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Abstract

The notion of a “market” has undergone a paradigm shift with the Internet — totally new
and highly successful markets have been defined and launched by Internet companies, which
already form an important part of today’s economy and are projected to grow considerably in
the future. Another major change is the availability of massive computational power for running
these markets in a centralized or distributed manner.

In view of these new realities, the study of market equilibria, an important, though essentially
non-algorithmic, theory within mathematical economics, needs to be revived and rejuvenated via
an inherently algorithmic approach. Such a theory should not only address traditional market
models but also define new models for some of the new markets.

We present a new, natural class of utility functions which allow buyers to explicitly provide
information on their relative preferences as a function of the amount of money spent on each
good. These utility functions offer considerable expressivity, especially in Google’s Adwords
market. In addition, they lend themselves to efficient computation, while still possessing some
of the nice properties of traditional models.
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1 Introduction

General equilibrium theory, which produced such celebrated works as the Arrow-Debreu theorem
and long enjoyed the status of crown jewel within mathematical economics, suffered from a serious
shortcoming — other than a few isolated results, it was a non-algorithmic theory. Although a
complexity-theoretic study of computing equilibria was initiated a while back by Megiddo [10] (see
also the subsequent paper [11]), the real impetus for developing an algorithmic theory of market
equilibria came only in this decade with the emergence of the area of algorithmic game theory.
In turn, impetus for this area came from the emergence of the Internet as the quintessential new
computational platform and the myriad of new issues of a strategic and computational nature raised
by it.

With the emergence of new markets on the Internet, which already form an important part
of today’s economy and are projected to grow considerably in the future, and the availability of
massive computational power for running these markets in a distributed or centralized manner,
the need for developing an algorithmic theory of markets and market equilibria is quite apparent.
Such a theory should not only address traditional market models but also define new models for
some of the new markets. The latter task is not easy, since such a model should not only capture
the idiosyncrasies of a new market in a simple manner but also have some of the nice properties of
traditional models, such as existence and uniqueness of equilibria, and at the same time it should
lend itself to efficient computation.

We attempt this task in the current paper. We define the notion of spending constraint utility
functions within Fisher’s market model [3]. We argue that the special case of decreasing step
spending constraint utilities are well suited for expressing advertisers’ desired allocations in the
Adwords market, an innovative market which is run by search engine companies such as Google,
Yahoo! and MSN. This multi-billion dollar market is the main source of revenues for Google and
a major source of revenues for Yahoo!.

We give a polynomial time algorithm for computing an equilibrium for this case — our algorithm
is made possible because this case satisfies the condition of weak gross substitutability, i.e., increasing
the price of one good cannot result in a decreased demand of another good. This case shares several
other desirable properties with the traditional model, some of which have been central to the area of
general equilibrium theory. These include existence of equilibrium under certain mild conditions,
uniqueness of equilibrium utilities and prices of goods, and the fact that equilibrium prices are
rational with polynomial descriptions if all input parameters are rational.

The sequel to this paper, [7], continues the study of spending constraint utilities. For the case
that spending constraint functions are continuous and strictly decreasing, [7] establish existence
(using Brauwer’s fixed point theorem) and uniqueness of equilibrium prices, and they show that
this case also satisfies weak gross substitutability. They also use our algorithm as a subroutine to
give an FPTAS for computing equilibrium prices for this case.

[7] also give a natural way of defining spending constraint utilities in the exchange model of
Arrow and Debreu [2]. For the cases of step decreasing functions as well as continuous and strictly
decreasing functions, they build on our algorithm polynomial time algorithm for Fisher’s model
to obtain FPTAS’s. Furthermore, for continuous and strictly decreasing spending constraint func-
tions, they show existence of equilibrium prices using the Kakutani fixed point theorem (Brauwer’s
theorem does not seem to yield the result for this model).



1.1 Comparison with concave and linear utilities

In Fisher’s original model, buyers had additively separable, strictly concave utility functions. Such
utility functions are considered especially useful in economics because they model the important
condition of decreasing marginal utilities as a function of the amount of good obtained. Algo-
rithmically though, such utility functions are not easy to deal with — in particular, they do not
satisfy weak gross substitutability. A slight modification of these utilities, to additively separable,
piecewise-linear, concave utilities have received much attention within algorithmic game theory and
finding a good algorithm for them remains an outstanding open problem; see [9] for an early work
giving an algorithm for the case of two traders in the exchange model.

Linear utility functions do satisfy weak gross substitutability and by exploiting this property, [6]
gave the first polynomial time algorithm for computing an equilibrium for these utilities in Fisher’s
model. On the other hand, linear utility functions suffer from a number of serious shortcomings.

Spending constraint utility functions seem to offer a happy compromise between these two
possibilities. They do satisfy weak gross substitutability and are amenable to efficient algorithms.
On the other hand, they do not suffer from some of the more serious deficiencies of linear utility
functions.

For simplicity of exposition, let us introduce spending constraint step utility functions as a way
of rectifying the following two deficiencies of linear utility functions. First, under linear utility
functions each buyer typically ends up spending her money on a single item; clearly, this is not the
case with concave utility functions. To deal with this issue, let us generalize linear utility functions
by specifying a limit on the amount of money buyer i can spend on good j.

Second, linear utility functions do not capture the important condition of buyers getting satiated
with goods, e.g., as done by concave utility functions. To capture this, we generalize further — buyer
1 has several linear utility functions for good j, each with a specified spending limit. W.l.o.g. we
may assume that these functions are sorted in decreasing order, and hence capture the condition
that buyer i derives utility at decreasing rates on getting more and more of good j. As shown
in Section 2, this set of functions can be more succinctly represented via a single decreasing-step
function.

In Section 11 we make a further generalization — we assume that buyers have utility for money.
Normally, in Fisher’s model one does not assume this and as a consequence, at equilibrium all
buyers are required to spend all their money. With the added assumption, the notion of equilibrium
needs to be generalized appropriately. This generalization adds considerably to the expressivity of
spending constraint step utility functions, as illustrated in the example given in Section 3.

1.2 The role of money in general equilibrium theory

The static nature of Walras’ model leaves no place for the role of money. In real life though, money
plays an vital role in the economy in two ways — it enables the exchange of goods and services over
a period of time and it acts as a store of value for use in the future. Walras’ model assumes that
once agents determine the exchanges which they want to make, they happen instantaneously. In
reality, there is a lag between selling and buying, with money bridging the gap in time.

Walras was well aware of this deficiency in his model but none of his attempts at rectifying it
were satisfactory and over the next few decades, there was fervent debate on this issue. Perhaps
the most successful attempt at integrating monetary and value theories was due to Patinkin [12];
see the insightful survey by Bridel [4]. Strictly speaking, our spending constraint utility function



fits better in the integrated theory than in Walras’ theory.

1.3 An application to the Adwords market

When a user sends a query keyword to a search engine such as Google, he not only gets pages
relevant to his query but also ads relevant to the keyword. These ads are sponsored by businesses
(called advertisers below) who want to reach customers via Google. In the Adwords market run
by Google, an advertiser selects keywords relevant to her business together with her bid for each
keyword. Each bid represents the amount she is willing to pay to Google if her ad is shown along
with search results to the corresponding keyword and moreover the user clicks on the ad. The
advertiser also specifies her daily budget — the maximum amount that Google can charge her for
each day — as well as spending limits on subsets of keywords.

It is not inconceivable that in the future, Google will simply be able to compute, in a centralized
manner, prices for advertising on different keywords, instead of holding an elaborate auction. The
question is how should advertisers provide information to Google so their ad gets displayed in the
most effective manner and moreover, equilibrium prices of advertising on different keywords can
also be efficiently computed by Google?

Let us list some criteria that a good utility should satisfy for this purpose:

1. The utility function should be expressive enough that the advertiser gets close to her “optimal
allocation”, i.e., one that is best for her long-term profit.

2. Equilibrium prices and allocations should be efficiently computable.
3. It should be easy for the advertiser to specify her utility function.

Observe that “optimal allocation” is not easy to define and it is not at all clear how it can be
computed (perhaps by modeling the entire economy and then figuring out which allocation is best
for this advertiser?). So, we will not attempt to formalize it and instead appeal to the reader’s
intuitive understanding of this notion.

Both linear and concave utility functions fail these criteria. With linear utility functions, on
a typical day, a business will end up spending its entire advertising budget on only one of its
desired keywords. Although concave utility functions are expressive enough to capture very complex
requirements of an advertiser, equilibrium prices and allocations for these utility functions are not
known to be computable in polynomial time.

Let us consider the third criterion above. Our tenet is that it would be very difficult for an
advertiser to provide a function that captures the “utility” of a given set of keywords. Instead, it
would be much easier for the business to partition the possible prices of keywords into a few ranges
and for each range, specify how much it wants to spend on each keyword so as to have a profitable
business. We illustrate our stance via an example in Section 3. We show how spending constraint
step utility functions can provide businesses with a rich set of possibilities from which they can
choose their desired allocations in Google’s Adwords market.

1.4 Overview of algorithmic ideas

Spending constraint step utility functions generalize linear utility functions and our algorithm is
obtained by generalizing the algorithm of [6]. Similar to [6], our algorithm is also based on the
primal-dual paradigm, with allocations of goods playing the role of primal variables and prices



playing the role of dual variables. Our algorithm also starts with very low prices for the goods, so
buyers have surplus money, and gradually raises prices until the surplus vanishes and the equilibrium
is reached. This approach is made possible by the property of weak gross substitutability — on raising
the price of one good, the demand of another good cannot go down, hence the need to decrease the
price of the second good does not arise.

As stated in [6], there does not seem to be any natural linear programming formulation for
computing equilibrium allocations for Fisher’s linear case. However, there is a nonlinear convex
program, given by Eisenberg and Gale [8], that does so. The algorithm of [6] uses the primal-
dual paradigm not in its usual setting of LP-duality theory, but in the enhanced setting of convex
programming and KKT conditions. The new difficulties raised by this setting and the manner in
which they are circumvented are pointed out in [6].

Two main difficulties are the following. First, KKT conditions for nonlinear convex programs
involve both primal and dual variables simultaneously in an equality constraint (obtained by as-
suming that one of the variables takes a non-zero value). On the other hand, equality constraints
implied by complimentary slackness conditions for linear programs involve either primal or dual
variables but not both. As a result, even though the dual growth process in [6] is greedy (prices
of goods are non-decreasing), the primal objects (edges in the network N defined in Section 5.1)
appear and disappear as the algorithm proceeds, thereby requiring a difficult accounting process for
bounding the running time. Secondly, whereas other primal-dual algorithms satisfy complementary
slackness conditions via a discrete process (one condition per iteration) the algorithm of [6] satisfies
KKT conditions via a continuous process. This leads to a polynomial time, rather than a strongly
polynomial, algorithm.

For our problem, we do not even know of a convex program that captures, as its optimal solution,
equilibrium allocations — see Section 12 for a discussion of this issue. The combinatorial nature of
the algorithm of [6] comes to our rescue. Indeed, such adaptability to variants and generalizations
of the original problem — even when they do not admit linear or convex programming formulations
— has been a major strength of combinatorial algorithms.

Our algorithm is obtained by simply using the essence of the primal-dual paradigm to the
problem at hand. The first difficulty mentioned above is compounded further by the fact that at
any prices, the optimal bundle of buyer ¢ will involve forced allocations, i.e., at these prices, buyer
1 necessarily wants to spend a certain amount of her money on certain goods. However, as prices
change, some of the forced allocations may become undesirable for buyer ¢ and they need to be
deallocated. The main new idea needed beyond [6] is in designing the algorithm in such a way that
despite this backtracking it does not end up taking exponential time.

The potential function that measures progress of our algorithm is similar to that in [6]. Let m; be
the money spent by buyer i at some point in the run of the algorithm (w.r.t. a special allocation, as
defined by a balanced flow; see Section 6). Thus, buyer i’s surplus money is v; = e; — m;. Consider
the following potential function:

D=~ i +... .+~

Our algorithm decreases this potential function by an inverse polynomial fraction in each phase,
which can be implemented in strongly polynomial time. When @ drops all the way to zero, equi-
librium is reached. However, since @ is a function of the initial money of the buyers, we only get a
polynomial time algorithm. As in [6], the use of [ norm in our algorithm makes its proof difficult.
Very recently, [13] has shown that /1 norm-based potential functions do not suffice for establishing



polynomial running time of the algorithm of [6], and hence our algorithm.

Some of the notions introduced in [6] need to be generalized appropriately to our setting and
as a result, their combinatorics becomes more involved. For some of the proofs though, the main
idea is not very different from that in [6]. However, at the referees’ suggestion, we have made this
paper completely self-contained, rather than referring the reader to [6] for proof ideas.

2 Fisher’s model and spending constraint utilities

Fisher’s market model is the following. Let G be a set of divisible goods and B be a set of buyers,
|G| =n, |B| =n'. Assume that the goods are numbered from 1 to n and the buyers are numbered
from 1 to n’. Each buyer 4 € B comes to the market with a specified amount of money, say
e(i) € Q' dollars, and we are specified the quantity, qj € Q™ of each good j € G; throughout
this paper we will assume w.l.o.g. that g; = 1 for each j € G, i.e., there is a unit amount of each
good in the market. For each buyer ¢ and good j we are specified a function h; :R* — R* which
gives the utility that ¢ derives as a function of the amount of good j that she receives. Her overall
utility is additively separable over the goods. The problem is to find equilibrium prices, i.e., prices
of goods such that if each buyer gets her optimal bundle, relative to these prices, for the money
she has, the market clears exactly — there is no deficiency or surplus of any good.

This model has been studied under several different utility functions for buyers. Under the
linear utility case, h;(:czj) = u;jz;; where u;; > 0 is a constant. Fisher had originally defined his
model for the case that hj is a strictly concave, differentiable function.

An easy way of describing spending constraint step utility functions is by contrast with piecewise-
linear and concave functions. Suppose h; is a piecewise-linear and concave function. Let ’I‘;- be the
derivative of h;-; this will be a decreasing step function. Observe that function rj- specifies the rate
at which ¢ derives happiness on obtaining a unit amount of good j as a function of the amount of
good j she has.

Under the spending constraint step function case, a decreasing step function f; specifies the
rate at which ¢ derives happiness on obtaining a unit amount of good j as a function of the amount
of money she has spent on good j. Next we note that once we know the price of a unit of good j,
say p;, we can obtain a function, g;, that gives the utility derived by ¢ as a function of the amount
of money she spends on good j as follows:

gi(z) = /Ox %;/)dy-

The contrast between the way utility is specified by h;- and r; on the one hand and f; and gg on
the other is worth understanding before proceeding further.

Next, let us formally define arbitrary spending constraint utility functions in Fisher’s model.
For i € B and j € G, let f} : [0,e(i)] — R™ be the rate function of buyer i for good j; it specifies
the rate at which ¢ derives utility per unit of j received as a function of the amount of her budget
spent on j. If the price of j is fixed at p; per unit amount of j, then the function f]Z /pj gives the
rate at which ¢ derives utility per dollar spent, as a function of the amount of her budget spent on



j. Define gj- :[0,e(i)] = R as follows:

gi(z) = /OI %j/)dy-

This function gives the utility derived by ¢ on spending = dollars on good j at price p;. This model
satisfies the important property of weak gross substitutability, as will be shown formally in [7]. The
reason is straightforward — raising the price of one good will only lead to an increased spending on
any other good and hence an increased demand for the latter.

Each buyer also has utility for the part of her money that she does not spend. For i € B, let
f&: [0,e(i)] = R specify the rate at which i derives utility per dollar as a function of the amount
she does not spend. If ¢ returns with z dollars, the utility derived from this unspent money is given
by

() = | " fiw)dy.

By specifying suitable properties for J’:, the function gj- can be forced to have desirable prop-
erties. Thus, if f;f is continuous and monotonically decreasing, g§ will be strictly concave and
differentiable. It is easy to see that for such functions, at any prices of the goods, there is a unique
allocation that maximizes ¢’s utility.

In this paper, we will deal with the case that the f}’s are decreasing step functions. If so, g;'- will
be a piecewise-linear and concave function. The linear version of Fisher’s problem [3] is the special
case in which each f; is the constant function so that g;- is a linear function (in Fisher’s original
problem g;'-’s were concave functions), and each fg is the zero function, so each buyer wishes to
spend all her money. Given prices p = (p1,...,pn) for all the goods, consider baskets of goods that
make ¢ happiest (there could be many such baskets). We will say that p are market clearing prices
if after each 7 is given an optimal bundle, there is no deficiency or surplus of any good, i.e., the
market clears. Observe that 4’s optimal bundle may contain unspent money.

We will call each step of f]Z a segment. The set of segments defined in function fjZ will be denoted
seg(f;). Suppose one of these segments, s, has range [a,b] C [0,e(%)], and f;(w) = ¢, for z € [a,]].
Then, we will define value(s) = b — a, rate(s) = ¢, and good(s) = j; we will assume that good
0 represents money. We will assume that for each segment s specified in the problem instance,
rate(s) and value(s) are integral (this is w.l.o.g. since this can be ensured by appropriately scaling
all numbers specified in the input). Let segments(i) denote the set of all segments of buyer i, i.e.,

7

segments(i) = | J seg(f;).
j=0

Let us assume that the given problem instance satisfies the following (mild) conditions:

e For each good, there is a potential buyer, i.e.,

Vie AJie B3se seg(f;) : rate(s) > 0.



e Each buyer has a desire to use all her money (to buy goods or to keep some unspent), i.e.,

Vi€ B : > value(s) > e(i).
sesegments(i), rate(s)>0

Theorem 1 Under the conditions stated above, there exist unique market clearing prices.

The proof of uniqueness is given in Section 4 and existence follows from the algorithm, which
is the subject of the rest of the paper.
The following assumptions can be made w.l.o.g. (by suitable scaling):

e There is a unit amount of each good, ie., Vj € G,q; = 1.
e Each e(i) and the value of each segment is integral.

Given nonzero prices p = (p1,-..,pn), we characterize optimal baskets for each buyer relative
to p. Define the bang per buck relative to prices p for segment s € seg(f}),j # 0, to be rate(s)/p;.
The bang per buck of segment s € seg(f¢) is simply rate(s). Sort all segments s € segments|(3)
by decreasing bang per buck, and partition by equality into classes: Q1,Q2,.... For a class Qy,
define value(Q;) to be the sum of the values of segments in it. At prices p, goods corresponding to
segments in Q; make ¢ equally happy, and those in @; make 7 strictly happier than those in @;41.

Find k; such that

Z value(Q;) < e(i) < Z value(Q@).

1<I<k;—1 1<I<k;

By the conditions of Theorem 1, segments in ()i, have nonzero rate. At prices p, ¢’s optimal
allocation must contain goods corresponding to all segments in @Q1,...,Qk,—1, and a bundle of
goods worth e(i) — (3 1<j<k,—1 value(Q;)) corresponding to segments in Q. We will say that
for buyer i, at prices p, Q1, ... ,Qr;,—1 are her forced partitions, Qi is her flexible partition, and
Qk;+1, - - - are her undesirable partitions.

3 The expressivity of spending constraint step utility functions

Typically buyers, whether they are individuals or businesses, have very complicated preferences.
This is particularly true of businesses — their long term profit depends on numerous factors. Since
capturing their exact utility function may not be feasible, one may have to settle for a good ap-
proximation. Two important criteria to be considered in choosing a utility function for a particular
application are expressivity and computational complexity.

Let us consider the task outlined in Section 1.3, that of choosing a utility function for advertisers
in Google’s Adwords market. As argued in Section 1.3, neither linear nor concave utility functions
are not suitable for this task. Via an elaborate example, we show below how rich the expressivity
of spending constraint step utility functions is for this market.

Consider a business, B, that sells men’s and women’s clogs and assume for simplicity that it
is only interested in the two keywords “men’s clog” and “women’s clog”. Suppose its advertising
budget on Google is $100 per day. Using past information, B can compute its expected profit per
click for each of these keywords; assume the expected profits are $2 per click for “men’s clog” and



$4 per click for “women’s clog”. Say that a keyword is profitable if its price per click is at most
its expected profit per click. Thus the keyword “men’s clog” (“women’s clog”) is profitable if its
price per click is at most $2 ($4). If a keyword is profitable, then define its rate of profit to be the
profit accrued per dollar spent on advertising. Thus if the price per click of “men’s clog” (”women’s
clog”) is p (g), then its rate of profit is 2/p (4/q).

Now assume that, depending on the actual prices per click of these two keywords, B’s optimal
allocation is the following:

e If both keywords are profitable

— and if the rate of profit of better keyword is at least twice that of the other,
then B wants to spend its entire budget on the better keyword.

— Otherwise, it wants to spend $60 on the better keyword and $40 on the other keyword.

e If neither keyword is profitable then B wants to spend $20 on the more profitable keyword
and nothing on the other keyword, just to have a presence in the market.

e If only one keyword is profitable

— and if the rate of profit on this keyword is at least 2 then B wants to spend its
entire budget, i.e., $100, on this keyword.

— Otherwise, it wants to spend $60 on this keyword and nothing on the unprofitable
keyword.

It is easy to see that B can acquire this allocation using spending constraint step utilities defined
via the following segments for the two keywords and for money.

e “men’s clog”: A segment of rate 2 and value $60 and a segment of rate 1 and value $40.
e “women’s clog”: A segment of rate 4 and value $60 and a segment of rate 2 and value $40.

e money: A segment of rate 1 and value $80 and a segment of rate 0 and value $20.

4 Uniqueness of equilibrium prices

In this section we prove uniqueness of equilibrium prices, as claimed in Theorem 1. Suppose there
are two equilibrium prices p and p’ with p # p/, i.e., 3j s.t. p; # pj. W.lo.g. assume there is a
good j such that pj; < p;. Let

!
0 = min &
JjeG Dy
By assumption, # < 1. Let S = {j € G | pg- = Op;}; this is the set of goods whose relative
desirability increases the most if we switch from prices p to p'.

Lemma 2 Consider an arbitrary buyer i. Let D and D' be (any) optimal bundles for i relative to
prices p and p'. Let v and r' denote the amount of money spent by i on goods in S in these two
bundles, respectively. Then, r' > r.



Proof : Let @1 and ()2 denote the set of segments, at prices p, in 4’s forced and flexible
allocations, respectively. Similarly, let ) and Q% denote the set of segments, at prices p', in i’s
forced and flexible allocations, respectively.

Since goods in S become more desirable under prices p’ as compared to prices p, any segment
s € @1, whose good is in S, must also be in Q). Now there are three cases w.r.t. segments in Q2
and Q). In each case, the reason given below shows that ' > r. We will use the following fact in
the last two cases: if segment s corresponds to a good in S and segment s’ to a good in S and if 5
prefers s to s’ at prices p then she must prefer s to s’ at prices p’ as well.

1. No segment of Q2 is in S. In this case, the result is obvious.

2. All segments of Q2 are in S. Now, by the fact given above, either Q2 C @} or Q2 = (Q4 — Q1)
and Q)] C @q; the latter case takes into consideration the fact that some segments may
migrate from Q1 to Q). In either case, we are done.

3. In the remaining case, partition ()2 into two sets, P and P», depending on whether the
corresponding good is or is not in S, respectively. Again, by the fact given above, either

P CQjorP=(Q5— Q).

The lemma follows. O

By Lemma 2, the buyers spend at least as much on goods in S at prices p’ as they do at prices
p. Since both these prices are equilibrium prices, the total money spent on any good must equal
its total value under the corresponding prices. Now, by definition of 8, goods in S have strictly less
total value at prices p’ than at prices p, leading to a contradiction.

5 Basic terminology and Invariants for the algorithm

Our algorithm starts with very low prices on goods and iteratively raises them until equilibrium
prices are reached. Three important considerations during the run of the algorithm are:

1. On termination, the algorithm must end with the correct forced allocations for all buyers w.r.t.
to the equilibrium prices. The algorithm accomplishes this by making forced allocations and
deallocations in a disciplined manner, as dictated by Invariant 1.

2. The algorithm must ensure that at intermediate points, the unique equilibrium price of any
good is not exceeded. Invariant 2 helps ensure this.

3. Finally, the algorithm must ensure that rapid progress is made towards finding the equilib-
rium. The notion of balanced flows (Section 6) helps with this.

Let p denote the vector of current prices of all goods. At any intermediate point in the algorithm,
certain segments are already allocated. By allocating segment s, s € seg( f;), j # 0, we mean
allocating value(s) worth of good j to buyer i. The exact quantity of good j allocated will only be
determined at termination, when prices are finalized. Assume that segment s € seg( f;), 7 # 0 has
already been allocated to buyer i. By deallocating segment s we mean subtracting value(s) worth
of good j from the total value of good j allocated to buyer . In addition, at an intermediate point
in the algorithm, some money may be returned to buyer i. Let returned(s), s € seg(f}), denote
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the amount of money returned to 7, corresponding to segment s, where returned(s) < value(s). If
returned(s) > 0, then all segments s’ € seg(f}) having a higher rate must be fully returned, i.e.,
there is at most one partially returned segment for each buyer.

Let allocated(j) denote the total amount of money spent on good j, j # 0, i.e., the total value
of j already allocated and let spent(i) denote the sum of the amount spent by buyer 7 on allocated
segments and the amount of money already returned to her. Thus, when segment s is allocated,
value(s) is added to allocated(j) and to spent(i), and when returned(s) money is returned to i,
corresponding to segment s € seg(f§), returned(s) is added to spent(i). Also, define the money left
over with buyer i, m(i) = e(i) — spent(i).

The set of allocated segments for each buyer ¢ must satisfy:

Invariant 1: At current prices p, let Q1,Qs, ... be the sorted list of partitions of buyer i. There
is an integer ¢; > 1 such that all segments in partitions Q1,...,Q—1 are fully allocated and in
addition, a (possibly empty) subset of segments in @, are also fully allocated, and no segments in
partitions Q¢ +1, Qt;+2, - - - are allocated. Furthermore, the total value of all fully allocated segments
is < e(%).

We will say that at prices p, Q1,...,Q—1 are i’s allocated partitions and Qy, is i’s current
partition. We will denote the latter by Q). The exact value of ¢; depends on the order in which
events happen in the algorithm; however, we will show that when the algorithm terminates, t; = k;.

Define the current bang per buck of buyer i, ¢;, to be the bang per buck of partition Q.
This is the rate at which i derives utility, per dollar spent, for allocations from Q™ at current
prices. Denote by a, s and m the current allocations, amounts spent and left over money, i.e.,
(allocated(j), 7 € G), (spent(z), i € B) and (m(i), i € B), respectively. We will carry over all
these definitions to sets, e.g. for a set S C G, m(S) will denote 3,5 m(j). For a set S C G, p(S)
will denote the sum of prices of goods in S, i.e., p(S) = > jespj- Since we have assumed there is
a unit amount of each good present, this is also the total value of all goods in set S.

5.1 The network N and tight sets

We next define network N(p, a, s), which is a function of the current prices, allocations and amounts
spent; see Figure 1. This network is defined over vertex set G U B together with a source vertex,
s, and a sink vertex, t. Corresponding to each buyer ¢ and each segment s € Q®, the network
contains the directed edge (j,7), where good(s) = j. The capacity of this edge, cj;, equals value(s).
It also contains directed edges (s, ), for each j € G with capacity p; — allocated(j), and directed
edges (i,t), for each ¢ € B with capacity m(:). Throughout the algorithm, we will maintain the
following;:

Invariant 2: (s,GUBUt) is a min-cut! in network N(p, a, s).

Observe that as a consequence of Invariant 2, at current prices, it is possible to sell all goods to
buyers who desire them in their optimal bundles. However, in general not all buyers can be given
optimal bundles; some of them may have surplus money left over. The following lemma, is obvious
and provides the terminating condition for the algorithm.

Lemma 3 Assume that Invariants 1 and 2 hold. Then, prices p are equilibrium prices iff (sUGU
B, t) is a min-cut in network N(p,a,s).

!This section assumes familiarity with the theory of cuts and flows, e.g., see [1, 5].
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Figure 1: The network N(p,a, s).

For S C G, define its neighborhood in network N(p,a, s) to be
I'(S)={i € B| 3j € S with (j,7) € N(p,a,s)}.

For G' C G and B’ C B, define ¢(G’; B') to be the sum of the capacities of all the edges from G’
to B’ in N(p,a,s). For S C G, define

best(S) = Trgr%l&‘) {m(T) +c(S;T(S) - T)},
and define bestT(S) to be a maximal subset of I'(S) that optimizes the above expression. Observe
that best(S) is the capacity of the min-cut separating ¢ from S in N(p,a,s). Also observe that
if 71 and T3 optimize the above expression, then i € T} — Tb must satisfy m(i) = ¢(S;4) (because
otherwise T7 — {i} or T5 U {i} would be an even better set). Therefore, T U T» also optimizes the
above expression. Hence bestT(S) is unique. We can now give a characterization of Invariant 2 in
terms of cuts in the network.

Lemma 4 Network N(p,a, s) satisfies Invariant 2 iff

VS C G: p(S)— a(S) < best(S).

Proof : If network N (p,a, s) satisfies Invariant 2, it supports a max-flow of value p(G) — a(G)
that saturates all edges out of s. Since the flow going through set S C G is p(S) — a(S) and best(S)
is the capacity of the min-cut separating ¢ from S in N(p, a, s), the inequality given above holds.

For the reverse direction, let (sUG1UB1, GoUByUt) be a min-cut in N(p, a, s), with G1,Gs C G
and By, By C Bj; it has size m(B1) + ¢(G1,T(G1) — B1) + p(G2) — a(G2). Let B} = By NT(Gy).
Then,

best(G1) < m(B}) + ¢(G1,T(G1) — B1) < m(B1) + ¢(G1,T(G1) — By).
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Now, since p(G1) — a(G1) < best(G1), we get that
p(G) — a(G) <m(B1) + ¢(G1,T(G1) — B1) + p(G2) — a(Ga),

thereby proving that (s, G U B Ut) must also be a min-cut in N(p, a, s). Hence Invariant 2 holds.
a

A nonempty set S C G that satisfies the inequality in Lemma 4 with equality will be called
a tight set. In addition, if there are buyers having zero left over money then we will say that the
empty set is tight. We will define best()) = 0 and bestT(()) to be the set of all buyers with zero
left over money. By the following lemma, if Invariant 2 holds, there is a unique maximal tight set.

Lemma 5 Assume that Invariant 2 holds. If S1 C G and Sy C G are two tight sets, then S1 U Sy
1s also a tight set.

Proof :  Corresponding to a set S C G modify network N(p,a,s) as follows: for each edge
(s,7), j ¢ S, make the capacity of this edge zero, leaving the rest of the edges unchanged. Call
this the S-network. Since Invariant 2 holds, (s, GU B Ut) is a min-cut in this network. Recall that
if S is a tight set, p(S) — a(S) = minpcr(s) {m(T) + ¢(S;T(S) — T)}. Now, it is easy to see that
S is a tight set iff under every max-flow in this network, there is no residual path from 5 € S to .

Consider a max-flow in the S; U So-network. If there is a residual path from j € S; U Sy to
t in this network, then either the Si-network or the Si-network would violate the residual path
assertion stated above, contradicting tightness of the corresponding set. Hence, S1 U S; is also a
tight set. O

Corollary 6 If Invariant 2 holds, the mazimal tight set is unique.

6 Balanced Flows

In this section, we will extend the notion of balanced flows from [6] to our more involved setting;
the reason for the latter is that in our network N, edges between G and B have finite capacities.
In retrospect, our generalization turns out to be a natural one.

As stated in Section 1.4, the potential function we will use for measuring the progress of our
algorithm is the /3-norm of the vector of surplus moneys of the buyers. This potential function
follows naturally from the notion of a balanced flow. It enables us to record progress not only
when the total surplus decreases but also when the surplus readjusts itself into a more favorable
configuration that leads to a decrease in the total surplus in subsequent iterations.

Denote the current network, N(p, a, s) by N, for short. We will assume that network N satisfies
Invariant 2, i.e., ({s},GUBU{t}) is a min-cut in N. Given a feasible flow f in N, let R(f) denote
the residual graph w.r.t. f. Define the surplus of buyer i, v;(N, f), to be the residual capacity of
the edge (i,t) with respect to flow f in network N, i.e., m; minus the flow sent through the edge
(i,t). The surplus vector is defined to be ¥(N, f) := (M (N, f),v2(N, f), .-,y (N, f)). Let ||v]
denote the l3 norm of vector v. A balanced flow in network N(p,a,s) is a flow that minimizes
|7(N, f)||. Clearly, a balanced flow must be a max-flow in N since augmenting a given flow can
only lead to a smaller surplus vector.
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Lemma 7 All balanced flows in N have the same surplus vector.

Proof : It is easy to see that if v, and -y are the surplus vectors w.r.t flows f; and fs5, then
(71 +2)/2 is the surplus vector w.r.t the flow (f; + f2)/2. Assume that v, and -y, are distinct and
both correspond to balanced flows, i.e., v; # v, and ||v;|| = ||7v2]|- Since ||.|| is strictly concave,
|71 + v2ll/2 is even smaller, leading to a contradiction. O

We will denote the unique surplus vector of a balanced flow in network N by ~(N). Clearly,
the components of such a vector are “as equal as possible” among all surplus vectors corresponding
to max-flows in V. The following property of balanced flows plays a critical role in the algorithm.

Property 1: If there is a path from node j to node 7 in R(f) — {s,t}, then v;(N, f) > v,(N, f).

Theorem 8 A mazimum flow in N is balanced iff it satisfies Property 1.

Proof : Let f be a balanced flow and let v;(N, f) > v;(NV, f) for some 4,j € B. Suppose, for
the sake of contradiction, that there is a path from j to i in R(f) — {s,t}.

Since there is a path in R(f) — {s,t} starting from vertex j, the capacity of (¢,j) must be
positive in R(f). Also, since 7;(N, f) > 0, the edge (i,t) has a positive capacity in R(f). Now, the
edges (t,7) and (i,t) concatenated with the path from j to i gives us a cycle with positive residual
capacity in R(f). Sending a circulation of positive value along this cycle will result in another
max-flow in which the residual capacity of j is slightly larger and that of 7 is slightly smaller, i.e.,
the flow is more balanced. This contradicts the fact that f is a balanced flow.

To prove the other direction, we first show that a given max-flow f can be transformed to another
max-flow f’ by by a sequence of operations each of which changes only a pair of components of the
surplus vector. Now f’ — f consists of circulations. Decompose this arbitrarily into cycles. Each of
these cycles changes only a pair of components of the surplus vector.

Next, we observe that the lo-norm of the surplus vector of a max-flow f satisfying Property
1 is locally optimum w.r.t. changes in pairs of components in the the surplus vector. This is so
because by Property 1, any cycle in R(f) can only send flow from a high surplus buyer to a low
surplus buyer resulting in a less balanced flow. Now, since l3-norm is a strictly concave function,
any locally optimal solution is also globally optimal. Hence, a max-flow f satisfying Property 1
must be a balanced flow. O

6.1 Finding a balanced flow

We will show that the following algorithm, which uses a divide and conquer strategy, finds a
balanced flow in the given network N on vertex set {s} UGUBU{t} in polynomial time. As stated
above, we will assume that this network satisfies Invariant 2, i.e., ({s}, GUBU{t}) is a min-cut in
N. In addition, we may assume that ({s} UG U B, {t}) is not a min-cut, since the algorithm would
have terminated otherwise.

Our algorithm does not simply partition N into two networks and finds balanced flows in each.
It also needs to consider a certain flow that uses the “G-side” of one network and the “B-side” of
the other and this makes the algorithm and proof more involved.

First, simultaneously and continuously reduce the capacities of all edges that go from B to t by
equal additive amounts. As soon as the capacity of some edge becomes zero, don’t decrease it any
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more. Stop when the capacity of the cut ({s} UG U B, {t}) becomes the same as the capacity of
the cut ({s},GU B U{t}). Let the resulting network be N’ and let f’ be a max-flow in N’. Find
a maximal s — ¢ min-cut in N, say (S,T), with s € S and ¢ € T} i.e., the min-cut that makes S
maximal (standard cut theory shows that it is unique).

Case 1: T = {t}. Output f’; this will be a balanced flow in N.

Case 2: T # {t}. Let N; and N> be the subnetworks of N induced by S U {t} and T U {s},
respectively. Let G; and B; be the subsets of G and B, respectively, induced by Ni. Similarly, let
G, and B, be the subsets of G and B, respectively, induced by N,. Let F' be the set of edges that
go from GG; to By — these edges are in the min-cut found. Send flow, say h, from s to ¢ saturating
all edges of F' — clearly such a flow is unique. As a result of this flow, some of the capacity of edges
from s to G1 and Bj to t will be used up. Subtract the used up capacities of these edges in N1 and
Ny to obtain networks M and Mj, respectively. Recursively find balanced flows, fi; and fo, in M;
and Ma, respectively. Output the flow f = h U f1 U fa; this will be a balanced flow in N.

Lemma 9 f is a maz-flow in N.

Proof : Case 1: T = {t}. Since the capacity of ({s},GU B U {t}) is the same as the capacity
of ({s} UGUB,{t}) in N', f’ must saturate the former cut as well and hence must be a max-flow
in network N as well.

Case 2: T # {t}. Because of the way M; and M, are defined, the union of the three flows,
f =hUfiU fs, will be a feasible flow in N. We show below that f is a max-flow as well. The
structure of the argument is as follows. We start with a max-flow g in N. Using flow h and well-
chosen subflows of g and f’ in M; and Ms, respectively, we construct another max-flow, k, in N.
We then argue that f, which is similar to k£, must also be a max-flow in N.

Let g be any max-flow in IV and let g; be the restriction of g to N;. Note that g; U h may not
be a valid flow because some edges from s to G; may be over-saturated. If so, decrease flow ¢;
appropriately to g} so g} Uh is a valid flow that saturates all edges from s to G1. Let f} be the
restriction of f’ to network Mpy; clearly, f} saturates all edes from s to Go. Also, h U f} is a valid
flow in N.

Clearly, g] and f5 are max-flows in M; and My, respectively, and k = hU ¢g] U f5 is a max-flow
in N. Hence, f = hU f; U f5 is also a max-flow in N. O

Lemma 10 f is a balanced flow in network N.

Proof: We first show, by induction on the depth of recursion, that the max-flow output by the
algorithm is a balanced flow in N. If the algorithm terminates in the first case, i.e., T = {t}, the
surplus vector is precisely the amounts subtracted from capacities of edges running from B to t
in going from N to N’. Clearly, this surplus vector makes components as equal as possible, thus
minimizing its Iy norm.

Next assume that the algorithm terminates in the second case. By Lemma 9, f is a max-flow; we
will show that it satisfies Property 1 and is therefore a balanced flow. By the induction hypothesis,
f1 and fo are balanced flows in M; and Ms, respectively, and therefore Property 1 cannot be
violated in either of these two networks.

Let R be the residual graph of N w.r.t. flow f; we need only show that paths in R that go
from one part to the other do not violate Property 1. Since f saturates all edges of F', there are no
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edges from G to By in R, and therefore there are no paths from j € B; to 1 € By. However, there
may be paths going from j € By to i € By in R. Let +;(f) denote the surplus of edge (i,t) w.r.t.
flow f. We will show that for any two nodes ¢ € By and j € Bo, v;(f) < 7v;(f), thereby establishing
Property 1.

First observe that by the maximality (of the S-side) of the min-cut found in N’, all nodes in
By have surplus capacity greater than 0 w.r.t. flow f’ in N’ (all nodes having surplus zero must
be in Bj). Therefore, the same amount, «, say was subtracted from the capacity of each edge
(i,t),i € By, in going from network N to N'. We will show that v;(f) > « for each i € By. A
similar argument shows that 7;(f) < « for each i € By, thereby establishing our claim.

Let L be the set of vertices in By having minimum surplus w.r.t. f. Let K be the set of vertices
in G5 that are reachable via an edge from L in R. Let F' be the set of edges from K to By — L
in network N. If an edge of F’ is not saturated in flow f, then there will be a residual path from
i € L to j € By — L, thereby violating Property 1. Hence all edges of F' are saturated in fy and
also in f.

Let ¢(K) denote the sum of the capacities of all edges from s to vertices of K. Observe that
all these edges are saturated in f’. Of this flow, at most ¢(F"') flow uses edges of F' and the rest,
¢(K) — ¢(F') flow, must go via vertices of L. Let E, denote the set of edges going from L to ¢. Let
¢(L) and /(L) denote the sum of capacities of all edges in Ef, in networks N and N’, respectively.
Since all nodes in By have positive surplus w.r.t. flow f/,

(L) > c(K) — c(F").
Since « is subtracted from all edges in Fy, in going from network N to N’
c(L) = (L) + |Lew
The total surplus of the edges in Ej, w.r.t. flow f is
o(L) = (e(K) = e(F)) = ¢(L) + |Lla = (c(K) = e(F")) > | Lo

Now, since all L edges in Ef, have the same surplus, each has surplus greater than «. The lemma
follows. =

Theorem 11 The above-stated algorithm computes a balanced flow in network N using at most n
maz-flow computations.

Proof: Clearly, the number of goods in the biggest piece drops by at least one in each iteration.
Therefore, the depth of recursion is at most n. Next, observe that M; and M, are vertex disjoint,
other than s and ¢, and therefore, the time needed to compute max-flows in them is bounded by the
time needed to compute a max-flow in N. Hence, the total computational overhead is n max-flow
computations. Finally, as shown in Lemma 10, the flow output by the algorithm is a balanced flow
in N. O

Let F' C F and let Ng be the network obtained from N by sending flow saturating all edges
of F' and decreasing capacities of all edges accordingly. The following lemma will be used for
justifying the manner in which forced allocations are made by the algorithm in the proof of Lemma,
28.
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Lemma 12 The surplus vectors of balanced flows in N and Ng+ are the same, i.e., y(N) = v(Np1).

Proof : The lemma follows from the fact that in f all edges of F” are saturated, and, by Lemma
10, f is a balanced flow in N. O

7 The Main Algorithm

For ease of exposition and comprehension, we will first present the algorithm assuming that buyers
have no utility for money. We will remove this restriction in Section 11.

The algorithm given below first determines a subgraph of the current partitions subgraph, C,
called the active subgraph, and it increases the prices of goods only in the active subgraph. It does
this in such a way that the active subgraph changes only when some important events (outlined in
Step 4 in the algorithm) happen. Observe that if in the active subgraph buyer i has edges to goods
j and 5’ due to segments s € seg(f;) and s’ € seg(f;,) then

rate(s) rate(s’) , p;j  rate(s)
= i.e, ——=——"-.
Pj pj " py rate(s')

This suggests increasing the prices of goods in the active subgraph in such a way that the ratio
of prices of any two goods remains unchanged. The algorithm accomplishes this by multiplying
the current price, p;, of each good j in the active subgraph by z, initializing z = 1, and raising =
continuously.

A run of the algorithm is partitioned into phases, and each phase is partitioned into iterations,
as defined below. In a phase, the prices of a subset, J, of the goods is increased — this set is well-
chosen to ensure that the /5 norm of the surplus vector decreases by at least an inverse polynomial
factor in each phase. At the beginning of the phase, buyers having maximum surplus w.r.t. a
balanced flow are identified as set I and an appropriate subset of the goods desired by these buyers
is chosen to be J. After each iteration, I and J may grow. The phase ends when a subset of J
goes tight.

Initialization: Execute the following steps to ensure that Invariants 1 and 2 start holding:

e Fix all prices at 1/n. Since all goods together cost one dollar and all e()’s are integral, the
initial prices are low enough that each buyer can afford all the goods. Each buyer’s current
partition will be her first partition. Recall that the value of each segment is assumed to be
integral.

e In order to ensure that each good j has an interested buyer, i.e., has an incident edge in
network N, compute «;, the current bang per buck, for each buyer 7 at the prices fixed in the
previous step. If good j has no incident edge, reduce its price to

{rate(s) }
pj = mMax max .
€8 seseg(f}) Q;

Phase: A phase starts with the computation of a balanced flow, say f, in the current network,
N(p,a,s). If the cut (s UG U B,t) is saturated by f, then by Lemma 3 the current prices p are
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equilibrium prices. If so, halt and output the current prices. Otherwise, let § be the maximum
surplus of buyers w.r.t. f. Initialize I to be the set of buyers having surplus §. Go to Step 1.

e Step 1: Compute a balanced flow, say f, in the current network, N(p, a,s). Let R be the
corresponding residual graph. Determine the set of all buyers that have residual paths to
buyers in the current set I (clearly, this set will contain all buyers in ). Update the new set
I to be this set. Let P be the set of buyers having zero surplus w.r.t. flow f and let @) be the
set of goods that can be reached from P using residual edges. (Clearly, @ is a tight set and
raising the price of any good in this set will violate Invariant 2.) Let J' be the set of goods
that have edges to I in N and let J = J' — Q. Let I' C B — (P UI) be the set of buyers who
have edges to (J U Q) only.

e Step 2: Corresponding to each edge in N(p,a,s) which goes from @ to (I UI'), allocate
goods; these are the forced allocations. (These edges would have appeared in the sets F' in the
recursive calls in the computation of the balanced flow.) Observe that because of Property
1, these edges must be saturated in f.

e Step 3: As a result of these forced allocations, there may be buyers 7 € (I UI') that have no
more edges incident.

If so, for each such buyer ¢, compute #’s current partition and insert the corresponding edges
in N(p,a,s). Go to Step 1.

e Step 4: At this point, call the network induced by I U I’ and J as the active subgraph.
Multiply the current prices of all goods in J by variable z, initialize  to 1 and raise x
continuously until one of the following 4 events happens. Observe that as soon as z > 1,
buyers in B — (I UI’) are no longer interested in goods in J and all such edges can be dropped
from the current partitions subgraph and N.

— Event 1: For a buyer 1 € (IUI') and good j € G — J, segment s € seg(f;) enters 7’s
current partition.

If so, add directed edge (j,7) to network N and go to Step 1.

— Event 2: A segment s enters buyer i’s current partition, where i € B — (I U I'),
s € Seg(f;:) for j € J, and s is already allocated to i, i.e., the bang per buck of allocated
segment s becomes equal to a;.

Deallocate segment s, i.e., subtract value(s) from allocated(j) and spent(i) and add
directed edge (j,i) to network N. Go to Step 1.

— Event 3: A subset S C J goes tight.
Terminate the current phase and start with the next phase.

Once the algorithm halts with equilibrium prices, equilibrium allocations are computed as fol-
lows. Compute a max-flow in N(p,a,s). A flow of f of good j to buyer i corresponds to f/p;
units of good j being given to buyer i. Similarly, the amount of good j corresponding to a forced
allocation due to segment s is value(s)/p;.

As stated above, the algorithm raises variable x continuously. This can be discretized as follows.
Compute the minimum value of z at which each of the three events takes place; the minimum of
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these is the event that happens first. For Events 1 and 2, the computation is straightforward. Let
z* be the value of z at which Event 3 happens. We give a procedure for computing z* in Section 9.

The occurrence of Event 3 signifies the end of a phase. Within a phase, each execution of Step
1 will be called an iteration. Observe that an execution of Step 1 is triggered by Step 3 or Event 1
or 2.

Lemma 13 Right after Step 1, (sUQU P, (G — Q) U (B — P)Ut) is a min-cut in N(p, s, a).

Proof: Leti€ P and j € (B — P). In the balanced flow, ¢ has zero surplus and j has positive
surplus. Therefore, by Property 1, there is no residual path from : € P to j € (B — P) in the
residual graph of a balanced flow in N(p, s,a). Therefore, all edges going from P to ¢t and all edges
going from @) to B — P will saturated in this max-flow. Therefore, the capacity of these edges add
up to the capacity of all edges going from s to Q. Now, since (s, GUBUt) is a min-cut in N (p, s, a)
by Invariant 2, so is the cut (sUQU P, (G — Q) U (B — P) Ut). O

Since the edges going from @ to B — P include the edges going from @ to IUI’, on which forced
allocations are made, we get:

Corollary 14 Forced allocations corresponding to all edges connecting Q to (I UI') can be made,
i.e., there is sufficient value of goods available as well as sufficient amount of money available
among buyers.

Since @ is a tight set, increasing the price of any good in it will violate Invariant 2. Therefore,
the prices of goods in Q N J' cannot be increased. However, once forced allocations are made, the
prices of goods in J' — @ = J can be increased. Once the prices of goods in J are raised, these
goods become inferior, compared to goods in @, for buyers in T U I,

We have assumed that for each segment s, value(s) is integral and therefore the capacities of
edges in network N are integral. As a result the value of good allocated in each forced allocation
is integral and hence a is an integral vector. Because of forced allocations, there may be a good
7 € Q that currently has no incident edge in network N. If so, by Invariant 2 it must be the case
that p; = allocated(y).

Observe that under the spending constraint step utility functions, a segment s € seg( f;) repre-
sents value(s) worth of good j; the exact amount of good j it represents will become clear only at
the termination of the algorithm, once the equilibrium price of good j is determined.

Remark 15 In contrast, under the usual piecewise-linear utility functions, each piece represents a
certain quantity of a good and a forced allocation would have to allocate a specific amount of the
good. Howewver, as prices of the good change in the course of an iterative algorithm, the value of this
allocation would keep changing and the surplus money of the buyer would keep changing as well.
Our failure to find an algorithm to deal with these issues led us to define spending constraint utili-
ties. In retrospect, since piecewise-linear utility functions do not satisfy weak gross substitutability,
an iterative algorithm for dealing with piecewise-linear utility functions will quite possibly have to
increase and decrease prices. Whether this can be accomplishied in polynomial time is unclear.
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8 Correctness of the algorithm

In this section we first show that the algorithm maintains Invariants 1 and 2 throughout and this
helps us establish its correctness.

Lemma 16 The algorithm maintains Invariant 1 throughout.

Proof :  The algorithm maintains Invariant 1 because it responds correctly to changes to Qy,
the current partition of buyer ¢, for each 7. For each step and event in the main algorithm we state
the changes made to Q.

e Step 2: If some segments in ();; get allocated via forced allocations then these segments move
into the new partition )¢,—i. The unallocated segments remain in Q.

e Step 3: If all segments in (), get allocated, then the next partition, Q¢,+1, is made the current
partition of i.

e Step 4: If the current partition of i € B — (I U I') has segments corresponding to goods in
J, then as z is increased, these segments become inferior to the rest of her current segments
and they move into a new partition @4, 41.

e Event 1: If a segment moves from Q41 to @y, for some buyer ¢ € (I UI’) then the corre-
sponding edge is added to the current partitions subgraph.

e Event 2: If a segment s moves from Q,_1 to Qy, for buyer i € B— (IUI'), then the algorithm
deallocates this segment.

Lemma 17 The algorithm maintains Invariant 2 throughout.

Proof: The Initialization step clearly establishes Invariant 2 at the start of the algorithm. The
algorithm does not raise the price of any good in tight set Q and stops raising prices of goods in J
as soon as one of its subsets goes tight. Each of the remaining steps does not violate Invariant 2.
Hence, it is maintained throughout. O

Theorem 18 The algorithm terminates with equilibrium prices and allocations.

Proof : By Lemmas 16 and 17, the algorithm maintains Invariants 1 and 2 throughout. Since
it terminates when (s UG U B, t) is a min-cut in network N(p, a, s), by Lemma 3 the prices at this
point must be equilibrium prices. Since it uses a max-flow in N(p, a, 8) to compute allocations,
they must be equilibrium allocations. O
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9 Computing z* via min-cuts in parametric networks

We will show how to compute z*, the value of x at which Event 4 occurs, i.e., a new set goes tight
in the active subgraph. The active subgraph is induced on the bipartition J, (IUI"). For simplicity,
throughout this section we will denote (I UI') by I.

Let S* C J denote the tight set. Throughout this section, p will denote prices at the beginning
of the current phase, i.e., at z = 1. Network W (p, a, 8) is the subnetwork of N(p,a,s) on {s} U
JUIU({t}. In W(p, a,s), replace the capacities of edges (s,7), j € J, by (p; - ¢ — allocated(j)) to
obtain the parametric network W'(p, a, s). By Invariant 2, at z = 1, (s,J U I Ut) is a min-cut in
W!'(p,a,s).

Lemma 19 The smallest value of x at which a new min-cut appears in W'(p, a, s8) is given by

. best(S) + a(S)
"= mn —————=,
0£SCT p(S)

and the unique mazimal set minimizing the above expression is S*.

Proof: Let z = f be the smallest value of z at which a new min-cut appears in W'(p, a, s). Let
the min-cut maximizing the s side be (s U J; U I, J, U I, Ut). Since W'(p, a, 8) satisfies Invariant
2 at x = 8, for any set S C J,

best(S) + a(S)
)

Since Invariant 2 holds and (sUJ; U T, Jo UL Ut) is a min-cut in W/(p, a, s) at x = 8, J; must
be a tight set and therefore,

p(S) B - a’(S) < beSt(S)a i,e., [

p(Jl) . ,6 — a(Jl) = best(Jl).

The lemma follows. O

Lemma 20 The following hold:
o Ifx <z* then (s,JUIUt) is a min-cut in W'(p, a, s).

o If x> z*, then for any min-cut (sU Jy U1, Jo UL Ut) in W(p,a,s), S* C J;.

Proof : By the definition of z*, if z < z*, VS C J: p(S) -z — a(S) < best(S). Therefore, by
Lemma 4, Invariant 2 holds and hence (s, J U I Ut) is a min-cut in W'(p, a, s).

Next, suppose that z > z*, and consider a min-cut (sU J; UIy, o UL, Ut) in W/ (p, a,s). First
observe that S* C Jy contradicts the minimality of this cut: since p(S*) - z — a(S*) > best(S*), a
smaller cut results if S* is moved into J;, and I N bestT(S*) is moved into I;.

Let S*NJy = S1, S*NJy = Sy, and suppose that Sy # (). Observe that if T'(S1) NT(Sy) = 0,
then best(S1) + best(S2) < best(S*). To achieve a similar effect even if I'(S1) NT'(S2) # 0 let us
define for S C I:

best'(S) = Tg%rgé?_ll{m(T) +¢(S;T(S)— I = T) — c(S1;T)},
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and let us define bestT'(S) to be the (unique) maximal subset of I'(S) optimizing the above ex-
pression. Now observe that

best(S1) + best’(S2) < best(S*).
Hence,
best(S1) + best'(S2) < z* - p(S*) — a(S™).

If best’(S2) < z - p(S2) — a(S2), then a smaller cut can be found by moving Sy into Ji, and
moving bestT'(S3) from I to I;. Therefore,

best'(S2) > x - p(S2) — a(S2) > z* - p(Ss2) — a(Ss).
Combining with the previous inequality, we get
best(S1) < z* - p(S1) — a(S1),

which contradicts the definition of z*. Therefore, So = () and hence S* C Jj. O

For 7 € I, denote the sum of capacities of edges incident at ¢ in W(p,a,s) by c(i). Define
m/ (i) = min{m(i),c(i)}, and m' to be the vector consisting of m'(i),i € I. Observe that replacing
m by m' in W(p, a, s) does not change the min-cut or its capacity. Define W"(p, a, s) to be the
network obtained by replacing m by m' in W/(p,a, s). The reason for working with m' is that
in W"(p, a, s) the cut (s UJ U I, I, Ut) has the same capacity as the cut (s U J U I,t) for any
partitioning of I into I; and Io. This property will play a critical role in the next lemma.

Lemma 21 Let z = (m/(I) + a(J))/p(J) and let the minimal min-cut in W"(p,a, s) (i.e., the
unique min-cut minimizing the s side) be (sU Jy UI, Jo UL, Ut). If Jy = 1) = 0 then z = z* and
S* = J. Otherwise, x > x* and Jy is a proper subset of J.

Proof: Clearly, z > z*. If the min-cut is (s, JUIUt) then by Lemma 20, z = z*. For the chosen
value of z, z - p(J) — a(J) = m/(I) and by the property of m' stated above, best(J) = m/'(I).
Therefore best(J) = z* - p(J) — a(J), and hence S* = J.

If (s, JUIUt) is not a min-cut, then by Lemma 20, z > z*. Suppose J; = J and the min-cut is
(sUJUI, I, Ut). By the property stated above, the capacity of this cut is m/(I). For the chosen
value of z, the capacity of (s,J U I Ut) is also the same, thereby contradicting the fact that it is
not a min-cut. Hence Ji is a proper subset of J. O

Theorem 22 z* and S* can be found using at most n maz-flow computations.

Proof : Let z = (m'(I) + a(J))/p(J) and compute a min-cut in W"(p, a,s). If (s,JUTU)
is a min-cut in N”(p,a, s), then by Lemma 21 z* = z and S* = J. Otherwise, z > z*. Let
(sUJyUI, JoUI,Ut) be a min-cut in W"(p, a, 8). By Lemmas 20 and 21, S* C J; C J. Therefore,
it is sufficient to recurse on the network restricted to (Ji,T'(J1)) (of course m’ will have to be
recomputed for this restricted network). O
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10 Running time of the algorithm

Observe that the algorithm keeps raising prices of goods monotonically, and this provides us with
a natural measure of progress — the difference between total money possessed by buyers and the
sum of the prices of all goods. In this section, we will establish polynomial running time for our
algorithm.

Let M denote the total amount of money possessed by the buyers at the start of the algorithm
and U denote the largest rate of a segment. Let A = nU™. Let z denote the total number of
segments in all utility functions specified in the input.

Lemma 23 At the termination of a phase, the prices of goods in the tight set are rational numbers
with denominators < A.

Proof : Let S C G be the newly tight set at the termination of a phase and let T' = bestT(S).
If T = 0, then all goods of S are fully allocated and for each such good j € S, p; = allocated(j),
which is integral. Otherwise, by definition of tight set,

p(5) —a(S) = m(T) — ¢(S;1(5) = T).

Consider the current partitions subgraph induced on the bipartition (S,7'). If this is not one
connected component, let (S’,7") be a connected component. Then, the equation given above
must hold after replacing S and T by S’ and T, because otherwise some connected component of
(S, T) will fail to satisfy Invariant 2.

Therefore, we may assume w.l.o.g. that (S,7') is connected (otherwise we prove the lemma, for
each connected component of this graph). Let j € S. Pick a subgraph in which j can reach all
other vertices j' € S. Clearly, at most 2|S| < 2n edges suffice. If j reaches j' with a path of length
21, then py = ap;/b where a and b are products of the / rates of the corresponding segments. Since
alternate edges of this path contribute to a and b, we can partition the rates in this subgraph into
two sets such that a and b use rates from distinct sets. Now it is easy to show that p(S) = pjc/d
where ¢ < A. On the other hand, p(S) = m(T) + a(S) — ¢[S;T'(S) — T]. Since each term on the
right hand side is integral, so is p(S). Therefore,

pj = p(S)d/c,

hence proving the lemma. O

Corollary 24 Consider two phases P and P', not necessarily consecutive, such that good j lies in
the newly tight sets at the end of P as well as P'. Then the increase in the price of j, going from
P to P, is > 1/A2

Proof :  Let the prices of j at the end of P and P’ be p/q and r/s, respectively. Clearly,
r/s > p/q. By Lemma 23, ¢ < A and r < A. Therefore the increase in price of j,

1
> 55

» |3
Q3
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Lemma 25 The total number of iterations in a phase is bounded by z.

Proof : We will show that in a phase, corresponding to each segment s, there can be at most
one invocation of Step 1. Suppose Step 1 is invoked because the edge corresponding to segment s
is added to network N (this could happen in Step 3 or in Event 1). Assume s € seg( f;), for some
good j. Clearly at this point, ¢ € I and ¢ will not move to B — I in the current phase. Therefore,
segment s will not be deallocated in the current phase.

Let buyer 2 € B— (IUI') and segment s € seg( f]l) Assume that s is deallocated; clearly, j € J
at this stage. If 7 does not move into I U I’ in this phase, then s is not reallocated in this phase.

Next, assume that buyer i moves into I U I’ in the current phase. If this happens before any
further price increase, then 4 must move into I, s is in ¢’s current partition and there will not be
any more invocations of Step 1 due to s in the current phase. On the other hand, if 4 moves into
TU T after a price increase, then s is no longer in i’s current partition and this segment will never
be considered again in the current phase. O

Lemma 26 If f and f* are respectively a feasible and a balanced flow in N (p) such that v;(p, f*) =
(P, f) = 8, for some i € B and § > 0, then |y(p, f)*||” < [l (@, /I — 6°.

Proof : Suppose we start with f and get a new flow f’ by decreasing the surplus of 7 by 4§, and
increasing the surpluses of some other buyers in the process. We show that this already decreases
the Iy norm of the surplus vector by §2 and so the lemma follows.

Consider the flow f* — f. Decompose this flow into flow paths and circulations. Among these,
augment f with only those that go through the edge (i,t), to get f’. These are either paths
that go from s to ¢ to ¢, or circulations that go from % to ¢ to some i; and back to i. Then
Yi(f") = 7(f*) =7 (f) — ¢ and for a set of vertices i1,12,- -, ik, we have v, (f') = v, (f) + 41, s.t.
61,02,-++,0; > 0 and YF , §; < 8. Moreover, for all [, there is a path from i to 4; in R(p, f*). Since
[* is balanced, and satisfies Property 1, v;(f') = v (f*) > v, (f*) > v, (f)-

By Lemma 27, ||v(p, f)||? < |7 (p, f)||*—6% and since f* is a balanced flow in N (p), [|[v(p, f*)|?> <
Iy, )12 0

Lemma 27 Ifa > b; > 0,5 = 1,2,...,n and § > 3% | §; where 6,0; > 0,5 = 1,2,...,n, then
||(a,b1,b2,...,bn)||2 < ||(0,—|-(5,b1 _(517b2_527---7bn_5n)||2_52-

Proof :

n

n
(@+08)2+> (b —6)° —a> =) b;> >8> +2a(6 — &) > 6%
1=1 =1 1=1
Od

Let Ny denote the network at the beginning of a phase. Assume that the phase consists of &
iterations, and that N; denotes the network at the end of iteration £. Let f; be a balanced flow in
N; and I; be the set of buyers in the active subgraph in Ny, for 0 < ¢ < k.

Lemma 28 f; is a feasible flow in Ny, for 0 <t <k.
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Proof: First observe that by Lemma 12, the forced allocations do not change the surplus vector.
Furthermore, each of the following actions can only lead to a network that supports an augmented
max-flow:

e Raising the prices of goods in J.
e Adding an edge, as required in Step 3 or Event 1.

e Deallocating a segment, as required in Event 2.

The lemma follows. O

Lemmas 26 and 28 yield:
Corollary 29 |v(INy)|| is monotonically decreasing with t.

Let ¢; denote the minimum surplus of a buyer in I; in network Ny, for 0 < ¢t < k; clearly, §o = ¢
and 519 =0.

Lemma 30 If §;—1 > &; then there exists an i € I;_1 such that v;(p;_1) — vi(Dy) > 6t—1 — O¢-

Proof : Consider the residual network R(p,, f) corresponding to the balanced flow computed at
the end of iteration ¢. By the definition of I}, every vertex v € I; \ I;_; can reach a vertex i € I;_;
in R(py, f) and therefore, by Property 1, v,(p;) > 7i(p;). This means that the minimum surplus
d¢ is achieved by a vertex ¢ in I;_1. Hence the surplus of vertex ¢ is decreased by at least d;_1 — d;
during iteration ¢. O

Lemma 31 If §; > 6341 then ||[v(N) |2 — |[v(New)||? > (6; — 6¢11)2, for 0 < t < k.

Proof : By Lemma 30, if §; > ;11 then there is a buyer ¢ whose surplus drops by §; — 411 in
going from f; to fiy1. By Lemma 28, f; is a feasible flow in Ny;;. Finally, by Lemma 26 we get
the desired conclusion. O

52
Lemma 32 Iy (N 12 = Iy (Ne) |? > -

Proof: The left hand side can be written as a telescoping sum in which each term is of the form
v (N2 = ||7(Ne41) . By Corollary 29, each of these terms is nonnegative.

Consider only those terms in which the difference §; — d;41 > 0. Their sum is minimized when
all these differences are equal. Now using Lemma 31 and the fact that g = ¢ and § = 0, we get
that

(52
Iy (No)II? = [l (Ne)(I? > e

By Lemma 25, k < z. The lemma follows. O
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Lemma 33 In a phase, the I2-norm of the surplus vector drops by a factor of

b-2)

Proof : Lemma 32 and the fact that ||y(No)||* < né?,

nd? N,
NI < IO = "2 < (g2 = Tl
AL AL

< )i (1)

The lemma follows. O

Theorem 34 The algorithm finds equilibrium prices and allocations for spending constraint step
utility functions in Fisher’s model using

0 (n2z2(logn + nlogU + log M))

maz-flow computations (see the second paragraph of this section for definitions of these parameters).

Proof : By Lemma 33, the square of the surplus vector drops by a factor of half after O(zn)
phases. At the start of the algorithm, the square of the surplus vector is at most M?2. Once its
value drops below 1/A*, by Corollary 24, equilibrium prices have been attained. Therefore the
number of phases is bounded by

O(nzlog(A*M?) = O(nzlogn +nlogU + log M).

By Lemma 25 each phase consists of z iterations and by Theorem 22 each iteration requires n
max-flow computations. The theorem follows. O

11 Buyers have utility for money

Finally, we will assume that buyers have utility for money, given by step utility function f for each
buyer 1 € B. We note that segments corresponding to these utility functions will not appear as
edges in the current partitions subgraph or the network N(p,a, s).

As prices of goods are raised, the current bang per buck, a;, of each buyer i € (I UI') keeps
decreasing. If for some buyer i € (I UI'), a; decreases to the point where she is equally happy
leaving with money corresponding to segment s € seg(fg), then the algorithm will need to return
money corresponding to s before it can raise the prices of goods any more.

As described below, the current phase may terminate even before money corresponding to s
can be fully returned to . If so, we will say that buyer ¢ has a partially returned segment s; in this
case, 0 < returned(s) < value(s). When ¢ returns to the active subgraph in a subsequent phase,
the algorithm first attempts to return the rest of value(s) to i.
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The following event is executed as the first event in Step 4 of the main algorithm.

e Event 0: There is a buyer i € (I U I') with rate(s) = «; for s € seg(f}), and moreover,
returned(s) < value(s).

Increase returned(s) continuously until one of two events happens:

— Event 0(a): A set S C J goes tight. (Observe that for a set S C J such that i €
bestT(S), best(S) is decreasing as returned(s) is raised; since m(i) is decreasing.)

If so, terminate the current phase and start with the next phase.

— Event 0(b): returned(s) = value(s), i.e., the money corresponding to segment s has
been fully returned.
Go to Step 4 and continue raising the prices of goods in J.

Let y* denote the value of returned(s) at which Event 0(a) occurs. Next, we give a procedure
for determining whether Event 0(a) or Event 0(b) occurs, and in the former case, we will give a
method for computing y*. Compute p’, the prices of all goods at the moment Event 0 occurs. Let
a denote all forced allocations made so far. Compute the money returned to buyers; for 7 assume,
for the purpose of this procedure, that segment s is fully returned. Let s’ denote the vector of
money spent. As in Section 9, we will let I denote I U I'.

Construct network W (p', a, s') on vertices {s}UJUITU{¢} and find a maximal min-cut in it. If
(s, JUIUt) is the maximal min-cut, then Event 0(b) occurs, i.e., the entire money corresponding to
segment s can be returned to ¢ without a set going tight. Next assume that the maximal min-cut in
the network is (sUJy U I, JoU I Ut), with Jy # 0. If so, Event 0(a) occurs. Clearly, the procedure
stated above uses only one max-flow computation.

Lemma 35 If Event 0(a) occurs,

y" = value(s) — (p'(J1) — a(J1) — (m(I1) + c(Ji; T(J1) — 1))

Proof : Let Situation 1 be the situation in which the entire money corresponding to segment s
returned to i. Let Situation 2 be the scenario in which the money returned to ¢ corresponding to
segment s is precisely y*; let C be the maximal min-cut in Situation 2. Observe that ¢ will be on
the s-side of cut C since it has spent all its money. Therefore the capacity of C' in Situation 1 will
be smaller by exactly value(s) — y*. In addition, the difference in capacity of any other cut, C’ in
the two situations is at most value(s) — y*.

Let cap; and cap, denote functions giving the capacities of cuts in Situation 1 and 2, respectively.
Let 8 = value(s) — y*. Then, capy(C') > capy(C), cap;(C) = capy(C) — B, and cap,(C’) >
capy(C') — B. Therefore, cap;(C") > cap,(C). Therefore, C is a maximal min-cut in Situation 1 as
well.

Since Invariant 2 holds, (s,J U I Ut) will also be a min-cut in Situation 2. Therefore the
difference in the capacities of (s U J; U I, JJo U I, Ut) in the two situations is precisely p/(Ji) —
a(J1) — (m(l1) +c(J1;T(J1) — I1)). This yields the expression for y* given in the statement of this
Lemma. O

We prove below a lemma that is analogous to Lemma 23 for the enhanced model.
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Lemma 36 If Event 0(a) occurs, the prices of goods in the tight set are rational numbers with
denominators < A.

Proof : Let S C G be the newly tight set at the termination of the phase when Event 0(a)
occurs and let T = bestT(S). Let s be the segment that was being returned to buyer 7 when this
happened. Clearly, ¢ € T and the current partitions subgraph induced on (S,T') must be a single
connected component (otherwise the component not containing ¢ would contain a tight set even
before s was returned). Pick a spanning tree, 7, in (S, T).

Observe that when rate(s) became equal to «;, for any edge (7, ) incident at i,

rate(z, J
p; = uE)

rate(s) ’

where, by a slight abuse of notation, we are using rate(i,j) to denote the rate of the segment
represented by the edge connecting 4 to j. Similarly, if j' is reached via the path i, 4,4’, 7’ in 7, then

rate(i, j) - rate(s', j')

Py = rate(s) - rate(d/, 5)
Therefore, the denominator of p;, j € T is the product of rates of at most n segments and hence
is bounded by U™, which in turn is bounded by A. O

If Event 0(b) occurs while returning money corresponding to segment s, then this segment
will never be considered again, since the bang per buck of s remains unchanged but «; can only
decrease as the algorithm proceeds. Hence the number of occurrences of Event 0(b) is bounded by
the number of segments in functions f¢, for all i, which in turn is bounded by z. Now, it is easy
to see that the running time bound established in Theorem 34 holds for the enhanced model as
well, as long as z is taken to be the total number of segments in all utility functions specified in
the input, including those for money.

12 Discussion

The remarkable convex program given by Eisenberg and Gale [8] captures, as its optimal solution,
equilibrium allocations for Fisher’s linear model. Some of the basic properties of Fisher’s linear
case can be established in a simple manner via this program. These include the existence of an
equilibrium under certain mild conditions, the uniqueness of equilibrium utilities and prices of
goods, and the fact that equilibrium prices are rational (if all input parameters are rational) and
have polynomially bounded descriptions.

In this paper, we have established the above-stated properties for spending constraint step
utility functions in Fisher’s model; uniqueness is shown in Section 4 and the other properties follow
from our algorithm. It is natural, therefore, to ask if there is a convex program that captures
equilibrium allocations for these utility functions.

We believe that the answer to this question should be “yes”. In our experience, non-trivial
polynomial time algorithms for problems are rare and happen for a good reason — a deep mathe-
matical structure intimately connected to the problem. Observe that a convex program with the
same structure as the Eisenberg-Gale program is not the right answer to this problem, since in our
model utilities of buyers are not only a function of allocations but also of prices of goods, whereas in
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the Eisenberg-Gale program, prices are Lagrangian variables corresponding to packing constraints
occurring in the program.

An important open question regarding Fisher’s linear case, which applies to spending constraint
step utilities as well, is whether there is a strongly polynomial algorithm for computing the equi-
librium. In particular, if such an algorithm is found for the former question, it will be interesting
to determine if it generalizes naturally to our setting as well.

An important step toward handling concave utility functions may be obtaining a polynomial
time algorithm for the case of piecewise-linear, concave utilities. Such utility functions need not
satisfy weak gross substitutability. Our algorithm for spending constraint step utility functions
may help finesse this difficulty via the following scheme given in [7]. Let f;; be the piecewise-linear,
concave utility function of buyer 4 for good j; f;; is a function of z;;, the allocation of good j to
buyer i. Let g;; be the derivative of f;;; clearly, g;; is a decreasing step function. Suppose the price
of good j (not necessarily equilibrium price) is fixed at p;. Define

hij(yig) = 9(22),
pj
where y;; denotes the amount of money spent by ¢ on good j. Observe that function h;; gives the
rate at which ¢ derives utility per unit of j received as a function of the amount of money spent on
Jj- Hence h;; is precisely a spending constraint step utility function.

Suppose we knew equilibrium prices for the given piecewise-linear utility functions. Using this
information, let us obtain the corresponding spending constraint step utility functions and run the
algorithm of this paper on this instance. Then, it is easy to see that the prices computed by the
algorithm will be the same as the starting prices. Also, if the starting prices were not equilibrium
prices for the given piecewise-linear instance, the computed prices will not be the same as the
starting prices.

Now consider the following procedure. Start with an initial price vector so that the sum of the
prices of all goods adds up to the total money possessed by buyers. Using these prices, convert the
given piecewise-linear utility functions into spending constraint step utility functions and run the
algorithm of the current paper on this instance to obtain a new price vector. Repeat until the price
vector does not change, i.e., a fixed point is obtained. The question is does this procedure converge
to a fixed point and if so how fast.
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