weak PRF using ALCHEMY.

6.6.1 Integer Rounding Circuit

Here we show how to implement the rounding function ⌊·⌉2 : Z𝑝 → Z2 for 𝑝 = 2𝑘 ≥ 4,

using the arithmetization given in section 6.3. We note that it would be simple to define

multiple arithmetizations (like those given in [GHS12a; AP13]) of the same operation by

defining multiple expressions. We use this expression in the next subsection as a building

block for the implementation of the BPR weak PRF.

The implementation given below works for any input modulus 𝑝 = 2𝑘, though the

arithmetization from [AP13] is more efficient for 𝑝 > 32. For type safety, we must compute

the input type from the output type (i.e., 𝑅2) and 𝑘 using the following type family:

type family PreRescalePTPow2 intp k r2 where

PreRescalePTPow2 intp 1 r2 = r2

PreRescalePTPow2 intp (k+1) r2 =

PreMul intp (PreDiv2 intp (PreRescalePTPow2 intp k r2))

recalling from section 6.3 that each additional power of two adds another layer to the round-

ing tree, and computing the next layer (for a pair of inputs) involves a single multiplication

followed by a division. This order is reversed above since we compute the type starting from

the output. The Haskell compiler uses the type family to infer the object-language input

type. of the the main interface to ring rounding:

rescalePTPow2 :: (Lambda intp, k > 1, ...)
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=> Tagged k (expr e (PreRescalePTPow2 expr (k+1) r2 -> r2))

rescalePTPow2 = tag $ lam $

let v’ = v0 *: (one >+: v0)

kval = proxy value (Proxy::Proxy k) :: Int

pDiv4 = 2^(kval-2)

in let_ v’ $ treeMul (Proxy::Proxy k) $

map ((div2_ $:) . (>+: v0)) $ take pDiv4 $

[fromInteger $ y * (-y+1) | y <- [1..]]

The tag k is a positive natural number represting the power of two associated with 𝑝 = 2𝑘 and

is constrained to be at least 2, i.e., 𝑝 >= 4. rescalePTPow2 is a (tagged) DSL expression

representing a function from PreRescalePTPow2 expr k r2 to r2, where r2 represents the

integers mod 2 (or, in the next subsection, a cyclotomic ring with Z2 slots via the Chinese

remainder theorem). The code above implements the optimization in the first level of the

rounding tree explained at the end of section 6.3. We first compute 𝑥 · (𝑥+ 1) and share it

using let_. We then add constant offsets of the form 𝑖 · (−𝑖+ 1) to create the first level of

leaf nodes. These are passed to treeMul, which handles the main recursive algorithm.

We emphasize that this expression is not a language component, but rather a higher-level

expression written in terms of existing language components. However, the programmer

uses this expression like they would any other language component.

Below we give a small example which shows the implementation when 𝑝 = 4:

-- expr :: (Lambda intp, AddLit intp (PreMul intp (PreDiv2 intp z2)),

-- Mul intp (PreDiv2 intp z2), Div2 intp z2, ...)

-- => intp e (PreMul intp (PreDiv2 intp z2) -> z2)

expr = untag $ rescalePTPow2 @2 -- set k=2 => p=4

pprint expr

-- "(\\v0 -> (div2 ((mul v0) (addLit (Scalar ZqB 1) v0))))"
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Note that the type of expr (including the complex type of the input to the object-language

function) is inferred by the Haskell compiler.

6.6.2 Ring Rounding

Our goal is to round the coefficients of an encrypted cyclotomic ring element. Recall

from subsection 5.3.1 that the 𝑚th cyclotomic ring is isomorphic to Z[𝑋]/(Φ𝑚(𝑋)), so

elements can be represented as a list of coefficients with respect to some fixed basis. For

a cyclotomic ring 𝑅, moduli 𝑝 = 2𝑘, ring rounding proceeds by first moving the Z𝑝

coefficients of the input into “CRT slots” of a different ring 𝑆𝑝 using ring switching. Once

the coefficients are in slots, we can apply the Z𝑝 rounding function rescalePTPow2 to the

entire ring element, which induces the operation on each coefficient. If desired, we can

use ring switching again to move the rounded coefficients back to the ring R𝑞. The exact

number of ring switches needed to move the coefficients into slots depends on the particular

choice of parameters. The following example implements a variant of ⌊·⌉𝑝 that moves the

coefficients of a ring H0 into the slots of the ring H2 via the intermediate ring H1. Since it

does not switch back, the output ring element is in 𝑆2:

roundCycCoeffs = do

rescalePT <- rescalePTPow2 @(outputPNoise (Cyc t h5 z2))

return $ rescalePT .:

linearCyc_ (decToCRT @H1 @H2) .:

linearCyc_ (decToCRT @H0 @H1)

Notice that rescalePTPow2 is a higher-level DSL feature, but it is used in exactly the same

way as any other DSL operation.

6.6.3 BPR PRF

All of the ALCHEMY expressions in this section so far are plaintext expressions, and do

not use any details of the HE scheme. We now demonstrate a full-strength, real-world
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example with ALCHEMY by implementing the BPR weak PRF [BPR12] and evaluating in

homomorphically with concrete parameters. The core step uses the ring rounding expression

from subsection 6.6.2. Recall the the BPR PRF is indexed by a secret key and maps an 𝑅𝑝

element to a rounded product.

We remark that our implementation leaves the rounded coefficients in the CRT slots,

which seems like the most useful option. For example, a symmetric ciphertext can be

homomorphically decrypted by placing its bits in the slots and xoring with the encrypted

bits. Then the plaintext data bits are in slots, which allows SIMD computations to be

performed on them. At amy rate, it is not too much more work to tunnel back to 𝑅2 after

rounding in 𝑆.

First we must specify the concrete types for the cyclotomic rings and available moduli:

-- uses Factored types from Λ∘𝜆

-- plaintext rings

type H0 = 128

type H1 = 64 * 7

type H2 = 32 * 7 * 13

-- ciphertext rings

type H0’ = H0 * 7 * 13

type H1’ = H1 *F13

type H2’ = H2

-- creates (ciphertext) moduli which are annotated with

-- their noise capacity

type Zq1 = Zq $(mkTLNatNat 1520064001)

type Zq2 = Zq $(mkTLNatNat 3144961)

type Zq3 = Zq $(mkTLNatNat 5241601)
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-- the PRF output ring

type S2 = PNoise 0 (Cyc CT H2 (Zq 2))

The rings H0 = 𝑅, H1, and H2 = 𝑆 are the plaintext rings used for tunneling. The correspond-

ing ciphertext rings are H0’, H1’, and H2’. Recall that we specify a collection of moduli

from which the compiler automatically assigns valid moduli at each step of the computation.

The PRF output ring is the cyclotomic index with index H2 and over the integers mod two,

augmented with PNoise 0 to indicate that we don’t need to do any further homomorphic

operations.

Next we use these concrete types to instantiate the compiler and produce an expression

which homomorphically evaluates the PRF:

-- takes a Haskell value 𝑠 ∈ 𝑅𝑝

homomPRF s = do

-- random value in 𝑅𝑝

a <- getRandom

-- get the ring rounding circuit for 𝑝 = 25

let round = proxy roundCycCoeffs (Proxy::Proxy 5)

-- the in-the-clear PRF

prf = lam $ round $: (mulPublic_ a v0)

withKeys $ do

-- homomorphic version of the PRF

hprf <- pt2ct

@[ (H0, H0’), (H1,H1’), (H2,H2’) ] -- m’map

@[ Zq1, Zq2, Zq3 ] -- zqs

@TrivGad -- gadget from Lol

(prf @S2)

-- DSL expression for encryption of 𝑠

sct <- encrypt s
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-- apply the compiled PRF to an (encrypted) secret key

let prfeval = hprf $: sct

-- interpret the expression

(result,rates) <- eval <$> writeErrorRates prfeval

-- print the error rates

print rates

-- the PRF output

clearResult <- decrypt result

print clearResult

The call to withKeys creates an environment where the compiler creates keys, and encrypt

and ErrorRateWriter use the same keys to encrypt inputs and collect runtime statistics,

respectively. homomPRF prints the intermediate error rates from the homomorphic compu-

tation. result is the output of the homomorphic PRF evaluation, i.e. an encrypted PRF

output, so we print its decryption, i.e. the in-the-clear PRF output.

6.7 ALCHEMY Evaluation

In this section we use the example of homomorphic PRF evaluation to quantify the advan-

tages of using ALCHEMY. For the evaluation, we compute various metrics on the homomPRF

expression given above, but using parameters corresponding to a cryptographically secure

instantiation. Specifically, we instantiate homomPRF with 𝑘 = 5 (corresponding to 𝑝 = 32)

and we use a sequence of five tunnels rather than two. These secure parameters allow us

evaluate the savings that users of ALCHEMY are likely to obtain in the real-world.

The main goal of ALCHEMY is to reduce the complexity of writing homomorphic

computations. We can measure these savings by calculating size of an alchemy expression,

in terms of source lines of code and by counting the number of DSL expressions. Of course

ALCHEMY will not be used if the compiled expression is much more inefficient than hand-
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written homomorphic code for the same operation, so we also evaluate the performance of

compiled expressions.

Expression Size. We can compare the size of the user-written plaintext expression with the

corresponding homomorphic expression produced by the compiler. We measure expression

size with the S interpreter, which counts the number of individual DSL operations that

make up the epxression. Since the compiler introduces new operations, the difference in the

size of the DSL expressions is a rough measure of the work done by the compiler, which

corresponds to reduced complexity for the author of the plaintext expression.

The size of the in-the-clear homomRoundCycCoeffs expression is 39, while the size of

the compiled expression increases to 87. Thus the homomorphic computation has about 48

more DSL operations than the plaintext computation, a considerable savings for the user.

Unfortunately, this measure both overstates and understates ALCHEMY’s contribution.

First, the compiler misses many opportunities for beta reduction, which corresponds to

inlining certain function arguments. A fully beta-reduced expression would be much smaller

(as measured with S) because we could elimiate many lam nodes in the expression. Thus the

compiled expression size could have many fewer than 87 DSL operations. On the other hand,

DSL expression size greatly understates the compiler’s work because it does not account for

the knowledge required for the user to manually insert the extra DSL expressions and to

choose ciphertext moduli.

Comparison to Hand-written Applications. All existing HE implementations require

users to write homomorphic computations using a low-level HE interface. Thus another

way to measure ALCHEMY’s contribution is to compare the number of source lines of code

needed to hand-write a particular application using the HE interface directly with the total

number of lines to write and compile the corresponding ALCHEMY expression on plaintexts.

In order to compare ALCHEMY, we used Λ∘𝜆’s SHE interface to write code which

computes the same function as homomPRF. This hand-written implementation uses the SHE
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interface directly, meaning the author must understand all SHE operations and interfaces

and manually choose appropriate parameters throughout the computation.

The hand-written implementation is about 225 lines of Haskell code, whereas our

ALCHEMY implementation is about five lines of code for the (in-the-clear) implementation

of roundCycCoeffs, three more for the PRF, and about five lines to invoke the PT2CT

compiler and interpret the result (as in homomPRF). Thus ALCHEMY resulted in about 32x

less code for much more functionality: the hand-written code can only be evaluated, while

we can interpret the ALCHEMY expression in many interesting ways.

Runtime Performance. Finally, we compare the performance of the optimized hand-

written computation with the compiled ALCHEMY expression. The runtime of the hand-

written homomorphic computation is about 44 seconds, while the compiled ALCHEMY

expression can be evaluated in 41 seconds. Thus ALCHEMY expressions incurs no runtime

overhead compared to hand-tuned code, but are much easier to write and more flexible to

use.

Homomorphic Encryption for Non-experts. We emphasize that although the above

metrics show that ALCHEMY allows homomorphic computations to be expressed with

moderately less code (with no performance loss), they do not capture how much simpler the

plaintext expressions are compared to their homomorphic counterpart. Homomomorphic

expressions in ALCHEMY can be written with no knowledge of the HE scheme, and compiled

with only general knowledge. Concretely, compared to the ALCHEMY expression, the hand-

written homomorphic computation required knowledge of where to place maintenance

operations, explicit management of moduli at every step of the computation, and the manual

generation of secret keys and key switch hints. Although this simplicity cannot be captured

with simple numbers, we believe it is the most significant contribution of this work.
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CHAPTER 7

CHALLENGES FOR RING-LWE

As lattice cryptography begins a transition to widespread deployment (see, e.g., [Ste14;

LS16; Bra16b]), there is a pressing need for increased cryptanalytic effort and higher-

confidence hardness estimates for its underlying computational problems. Of particular

interest is a class of problems used in many recent implementations (e.g., [HS; GLP12;

Duc+13; Bos+15; Alk+16; Bos+16a] and Λ∘𝜆 [CP16b]), namely:

• Learning With Errors (LWE) [Reg09],

• its more efficient ring-based variant Ring-LWE [LPR13b], and

• their “deterministic error” counterparts Learning With Rounding (LWR) and Ring-

LWR [BPR12].

Informally, the search version of the Ring-LWE problem is to find a secret ring element 𝑠

given multiple random “noisy ring products” with 𝑠, while the decision version is to

distinguish such noisy products from uniformly random ring elements. More precisely,

Ring-LWE is actually a family of problems, with a concrete instantiation given by the

following parameters:1

1. a ring 𝑅, which can often (but not always) be represented as a polynomial quotient

ring 𝑅 = Z[𝑋]/(𝑓(𝑋)) for some irreducible 𝑓(𝑋), e.g., 𝑓(𝑋) = 𝑋2𝑘 + 1 or another

cyclotomic polynomial;

2. a positive integer modulus 𝑞 defining the quotient ring𝑅𝑞 := 𝑅/𝑞𝑅 = Z𝑞[𝑋]/(𝑓(𝑋));

3. an error distribution 𝜒 over 𝑅, which is typically concentrated on “short” elements

(for an appropriate meaning of “short”);
1This actually describes the “tweaked,” discretized form of Ring-LWE, which for convenience avoids a

special ideal denoted 𝑅∨. This form is equivalent to the original “untweaked” form under a suitable change to
the error distribution; see subsection 2.2.7 for details.
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4. a number of samples provided to the attacker.

The Ring-LWE search problem is to find a uniformly random secret 𝑠 ∈ 𝑅𝑞, given indepen-

dent samples of the form

(𝑎𝑖 , 𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖) ∈ 𝑅𝑞 ×𝑅𝑞,

where each 𝑎𝑖 ∈ 𝑅𝑞 is uniformly random and each 𝑒𝑖 ← 𝜒 is drawn from the error

distribution. The decision problem is to distinguish samples of the above form from

uniformly random samples over 𝑅𝑞 ×𝑅𝑞.

Ring-LWR is a “derandomized” variant of Ring-LWE in which the random errors are

replaced by deterministic “rounding” to a smaller modulus 𝑝 < 𝑞. Specifically, the search

problem is to find a random secret 𝑠 ∈ 𝑅𝑞 given independent samples

(𝑎𝑖 , 𝑏𝑖 = ⌊𝑠 · 𝑎𝑖⌉𝑝) ∈ 𝑅𝑞 ×𝑅𝑝,

where each 𝑎𝑖 ∈ 𝑅𝑞 is uniformly random, and ⌊·⌉𝑝 : 𝑅𝑞 → 𝑅𝑝 denotes the function

that rounds each coefficient 𝑐𝑗 ∈ Z𝑞 of the input (with respect to an appropriate basis)

to ⌊𝑝
𝑞
· 𝑐𝑗⌉ ∈ Z𝑝. The decision problem is to distinguish such samples from (𝑎𝑖, ⌊𝑢𝑖⌉𝑝),

where 𝑎𝑖, 𝑢𝑖 ∈ 𝑅𝑞 are uniformly random and independent. (Notice that ⌊𝑢𝑖⌉𝑝 ∈ 𝑅𝑝 itself is

uniformly random when 𝑝 divides 𝑞, but otherwise is biased.)

Hardness. A main attraction of Ring-LWE (and Ring-LWR) is their worst-case hardness

theorems, also known as worst-case to average-case reductions. Essentially, these say

that solving certain instantiations is at least as hard as quantumly solving a corresponding

approximate Shortest Vector Problem (approx-SVP) on any “ideal lattice,” i.e., a lattice

corresponding to an ideal of the ring. (Interestingly, the converse is unclear: it is unknown

how to solve Ring-LWE using an oracle for even exact-SVP on any ideal lattice of the ring.)

See [LPR13b; PRS17] and [BPR12] for precise theorem statements, subsection 7.1.1 below
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for further discussion, and [Cra+16; CDW17] for the status of approx-SVP on ideal lattices

for quantum algorithms.2

As long as the underlying approx-SVP problem is actually hard in the worst case, the

above-described theorems give strong evidence of cryptographic hardness, at least asymptot-

ically (i.e., for large enough 𝑛). For practical purposes, though, the following property of

(Ring-)LWE and related problems has been noticed, studied, and exploited for many years

(see, e.g., [Lyu+08; MR09; Lyu09; LP11; Ban+14; HKM15]): even instantiations that are

not supported by known worst-case hardness theorems, or that have too-small dimensions 𝑛

to draw any meaningful conclusions from them, can still appear very hard—as measured

against all known classes of attack. Indeed, almost every implementation of lattice cryptog-

raphy to date has used considerably smaller dimensions and errors than what worst-case

hardness theorems alone would recommend. However, care is needed in following this

approach: e.g., some instantiations involving especially small errors turn out to be broken or

seriously weakened by various attacks (see, e.g., [AG11; CLS15; Pei16]).

Given this state of affairs, and especially the common usage in practice of parameters

that lack much (if any) theoretical support, we believe that a deeper understanding of how

the different aspects of Ring-LWE affect concrete hardness is a critically important direction

of research.

7.1 Contributions

This work provides a broad collection of cryptanalytic challenges for concrete instantia-

tions of the search-Ring-LWE/LWR problems over cyclotomic rings, which are the most

widely used and studied class of rings in this context. Our challenges cover a wide variety

2In brief: the fastest known quantum algorithms for the poly(𝑛)-approx-SVP problems underlying many
cryptographic constructions, in any class of rings covered by the hardness theorems, perform essentially no
better than algorithms for arbitrary lattices of the same dimension 𝑛, and take at least exponential 2Ω(𝑛) time.
Under plausible number-theoretic conjectures, 2𝑂(

√
𝑛 log𝑛)-approx-SVP is solvable in quantum polynomial

time in certain rings, such as prime-power cyclotomics and their maximal totally real subrings [Cra+16;
CDW17]; however, the main algorithmic technique used in these works meets a barrier at 2Ω(

√
𝑛/ log𝑛)-factor

approximations [Cra+16, Section 6].
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of parameterizations and conjectured security levels, ranging from “toy” to “very hard”

(see subsection 7.1.1 for details). We hope that these challenges will provide a focal point

for theoretical and practical cryptanalytic effort on Ring-LWE/LWR, and will help to more

precisely quantify the concrete security of their instantiations.3

A central issue in the creation of challenges for problems like (Ring-)LWE is that a

dishonest challenger can publish instances that are much harder to solve than honestly

generated ones—or even impossible. This is because (properly instantiated) Ring-LWE

is conjectured to be pseudorandom, so it is difficult to distinguish between a correctly

generated challenge and a harder one with much larger errors, or even a uniformly random

one, which has no solution. A dishonest challenger could therefore publish unsolvable

challenges, and point to the absence of breaks as bogus evidence of hardness.4

To deal with this issue, we design and implement a simple, non-interactive, and publicly

verifiable “cut-and-choose” protocol that gives reasonably convincing evidence that the

challenge instances are properly distributed, or at least not much harder than claimed. In

short, for each Ring-LWE/LWR instantiation the challenger announces many timestamped

instances. At a later time, the challenger reveals the secrets for all but a random one of the

instances, as determined by a publicly verifiable source of randomness. (Concretely, we use

the NIST randomness beacon [11].) Anyone can then verify that all the revealed instances

look “proper,” which makes it likely that the remaining instance is proper as well. Otherwise,

the challenger would have had been caught with rather larger probability—assuming, of

course, that it cannot predict or influence the randomness source. See section 7.2 for further

details and discussion of some potential alternatives, which turn out not to give the kind

3The challenges and their parameters can be obtained via the Ring-LWE challenges website [16]. The
archive rlwe-challenges-v1.tar.gz contains challenges for 516 different instantiations, and has a SHA-
256 hash value 07cd f744 5c9d 178c 8b13 5a42 47ca a143 5320 c104 8ee8 c634 8914 a915 5757
dcef. All our challenge-related archives are digitally signed under the PGP/GPG public key having ID b8b2
45f5, which has fingerprint 8126 1e02 fc1a 11c9 631a 65be b5b3 1682 b8b2 45f5.

4This appears qualitatively different from problems like integer factorization and discrete logarithms, where
deviating from the prescribed distributions seems like it can only make challenges easier to solve, or at least
no harder.
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of guarantees we desire. See subsection 7.1.2 for discussion of a recent approach to LWE

challenges that aims for different goals.

Search versus decision. We stress that our challenges are for search versions of Ring-

LWE/LWR, whereas many cryptographic applications rely on the conjectured hardness of

solving decision with noticeable advantage. Unfortunately, it appears impractical to give

meaningful challenges for the latter regime. This is because detecting a tiny advantage

requires a very large number of instances, and a corresponding increase in effort by the

attacker. And even for relatively large advantages, the naïve method of confirming the

solutions would require the challenger to retain the correct answers and honestly compare

them to the attacker’s, because the attacker cannot confirm its own answers (unlike with the

search problem, where it can).5

Nevertheless, we gain confidence in the usefulness of search challenges from the fact that

the known classes of attack against decision either proceed by directly solving search, or can

be adapted to do so with relatively little or no extra overhead. (See [LP11; LN13; Alk+16].)

In addition, there are search-to-decision reductions [LPR13b, Section 5] which provide

evidence that decision cannot be much easier than search (though the known reductions

incur some as-yet unoptimized overhead). Finally, we note that practical constructions of,

e.g., key exchange as in [Bos+16a] can use “hashed” variants, for which hardness of search

can be sufficient for a reductionist security analysis in the random oracle model.

Implementation. Our free and open-source challenge generator and verifier are imple-

mented using Λ∘𝜆. We rely on its support for arbitrary cyclotomics and sampling from the

theory-recommended Ring-LWE distributions that are needed for our instantiations (see

subsection 7.1.1 for details). To encourage participation, we stress that all the challenge

5We considered more sophisticated non-interactive methods for confirming answers, like using a “fuzzy
extractor” [Dod+08] to encrypt a secret that can only be recovered by solving a large enough fraction of
decision challenges. Such methods seem tantalizing, but are complex to implement and bandwidth-intensive
in our setting, so we leave this direction to future work.

203



data is formatted using Google’s platform- and language-neutral protocol buffers (protobuf)

framework [Goo08]. This allows the challenges to be read using most popular program-

ming languages, via parsers that are automatically generated from our protobuf message

specifications. The Ring-LWE challenges website [16] contains auto-generated parsers, and

simple examples demonstrating their use, in C++, Java, Python, and Haskell. (The protobuf

specifications can be found in [CP16a], and with the challenges themselves.) In addition,

Λ∘𝜆 includes C++ code for cyclotomic ring operations, which can be used by alternative

implementations written in other languages.

7.1.1 Challenge Instantiations

Our challenge instantiations cover a wide range of parameters for several aspects of the

Ring-LWE/LWR problems, including: size and form of the cyclotomic index and corre-

sponding dimension; width of the error distribution; size and arithmetic form of the modulus;

and number of samples. Each of these parameters has some degree of influence on the

conjectured hardness of a Ring-LWE instantiation, as we discuss below.

For each challenge instantiation we give a qualitative hardness estimate, ranging from

“toy” and “easy” to “very hard,” along with an approximate block size that should allow the

Block Korkin-Zolotarev (BKZ) basis-reduction algorithm to solve the instantiation. (See

section 7.4.) We intentionally do not estimate concrete “bits of security” (though BKZ block

size is a useful proxy), since any such estimates would necessarily be very imprecise. We

hope that real-world efforts to break the challenges will provide more precision.

The easier categories represent instantiations that should be breakable using standard

lattice algorithms on desktop-class machines in somewhere between a few minutes and

a few months, whereas the hardest category should be out of reach even for nation-state

adversaries—based on the current state of public cryptanalysis, at least. We deduce our

hardness estimates by approximating the Hermite factors and BKZ block sizes needed to
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solve the instantiations via lattice attacks, which usually represent the most practically

efficient attacks against Ring-LWE/LWR. See section 7.4 for further details.

Cyclotomic Ring

A primary parameter influencing Ring-LWE’s conjectured hardness is the degree (or di-

mension) of the ring 𝑅, which in the cyclotomic case is the totient 𝑛 = 𝜙(𝑚) of the index

(or conductor) 𝑚. Thus far, most implementations have used two-power cyclotomic rings,

because they have the computationally and analytically simplest form 𝑅 ∼= Z[𝑋]/(𝑋𝑛 + 1),

where 𝑛 is a power of two. Moreover, sampling from a spherical Gaussian in their “canonical”

geometry is equivalent to sampling independent identically distributed Gaussian coefficients

for the powers of 𝑋 .

We believe that Ring-LWE over non-two-power cyclotomics is deserving of more

cryptanalytic effort. First, powers of two are rather sparse, especially in the relevant range

of 𝑛 in the several hundreds or more. In addition, two-power cyclotomics are incompatible

with some advanced features of homomorphic encryption schemes, such as “plaintext

packing” [SV14] and asymptotically efficient “bootstrapping” algorithms [GHS12a; AP13]

for characteristic-two plaintext rings like F2𝑘 . Finally, non-two-power cyclotomic rings

lack orthogonal bases (in the canonical geometry), so sampling from recommended error

distributions and error management are more subtle [LPR13a], and it is interesting to

consider what effect (if any) this has on concrete hardness.

Our challenges are weighted toward the popular two-power case, but they also include

indices of a variety of other forms, including powers of other small primes, those that are

divisible by many small primes, and moderately large primes. We are particularly interested

in whether there are any cryptanalytic attacks that can take special advantage of any of these

forms. Our choices of indices 𝑚 correspond to dimensions 𝑛 ranging from 128 to 4,096 for

Ring-LWE, and from 16 to 162 for Ring-LWR.
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Error Width

The absolute error of a (Ring-)LWE instantiation is, very informally, the “width” of the

coefficients of the error distribution, with respect to an appropriate choice of basis. The main

worst-case hardness theorems for (Ring-)LWE (e.g., [Reg09; Pei09; LPR13b]) apply to

Gaussian-like error distributions whose widths exceed certain Ω(
√
𝑛) bounds. Conversely,

there are algebraic attacks that can exploit significantly narrower errors, if enough samples

are available (see, e.g., [AG11; Alb+14; EHL14; CLS15; CLS16; Pei16]). However, there is

still a poorly understood gap between the theoretical bounds and parameters that plausibly

fall to such attacks, especially in the low-sample regime (see Figure 7.1.1 below for further

details).

Following the original definition and recommended usage of Ring-LWE [LPR13b;

LPR13a], our challenge instantiations use the “dual” form involving the fractional ideal 𝑅∨

of the ring 𝑅, with Gaussian error that is spherical in the canonical embedding. More

specifically, the products 𝑠 ·𝑎𝑖 reside in the quotient group 𝑅∨/𝑞𝑅∨, and we add error whose

canonical embedding is distributed as a continuous Gaussian 𝐷𝑟 of some parameter 𝑟 > 0

(with optional discretization to 𝑅∨). In comparison to plain LWE, we emphasize that 𝑅∨

in the canonical embedding is a much denser lattice than Z𝑛; in particular, errors drawn

from𝐷𝑟 have (not necessarily independent) Gaussian coefficients of width 𝑟
√
𝑛 with respect

to the so-called “decoding” Z-basis of 𝑅∨ [LPR13a]. (See Figure 7.1 and section 2.2 for

further details.) Therefore, our parameterization is closely analogous to plain LWE with

Gaussian error of parameter 𝑟
√
𝑛.

Our challenge instantiations use four qualitative categories of error parameter 𝑟:

Trenta corresponds to a bound from the main “worst-case hardness of decision-Ring-

LWE” theorem [LPR13b, Theorem 3.6], namely, 𝑟 ≥ (𝑛ℓ/ ln(𝑛ℓ))1/4 ·
√︀

ln(2𝑛/𝜀)/𝜋,

where ℓ is the number of revealed samples and (say) 𝜀 ≈ 2−80 is a bound on the
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𝑅∨

𝑑0𝑑1

Figure 7.1: The canonical embedding of: (in dark blue) the dual ideal 𝑅∨ of the 3rd
cyclotomic ring 𝑅 = Z[𝜁3], (in light blue) its “decoding” Z-basis {𝑑0, 𝑑1}, and (in red) the
continuous spherical Gaussian 𝐷𝑟 of parameter 𝑟 =

√
2.

statistical distance in the reduction.6 We pose this class of challenges to give some

insight into instantiations that conform to the error bounds from known worst-case

hardness theorems (though not necessarily for large enough dimensions 𝑛 to obtain

meaningful hardness guarantees via the reductions alone).

Grande corresponds to some 𝑟 ≥ 𝑐 = Θ(1) (i.e., coefficients of width 𝑐
√
𝑛) that satisfies

the lower bound from Regev’s worst-case hardness theorem [Reg09] for plain LWE,

and that also suffices for provable immunity to the class of “ring homomorphism”

attacks defined in [EHL14; Eli+15; CLS15; CLS16], as shown in [Pei16, Section 5].

We note that while the theorems from [Reg09] and [Pei16] are stated for 𝑐 = 2, an

inspection of the proofs and tighter analysis reveal that the constant can be improved

to nearly 1/(2
√
𝜋) ≈ 0.282 in the former case [Reg16], and to 𝑐 =

√︀
8/(𝜋𝑒) ≈ 0.968

or better in the latter case, depending on the dimension and desired time/advantage

lower bound (see subsection 7.3.1 for details). We pose this class of challenges to give

instantiations which might someday conform to significantly improved worst-case

6It is very likely that the bound can be improved by a small constant factor within the same proof framework;
in addition, the (𝑛ℓ/ ln(𝑛ℓ))1/4 factor might be an artifact of the proof. However, we use the bound as stated
for our challenges.
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hardness theorems for Ring-LWE, and which in any case satisfy the bounds from

known hardness theorems in the absence of ring structure.

Tall corresponds to 𝑟 ∈ {6, 9}/
√
𝑛, i.e., error coefficients of width 6 or 9. Errors of roughly

this size have been used in prior concrete analyses of LWE instantiations (e.g., [MR09;

LP11]) and in practical implementations of (Ring-)LWE cryptography (e.g., [Alk+16;

Bos+16a]).

Short corresponds to 𝑟 ∈ {1, 2}/
√
𝑛, i.e., error coefficients of width 1 or 2. In light

of the above-mentioned small-error and homomorphism attacks, we consider such

parameters to be riskier, at least when a large number of Ring-LWE samples are

available. But at present it is unclear whether the attacks are feasible when only a

small or moderate number of samples are available, as is the case in our challenges

and in many applications (see Figure 7.1.1 below for further discussion).

Finally, for each setting of the error parameter we give challenges for both continuous

error and its corresponding discretized version, where each real coefficient (with respect to

the decoding basis) is rounded off to the nearest integer. Cryptographic applications almost

always use discrete forms of Ring-LWE, but continuous forms are also cryptanalytically

interesting. In particular, rounding yields a tight reduction from any continuous form to its

corresponding discrete form, i.e., the latter is at least as hard as the former.

Modulus

Another main quantity that strongly influences Ring-LWE’s apparent hardness is the error

rate, which is, informally, the ratio of the (absolute) error width to the modulus 𝑞. There is

much theoretical and practical cryptanalytic evidence that, all else being equal, Ring-LWE

becomes harder as the error rate increases. E.g., there are tight reductions from smaller to

larger rates; worst-case hardness theorems yield stronger conclusions for larger error rates;

and lattice-based attacks perform worse in practice. Therefore, cryptographic applications
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typically aim to use the smallest possible modulus that can accomodate the accumulated error

terms without mod-𝑞 “wraparound” (so as to avoid, e.g., incorrect decryption). However,

other considerations can introduce additional subtleties in the choice of modulus.

The initial worst-case hardness theorem for search-Ring-LWE [LPR13b, Theorem 4.1]

applies to any sufficiently large modulus 𝑞 and absolute error. However, the search-to-

decision reduction [LPR13b, Theorems 5.1 and 5.2] requires 𝑞 to be a prime integer that

“splits well” in 𝑅, i.e., the ideal 𝑞𝑅 factors into distinct prime ideals of small norm.7

Subsequent work [BV14a; Bra+13] used the “modulus switching” technique to obtain a

reduction for essentially any modulus, at the cost of an increase in the error rate. Finally,

recent work [PRS17] gave a worst-case hardness theorem for decision-Ring-LWE for

any modulus, which either matches or improves upon the just-described results in terms

of parameters. On the cryptanalytic side, the above-mentioned homomorphism attacks

of [EHL14; Eli+15; CLS15; CLS16] can take advantage of moduli 𝑞 for which the ideal 𝑞𝑅

has small-norm ideal divisors, but only when the error is insufficiently “well spread” relative

to those ideals. (See [Pei16] for further details.)

With these considerations in mind, our challenge instantiations include moduli of a

variety of sizes and arithmetic forms. We include moduli that split completely, others

that split very poorly, and some that “ramify” (e.g., two-power moduli for two-power

cyclotomics). Each instantiation uses a modulus that is large enough, relative to the absolute

error, to yield correct decryption with high probability in public-key encryption and key-

exchange protocols following the template from [LPR13b; Pei14]. See subsection 7.3.2 for

further details.

Number of Samples

Finally, each of our challenge instantiations consist of either a small or moderate number

of samples (specifically, three or 100) for Ring-LWE, and 500 samples for Ring-LWR.

7Such moduli also enable FFT-like algorithms over Z𝑞 , also called Chinese Remainder Transforms, which
yield fast multiplication algorithms for 𝑅/𝑞𝑅 using just Z𝑞 operations.
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These choices are motivated by the following considerations: while simple cryptographic

constructions like key exchange and digital signatures reveal only a few samples (per fresh

secret) to the adversary, other constructions like homomorphic encryption, identity/attribute-

based encryption, and pseudorandom functions can reveal a much larger (possibly even

adversary-determined) number of samples.

Clearly, revealing more samples cannot increase the hardness of an instantiation, be-

cause the attacker can just ignore some of them. There is also evidence that in certain

parameter regimes, such as small bounded errors, increasing the number of samples can

significantly reduce concrete hardness [AG11; Alb+14]. At the same time, the main worst-

case hardness theorems for Ring-LWE place mild or no conditions at all on the number

of samples [LPR13b, Theorem 3.6], and the same goes for plain LWE [Reg09; Pei09;

Bra+13]. (Worst-case hardness theorems for less-standard LWE instantiations [MP13],

and for (Ring-)LWR [BPR12; Alw+13; Bog+16; AA16], do have a strong dependence on

the number of samples, however.) There are also standard techniques to generate fresh

(Ring-)LWE samples from a fixed number of given ones, though at a cost in the error rate of

the new samples [Lyu05; GPV08; App+09].

In summary, the practical effect of the number of samples on concrete hardness is

unclear, and seems to depend heavily on the other parameters of the instantiation. Therefore,

we separately consider both the small- and moderate-sample regime for our challenge

instantiations.

7.1.2 Other Related Work

In a recent concurrent and independent work, Buchmann et al. [Buc+16] describe a method

and implementation for creating challenges for LWE (but not Ring-LWE). Both their work

and ours encounter a common issue—that naïve methods of generating challenges require

knowing the solutions—but their main goal is quite different from ours: to prevent the

solutions from existing in any one place, so that nobody is excluded from participating in
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the subsequent cryptanalysis. They accomplish this by generating the challenges using a

multi-party computation protocol, so that the solutions never reside with any single party.

(Their implementation uses three parties, although this is not inherent to the approach.)

The protocol of [Buc+16] also allows for retroactively auditing that the parties honestly

executed the protocol as implemented, but only after a challenge has been solved. This is a

substantially weaker verifiability property than we obtain, for at least three reasons:

1. First, just half of the parties can undetectably create harder-than-expected or even

unsolvable instances, which would never have the chance to be audited at all. To

achieve the same end in our system, the challenger and the randomness beacon (e.g.,

NIST) would have to collude.

2. Second, auditing the MPC protocol requires the parties to retain their secret input

seeds in perpetuity, and to reveal them when challenge solutions are found. If any

of the seeds are lost, then so is verifiability. In our system, once the cut-and-choose

protocol completes, the challenges are self-contained and verifiable with no external

help.

3. Third, even if the parties do run the MPC protocol of [Buc+16] as implemented, one

still needs to carefully audit the code to conclude that the resulting challenges actually

have solutions. In fact, due to an bug, the first set of published challenges had no

solutions! In our system, one does not need to trust or audit code, but only check that

the “spoiled” instances have proper-looking errors.

Over the years there have been many analyses of various LWE parameterizations, in both

the asymptotic and concrete settings, against various kinds of attacks, e.g., [MR09; LP11;

AFG13; Alb+14; Alb+15; APS15; HKM15]. All of these apply equally well to Ring-LWE,

which can be viewed as a specialized form of LWE, although they do not attempt to exploit

the ring structure.
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Cryptanalytic challenges have been provided for many other kinds of problems and

cryptosystems, including integer factorization [91], discrete logarithm on elliptic curve

groups [97], short-vector problems on ad-hoc distributions of ideal lattices [PS13a], the

NTRU cryptosystem [15], and multivariate cryptosystems [Yas+15].

7.1.3 Organization

The remainder of the paper uses the background material from chapter 2 and is organized as

follows:

Section 7.2 describes our non-interactive, publicly verifiable “cut-and-choose” protocol for

giving evidence that the challenge instances are properly distributed.

Section 7.3 gives further details on how we choose our instantiations’ parameters, specifi-

cally their Gaussian widths and moduli.

Section 7.4 describes how we obtain approximate hardness estimates for our challenge

instantiations.

Section 7.5 gives some lower-level technical details about our implementation and the

operational security measures we used while creating the challenges.

Acknowledgments. We thank Oded Regev for helpful discussions, and for initially sug-

gesting the idea of publishing Ring-LWE challenges.

7.2 Cut-and-Choose Protocol

A central issue in the creation of challenges for LWE-like problems is that a dishonest

challenger could publish improperly generated instances that are much harder than honestly

generated ones, or even impossible to solve, because they have larger error than claimed

or are even uniformly random. Because both the proper and improper distributions are

conjectured to be pseudorandom, such misbehavior would be very difficult to detect. This
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stands in contrast to other types of cryptographic challenges for, e.g., the factoring or discrete

logarithm problems, where improper distributions like unbalanced factors or non-uniform

exponents seem like they can only make the instances easier to solve (or at least no harder),

so the challenger has no incentive to use them.

To deal with this issue, we use a simple, non-interactive, publicly verifiable “cut-and-

choose” protocol to give reasonably convincing evidence that the challenge instances are

properly distributed, or at least not much harder than claimed. The protocol uses a timestamp

service and a randomness beacon. The former allows anyone to verify that a given piece of

data was generated and submitted to the service before a certain point in time. The latter is a

source of public, timestamped, truly random bits. Concretely, for timestamps we use the

Bitcoin blockchain via the OriginStamp service [GB14], and for randomness we use the

NIST beacon [11].

The use of a centralized beacon means that a verifier must trust that the challenger cannot

predict or influence the beacon values, e.g., by collusion. This is obviously not entirely ideal

from a security standpoint. Unfortunately, at the time we released our challenges we knew

of no decentralized and practically usable alternatives that met our needs. For example,

while the Bitcoin blockchain has been proposed and analyzed as a source of randomness,

it turns out to be relatively easy and inexpensive to introduce significant bias [BCG15;

PW16]. Similarly, the “unicorn” protocol [LW15] is trivial to bias completely, unless the

time window for public contribution is smaller than the (fastest possible) computation time

for a “slow” hash function, which is impractical for our purposes: we would need a large

time window to ensure sufficient participation. Lastly, a proposal based on multi-national

lotteries [Bai+15] does not come with a practically usable implementation, and requires the

verifier to manually obtain past lottery numbers from many different countries.

7.2.1 Protocol Description and Properties

At a high level, our protocol proceeds as follows:
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1. For each challenge instantiation (i.e., type of problem and concrete parameter set), the

challenger commits by generating and publishing a moderately large number 𝑁 (e.g.,

𝑁 = 32) of independent instances, along with a distinct beacon address indicating

a time in the near future, e.g., a few days later. The challenger also timestamps the

commitment.8

2. At the announced time, the challenger obtains from the beacon a random value

𝑖 ∈ {0, . . . , 𝑁 − 1}.

3. The challenger then publicly reveals the secrets (which also implicitly reveals the

errors) underlying all the instances except for the 𝑖th one. The one unrevealed instance

is then considered the “official” challenge instance for its instantiation, and the others

are considered “spoiled.”

4. Anyone who wishes to verify the challenge checks that:

(a) the original commitment was timestamped sufficiently in advance of the beacon

address (and all beacon addresses across multiple challenges are distinct);

(b) secrets for the appropriate instances were revealed, as indicated by the beacon

value; and

(c) the revealed secrets appear “proper.” For Ring-LWE, one checks that the errors

are short enough, potentially along with other statistical tests, e.g., on the errors’

covariance. For Ring-LWR one recomputes the rounded products with the

revealed secret and compares them to the challenge instance.

Importantly, a verifier does not need to witness the challenger’s initial commitment firsthand,

because it can just check the timestamp. In addition, the beacon’s random outputs are

cryptographically signed, and can be downloaded and verified at any time, or even provided

by the challenger in the reveal step (which is what our implementation does).

8All the challenger’s public messages are cryptographically signed under a known public key. This is for
the challenger’s protection, so that other parties cannot publish bogus data in its name.
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Under the reasonable assumptions that the challenger cannot backdate timestamps, nor

predict or influence the output of the randomness beacon, the above protocol provides the

following guarantee: if one or more of the instances in a particular challenge are “improper,”

i.e., they lack a secret that would convince the verifier, then the challenger has probability

at most 1/𝑁 of convincing the verifier. (Moreover, if two or more of the instances are

improper, then the challenger can never succeed.)

Potential cheats and countermeasures. It is important to notice that as described, the

protocol does not prove that the instances were correctly sampled according to the claimed

Ring-LWE distribution, only that the revealed errors satisfy the statistical tests (i.e., they are

short enough, etc.). Below in subsection 7.2.2 we describe a supplementary (but platform-

and implementation-specific) test, which we also include in our implementation, that gives a

stronger assurance of correct sampling. However, the above protocol already seems adequate

for practical purposes, because there does not appear to be any significant advantage to the

challenger in choosing non-uniform 𝑎𝑖 ∈ 𝑅𝑞 or 𝑠 ∈ 𝑅∨
𝑞 , nor in deviating from spherical

Gaussian errors within the required error bound. In particular, spherical Gaussians are

rotationally invariant, and have maximal entropy over all distributions bounded by a given

covariance.

Another way the challenger might try to cheat is a variant of the “perfect prediction”

stock market scam: the challenger could prepare and timestamp a large number of different

initial commitments (step 1) containing various invalid instances. The challenger’s goal is

for at least one of these commitments to be successfully revealable once the beacon values

become available; the challenger would then publish only that (timestamped) commitment

as the “official” one, and discard the rest. The more commitments it prepares in advance,

the more invalid (but unrevealed) instances it can hope to sneak past the verifier. However,

the number of commitments it must prepare grows exponentially with the number of invalid

instances.

215



In order to rule out this kind of misbehavior, we prove that there is a single commitment

by widely announcing it (or its hash value under a conjectured collision-resistant hash

function) before the beacon values become available, in several venues where it would be

hard or impossible to make multiple announcements or suppress them at a later time. For

example, on the IACR ePrint archive we have created one dated submission for this paper,

every version of which contains the same hash value of the commitment (in section 3). Also,

we announced the hash value at the IACR Crypto 2016 Rump Session, which was streamed

live on the Internet and is available for replay on YouTube.9

7.2.2 Alternative Protocols

Here we describe some potential alternative approaches for validating Ring-LWE challenges,

and analyze their strengths and drawbacks.

Publishing PRG seeds. As noted above, revealing the secrets and errors does not actually

prove that the instances were sampled from the claimed Ring-LWE distribution. To address

this concern, the challenger could generate each instance deterministically, making its

random choices using the output of a cryptographically secure pseudorandom generator

(PRG) on a short truly random seed. Then to reveal an instance, the challenger would simply

reveal the corresponding seed, which the verifier would use to regenerate the instance and

check that it matches the original one. We caution that this method still does not guarantee

that the instances are properly sampled, because the challenger could still introduce some

bias by generating many instances and suppressing ones it does not like, or even choosing

seeds maliciously. However, publishing PRG seeds seems to significantly constrain a

dishonest challenger’s options for misbehavior. (Using a public randomness beacon is not

an option, because some of the PRG seeds must remain secret.)

There are a few significant practical drawbacks to this approach. First, establishing any

reasonable level of assurance requires the verifier to understand and run the challenger-
9The announcement can be viewed at https://youtu.be/FpdoPcThsU0?t=24m37s.
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provided code of the instance generator, rather than just checking that its outputs appear

“proper,” as the above protocol does. This also makes it difficult to write an alternative

verification program (e.g., in a different programming language) without specifying exactly

how the PRG output bits are consumed by the instance generator, which is cumbersome for

continuous distributions like Gaussians. Second, even the provided verification code might

be platform-specific: using different compiler versions or CPUs could result in different

outputs on the same seed, due to differences in how the PRG output bits are consumed.10

Despite the above drawbacks, however, using and revealing PRG seeds does not need

to replace the above protocol, but can instead supplement it to provide an extra layer of

assurance. Therefore, our challenger and verifier also implement this method (and allow for

very small ≤ 2−20 differences in floating-point values, to account for compiler differences).

A failed match does not necessarily indicate misbehavior on the challenger’s part, but is

output as a warning by the verifier.

Zero-knowledge proofs. Another possibility is to view a Ring-LWE instance as a Bounded

Distance Decoding (BDD) problem on a lattice, and have the challenger give a non-

interactive zero-knowledge proof that it knows a solution within a given error bound. This

can be done reasonably efficiently via, e.g., the public-coin protocol of [MV03] or Stern-

style protocols for LWE-like problems [Lin+13], using a randomness beacon to provide the

public coins. While at first glance this appears to provide exactly what we need, it turns out

not to give any useful guarantee, due to the approximation gap between the completeness

and soundness properties.

In more detail, for a BDD error bound 𝐵, an honest prover can always succeed in

convincing the verifier that the error is at most 𝐵. However, the soundness guarantees

only prevent a dishonest prover from succeeding when the BDD error is significantly larger

10We actually witnessed this phenomenon during development: different compilers yielded very small
differences in the floating-point values of our continuous Ring-LWE instances, but not our discrete ones. We at-
tribute this to the compilers producing different orders of instructions, and the non-associativity/commutativity
of floating-point arithmetic.
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than 𝐵. Specifically, the protocol from [MV03] has a bound of ≈ 𝐵
√
𝑑 where 𝑑 is the

lattice dimension, and the protocol from [Lin+13] only proves that the largest coefficient (in

some basis) of the error is bounded. For our Gaussian error distributions, this bound would

need to be about 2–3 times larger than the size of a typical coefficient. In summary, these

protocols can only guarantee that the error is bounded by (say) 2𝐵, which can correspond to

a much harder Ring-LWE instance than one with error bound 𝐵. By contrast, our protocol

has a gap of only 10-15%, as shown next.

7.2.3 Verifier and Error Bounds

Here we describe our verifier in more detail, including some relevant aspects of its im-

plementation, and describe how we compute rather sharp error bounds for our Ring-LWE

instantiations.

Recall that each of our Ring-LWE instantiations is parameterized by a cyclotomic

index 𝑚 defining the 𝑚th cyclotomic number field 𝐾 and cyclotomic ring 𝑅, which have

degree 𝑛 = 𝜙(𝑚); a positive integer modulus 𝑞 defining 𝑅𝑞 := 𝑅/𝑞𝑅 and 𝑅∨
𝑞 := 𝑅∨/𝑞𝑅∨;

and a Gaussian error parameter 𝑟 > 0. (The number of samples is also a parameter, but it

plays no role in the bounds.)

Verification. To verify a (continuous) Ring-LWE instance consisting of samples (𝑎 ∈

𝑅𝑞, 𝑏 ∈ 𝐾/𝑞𝑅∨) for a purported secret 𝑠 ∈ 𝑅∨
𝑞 and given error bound 𝐵, one does the

following for each sample:

1. compute 𝑒 := 𝑏− 𝑠 · 𝑎 ∈ 𝐾/𝑞𝑅∨,

2. express 𝑒 with respect to the decoding basis 𝑑 = (𝑑𝑗) of 𝑅∨, as 𝑒 =
∑︀

𝑗 𝑒𝑗𝑑𝑗 where

each 𝑒𝑗 ∈ Q/𝑞Z.

3. “lift” 𝑒 ∈ 𝐾/𝑞𝑅∨ to a representative 𝑒 ∈ 𝐾, defined as 𝑒 =
∑︀

𝑗 𝑒𝑗𝑑𝑗 where each 𝑒𝑗 ∈

Q ∩ [− 𝑞
2
, 𝑞
2
) is the distinguished representative of 𝑒𝑗 .
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4. check that ‖𝑒‖ ≤ 𝐵 (where recall that ‖𝑒‖ := ‖𝜎(𝑒)‖, the length of the canonical

embedding of 𝑒).

For a discrete instance one does the same, but with 𝐾 replaced by 𝑅∨ and Q replaced

by Z. In either case, properly generated Ring-LWE samples for our instantiations will

correctly verify (with high probability) because the original errors 𝑒 ∈ 𝐾 have coefficients

of magnitude smaller than 𝑞/2 with respect to the decoding basis, hence they are correctly

recovered from 𝑏− 𝑠 · 𝑎 = 𝑒 mod 𝑞𝑅∨. Moreover, we show below that they have Euclidean

norms below the error bound 𝐵 with high probability.

Implementation. Λ∘𝜆 (and hence the challenges themselves) actually uses the “tweaked”

form of Ring-LWE as described in subsection 2.2.7, in which 𝑅∨ is replaced by 𝑅 by

implicitly multiplying each 𝑏 component, and thereby the secret 𝑠 and each error term 𝑒,

by the “tweak” factor 𝑡 (where 𝑡𝑅∨ = 𝑅). Correspondingly, the basis 𝑡 · 𝑑 is referred to as

the decoding basis of 𝑅. Therefore, we use an equivalent verification procedure to the one

above, which simply replaces 𝑅∨, 𝑑 with 𝑅, 𝑡 · 𝑑, and the test ‖𝑒‖ ≤ 𝐵 with ‖𝑔 · 𝑒‖ ≤ �̂�𝐵,

where 𝑔 ∈ 𝑅 is the special element such that 𝑔 · 𝑡 = �̂�. (Recall that �̂� = 𝑚/2 when 𝑚 is

even, and �̂� = 𝑚 otherwise.)

The Λ∘𝜆 framework provides operations for efficiently “lifting” elements of 𝐾/𝑞𝑅

or 𝑅/𝑞𝑅 to 𝐾 or 𝑅 (respectively) using the decoding basis of 𝑅, and for computing

�̂�−1 · ‖𝑔 · 𝑒‖2 (see subsection 3.5.1). Thus our verifier actually checks the equivalent

condition �̂�−1 · ‖𝑔 · 𝑒‖2 ≤ �̂�𝐵2. For convenience, we also include the bound �̂�𝐵2 with

the challenges, see [CP16a] for details.

Continuous error bound. For continuous Ring-LWE instantiations with spherical Gaus-

sian error 𝐷𝑟 over 𝐾, we use Lemma 2.1.1 and Corollary 2.1.2 to get rather sharp tail

bounds on the Euclidean norm of the error. In our actual challenge instances, the error

bound we use was typically within a factor of ≈ 1.10 of the largest error in each instance,

so it gives little room for misbehavior relative to the correct error distribution.
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The bound is obtained as follows. For an appropriate small 𝜀 > 0 we compute the

minimal 𝑐 > 1/
√

2𝜋 (up to ≈ 10−4 precision) such that

𝜋𝑐2 − ln 𝑐 ≥ 1

𝑛
ln(1/𝜀) +

1

2
ln(2𝜋𝑒).

Then by Corollary 2.1.2, we have Pr𝑥∼𝐷𝑟 [‖𝑥‖ > 𝐵] < 𝜀, where 𝐵 := 𝑐𝑟
√
𝑛. Concretely,

we set 𝜀 = 2−25 to get a rather strict bound that is still not too likely to be violated over the

tens of thousands of error terms across all the instances.

Discrete error bound. For Ring-LWE instantiations with spherical Gaussian error 𝐷𝑟

over 𝐾, discretized (i.e., rounded off) to 𝑅∨ using the decoding basis 𝑑, we need to use a

high-probability bound on the norm of the discretized error. For this we use a combination

of Corollary 2.1.2 and a (partially heuristic) analysis of the round-off term. In our actual

challenge instances, the ultimate bound was typically within a factor of ≈ 1.15 of the largest

error in each instance.

Our discrete bound is obtained as follows. We first compute the same bound 𝐵 = 𝑐𝑟
√
𝑛

on 𝐷𝑟 as above. Now, because 𝐷𝑟 is above or near the “smoothing parameter” of 𝑅∨, the

fractional part f ∈ [−1
2
, 1
2
)𝑛 of its coefficient vector with respect to 𝑑 is close to uniformly

random; henceforth we model it as such. The discretization error is 𝑓 = ⟨𝑑, f⟩ ∈ 𝐾, which

corresponds to Df in the canonical embedding, where D = 𝜎(𝑑) = (𝜎𝑖(𝑑𝑗))𝑖,𝑗 . Observe

that

‖𝑓‖2 = ⟨Df ,Df⟩ = f 𝑡Gf ,

where G = D* ·D is the positive definite Gram matrix of D.

We now analyze the trace Tr(G), and use this to obtain a high-probability tail bound

on ‖𝑓‖. Note that by definition of the decoding basis, G = H−1 is the inverse of the Gram

matrix H of the powerful basis 𝑝. When 𝑚 is a prime 𝑝, the proof of [LPR13a, Lemma 4.3]

shows that H = 𝑝I𝑝−1− 1, so G = 𝑝−1(I𝑝−1 + 1), which has trace Tr(G) = 2(𝑝− 1)/𝑝 =
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2𝑛/𝑚. By the tensorial decomposition of the powerful and decoding bases, this immediately

generalizes for arbitrary 𝑚 to

Tr(G) =
2𝑘𝑛

𝑚
,

where 𝑘 is the number of distinct primes dividing 𝑚.

Recalling that we model f ∈ [−1
2
, 1
2
)𝑛 as uniformly random, by independence of 𝑓𝑖, 𝑓𝑗

for 𝑖 ̸= 𝑗 and linearity of expectation we have

E
𝑓
[‖𝑓‖2] = E

f
[f 𝑡Gf ] =

1

12
Tr(G) =

2𝑘𝑛

12𝑚
.

We heuristically assume that 𝜎(𝑓) = Df obeys essentially the same concentration bound

(Lemma 2.1.1) as a spherical Gaussian having the above expected squared norm, times a

small constant factor to account for the somewhat heavier tails (due to the non-spherical,

non-Gaussian distribution). Our ultimate bound is
√
𝐵2 + 𝐹 2, where 𝐵 = 𝑐𝑟

√
𝑛 and 𝐹 =

𝑐
√︀

2𝑘𝑛/𝑚 are the high-probability bounds on the norms of 𝐷𝑟 and the rounding term 𝑓 ,

respectively.

7.3 Parameters

Here we give further details on how we choose the parameters of our instantiations, particu-

larly the Gaussian error parameters 𝑟 (subsection 7.3.1) and modulus 𝑞 (subsection 7.3.2).

7.3.1 Error Parameter

As already mentioned in subsection 7.1.1, we consider four categories of parameter 𝑟 for

the Gaussian error distribution 𝐷𝑟 over 𝐾: “Trenta,” “Grande,” “Tall,” and “Short.” For

all categories except Grande, the descriptions in subsection 7.1.1 give the exact Gaussian

parameter, or range of parameters, that we use in our instantiations.
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For the Grande category, we use parameters that in particular have provable immunity to

the “homomorphism” attack explored in [EHL14; Eli+15; CLS15; CLS16]. In [Pei16] it was

shown that 𝑟 ≥ 2 is a sufficient condition for such immunity (in rings of cryptographically

relevant dimensions). Here we generalize and tighten the analysis to obtain better bounds,

which we use in our Grande instantiations.

The homomorphism attack on the original (non-“tweaked”) definition of decision-Ring-

LWE is as follows. (This is for the continuous form; it adapts immediately to the discrete

form by replacing𝐾 with𝑅∨.) Let 𝜓 be an arbitrary error distribution over𝐾, and let ℐ ⊆ 𝑅

be any ideal divisor of 𝑞𝑅. We are given independent samples (𝑎𝑖, 𝑏𝑖) ∈ 𝑅𝑞 × 𝐾/𝑞𝑅∨,

which are distributed either uniformly or according to the Ring-LWE distribution for some

secret 𝑠 ∈ 𝑅∨
𝑞 . We first reduce the samples to

(𝑎′𝑖 = 𝑎𝑖 mod ℐ , 𝑏′𝑖 = 𝑏𝑖 mod ℐ𝑅∨) ∈ 𝑅/ℐ ×𝐾/(ℐ𝑅∨).

Then for each of the N(ℐ) candidate (reduced) secrets 𝑠′ ∈ 𝑅∨/ℐ𝑅∨, we try to distinguish

the 𝑑′𝑖 := 𝑏′𝑖 − 𝑠′ · 𝑎′𝑖 ∈ 𝐾/ℐ𝑅∨ from uniform. (How this is done does not matter for the

present discussion.) Observe that if the samples come from the Ring-LWE distribution, i.e.,

𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖 mod 𝑞𝑅∨ for 𝑒𝑖 ← 𝜓, then for the correct candidate 𝑠′ = 𝑠 mod ℐ𝑅∨ we

have 𝑑′𝑖 = 𝑒𝑖 mod ℐ𝑅∨.

Observe that the above attack takes time at least N(ℐ) times the number of samples

consumed, and that it can work only if the reduced error distribution 𝜓 mod ℐ𝑅∨ has

noticeable statistical distance from uniform over 𝐾/ℐ𝑅∨. Otherwise, the 𝑑′𝑖 are statistically

indistinguishable from uniform for any candidate 𝑠′, regardless of the form of the original

samples (uniform or Ring-LWE), and the attack fails.

Immunity to homomorphism attack. The following lemma gives a sufficient condition

on the parameter of Gaussian error 𝜓 = 𝐷𝑟 to ensure that the homomorphism attack has

exponentially large time/advantage ratio 𝑡𝑛, for any desired 𝑡 > 1. (Note that the proof never
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uses the fact that ℐ divides 𝑞𝑅.) For simplicity, in our Grande instantiations we always use

𝑡 = 2 and hence 𝑟 =
√︀

8/(𝜋𝑒) ≈ 0.968. For dimensions (say) 𝑛 > 256 one could take

𝑡 = 2256/𝑛 to obtain an even smaller 𝑟.

Lemma 7.3.1. For any 𝑛 ≥ 17, 𝑡 > 1, and 𝑟 ≥ 𝑡
√︀

2/(𝜋𝑒) ≈ 0.484𝑡, the time/advantage

ratio of the homomorphism attack (for any choice of the ideal ℐ) is at least 𝑡𝑛.

Proof. Let 𝑠 = N(ℐ)1/𝑛, and note that the running time of the attack is at least N(ℐ) = 𝑠𝑛,

so we may assume without loss of generality that 𝑠 ≤ 𝑡.

The dual ideal of ℐ𝑅∨ is (ℐ𝑅∨)−1 · 𝑅∨ = ℐ−1, which has norm N(ℐ)−1, so by

Lemma 2.2.1 its minimum distance is 𝜆1(ℐ−1) ≥
√
𝑛/𝑠. Letting 𝑓(𝑥) =

√
2𝜋𝑒·𝑥·exp(𝜋𝑥2)

be as in Equation (2.1.1), define

𝑐 :=
𝑟𝜆1(ℐ−1)√

𝑛
≥ 𝑟

𝑠
≥ 𝑟

𝑡
≥

√︀
2/(𝜋𝑒) > 1/

√
2𝜋,

𝐶 := 𝑓(𝑐) ≤ 2 exp(−2/𝑒) < 2−1/17,

where the penultimate inequality follows by 𝑐 ≥
√︀

2/(𝜋𝑒) and the fact that 𝑓 is decreasing

for 𝑥 ≥ 1/
√

2𝜋.

By Lemma 2.1.3, the statistical distance between 𝐷𝑟 mod ℐ𝑅∨ and the uniform distri-

bution over 𝐾/ℐ𝑅∨ is at most 1
2
𝐶𝑛/(1− 𝐶𝑛). Then because 𝑛 ≥ 17, the time/advantage

ratio of the attack is
2(1− 𝐶𝑛) N(ℐ)

𝐶𝑛
≥ N(ℐ)

𝐶𝑛
= (𝑠/𝐶)𝑛,

so it remains to show that 𝑠/𝐶 ≥ 𝑡. By the previous observation on 𝑓(𝑥) and the fact that

𝑐 ≥ 𝑟/𝑠 > 1/
√

2𝜋,

𝑠/𝐶 = 𝑠/𝑓(𝑐) ≥ 𝑠/𝑓(𝑟/𝑠) =
𝑟√

2𝜋𝑒 · (𝑟/𝑠)2 · exp(−𝜋(𝑟/𝑠)2)
.

A straightforward calculation shows that the denominator (as a function of 𝑠) has a global

maximum when 𝑟/𝑠 = 1/
√
𝜋, so as desired, 𝑠/𝐶 ≥ 𝑟

√︀
𝜋𝑒/2 ≥ 𝑡.
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7.3.2 Modulus

For a given Gaussian error parameter 𝑟, we choose moduli 𝑞 to reflect a typical Ring-

LWE public-key encryption or key-exchange application following the basic template

from [LPR13b; Pei14]. Essentially, this means that 𝑞 must be large enough to accomodate the

ultimate error term, which is a combination of the original errors, without any “wraparound.”

A bit more precisely, we need that with sufficiently high probability, the ultimate error has

coefficients (with respect to an appropriate choice of basis) in the interval (− 𝑞
4
, 𝑞
4
). The

precise meaning of “high probability” depends on the low-level details of the application.

For example, wraparound of a few coefficients might be acceptable if error-correcting codes

are used, or a final key-confirmation step may handle the rare case when wraparound does

occur.

The Ring-LWE “toolkit” [LPR13a] provides general techniques and reasonably sharp

concentration bounds for analyzing the coefficients of sums and products of (discretized)

error terms in arbitrary cyclotomics (see, e.g., [LPR13a, Lemma 6.6]). However, their

generality makes them a bit pessimistic, so they do not capture the strongest possible

concentration properties for concrete cases of interest.

In this work we take a combined empirical and theoretical approach to more tightly

bound the ultimate error in encryption/key-exchange applications, and thereby obtain smaller

values of the modulus and larger error rates. Our empirical approach is as follows:

1. We simulate thousands of ultimate error terms 𝐸 := �̂�(𝑒 · 𝑒′ + 𝑓 · 𝑓 ′) ∈ 𝑅∨, where

𝑒, 𝑒′, 𝑓, 𝑓 ′ ∈ 𝑅∨ are independent samples from 𝐷𝑟, discretized to 𝑅∨ using the

decoding basis.11

2. We compute the largest magnitude 𝐵 among all the coefficients of all the 𝐸s (again

with respect to the decoding basis), and use 4𝐵 as a heuristic “very high probability”

bound on the coefficients.
11Depending on the primes dividing the cyclotomic index 𝑚, replacing the �̂� factor by 𝑡 in the expression

for 𝐸 can sometimes yield smaller coefficients. We use the best of the two choices in our simulation.
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3. Using 4𝐵 as a lower bound on 𝑞/4, we choose moduli 𝑞 of different arithmetic forms

(e.g., completely split, power of two, ramified) that all conform to this bound.

The theoretical (though heuristic) basis for this approach is as follows: in the canonical

embedding, the coordinates of 𝐷𝑟 are i.i.d. Gaussians over C (up to conjugate symmetry),

and the same nearly holds for the discretization to 𝑅∨ when 𝐷𝑟 is “well-spread” relative

to 𝑅∨ (as it is in our instantiations). Because multiplication is coordinate-wise in the

canonical embedding, the products 𝑒 · 𝑒′, 𝑓 · 𝑓 ′ have nearly i.i.d. subexponential coordinates.

(The multiplication by �̂� simply scales them all by the same factor.) Finally, each coefficient

of 𝐸 with respect to the decoding basis is by definition the inner product of 𝜎(𝐸) with

a vector consisting of various roots of unity. Bernstein’s inequality says that such inner

products have subgaussian exp(−Θ(𝑘2)) tail probabilities in the “near zone,” which in our

setting goes all the way out to 𝑘 = 𝑂(
√
𝑛) standard deviations. In the “far zone” beyond

that, the tails are still subexponential exp(−Θ(𝑘)).

Because the near zone is so wide, the largest coefficient among the tens or hundreds of

thousands in our simulation should be not much smaller than a true high-probability bound.

Concretely, the largest empirical coefficient 𝐵 should have a tail probability of no more

than, say, 2−13. Under the subgaussian model, the probability of obtaining a coefficient of

magnitude more than 4𝐵 is therefore less than (2−13)4
2

= 2−208. Even under the weaker

subexponential model, the probability is at most (2−13)4 = 2−52.

7.4 Hardness Estimates

In this section we describe how we obtain hardness estimates for our challenges. There

are many different algorithmic approaches for attacking lattice problems like the approx-

imate Shortest Vector Problem (SVP) and the Bounded Distance Decoding (BDD) prob-

lem, of which Ring-LWE/LWR are special cases. These include lattice-basis reduction

(e.g., [LLL82; Sch87; GNR10; CN11; MW16]), exponential-time and -space sieving or

Voronoi-based algorithms (e.g., [AKS01; NV08; MV10b; MV10a; Laa15; Agg+15]),
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combinatorial and algebraic attacks [BKW03; AG11; Alb+14], and combinations thereof

(e.g., [How07]).

Because all the above approaches represent active areas of research and can be difficult to

compare directly—especially because some require enormous memory—we do not attempt

to give precise estimates of “bits of security.” Instead, we follow the analysis approach

of [MR09; LP11; LN13; Alk+16] for (Ring-)LWE to derive two kinds of hardness estimates.

First, we give the approximate root-Hermite factor 𝛿 > 1 needed to solve each challenge

via lattice attacks. We use 𝛿 to classify each challenge into one of a few broad categories,

ranging from “toy” (very easy) to “very hard”(likely out of reach for nation-state attackers

using the best publicly known algorithms). Second, we estimate the smallest block size that

is sufficient to solve the challenge using the BKZ algorithm [SE94; CN11].

In figures 7.1 and 7.2, we give a sample of the hardness estimates for our Ring-LWE/LWR

challenges, using the methods described below (specifically, Equations (7.4.1) and (7.4.2)).

The estimates for the complete list of challenges can be found in [CP16a].

7.4.1 Ring-LWE/LWR as BDD

A standard attack on Ring-LWE casts it as a Bounded Distance Decoding (BDD) problem

on a random lattice from a certain class. For a collection of ℓ Ring-LWE samples (𝑎𝑖 ∈

𝑅𝑞, 𝑏𝑖 = 𝑠 · 𝑎𝑖 + 𝑒𝑖 mod 𝑞𝑅∨) defining �⃗� = (𝑎1, . . . , 𝑎ℓ), we consider the corresponding

“𝑞-ary” lattice

ℒ(⃗𝑎) := {�⃗� ∈ (𝑅∨)ℓ : ∃ 𝑧 ∈ 𝑅∨ such that �⃗� = 𝑧 · �⃗� (mod 𝑞𝑅∨)}.

The vector �⃗� = (𝑏1, . . . , 𝑏ℓ) ≈ 𝑠 · �⃗� mod 𝑞𝑅∨ is then a BDD target that is close to an element

of ℒ(⃗𝑎), and the BDD error is �⃗� = (𝑒1, . . . , 𝑒ℓ), where each 𝑒𝑖 is distributed as the spherical

Gaussian 𝐷𝑟.
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Table 7.1: Hardness estimates for a selection of our continuous Ring-LWE challenges, in
terms of approximate root-Hermite factors and smallest BKZ block size required to solve
them: 𝑟′ is the rescaled error parameter (subsection 7.4.1), 𝛿 is the root-Hermite factor
(subsection 7.4.2), and 𝜅 is the GSA factor (subsection 7.4.3). Hardness estimates for
our discrete Ring-LWE challenges (odd challenge IDs, with parameters identical to the
preceding even challenge ID) are essentially the same, but may be slightly larger due to the
extra round-off error.

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑟′ 𝑞 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

432 500 200 177.953 8,791,500 1.0104 easy 1.0098 343 89

434 500 200 383.329 37,996,001 1.0107 easy 1.0100 349 84

436 1,155 480 266.103 41,817,931 1.0048 very hard 1.0049 777 291

438 1,155 480 579.489 212,466,871 1.0050 very hard 1.0051 810 276

440 179 178 176.904 8,382,929 1.0116 toy 1.0108 325 71

442 179 178 176.904 8,388,608 1.0116 toy 1.0108 325 71

444 179 178 176.904 8,382,033 1.0116 toy 1.0108 325 71

446 179 178 380.444 37,250,617 1.0120 toy 1.0111 316 66

448 257 256 230.425 15,802,417 1.0083 moderate 1.0080 428 131

450 257 256 230.425 15,792,907 1.0083 moderate 1.0080 428 131

452 257 256 498.003 72,720,721 1.0086 moderate 1.0083 457 123

454 797 796 1,152.130 741,587,779 1.0030 very hard 1.0033 1,360 527
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Table 7.2: Hardness estimates for a selection of our Ring-LWR challenges, in terms of
approximate root-Hermite factors and smallest BKZ block size required to solve them: 𝛿 is
the root-Hermite factor (subsection 7.4.2), and 𝜅 is the GSA factor (subsection 7.4.3).

Hermite Factor BKZ

ID 𝑚 𝜙(𝑚) 𝑞 𝑝 𝛿 Qualitative 𝜅 Dimension 𝑑 Block size

456 32 16 97 2 1.0100 easy 1.0081 75 ≤ 30

457 32 16 32 2 1.0133 toy 1.0092 60 101

458 32 16 105 7 1.0299 toy 1.0124 33 ≤ 30

459 64 32 193 2 1.0043 very hard 1.0053 141 263

460 64 32 16 2 1.0083 moderate 1.0075 72 150

461 64 32 105 7 1.0148 toy 1.0108 82 71

462 128 64 257 2 1.0021 very hard 1.0034 250 497

The difficulty of BDD is primarily determined by the lattice dimension, and the width

of the error relative to the (dimension-normalized) lattice determinant. Because 𝑅∨ is

isomorphic as a group to Z𝑛, we have that ℒ(⃗𝑎) is an ℓ𝑛-dimensional lattice; however,

by ignoring some coordinates we can view it as a 𝑑-dimensional lattice for any desired

𝑑 ∈ [𝑛, ℓ𝑛]. In order to most easily adapt the prior analyses for attacks on (Ring-)LWE,

we also implicitly rescale the canonical embedding (thereby rescaling both the lattice and

the error) by a factor of 𝛿𝑅 := vol(𝜎(𝑅))1/𝑛, so that the rescaled 𝑅∨ has unit volume, just

like Z𝑛. The determinant of the lattice is then 𝑞𝑑−𝑛—the same as for a 𝑑-dimensional LWE

lattice—and the error is distributed as a spherical Gaussian of parameter 𝑟′ := 𝛿𝑅 · 𝑟.

For Ring-LWR we proceed similarly, but because the rounding is done with respect the

decoding basis of 𝑅∨—which in general is not orthogonal in the canonical embedding—we

instead use the geometry given by identifying the decoding basis with the standard basis

of Z𝑛, and we model the rounding error in each coordinate as uniform in the interval

(− 𝑞
2𝑝
, 𝑞
2𝑝

). This makes the rounding error isotropic and gives 𝑅∨ unit volume, and therefore

yields the smallest ratio of error width to dimension-normalized determinant. Specifically,
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the lattice determinant is again 𝑞𝑑−𝑛, and the error has standard deviation 𝑞
𝑝
/
√

12 in each

coordinate, so we heuristically model it as a spherical Gaussian with parameter 𝑟′ :=

𝑞
𝑝

√︀
𝜋/6.

7.4.2 Root-Hermite Factor

The quality of lattice vectors, and the concrete hardness of obtaining them, is often measured

by the Hermite factor: for a 𝑑-dimensional lattice ℒ, vector v ∈ ℒ has Hermite factor 𝛿𝑑

given by ‖v‖ = 𝛿𝑑 · vol(ℒ)1/𝑑; we call 𝛿 the root-Hermite factor. Experiments on random

lattices indicate that 𝛿 is a very good indicator of hardness in cryptographically relevant

dimensions. For example, 𝛿 ≈ 1.022 and 𝛿 ≈ 1.011 are efficiently obtainable by the LLL

and BKZ-28 algorithms (respectively) [GN08], whereas 𝛿 = 1.005 is considered far out of

practical reach for 𝑑 ≥ 500 [CN11]. To our knowledge, the best publicly demonstrated root-

Hermite factors for cryptographic dimensions are 𝛿 ≈ 1.00955 or more, on the Darmstadt

lattice challenges [Lin+10].

Assuming that the error is sufficiently “smooth” over the integers, which is the case for

all our challenges, the analyses of [MR09; LP11; LN13] show that one can solve LWE/BDD

with some not-too-small probability by obtaining a root-Hermite factor 𝛿 given by

lg 𝛿 =
lg2(𝐶𝑞/𝑟′)

4𝑛 lg 𝑞
. (7.4.1)

Here the factor 𝐶 influences the success probability: larger values correspond to smaller

chance of success. For example, extrapolating from [LN13, Table 2] for 𝑛 ≤ 256, taking

𝐶 ∈ [1.7, 2.5] can yield probability ≈ 1 (depending on the exact dimension); 𝐶 ≈ 3.0

corresponds to probability ≈ 2−32; and 𝐶 ≈ 4.0 corresponds to probability ≈ 2−64. (These

are only rough estimates, and can be affected by the number of iterations, choice of pruning

strategy, etc.) In our estimates, for simplicity we always use 𝐶 = 2.0.
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We use our root-Hermite factor estimates to classify each challenge into one of several

qualitative hardness categories. The category thresholds are given in Table 7.3.

Table 7.3: Root-Hermite factor thresholds for our qualitative hardness estimates. Each
challenge is classified according the largest applicable threshold (i.e., the weakest category.)

Class 𝛿 >

Toy 1.011

Easy 1.0095

Moderate 1.0075

Hard 1.005

Very Hard 1.0

7.4.3 BKZ Block Size

Another very good indication of hardness for a BDD instance is the smallest block size

needed for the success of the BKZ lattice-basis reduction algorithm [SE94; CN11]. This

parameter is a useful proxy for hardness because the runtime for BKZ is at least exponential

in the block size.

Heuristic algorithms exist to approximate the runtime of BKZ [CN11; Che13], but they

focus on the runtime of an SVP subroutine. This subroutine is called many times by the

BKZ algorithm, but there are no precise estimates for the number of calls, and hence no

very precise estimates for the total runtime of BKZ. Furthermore, the heuristic estimates

are for sufficiently large block sizes in high dimensions, while some of our challenges have

low dimension or can be attacked with a relatively small block size. Therefore, rather than

provide an imprecise “bits of security” estimate, we instead give the approximate block size

needed for the BKZ algorithm to successfully solve each challenge.

The “primal” form of the BKZ attack on LWE/BDD is most easily explained using

Kannan’s embedding technique, which converts a 𝑑-dimensional BDD instance with error �⃗�
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to a (𝑑 + 1)-dimensional SVP instance with a “planted” shortest vector (�⃗�, 1).12 When

BKZ is run with a large enough block size 𝑏, it successfully finds the planted shortest

vector. More specifically, by modeling the behavior of BKZ using the geometric series

assumption (GSA) [Sch03], and assuming the error is Gaussian with parameter 𝑟′, the

analysis of [Alk+16] shows that the attack succeeds when

𝑟′
√︀
𝑏/(2𝜋) ≤ 𝜅2𝑏−𝑑−1 · 𝑞1−𝑛/𝑑, (7.4.2)

where 𝜅 = ((𝜋𝑏)1/𝑏 · 𝑏/(2𝜋𝑒))1/(2𝑏−2) is the GSA factor. We optimize our choice of

𝑑 ∈ [𝑛, ℓ𝑛] to minimize the block size needed for each challenge.

7.5 Implementation Notes

In this section we describe some of the lower-level technical details of our challenges, and

the operational security measures we used when generating them.

Beacon addresses. Every 60 seconds the NIST randomness beacon [11] announces a

512-bit string, which is identified by the corresponding (Unix) epoch, i.e., the number

of seconds elapsed since 1 January 1970 00:00:00 UTC. (The beacon epochs are always

divisible by 60.) For our cut-and-choose protocol, a beacon address is a pair (𝑠, 𝑖) consisting

of an epoch 𝑠 and a zero-indexed offset 𝑖 ∈ {0, . . . , 63 = 512/8− 1}, which indexes the 𝑖th

byte of the beacon’s output string for epoch 𝑠.

Each of our challenges is associated with a distinct beacon address, which is used to

determine which of its 𝑁 = 32 instances will become the “official” one; the remainder will

have their secrets revealed in the cut-and-choose protocol (see section 7.2 for details). A

beacon address of (𝑠, 𝑖) means that the official instance will be the one indexed by the 𝑖th

12Alkim et al. [Alk+16], found that by adjusting the parameters appropriately, the best “dual” attack required
an almost identical block size as the primal attack, so we do not consider it here.
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byte of the beacon value for epoch 𝑠, interpreted as an unsigned 8-bit integer and reduced

modulo 32. That is, we use the least-significant 5 bits of the 𝑖th byte, and ignore the rest.

To ensure distinct beacon addresses, we generated our challenges to have sequentially

increasing addresses starting from epoch 1,471,449,600 (corresponding to 17 August 2016

12:00:00 EDT) and index zero. “Sequentially increasing” means that the index increments

from 0 to 63, after which the epoch increments (by 60) and the index is reset to zero.13

Randomness. As the source of randomness for generating each instance of our challenges,

we used the Haskell DRBG implementation [DuB15] of the NIST standard CTR-DRBG-AES-

128 [BK15] pseudorandom generator, with a 256-bit seed (“input entropy”). The seeds

themselves were derived using the Hash-DRBG-SHA-512 generator [BK15], seeded with

512 bits of system entropy. We would have preferred to use Hash-DRBG-SHA-512 for all

pseudorandomness, but its implementation in DRBG is much slower, and pseudorandom bit

generation is currently the main bottleneck in our implementation.

Operational security. A primary goal when generating our challenges and executing the

cut-and-choose protocol was to reduce the risk of unauthorized exfiltration of the underlying

secrets, e.g., by malware or hacking.

We generated the challenges on a 2010 MacBook Pro laptop with a freshly installed

operating system, which was never connected to any network and had all network interfaces

disabled. We exclusively used write-once CD and DVD media for copying the challenge-

generator executable to the laptop, and the challenges and revealed secrets from the laptop.14

13Actually, there are two non-sequential “jumps” in the beacon addresses of our challenges, corresponding
to batches we created with different runs of the generator. However, all beacon addresses are distinct across all
our challenges.

14Because our executable requires compilers and external libraries to build, it was produced on a networked
machine. It is conceivable, but seems highly unlikely, that the resulting executable could contain malicious
code that manages to exfiltrate secrets via the external media when we export the challenges and revealed
secrets. Unfortunately, this risk is inherent to our setup, because we must copy data from the laptop at some
point.
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We enabled FileVault encryption for the user account storage. As an extra layer of

protection, we also created and stored the challenges and their secrets in a separately

encrypted volume (within user storage), which was kept unmounted except when the

challenges were being created or operated upon. The random passphrases for the user

account and encrypted volume were generated and stored non-electronically, and were

destroyed with fire once the cut-and-choose protocol was completed. Finally, we wiped the

storage media with all-zeros. Therefore, we believe that the non-revealed secrets should be

completely unrecoverable (even by us), except by solving the corresponding challenges.
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