The AM-Bench: An Android Multimedia
Benchmark Suite

Chayong Lee

Euna Kim Hyesoon Kim

School of Computer Science
Georgia Institute of Technology
{chayong82, euna.kim}@gatech.edu, hyesoon@cc.gatech.edu

Abstract—Despite the significant evolution of mobile devices
and the increased use of mobile devices, not many mobile
benchmarks have been studied. Even though mobile applications
share similar characteristics with traditional desktop oriented
applications, different programming environments and user us-
age patterns present different characteristics. In this paper, we
introduce an open source based mobile multimedia benchmark
for Android platforms (AM-Bench). The AM-Bench consists of
several multimedia benchmarks running on Android platforms.
We explain the characteristics of the AM-Bench and compare
performance on four Android-based platforms.

I. INTRODUCTION

The popularity of Smart phones shifts the major com-
puting paradigms. Mobile platforms have different types of
applications than those of traditional desktop applications.
Nonetheless, not many benchmarks are available to understand
the characteristics of the benchmarks and architectures.

Traditional benchmark suites such as MiBench [19] and
SPEC benchmark suite [25] are not adequate to characterize
the performance of mobile devices due to the compatibility
issue with mobile device platforms such as Android and iOS.
These new systems all run programs written in new object
oriented program languages such as Java and Objective-C,
which show very different program characteristics than many
other desktop applications. This fact provides the motivation
to propose a new commercially free benchmark suite for
mobile devices. We present Android Multimedia Benchmark
Suite, called AM-Bench. AM-Bench is composed of Android
open source applications that are drawn from the multime-
dia domain. Our survey of Android applications shows that
multimedia benchmarks are one of the most commonly used
application categories. Since mobile applications are heavily
dependent on underlying operating systems and programming
platforms such as libraries and we are targeting the develop-
ment of an open source benchmark suite, an Android operating
system is chosen. Android instrumentation [17] also provides
end users an easy interface for running each benchmark in
AM-Bench.

In this paper, we analyze end users’ activities on mobile
devices and discuss the representatives of Android-open source
application in the multimedia domain. We then describe our
benchmarks, Android Multimedia Benchmark Suite, called
AM-Bench. Using AM-Bench, we evaluate the performance of
four different mobile devices in terms of application execution
time and CPU performance on NVIDIA Tegra 2 [8], Samsung

Galaxy Tab 7.0 [10], Galaxy Player YP-GP1 [9] and Nexus
One architectures [4].

II. BACKGROUND

The Android system includes a three part of software layer;
mobile applications, middle-ware, and operating system [18].
Most Android applications are written in Java, and they
are compiled as the .class file format. The Android system
converts .class files into a Dalvik Executable (.dex) file and
executes on the Dalvik virtual machine in the middle-ware
layer. Each Android application runs on its own process with
its own instance of the Dalvik virtual machine.

A. Android Software Stack

1) Application Layer: The application layer is the highest
layer in the architecture and contains the built-in applications
such as Phone Dialer, Email, Contact, Camera, Gallery and
others. The application framework layer provides the core
platform services such as activity manager, package manager,
window manager and others. This layer provides an abstract
interface to hardware access and also provides a way to
manage the user interface or application resources. The appli-
cation framework layers enable developers to piece together
the services to create an Android application.

2) Middle-ware Layer: The middle-ware layer includes
C/C++ core libraries and Android Run Time. C/C++ core
libraries can be classified into four categories; bionic libc,
function libraries, native servers, and hardware abstraction
libraries. These core libraries support built-in Android-specific
services and standard video, audio and other data storage.

The Android run time comprises core libraries that are
required for Java libraries and the Dalvik VM, which is a
register based virtual machine. The Dalvik VM is optimized
for low memory requirements and designed to support multiple
virtual machine processes per device with optimized bytecode
interpreter using runtime memory efficiently. The Dalvik VM
also supports process isolation, memory management and
threading from the underlying operating system.

3) Operating System: Android relies on the Linux Kernel
and communicates underlying hardware. This layer includes
Android’s memory management programs, security settings,
power management software, several drivers, file system ac-
cess, networking and inter-process-communication.

B. Memory Limitation

One of the key differences between mobile applications
and desktop applications is the limitation of memory usage.
Multimedia applications often deal with memory intensive
items such as images, audio, and video, so the memory
limitation is the key challenge of multimedia application on
mobile devices. Also, how to utilize the memory limitation
significantly determines the performance of the application.
Typically, each application on an Android platform is allowed
to use 16MB of memory (24 MB for recently released Android
devices) [1]. Android devices with 16 GB and 32 GB are
common these day; however, that is solid state storage and
not RAM.

In AM-Bench, we exam how Android devices can handle
this memory limitation issue and how they utilize the sec-
ondary storage to overcome this problem. We will describe
this problem in more detail using the FBReader application.

C. Java Native Interface (JNI)

Some of the benchmarks in AM-Bench examine a com-
putational performance using JNI. JNI refers to Java Native
Interface [5] and it allows the interaction between Java VM
and native code. There are two types of interactions [14],
downcalls and upcalls. Downcalls is what Java applications
call a native method' and upcalls is what a native method
needs to access Java applications for the application’s re-
sources. Although the Android system does not include Java
VM, it is still possible to use the JNI interface in an Android
application using Android NDK [2].

III. MOTIVATION
A. Existing Benchmark Suites

To the best of our knowledge, a benchmark suite specifi-
cally for Android mobile applications has not yet proposed.
There are some benchmarks for mobile devices, however, they
typically they target one specific feature on mobile devices.
Also traditional benchmark suites such as MiBench [19] or
PARSEC [13] are not adequate to characterize the performance
of mobile devices due to the compatibility issue with mobile
devices’ operating system such as iOS, or Android. SD-
VBS [26] is the San Diego Vision Benchmark Suite that
comprises vision applications drawn from the vision domain.
However, the applications are written in Matlab and C so
there is no known way to run code on an Android plat-
form. DENBench [24] is a software benchmark that contains
widely used algorithms in mobile applications such as AES
(Advanced Encryption Standard), DES (Digital Encryption
Standard) and others. However, DENBench only evaluates the
media library and this is not a collection of representative
mobile applications. DENBench is not an open source or
commercially free. GPSBenchmark [7] only examines the
GPS performance of mobile devices and the source code is
not available. JBenchmark [23] is a graphical benchmark for
Java phones and PDAs. JBenchmark has several features such

'In this paper, method means the method in Java programming language.

as heavy load on animation, mapping tests, user interface
simulation and etc. However, JBenchmark is only compatible
with J2ME enabled devices. GLBenchmark [22] is a 3D test
suite designed for OpenGL ES in various operating systems;
Android, i0S, Linux, Symbian and Windows Mobile. This is a
licensed commercial 3D testing tool that does not allow source
code to be manipulated. Recently, BBench [20] was proposed
for modern Smart phones. However, BBench only targets Web
browsers.

B. User Preferences of Mobile Application

To analyze user preferences of mobile applications, the
top 50 Android applications have been investigated [15].
We assume that the most frequently downloaded applications
would run on the mobile devices most frequently.”

14

12

of Applications
5 o o B

°

mmmmmmm

it
de
2zle
cing
sual
per

@

Educatiot
Lifestyle
Live Wallpaper
Medical
Music & Audio
Shopping

Media & Video
Personalization
Photography
Productivity
Transportatios
Travel & Loca
Game: P
Game: R
Game: C
Live Wallp:

€
&

Books & Reference
Communicatiol

I
=
&
3
3
z

Fig. 1. Top 50 Android Applications

Figure 1 shows the top 50 free Android applications avail-
able in the official Android market from mid 2011. Since
the Android market categorizes the application into several
categories, we narrow down the categories to ensure the users
preferences more clearly. We suggest three new categories;
Information/Communication, Multimedia, and Utility. We re-
arrange the top 50 Android applications into the new categories
as shown in Table I. As the Table I shows the total number
of applications in Multimedia categories is more than twice
larger than the total number of applications in the Informa-
tion/Communication category and three time larger than the
total number of applications in the Utility category.

If we consider native multimedia Android applications such
as Camera, Gallery, Music, and others, the importance of
multimedia applications is somewhat higher than what we can
see from Table I. Based on this, we can ensure that the most
frequent and important user activities on Android devices are
related to the multimedia applications. This fact also conforms
to the necessities of our benchmark suite, which is composed
of multimedia Android applications.

IV. BENCHMARK SUITE

In this section, we describe the characteristics of our
benchmark suite, Android Multimedia Benchmark Suite, AM-
Bench. AM-Bench is composed of six Android open source
applications that are drawn from the multimedia domain to

2 Although the number of downloads does not necessary represent actual
usages, we believe that strong correlations still exist.

TABLE I
NEW CATEGORIES OF ANDROID APPLICATIONS

Category Sub-Categories Number of App.
Multimedia Game, Books&References, Comics, New&Magazine, Entertainment, Photography, Me- 29
dia&Video, Music&Audio, Sport, LiveWallPaper, Widgets
Information & Communication Business, Education, Finance, Weather, Medical, Transportation, Communication, Health, Fit- 12
ness, Lifestyle, Medical, Social, Shopping, Travel&Local
Utility Libraries&Demo, Personalization, Productivity, Tools 9

benchmark multimedia features on Android devices. Two
applications in AM-Bench are selected from the Android
native applications. Four applications are chosen based on the
popularity and total number of downloads, such that it can
ensure the overall performance and functionality of the open
source applications.

A. Benchmark Design

AM-Bench covers four essential multimedia features; play-
back, compression, computation and rendering. Playback
refers to the ability to decompress multimedia contents from
a file system and load the multimedia contents on the ap-
plication. Compression refers to the ability to compress a
raw data from the built-in multimedia hardware component
on the mobile device to a multimedia format. Computation
includes the ability to handle heavy computational loads such
as a matrix multiplication and a floating point calculation.
Rendering refers to the capability to draw 3D objects on the
screen. As shown in Table II six AM-benchmark applications
examine at least two multimedia features.

B. Applications

1) FBReader [3]: FBReader is the most popular free
Android e-book reader application. FBReader was selected to
evaluate the e-book load process and text search operations
on mobile devices. FBReader loads a complete e-book from
a file system into the memory to allow fast computations on
searches or text re-sizing. FBReader does not implement any
sophisticated algorithm for text search but it simply iterates
over all paragraphs in text model and over text blocks in each
paragraph to search the text. As a result, the search operation
will examine how the capacity of memory will affect on the
performance of mobile devices.

Optimizations Because of Memory Limitations: Since
each application can only use up to 16 MB of memory on
an Android platform, FBReader can not store the entire book
model onto the memory. Instead, it stores a compact version of
the book model in the memory and serializes the book model
onto the flash memory in a 100KB block. It then uses Java
weak reference pointers to store the text blocks so it provides
reading of the model from the text block as fast as reading
from RAM.

2) Barcode Scanner [12]: Barcode Scanner scans barcodes
on CDs, books, and other products. Barcode Scanner uses
the ZXing library, which is an open source barcode image
processing library. It decodes barcodes using the built-in
camera on mobile devices. Supported formats are UPC-A/E,
EAN-8/13, QR code and others. Barcode Scanner implements

its own algorithm for the QR code detector. The key elements
of the algorithm are the following.

e Making threshold decisions on Gray scale data to get
binary data.

e Sampling raw image pixels into modules; each QR code
module must be spanned by raw image pixels.

e Detecting of alignment patterns.

e Image rotation and correct perspective distortion.

Barcode Scanner was selected to evaluate the image decode
processing and the performance of the image analysis algo-
rithm.

3) libGDX 2D [6]: LibGDX is a commercially free game
development framework written in Java/C/C++ and many
Android game applications are based on the 1ibGDX engine.
LibGDX 2D was chosen to examine the performance of 2D
graphics and related computations on mobile devices.

Table III describes seven benchmarks in 1ibGDX 2D. 2D
animation exams the basic abilities to draw 2D images on
the screen of mobile devices. Sprite and Sprite Batch perform
a full stress computation to check the maximum capacity of
2D computation. Matrix Computation compares the execution
time of 4 by 4 matrix multiplications from Java source code
and C native source code using JNI. Included computations
are a basic matrix multiplication, a vector multiplication, and
a matrix inversion. Parallex tests an animation moving side to
side. Culling exams the ability to identify visible objects on
screen. Vertex Buffer Object tests methods for uploading data
such as vertex, normal, color, and other information in a given
array to the video component on mobile devices.

4) libGDX 3D [6]: 3D graphic technology on mobile
devices has been dramatically improved. Also, 3D graphics
applications have been taken an important workload of mobile
devices. Some of the mobile devices already have a GPU
to enhance the performance of 3D graphics. Therefore it is
important to benchmark the performance of 3D graphics on
mobile devices. The libGDX 3D benchmark runs 3D modeling
loaders to measure skin time, render time, and FPS.

5) Camera [15]: Since users carry mobile device in their
daily lives, a built-in camera on mobile devices is often used to
capture photographs. Camera is an Android built-in application
that can capture photographs or record videos. AM-Bench
includes a Camera benchmark to test the performance of built-
in cameras on mobile devices. The Camera benchmark exams
four primary operations of built-in cameras on mobile devices:
start up, latency, JPEG call back, and switch mode. Detailed
descriptions are explained in Table III.

6) Gallery [15]: Gallery is also an Android native appli-
cation that displays multimedia contents on mobile devices.

TABLE II
AM-BENCH MULTIMEDIA FEATURES WITH SUB-ELEMENTS

Feature Element FBReader | Barcode Reader | 1ibGDX 2D | 1ibGDX 3D | Camera | Gallery
Media Playback Still Image (6] (0]
Audio (€]
Video (€]
Media Compression Still Image (6]
Audio (0]
Video (0]
Computation Physic (0] (0]
Recognition
Search (0]
Rendering 2D (0]
3D (0]
TABLE III
AM-BENCH SPECIFICATION
Application Benchmark Description Input Category
FBReader e-book Process Load e-books from a file system to application ebooks(EPUB, MOBI) Media Playback
Text Search search words in e-book 10 words Computation
Barcode Scanner Decode QR image Decode QR images and data analysis 10 QR images Media Playback, Recognition
1ibGDX 2D 2D Animation Load 2D animation on screen 2DAnimationTest 2D Rendering
Sprite Exam Sprite performance SpriteTest 2D Rendering
Sprite Batch Exam Sprite Batch performance SpriteBatchTest 2D Rendering
Matrix Computation | Perform 4 by 4 matrix multiplications from Java and MatrixJNITest Computation
native C source code using JNI
Parallex Load 2D animation moving side to side ParallexTest 2D Rendering
Culling Identify visible objects on screen CullingTest Computation
Vertex Buffer Object | Upload object data in a buffer to a video component VBOVOTest Computation
1ibGDX 3D 3D Render Render 3D images on screen MD5Test 3D Rendering
3D Skin Draw 3D images on screen MD5Test 3D Rendering
3D Animation Load 3D animation on screen MD5Test 3D Rendering
Camera Start up Turn on built-in camera on mobile devices Built-in Camera Media Compression
Latency Check the delay between shutter triggered and a Built-in Camera Media Compression
photography taken
JPEG Callback Create a JPEG image from raw data Built-in Camera Media Compression
Switch Mode Switch application activities between camera mode | Application Activities Media Compression
and camcorder mode
Gallery Initial Building Populate multimedia albums and items. Create meta JPEG Images Media Playback
data
Thumbnail Loading | Load thumbnail images JPEG Images Media Playback
Full-size Loading Load a full-size image from a thumbnail image JPEG Images Media Playback

As described in Table III, the application measures the perfor-
mance of media decompression in three different places. The
initial Building benchmark shows how the process of creating
meta data affects on the multimedia decompression process.
We will exam this in more detail in the evaluation section.
In the Thumbnail Loading benchmark, the total number of
images loaded at the first time users select an album depends
on the screen size of mobile devices. Thus, we calculate the
average of the execution time.

V. PERFORMANCE EVALUATION
A. Methodology

1) Profiling Devices: We select four Android devices that
have different hardware configurations to gather the perfor-
mance data using AM-Bench. Table IV specifies the charac-
teristics of the evaluated Android devices.

2) Android Instrumentation and Measurements: We modify
Android instrumentation [16] to provide a test frame for
benchmarking. Android instrumentation is based on JUnit[21]
and was originally designed to test Android applications. First,
the modified Android instrumentation provides a fixed set of

user inputs so that benchmarks always produce consistent re-
sults. Second, the modified Android instrumentation provides
an interface to a running application to invoke benchmark
methods.

Figure 2 summarizes the process of using Android Instru-
mentation to collect benchmark data in AM-Bench. Appli-
cation refers to the target application in AM-Bench such as
FBReader, Barcode Scanner, or Native Camera. AM-Bench
Control Package is the set of methods we added to the
applications to gather benchmark data such as application
execution time and CPU performance of the application.
Android Instrumentation [16] allows Benchmark Controller
to access the target application. Benchmark Controller is an
application that controls the benchmark process by invoking
control methods in the target application or triggering an
application’s U.I. events.

By attaching Android Instrumentation to the target applica-
tion, Benchmark Controller can invoke control methods in the
AM-Bench Control Package through Android Instrumentation.
If the target application was previously running, Android
Instrumentation kills the application to attach itself to the
application on the same process.

TABLE IV
CHARACTERISTICS OF THE EVALUATED ANDROID DEVICES

AM-Bench Control Package

1. Attach Android Instrumentation
to the application

@

Android Instrumentation

3. Invoke AM-Bench control methods
or control application U.I events

2. Get an access to the application
through Android Instrumentation

Benchmark Controller

Fig. 2. Android Instrumentation in AM-Bench

3) Built-In Applications: Android contains built-in mobile
applications such as Dialer, Email, Camera, and others, that
are included by default. AM-Bench includes two of Android’s
built-in applications; Camera and Gallery.

Creating benchmarks using built-in applications is more
complex than creating benchmarks using third-party appli-
cations. In order to install the modified built-in application,
which has an AM-Bench control package, we had to uninstall
the built-in application from profiling devices. Because An-
droid devices required the root privilege in order to uninstall
built-in applications, additional steps were required. We used
SuperOneClick [11] to root Android devices.

B. Execution Time

To provide various of studies, AM-Bench includes different
input sets to evaluate the execution time of multimedia tasks
on Android devices as shown in Table IV.

1) Load e-book: We use an e-book that has a size of 2.5
MB in the MOBI format without images. FBReader loads
the book from an SD card to the memory and examines the
search operation. Figure 3 shows the execution time of e-
book load and text search. Load e-book is a CPU intensive
benchmark. As a result, NVIDIA Tegra 250 Dev. Kit shows
the best performance. The importance of the memory capacity
for the search operation is well captured in the figure as well.

Feature NVIDIA Tegra 250 Dev.Kit Samsung Galaxy Tab 7.0 Nexus One Samsung Galaxy Player
Operating System Android 2.2 (Froyo) Android 2.2 (Froyo) Android 2.3 (Gingerbread) Android 2.2 (Froyo)
Architecture Dual-Core ARM Cortex A9 | Samsung-Intrnsity SSPC110 Qualcomm QSD 8250 Samsung-Hummingbird SSPC111
Number of Core 2 1 1 1
CPU Clock 1 GHz per core 1 GHz 1GHz 1GHz
L1 Cache 32 KB per core 32 KB 32 KB 32 KB
L2 Cache 1 MB 512 MB 256 KB 512 KB
Memory 1 GB 593 MB 512 MB 512 MB
GPU ULP GeForce None Adreno 200 PowerVR SGX540
Main Camera 12MP 3.15 MP SMP 3.15 MP
Usage Tablet Tablet Phone Phone
Process With the lowest memory capacity, Nexus One takes the longest
time to finish the search operation.
Application

12000000

10000000

8000000

O Nevidia Tegra 250 Dev. Kit
6000000 O Galaxy Tab 7.0

 Nexus One

Execution Time (us)

4000000 B Galaxy Player

2000000 |

0

e-book Loading Text Search

Fig. 3. FBReader Execution Time

2) QR Code Process: In order to measure the execution
time of QR code processing, the Barcode Scanner applica-
tion in AM-Bench was used. The QR code process is a
computation-intensive benchmark with complex matrix opera-
tions involving threshold decision, sampling raw image pixels,
finding the alignment patterns, etc. As shown in Figure 4, the
benefit of having multi-core (Tegra 250 Dev. Kit) shows the
best performance for the complex computation.

12000
10000

8000 ONevidia Tegra 250 Dev. Kit

6000 O Galaxy Tab 7.0

@ Nexus One
4000

Execution Time (us)

B Galaxy Player
2000

0
QR Code Processing

Fig. 4. QR Code Process Execution Time

3) Matrix Operation: Matrix operations are widely per-
formed across the multimedia applications, and this is one of
the most computation-intensive tasks. Thus, faster execution
time for matrix multiplication implies faster running time for
all other computation-intensive tasks. The execution time of
matrix operations was evaluated by the Matrix Computation
benchmark in 1ibGDX 2D. Table V specifies the matrix
operations in the Matrix Computation benchmark.

Figure 5 shows the execution time of matrix operations.
The most intensive work is the Java inverse operation and we
can see the benefit of using JNI in this case across profiling
devices. Although NIVIDA Tegra 250 Dev. Kit shows the

TABLE V
MATRIX OPERATION INPUT SET

Name Operation Size Iteration
M1 Java Matrix Multiplication | 4 by 4 1,000,000
M2 JNI Matrix Multiplication 4 by 4 1,000,000
M3 Java Vector Multiplication | 4 By 4 500,000
M4 JNI Vector Multiplication | 4 by 4 500,000
M5 Java Matrix Inverse 4 by 4 1,000,000
M6 JNI Matrix Inverse 4 by 4 1,000,000

best performance throughout the benchmarks, Nexus One also
shows also outstanding performance. The hardware configu-
ration of Nexus One is similar to Galaxy Player; however,
Nexus One takes an average of 68% of the execution time of
Galaxy Player. Using JNI does not always guarantee the per-
formance enhancement because of system overhead; therefore,
application developers have to be careful of using JNI. As a
result, JNI Vector and Matrix multiplication takes longer than
the same operation in Java.

ONevidia Tegra 250 Dev. Kit ©Galaxy Tab7.0 B Nexus One B Galaxy Player

25
Ta
H
;
. r]:h e [
M1 M2 M: M4

3 M5 M6

Fig. 5. Matrix Operation Execution Time

4) 2D & 3D Graphic Process: In order to measure the
ability to handle 2D and 3D graphics, various benchmarks
were selected from libGDX 2D/3D to evaluate the frame rate
on different computational loads. As for the 3D modeling
evaluation, benchmarks measure the time taken to draw a 3D
model on the screen of a mobile device with 2275 vertices
and 3163 triangles. Figure 6 shows the frame rate of 2D/3D
graphics. As for the full stress 2D benchmarks, all of the
profiling devices report a very low FPS. In the case of 3D
modeling benchmarks, the performance improvement with
GPU is well illustrated in Figure 7.

O Nevidia Tegra 250 Dev. Kit @ Galaxy Tab 7.0 BNexus One B Galaxy Player

Lo

= 30

2

10
[T

0

20 Animation sprite Sprite Batch Parallex Culling VvBO 3D Modeling

Fig. 6. Frame Rate of 2D/3D Graphics

N
@

=

N
S}

O Nevidia Tegra 250 Dev. Kit

N
&

D Galaxy Tab 7.0

=
o

@ Nexus One

Execution Time (ms)

B Galaxy Player

«

1

—

Skin Time Render Time

Fig. 7. 3D Modeling Execution Time

5) Built-in Camera&Media Compression: We used
benchmarks in the Camera application to evaulate the per-
formance of built-in cameras on mobile devices. In Table IV
we can find the resolution of the built-in cameras of profiling
devices. We did not include the Nexus One profiling result
due to the OS version conflict. Despite similar hardware
configurations, Samsung Galaxy Tab 7.0 shows an average
of 1.3 times faster performance than Samsung Galaxy Player.

6) Media Decompression: For the media decompression
benchmark, the built-in Gallery application was used. We
prepared 100 different JPEG images and measured the time
taken to decompress the images in the application procedure.
Interesting data is captured in Figure 8. Galaxy Player spent
a significantly less time than the other two devices for the
initial building process. As a result, Galaxy Player spent the
longest time loading thumbnail images. The initial building
process involves creating meta data for the thumbnail images
and storing the data into a skip list (memory). The importance
of these steps is well captured in the figure. Since the media
decompression process involves CPU-intensive computations,
NVIDIA Tegra 250 Dev. Kit shows better performance than
Galaxy Tab and Player.

CINevidia Tegra 250 Dev. kit DlGalaxy Tab 7.0 M Galaxy Player

Execution Time (ms)

f—— |
Switch Mode

Start Up Auto Focus. Shutter Lag JPEG Callback Initial Building Thumbnail Loading Full-Size Loading

Fig. 8. Media Compression/Decompression Execution Time

C. CPU Usage

Many mobile devices these days have adopted extra hard-
ware components such as GPU, GPS, and accelerometers,
so it is not clear whether a task is done by the CPU or
by other hardware components. Hence, AM-Bench provides
CPU performance information to show a CPU load at a given
amount of time. AM-Bench computes the CPU performance
information using the proc/stat file from the Linux kernel.
By default, AM-Bench does not include the file I/O work to
the overall CPU performance due to the background file I/O
process.

Figure 9 shows an example of CPU usage from Gallery
application on Galaxy Player. Red marks indicate method calls
during the benchmark process. By the nature of the Android
background process, we experience irregular peaks during the
benchmark process; however, we can see a constant CPU load
(100% CPU usages) aligned with function calls.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced AM-Bench, Android Multi-
media Benchmark Suite. The benchmark suite includes four
important multimedia components: media playback, media
compression, computation and rendering features. In AM-
Bench, from six representative applications, a total of 20

81
618

Fig. 9. Gallery CPU performance on the Galaxy Player

benchmarks are selected. All benchmarks are written in Java
and have a method to evaluate several provided input sets.
Using AM-Bench, we evaluated four different mobile plat-
forms: two tablet platforms and two Smart phones. We will
release this benchmark suite into the public domain. In our
future work, we will devise a method to simulate AM-
Bench in architecture simulators to explore mobile architecture
design options. We will also evaluate the characteristics of the
benchmarks using underlying hardware performance counters.

REFERENCES

[1] “Android activity manager,” http://developer.android.com/reference/
android/app/ActivityManager.html.

[2] “Android ndk,” http://developer.android.com/sdk/ndk/index.html.

[3] “FBReader,” http://www.fbreader.org/.

[4] “Google nexus one,” http://www.google.com/phone/detail/nexus-one.

[5] “Java native interface,” http://java.sun.com/docs/books/jni.

[6] “libGDX,” http://libgdx.badlogicgames.com/.

[7] “Mobile ps benchmark,” http://www.gpsbenchmark.com/
the-mobile-appl.

[8] “Nvidia tegra 2,” http://www.nvidia.com/object/tegra-2.html.

[9] “Samsung galaxy s,” http://www.samsung.com/global/microsite/galaxys/
index_2.html.

[10] “Samsung galaxy tab 7.0,” http://www.samsung.com/us/mobile/
galaxy-tab/SCH-ISOOBKAVZW.

[11] “shortfuse.org,” http://shortfuse.org/.

[12] “ZXing ("Zebra Crossing”),” http://code.google.com/p/zxing/.

[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” Princeton
University, Tech. Rep. TR-811-08, 2008.

[14] G. Czajkowski, L. Daynes, and M. Wolczko, “Automated and portable
native code isolation,” in Software Reliability Engineering, 2001. ISSRE
2001. Proceedings. 12th International Symposium on, nov. 2001, pp.
298 - 307.

[15] “Android Developers,” http://developer.android.com, Google.

[16] “Instrumentation Testing,” http://www.kandroid.org/online-pdk/guide/
instrumentation_testing.html, Google.

[17] “Testing Fundamentals,” http://developer.android.com/guide/topics/
testing/testing_android.html/, Google.

[18] “What is Android?” http://developer.android.com/guide/basics/
what-is-android.html, Google.

[19] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, dec. 2001, pp. 3 — 14.

[20] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization
of interactive smartphone applications,” in In IEEE International Sym-
posium on Workload Characterization, Nov 2011.

[21] C. hui Huang and H. Y. Chen, “A semi-automatic generator for unit
testing code files based on junit,” in Systems, Man and Cybernetics,
2005 IEEE International Conference on, vol. 1, oct. 2005, pp. 140 —
145 Vol. 1.

[22] “GLBenchmark,” http://www.kandroid.org/online-pdk/guide/
instrumentation_testing.html, Kishonti Information Ltd.

[23] “Jbechmark,” http://www.jbenchmark.com/, Kishonti Information Ltd.

[24] M. Levy, “Evaluating digital entertainment system performance,” Com-
puter, vol. 38, no. 7, pp. 68 — 72, july 2005.

[25] Welcome to SPEC, The Standard Performance Evaluation Corporation,
http://www.specbench.org/.

[26] S. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. Taylor, “Sd-vbs: The san diego vision benchmark suite,” in
Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, oct. 2009, pp. 55 —64.

