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SUMMARY  

During the past 10 years, construction was the leading industry of occupational 

fatalities when compared to other goods producing industries in the US. This is partially 

attributed to ineffective safety management strategies, specifically lack of automated 

construction equipment and worker monitoring. Currently, worker safety performance is 

measured and recorded manually, assessed subjectively, and the resulting performance 

information is infrequently shared among selected or all project stakeholders. Accurate 

and emerging remote sensing technology provides critical spatio-temporal data that have 

the potential to automate and advance the safety monitoring of construction processes. 

This doctoral research focuses on pro-active safety utilizing radio-frequency 

location tracking (Ultra Wideband) and real-time three-dimensional (3D) immersive data 

visualization technologies. The objective of the research is to create a model that can 

automatically analyze the spatio-temporal data of the main construction resources 

(personnel, materials, and equipment), and automatically measure, assess, and visualize 

worker’s safety performance. The research scope is limited to human-equipment 

interaction in a complex construction site layout where proximities among construction 

resources are omnipresent. In order to advance the understanding of human-equipment 

proximity issues, extensive data have been collected in various field trials and from 

projects with multiple scales. Computational algorithms developed in this research 

process the data to provide spatio-temporal information that is crucial for construction 

activity monitoring and analysis. Results indicate that worker’s safety performance of 

selected activities can be automatically and objectively measured using the developed 

model.  

The major contribution of this research is the creation of a proximity hazards 

assessment model to automatically analyze spatio-temporal data of construction resources, 

and measure, evaluate, and visualize their safety performance. This research has potential 

to complement the current safety measures in construction industry, as it can determine 

and communicate automatically safe and unsafe conditions to various project participants 

located on the field or remotely.  
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CHAPTER I 

INTRODUCTION 

This chapter introduces the overview and challenge in construction safety. The 

motivation of this dissertation is explained, followed by a brief definition of the problem. 

Then the research scope and contribution are stated. At the end of this chapter, an 

outline of the thesis is provided to help the readers understand the flow of the thesis.  

1.1 Overview 

In 2010, the Gross Value Added (GVA) of the construction industry in the US 

was $510.5 billion, 3.5% of the gross domestic product at purchaser’s prices [1]. After 

shedding about 2.5 million jobs since the economic recession, the construction industry 

offered employment to approximately 6% of the total civilian employed population in 

2010 [2]. In the meantime, the construction industry is one of the most dangerous 

industries, which has witnessed continually injury and fatality during the last decades. 

According to the Bureau of Labor Statistics (BLS), construction workers account for 

more than 16% of total fatal occupational injuries of the overall industry in the same year 

[3]. During year 2006-2010, more than 10 workers out of 100,000 were killed in 

construction, a figure twice that of general industry [4]. Within a ten years period (1992-

2002), a total of 12,075 fatalities have resulted in approximately a $10 billion loss to the 

American construction industry [5]. A conservative report by the International Labor 

Organization (ILO) estimates that globally, there are an annual 60,000 fatalities related to 

construction work, and many hundreds of thousands more suffer serious injuries, as well 

as ill health [6].  

1.2 Motivation and Problem Definition  

This research intends to improve the understanding and measurement of workers’ 

safety performances in the construction industry.  

Even though the safety performance has been improved during the last decade, 

the construction industry is still leading in work related fatalities relative to other 

industries [7]. Apart from the high occupational fatality and injury rates, what is absent is 
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a systematic and proactive approach to deriving measures of the on-site safety 

performance and how they link to the risk control process [8]. Therefore, it is necessary 

to have a reliable measuring approach for safety performance, which should give an 

indication of how well a construction activity, task and even the entire project is being 

executed in the aspect of safety. Moreover, certain changes of the level of safety 

performance should be able to be reflected by this measure [9].  

There are a variety of safety performance measures that have been in usage and/or 

introduced in the construction industry, which fall into two major categories: Lagging 

and Leading Indicators. In economics, these two terms are defined as [10]:  

 

• Lagging (or Trailing, Downstream) Indicators are indicators that usually change 

after the economy as a whole changes. 

• Leading (or Upstream) Indicators are indicators that usually change before the 

economy as a whole does. 

 

The lagging indicators to measuring safety performance are based on the fatality 

and injury statistics. Examples include: lost workday/restricted work activity injuries, and 

Occupational Safety and Health Administration (OSHA) recordable injuries. Although 

this type of indicators can accurately reflect the trend of safety performance, it can 

neither be used to prevent the occurrence of injuries, nor reflect the potential severity of 

an event, merely the consequence [11]. The other type of safety performance measures, 

leading indicators, are able to predict the future safety performance based on selected 

criteria [12]. Typical Examples include: Safety training survey, safety meeting survey, 

and Behavior-Based Safety (BBS). Instead of focusing on the end result, the use of 

leading indicators emphasize on the monitoring of work processes. Hence, modifications 

or improvements can be made before injuries actually occur if indicators show 

unacceptable result [12].   

The implementation of leading indicators relies on the data to be collected from 

on-site inspections. Since the data collection is only performed manually in the current 

construction industry [13], the nature of resulting safety measurement is subjective and 

varies considerably from inspector to inspector [9]. Therefore, there needs to be a method 
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that can measure the construction safety performances in an objective, consistent and 

reliable manner. Accurate and emerging remote sensing technology provides critical 

spatio-temporal data that have the potential to automate and advance the safety 

measurement of construction processes. 

1.3 Research Questions 

The central theme of this thesis is:  

 

How to implement emerging sensing technologies in combination with innovative data 

processing techniques to automatically and reliably detect, record, analyze, and assess 

the on-site safety, health as well as productivity performance of selected activities, 

thereby proactively improving the understanding and monitoring of construction process.    

 

Five major research questions raised in this research and investigated are as 

follows:  

 

• What hazards exist on a construction site? 

Workers are always exposed to various hazardous conditions on a construction 

site. It is essential to identify and focus on those hazards that result in significant 

fatal and nonfatal injuries.  

• Can technologies be reliably used to collect data from construction resources? 

In order to be implemented for activity monitoring, the performance of sensing 

technology in harsh construction environment has to be evaluated, lack of which 

causes uncertainty and frustrates the accuracy of the result.   

• What type of hazards can be detected using remote sensing technology? 

Accurate safety performance measuring requires a comprehensive understanding 

of the construction site settings. Automatic identification of the potential hazards 

rapidly allocates the situations that unsafe performance will likely to occur. 

• How to detect and measure the interactions between workers and identified 

hazards? 
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There is a need to analyze the interaction between workers and hazards. An 

automated approach to analyze crucial spatio-temporal information is required for 

generating new measures of safety performance.  

• How to reproduce the detected unsafe behavior share the information among 

project participants?  

When the safety performance information has been achieved, there is a need to 

rapidly share such information among project participants. Unsafe behavior can 

be corrected so as to prevent the occurrence of severe consequence. In addition, 

such information can be used for safety training and educations.  

1.4 Contribution  

This thesis focuses on proactive safety utilizing automated construction site 

sensing and information technology. This thesis comes at a crucial juncture, since the 

measures of safety performance of construction site work have hardly been objective. 

The major contributions of the thesis are introduced as follow: 

 

• This research creates an assessment model that leverages various sensing 

technologies to automatically analyze spatio-temporal data of construction 

resources (workers, equipment and materials), and automatically identify, 

evaluate, and visualize their safety performance. The framework is also extended 

for the study of work ergonomic analysis and continuous labor productivity 

analysis  

• A test-bed is developed to evaluate the performance of various real-time tracking 

technologies in harsh construction environment. It is demonstrated in this thesis, a 

commercial-available active Radio Frequency Identification (RFID) technology, 

Ultra Wideband (UWB), can reliably record real-time spatio-temporal data of 

construction resources from the construction site.  

• A data processing algorithm is developed that can automatically detect object 

from the large point cloud dataset collected by Light Detection And Ranging 

(LADAR) technology, and furthermore identify potential hazards, especially the 

blind spaces from the equipment operators’ perspective on the job site.  
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• A leading indicator, Proximity Hazard Index (PHI), is created to continuously 

assess the on-site proximity issue that workers are closed to various identified 

hazards. This factor generates a metric to evaluate the proximity hazards not only 

on individual level, but also for the entire crew. A safety benchmarking system 

can be further developed.   

• A framework is developed to combine real-time tracking data with a virtual 

environment for construction safety monitoring purpose. It enables the 

information such as measures of safety performance to be rapidly exchanged 

among project participants. It can be further used to reconstruct the detected 

unsafe behaviors. Such information can be applied in the construction safety 

training and education program.   

1.5 Organization of the Thesis 

This thesis describes an investigation into the use of various sensing technologies 

for the assessment of construction safety, health and productivity performance. The 

following is an outline of how this thesis is set-up. 

Chapter 1 introduces the overview of construction safety. The industry is facing 

the issue of safety measures being subjective, error-prone, and inconsistent due to the 

manual inspection. Hence, the motivation for this research is to improve the 

understanding and measuring of workers’ safety performances in the construction 

industry.  

Chapter 2 gives a brief account about the causations of fatalities and accidents in 

the construction industry. Various approaches attempting to improve the job site safety 

performance is reviewed. The applications of several emerging sensing technologies, that 

are available to the construction engineering discipline and will be implemented in this 

thesis, are introduced to the reader. The gaps in current research are summarized at the 

end of this chapter.  

Chapter 3 presents the hypothesis and objectives of this thesis, followed by the 

definition of research scopes. Then, the framework of research methodology is explained 

in detail. 
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Chapter 4 evaluates the performance of real-time tracking technology, especially 

the Ultra Wideband (UWB), when it is implemented in harsh construction environment. 

The result demonstrates that this technology can be used to reliably collect spatial and 

temporal data of the construction resources from job site. 

Chapter 5 explains the analysis of a special type of on-site hazards, the blind 

space to equipment operators. The result shows that this type of hazard can be 

automatically measured based on the existing construction site settings using LADAR 

technology.  

Chapter 6 demonstrates an approach of analyzing human-equipment interactions, 

especially proximity hazards, using a new safety measurement. The measurement is 

established upon the identification of on-site hazard detection and spatio-temporal 

reasoning of collected trajectory data.     

Chapter 7 fuses spatio-temporal data into workers’ physiological information for 

construction ergonomic analysis, with the special emphasis on locating the spot that 

associates to most frequent non-ergonomic material handling activities.  

Chapter 8 shows the possible extension of the research framework on worker 

productivity analysis by implementing the same data fusion technique to the 

physiological data.  

Chapter 9 establishes a framework that facilitates the exchange of the derived 

safety information among distributed project participant using real-time visualization 

technology. This chapter also explains the potential application of such framework to be 

deployed in construction training and education program.  

Chapter 10 concludes the thesis and also summarizes the findings. Also discussed 

are the future extension and limitations of this thesis research.   
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CHAPTER II 

BACKGROUND 

Construction industry has been experiencing high occupational fatal injury rates during 

the past decades. Many research efforts have been investigated to explore the causations 

of on-site accidents. Approaches and techniques attempting to prevent accidents have 

been studied, some of which have been in wide usage. In addition, pro-active real-time 

safety using emerging technologies are recently introduced in the construction industry.    

2.1 A Closer Look at the Construction Fatality Statistics 

The safety statistics have been published by the Census of Fatal Occupational 

Injuries (CFOI) for the overall industry sectors of the entire U.S. since 1992. The CFOI is 

the official federal count of occupational fatalities in U.S. The Injuries Illnesses and 

fatalities (IIF) program of CFOI provides annual statistics of the fatal and nonfatal data. 

The data are collected from a number of different sources, including OSHA reports, death 

certificates, worker’s compensation reports, and media reports [14]. The CFOI defines 

occupational fatality and nonfatal (OSHA recordable) injuries and illness as follow:  

 

Occupational Fatality is a death that occurs while a person is at work or performing 

work related tasks  

Nonfatal (OSHA recordable) Injury and Illness are an injury or illness that is work-

related if an event or exposure in the work environment either caused or contributed to 

the resulting condition or significantly aggravated a pre-existing condition. 

 

According to CFOI, construction industry has been leading the occupational 

fatality number since 2003 among goods producing industries in the private industry 

division. Good producing industries include agriculture, construction, manufacturing, 

mining, and forestry. Table 1 summarizes the occupational fatality statistics between 

2003 and 2012 of construction industry by exposure type. In 2008, 1,192 Construction 

workers were killed during the work related activities [15], and over 150,070 nonfatal 
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injury cases were filed to the Bureau of Labor Statistics [16]. According to the National 

Safety Council, the fatal and nonfatal injuries in 2008 were associated to over $10 billion 

annual cost [17]. As an average, a substantial fraction (35%) of the overall fatalities 

during this period was due to falls, followed by transportation (25%), contact with objects 

and equipment (19%), exposure to harmful substances (15%), and others (6%).  

Table 1. Occupational fatalities by exposure, 2003-2012 

Exposure types 2003 2004 2005 2006 2007 2008 2009 2010 
Falls 364 445 394 433 447 336 283 260 
Contact with objects and equipment 231 267 244 216 206 201 151 136 
Exposure to harmful substances 179 170 164 191 182 132 132 126 
Transportation incidents  290 287 318 323 296 241 231 173 
Others 67 65 72 76 73 65 55 56 
Total fatalities  1131 1234 1192 1239 1204 975 834 751 

 

CFOI also sample the fatality data according to the primary and secondary 

sources involved in accidents.  

 

Table 2 lists the fatal injuries that are produced by several sub-categories of 

primary sources that are associated to proximity issue. This closer look at the fatal 

injuries by primary and secondary source indicates that there is significant portion (on 

average 40%, shown in Figure 1) of fatalities account for personnel being proximate to 

various hazards.  

 

 

 

 

 

 

 

Primary source of injury identifies the object, substance, or exposure that directly 

produced or inflicted the injury. 

Secondary source of injury identifies the object, substance, or person that generated 

the source of injury or that contributed to the event or exposure.  
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Table 2  Fatal occupational injuries by primary source, 2003-2010. 

Year 2003 2004 2005 2006 2007 2008 2009 2010 
(1) Contact with objects and 
equipment 

231 267 244 216 206 201 151 136 

- Machinery 139 150 140 149 123 118 87 77 
- Building materials 58 57 66 63 52 40 31 31 
- Others 34 60 38 4 31 43 33 28 

(2) Fall from floors 100 139 111 113 152 105 68 72 
(3) Chemicals and containers 47 36 52 55 45 38 36 42 
(4) Struck by vehicle 84 78 97 91 73 73 62 44 
Subtotal: (1)+(2)+(3)+(4) 462 520 504 475 476 417 317 294 
Total fatalities 1131 1234 1192 1239 1204 975 834 751 
Percentage of proximity issue 41% 42% 42% 38% 40% 43% 38% 39% 
 

 

 

Figure 1  Fatalities due to proximity issue vs. total fatalities. 

One of the distinct safety problems has been identified as the proximity of 

workers-on-foot to heavy construction equipment [18]. Over six hundred fatalities on the 

site were related to construction equipment and contact collisions during the inclusive 

years of 2004 to 2006 [19]. However, the causation and specific safety needs on this type 

of fatalities have yet to be sufficiently identified, since the knowledge of specific risk 
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factor to the contact collision problem is lacking, and no real-time information is gathered 

during the incidents [20]. Therefore, a special emphasis of this research is placed on the 

understanding of human-equipment interactions on job site.  

2.2 Overview of Safety Performance Measures 

The previous subchapter gives a number of safety statistics of the recent years. 

Despite reductions in injury and fatality rates, the safety records in the construction 

industry have been frustrated by the inability to make a step-change improvement [21], 

which can be achieved, according to many safety professionals, by careful selection, 

measurement and response to leading indicators of safety performance [22]. The safety 

statistics given in the previous chapter are considered as one type of measures/metrics of 

safety performance. There are various other safety measures for construction projects. 

Some of the metrics have been widely used in the industry, including Recordable Incident 

Rate (IR) and Lost Time Cast Rate (LTC). Both are defined by OSHA as following [23]: 

 

Since these factors together with injury statistics measure the safety performance after 

event to assess outcomes and occurrences, they are lagging indicators. This type of 

indicators characteristically [24]: 

 

• Identify the trends in past safety performance 

• Have a long history of use, and so are accepted standards 

• Are easy to calculate 

• Are good for self-comparison 

 

Researches have been conducted to demonstrate the effectiveness, efficiency, and 

reliability of various lagging indicators when they are implemented in construction safety 

[25][26][27]. However, its disadvantage in reflecting the safety performance on complex 

and dynamic construction site is also prominent. One of the major distinct disadvantage 
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of this type of measures is it focuses on the negative aspects of safety performance, which 

means there must have been an injury in order to get a data point [9]. Some other 

problems with the lagging indicators include [28]: 

 

• Not being able to reflect whether or not a hazard is under control 

• Fail to reflect the potential severity of an event, merely the consequence 

• Not being able to reflect causation of event 

 

Because of the drawbacks associated with the implementation of lagging 

indicators, research efforts have been investigated on proactive activities that identify 

hazards and assess, eliminate, minimize and control risk [29]. That is developing high-

impact leading indicators for construction safety, which can precede an undesirable event 

and that have value in predicting the arrival of the event [30].  

Leading and lagging indicators differ by scope [31]. Leading indicators are 

primarily focuses at the individual level and analysis at small units (behaviors). In 

contrast, a broader scope makes the lagging indicators focuses on organizational 

measures. This difference has important implications for data collection, analysis and 

measurement of leading indicator [30].  

The safety leading indicators are furthermore classified into two categories: 

passive and active. An indicator that does not have a meaningful (actionable) metric is 

referred as a passive leading indicator [32]. In general, passive leading indicators only 

have True/False value to whether a practice or program is implemented [33]. Example of 

passive leading indicators include: drug testing, incident investigations, and worker 

recognition. As a contrast, an indicator with a metric that prompts a proactive response 

relative to the process it measures is known as an active leading indicator [32]. One 

example of active leading indicator is jobsite safety audit.  

In order to provide meaningful (actionable) safety information, an active leading 

indicator must have the following key features [34]: 

 

• Data must be numeric – they can be translated as a “score”. 

• Data must be easily understood. 
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• Data must be perceived as credible; they must be objective rather than subjective. 

• Data must signal the need for action, when indicate a deviation from expectation. 

• Data may be related to other indicator. 

• Data must not be easily manipulated.  

 

As the requirements of an active safety leading indicator have been defined, an 

appropriate measurement process has to be developed, which requires the following [32]: 

 

• Consistency in the measures obtained by various individuals 

• A defined mechanism for information/data collection 

• Tools formatted for the consistent data processing 

• A repository for the information/data  

 

Several techniques to measure leading safety indicators are listed as follow:  

 

• Behavior Based Safety (BBS) is the application of behavioral research on human 

performance to the problems of safety in the workplace [35]. This technique is 

based on the site observations and individual feedback after the observation 

period. Observing data gathered from the job site are entered in a database with a 

prepared checklist to flag out the trends of at-risk behaviors. A report is generated 

for analysis and certain recommendations of modification are given [36]. The 

performances of BBS applied for construction safety has been studied and 

documented in many previous researches [37][38][39][40].  

• Jobsite Hazard Analysis (JHA) is the on-site risk assessment technique that 

focuses on job tasks as a way to identify hazards before they occur, and serves to 

bring foreman and workers’ attention to these potential hazards [9]. This 

technique is always associated to on-site safety inspections, which are made to 

assess physical working conditions. A cross-level (administrative, engineering 

and personal protective) emergency control system is suggested by OSHA [41]. 

• Near misses reporting. A near miss is an event, or a chain of events, that under 

slightly different circumstances could have resulted in an accident, injury, damage, 
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or loss of personnel, or equipment [24]. Investigation of near miss occurrences is 

a very useful measure of health and safety performance as well as enabling 

organizations to learn from such errors [42]. A common industry problem is that 

the accuracy of the estimation of near-miss largely depends on voluntary report. 

• Safety training. Two types of measures of training are available [43]. The first is 

measuring the number of attendance. The second is measuring the number of 

people that can perform tasks they have been trained. 

• Safety audits attempt to assess safety management and safety culture by 

measuring whether safety performance indicators are present or not [44]. This 

technique is useful to gauge the extent to which the organization’s policies and 

rules are being followed and how they might be improved. However, the 

effectiveness of a safety audit can be influenced by the organization’s safety 

culture itself [45].  

• Worker safety perception survey is a mechanism of obtaining generic data 

about the safety condition on a construction site. These surveys can be conducted 

monthly, quarterly, or even annually [46].  

 

Since the above techniques focus on the process, not the end result, if the 

performance indicators show unacceptable performance, modifications or changes can be 

made before accidents actually occur, which becomes the distinct advantage of 

implementing the leading indicator. However, since these indicators are measured based 

on manual observation or survey-based, the measures are inconsistent, subjective and 

error-prone [12].  

2.3 Causation of Construction Accidents 

It has been widely agreed that there is no perfect safety measure that can be to 

every situation. The selection of a proper safety measure relies on the causation of 

accidents [43]. Studies have been conducted to find out the major causes of construction 

accidents. Accident causal model provided strong and consistent evidence that most of 

the accidents were the result of human errors and mistakes [47]. According to Reason 

[48], human error occurs in a limited number of forms including unintentional errors 
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(slips and lapses) and intentional mistaken actions (mistakes and violations). The 

fundamental difference between these two forms is that errors cause results in failures of 

execution (e.g., inattentiveness, distraction); and mistakes are planning errors (e.g., 

intentionally choosing an unsafe pathway through a worksite).  

Errors in judgment, decision making, and physical actions result in loss of 

productivity, the need for rework in industrial operations, and occupational injuries. In 

order to prevent human error organizations conduct training sessions, provide feedback to 

workers, and conduct inspections [49]. However, these prevention activities rarely occur 

in real-time. That is, organizations rarely have the capability to systematically warn 

workers of their erroneous actions before negative consequences are realized. This is 

especially true in work environments where conditions continually change, mobile 

equipment is integrated within the workspace, and many distractions are present. 

Therefore, there is a clear need for a reliable real-time information providing system that 

specifically targets the cessation of erroneous behavior. 

Mistakes are defined by Reason as, “deficiencies or failures in the judgmental 

and/or inferential process involved in the selection of an objective or in the specification 

of the means to achieve it, irrespective of whether or not the actions directed by this 

decision scheme run according to plan [48].” Mistakes are relatively common and exist in 

three categories [50]: Skill-based, rule-based, and knowledge-based. Skill-based mistake 

refers to the failure of applying learned routine skill in normal situations. A typical 

example is a skilled driver of a dump truck stepping on the accelerator instead of brake.   

Rule-based mistake involves the incorrect application of a rule or inadequacy of the plan, 

for example unauthorized personnel invades a restricted area. Knowledge-based mistakes 

associates to the actions which are intended but do not achieve the intended outcome due 

to knowledge deficit. The knowledge-based mistake always occurs due to the incomplete 

and inaccurate understanding of system, environment, and job setting. An example of 

knowledge-based mistake can be a worker is hit by a reversing dozer inside its blind area.  

A sequential model of occurrence combining human errors and mistakes is 

illustrated in Figure 2, which shows accidents always start with unexpected exposure to a 

hazardous situation in the workplace. Insufficient situational awareness and perceptual 

skills of work participants escalate the risk that an accident could happen. Other human 
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errors and mistakes including unexpected workers’ risk-taking tendencies, failures in 

physical, psychological and physiological responses eventually contribute to the 

occurrence of an accident.  

 

 

 

Figure 2  Sequential model of accident occurrence [51] 

However, negative consequences resulting from these errors and mistakes are 

generally preventable when workers obtain feedback when they are exposed to hazards 

and when they are involved in erroneous behaviors before accident could occur [52]. 

Hence, there is a clear need for an advanced understanding of such erroneous behavior so 

as to specifically reproduces and corrects them. In construction industry, safety defenses 

Exposure to a hazardous 

situation

Perception of 

hazard

Cognition of 

hazard

Decision to avoid

Ability to avoid

Safe behavior

Yes

Yes

Yes

Yes

Yes

Unsafe behavior

No

No

No

No

Accident No accident
Chance

Sensory skills

Perceptual skills

State of alertness

Situational awareness

Experience, training

Mental and memory abilities 

Situational awareness

Experience, training

Attitudes, motivation

Risk-taking tendencies

Personality (extraversion)

Physical characteristics and abilities

Psychomotor skills

Physiological processes



- 16 - 

 

and barriers have been addressed in many layers: some rely on people (personal 

protective equipment, and safety supervising), others depend on procedures and 

administrative controls (safety standards and regulations, safety training and education). 

However, an engineered layer based on the applications of technology has not been 

considered as one of the key solutions for the construction safety. Therefore, a modified 

causation model (Figure 3) is presented that emerging safety technologies are applied to 

first prevent the potential accident by giving workers real-time warning, and secondly to 

collect data and derive information and knowledge from previous recorded events, such 

as close-calls [19]. This new information leads to significant promotion of understanding 

and measuring the safety.  

 

 

Figure 3  Human error causation model including technology as an extra barrier [19] 
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2.4 Focus of this Research 

In general, a safety management system deals with the performance measurement 

on two levels. The first focuses on organizational mechanisms such as safety culture, 

safety climate, policies and regulations. The second moves down to the individual level 

and deals specifically with the issues of the performance based approach and its impacts 

to organizational level safety management [53]. This research focuses on the analysis and 

measures of daily-based individual safety performances. It aims to research about how 

safety performance of individual can be effectively measured and how to improve the 

understanding of the worker’s at-risk behavior are the major motivations of this research. 

As mentioned in the previous sections, two types of measures are used for safety 

measures, which are varied from the scopes. Existing safety measures on individual level 

have various drawbacks, which has been described in the previous sections. This research 

aims to generate a new measure that should: 

• Enable to track small improvements in safety performance 

• Measure both positive and negative events 

• Enable rapid and frequent feedback to all stakeholders 

• Be consistent, objective and robust to observers as well as to performers 

• Be predictive  
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CHAPTER  III  

RESEARCH HYPOTHESIS AND METHODOLOGY 

This chapter explains the research methodology and framework for human-equipment 

proximity hazard assessment using real-time sensing and visualization technology in 

combination to   processing techniques. The first several sections state the research 

hypothesis, research objectives and scopes, followed by an overview of the research 

framework. The subsequent sections describe the different phases of the research, 

including evaluation of technology, operator visibility analysis, worker-equipment 

proximity algorithm, data fusion for worker’s physiology and activity level analysis, and 

real-time virtual environment.  

3.1 Introduction 

The goal of this research is to build and test a framework measuring the safety 

and productivity performance in construction operations. The methodology can be 

envisioned as involving three major steps: real-time data collection, parametric 

information generation, and work performance analysis. A brief overview of the three 

steps and their corresponding goals are shown in Figure 4.   

 

 

Figure 4  Research steps: Compartmentalizing the research methodology into three 

phases 
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The data collection phase aims to gather real-time spatio-temporal data as well as 

the worker’s physiological status (e.g. heart rate, breath rate, and body temperature) from 

the job site. The performance of remote sensing technology has been evaluated. In this 

phase, it demonstrates that the selected sensing technology is capable to continuously, 

consistently, reliably monitor work activities in a harsh construction environment. During 

the information generation phase, gathered raw data are processed through a series of 

developed data processing algorithms. Parametric information related to the work 

activities as well as the construction environment is derived from the raw data. The 

parametric information is implemented to detect potential hazardous conditions on a 

construction site, as well as to understand the interaction between construction resources. 

As a sequence, this information is utilized to analyze and assess the worker’s safety and 

efficiency performance at work task level. The results are evaluated and shared via a 

virtual environment. 

3.2 Hypothesis 

Despite the significant reduction of fatal and nonfatal injuries during the past 

decades, the safety performance in the construction industry continues to lag behind other 

industrial sectors. Moreover, most of the safety performance measures are based on 

survey and manual observations, which are inconsistent, labor intensive and error prone. 

In addition to the traditional management approach to improve construction safety 

performance, another option is to add a technology barrier using real-time remote sensing 

and visualization technology as a pro-active solution to protect workers from potential 

hazards. Therefore, two important research questions were put forth during the 

development effort of the research framework that formed the basis for initiating this 

research and are central to answering this hypothesis. These are as follow: 
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3.3 Objectives and Scopes 

Applications of real-time monitoring and controlling of construction site progress 

is of both managerial and technological interests. From a management perspective, 

accurate and emerging remote sensing technology, with a particular emphasis on real-

time detection and tracking of construction resources (personnel, equipment, and 

material), can provide critical spatio-temporal information. Once gathered data are 

processed, information has the potential to advance the understanding of construction 

processes, including the level of productivity and safety performance. From a technical 

perspective, the development and evaluation of various electronic sensors for applications 

in the harsh construction environment, as well as the exploration of their potential as a 

valuable aid in project management, enables tighter control of project progress.  

Therefore, this research investigates the crossover into nearby engineering 

disciplines. The goal is to design, test, and validate new methods that improve 

construction safety and productivity measurement. In order to achieve this goal, several 

research objectives have been set as follow: 

• To create a test-bed to evaluate the performance of real-time locate sensing 

(RTLS) technology when implemented in harsh construction environment 

• To develop data processing algorithms that can automatically identify potential 

safe/unsafe site conditions to equipment operators, ground workers, and decision 

makers. 

• To create an assessment technique that can automatically analyze spatio-temporal 

data of workers, equipment, and materials, and automatically identify, evaluate, 

and visualize their safety and productivity performance.  

Research Questions: 

1. Can real-time remote sensing and visualization technology be implemented to 

detect, record, and visualize the construction safety performance?  

2. How to develop a hazard detection model that automatically analyze gathered 

data, and accurately measure construction safety performances? 
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• To develop a framework that provides real-time information sharing and 

visualization of the construction safety performance for training and education 

purpose. 

As is summarized in Chapter 2.1, a large fraction of the construction fatalities 

(40%) were due to construction personnel work proximately to various hazards. In this 

research, the proximity hazard is defined as follow: 

 

Several typical proximity hazards are considered in this dissertation, which include but 

are not limited to:  

• Contacting with objects and equipment (machinery, materials, and structures) 

• Falling from elevations (e.g. close to the edge of floor and openings) 

• Struck by a vehicle 

• Working close to chemical, flammable, and toxic substances 

• Unauthorized intrusion to access-controlled space 

Therefore, this research focuses on the selected construction activities such that the 

construction personnel are repeatedly exposed and/or close to various above-mentioned 

hazards on a construction site, with a particular emphasis on human-equipment 

interactions. Moreover, this research aims to quantify the assessment of the above-

mentioned hazards, as these hazards can be only reported as binary values by the current 

manual observing approaches.  

3.4 Overview of Framework 

This research creates a framework that connects the raw data collected from the 

construction activities to relevant knowledge, which is required in construction 

productivity level and safety performance measurements. The framework involves three 

phase: data collection, data processing, and applications. An overview of the research 

framework is given in Figure 5. 

The first phase of this research is to collect realistic construction site data by 

utilizing remote sensing technology in multiple field trials. The gathered data can be 

A Proximity Hazard in construction operation is a situation that poses a potential 

level of threat to a worker’s safety, which occurs only when the worker approaches to 

such a situation. 
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divided into two categories: ranging data and tracking data. The ranging data, collected 

by LADAR or laser scanner in this research, is utilized to represent geometric and 

topologic information of the construction site environment. Tracking data, recorded by 

real-time location sensing (RTLS) and physiological status monitoring sensor, provides 

spatio-temporal data and the human physiological status of monitored construction 

resources.  

In the second phase, the raw data are processed to derive parametrical information 

through the development of computing algorithms. The data processing phase consists of 

several modules: the error associated with tracking data are evaluated to demonstrate the 

appropriate selection of the technology; selected safety rules and regulations are 

interpreted as various parameters which later becomes constraints and thresholds in the 

developed computing algorithms; construction activities related zones and onsite objects 

are identified, which forms various hazardous conditions such as blind spaces to the 

equipment operator; kinetic and dynamic information is derived from spatio-temporal 

data for proximity analysis; and a virtual environment is created from the ranging data. In 

the last phase, the parametric information is applied to measure the safety, health and 

productivity performance.  
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Figure 5  Framework of research methodology 



- 24 - 

 

3.5 Technology Evaluation 

Emerging wireless remote sensing technologies offer significant potential to 

advance the management of construction processes by providing real-time access to the 

locations of workers, materials, and equipment. Unfortunately, existing research provides 

limited knowledge regarding the accuracy, reliability, and practical benefits of an 

emerging technology when it is deployed in a complex construction site, effectively 

impeding widespread adoption. Evaluation of a commercially-available Ultra Wideband 

(UWB) system for real-time, mobile resource location tracking in harsh construction 

environments is very necessary. A focus of Chapter IV is to measure the performance of 

the UWB technology for tracking mobile resources in real-world construction settings. 

To assess tracking accuracy, location error rates for select UWB track signals are 

obtained by automatically tracking a single entity using a Robotic Total Station (RTS) for 

ground truth. Furthermore, to demonstrate the benefits of UWB technology, the chapter 

provides case studies of resource tracking for analysis of worksite operations including 

safety and productivity. It also demonstrates the applicability of UWB for the design of 

construction management support tools. 

3.6 Job Site Hazard Detection 

As is mentioned in Chapter 2.1, 40% of the construction fatalities were due to 

personnel being proximate to various hazards. Chapter V focuses on detecting selected 

hazardous conditions and generating corresponding hazardous zones in the existing 

construction site setting.  

Hazardous conditions such as the existence of chemical, flammable and toxic 

substances are detected and processed based-on real-time location data. Utilizing the 

polygon buffering algorithm, zones associated to these hazards are generated which only 

authorized workforces are allowed to enter.  

Furthermore, many construction fatalities involving cranes and ground workers 

are caused by contact with objects and equipment, in particular struck-by crane loads and 

parts. Another hazardous condition is the limited visibility of the equipment operator. An 

approach is presented that aims at increasing the situational awareness of a tower crane 
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operator by aligning enhanced understanding of construction site layout with increased 

operator visibility of ground level operations. The developed method uses sensors to 

collect two data types: first, a laser scanner measures the as-built conditions and 

geometry of a construction site, and secondly, real-time location tracking technology 

gathers the mostly dynamic location of workers on the ground. Several algorithms are 

presented to (1) identify blind spaces from the collected point cloud data that limit the 

visibility of a crane operator, (2) process real-time location tracking data of workers on 

the ground, and (3) fuse the resulting data to create information that allows the 

quantitative assessment of the situational awareness of a tower crane operator. Results to 

a field trial are presented and show that a tower crane operator using the developed 

approach can increase understanding of where and when occluded spaces and ground 

level operations occur. The developed methods for creating safety information from 

range point cloud and trajectory data are a promising approach in significantly improving 

the currently unsafe operation of one of the most utilized pieces of equipment in 

construction: tower cranes. 

3.7 Spatio-temporal Analysis 

This session focuses on analyzing the interaction between workers and 

construction site hazards. The considered hazards are classified as dynamic and static. 

The dynamic hazards include mobile ground vehicles and equipment, and revolving crane 

components. The static hazards generally have fixed position on a construction site. 

Examples includes but not are not limited to: flammable, chemical, and toxic substances, 

floor edge, openings at elevation (associated to fall hazards), and any pre-defined areas 

that are only accessible to authorized personnel.  

The goal of this session is to develop an algorithm that can evaluate and measure 

the safety performance of construction personnel especially when they are conducting 

activity proximate to the abovementioned hazardous conditions. In order to achieve this 

goal, two sub-objectives have been defined. The first objective is to automatically 

generate hazardous areas surrounding the existing static and dynamic hazards on the 

specific construction site settings. The second objective is to automatically analyze the 

spatio-temporal conflicts between each worker and each considered hazard. A proximity 
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hazard detection model is therefore established based on the achievement of both sub-

objectives.  

3.8 Virtual Environment 

This session integrates the safety information and measurements to an immersive 

virtual reality world that represents the accurate construction site. The assumption was 

that any project stakeholder (equipment operator, worker on the ground, safety control 

command) with access rights and who could view live and processed field data in an 

immersive Virtual Reality (VR) could make more informed decisions in shorter times and 

at lower cost. This session consists of four central research phases: (1) data collection, (2) 

data processing, (3) information visualization, and (4) decision making and application in 

the field, education, and training. 

An accurate spatial world of the construction environment (e.g. site layout and 

terrain) was created using commercially-available laser scanning and modeling 

techniques. The immersive VR world then integrated data from real-time location 

tracking sensors (GPS and/or UWB) that collected trajectory data of resources present 

within the construction site. A user was then able to create safety rules, and based on the 

information output, see and observe results, and even interact within the immersive world 

but from a safe distance. 

3.9 Physiological Analysis 

This session extends the developed spatio-temporal analysis algorithm for labor 

productivity analysis and ergonomic working behavior assessment. It demonstrates that 

location sensing and worker’s physiological data can be fused to automatically identify 

the dynamic zones associated to the work activities as well as to categorize the work 

activities for the purpose of activity and ergonomic assessment. 

The results show that current technology is satisfactorily reliable in autonomously 

and remotely monitoring participants during simulated construction activities. In addition, 

the data from various sensing sources can be successfully fused to augment real-time 

knowledge of construction activity assessment, which would reduce, if not avoid, the 
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shortcomings of traditional approach of estimating productivity rates and working healthy 

level based on manual observation.  
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CHAPTER IV 

SELECTION OF TECHNOLOGY FOR REAL-TIME 

SPATIAL AND TEMPORAL DATA COLLECTION AND 

DATA ERROR ANALYSIS  

This Chapter reviews the needs for real-time location tracking in construction industry. It 

also summarizes the current available tracking technologies and their applications. In 

order to select a reliable technology for spatio-temporal data collection for this 

dissertation, a test-bed which evaluates the performance of Ultra Wideband technology 

in harsh construction environment is developed and tested. 

4.1 Introduction 

The dynamic nature of construction activities, in comparison to the manufacturing 

industry and its mostly stationary fabrication plants and assembly environments, presents 

a significant challenge towards realizing the goal of understanding construction site 

activities. Hindering this understanding is the fact that production control protocols in the 

construction industry are labor intensive, manual, and error prone [54]. Recent 

developments in remote sensing and automated data acquisition technology promise to 

improve upon existing material management strategies [55][56][57][58][59][60]. Similar 

benefits are anticipated for process management strategies. 

To date, many barriers exist that prevent owners and contractors from deploying 

data acquisition technology in construction. These include the risk of failure during the 

initial implementation phase and the high cost of implementation. An additional barrier is 

the lack of demonstrated benefits associated with emerging technology, e.g. the inability 

of the owner and/or contractor organization to exploit the information collected. When 

faced with known costs but unknown returns on investment, adoption of emerging 

technology can be nonexistent. Utilization of the technology is then limited to scattered 

implementations in various engineering subfields until more precise cost-benefit 
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valuations are determined [61]. It is, therefore, important to investigate how promising 

real-time location tracking technology may advance construction practices and enhance 

production control procedures in the construction industry. Two key areas closely tied to 

the economics of construction projects are productivity and safety [62]; lapses in both are 

responsible for significant losses in the construction industry. 

With regards to productivity, one key area identified as a critical need is the 

localization and tracking of assets that are linked to work tasks, including workforce, 

equipment, and materials [63][64]. For example, material handling and transport has been 

identified as a critical work task in construction [64][65]. Recent studies report 

significant amounts of time spent on materials searches in lay down yards [66]. The 

material flow for a steel erection process at industrial job sites may involve the delivery 

of the material component from the fabrication plant to a temporary lay down yard. A lay 

down yard is an important temporal space in the assembly process of material 

components, as it allows for storing and sorting the components in the correct order, and 

provides a healthy temporal buffer to ensure parts availability when needed. Prior 

research has shown that the current process of material handling on large industrial job 

sites is inefficient [67]. 

Within the context of safety, significant time and economic resources are lost 

when workers are injured or killed by loads during work tasks [19][68]. Current 

construction best practices in material handling prescribe the foremen to blow a whistle 

or the equipment operator to activate the horn of a crane at the beginning of a material lift. 

Such manually activated signals are effective in alerting the surrounding workers to pay 

attention to where the load is swinging. Many workers or crane operators have difficulty, 

though, in relating their own location to the position of the load. Incorrect spatial 

awareness could lead to accidental injury. The importance of spatial awareness is 

emphasized by the fact that 25% of all construction fatalities relate to the unsafe 

proximity of ground workers and equipment [69]. 

To more concretely understand worker behavior and activities for improving the 

understanding of construction site operations, it is necessary to analyze observations of 

construction work in progress. For example, one way of improving current work practices 
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is by observing work tasks and generating manual evaluations. This practice is commonly 

known as ‘work sampling’ [70][71][72]. Any technology that can reliably, accurately, 

and automatically record the location of construction resources for work sampling could 

significantly simplify previously conducted manual assessments and improve confidence 

in the measurements. Likewise, technological systems that track project critical resources 

(e.g., people, equipment, material) and provide information on resource utilization can 

enhance current work practices. Such systems are popular in robotics and 

telecommunications by the name of context aware systems. The existence of a context 

aware system in construction that tracks the location of construction resources, and 

identifies and measures the status of work tasks, would improve project performance 

[73][74]. 

Wireless, non-destructive, and reflector-less sensor technologies applied to 

construction have been identified as key breakthroughs [65] for both construction 

practitioners and researchers in terms of reducing non-value-added activities, responding 

quickly to safety hazards, and automating and rapidly generating as-built and project 

documentation. In both cases, technological adoption is lagging due to uncertain benefits. 

Further investigation and control is needed to improve on these fronts. 

This chapter presents research findings on the evaluation of a commercially-

available Ultra Wideband (UWB) system, which is a radio-frequency based real-time 

location tracking technology, in several harsh construction environments. The error rate 

of the real-time location tracking technology is measured and evaluated. Results of 

experimental field validation studies are presented, along with technology application 

scenarios analyzing the field data. 

The goal of this chapter is to evaluate the capabilities of a commercially-available 

Ultra Wideband (UWB) system to record work tasks that occur frequently on 

construction and infrastructure sites. The first objective is to measure the performance of 

the real-time tracking technology for mobile resources in realistic job sites. The second 

objective is to illustrate work tasks that would benefit from such real-time location data. 

Both research objectives include technology performance testing in live construction 

environments. The environments were a large and relatively flat lay down yard for 
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handling large pieces of steel material and a construction pit that was classified as a 

confined space by construction safety professionals. Both had multiple workers, pieces of 

equipment, material, and other obstructions present at the time of the experiments. 

Typical scenarios that were observed included heavy construction equipment operating in 

close proximity to workers. The location measurement error rate of UWB technology in 

these environments is computed, while the utility of UWB technology is discussed and 

brought into context to existing best work practices with regards to a specific safety or 

productivity task. 

Since extended UWB performance evaluation in the various construction 

environments has not been performed in previous research, the particular scope of the 

remainder of this paper is to explore and test the technical feasibility of operating the 

UWB system in large-scale open construction environments. This paper does not address 

the social, legal, or behavioral impacts on workers using UWB technology, the sensor 

node layout and its effect on measurements, nor the comparison of commercially-

available UWB systems. The following sections present the methodology, experiments, 

and results of performance measurements of tracking the real-time location of assets 

(workers, equipment, material), in open (lay down yard) and dense (object cluttered and 

confined spaces) construction environments. Demonstration of the UWB signal for safety 

metrics and work sampling follows. 

4.2 Remote Construction Resource Tracking 

Arguments in favor of using automated remote tracking technology in 

construction are to increase tracking efficiency, to reduce errors caused by human 

transcription, and to reduce labor costs. A variety of sensors and sensing technologies 

with automated tracking capabilities are available for use in construction and 

infrastructure projects [59]. Selection of one particular technology depends on the 

application, the line-of-sight (LOS) access between sensors and sensed objects, the 

required signal strength, the data provided, and the calibration requirements. Moreover, 

the prevailing legal framework regarding the permitted bandwidth and associated 

availability, and the implementation costs associated with each technology add further 
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constraints [18][75][76][77]. These characteristics must be weighed against the benefits 

provided. 

Many existing technologies for localization and tracking fall within the broader 

category known as sensor networks (SNs) or wireless sensor networks (WSNs). Sensor 

networks consist of a collection of sensing nodes used to compute position from location-

based measurements via triangulation. When a resource is tagged with an electronic tag 

capable of generating the necessary signals, a sensor network provides location 

information of the tagged resource. The three predominant location-based variables of a 

wirelessly transmitted signal are the received-signal-strength indicator (RSSI), the angle-

of-arrival (AoA), the time-of-arrival (ToA), and the time-distance-of-arrival (TDoA). 

Given measurements of one of these variables by a collection of distributed sensor nodes, 

triangulation leads to estimates of the associated signal source position. 

In RSSI models, the effective signal propagation loss is calculated based on the 

power of received signals at the nodes. Several theoretical and empirical models are 

implemented to translate this loss into distance [55][56][57][78]. However, the 

disadvantage of this technique is that convergence from data collection to information 

may take time, which leads to post real-time positioning [79]. 

In AoA models, sensor nodes estimate the angle direction from which the signals 

originate. Based on simple geometric relationships it calculates the position of the nodes. 

Studies show that high accuracy can be achieved by several advanced approaches 

[80][81]. Implementation of an AoA-based sensor network requires antenna arrays with 

directional antennae for triangulation. Deployment of the antennae for complete coverage 

can be costly for many temporary projects and for object cluttered environments, such as 

those found in indoor construction environments [82][83]. 

In ToA and TDoA models, the propagation time of a signal is translated directly 

into distance if the propagation speed is known. The most popular localization system 

using ToA techniques is Global Positioning Systems (GPS), which relies on 

communication with Earth orbiting satellites for triangulation. Cost and size make high 

precision GPS prohibitive for tracking every asset on a construction site [55][56][59][60]. 

An alternative emerging TDoA technology is active RFID, which employs an on-board 
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power source for the signaling electronics, together with locally installed antennae. One 

form of active RFID is Ultra Wideband RFID, which was initially developed for military 

use in the 1960s. FCC approval led to UWB being explored for monitoring of civil 

applications [84][85][86], including construction in 2007 [76]. 

Several case studies exist in construction applications that describe the successful 

use or combination of more than one of these principles in association of technology such 

as GPS, RFID, bar codes, laser scanning, and ultrasound. Other researchers experimented 

successfully fusing active RFID and GPS technology to predict the location of metal pipe 

spools and other industrial construction assets[60][87]. Passive RFID technology has 

been tested to track construction assets in a high-rise renovation project [88]. Others 

focused on radio frequency in combination with ultrasound signals in a wireless sensor 

network [89]. 

Alternative (non-sensor networked) tracking technologies include Robotic Total 

Station (RTS) and vision-based technologies. An RTS can only track single entities, thus 

its utility is limited to specific scenarios. Tracking construction resources using vision 

cameras can make work sampling more objective by automatically recording and 

reviewing the performance of selected work tasks. Although recent progress has been 

made in automated vision data processing [90][91][92][93], fully automated vision 

tracking of multiple resources in dynamic environments is far from being solved. 

Although any of the previously offered tracking principles and their associated 

data gathering devices could be selected to monitor the trajectories of construction 

resources, few studies have focused on evaluating technology that is capable of 

simultaneously monitoring multiple, mobile resources at high data collection rates. To be 

of interest to the construction industry, the tracking technology should meet as many of 

the criteria listed as follows: 

 

• Cost and maintenance: Low implementation and maintenance cost, while rugged 

enough to withstand a harsh environment and project lengths of up to several 

years; 
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• Device form factor: Small enough to fit on any asset (as needed) without 

interrupting the completion of work objectives; 

• Scalability: Robust in a variety of site layouts (open, closed, and/or cluttered 

space(s), and small to large spaces); 

• Reliability: Capable of accurately and precisely recording the activities that are 

associated to monitored work tasks; 

• Data update rate: High data frequency provided in real-time (greater or equal 1 

Hz); and 

• Social impact: Less invasive technology, but providing highest possible safety 

and security standards for all project stakeholders while at work (in particular 

workers that face risks directly). 

 

Existing UWB research in construction applications has focused on evaluating 

real-time resource location tracking of workers, equipment, and materials in outdoor and 

indoor environments [18][76][82][83] and first responder tracking applications [77]. 

Recent research has shown the use of UWB in construction potentially offers a solution 

to the aforementioned requirements. Compared to other technologies like RFID or 

ultrasound, UWB has shown to possess unique advantages including: longer range, 

higher measurement rate, improved measurement accuracy, and immunity to interference 

from rain, fog, or clutter. This study focuses on the performance capabilities of UWB in 

real-world settings while also demonstrating the operations analysis possible with UWB 

track signals from multiple project entities. 

4.3 Test-bed of Evaluating UWB tracking technology 

This research utilized a commercially-available UWB localization system 

consisting of a central processing unit, called the hub, which triangulates the positions of 

incoming Time-Distance-of-Arrival (TDoA) streams from multiple UWB receivers 

deployed in the construction environment. The UWB signal receivers connect to the hub 

via shielded CAT5e cables. The TDoA streams originate from actively signaling UWB 

tags, which are attached to construction resources of interest (worker, equipment, 

material). In addition, the UWB system requires the placement of a static reference tag in 
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the scene to improve the position measurements of UWB tags. A typical UWB setup and 

installation with tags on construction assets, including workers, equipment, and   

materials, is shown in Figure 6. 

 

 

Figure 6  Triangulation of UWB tags using UWB receivers that overlap the 

coverage area/space and application to construction assets (yard dog and 

construction worker) inside a lay down yard. 

The accuracy of the distance measurements will depend on the geometric 

configuration of the reference point and the receivers deployed in the field. Best practices 

were followed to ensure a functional setup. The methodology to evaluate the performance 

of UWB technology in live construction environments included the following tasks: 

 

1. Coordinate field trial with field personnel and construction schedule prior to test 

day and identify test location. 

2. Performa laser scan of test site to capture existing as-built conditions. 

3. Install mid-gain (30° field-of-view) or high gain (60° field-of-view) UWB 

receivers to cover maximum observation space, while maintaining maximum 

distance from each other, and facing as few obstructions as possible (at least three 

receiver TDoA measurements are needed in one plane to measure two-

dimensional (2D) tag locations readings, at least 4 receivers are needed at 

different elevations to measure three-dimensional (3D location readings). 
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4. Utilize a total station to measure the receiver locations and register them in the 

UWB hub. Define the RTS and UWB coordinate systems with reference to a 

common frame. 

5. Attach 1 Hz, 15 Hz, 30 Hz, or 60 Hz UWB tags on assets, e.g., workers, 

equipment, and materials. Choose higher frequency tags for highly dynamic assets, 

e.g., workers. Document the material, the piece of equipment, or the worker's 

trade and work task that each tag is attached to. 

6. Utilize a Robotic Total Station (RTS) to measure the ground truth location of one 

asset. 

7. Gather real-time UWB and RTS location data. 

8. Visualize the information in real-time using a 2D user interface. 

9. Use data in post-processing analysis, e.g., for error and proximity analysis. 

 

The first two tasks are part of the ‘preparation phase’, which should occur in 

advance of the actual experiment. Tasks three to five describe the ‘installation and 

registration phase’, which should occur immediately prior to the experiment. Tasks six 

and seven are the ‘data collection phase,’ which is the experiment proper. Tasks eight and 

nine form the ‘data visualization and analysis phase’. As one focus of this paper is the 

performance evaluation of a commercially available UWB system in live construction 

environments, emphasis in the next section is on explaining of the steps associated to task 

nine. 

4.4 Evaluation of Ultra Wideband Data Error 

This section describes the procedure followed to assess UWB tracking 

performance. The default data output stream provided by the UWB system consists of 

data packets of three types which are differentiated by their packet headers: position data 

associated to a sensed tag, status information regarding the receivers, and reference tag 

information. The data packet associated to tag position data is of the form: 

<Data Header>,<TagID>,<X>,<Y>,<Z>,<Battery Power>,<Timestamp>,<Unit>,<DQI>. 
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Each position data packet represents a triangulated position from unique tag 

identification (ID). In addition to the tag identification number and the time-stamped 

spatial data(x, y, z, t) for the UWB tag, the UWB system (a Sapphire DART, Model 

H651) collects additional status information regarding the tag. Status information 

includes the battery power level, a message unit, and a Data Quality Indicator (DQI). 

Sample data and their corresponding paths are illustrated in Figure 7. 

 

Figure 7  Sample and format of raw UWB data. 

The data header “T” of each row means that two-dimensional data are collected. 

The time stamp is in the UNIX timestamp format. The tag, whose ID is 00005856, has 



- 38 - 

 

variable X and Y coordinates, and a fixed Z coordinate. The battery level is 13 out of 14 

(14 means full). In general, low DQI value means higher data quality. 

Previous experiments have shown that the data quality indicator provides values 

that are insufficient when estimating the error rate of a UWB system in construction 

environments [18][82][83]; they do not correlate to error. For this reason, a 

commercially-available 1” construction Robotic Total Station (RTS) was selected to 

provide real-time ground truth location data. A 360° (mini-) prism was mounted on a 

worker's helmet, which was also tagged with UWB tags. The relative height distance 

between the center of the RTS prism and UWB tag was less than 3 cm and subsequently 

insignificant for practical tracking applications in a construction environment. Both RTS 

and UWB systems record real-time spatial and temporal data to prism and tags, 

respectively. Since the UWB signal are noisy with occasional outliers, the UWB signal 

was filtered with a Robust Kalman filter [94]. In addition to signal smoothing, the robust 

Kalman filter rejects outlier measurements so that the outliers do not corrupt the filtered 

signal estimate. Figure 8 depicts a UWB track signal filtered by the Robust Kalman filter. 

Once the temporal correspondence between the two data series is established, the UWB is 

interpolated and the measurement error is computed with RTS data as the reference. 

 

Figure 8  Raw UWB data (left) and sample of Robust Kalman Filtered UWB data 

(right). 
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4.4.1 Signal Synchronization 

The UWB system was set up in the same Cartesian coordinate system as the RTS, 

but operated at different measurement rates, thus comparison of the two signals required 

signal synchronization. The procedure first consists of resampling the two signals to the 

same frequency. The frequency chosen was that of the UWB sensor since it required up-

sampling of the RTS signal (and, consequently, no loss of information). Time 

synchronization consisted of maximizing the cross-correlation, where the cross-

correlation is a measure of the similarity between two signals as a function of a time-shift 

applied to one of the signals. When the features of both data series (UWB and RTS) 

match, the cross-correlation is maximized at the time-shift aligning the two signals. 

Because the cross-correlation can be sensitive to missing or incorrect signal segments, the 

time synchronizing shifts were computed for several signal subsets. 

The two data series from both tracking technologies were divided into several 

signals, each with different time intervals. The cross-correlation and maximizing time-

shift were computed for each interval. The cross-correlation computation process for one 

UWB and RTS interval is: 
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where the C(τj) denotes the similarity between two data streams at time lag τj
*, while R[τ]  

and U[t]  denote the RTS and UWB data respectively. After the time lag, maximizing the 

cross-correlation for each data subset is found, the average time lag τj is implemented as 

the synchronization time lag for the complete data series. 

4.4.2 Error Analysis 

Once synchronized to the ground truth signal (here, the RTS signal), the UWB 

measurement error is computable through comparison with the ground truth data. Rather 

than compare the UWB signal directly to the resampled RTS signal, the method from [44] 

is used to generate the signal error. In this method, the error associated to a given ground 

truth location measurement is computed through a weighted average of several UWB 

measurements (recall that the UWB tag operates at a higher frequency). Given the i-th 

RTS measurement occurring at time ti, define ti−1/2 to be the time halfway between ti and 
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ti−1, and similarly define ti+1/2. The index set J(i) consists of all indices of UWB 

measurements occurring between ti−1/2 and ti+1/2, e.g., J(i)={j|t j in [t i−1/2, ti+1/2]} . All of the 

measurements associated to the index set are valid measurements to compare against the 

i-th RTS measurement. Rather than compare one of the UWB measurements to arrive at 

the error, a weighted average of the UWB errors of elements in the associated index set is 

computed, 
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At the time ti, the RTS data can be directly retrieved from the records, while the 

error of UWB measurement is computed by the weighted average of the errors between 

the UWB data found within one RTS data collection period ΔT to the RTS data at the 

time ti. The weight factor Wi,j is a function of time, with a greater contribution to the 

average error when the UWB data are recorded at the time closer to ti. Figure 9 depicts 

the error computation with the weight factors represented by circles of differing radii. 

 

Figure 9  Schematic or error computation: UWB location track signal and 

visualization of comparison with RTS signal. 
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4.5 Experiment and Results 

This section consists of four major subsections. The first details the experiments 

performed and their overall characteristics. The second collects the experimental data and 

examines the expected error rates of UWB when deployed for real-time tracking. The last 

two demonstrate practical benefits of having the real-time UWB track data for analysis. 

In particular, the coordinated activities of workers moving a load is assessed from a 

safety perspective, and the time trajectories of a worker are analyzed to demonstrate 

automated work sampling. 

4.5.1 Description of the Experimental Environments 

There were a total of three experimental environments, one controlled and two 

real-world construction areas. The controlled area was an open field. The two 

construction areas were located on a large industrial job site (see Figure 10). They were a 

construction pit (classified as a confined space by construction safety professionals) and a 

lay down yard for temporarily placing steel materials. To understand resource flow 

visually and connect the trajectories to their surrounding environment, a commercially-

available laser scanner gathered the three-dimensional (3D) point cloud and a camera 

documented the as-built conditions prior to the experiments. The focus of data capturing 

was on recording resource location from naturally occurring work tasks in harsh (i.e., 

resource rich, spatially challenging, object cluttered, metal) construction environments. 

Thus, the experiments lasted several days to make the workforce familiar with the 

presence of UWB, RTS, and laser scanning technology. 

 

Figure 10  Layout of experiments: construction pit (left), lay down yard (middle), 

and UWB tag and RTS prism on helmet (right). 
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Each resource entering the work zone was tagged. Here, a resource refers to either 

a worker, a piece of equipment, or material. Available UWB tags varied from low to high 

frequency (1 Hz to 60 Hz) and from low to high power (5mW to 1W). The decision on 

which tag type was applied to each of the resources was made based on the resource, its 

velocity, and its operational environment. For example, a badge type UWB tag was 

attached to steel material as the form factor (length/width/height=7.4/4.2/0.7 cm) and 

high power (1W) were best suited for attachment to the metal material. High frequency 

tags were (15/30/60 Hz) were attached to the helmets of workers as their movements 

required more frequent location monitoring. In some cases, multiple tags were attached to 

a single resource. All UWB tag locations were simultaneously tracked at update rates of 

at least 1 Hz. A 1 Hz tag was designated to be the static reference tag for the UWB 

receivers. As previously described, a commercial 1” Robotic Total Station (RTS) 

measured the ground truth (x, y, z, and timestamp) of UWB tag(s) using a 360° mini-

reflector-prism that was installed on the helmet of one worker or on a prism rod (see 

Figure 10). 

Open Field 

In order to provide a more complete picture of the tracking performance 

characteristics associated to UWB as a function of the site diameter, several controlled 

experiments were conducted in an open field.  Four UWB receivers were placed in a 

square configuration.  Within the primary sensing zone (where there were at least three 

receivers within the field-of-view), a person equipped with UWB tags and an RTS prism 

(all helmet mounted), was tasked to walk in a rectangular pattern.  The same experiment 

was repeated for four UWB receiver diameters (20, 40, 60, and 70 meters). The trajectory 

of the person was scaled accordingly with the receiver configuration diameter (the 

diameter is the maximum pair wise distance between two installed receivers when 

considering all possible receiver pairings).  Figure 11 depicts the square UWB receiver 

layout and the location of the reference tag.  Unlike industrial site environments, the open 

field provides the ideal environment for UWB sensing as there were no obstructions. 
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Figure 11  Open field receiver layout. 

Construction Pit 

This experiment was conducted in a confined work area of approximately 2400m2.  

The registered 3D point cloud of the as-built conditions at the time of the experiment can 

be seen in Figure 12. The red triangles represent the location and orientation of the UWB 

receivers (short edges indicate the direction), while the green circle represents the 

location of the static reference tag.  UWB trajectory data for a few of the tracked 

resources are overlaid in the image.  Of note, two access points (ramps for equipment and 

workers) allowed entry into the confined space. The south side of the pit was specified as 

a confined space (a 20 meter long, three meter wide, and five meter high space, with 

unstable walls and a repose angle of greater than 45o). 

The work crew consisted of several workers (six carpenters, ten rod busters, eight 

form workers, 2 foremen, and one crane operator) and equipment (one mobile crane, one 

tractor and two material hauling trailers). Although location data of the entire crew were 

collected, the following observations include (for illustration purposes) data to one 

carpenter erecting formwork, two rod busters tying rebar, one foreman supervising, and 

crane operator hoisting materials with the crane. The work task of the day was to erect 

formwork and rebar to all sides of a four meter tall rectangular reinforced concrete 

structure (close to the center of the excavated pit).   Although the work activities and 

locations of resources were recorded for the entire work day, only a sample (43 minutes 
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and 22 seconds) of the entire UWB data set will be analyzed. The data sample includes 

events linked to the crane unloading rebar into the pit. 

 

Figure 12  Plan view of construction pit: UWB resource trajectory data mapped on 

the registered range point cloud from a 3D laser scanner. 

Lay Down Yard   

The second field trial environment included monitoring resource locations in a 

large lay down yard which had significant quantities of metal steel pipe and girder objects 

present. The size of the lay down yard and available UWB receivers limited the 

observation area to approximately 65,000 m2. The major material bays comprised mostly 

of custom fabricated steel pieces, which were well laid out for workers and equipment to 

move around. At the time of the experiment, equipment and ground workers had only one 

access point available to the yard and one tool and restroom area. Nine UWB receivers 
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were set up at the boundaries (fences) of the lay down yard. A reference tag (green circle) 

in the line-of-sight of all receivers was placed on a 2.5 m high pole overlooking all steel 

materials. The location of important control points such as material bays, fence, road, and 

other installments in the lay down area were recorded using the RTS. These 

measurements were used to develop an approximated plan view of the lay down yard.  

The plan view of the lay down yard, access gate, work and tool box areas, and other 

facilities, including the UWB receiver locations (red triangles) are illustrated in Figure 13. 

The dark areas are the material bays where material was frequently placed or picked up. 

A 34 minute subset of the data was elected for analysis. 

 

Figure 13  Lay down yard with overlaid sample of the UWB trajectory data of a 

yard dog (a construction vehicle to transport material). 

4.5.2 Tracking Performance Analysis of Ultra Wideband 

This section analyzes the error between the ground truth RTS signal and the UWB 

signal. We must first acknowledge that different tasks require different levels of accuracy.  
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For the tasks being examined here, high fidelity (on the order of centimeters or 

millimeters) is not necessary.  What is essential is that personnel utilizing the track data 

can effectively use it for analysis and operations purposes.  With this in mind, an opinion 

based worker survey was taken.  For materials discovery in large lay down yards, those 

surveyed identified the ability to “quickly locate materials within a two meter radii” 

would assist in the efficiency of their work.  This is consistent with other research 

indicating that meter accuracy is sufficient for the majority of work tasks [57][59][83]. 

Performance in the Construction Pit   

The track signals of a worker fitted with a 60 Hz UWB tag and the RTS prism are 

plotted in Figure 14(a). The observation period collected 603 synchronized samples for 

the 1 Hz tag and 2654 synchronized samples for the 60 Hz tag.  The average error of the 

1 Hz tag was 0.48 m for raw data and 0.41 m for the filtered data.  The average error of 

the 60 Hz tag was 0.36 m for raw data, and 0.34 m for the filtered data.  The low average 

error coupled with a standard deviation of 0.35m/0.20 m for 1 Hz/60 Hz, respectively, 

means that real-time location tracking utilizing UWB technology in similar construction 

environments is feasible. 

Performance in the Lay Down Yard   

The track signals of a worker fitted with 1 Hz and 60 Hz tags, and he RTS prism 

are plotted in Figure 14(b).   The observation period led to 1023 synchronized samples 

for the 1 Hz UWB tag and 4370 synchronized samples for the 60 Hz UWB tag.  The 

average error of the 1 Hz tag was 1.82 m for raw data, and 1.26 m for the filtered data.  

The average error of the 60 Hz tag was 1.64 m for raw data, and 1.23 m for the filtered 

data.  In this experiment, the larger covered area required to separate the UWB receiver 

distances to the upper limits of the suggested receiver configurations for some of the 

receiver pairings.  Given that the error rates were within the suggested range for locating 

materials, and low standard deviations of 0.72m/0.66 m for 1 Hz/60 Hz, respectively, 

UWB localization technology in large, open, outdoor areas is feasible. Detailed results 

are shown in Table 3 and Table 4. 
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Figure 14  Synchronized UWB and RTS trajectories: (a) construction pit, and (b) 

lay down yard. 
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Table 3  Statistical results of experiment in construction pit. 

Summary of Construction Pit Experiment 
UWB data collected (1 Hz) [No.] 620 UWB data points collected (60 Hz) [No.] 39,275 

Duration [mm:ss] 14:25 RTS data points collected [No.] 2,724 

Synchronized data pairs (1 Hz) [No.] 603 Synchronized data pairs (60 Hz) [No.] 2,654 

Raw Data Filtered Data 
Average Error (1Hz) [m] 0.48 Average Error (1Hz) [m] 0.41 

Standard Deviation (1 Hz) [m] 0.37 Standard Deviation (1 Hz) [m] 0.35 

Average Error (60 Hz) [m] 0.36 Average Error (60 Hz) [m] 0.34 

Standard Deviation (60 Hz) [m] 0.21 Standard Deviation (60 Hz) [m] 0.20 

 

Table 4  Statistical results of experiment in lay down yard. 

Summary of Construction Lay Down Yard 
UWB data collected (1 Hz) [No.] 1,287 UWB data points collected (60 Hz) [No.] 64,128 

Duration [mm:ss] 31:14 RTS data points collected [No.] 4,919 

Synchronized data pairs (1 Hz) [No.] 1,023 Synchronized data pairs (60 Hz) [No.] 4,370 

Raw Data Filtered Data 
Average Error (1Hz) [m] 1.82 Average Error (1Hz) [m] 1.26 

Standard Deviation (1 Hz) [m] 1.67 Standard Deviation (1 Hz) [m] 0.72 

Average Error (60 Hz) [m] 1.64 Average Error (60 Hz) [m] 1.23 

Standard Deviation (60 Hz) [m] 1.23 Standard Deviation (60 Hz) [m] 0.66 

 

Discussion of Ultra Wideband Tracking Errors 

The data from the open field experiments and two site experiments were collected 

and plotted in the form of several error box-plots and organized by increasing diameter 

(see Figure 15).  The box diagram shows the lower quartile, median and upper quartile of 

the computed tracking errors.  The lowest and highest errors within a factor of 1.5 of the 

inter-quartile range lie are demarcated by the horizontal bars below and above the box.  

Points that have errors beyond the quartiles by 1.5 of the inter-quartile range are 

considered as outliers, which are demarcated by “+” symbols. Most of the outliers are 

caused by the fact that the radio frequency signals generated by the UWB tags were 

blocked by the obstructions which are omnipresent on construction sites. In this case, the 

UWB tag cannot be detected by sufficient number of receivers (at least 3 receivers are 
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required to collect 2D data and 4 receivers are required to collect 3D data), which 

ultimately results in discrete positioning records with high errors.  

To be noticed, even though Figure 15 indicates a rising trend of the tracking 

errors when the UWB coverage diameter increases, the error distribution with respect to 

the distance between UWB receivers remains uncertain. As the tracking errors are 

represented by the quadratic mean (Root Mean Square, RMS) instead of directional 

vectors, they only have positive values and may not follow a common and standard 

distribution. Study on understanding the correlations between tracking errors and 

coverage distance is not within the scope of this dissertation and can be explored in the 

future research.  

Figure 15 also demonstrates that the distributions of errors are skewed in some 

cases (when UWB coverage diameter is 60 m, 70 m and 270 m). This is caused by the 

layout of the UWB receivers. The UWB receivers are installed at the beginning of each 

experiment and they must not be moved during the data collection phase, which means 

each experiment has a unique and fixed layout. During the data collection phase, if the 

UWB tags are always detected by sufficient number of receivers, the average and 

variance of tracking errors are small, and the error distribution will have a positive skew 

(UWB coverage diameter is 60 m and 70 m in Figure 15). Otherwise if the UWB tags are 

frequently outside the view of receivers, the tracking error increases and the error 

distribution will have a negative skew (UWB coverage diameter is 270 m in Figure 15). 

In summary, the layout of the UWB receivers has to be designed properly to ensure 

continuous communications between UWB tags and receivers.   
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Figure 15  Error box plots of UWB signal as UWB configuration diameter increases. 

Up to the 70 m diameter measured, the error rates are well within the tolerances 

expected by workers for the majority of their work tasks.  Note further, that the 

construction pit scenario (diameter of 65 m) lies between two best-case, controlled 

scenarios (45 m and 70 m).  Comparison of the error rates shows that performance does 

not degrade significantly, thus construction environments similar to the construction pit 

should lead to similar performance.  When the diameter increases to 270 m, as in the case 

of the lay down yard, the error rate grows, however it is low enough to perform materials 

search.  Importantly, for the 270 m distance setup 99.9% of reported UWB data lies 

within four meters of associated the RTS measurement, while over 75% of the reported 

UWB data lies within two meters. 

4.5.3 Safety Analysis in the Construction Pit 

Since 25% of all construction fatalities relate to too close proximity of pedestrian 

workers to equipment [19][69], a particular emphasis in the experiment was to study the 

interaction of workers with equipment.  To demonstrate how UWB tracking could assist, 
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consider one of the hoisting operations.  The last of the three hoists (“A”, “B”, and “C”) 

is associated with the drop-off zone labeled by a “C” in Figure 12.  The rebar load was 

attached to the hook of the mobile crane at “C1”, in Figure 16.  The crane and its attached 

load started swinging toward the drop location “C3” at timestamp 108 (seconds) and 

arrived at timestamp 267 (seconds).  Detaching the load from the crane hook took the 

worker (5CD0) 224 seconds before the crane swung back to its original load location 

“C1”. This one material delivery cycle lasted approximately 10 minutes.  

 

Figure 16  In-depth look at worker-crane interaction (distances) during a material 

host. 

A spatio-temporal analysis of the worker assisting the process provides clues into 

the worker’s behavior.  For safety purposes, the worker should maintain a safe distance 

from the moving load until it has been safely lowered.  While the crane boom was 

swinging, the worker (5CD0) originally occupied the drop location “C”. As the crane was 

swinging toward him, the worker-to-crane hook distance decreased continuously from 

over 30 meters to 13.4 meters.  Being warned by the horn of the crane and realizing the 

load was getting closer to the worker, he stepped outside the potential path of the crane 

load and moved temporarily to “C4”.  As shown in Figure 16, a safe distance of about 14 
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meters was maintained between the worker and the crane hook. As soon as the crane 

stopped swinging, the worker returned to unhook the load from the crane. The worker-to-

crane hook distance then dropped to less than three meters. After completion, the crane 

swung back using path “C2” and the worker moved to another work location “C5”. 

4.5.4 Automated Productivity Analysis and Work Sampling 

Another application example demonstrating the utility of UWB location tracking 

data are for automated productivity analysis.  Based on pre-defined work and wait areas, 

location tracking data can be used to analyze the worker’s activities.  The sampling of 

work, travel, and wait time on a more detailed level and over longer temporal durations 

becomes feasible when it is automated.  Typically, the data are obtained manually, which 

places an upper limit on the frequency and duration of data collected, while also placing 

limits on accuracy given the subjective nature of the measurements [64][96]. 

 

Figure 17  Job site zone depictions for automated work sampling analysis. 

Ten minutes of trajectory data of a worker (0BC6) are illustrated in Figure 17.  

The graphs in Figure 18 show the traveling speed of a worker and his distance to two 

work related zones and one wait zone.  The dashed lines represent thresholds below 

which the worker is presumed to be not moving in the case of a velocity threshold, or 
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within the confines of a defined zone in the case of a distance threshold.  Assuming a 

worker traverses at a velocity similar to the walking speed of pedestrians which is about 

one meter per second [97], similar or greater speeds can account for changing the work 

position, while slower speeds (in combination with absolute location position over time) 

imply a constant work position.  Thus, a speed threshold of 0.5 m/s is defined.  For 

work/wait zones, a radius of 3 m defines the work area given a coordinate location for the 

zone. 

 

Figure 18  Automated work sampling for a worker based on UWB track signal: 

worker traveling speed and distances to work/wait zones. 

In this example, the worker started in “Work Zone 1” and traveled to “Work Zone 

2”. After staying in “Work Zone 1” for about 170 seconds, the worker moved within 30 

seconds to the “Waiting Zone”, where he spent more than 200 seconds. The worker then 

returned to “Work Zone 2” within 30 seconds and remained there for 130 seconds before 

the observation period ended.  The pie-chart in Figure 19 illustrates the results of 

automated work sampling as determined automatically from the data in Figure 18. 

Even with complete information regarding the work process and product such as 

would be provided in a building information model [98], location based monitoring of 
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construction work activities can only be conclusive concerning the amount of time spent 

in a given zone. Additional inspection is required to estimate the work completed, and 

thereby the value added. Combining automated work sampling with additional (possibly 

occasional) inspection would enable productivity analysis [64][66][70]. 

 

Figure 19  Automated work sampling for a worker based on UWB track signal: 

activity decomposition based on pre-defined work zones. 

4.6 Conclusion 

Rapid technological advances have made it possible to implement Ultra 

Wideband (UWB) real-time localization and tracking systems in construction 

applications.  While possible, the capabilities and benefits of UWB deployment require 

further study, which is the aim of this investigation.  This paper demonstrated that, in 

field trials, a commercially-available UWB system is able to provide real-time location 

data of construction resources thereby resolving the capability question. Validation 

occurred through performance measurements utilizing a Robotic Total Station (RTS) for 

ground truth measurements.   

Aside from being able to collect reliable spatio-temporal data from job sites, it is 

also highly imperative to understand the benefits of promising real-time location tracking 

technology so as to increase adoption and advance production control procedures in the 

construction industry.  Thus, the field data were analyzed from safety and productivity 
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perspectives.  The safety application demonstrates the benefits of applying location 

tracking data for better documenting, analyzing, understanding, and correcting best safety 

practices as they are executed in the field. In this particular case, successfully computing 

the distance between two dynamic construction resources (worker and crane hook) allows 

the analysis for too-close proximity of resources, and eventually preventing struck-by 

incidents [19]. The productivity application exposed the benefit of applying location 

tracking data to automated conventional work sampling techniques.  Automated work 

sampling, however, may demand more details than the location tracking data provides; 

for example, is the worker carrying a tool (productive task) or not (unproductive task)?  

Automated location tracking data and work sampling has tremendous utility for 

productivity analysis of long term work tasks involving multiple resources that possibly 

traverse the job site.   

In summary, UWB technology in large open space construction environments 

achieves sufficient accuracy as to be practical for many open environment construction 

application areas.  Overall, the presented work showed that real-time location tracking 

has potential construction applications in assisting the safety and productivity 

management of job sites and other areas requiring monitoring and control.  Further, 

construction engineering and management concepts would benefit from the real-time 

location tracking data that UWB, and other, technologies provide. 
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CHAPTER V 

OPERATOR VISIBILITY AND EQUIPMENT BLIND SPACE 

ANALYSIS 

Many construction fatalities involving cranes and ground workers are caused by contact 

with objects and equipment, in particular struck-by crane loads and parts. This chapter 

presents an approach that detects and measures the possible blind spaces to crane 

operators. This approach includes two steps: The first step is to design an algorithm that 

can detect the on-site obstructions from as-built spatial data collected with a laser 

scanner; the second step is to optimize and reduce the blind spaces by alternating the 

crane location.   

5.1 Introduction 

A crane is an important hoisting resource in construction operations making it a 

key factor for enabling mobility of project resources. Unfortunately cranes are also often 

associated to accidents that lead to injuries or even fatalities. From 1992 to 2006, 307 

crane accidents in the private construction industry sector caused the death of 323 

workers [99]. In 2006, cranes contributed both as primary and secondary source of 

injuries to 72 of the fatal occupational injuries in the United States. This number is 

slightly lower than the average number of 78 fatalities per year between 2003 and 2005. 

61% of these fatalities were categorized as “contact with objects or equipment” [100].  In 

2012, ENR published results to a case study stating that ‘worker contact’ was the cause of 

accidents in 46.7% of over 700 investigated crane-related accidents. As many of these 

statistics indicate, safe crane operation requires well-coordinated activity planning 

including all related processes and resources, such as involving the workers that rig 

material and the equipment [101]. 

Due to the dynamic and complex nature of the building process, multiple of these 

resources perform on construction projects simultaneously. The interaction of these 

typically requires sophisticated construction activity planning [102]. As hoisting capacity 
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and availability often determines how quickly material resources can be moved or placed, 

the selection and placement of a tower crane on a job site is one of the first and most 

important tasks for field engineers in optimizing job sites [103]. 

Although safety of tower crane operation has become more important in recent 

years due to some high profile accidents, operator visibility is typically not a main 

criterion for selecting its position on the construction site. Typically, cranes are mobilized 

on sites based on productivity concerns. Another factor for planning a safe location of a 

crane is the input of an operator’s experience, for example, how well an operator can see 

operations at lower levels.  

In fact, as crane cabins are elevated at great height, it often prevents operators to 

observe the ground level activities in three dimensions (3D). Thus, any object on the 

ground, whether static or dynamic, is often experienced as a flat (two dimensional) object. 

This is the main reason why feedback from ground workers back to the crane operator is 

needed. Communicating the perspective or field-of-view (FOV) of ground workers give 

tower crane operators additional information, especially when obstructions such as as-

built structures limit a crane operator’s FOV.  

As construction sites become increasingly congested as the project progresses, 

FOV limitations can become severe limitations for crane operators. These limitations 

often result in lower safety and productivity performance.  

The most effective method for communication between crane operators and 

ground level workers to date has been hand or radio signaling. Few cranes possess a 

video camera system in the crane trolley that increases the visibility of ground level 

operations underneath a load. Recent research studies have made quite some progress on 

developing visualization and simulation tools that provide safer crane operation 

[104][105]. However, they do not utilize the potential of as-built information and real-

time location tracking of ground resources for planning safe crane operation. In addition, 

cranes employ other safety technologies which have existed for years. These warn crane 

operators from collision with other cranes or parts, or heavy loads reaching out too far. 

Although the application of such safety systems help improving the operator’s 

perception and potentially enable real-time measurement and feedback from other crane 
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components (Rosenfeld 1995), crane operator visibility remains very limited. Being not 

seen by a crane operator and being struck-by loads is one of the most severe threats to 

workforce on the ground, leading to death, injury, and/or collateral damage [101]. 

Many of the recommendations issued by the construction industry, equipment 

manufacturers, or regulators indicate that safer crane performance could be achieved by 

enhancing the training of crane operators [106] and by increasing their situational 

awareness [107]. Another suggestion was to advance site planning to avoid potential risks 

related to crane operation, mobilization, and demobilization [108]. 

One key factor – identified by many researchers and practitioners – that impacts 

operational safety of cranes is to increase the operator’s situational awareness. The initial 

basis for optimizing the visibility of a crane operator is to plan a safe site layout and 

equipment location. Multiple alternatives typically exist to determine the most efficient 

and productive position of a tower crane. However, setting up a safe location of a crane 

from construction drawings is often a challenging and time consuming task. This is in 

particular true for setting up a crane in existing built environments, including 

construction sites that have already progressed. In addition to available spatial 

information of the construction space, resource flow of material routes, and worker 

trajectories should be taken into account during planning of safe construction site layouts. 

Most recently, the American Society of Mechanical Engineers has set up a 

committee (ASME P30) for the development and maintenance of a new standard that 

supports lift planning activities of cranes and other lifting support equipment [101]. It has 

recognized that the operation of a tower crane is constrained to the environment it 

operates in [108]. 

One of the elements is the construction space itself. It can be classified into three 

categories: resource space, topology space, and process space [109]. The resource space 

is defined as the space that workers, equipment, and materials occupy to perform their 

construction tasks. The topology space represents the built environment and site layout. 

The topology space is time-dependent and changes as a project evolves. The process 

space is related to any spatial requirements that are needed to perform a construction task. 

The process space thus includes potential hazardous spaces, such as blind spaces, 
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protected spaces, and post-processing spaces. The spatial constraints generated by 

construction spaces are always interdependent. 

An example of the spatial constraints is the blind spaces to the crane operators. 

Blind spaces are caused by objects that obstruct the operator’s FOV. This type of spatial 

constraint can be derived from the geometric dimensions of the respective objects that are 

present in the work environment. 

The blind spaces can then be projected to the process space such as the necessary 

working path that ground workers need to accomplish a work task. A crane load swinging 

directly above workers and/or inside blind spaces, for example, is considered an unsafe 

process. This paper aims to address the risks that limited situational awareness of tower 

crane operations cause. It presents a method to detect work spaces that are not in the FOV 

of crane operators, for example, as-built structures that obstruct the FOV and cause blind 

spaces at the work levels of a high-rise building under construction. Further results to 

studies are presented that map the location data of workers to the blind spaces. Lastly, an 

optimization of crane location is presented. 

5.2 Background 

5.2.1 Crane Safety in Construction 

Compared to mobile cranes, tower crane cabins mounted at height offer a wide 

field-of-view (FOV) and typically a nearly complete view of the entire site. This is in 

particular helpful for varieties of crane-related work activities such as rigging, loading, 

and unloading [110]. As past studies have shown, with the purpose of improving 

productivity and safety, cranes were suggested to be installed at locations where clear and 

non-obstructed line-of-sight (LOS) can be provided [111]. To date, selecting the location 

for a tower crane is often performed in manual trial-and-error analysis. Reach of the 

crane jib to cover the building envelope and other productivity factors play a key role in 

selecting a crane’s position.  

Existing researches utilized mathematical prescriptive models to evaluate the 

locations of a single crane in order to minimize the transportation cost of materials a 

crane moves on a project [112]. In contrast, a mixed-integer linear programming method 
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was used to optimize the location of a tower crane to improve the productivity and reduce 

the time it required to hoist material [113]. Another study developed a computerized 

model to optimize location of a group of cranes to balance its workload and minimize 

likelihood of conflicts [114]. 

Numerous studies have been conducted to ensure the safe operation of the tower 

cranes once their locations are determined. Although requirements and guidelines for safe 

crane operation exist [115], accident investigation reports often lack detail to the root 

cause(s) [116][117][118][119][106][120]. Thus, recent research has focused on a multi-

attribute decision making tool as it can be implemented to formalize the specific safety 

factors that relate to tower crane activity [121]. In their research, data from several case 

studies indicated that two project conditions remain at the top of the causes for crane-

related accidents: (1) obstructions that force blind lifts, and (2) human factors and 

operator performance. Although both accident causes are inherently different from each 

other, good understanding of the work environment and surrounding cranes is always 

necessary to further eliminate crane accidents [122]. 

A different study in the United Kingdom concluded similarly: A competent 

person must operate lifting equipment and should be familiar with work environment and 

processes [123]. Most of these studies concluded that safety in lifting operations can be 

improved through proper planning, training, and inspection. Safety, as an abstract 

concept, may not be quantifiable but could lend itself to a direct measuring of specific 

hazards so that it enables the comparison of risk levels on different sites [110]. 

In addition, reliable and rapid communication between crane operators and 

ground workers becomes crucial for project safety. Infrequent or inadequate 

communication between a crane operator and ground level personnel can significantly 

degrade a crane operator’s situational awareness and understanding of operations at lower 

work heights. Previous researches suggested several approaches to improve the 

situational awareness of tower crane operators. 3D interactive, animation, and 

visualization systems have been heavily used on projects that can provide the budget to 

simulate crane utilization and load erection sequences. These tools also assist in better 

understanding any related constructability issues. Simulation ahead of time and special 
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conflicts benefit site planning and decision making, as risks can be identified ahead of 

time [105][124][125]. 

Other research shows that image data from a video camera installed on a crane 

trolley observing the space underneath, can be transmitted to a crane cabin. The access of 

such live video streams can increase the crane operator’s visibility of operations that 

happen on the ground level [126][127]. Although the implementation of such cameras is 

beneficial and further limits previously discussed crane operator blind spots, some 

limitations to the use of such technology exist, for example, cameras mounted on the 

trolley generally do not provide good images when crane loads are large or swinging. The 

implementation of a video camera system can also be limited in situations with 

insufficient illumination as well as the lack of the visual depth perception. Besides, video 

streams cannot provide accurate and overall views of the lifted object in the context of 

the construction site settings. 

A tower crane navigation system has been developed and tested to assist a crane 

operator during blind lift [104]. This system uses a laser sensor to acquire mechanical 

data of a crane such as boom angle, slewing angle, and cable length. It also uses a video 

camera for capturing the vertical field-of-view of a load. The approach uses a BIM model 

to visualize the load in the surrounding building environment, which also enables the 

operator to navigate through the building model. However, this approach is not able to 

accurately locate, quantify and evaluate the blind spaces as they physically exist in the 

built or dynamic environment. A ground worker, for example, would not benefit from the 

approach because the position information of the ground worker and equipment is not 

gathered accordingly to the crane load location. In addition, the visualization system 

relies on a BIM that is hardly updated in the field. Although the overall integration of 

positioning and camera technology significantly improves the operation of maneuvering 

crane loads, it does not take blind spaces generated by temporal structures such as 

dumpsters, trailers, scaffolding, and ground equipment into consideration. 

5.2.2 Remote Sensing Technologies 

Limited research has been conducted on exploring how a construction site layout 

and progress influence a crane operators’ situational awareness. Approaches yet have to 
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be developed that allow rapid assessment and control of site safety conditions at the pre-

task planning or operational level [75]. In addition, pro-active safety that anticipates and 

tries to prevent blind spaces requires effective and efficient communication of visible and 

non-visible spaces to all project stakeholders, in particular (crane) equipment operators 

and pedestrian workers [69]. 

Various emerging remote sensing and ranging technologies can be utilized to 

assess the conditions of a construction site at the operational level. Laser detection and 

ranging (LADAR) technology, as an optical remote sensing technology, has been widely 

utilized for range measurement [128]. One of the major applications of the LADAR 

focuses on implementing the 3D as-designed and as-built information project 

performance control tasks including construction progress tracking [129], productivity 

tracking [130], construction quality assessment and quality control (QA/QC) [131][132] 

and construction safety and health monitoring [69]. 3D terrestrial laser scanning provides 

very high dense point cloud data which can benefit the rapid, detailed, and large-scale 

topographic mapping especially for large building construction sites. In spite of the wide 

applications of laser scanning technology, filtering, organizing, and segmenting laser 

scanned data is currently a complex, manual, and time-consuming task. Several 

computer-aided point cloud data segmentation processes have been developed in 

modeling construction objects from laser scan data [133][134][135]. Although other very 

promising techniques have recently evolved in generating point cloud and object data 

using (video) camera approaches [136][137], these may require a surveyor to access the 

interior of potentially hazardous project and may only work at certain ambient conditions. 

The next sections will explain the steps taken to achieve the objectives. The first 

step was to design an algorithm that can detect the on-site obstructions from as-built 

spatial data collected with a laser scanner. The second step was to optimize and reduce 

the blind spaces by alternating the crane location.  

Both tasks included technology performance testing and a demonstration in a live 

construction environment. The selected experimental site was a multi-story building 

under construction with one tower crane on site. The site included multiple trades and 

workers, and pieces of materials and equipment present at the time of the experiment. For 
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simplicity reasons, the laser scan was performed from the ground on two locations. This 

ensured that enough spatial points were collected from all objects and all sides. Ultra 

Wideband (UWB) sensing infrastructure was installed to track ground workers’ location 

and the position of the crane hook. 

Previous research has not focused on blind space analysis for cranes at buildings 

under construction. As generally numerous as-built and temporary objects (defined as 

concrete slabs, walls, columns, dumpster and any other static objects taller than 0.7 

meters) are present on the top floor of a dynamic construction site, they can limit the 

FOV of tower crane operators. The next section presents the algorithm that determines 

blind spaces. 

5.3 Algorithm for Measuring the Field-of-View of a Crane Operator  

This chapter focuses on estimating the blind spaces of a crane operator which are 

generated by large-size objects at the top level of a construction building site. The objects 

represent obstacles in the field-of-view (FOW) of a crane operator. These are located 

within the construction environment and include in addition to structural building 

elements such as walls, columns and slabs, also temporal structures such as formwork, 

dumpsters, and material palettes.   Since the geometry and position information of these 

temporal components may not be necessarily available from engineering drawings and/or 

building information modeling [114], this chapter utilized a commercially-available time-

of-flight pulsed laser scanner for as-built and topographic surveys. The artifacts such as 

noise and outliners in the collected point cloud data are manually removed. Once the 

point cloud data have been cleaned, the developed algorithm first detected the present 

job-site objects on the top floor of the building. Afterwards the blind space analysis was 

started. The tracking data of construction resources was finally integrated into the blind 

spots map to identify any potential unsafe worker behavior. 

The data processing algorithms were developed in MatlabTM. The results were 

plotted using a CAD software package. A flowchart of the research methodology is 

shown in Figure 20. The major components of the approach are detailed in the following 

sessions. 
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Figure 20  Flowchart of computing blind spaces and identify unsafe work behaviors. 

5.3.1 Point Cloud Data Noise Removal 

Two types of data noise in the as-built data that are collected by a 3D laser 

scanner were considered: (a) mixed pixels and (b) noise caused by frequently moving 

objects on the job site’s top floor. Mixed pixels are artifacts in most laser scan data. They 

are caused by the laser spot straddling two surfaces that lie at distinctly different 

distances from the sensor [138]. Mobile objects also cause noise in laser scan data as 

multiple points of the same object would be collected as the object traverses. Examples 

are moving equipment and/or personnel. Fast laser scanners though can help reduce such 

noise artifacts. 

Several noise removal technique and outlier detection methods for point cloud 

data have been studied [139][140][141]. Some of the noise reduction tools exist in the 

literature are Point Cloud DeNoiserTM 3D, Point Clouds Library (PCL), and Pointshop 

3D. However, the effectiveness and performance of these techniques is very much 

constrained by the complexity of the scanned scene [139]. The presented algorithm does 

not focus on the automation of noise removal in point clouds. Furthermore, the scale of 

the area that was scanned was large (20m x 40m). Thus, noise (artifacts in the air; trees 

and bushes outside of the construction space; the shape of larger pieces of moving 

equipment on a road) was manually removed from the point cloud. This task included 

drawing a bounding box around larger noise objects and deleting the points inside of it, 
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takes a few minutes per object for an experienced user. Noise removal largely depends on 

the laser scanning equipment that is used (measurement errors) as well as on the 

complexity of the environment (space and ambient conditions) that needs to be scanned. 

5.3.2 Building a 3D Occupancy Grid Representation of the Point Cloud 

The point cloud from the laser scanner is exported as a text file containing the 

spatial information. The exported spatial information is stored in a matrix “index, x, y, z”. 

The spatial information is then utilized to construct a 3D occupancy grid, which is 

established along the X, Y, and Z axis. The grid has a consistent user-defined size (length, 

width, height) which determines the resolution of the blind space map [142]. A cell in the 

grid is called a voxel (volume pixel). The fill factor of a voxel can be measured by 

counting the points of the laser scan point cloud which is within the voxel. Otherwise, a 

grid cell is empty and does not further impact the calculation of the blind space. Fine 

grids result in more accurate blind space calculation, but may lead to higher 

computational complexity, for example, the time needed to process the point cloud data.    

5.3.3 Computing the Surface Directions of Voxels 

Generating complex solid model based on point cloud data of surfaces is 

generally challenging [58]. As detailed solid modeling is not necessary for the purpose of 

this study (computing blind spaces), surface estimation based on features which relate to 

specific height levels of objects is performed. A simplistic but computationally efficient 

geometric approach to locate entities and estimate the blind spaces was used. It relies on 

representing as-built objects with basic geometric representations (extrusions; convex 

hulls). When the size of the each voxel is set significantly smaller than the scale of the 

object, the surface of the object can be fitted by an array of fitting planes of the points 

contained in each voxel. The surface direction of each fitting plane is computed using a 

multiple-regression method. 

The directions in the occupancy grid are sorted into three types: (1) horizontal 

surfaces which have vertical normal vectors of the fitting plane (align to Z-axis with a ±5 

degree tolerance); (2) vertical surfaces which have horizontal normal vectors (align to X-

axis or Y-axis with a ±5 degree tolerance); and (3) arbitrary surfaces which have a 

random surface direction. 
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The surface directions of the n x m x p occupancy grid are indexed and saved to a 

3D matrix A(n x m x p). The 3D matrix is called the surface direction matrix. Each of its 

elements a(i,j,k) has a directional vector (x, y, z). The surface direction matrix is utilized 

to distinguish the object types from each other. For example, points belonging to a floor 

have a vertical directional vector (surface normal). Points observed between two floor 

levels having a horizontal surface normal are considered as columns or walls. Points with 

arbitrary surface normal indicate a more complex object that does not fit in the category 

of the first two. 

5.3.4 Segmentation of Voxels 

The surface direction matrix is classified by elevation. The distribution of the 

number of voxels that contain as-build data along the vertical direction is obtained from 

the surface direction matrix. Applying a distribution histogram helps in sorting the 

objects in respect to the elevation direction. 

The top floor of a building under construction that stores many as-built or 

temporary objects is used as an example. Pending the job site layout, the number of 

voxels that belong to floor areas is typically significantly larger than the number of 

voxels that belong to other objects (e.g. columns, walls).  The blind spaces to a tower 

crane operator are generated by obstacles that are in the FOV. Only those objects that 

limit the FOV are considered for further blind space calculation. These objects are taller 

than a pre user-defined height (greater than 0.5 meters or equivalent to the highest point 

once a person is bending). 

5.3.5 Data Clustering and Object Classification 

A clustering algorithm is implemented on the surface direction matrix in the 

defined height range to separate the objects from each other. Data clustering is a data 

mining method in statistics, which divides a set of observations into subsets so that the 

observations in a subset are similar to each other at one or more properties. There exist 

several clustering methods, such as hierarchical clustering, partitioned clustering, and 

spectral clustering [143]. According to the characteristics of the as-built data, a data 

clustering algorithm called Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) was selected. Existing research implemented this data clustering method to 
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rapidly model work spaces using imaging sensors [144]. DBSCAN finds a number of 

clusters starting from the estimated density distribution of corresponding nodes [145]. As 

opposed to other clustering method such as k-means, DBSCAN does not require to know 

the number of clusters in the data a priori. It requires two parameters: the minimum 

number of points required to form a cluster and the maximum distance between two 

points within the same cluster. The algorithm is mostly insensitive to the order of the 

points in the data set. 

The accuracy of the clusters formed by DBSCAN depends on the distances 

measurement and the point density in each cluster. For example, a small max distance ε 

will result in a failure and divide an object into multiple parts. A large ε will lead to an 

error that two adjacent objects fall into one cluster and are merged. In terms of the 

observed point density, DBSCAN results in bad clusters when large differences in data 

density exist, because the minimum number of points minPts is static during the 

computation, and the combination of ε and minPts cannot be chosen appropriately for all 

clusters with significant variance in point density. Such impacts are insignificant in our 

case, since the point cloud data collected by laser scanner has a high resolution. This is 

true, especially because multiple laser scans were gathered and registered. A Euclidean 

distance measurement metric was implemented. The selection of other distance metric 

may influence the computational complexity, but such comparison was not part of the 

objectives of this study. 

5.3.6 Computing Boundaries 

A convex hull algorithm is applied to construct the boundary of the clustered 

voxels. The boundaries of the clustered objects are represented by a number of nodes 

within sequence. Since the voxels are classified into three categories according to the 

directions, their geometric representations vary. In the case that the clustered voxels have 

horizontal or arbitrary surfaces, a 3D polyhedron is constructed to represent the geometry 

of the corresponding object (Figure 21a). In case the cluster consists of only voxels with 

vertical surfaces, the geometry of the cluster is represented by extruding a 2D polygon. A 

2D polygon is created by computing the 2D convex hull on the horizontal cross section of 

the cluster. The geometry of the clustered object is therefore represented in 2.5D which is 
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the extrusion of the 2D polygon. The extrusion distance is the height of the cluster 

(Figure 21b). 

Since laser scanning was only performed from the ground/worker level, a full 

shape representation of all present site objects cannot be guaranteed. For example, laser 

scanning only captures spatial details of a surface or object within line-of-sight to the 

scanner. Therefore, the as-built data may form a concave polyhedron. Most 2.5D 

geometric representations don’t significantly deviate from the object’s real geometry. 

 

Figure 21  Geometric representations of clustered objects: (a) convex boundary for 

voxels with horizontal and/or arbitrary directions and (b) 2D extrusion for voxels 

with vertical directions. 

5.3.7 Computation of Blind Spaces 

A ray-casting algorithm computes the blind spaces by projecting a line from the 

position of the tower crane cabin to the vertices on the obstacles. The combination of 

vertices i and their projection to the ground i* form a convex polygon. The polygon and 

polyhedron commonly refers to blind spots/areas and spaces, respectively. Figure 22 

shows a sketch to a blind spot/area and space caused by a column that obstructs the FOV 

of a tower crane operator.  The size of blind area/spots and spaces can be calculated to 

each object based on the coordinates of the nodes to each object. The quantitative 
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measurement of the blind area was used to evaluate how large the obstructions (and 

potentially safe/unsafe) a tower crane position is. The blind spot caused by an obstacle is 

calculated using the following steps: 

(1) Compute the coordinates of the nodes projected on the ground level 
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(2) Construct 2D convex hull of the projected nodes 
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(3) Compute the area of blind spot based on vertices with known coordinates 
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Figure 22  Blind spot caused by a column. 

5.3.8 Real-time Location Tracking of Dynamic Resources on the Ground Level 

As one of the main motivations for this chapter was to find ways that reduce 

incidents from cranes swinging over workers, this chapter also measured collected and 

analyzed the frequency of workers entering such blind areas/spaces. As is mentioned in 

Chapter IV, a good number of sensing technology is available for real-time tracking of 

construction resources [58]. Selection of one particular technology depends on the 
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application, any line-of-sight (LOS) issues between sensors and sensed objects, the 

desired tracking accuracy, the required signal strength, the format of data that it generates, 

and the calibration requirements [146].  

We used Ultra Wideband (UWB) technology to record the location of the 

construction resources such as workers, materials, and equipment on the ground level. 

Earlier research indicated that this technology is capable of recording spatial-temporal 

data of dynamic objects accurately and in real-time in outdoor construction environments 

[18]. As little material and equipment moved on the site on the day of observation, only 

worker locations were recorded though.  

The outliers of the tracking data were removed by a Robust Kalman Filter [146]. 

Worker trajectories were integrated into the 3D site layout map that contained the blind 

spaces. Intrusion of workers and their frequency in blind spaces became visible. Entry 

and exit location, distance traveled, speed, moving direction, and duration of workers 

within blind spaces are measurable. Such data can be used in future studies to conduct in 

depth analysis of job site layout and travel patterns of resources. 

5.4 Experiments and Results 

This section presents spatial and tracking data collection at a construction site and 

testing of the developed ray-casting algorithm and blind space measurement method. 

5.4.1 Environment of the Experiment and Instrumentation  

The construction of a four-story tall campus building was selected to conduct a 

case study. The size of the building was approximately 100m by 40m. At the time of the 

experiment, the second floor was already under construction. Rebar was being placed and 

some columns for the third floor had been erected. Each floor height was approximately 

5m. Most of the work tasks were observed to happen on the second floor. A tower crane 

had been installed next to the center to one of the longer sides of the building under 

construction. A range scan with a commercially-available laser scanner determined that 

the crane cabin was 46.5m high above the ground level. 

The same laser scanner also gathered 3D point clouds from two positions which 

were then registered. Two dark circles in the center of the plan view indicate the location 
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of the laser scan station (see Figure 23). The color to a range point indicates the 

reflectivity of each point. Blue and green values indicate high reflectivity and 

subsequently low errors. Dark areas had no distance measurement. Due to experimental 

schedule and access constraints, range points to only the second floor were measured. 

The second floor consisted of a partially finished concrete slab on the floor level, 

columns which were approximately 4.5m high, and other objects such as material carts in 

temporary positions, material dumpsters of various sizes and heights (all up to 1.5m tall). 

Most of the workers present on the site were involved with tying rebar, carpentry such as 

formwork, and electrical/pipe installation. Some management staff was present as well. 

A commercially-available Ultra Wideband (UWB) real-time location tracking 

sensing (RTLS) technology was utilized to record the location of workers and 

management present on the second floor. Each worker entering the work zone was tagged.  

The crane hook was also tagged. Available UWB tags varied from low to high location 

data refresh rates (1 Hz to 60 Hz) and from low to high power (5 mW to 1 W). The 

decision on which tag type was applied to each of the resources (workers or hook) was 

made based on resource type, velocity it was traversing, and type of the closest 

operational environment it was operating in. Figure 23 and Figure 24 show the plan and 

elevation view of the point cloud collected of the second floor on the site. 

In a manual effort – that takes an experienced laser scanner user only a few 

minutes – the range point cloud contained data of only the building site and its upper 

floors. As previously explained, the point cloud was also cleaned manually for some 

noise such as extreme data outliers, mixed pixels, and other noise. Irrelevant spatial 

points from adjacent building structures, environmental objects such as trees and bushes, 

and temporary construction resources such as moving vehicles, workers as well as the 

crane parts, were all removed. The cleaned data set contained 2,027,763 as-built data 

points. 
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Figure 23  Plan view of the construction site, second floor, and crane location, 

orientation. 

 

Figure 24  Elevation view of the second floor and the crane location. 
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5.4.2 Object Detection 

The final spatial data were saved in the data format of “x,y,z”. The occupancy 

grid consisted of a series of equal sized voxels, while each voxel was 0.2m x 0.2m x 0.2m 

long. The size of the voxels can be modified according to the scale of the site scene. The 

voxel size impacts the level of detail to represent an object. Voxels were filled, if they 

contained at least three range points. The number of voxels along the elevation was then 

counted. A total of 64,623 voxels were constructed to store all 2,027,763 as-built data 

points. Each voxel had on average 31 data points. Therefore spatial data density was 

sufficient enough for the developed algorithms to work successfully. Figure 25 shows the 

distribution of the number of voxels along the elevation. Based on empirical judgment the 

range between -0.2 and 0.2 m was set to be the “ground level” of the second floor. Four 

major object categories were established (see Figure 25) based on their height. These 

were objects: 

1. Taller than 1.5 m: Few voxels were counted that belonged to columns and 

walls. 

2. Higher than 0.2 m but lower than 1.5 m: The number of voxels increased. 

Included were fence material, temporary structures, and other miscellaneous objects.  

3. Between -0.2 m and 0.2 m: The floor level contained 88.3% of the voxels.  

4. Lower than -0.2 m: Few voxels which belonged to scaffolding at the leading 

edges of the floor slab and in areas of rebar installation were counted. 
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Figure 25  Distribution of the number of voxels along the elevation. 

 

Figure 26 Voxels with horizontal and vertical direction. 
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Figure 27  Orientation map of voxels (blue=horizontal, red=vertical, 

green=arbitrary, yellow=unknown). 

The orientation of each voxel was computed to match each voxel with a single 

object. The range point data to each voxel was fitted to a flat plane. Its normal vector 

represented the direction of the voxel. Figure 26 illustrates two independent voxels that 

have vertical and horizontal normal vectors, respectively. 

A rule-based approach was taken to classify the object each voxel belonged to. 

For example, voxels with elevations between -0.2 m and 0.2 m, and vertical orientation 

were considered to belong to the floor slab. A voxel with locations higher than 1.5 m and 

a surface normal oriented horizontally was matched to a wall or column. Figure 27 

illustrates a voxel-based representation of the construction site. 

Each pixel in Figure 27 indicates the location of the center of one voxel. The color 

shows the orientation to each voxel: Voxels belonging to horizontal surfaces are in blue; 

voxels belonging to vertical surfaces are in red; voxels that belong to neither horizontal 

nor vertical surfaces (arbitrary surfaces) are green; and voxels with no or unknown 

orientation (less than three range points in each voxel) are in yellow. 



- 76 - 

 

The voxels were clustered based on the topology and on several elevation ranges. 

Voxels of the same surface normal direction and with distances to each other less than 

one meter (ε = 1m) were classified to the same cluster. An additional criterion (to 

eliminate smaller objects that may not obstruct the FOV of a crane operator) was that 

each cluster must contain at least eight voxels in order to form a 2 x 2 x 2 cube. Scattered 

groups which consisted of less than eight voxels were considered as outliers and were not 

clustered. 

The minimum number of voxels to form a cluster can be altered manually 

according to the density of the point cloud data. The choice of the threshold values, 

including the size of each voxel and the minimum number of voxel to form a cluster, may 

vary and depend on site specifications. They depend on the level of detail that a cluster 

needs to form to satisfy the requirement of classification of an object. Since the clustering 

process started in the tallest range (objects with heights greater than 1.5m), voxels that 

had already been assigned to a cluster were removed. This avoided duplicating clusters as 

well as to increase the computational speed. 

The results to clustering are shown in Figure 28 through Figure 30. For visibility 

reasons, each figure shows the clusters (objects) detected at pre-defined object heights 

(taller 1.5 m, between 0.7 m and 1.5 m, and between 0.5 m and 0.7 m). The left image in 

each figure demonstrates the clusters (objects) that were found using the developed 

algorithm. The numbers of the corresponding objects are projected on the plan view of 

the point cloud (see right images). 

The results show that voxels on large objects whose scale was greater than 0.2 m 

x 0.2 m x 0.2 m can be clustered. Figure 28 gives an example of clustered objects that 

were taller than 1.5 m. Thirteen objects including nine columns (No. 2, 3, 4, 5, 7, 8, 10, 

12, and 13), a concrete peer (No. 1), a material palette (No. 6), and two big containers 

(No. 9 and 11) were accurately identified. Similarly, Figure 29 and Figure 30 illustrate 

the results to 36 clustered objects that had heights between 0.5 m and 1.5 m. A total of 49 

clusters were formed. The railing system surrounding the site is clustered in 14 individual 

parts (see Figure 29: No. 1, 5, 15, 17, 18, 20, 22, 23, and 25; see Figure 30: No. 1, 4, 13, 

14, 19 and 21). 
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Figure 28  Clustered objects that are higher than 1.5m. 

 

Figure 29  Detected objects with a height ranging between 0.7m and 1.5m. 
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Figure 30  Detected objects with a height ranging between 0.5m and 0.7m. 

5.4.3 Calculating the Size and Visualizing Objects and Blind Spaces  
Since the position of the crane operator is known, a blind spot/area and space 

calculation to all the detected clusters (objects) was performed. The boundaries of the 

detected objects were represented by vertices which resulted from constructing a convex 

hull to each cluster (e.g., columns, railing, dumpsters, and floor). A ray-casting algorithm 

helped in detecting the invisible spaces to the crane operator. 

Major obstructions on the ground level consisted of columns and structures with 

vertical surfaces such as box and cylinder shapes. Figure 31 shows the geometric 

representation of a column which was 5.42 m tall. The blind spaces invisible to a crane 

operator are marked in red color. The length and area of the blind space were 

automatically calculated to be approximately 5.1 m and 4.9 m2, respectively. 

The vertices to all objects which were taller than 1.5 m were utilized to 

automatically generate a blind space map. The isometric view of the blind space map of 

the entire job site as it relates to columns and floor slabs is illustrated in Figure 32. Blind 

spaces generated by clusters (concrete columns) that are taller than 1.5 meter and by the 
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leading edge of the top floor can be seen. Theoretically the blind spaces would go all 

around the building under construction. However, earth piles and a neighboring building 

restricted the blind spaces on the lower floor levels to only a portion of the new building. 

 

Figure 31  Geometric representation of columns and blind spaces. 
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Figure 32  Isometric map of blind spaces to columns and lower level. 

Further analysis was done to measure the impact of blind spots by alternating the 

crane location. Although such a task would make relatively little sense for existing tower 

crane positions on a project that is already underway, simulating the impact of blind 

spaces based on crane positions can make a lot of sense for safe and productive 

construction operations planning. The optimization of crane positions is already a very 

active research field. Many researchers [147] have recently used BIM to coordinate 

critical lift planning. However, a lot of projects in the as-built environment do not have a 

BIM available. They would also first rely on documentation, for example laser scanning, 

to gather enough 3D information of the environment to generate objects accurately in a 

BIM. One benefit of the developed algorithm is that it works using the point cloud data 

and subsequently, does not rely nor require the generation of a BIM. 

Seven potential crane locations were manually selected to determine their impact 

on the size of blind areas.  The method then included measuring the size of blind areas for 

all of the seven crane positions for nine columns on the second floor (work level), four 
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other objects on the second floor, and areas to lower (ground) level. As the position of the 

crane cabin (origin for ray-casting) could be virtually moved, the developed algorithm 

was able to easily measure the sizes of blind spots/spaces for seven different crane cabin 

locations (all at the same height). The results are shown in Figure 33. Figure 33a 

visualizes the blind spaces to each crane cabin location in isometric view, and Figure 33b 

shows the corresponding plan view. 

Quantification of the size of blind spots/spaces was also performed. The results 

are presented in Table 5. Crane position four has the smallest total blind space area that is 

generated by columns and other major obstructions on the second floor on the job site. As 

the numbers illustrate, the size of blind spots to individual objects or to the ground level 

varies based on the location of the crane. 

What has been done in the past manually and based on experience can be 

performed with assistance of data gathering and analysis. Quantitative data in Table 5 

indicates that the position of the crane as it was mobilized in the field was ultimately also 

the best crane position to minimize the blind spots. However, such analysis may vary as 

site progresses or the shape of building envelope and building elements differs. Further 

studies are needed to evaluate the developed algorithm for more complex projects and at 

varying time scales. 
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(a) Isometric view of blind spaces at different crane locations. 

 

(b) Plan view of blind spaces at different crane locations. 

Figure 33  Optimizing the tower crane location to increase crane operator’s 

situational awareness.  
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Table 5  Comparison of build areas for columns and other objects on the second 

floor, and to the lower level at different crane positions. 

Blind Area [m2] 
Crane Position 

#1 #2 #3 #4 #5 #6 #7 
Column 1 9.24 7.77 6.37 5.04 3.82 3.17 3.31 
Column 2 8.41 7.70 5.74 4.43 3.08 3.73 4.99 
Column 3 5.28 4.15 3.53 2.97 3.31 4.49 5.82 
Column 4 7.17 5.94 5.12 4.84 5.07 6.00 7.11 
Column 5 5.06 4.35 3.65 3.31 3.74 4.23 4.72 
Column 6 5.59 4.67 3.88 4.95 6.47 7.82 9.18 
Column 7 6.60 5.56 4.95 5.88 7.05 8.13 9.22 
Column 8 10.14 8.68 7.74 8.98 10.64 12.12 13.59 
Column 9 15.67 14.28 12.89 12.04 13.55 15.09 16.64 

Sum for Columns 87.04 76.26 66.49 65.16 70.00 78.63 89.51 
Object 1 3.95 3.67 3.40 3.31 3.69 4.03 4.37 
Object 2 2.98 3.02 3.14 3.26 3.40 3.55 4.19 
Object 3 2.77 2.48 2.19 1.90 1.58 1.29 1.00 
Object 4 4.19 3.98 3.90 4.23 4.59 4.96 5.36 

Sum for Columns 
and Objects 

100.93 89.41 79.12 77.86 83.26 92.46 104.43 

Lower Level 681.98 630.29 578.72 513.49 470.16 419.82 370.95 
 

5.4.4 Integration of Blind Spots Measurement with Real-time Location 
Tracking Data 
RTLS data of workers was mapped on the previously generated blind spots/space 

map. Fusing the data sets allows understanding of inter-relationship among construction 

resources such as the geometrical distance between moving workers and obstructions that 

limit the FOV of crane operators. 

The spatio-temporal analysis for a single worker is shown in Figure 34. The path 

of the worker shows where and when the worker was entering/leaving a blind space that 

was not visible to the crane operator. A detailed view of the trajectory of the worker 

(white polylines) is illustrated in Figure 34. 
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Figure 34  Worker trajectories mapped on laser scan with blind areas taller than 

1.5m. 

 

Figure 35  Worker entering blind space. 
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According the ISO standard (ISO 5006) that measures operator visibility of 

construction equipment, a 1.5 m tall and 0.6 m wide bounding box should be utilized to 

simulate a worker near a piece of equipment [69]. Although such a rule may not (yet) be 

in place for tower cranes, this experiment proceeded with a similar methodology to 

evaluate if a worker can be seen by the crane operator. A box is placed along the path of 

the worker to measure visibility to the tower crane operator. As shown in Figure 35, the 

worker was completely obstructed by a column. Although the duration in the blind space 

was only for a few seconds, frequency of the same worker traversing blind spaces can be 

calculated. In total, the same worker entered and left four times the blind space to two 

columns. The worker spent about 10 seconds total in the blind areas in a five minute long 

experiment. 

Although the demonstrated results to a single worker seem to be very specific and 

offer no immediate consequence to change the work setting, adding information of (1) 

location and (2) size of blind spaces, (3) frequency of workers, (4) routes of workers, 

equipment, and materials, (5) time of workers spent in blind spaces, and (6) where, when, 

and how close workers get to crane loads, may yield in site layout planning undiscovered 

potential to design for and execution of safer construction. For the particular site 

investigated, no major work task was observed in the blind spots detected on the second 

floor and/or on the ground level. During the time of experiment the tower crane operator 

had always good situational awareness and workers never were below crane parts or 

loads, but this again may change on differing (7) site conditions, (8) schedules, (9) 

structures to build, and (10) tower crane locations. 

5.5 Conclusions 

Advanced topographic survey technologies (laser scanning) have made it possible 

to quickly and accurately document as-built conditions. As such technologies become 

available they lead to novel solutions in identifying and resolving potential design and 

operational issues, including mitigation of risks associated to safe site layout and 

equipment operator visibility. This research demonstrated the capability of detecting 

objects from large as-built spatial data sets collected by a commercially-available laser 

scanner.  
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The objective of this chapter was to locate and quantify the blind spots/areas and 

spaces based on 3D range data. For a large construction setting, multiple scans should be 

conducted and registered. After removing the noise and outliers of the gathered 3D range 

data, the developed algorithm detected the location and size of blind spaces that obstruct 

the field-of-view (FOV) of a tower crane operator. This work has also offered a solution 

to utilize trajectories of workers to identify (unsafe) locations of workers that are (not) in 

the FOV of tower crane operators.  

The developed approach has great potential to assist jobsite hazard analysis. Once 

integrated in information models, it can detect potentially dangerous work spaces. During 

construction, crane activities in conjunction with safe site layout and workers’ trajectory 

can be analyzed and accordingly improved as needed. 

Further and more detailed studies are necessary, in particular how well existing 

safety practices and design can be improved. Long-term experimental validation may also 

find additional benefits and barriers of the developed approach. A set of standards of 

evaluating the crane operator’s visibility has to be established so that the blind space 

analysis in different construction site settings can be validated. In addition, current 

approach considered the worker entering blind spaces as unsafe, but the determination of 

a real hazardous situation requires the position information from the crane boom and 

hook. A detailed analysis of proximity hazards among ground workers, crane load, and 

the corresponding blind spaces need to be investigated in future research. Several 

limitations were observed, for example, the blind spots analysis and site layout evaluation 

so far can only be fulfilled offline and is not fully-automated. Especially the point cloud 

noise removal is accomplished based on a manual process, which could be less efficient.  

Range scanning and data processing may significantly be improved by scanning from or 

closer to the tower crane cabin. However, this may add significant complexity in 

handling the gathered data set, especially if scan speed is slow and ranges are short. In 

summary, the utilization of as-built documentation and blind spot analysis can detect 

potentially hazardous work spaces that are related to tower cranes. 
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CHAPTER VI 

EVALUATION OF PROXIMITY HAZARDS OF HUMAN 

INTERACTING WITH CONSTRUCTION EQUIPMENT 

AND ENVIRONMENT 

The previous two chapters introduced the approaches to retrieve the location information 

of construction resources and the geometric information of major obstacles on 

construction sites. Through the analysis of their spatio-temporal relationship, this 

chapter introduces an approach that can automatically evaluate the proximity hazards of 

personnel interacting with construction equipment and environment.   

6.1 Introduction 

Construction sites may have unique size and settings, but a general setting is 

comprised of similar types of resources involving personnel, equipment and materials. In 

order to perform highly dynamic construction activities, workers are often required to 

present at close proximity to traffic, heavy equipment, and various other hazardous 

substance and conditions. Statistics shows that working proximity to hazards has resulted 

in a big fraction of construction fatalities. From 2003 to 2010, 3,171 workers were killed 

due to exposure to various hazardous situations including contacting with objects and 

equipment, falling from floors, exposing to chemicals and flammable substance, and 

struck by vehicle. These fatalities accounted for approximately 40% of the total 

construction fatalities and 6% of the total workplace fatalities experienced during that 

period.  

Existing research summarizes several risk factors that cause worker to be exposed 

to hazardous situations, which includes [148]: constantly changing job site environments 

and conditions; unskilled laborers; high diversity of work activities occurring 

simultaneously; and exposure to hazards resulting from own work as well as from nearby 

activities. According to these risk factors, the health hazards are grouped as chemical, 
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physical, biological and ergonomic. Alternatively, this research classifies the hazardous 

situation into two categories based on the spatio-temporal characteristics of the hazards.  

 Many hazardous situations occur when dynamic resources such as heavy 

construction equipment, vehicles and materials are operating in close proximity to ground 

workers. This type of hazardous situation is always involved in congested working areas. 

Contact collision between ground workers and these dynamic resources can increase the 

risk of injuries and fatalities for construction personnel [149]. BLS reported that of the 

818 fatalities in construction industry in 2009, 18% (151 fatalities) were caused by 

workers being struck by an object or construction equipment [15].  

Compared to the moving resources, the other type of hazard has relatively 

constant location and geometry, such as toxic, chemical and flammable substance, high-

voltage power line, edge of elevation, and blind space to crane operator. These static 

hazardous conditions have caused a number of fatal and nonfatal injuries on construction 

job site. The topical and chemical substance includes dusts, mixtures, and common 

materials such as paints, fuels, and solvents [150]. Existing of high-voltage power line is 

always associated to the operating safety of crane and derrick [151]. Fall from floor 

opening and edge lf elevation has been the leading reason of construction fatalities for the 

past years [17]. Equipment operator visibility, specifically operator blind spaces, 

contributes to contact collisions between materials and ground workers [69]. 

Specific controls including OSHA safety regulations, administrative policies, best 

practice, and new proactive sensing technologies that have been established and 

developed are vital to reduce the proximity hazards whenever possible and when workers 

necessarily have to perform activities in the same area as heavy equipment and harmful 

substance. However, a deep understanding, evaluation, and monitoring of workers’ safety 

performances under proximity hazards is still lacking, which request scientific analysis of 

the spatial and temporal relationship between workers and hazards.  

6.2 Evaluation of Proximity Hazards 

This chapter focuses on analyzing the spatio-temporal relationship between personnel and 

hazards found on the construction site. As is defined in chapter III, a proximity hazard is 
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a situation that poses a potential level of threat to a worker’s safety, which occurs only 

when the worker approaches to such a situation. The considered hazards are classified as 

dynamic and static. The dynamic hazards include mobile ground vehicles and equipment, 

and cranes. The static hazards include flammable, chemical, and toxic substance placed at 

fixed position on construction site, floor edge, opens at elevation that are associated to 

fall hazards, and any pre-defined areas that are only accessible to authorized personnel.  

The goal of this chapter is to develop an algorithm that can evaluate and measure 

the safety performance of construction personnel especially when they conduct activity 

proximate to the abovementioned hazardous conditions. In order to achieve this goal, 

several sub-objectives have been defined. The first objective is to automatically generate 

hazardous areas surrounding the existing static and dynamic hazards on the specific 

construction site settings. The second objective is to automatically analyze the spatio-

temporal conflicts between each worker and each considered hazard. The last objective is 

to define an indicator that can be utilized to measure the safety performance of workers.  

A flowchart of measuring the proximity issue between worker and various 

hazardous conditions based on real-time location sensing and as-built ranging data is 

shown in Figure 36. The technologies and techniques implemented for tracking the 

spatio-temporal data of construction resources and gathering the geometries of major 

objects on construction site have been introduced in chapter IV and V. This section 

details the development of an approach that utilizes the known tracking data and 

geometric information to measure the proximity hazards. The developed approach 

includes three major parts: generating hazard zones surrounding specific source; 

analyzing the spatio-temporal relationship between workers and generated hazard zones; 

computing an indicator that can be used to evaluate the proximity hazard.  
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Figure 36  Flowchart of measuring proximity hazard 

6.2.1 Hazard Zones 

In general, a hazard zone is represented as a polygon that is generated based on 

the location and geometry information of the potential hazards. The method that is used 

to generate a hazard zone varies according to the characteristics of the hazardous source. 

The characteristics of hazardous sources are classified as static and dynamic. In static 

case, a hazard’s is either pre-defined according to the construction environment whose 

geometry is known (e.g., access-controlled space that only authorized personnel is 

allowed to enter), or monitored through remote location tracking and sensing technology 

(e.g., UWB). In dynamic case, the location of a hazard is gathered utilizing real-time 

location tracking and sensing technology. The following sub-sessions introduce the 

methods of generating hazard zones in difference situations.  

Pre-defined Hazard Zone 

As one type of the static hazard zones, pre-defined hazard zones are formed based 

on the existing construction site settings and structural components. Examples include but 

are not limited to the following cases:  
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• Edge of roof and/or big openings on elevation  

• High voltage power lines  

• Unstable excavations and trenches 

• Confined and other limited-access space 

Since these components always maintain on a construction site and do not change 

frequently, the hazard zones attached to them have fixed locations and geometries. The 

locations and geometries of site components are achieved by conducting survey using 

ranging sensing technologies such as Robotic Total Stations and Laser scanning. 

Detecting objects’ boundaries and retrieving their geometries from as-built data have 

been introduced in Chapter V, whose results can be directly imported into the algorithm 

to generate pre-defined hazard zones.  

After gathering the geometries of these site components, safety diameters if 

necessary are utilized to generate pre-defined hazard zones. For example, according to 

the OSHA standards subpart M 1026.502 [152], the mechanical equipment is not allowed 

to being used within the 6 feet range from the edge of a roof. In this case, a polygon with 

6 feet width along the roof is formed as a pre-defined hazard zone. Operating inside this 

zone is considered as a hazardous situation.  

A pre-defined hazard zone is represented by the boundary of its representing 

polygon. The polygon’s boundary is denoted by the coordinates of its nodes, which are 

ordered counterclockwise. Figure 37 illustrates a hazard zone represented by a polygon 

and the corresponding data structure that a hazard zone is stored. Since the coordinates of 

nodes are either imported from the results of analyzing the as-built ranging data or 

measured through on-site survey, the shape of the representing polygon can be convex or 

concave which is only determined by the site conditions and geometries.  

In most cases, since a pre-defined hazard zone represents the hazards existing on 

the same elevation level as the workforces, it is projected into 2D polygon and 

represented by the centroid of the polygon C and a safety radius r (the maximum distance 

from polygon nodes to the centroid) which are computed using flowing equations:  
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58 = 16�;(<= + <=?@)(<=(=?@ − <=?@(=)																																																	(Eq.	6-1)
FG@
=HI

 

5J = 16�;((= + (=?@)(<=(=?@ − <=?@(=)																																																	(Eq.	6-2)
FG@
=HI

 

� = � <(K4 ∈ [1, N]||����= 	− 5|Q)																																																											(Eq.	6-3) 
where A is the polygon’s  signed area, 

�J = 12;(<=(=?@ − <=?@(=)																																																																									(Eq.	6-4)
FG@
=HI

 

 

 

Figure 37  A hazard zone represented by a polygon and its data structure. 

Static Tagged Hazard Zones 

Another type of static hazard zones are generated due to the temporal placement 

of construction materials or substances that have potential and rapid negative impact to 

human safety, health and productivity. Examples include but are not limited to the 

following cases: 
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• Flammable liquids, such as petrol, alcohol and welding gas 

• Chemical and toxic substances, such as acid and alkali solvents  

• High-voltage power generating unit  

Similar to the pre-defined hazard zones, the generation of a tagged hazard zones 

requires the location of the hazards as well as a safety diameter. Since these hazardous 

existences are not counted as permanent resources on a construction site, they only 

occupy a temporal area and can be moved to support various work tasks during the day. 

Surveying and ranging technologies which is utilized to determine pre-defined hazard 

zones are not able to monitor the actual geometry of this type hazards. Instead, this 

hazardous condition is monitored through the implementation of real-time location 

sensing technologies. In this dissertation, the hazardous substances and materials are 

tagged by UWB sensors, so that their location data can be gathered in real-time. The 

outliers of the location data are removed through Robust Kalman Filter [146], and the 

filtered data are processed to form a polygon, which represents the geometry of the 

hazard.  

As the geometry of the hazard polygon is known, a hazard zone is represented by 

extending the hazard polygon using a buffering algorithm. The hazard zone surrounds the 

hazard and the buffering distance between the circumferences of the hazard zone to the 

hazard polygon is called safety diameter. This diameter is defined by existing safety 

regulations. For example, OSHA standard require a 5-foot-clear distance of workers to an 

individual portable flammable liquid tank when the capacity of the tank exceeds 1,100 

gallons [153]. If the safety diameter is not available from the existing safety regulation, 

user can specify an appropriate factor based on current situation.  

Figure 38 illustrates the buffering method that is used to extend a hazard polygon 

into a hazard zone. A series of buffering circles (black dashed lines) with safety diameter 

are created on the circumference of the hazard polygon (blue solid lines). The circles are 

centered at the polygon nodes (blue solid dots) as well as points along the edge. A new 

polygon which is the hazard zone (red solid lines) of the given hazard is formed by 

connecting the external tangential point of each buffering circle. The geometry of the 
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tagged hazard zone is stored in the same data structure as is used for pre-defined hazard 

zone.  

 

Figure 38  Polygon extension using buffering algorithm 

Dynamic Hazard Zone 

Besides static hazards, workers on construction site are often continuously 

exposed to another type of hazardous conditions that keep changing in location, shape, 

scale and orientation over the time. In this dissertation, this type of hazards is regarded as 

dynamic hazards. Examples include but are not limited to the following cases:  

 

 

• A worker is walking across a traffic road without using the crosswalk while a 

pieces of construction equipment or vehicle is moving toward him 

• A worker is performing work tasks behind a piece of equipment or vehicle while it 

is reversing 
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• A loaded crane hook swings over a crew of ground workers 

• A worker is performing work tasks inside the blind space of ta crane operator 

while the operator is maneuvering the load 

The generation of a dynamic hazard zone requires four parameters, which include: 

scale, function type, location, and velocity of the considered equipment. The equipment’s 

scale influences the size of the hazard zone. The function type defines whether it is a 

piece of ground equipment or lifting equipment which consists of carrier and a revolving 

component. The location of a dynamic hazard determines the position where the 

corresponding hazard zone is centered. The moving velocity determines the orientation 

and shape of the generated hazard zone.  

The scale and the function type are specified by user, which becomes constant 

parameters. In contrast, a dynamic hazard zone does not have a fixed location and 

velocity, which are derived by averaging the positions and speed vectors measured by 

multiple UWB tags mounted on the equipment. Figure 39 illustrates the procedures of 

deriving location and velocity from the tracking data in a 2D case.  The scale of the 

equipment is denoted by its length L and width W. Multiple UWB tags are mounted on 

the equipment at various positions which are denoted by �i, �i and �i, whose values range 

from -0.5 to 0.5. A positive value indicates that the tag is mounted on the front (left, up) 

side of the equipment. Assume a piece of equipment is moving along a curve, the 

positions of tags are collected by the UWB receiver and velocity of each tag is 

represented by the displacement over a short time (Eq. 6-5). The effective position Pi and 

velocity V of the entire equipment at the time t is derived using the following equations:   

TUV = ∆XUV∆2 ,			*ℎ���	XUV = [<=, (= , Y=]Z																																																																	�Eq.	6-5) 
T\ = ∑ TUVF=H@N = ^T8 , TJ, T_`Z																																																																																�Eq.	6-6) 
X\ = ∑ XUaVF=H@N ,			*ℎ���	XUaV = M<=a, (=a, Y=aOZ 																																																								�Eq.	6-7) 
XUaV = XUV − c TJ T8 0−T8 TJ 00 0 1d c

e=7f=1g=� d 																																																																					�Eq.	6-8) 
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Figure 39  Compute equipment’s location using tracking data collected by multiple 

UWB tags. 

When computing the effective position and velocity of the equipment (equation 6-

5 to 6-8), the basic idea is using chord to approximate the movement of the equipment on 

a curve. In Figure 39, the velocities Vi and locations Pi of multiple UWB tags are 

averaged according to their relative position to represent the equipment’s movement as if 

it travels along the chord. This approach works fine when the equipment moves along a 

curve that has high curvature. A special case is traveling straight forward or backward, 

which means the curvature is zero. In this case, since all the UWB tags have an identical 

moving direction, the overall velocity of the equipment theoretically equals the average 

of the velocities of all tags. However, this approach has a limitation to estimate the 

velocity when the equipment is conducting pure revolving actions. One example is a 

skid-steer loader steers by braking one-side wheels without changing its position. In this 

case the traveling curvature is infinite, which results in big uncertainty when 

approximating the arc using its chord.  
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As the four key parameters (scale, function type, location, and velocity of the 

considered equipment) are determined, they are used to form dynamic hazard zones. 

Taking a piece of ground equipment as an instance, Figure 40 illustrates how a dynamic 

hazard zone is generated. The equipment is tracked by several UWB tags, and each tag is 

mounted on the various parts of the equipment. The position of the equipment is 

represented by its center point (O in Figure 40), which is derived by computing the 

geometric average of the tracking data collected by these tags. Besides the location, 

several input parameters are required to generate a hazard zone around the equipment. 

These parameters include: the width (D) and the length (L) of the equipment; a safety 

buffering diameter (r) to the equipment; braking time (�t) that the equipment operator 

needs to slow down the equipment before hitting an object; and possible steering angle (�) 

when the equipment moves.  

 

Figure 40  Generation of a dynamic hazard zone surrounding a piece of moving 

vehicle. 
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Knowing these parameters, a polygon utilized to represent the hazard zone around 

the equipment is generated through the following procedures: 

1. Expand the length and width of the equipment using the safety diameter to form a 

warning zone (hatched area). 

A warning zone indicates a clearance area such that even though the equipment is 

not moving, work should still keep a certain distance away from the equipment. 

This zone is defined in order to avoid potential injury such as worker being hit by 

the unexpected movement of equipment, or worker being hit by the revolving 

component of the equipment. 

2. Extend the warning zone by a distance of 
@i j̅ ∙ 2  on the equipment moving 

direction to form the box A-E-F-J. The velocity j̅  is computed through the 

tracking data, and t is the braking time as a given parameter.  

Zone A-E-F-J represents the area that can be covered by the equipment over the 

braking time �t if the equipment is moving straightforward at the speed of	j̅. The 

braking distance is 
@i j̅ ∙ ∆2 when a linear deceleration model is utilized.  

3. Rotate the box A-E-F-J with the angle � both clockwise and counterclockwise 

about the fixed center at O to form two boxes M-C-D-I and B-G-H-K respectively.   

Considering the equipment operator may steer during the brake in order to avoid 

upcoming objects, the moving direction of the equipment may vary. Boxes M-C-

D-I and B-G-H-K indicates the area that can be covered by the equipment if the 

operator steer on both left and right direction from the very beginning till the 

equipment stops.  

4. Connect nodes A-B-C-D-E-F-G-H-I-J-K-M to form a polygon, which is the 

dynamic hazard zone around this piece of equipment.  

The dynamic hazard zone is generated based on the current kinematics and 

geometric status of the equipment. It is also a prediction of the area that can be 

covered by the equipment over the braking time.  The dynamic hazard zone will 

be stored using the same data structure as it is used for static hazard zones.  
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Several intermediate parameters are computed using the following equations at 

the time t when the position of the equipment is '̅ = (<,	()Z  and the velocity of the 

equipment is j̅ = (j8 ,		jJ)Z on a 2D projection:  

m@ = no12 + � + j22 p
i + o� +72 p

i ,			*ℎ���	j = |j̅|																																�Eq.	6-9) 

mi = no� + 12p
i + o� +72 p

i 																																																																							�Eq.	6-10) 
r = "4NG@ o2� + 12m@ p ,				ra	 = 2 NG@�7 + 2�1 + 2� ) 																																										�Eq.	6-11) 
f = 2 NG@�jJj8) ,				e = s + r,				g = s + ra																																															�Eq.	6-12) 
In a fixed known Cartesian system XOY, the coordinate of each node is computed 

using the following equations:  

t�N�2�	 	j��2��	u = u�v) = ���" v , 	"4N v)Z																																						�Eq.	6-13) 
w = xw8 ,	wJy = '̅ + m@ ∙ u�f − r)																																																																�Eq.	6-14) 
z = xz8 ,	zJy = '̅ + m@ ∙ u�f − s + r)																																																						�Eq.	6-15) 
� = x�8,	�Jy = '̅ + m@ ∙ u�f − e)																																																													�Eq.	6-16) 
{ = x{8 ,	{Jy = '̅ + mi ∙ u�f − | + g)																																																										�Eq.	6-17) 
} = x}8 ,	}Jy = '̅ + mi ∙ u�f − | + ra)																																																								�Eq.	6-18) 
~ = x~8,	~Jy = '̅ + mi ∙ u�f − | − s + ra)																																												�Eq.	6-19) 

Notice that the dynamic hazard zone is symmetric along the central axis, therefore the 

coordinates of the rest of the nodes can be computed. 

Figure 40 and equation 6-9 to 6-19 details the generation of a dynamic hazard 

zone attaching to a piece of ground equipment such as truck, loader, and dozer. One of 

the common features of the ground equipment is that the components of the equipment 



- 100 - 

 

moves together as a whole. In contrast, the other type of equipment has connected parts 

that can perform movements separately, such as backhoe, mobile and tower cranes. Since 

the operation of this type of equipment always involves rotations, the equipment is 

simplified into translating part and revolving part. Taking mobile crane as an example, 

the substructure such as the crane’s cabin and carrier conducts forward and backward 

translations while the revolving part is the superstructure including the boom, the hook 

and the load. In case of the equipment with revolving components, two hazard zones are 

generated separately: one is a dynamic hazard zone centering at the translating 

component; the other is another dynamic hazard zone centered at the revolving part. If 

the substructure of the equipment has to maintain immobile when the superstructure is 

operating, the substructure’s hazard zone becomes static.  

To be noticed, two approximations have been performed when forming the hazard 

zone. First of all, following step 1-3, the hazard zone should have two arcs with radius R1 

and R2 on the front and back phase respectively. The arc representation requests a great 

number of nodes along the arc to be recorded in order to represent a hazard zone, which 

will significantly increase the computational complexity when later performing spatio-

temporal analysis. Therefore, when the dynamic hazard zone is generated, the arcs on the 

front and end phase are replaced by the chords, so that the coordinates of only limited 

number of nodes need to be stored. Secondly, instead of using straight edge C-B and H-I 

on both left and right side, a dynamic hazard zone should have broken edges like C-p-B 

and H-q-I shown in Figure 38. Nodes p and q are the joints of line C-M and B-G, and K-

H and D-I, which make the hazard zone concave. Using broken edge requests 

significantly computational resources when the algorithm has to repeatedly generate 

dynamic zones at each time frame and generally the dynamic hazard zone has to be 

updated 2-5 times every second. Moreover, the difference of generating the dynamic zone 

using broken edge and straight edge becomes insignificant when the possible steering 

angle � is less than 15o and the braking time �t is smaller than 5 seconds, which covers 

most of the cases in the human-equipment proximity situations. Therefore, the broken 

edges are simplified as straight edges when generating a dynamic hazard zone.   

Hazard Zones with Blind Spaces 
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Besides static dynamic and static hazards that have been introduced in the 

previous paragraphs, a construction site generally consists of numerous multi-sized 

objects which represent obstacles in the field-of-view (FOV) of an equipment operator 

and create significant large blind spaces. Ground worker working inside the blind spaces 

when a part of or the entire piece of equipment is operating close to the same area is 

considered as a dangerous situation. In this case, a new hazard zone combining 

equipment movement and blind spaces has to be generated. As the computation of the 

geometry of blind spaces has been introduced in Chapter V and dynamic hazard zones 

have been generated in the previous sub session of this chapter, the new hazard zone is 

generated through Boolean Operations of the blind spaces and dynamic hazard zones.  

The hazard zone with blind spaces is formed under two different situations: case 

of ground equipment and case of equipment with revolving components. In the first case, 

since the operator moves together with the equipment, the blind space will change 

accordingly. Figure 41 illustrates the formation of hazard zones of a piece of ground 

equipment with the blind space generated by an obstacle when the equipment approaches, 

passes and leave the obstacle. As the equipment approaches and leaves the obstacle, the 

obstacle itself is outside the dynamic hazard zone. No change will be made to the hazard 

zone. As the equipment is passing the obstacle, the blind space created by the obstacle 

overlaps with the dynamic hazard zone. Since it is assumed that operator will not 

intentionally crash the obstacle, the obstacle here preforms as a protection to the resource 

behind it. The eventual hazard zone is therefore the dynamic hazard zone minus the blind 

space. However, it does not necessarily mean that working inside a blind space is safe. 

Instead, a spatio-temporal analysis has to be conducted which will be explained in the 

next sub session.  
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Figure 41  Hazard zones of ground equipment with blind spaces. 

In the second case that the operator operates the revolving components at an 

immobile position, the blind space maintain static. Figure 42 illustrates the formation of 

the hazard zone in this situation. Taking mobile crane as an example, when no movement 

is performed, two static hazard zones (shaded in red in Figure 42) are generated around 

the crane base and crane hook respectively. In addition, the blind space (hatched area) 

generated by an obstacle is formed within the possible crane coverage area. When the 

crane boom starts swing, the hazard zone around the hook becomes dynamic. When the 

crane hook enters the blind space to the operator, a new hazard zone (highlighted in red 

solid lines) is formed as the joint of the dynamic hazard zone and the blind space.  
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Figure 42  Hazard zones of revolving equipment with blind spaces. 

6.2.2 Spatio-temporal Analysis 

As worker’s location has been tracked in real-time and the hazard zones on 

construction sites have been defined, their inter-relationships are studied through spatio-

temporal analysis. In general, the spatio-temporal analysis examines whether any worker 

intrudes any existing hazard zone at a given moment t, and predicts the intrusion in a 

short period at the time t + �t. Figure 43 shows the determination of a proximity hazard 

of one worker. The worker’s safety status at current moment (t) is determined by the 

worker’s intrusion status at both current moment (t) and predicted time (t+�t). A worker 

being inside a hazard zone is marked as true intrusion while a worker being outside any 

hazard zone is marked as false. A worker is safe only if he/she is outside any hazard zone 

at both current and predicted moment. Therefore, the key to determine the safety status of 
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a worker lies in checking the geometric and spatial relationship whether the worker’s 

current and next position is inside a safety polygon.   

 

Figure 43  Determination matrix of a proximity hazard. 

In computational geometry, numerous algorithms have been developed and 

modified dealing with the point-in-polygon problems. These algorithms are classified 

into two groups: ray casting algorithm (crossing number algorithm) and winding number 

algorithm [154]. In this dissertation, the crossing number method is utilized, which 

counts the number of times a line starting from worker’s position crosses the safety 

polygon boundary edges. The point is outside when this "crossing number" is even; 

otherwise, when it is odd, the point is inside. The same procedure is repeated on the 

current and predicted positions of a worker.  

The process of detecting proximity hazards can be simplified as two steps: 

generating hazard zones and conducting point-in-polygon query. As these two steps are 

expensive in computation, and the algorithm is dealing with several million pieces of 

tracking data, redundant computing has to be avoided in order to increase the efficiency. 

Figure 44 presents a flowchart of the spatio-temporal analysis utilizing spatial filtering. 

The spatial filter makes sure that the zone generation and point-in-polygon computation 

run only when a worker is close to a hazard. Assuming the algorithm is detecting the 

proximity hazard of worker i versus equipment j with their known positions Wpos and 

Hpos at the time tk, the worker’s position at the next moment is denoted as Wpos’.  
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Figure 44  Flowchart of detecting proximity hazard. 

When the hazard is not from equipment, it implies a static hazard. The algorithm 

computes the distances from worker’s current/predicted positions to the centroid of the 

hazard (computed by equation 6-1 and 6-2). If both these two distances are greater than 

the zone radius (equation 6-4), the worker is considered as safe. If not, the static hazard 

zone is generated. Either of the worker’s current or predicted position is inside the static 

hazard zone, it is detected as a proximity hazard.  

When the hazard is from ground equipment (not crane), the algorithm first 

computes the equipment safety radius R1 (equation 6-9). The worker is regarded as safe if 
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the distances from both the current and predicted positions of the worker to the 

equipment are greater than R1. Otherwise, a dynamic hazard zone is generated. In case 

that an obstacle is inside R1 range of the equipment, the dynamic hazard zone combines 

the blind spaces created by the obstacle (Figure 41). Either of the worker’s current or 

predicted position is inside the combined hazard zone, it is detected as a proximity hazard. 

When the hazard is from a crane, the algorithm considers the crane carrier as a 

static hazard and the crane hook as general equipment respectively. In case of crane 

carrier, the blind space is compute when an obstacle exists inside the crane boom 

coverage area (Figure 42); in case of crane hook, a dynamic hazard zone is generated 

only when the hook’s elevation is greater than a given threshold, which on-ground hook 

and load will not be considered as a hazard.  

As a case of proximity hazard is detected, the corresponding information 

including ID of involved entities, location, time, duration, and relative velocity is 

recorded and stored. The algorithm will iterate the same procedure on the next hazard j+ 1, 

next worker i+ 1, and next timestamp tk+1, respectively, till the entire dataset has been 

analyzed.   

6.2.3 Proximity Hazard Indicator 
As a statistic technique, work sampling has been widely used to evaluate the labor 

productivity by measuring the proportion of time that workers spend in various defined 

categories of activities [155][156]. The productivity is therefore represented by direct 

work time rate using the following equation: 

t4���2	7��+	34��	m 2� = 	∑34��	��	t4���2	7��+3�2 !	34�� 																											�Eq.	6-20) 
Similarly, the spatio-temporal analysis has sampled the worker’s activities and 

performances into safe and unsafe when the worker(s) is close to considered hazards. 

Therefore, the worker(s)’ safety performance is measured by the Proximity Hazard 

Indicator (PHI), which is achieved through the similar sampling technique using the 

following equation:  

X��<4�42(	� Y��	{N�4� 2��	�X�{)
= 	∑ �= × 5��N2"	4N	� Y ����"	u�N�	4= 3�2 !	��"��j4N�	34��	M�4NO 																									�Eq.	6-21) 
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where i is the index of a hazard zone defined in the previous session and �i is the safety 

factor of each hazard zone. The PHI represents how often the observed target is exposed 

to various defined hazards within the observing period. The observed target could be a 

single individual, or a crew of workers.  

Compared to traditional work sampling technique and safety inspection which 

relies on random observation, PHI is achieved based on continues monitoring of the 

working progress. User can choose appropriate length of observation periods. Within 

each period, a unique PHI for a specific target can be computed. As the work and 

monitoring progresses, a series of PHI can be achieved. The distribution of the PHI over 

the time can be utilized in statistical analyses to find out the target has significantly high 

rate of unsafe performances. Several examples on computing and using PHI are given in 

the following session. 

6.3 Experiment and Results 

This chapter uses three experiments to explain how the proximity hazards are 

analyzed based on real-time tracking data and site geometric information. The first 

experiment uses real data in combination with simulated data to demonstrate that the 

algorithm is able to detect simulated proximity hazards. The second experiment is 

conducted in a controlled environment, while the participants including personnel and 

vehicles are performing various safe and unsafe tasks by following pre-scripted scenarios. 

The third experiment tests the algorithms by using the data collected from uncontrolled 

real construction site.  The results and discussions of each experiment are presented 

accordingly.  

6.3.1 Real Data in Combination with Simulated Data 
An experiment was conducted in an outdoor environment to simulate a material 

handling working scenario (Figure 45). This experiment intended to test the performance 

of the algorithm when detecting various types of unsafe proximity cases. The experiment 

occupied a 35	��2�� × 35	��2�� flat ground area without obstacles. Six UWB receivers 

were set up on the ground plan and a camera was mounted from a higher vantage point so 

as to monitor down upon the site. Five participants were recruited and given UWB tags, 

while one participant also wore the RTS prism and were instructed to keep the prism in 
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line-of-sight to the RTS station. The purpose of implementing RTS is to measure the 

error of the tracking data collected by UWB using the approach depicted in chapter IV. In 

this experiment, 163,007 pieces of UWB data were recorded within the 6 minutes period. 

The error analysis shows that the UWB data have 0.34 meters as average tracking error 

and 0.16 meters as standard deviation [157].  

The goal of this experiment was to test the algorithm of detecting proximity 

hazards under abovementioned situations. The current experimental setting consisted of 

the following components: Two participants were instructed to move several boxes from 

two fixed source to another two fixed destinies; Another two actors were instructed to 

approach the previous two participants to simulate a scenario that equipment travels close 

to ground workers; Two sets of UWB tags were mounted on a red cone and a trolley to 

simulate static hazards; A series of data was merged into the collected data set to simulate 

the movement of a crane hook (not shown in photo); besides, a dummy object which was 

2 meters high was placed to simulate an obstacle.  

Figure 45 showed the experiment setting and the trajectories of participants. 35 

unsafe proximity cases were detected whose locations were plotted in the same figure. 

Figure 46 (a) plotted the details of two cases that one participant walked through a static 

hazard (small red dots inside purple polygon) and the same participant walked proximate 

to a dynamic hazard (big red rings inside red polygon). In the second case, the red 

triangle with black fills represented the position of the equipment at the moment of 

proximity, and the red polygon represented the dynamic hazard zone. Figure 46(b) 

plotted the detail of another case that a participant walked from outside into the blind 

space when the simulated crane hook swung over him. As is discussed in chapter 6.2.2, 

this case is considered as unsafe proximity.  

The results of all the detected unsafe proximity cases were summarized in Table 6. 

This table counted the total number of unsafe proximity between each pair of worker and 

hazard. It can be noticed that, none of the participant had exposed himself to static hazard 

#1 and both of them experienced unsafe proximity to static hazard #2 equipment #2 and 

the simulated crane hook. Besides, further information including proximity duration, 

minimum distance, the time when the minimum distance were recorded since the start of 

the experiment, and the speed at that moment was summarized in this table. In case of 
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static hazard, the minimum proximity distance was computed as the distance from worker 

to the centroid of the hazard zone, and the speed was absolute. As a contrast, in case of 

dynamic hazard, the minimum proximity distance and the speed represented the relative 

displacement and movement between hazard and worker.  

Taking the proximity analysis between worker #2 and crane hook as an instance, 

more detailed information of the 7 detected unsafe proximity cases was listed in Table 7. 

In this table, the height of the crane hook was considered when computing the minimum 

distance. As the result, the distance maintained high when the crane hook was lifted (case 

1-6) even though the worker is almost right underneath the crane hook.  The entering and 

exit time indicated the start and end moment of the proximity case. The positions of 

worker and crane hook as well as their relative velocity were recorded.  

The results of this experiment showed that the developed algorithm was able to 

detect three types of unsafe proximity cases: worker goes through static hazardous zone, 

worker walks proximately to moving vehicle, and worker stays inside the blind space of 

crane operator.  
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Figure 45  Example 1: Simulated working scenarios.
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Figure 46  Detected proximity cases, (a) Proximity to a static hazard and a moving 

vehicle, (b) Proximate to crane hook and inside a blind space. 
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Table 6  Summary of the result of the simulated working scenario. 

 Static 
hazard #1 

Static 
hazard #2 

Equipment 
#1 

Equipment 
#2 

Crane 
hook 

Worker 
#1 

Counts [No.] 0 10 2 2 11 
Duration [mm:ss] n/a 00:32 00:03 00:02 00:40 
Min. Distance [m] n/a 1.90 2.57 2.41 12.59 
Time [mm:ss] n/a 05:17 04:25 02:36 01:54 
Speed [ms-1] n/a 1.44 4.49 2.90 2.47 

Worker 
#2 

Counts [No.] 0 1 0 2 7 
Duration [mm:ss] n/a 00:04 n/a 00:04 01:07 
Min Distance [m] n/a 2.10 n/a 1.78 3.33 
Time [mm:ss] n/a 05:41 n/a 04:01 04:49 
Speed [ms-1] n/a 1.43 n/a 3.01 3.27 

 

Table 7  Details of each detected proximity case. 

 Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 
Min. Distance [m] 13.07 12.91 13.03 12.60 12.72 12.67 3.33 
Duration [mm:ss] 00:09 00:07 00:06 00:09 00:12 00:14 00:12 
Enter Time [mm:ss] 02:16 02:47 03:17 03:43 04:03 04:25 04:49 
Exit Time [mm:ss] 02:25 02:54 03:23 03:52 04:15 04:39 05:01 

Worker 
position 

X [m] 14.55 14.06 14.85 14.20 14.87 14.91 15.58 
Y [m] 25.46 25.57 25.87 29.08 29.23 28.91 29.77 
Z [m] 0.13 0.16 0.24 0.15 0.08 0.10 0.14 

Equipment 
position 

X [m] 14.69 15.18 14.59 13.94 13.66 13.70 12.97 
Y [m] 28.97 28.21 29.23 29.38 30.59 29.68 31.09 
Z [m] 12.59 12.59 12.59 12.59 12.59 12.59 1.59 

Speed 

Vx [ms-1] -0.91 0.98 -0.91 -0.87 -0.67 0.72 -0.55 
Vy [ms-1] -0.41 -0.19 -0.42 -0.50 -0.74 0.69 -0.76 
Vz [ms-1] 0.02 0.07 -0.05 0.04 -0.04 0.03 -0.04 
V [ms-1] 2.15 3.56 2.92 3.93 3.58 3.13 3.27 

 

6.3.2 Experiment and Results from Controlled Environment 
In order to validate the accuracy and efficiency of the developed algorithm on 

detecting proximity cases when the subject is continuously exposed to various hazards, 

another experiment in a fully controlled environment was conducted. By comparing the 

results of the algorithm to manual observing, the accuracy was measured by the 

percentage of successfully detected proximity hazards, and the efficiency was measured 

by the time that was required to achieve the results.  
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The experiment was conducted on the top floor of a parking deck, which occupied 

a 50�	 # 	110� rectangular area (Figure 47). The UWB system with multiple tags was 

deployed to collect the spatio-temporal data from the participants. The RTS system was 

utilized to set up the UWB infrastructure as well as to collect ground truth tracking data 

and measure the tracking errors. In this experiment, the tracking error of UWB system 

had mean as 0.27m and standard deviation as 0.31m [146]. In addition, three video 

cameras were set up to monitor the entire site when the experiment progressed.  

 

 

Figure 47  Layout of the controlled experiment with scripted scenarios.  

Figure 47 showed a plan view of the site and the scripted experimental scenarios 

for the participants were plotted. Two static hazard zones (red polygons) were involved in 

this experiment, one of which was measured by RTS and the other was defined by a static 

UWB tag (green triangle). Two crosswalks were planned on both sides. The experiment 

participants included two vehicles (dash lines) and five participants (solid lines). The two 

vehicles drove following the lanes in clockwise and counterclockwise direction, 

respectively. On one side of the site, both vehicles were instructed to speed. The five 

participants were instructed to perform the following scripts during the experiment: 
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• Scenario #1 (S1) always walked off the traffic, which is considered safe 

• Scenario #2 (S2) moved parallel to the traffic lane by keeping a safe distance to 

the moving vehicles. W2 had to walked across a static hazard zone 

• Scenario #3 (S3) regularly crossed the traffic lanes 

• Scenario #4 (S4) walked inside the parking area, and cross the traffic lanes using 

the cross walk. W3 also temporally walked on the traffic lane 

• Scenario #5 (S5) crossed the traffic lanes with and without using the crosswalk, 

and randomly approached to the moving vehicle from arbitrary directions. W4 

also entered the UWB tag defined hazard zone 

 

 

Figure 48  Trajectories and detected proximity cases in the controlled experiment 
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An extra participant was involved in the experiment to inspect participants’ safety 

performance using behavior-based safety (BBS) technique [38]. The inspector was semi-

blind to the experimental scenarios such that he was only instructed on what types of 

unsafe behavior would occur during the experiment. The inspector had to observe the 

performances of participants from a fixed location within the inspection period (5 

minutes in general), and navigated to another location for the next round of inspection. 

The BBS technique only recorded the number of participants that were exposed to 

different hazards without reporting the repetitions of the same participant involved in the 

same hazard. In addition, the experiment progress was recorded by three video cameras, 

and the video clips were analyzed by another volunteer who was blind to the developed 

proximity analysis algorithm. The participants’ trajectories, the locations of the proximity 

cases detected by the algorithm were plotted in Figure 48. Table 8 counted the number of 

detected proximity cases by manual analysis of video clips and the automated analysis of 

algorithm, and summarized the number of participants who were found to be exposed to 

hazards by using BBS. 
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Table 8  Summary of proximity cases detected by algorithm, on-site behavior based 

safety inspection, and the analysis of video clips. 

No. 
Static hazardous zones Dynamic hazardous zones 

Total 
Static 1 Static 2 Static 3 Dynamic 1 Dynamic 2 

Round 1 
A* 16 22 22 5 6 71 
C* 16 21 22 5 6 70 
BBS* 2 2 0 1 1 6 

Round 2 
A 15 4 18 6 8 51 
C 12 4 18 6 7 47 
BBS 0 0 2 1 0 3 

Round 3 
A 8 10 9 10 7 44 
C 6 8 9 10 6 39 
BBS 2 2 0 2 0 6 

Round 4 
A 12 12 11 8 10 53 
C 12 10 10 7 7 46 
BBS 0 0 0 1 0 1 

Round 5 
A 6 6 17 7 5 41 
C 5 5 16 6 5 37 
BBS 0 0 2 0 0 2 

Subtotal 
A 57 54 77 36 36 260 
C 51 48 75 34 31 239 
BBS 4 4 4 5 1 18 

Subtotal 
A 188 72 260 
C 174 65 239 
BBS 12 6 18 

A*: Algorithm analysis. C*: Video clips analysis. BBS*: Behavior Based Safety 
  

Table 8 showed that the algorithm always detected greater number of proximity 

cases than the analysis of video clips. Considering the manual video clips as ground truth 

of detecting unsafe proximity cases, comparisons between the results achieved by these 

two approaches were detailed in Figure 49. The comparison was performed on the cases 

of static and dynamic hazards separately.  
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Figure 49  Results validation by comparing to the video analysis. 

Based on the comparison, two types of error were found: miss-detection and over-

estimation. A miss-detection meant that a proximity case was recognized in video but 

was not detected by the algorithm. This type of error was caused by insufficient quality of 

the tracking data when the tracked target was outside the line of sight of the UWB 

receivers. In this experiment, four miss-detections happened in the dynamic case and 

none in the static case. This indicated that 93.4% of the manually recognized dynamic 

hazardous cases can be accurately detected by the algorithm, and all the static cases can 

be detected by the algorithm.  

Another type of error was over-estimation, which meant that the algorithm 

detected a proximity case that was considered safe in the manual analysis. Further 

exploration suggested that the over-estimation should not always be considered as wrong. 

In some cases, the algorithm was more consistent than the human judgment.  For example, 

in the static hazard situation, as the algorithm automatically generated a dangerous zone 

based on the given safety diameter, an intrusion into such a zone was considered as 

unsafe. Since manual video observation relied on a fuzzy process, an intrusion not so 

close to the hazard can be incorrectly considered as safe. Similarly to the dynamic case, 

since the manual observation from the video always failed to estimate the moving speed, 

especially when the vehicle was speeding, the algorithm gave more consistent result. In 

this experiment, all 14 times over-estimations of the static cases were caused by this 

reason, which also caused 7 out of 11 times over-estimations of the dynamic cases. The 

other 4 times over-estimations occurred when the vehicle was steering at high speed, 
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which were caused due to the limitation of the algorithm. As is mentioned in chapter 

6.2.1, the dynamic hazardous zone generated by the algorithm became less reliable when 

the equipment was performing pure steering, since the velocity vector in this case was 

uncertain.  

As a summary of the results from this experiment, the detection accuracy was 

98%, which was the percentage of the unsafe proximity cases can be detected by the 

algorithm. The algorithm can improve the detection accuracy by 9% by providing more 

consistent measurements, in spite of that, the algorithm had 2% uncertainty. The above 

percentages were calculated using the following equations:  

 

����� �( = ��. ��	 !���42ℎ�	 N�	j4���	�������	ℎ Y ��"	

��. ��	j4���	�������	ℎ Y ��"
						(6�. 6 − 22)	
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=
��. ��	{�'��j���N2"	�(	 !���42ℎ�

��. ��	j4���	�������	ℎ Y ��"
																				(6�. 6 − 22) 

�N���2 4N2(	 =
��. ��	7��N�	��2��24�N	�(	 !���42ℎ�

��. ��	�N" ��	� "�	 �����4N�	2�	 !���42ℎ�
					(6�. 6 − 22)	

 

The participants traversed among the five experimental scenarios until every 

participant had been involved in each scenario. The Proximity Hazard Index (PHI) of 

each participant was calculated for every 2 minutes interval using equation 6-21, and the 

results were plotted in Figure 50. It can be noticed that any participant who performed 

scenario 4 and 5 had significantly high PHI value, which indicated that these two 

scenarios requires the workers to be regularly exposed to various hazards.  
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Figure 50  Distribution of the Proximity Hazard Index of all the participants.  

6.3.3 Experiment and Result from Real Construction Site 

The developed algorithm was tested on an experiment conducted on a 

construction pit, whose setting has been described in the previous session 4.5.1 and in the 

author’s paper [146]. One crew consisted of a mobile crane operator and 11workers were 

involved in the work activities.  

Several sensing technologies had been involved in this experiment. A Leica laser 

scanner was utilized to gather the geometric information of the site environment. The 

collected point cloud data were processed through the method depicted in chapter 5. The 

results shown in Figure 51 indicated that the hazardous condition on such a site included 

power lines, and building structures which may create blind spaces to the crane operator. 
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Moreover, a UWB system was deployed to collect the spatio-temporal data of the crew. 

The average error of the tracking data in this experiment was 0.34m.  

The proximity detection algorithm was utilized to analyze the collected data and 

the results were plotted in Figure 51. The entire crew worked proximately to the power 

line 156 times and to crane hook 2 times within the 56 minutes period. Taking every 2 

minutes as safety measurement intervals, a distribution of the PHI of the entire crew was 

illustrated in Figure 52.  

According to Figure 52, 73% of the unsafe proximity cases occurred within the 

last 20 minutes of the experiment. Trajectory analysis implied that the frequent proximity 

cases were caused by the crane operation. The mobile crane delivered materials into the 

working area three times and the first delivery started at 37th minute. For each delivery, 

the ground crew had to yield the crane boom movement, which lasted for 2-6 minutes. 

During these periods, workers kept safe clearance distance to the lifted load attached to 

the crane hook. However, they were crowded proximately to the power line, which 

eventually cause high PHI values.  
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Figure 51  Detecting hazardous conditions and unsafe proximity cases in a construction pit.
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Figure 52  Distribution of the crew’s PHI value computed by algorithm 

6.4 Conclusion 

Advanced real-time location sensing and topographic survey technologies have 

made it possible to quickly and accurately document spatio-temporal data of the 

construction resource and environment. As such technologies become available they lead 

to novel solutions in identifying and resolving potential safety issues, including human-

hazards proximity. This chapter demonstrated the capability of measuring the workers’ 

safety performances using existing remote sensing technologies in combination with date 

processing technique.  

The objective of this chapter is to understand, evaluate and monitor workers’ 

safety performances under proximity hazards. This chapter details the development of a 

proximity detection model. Such model measures the workers’ performances based on 

the analysis of the site geometry, spatial, temporal, and kinematic characteristics of 

various construction resources. The developed model has been tested in three different 

environments, and has been validated by comparing to the video records. The results 

demonstrate that the model can accurately, consistently and reliably detect and measure 

the workers’ safety performance under proximity hazards.   
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 The developed approach has great potential to assist in measuring the 

construction site safety by using PHI as a leading safety indicator. Once the safety 

performance of each individual and/or crew has been rated by PHI, it is feasible for the 

safety manager to identify frequently occurred proximity hazards before any incident 

could happen. Appropriate safety training and education can be therefore introduced to 

the individual and/or the crew. In addition, the safety performances of the workers/crew 

can be automatically, continuously and consistently monitored and tracked, which 

essentially overcomes the drawback of manual safety inspection.  

Further and more detailed studies are necessary, in particular how to eliminate the 

uncertainty of the algorithm when the equipment performs pure rotary movement. 

Moreover, the algorithm utilizes several external parameters such as: equipment breaking 

time and possible steering angle. Since these parameters are currently defined arbitrarily 

and inappropriate parameter setting may result unreliable measurement, the model can be 

improved if these parameters are well defined through the further study of construction 

traffic. Last but not lease, the spatio-temporal analysis developed in this chapter can be 

extended to other construction management domain such as workers’ health and labor 

productivity analysis. 
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CHAPTER VII 

DATA FUSION OF REAL-TIME LOCATION SENSING AND 

PHYSIOLOGICAL DATA FOR ERGONOMICS ANALYSIS 

Previous chapters have focused on tracking the location of material and equipment and 

the development of a new measurement for proximity hazards. There is a lack of studies 

on remote monitoring for improving the health of the construction workforce. This 

chapter extends the spatio-temporal analysis approach for monitoring ergonomically 

safe and unsafe behavior of construction workers. The study relies on a methodology that 

utilizes fusion of data from continuous remote monitoring of construction workers’ 

location and physiological status. This chapter presents the background and need for a 

data fusion approach, the framework, the test bed environment, and results to some case 

studies that were used to automatically identify unhealthy work behavior. Results of this 

chapter suggest a new approach for automating remote monitoring of construction 

workers safety performance by fusing data on their location and physical strain.  

7.1 Introduction 

Despite improvements in construction safety and health, the industry is still 

striving to improve work site conditions and behavior of construction workers. Whereas 

innovation in working methods and use of technology has eliminated some of the 

traditional hazards [158], in 2002, construction workers had the second highest job 

related illness and injury rate of all industries in the U.S., accounting for more than 37% 

of all illnesses and injuries [159]. In 2008, 28,340 nonfatal occupational injuries resulted 

in musculoskeletal disorders [160] and 3,020 workers suffered from lower back pain. 

Several well-known reasons have been suggested to explain these recurring statistics.  

Construction work tasks are typically characterized as physically demanding tasks 

that are often performed in harsh environments. In fact, many construction activities 

include heavy lifting and carrying, forceful exertions, pushing and pulling, sudden 

loadings, repetitive motions, vibrations, and awkward work postures [161][162]. 
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According to several researchers, there is a reciprocal relationship between physically 

demanding work, safety, and productivity [163][164][165][166][167][168]. As a result of 

the continuous and repetitive exposure to physically demanding work, strains and sprains 

are the most common type of work-related, nonfatal injuries. Furthermore, the continuous 

exposure to an excessive level of physical strain can lead to physical fatigue, which may 

result in decreased productivity and motivation, inattentiveness, poor judgment, poor 

quality work, job dissatisfaction [169] and increase in the risk of developing worker-

related musculoskeletal injuries (MSIs) or cardiovascular disorders [170]. 

Previous research found that lower back injuries are among the most common 

MSIs [171]. These occur when the demand of work exceeds the capacity of a worker’s 

body, or the worker repetitively performs heavy activities. MSIs can also be found in 

other parts of the body, such as the shoulders, wrists, and knees. MSIs are usually caused 

by overexertion, which is a leading cause of time-loss injury for construction workers 

[160]. An overexertion occurs when either the demand of work exceeds the capacity of a 

worker’s body or the worker repetitively performs heavy activities. Statistics shows that 

more than one quarter (25.7%) of the overall disabling workplace injuries are due to 

overexertion [172]. Overexertion is not only the most common event category, but also 

the most expensive, resulting in $12.4 billion in direct costs to businesses. In addition, 

substantial indirect costs are caused through overexertion, such as (temporary) 

replacement of personnel and the human cost in terms of pain and/or (long-term) 

disability [173].  

Examples of injuries caused by overexertion include those related to inappropriate 

execution of manual material handling (MMH) tasks, such as lifting, pushing, pulling, 

holding, carrying, and throwing. The complex interaction of factors that determine 

physical load or exposure intensity makes it challenging to assess systematically the 

performance of MMH activities in a dynamic construction environment [174]. Moreover, 

practitioners are only offered a lifting guide which has been issued by the National 

Institute for Occupational Safety and Health (NIOSH) [175].  

Since heavy load lifting frequently leads to musculoskeletal injuries, the 

identification and localization of repetitive material handling activities is crucial to better 



- 126 - 

 

understand MSI ergonomics. Previous studies suggest that ergonomic- and physiology-

related attributes, such as posture, body acceleration, and heart rate can be measured 

using remote sensing technology. One example is Physiological Status Monitoring (PSM) 

technology. Commercially-available PSM devices have shown to provide reliable 

information during dynamic construction activities [176]. The problem with PSM is, 

however, that it does not record nor relate the location of the worker to the location where 

unsafe lifting events occur. This shortcoming can be solved by fusing PSM data with data 

from real-time location sensing (RTLS) devices, such as Global Positioning System (GPS) 

or Ultra Wideband (UWB) devices. Recent research in construction has shown that 

sufficient accuracy is provided to track construction personnel with these technologies 

[146].  

In summary, PSM and RTLS devices alone are useful, but research has yet to be 

performed that integrates data from both approaches (PSM and RTLS) to identify a point 

of departure from purely location-based or physiological research. To fill this gap, this 

paper aims at matching physiological and location information of construction workers to 

detect the workers’ physical characteristic in a spatio-temporal relationship in the work 

environment. The authors have conducted multiple experiments where workers were 

instructed to perform specific manual material handling tasks of heavy load lifting. These 

tasks required workers to repeatedly perform awkward posture of squatting and bending. 

Pursuing data fusion, the authors have synchronized and analyzed the data streams from 

(1) Physiological Status Monitoring (PSM) (that continuously monitors activity factors of 

construction workers) and (2) Ultra Wideband (UWB) technology (that records real-time 

worker location). 

7.2 Background 

Workers activity factors, including posture, acceleration and heart rate, can be 

measured by a variety of remote sensing technologies. The capability of PSM to provide 

reliable information of a worker’s vital signs during dynamic activities has been 

demonstrated in commercial applications. Meanwhile, real-time location tracking 

technology has emerged that allows tracking resources (e.g., personnel) in harsh 
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construction environments with sufficient accuracy. Studies have yet to be performed that 

fuse PSM and location data for advanced safety and health analysis.  

7.2.1 Monitoring and Analysis in Ergonomics  

Significant improvements have not spared the construction industry from its many 

challenges for ergonomics, occupational health, and safety. Several researchers have 

studied ergonomics in construction. Ergonomic risk factors for MSIs during construction 

activities have been identified and analyzed for the general construction environment 

[162], concrete formwork construction [177], and carpentry and paving trades [158]. 

Research has found that ergonomic hazards can be controlled through safe workplace 

design [178][179].  

Similarly, research has shown that excessive body accelerations can be related to 

muscular-skeletal disorders. Most of these studies have collected data using synchronous 

(i.e., direct observation) or asynchronous (i.e., videotaping) visual observation techniques, 

surveys and/or interviews of construction workers, supervisors, or safety and health 

experts to evaluate worker’s ergonomics. They have not focused on a detailed analysis of 

workers’ movements (e.g., body accelerations) and physiological reactions (e.g., heart 

rate). However, a more detailed worker behavior analysis can provide, if brought into 

proper context with the work environment, additional important information on 

ergonomics hazards analysis [180][181].  

7.2.2 Location Tracking in Construction 

Tracking the location in ergonomic behavior analysis of construction workers is 

critical if the goal is to identify and correct, unsafe, unhealthy, or unproductive work 

practices [63][182]. A variety of sensing technologies are available for performing 

automated location tracking on construction and infrastructure projects [58][56][78], 

range tracking [80][81], including vision tracking [91][92][93], and GPS [60]. Selection 

of one particular tracking technology depends on the application area, signal quality, data 

stream provided, and the calibration requirements [146].  

Ultra Wideband (UWB) is an active Radio Frequency Identification (RFID) 

technology that records location of resources (worker, equipment, and material) in real-
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time. UWB employs a tag-to-reader approach [76], where one or more tags can be 

mounted on a person’s helmet or safety vest (see Figure 53 for installation on a 

construction helmet). The tags communicate with antennas installed within 1,000 m. 

Research has demonstrated that a commercially-available UWB system is able to provide 

accurate real-time spatio-temporal data of construction workers, equipment and materials, 

while the tracking error in a harsh construction environment is lower than 0.5 m [146]. 

Obstructions, such as thick concrete walls, have been identified as a potential line-of-

sight issue for UWB [18][82][83][146]. In addition, conventional GPS data logging 

technology can provide a cost-effective alternative approach, but only for outdoor 

applications [146]. 

7.2.3 Data Fusion in Construction 

The Data Fusion Model is a widely-used method for categorizing data fusion-

related functions [183][184]. Its applications have been studied in many fields including 

military command and control, robotics, image processing, air traffic control, medical 

diagnostics, pattern recognition and environmental monitoring [185][186]. In 

construction, for example, this model has been implemented in construction material 

tracking [187] and location estimation utilizing common attributes from multiple sensors 

[188]. 

7.3 Research Objectives and Scope Limitations  

By fusing data from real-time location trackers (RTLS) and physiological status 

monitors (PSM) this study attempts to identify and locate unsafe postures by construction 

workers that can produce Musculoskeletal Injury (MSI). As workers may or may not be 

aware of unsafe or unhealthy events, the identification of where and when these acts 

occur is expected to help designing better work environments.  

The goal of this research is to measure and analyze ergonomic performance by 

fusing data on vital signs and location of construction workers involved in repeated 

manual material handling activities. The first objective is to automatically identify “when” 

inappropriate postures that are linked to MSIs occur. The second objective is to 
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automatically locate the “hot-spots” of the improper activities, which indicate a larger 

repetitive occurrence of ergonomic-related events (i.e., unhealthy postures).  

This study is limited to fusing information from two specific sensing technologies 

(UWB and PSM). All tests were performed in a controlled study environment. Working 

activities that were recorded with UWB, PSM, and video camera technology occurred 

indoors and on the same elevation level. This study focuses only on activities associated 

to the construction personnel, especially, heavy load lifting. Social, legal, or behavioral 

impacts on workers using UWB and/or PSM technologies were not part of the scope of 

this study. 

7.4 Methodology 

Even though several data fusion approaches exist in construction engineering 

applications, including productivity monitoring and material tracking [187][189][190], 

data fusion of real-time location tracking data and worker physical information has not 

been tested in construction. The use of worker physiological data to correct imperfection 

of purely location-based datasets fills a gap in existing knowledge, since it departs from 

previous data fusion approaches.  

The researchers designed a novel testbed that integrated UWB and PSM 

technologies to measure and analyze the ergonomic and positioning factors of repeated 

material handling activities. Results to an experimental approach are presented. 

Opportunities and barriers using UWB and PSM data recording are discussed. 

The components of the experimental test bed are illustrated in Figure 53. For later 

control measurement, all activities were taped with video cameras. The data analysis 

process is shown in the flowchart in Figure 54. Data analysis consists of four major 

components: work sampling, data synchronization, activity identification, and 

localization. An empirical approach was selected (explained later) for identifying 

ergonomically unsafe worker motions, for example, lifting heavy loads without bending 

the knees. 
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Figure 53  Testbed for experiments 
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Figure 54  Localizing ergonomically unsafe behaviors 

Since the study environment was indoors and little obstructions were present, a 

commercially-available UWB localization system was selected to track the real-time 

location of individuals participating in the test cases. UWB tags were placed on the 

helmets of the individuals, and on relevant static locations in the test scenery (e.g., to 

identify material bay, rest, and water supply areas). The UWB system itself consists of a 

central processing hub, which triangulates the position of the incoming radio frequency 

signal from multiple UWB receivers based on the Time-Distance-of-Arrival (TDoA) 

principle. These antennas were distributed systematically around the work environment 

and outside of any of the participating individuals’ travel paths. The UWB receivers were 

connected to the hub via shielded CAT5e cables and a static tag functioning as a 

reference location was placed in the center of the monitored area.  

PSMs can be described as non-invasive ambulatory wireless telemetry systems. A 

variety of commercially-available PSM systems exist. They can autonomously and 
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remotely monitor workers’ physiological status without hindering or interrupting their 

routine activities for several hours. The system utilized in the experiment was composed 

by a chest belt that hosts conductive fabric sensors and an integrated module that includes 

a mobile transmitter. The selected device had the ability to perform live data transmission 

wirelessly through a USB radio receiver, which was connected to a data logging PC. As 

an alternative to real-time transmission, PSMs allow for local data logging. The selected 

PSM system monitored and recorded physiological and motion data using wearable 

electrocardiograph (ECG) sensor, breathing rate sensor, and a 3-axial accelerometer. It 

transmitted the data in real-time to the receiver via a radio frequency signal. Among 

various parameters, PSM measured the heart rate and the thoracic bending angle. Heart 

rates were deducted from ECG data. The three-axial (vertical, lateral and sagittal) 

accelerometer was used to generate the subject’s default activity data measured in Vector 

Magnitude Unit (VMU). VMU was measured as a portion of the gravity acceleration (g). 

The system built-in module used the VMU values to derive the subject’s thoracic bending 

angles from the 3-axis gravity-compensated value calculated over the previous 1.008 

second epoch. The angle was derived as a scalar with positive and negative values, where 

zero degree represented the vertical right-up posture. 

Meanwhile, a network camera was utilized to visually record the experiments. 

The timeline of the video was regarded as a metric, which means the temporal 

information from both sensors had to be synchronized to the video time. Visual analysis 

of the video recording was implemented to establish a ground truth validating the result 

of the inappropriate posture identification.  

7.4.1 Work Sampling 

Work sampling is a technique implemented to determine the portion of the time 

that workers spend in defined category of activities. In this paper, the tracking data 

collected by UWB are sampled with the workers’ speed, indicating travelling and 

stationary status. The walking speed is derived from the spatio-temporal tracking data. 

Since the UWB signal can be noisy with occasional outliers, the noises on the spatial 

location records result in outliners on the derived speed, which violated the assumption of 

the speed continuity. Thus, the UWB signal was filtered with a Robust Kalman filter [94]. 
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In addition to signal smoothing, the robust Kalman filter rejects outlier measurements so 

that the outliers do not corrupt the filtered signal estimate. 

Meanwhile, PSM posture readings were sampled that indicated a subject’s posture 

status, such as bending, and vertical up-right of the upper body. PSMs are able to 

measure posture angles within the -90° to 90° range with the 0° angle representing the 

vertical up-right status; the positive value representing leaning forward, and the negative 

angle indicating leaning backward. Since the accuracy of the posture angle measurements 

depends on the way that the PSM chest belt is worn and the feature of the dynamic 

motions, the PSM signals are noisy with ±10o once it is tested on the vertical up-right 

status. Thus, a threshold of bending angle is assigned to differentiate the bending and 

vertical up-right.  

7.4.2 Data Synchronization 

UWB and PSM technologies collect heterogeneous data sources which have 

difference levels of detail, data collection rates, data representations, and time reference 

systems.  For example, the utilized UWB system collects the temporal data in UNIX 

format, while the PSM and video record is in local time format (HH:MM:SS). Data 

fusion with other sensor signals requires data to be synchronized. The data 

synchronization process applied in this research is illustrated in Figure 55. 

 

Figure 55  Time lines for multiple sensors. 
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Firstly, the timestamps are encoded into float numbers starting from the beginning 

of each experiment with seconds being the unit. The frequency chosen is that of UWB 

data since it requires up-sampling of the PSM signal (to prevent any loss in information). 

Secondly, the time-streams are synchronized through a linear time lag propagation model. 

Since the video time is regarded as the ground truth, it is assumed that the propagation of 

time difference consists of two parts: initial time shift and continuous time drift (see 

Figure 55): 

            (Eq. 7-1) 

where, �ti is the time lag between sensor and video when a specific event i occurs. An 

event refers to the switching of working behavior, such as bending down, start to move. 

Term tvideo,it�����,�  is the video time when event 4  (e.g., bend down, start to move) is 

observed. Term tsensor,i t������,� is the time recorded by the sensor’s clock when the same 

event ii takes place. When i = 0i = 0, it refers to the initial status of UWB and PSM 

sensors when they started recording data. Thus, �t0ΔtI represent the initial time shift 

between the sensor and video recordings.  

In addition, the built-in timestamps of the sensors may have a clock drift or time 

drift. For example, the UNIX time used in the UWB system cannot unambiguously 

represent the Coordinated Universal Time (UTC) as it has approximately a one second 

drift at every UTC day. Therefore, the sensor clock had to be corrected to match the clock 

of the video. At the sensor time tsensort������ , the drifting time is �tsensorκt������  (in 

seconds). Parameter �κ is the time adjustment factor, which corrects each second from 

the sensor to be equal to the video. A positive κ refers that the sensor clock runs slower 

than video clock, while the negative value indicates the opposite. To determine 

parameters �κ and �t0ΔtI ΔtI,the linear time lag propagation model was trained on a data 

set consisting of N random events such that 

                         (Eq. 7-2)                                 

Once the time lag propagation parameters κ and ΔtIwere computed, the times of sensors 

and video were synchronized, as follows  

 

Δ24 =  Δ20 + �2"�N"��  ;   Δ24 = 2j4��� ,4 −  2"�N"�� ,4  

� =  
∑(2"�N"�� ,4 − 2"̅�N"�� ,4)Δ24

∑(2"�N"�� ,4 − 2"̅�N"�� ,4 )2
 , Δ20 =  Δ24

\\\\ −  �2"̅�N"�� ,4 
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                 (Eq. 7-3)                                    

where jt̂  t̂�is the predicted time on the corresponding video timeline. Event j jis recorded 

from the sensor at sensor time tsensor,j.t������,� Index jj is the random event index from the 

testing event set, and � εis the predicted error. Once the sample size of the testing event j 

jis large enough, the predicting error ε follows Gaussian distribution.  

7.4.3 Data Fusion 

The data synchronization process aligned the data streams of the UWB and PSM 

sensors with video data. These multi-sensor data are furthermore fused by implementing 

a centralized data fusion method. The data fusion architecture (see Figure 56) is based on 

two stages: estimation of posture status by fusing PSM and video data; and estimation of 

position using UWB data. Due to the nature of the pre-processed video data – the 

physical status and location status are of contextual format – a fuzzy representation is 

implemented to define the observed status from the sensor. The posture status “bending”, 

for example, happens when the corresponding posture angle is greater than a pre-defined 

threshold and if the subject is “inside a zone”. Several sets of observation status are 

generated at a series of randomly selected times using the data synchronization model 

(see equation three). The observation noise is implemented to compute the likelihood 

function using a Bayesian approach that given the data synchronization function the 

likelihood function is: 

∏
∏

=

==

2,1

2,1

21

21

)|(

)|(P )|(

)|(

k

k
oldi

k
oldoldi

k
newi

newnewi SAP

SSASAP

SSAl                                        (Eq. 7-4)                                

Where Ai is Observation Status i; knewS is New Data from Sensor k; k
oldS is Old Data from 

Sensor k; and )|( 21
oldoldi SSAP is Prior Estimation in the previous data synchronization 

model. 
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Figure 56  Data fusion architecture. 

7.4.4 Activity Identification and Localization  

Location (x,y,z, and time) and physiological (bending angle and time) data were 

utilized to identify those locations where workers bend more than a predefined threshold 

angle. Although the location and time of an unsafe worker posture can be determined 

fusing UWB and PSM data, insufficiency in the available data lies in determining what 

activity type and motion constitutes as unsafe/unhealthy behavior (e.g., lifting a heavy 

load, and walking). For example, bending more than 25 degrees without lifting a load is 

typically considered safe, while bending the same angle with a load could be considered 

unsafe if repeated frequently. Since video data could not be used to answer this 

fundamental question (video data were gathered only for the control of the experiment), 

the answer requires an in-depth analysis of a worker’s muscular system. 

A worker’s muscular system is indirectly related to the worker’s heart rate. When 

a worker is conducting physically demanding activities, such as lifting loads, the muscles 

are undergoing isotonic contractions, which results in a rise of the heart rate. The change 

of the heart rate may be triggered by various physical and environmental factors, but it 

may not occur simultaneously when the muscles react. It is therefore very challenging to 

explore the actual correlation between heart rate change and posture change.  

Instead, this paper analyzes the heart rate propagation pattern to identify the type 

and status of a worker’s activity. Two patterns in the heart rate signal differentiate a load 
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lifting task from normal walking and bending activities. The first pattern uses data from 

the absolute heart rate. As a heart rate changes based on the type or work a person 

performs, higher heart rates exceeding a certain threshold indicate isotonic muscle 

reactions. A threshold has to be defined for every individual by conducting a statistical 

analysis of his/her absolute and statistical heart rates. Since the absolute heart rate may 

vary among the population (e.g., occupation, age, and sex) and the average heart rate may 

also increase on physically demanding activities or with the fatigue level, the second 

pattern utilize the first differential of the heart rate. Measuring the quickness of change in 

heart rate of an individual finally allows setting a threshold value for the heart to 

determine what type of activity is performed.  

For example, lifting a heavy concrete masonry unit (CMU) is a physically 

demanding activity which increases the heart rate. Once the bending threshold and the 

corresponding heart rate thresholds are set, they can be used to distinguish the moments 

when physically demanding activities start and end.  

7.4.5 Experimental Setting 

Three experimental settings were designed to simulate construction tasks. All 

experiments were conducted in a controlled indoor technology testbed environment. The 

three simulated construction tasks consisted of (see Figure 57):  
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Figure 57  Experiment layout. 

• Experiment No. 1: Building a wall: one subject builds a wall using 23-lb concrete 

blocks. One installation and one material area is available;  

• Experiment No. 2: Assembling a raised deck: one subject assembles a deck using 

plastic supports and 16-lb concrete tiles. One installation area and two material 

storage areas exist;   

• Experiment No. 3: Assembling and disassembling a raised deck: one subject 

disassembles a deck and stores material in a material laydown area, the other 



- 139 - 

 

subject uses the material from the laydown area to assemble a raised deck in a 

second work area. Assembly and disassembly are spatio-temporal dependent 

activities. The two subjects share two storage areas, but have their own 

installation area available. 

Three construction tasks were simulated. The first two experiments were 

conducted simultaneously, since the two subjects worked separately without interfering 

work spaces. The experimental layout for the first task (building a concrete wall) utilized 

an installation area, a disassembling area, and a pallet for storing the materials. The 

layout for the second task was slightly different from the first, and had two pallets 

containing concrete pavers and plastic pedestals. The third task was performed by two 

subjects sharing the facilities in an integrated experiment.  

Written informed consent was obtained and the subjects were instructed about the 

experiment by a trained lab technician. The training covered three main topics. First, 

subjects were trained on how to properly wear and operate UWB and PSM. Secondly, 

correct material handling techniques and PPE (i.e., gloves, foot guards, knee pads, hard 

hat, and goggles) utilization were explained. Third, working areas and construction tasks 

were described. 

7.4.6 Performance of UWB and PSM in Experimental Setting 

This section analyzes the performance (error rate and reliability) of the utilized 

sensing technologies UWB and PSM separately. The experimental facility covers an area 

of about 500 square meters. Based on previous experiences and results of the researchers 

using UWB [146], the experimental design asked to achieve high fidelity positioning 

tracking in the order of a few centimeters.  Previously performed research in outdoor 

construction environment [146] indicated that a uniformed tracking error distribution can 

be observed within the coverage area of UWB receivers. Since the experiments were 

located indoors, UWB performance tests with three UWB tags (one with 60Hz and two 

with 1Hz signal refresh rate) were conducted to measure the error rate. The observation 

period collected 206,190, 2,495, and 3,050 data points, respectively. The average errors 

of these three tags were 0.28m, 0.31m and 0.27m, respectively. Their standard deviation 

was 0.16m, 0.35m and 0.12m, respectively. The researchers concluded that the selected 
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UWB technology and sensor layout was adequate in providing reliable positioning 

information of workers and decided to progress with the evaluation of the PSM 

technology.  

The PSM system performance test included the subjects’ variation in posture and 

heart rate. There are several limitations of the current physiological data logging sensor. 

First, posture data are affected by dynamic movement. Fast changes in accelerations 

prevent the posture from being reliably measured. In fact, posture measurement achieves 

its maximum accuracy when the subject is in static position and motion. Secondly, the 

posture angle readings from a subject in a sitting or standing position will depend on the 

shape of the subject’s torso and placement and position of the PSM immediately 

underneath the garment. 

Besides the posture angles, the PSM also records the subject’s heart rate. Similar 

to the posture measurement, the heart rate readings of a subject are derived measurements 

of subject’s Electrocardiogram (ECG) performance. The ECG sensors are connected to 

the garment’s conductive fabric that is touching the subject’s skin during the experiment 

to record data. There are several factors that can affect ECG performance. Though the 

PSM will perform well with non-moistened sensor surfaces, ECG and heart rate readings 

can be more susceptible to movement artifact noise under some circumstance. Lack of 

skin moisture on a subject’s skin could produce such effects. The ECG readings could 

also be affected by Electromyographic (EMG) noise. EMG signals are generated as 

muscles on the torso contract and relax. The signals can be quite comparable in 

magnitude with the ECG signals. So, excessive use of these muscles, such as vigorous 

arm-flapping can affect ECG detection.  

Taking the above factors into consideration, both the posture angle and the heart 

rate performance were collected with (some) noise. Studies on the measurement error 

analysis of the physiological factors and its impact on the determination of the activity 

type are outside this paper’s scope. Hence, uniformed thresholds determined by the 

statistics of the measurements are implemented to identify the properties of the subjects’ 

activities. 
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7.5 Results and Discussions 

This section demonstrates the data fusing process and results for the first 

experiment (No. 1). The same methodology was applied again on the second and third 

experiments (No. 2 and No. 3). One hour of data taken in the first experiment will explain 

the data fusion approach and the identification and localization of ergonomically unsafe 

worker behaviors. The subjects in all experiments were not given instructions (to bend 

safely or unsafely). 

7.5.1 Sampling UWB Data 

The tracking data collected from UWB was sampled by the traveling speed, 

which was implemented to identify several zones where the subjects were static. 

According to the experimental tasks, the subject had to stop when he was operating in the 

installation, deinstallation, material bay, rehydration, and rest areas. Hence, it was 

assumed that ergonomically unsafe behavior, especially bending with heavy loads, only 

occurs when the subject was standing or moving with very low speeds.  

Since the UWB tag was mounted on the subject’s helmet, head motions such as 

nodding and shaking may result in many small to zero movements of the UWB tags 

(which may lead future research to install location tracking devices on the worker’s 

clothing, preferably the belt). Moreover, subjects moved slowly within the work zone to 

complete the work task. A speed threshold based on statistical analysis was implemented 

to determine the subject’s walking and staying status.  

A histogram illustrates the observed walking speeds of the subject in Figure 58. 

Two peaks can be noted. The histogram was fitted by two Gaussian distributions with the 

mean at 0.19m/s and 0.91m/s and standard deviation at 0.01m/s and 0.11m/s, respectively. 

The first Gaussian relates to a low speed (subject was static) and the second Gaussian 

relates to a higher speed (subject was moving). The two Gaussians connect at a value of 

approximately 0.6m/s. This value separates the subject activity in static vs. moving. 

Consequently, the threshold was set at 0.6m/s to distinguish the subject’s stationary from 

the traveling status.  
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Figure 58  Walking speeds of a worker for one hour experiment. 

According to the speed threshold, six clusters of static locations/work zones were 

identified (see Figure 59). The scattered positioning data were grouped using a convex 

hull algorithm. Individual polygons denote their geometric boundary. When compared to 

the testbed layout and video data, the locations of these zones match the installation, 

material, rest, and rehydration areas. The methodology of separating work from traveling 

area validates the choice of setting the threshold for this experiment. 

 

Figure 59  Locations of clusters and work zones where worker is in stationary 

position. 
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7.5.2 Event-Based Data Synchronization 
Sensing data from multiple sensors were synchronized with the video time, where 

the time clock of the video was considered as the ground truth. The general principle to 

synchronize timelines among sensors was to compare the time clock of manually set time 

flags, e.g. when a recognizable event occurred in the UWB data, it should also appear at 

the corresponding moment in the PSM data set. Examples include entry or exit in a work 

zone, rapid velocity changes, and/or rapid posture changes such as bending motions. 

For the purpose of synchronizing the UWB data to the video data, time flags (control 

points) were set at all of the 96 times the subject entered/left a static zone. The factors of 

the time propagation model were determined as κ=3×10-9 and Δt0=1298048273.666s. The 

parameter � was close to 0, which means there was almost no time drifting between 

recorded UWB time and video time. The time shift parameter Δt0 was high because of the 

previously described difference in UNIX time and local time format. Though Δt0 is high 

(actually refers to January 1, 1970, ~41 years ago) and it can be set to zero. The time 

propagation model was tested on an additional 40 samples. The mean error 

synchronization is 0.2 seconds with a standard deviation of 0.6 seconds. 

In a process of synchronizing the PSM data with the video data, control points 

were set to all 29 times bending and vertical behavior occurred. Parameters were κ=0.013 

and Δt0=-9.614s, which means the PSM clock runs one second faster in every 77 seconds 

of video time. The time propagation model was tested on another 15 samples, and it 

shows 1.2 seconds error in prediction, with a standard deviation of 0.7 seconds. Since the 

physiological data were collected at a 1Hz sample rate, the 1.2 seconds error represents 

on average one measurement shifting during the one hour experiment and it was 

disregarded in the further data analysis.  

7.5.3 Automatic Identification and Mapping of Ergonomically Unsafe 
Behaviors  

Since musculoskeletal disorders were accounted for the first reason of nonfatal 

occupational injuries in construction, a particular emphasis was placed on identifying the 

ergonomically unsafe behaviors among the dynamic construction activities. Specifically 

in this experiment, one of the goals was to identify the working behaviors such when the 

subject was bending (or lifting) with heavy loads. To demonstrate how multiple sensing 
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technologies can assist the evaluation process of ergonomic behavior, synchronized 

tracking and physiological data were fused. An analysis of the signal propagation pattern 

between heart rates and posture angles provides additional reasoning into the subject’s 

behavior. 

Safety guidelines for manual material handling state “to reduce the strain on the 

back, a subject should maintain a posture of the upper body as vertical as possible when 

lifting or placing heavy loads” [175]. No further official statement has been made on 

what constitutes a safe bending angle (most likely since a detailed determination depends 

upon a variety of factors, including work environment and a subject’s physical 

characteristics). In this experiment, the subject’s material handling activities are classified 

into two categories: safe and unsafe (see Figure 60). The individual in this figure was not 

a subject in the study. 

 

Figure 60  Safe and unsafe work tasks 

Using data from experiment 2 (Task No.2), Figure 61 shows the histogram of the 

posture angle. The average (and coincidently also the median) bending angle is +15.5 

degrees. Quite a few of the posture angles were observed at negative level, which was 
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due to leaning backwards and eventually also the shape of the subject’s torso and 

placement of the PSM immediately underneath the garment. Subsequently, a +25 degree 

posture angle for the body torso was utilized to distinguish bending from standing. A 

further but important distinction is whether the subject carries a load while bending. 

Angles less than +25 degrees without or with load are referred to safe standing/walking 

activities of the subject. Angles greater +25 degrees with a load are considered unsafe 

lifting/placing activities. Angles greater +25 degrees without carrying a load in the 

subject’s hand(s) are again safe activities. 

 

Figure 61  Posture angles from PSM data. 

While a subject is conducting physically demanding activities such as lifting and 

placing loads her/his heart rate is higher than normally. According to rules set by NIOSH 

(2007), material handling with up-right body posture is safe. A histogram of the subject’s 

heart rate while the bending angle exceeded 25 degrees is shown in Figure 62. Two 

Gaussian distributions were differentiated. One has the mean at 91 bpm (beats per minute) 

and the other at 106 bpm. The higher the heart rate value is, the more oxygen a subject 

consumes. High heart rates in this experiment were directly associated with a subject 

carrying a load. The two Gaussians connect at 99 bpm, which implies the transition 

between bending with and without load. The threshold was set slightly higher to 106 bpm 

to differentiate safe from unsafe lifting/placing motions.  

-40 -20 0 20 40 60 80
0

50

100

150

Posture Angle [degree]

N
um

be
r 

of
 O

bs
er

va
tio

ns



- 146 - 

 

 

Figure 62  Heart rate from PSM when posture angles are greater than 25 degrees. 

Defining and applying only a heart rate threshold probably would not account for 

other factors that influence the heart rate, for example, subject fatigue or very fast 

transitions between work activities. Therefore, a pattern analysis for heart rate changes 

was performed.  

The signals of both heart rate and bending angle in a 240 seconds observation 

period are shown in Figure 63. Two types of the posture angle peaks can be noticed. One 

with local maximum value greater than +25 degrees (threshold), which always represents 

the motions observed in the installation zone according to the video. The other one has a 

local maximum smaller than +25 degrees. It represents the activities performed in the 

material zone.  
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Figure 63  Comparison between posture angles and heart rates. 

Several changes in the heart rate pattern can be noticed that correspond to the 

subject’s posture angle: (1) the posture angles were found to be lower than the threshold 

value when high heart rates were observed (time span from 1,000 sec. to 1,100 sec; the 

subject might have already been tired due to the rapidly changing motions); (2) both the 

heart rates and posture angles were found at a low level or less than the threshold value 

(time span from 1,030 sec. to 1,050 sec.; which implies the subject’s torso was in vertical 

up-right position and recovering to the normal situation); (3) the heart rate maintained at 

a high level while the posture angle increases and exceeds the threshold value (time span 

from 1,100 sec. to 1,125 sec.; which indicates bending motions with loads; the heart rate 

maintained at a high level because the body was not recovered from the previous motion); 

and finally (4) rapid increments were observed on both heart rate and posture angle 

(associated with several seconds delay: time span from 1,045 sec. to 1,052 sec.; and 

simultaneously, time span from 1,105 sec. to 1,110 sec.; these also demonstrate bending 

motions with loads). The first two patterns have heart rate and posture performance 

values indicating safe behavior. The last two patterns relate to unsafe work behavior.  
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An additional consideration to analyze PSM data might be the analysis of the 

slope change of heart rate values. The changing rate (slope) of the heart pulse when the 

subject bended more than 25 degrees consists of three isolated peaks: the first one is at 0 

bmp/min, the other two peaks were at 1.2 and -1.1 bmp/min. The first peak implies that 

the subject’s heart rate is maintaining, which indicates no physical action or idle status. 

The other non-zero peaks are symmetrically around the first peak representing the 

transitional period of the subject’s heart rate from the idle status to physical active status 

or the other way around. Since this research focuses unsafe behavior related to workers 

bending with heavy loads, the positive peak (1.2 bpm/min) on the changing rate is 

utilized to differentiate a physically demanding bending from normal activities. 

7.5.4 Localization of the Unsafe Behaviors  

Fusing the heart rate data and the posture data from PSM provides the capability 

of differentiating safe from unsafe material handling activities. The next step was to fuse 

and visualize the spatio-temporal data. 

Experiment No. 1 

Trajectory and PSM information of one subject performing a concrete wall 

installation are shown in Figure 64. The weight of each concrete block was 23 lbs. The 

distance between assemble and disassemble of wall was about 12 meters. The blue color 

in Figure 64 represents the walking paths of the subject between the installation and de-

installation areas, and to/from the rehydration area. The location where the subject 

squatted safely is shown in green. The red color denotes unsafe bending/lifting events 

with a heavy load.  
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Figure 64  Experiment 1: Localization of safe and unsafe material handling motions. 

During the 62 minute long experiment, 105 ergonomically safe and 93 unsafe 

motions were automatically identified and mapped. Figure 65 shows the analysis of all 
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unsafe bending/lifting events over the observation time. The unsafe events indicated in 

red color relate to labor (install a concrete wall) that is physically very demanding and 

leads to exhaustion. Manual video analysis confirmed that the subject followed more 

frequently safe bending practices at the beginning of the work shift. The guidelines were 

followed when handling heavy materials during the first 8 minutes of the experiment. 

Although the observation time was too short to find statistically significant results for an 

increase in unsafe acts over time, the number of unsafe lifts slightly increased towards the 

end of the work shift. Fatigue may have played a role leading to more unsafe lifts at the 

end of the shift.  

 

Figure 65  Experiment 1: number of unsafe bending over time. 

 As the algorithm automatically found, the subject rehydrated only once at the 59 

minutes into the experiment, and since the work task had already been completed, spent 

the remainder of the observation time at the rehydration station. The subject did not take 

any other break(s).  

Experiment No. 2 

Trajectory and PSM information of another subject performing a floor installation 

are shown in Figure 66. The blue line represents the walking paths of the subject. 

Access/exit points to/from work zone areas (A1 and A2), rest station, dehydration area, 

and material storage areas (S1 and S2) are also graphically visible. Locations where the 
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subject squatted safely are shown in green whereas unsafe lifts/placements of heavy load 

are represented in red color.  

 

Figure 66  Experiment 2: Localization of safe and unsafe materials handling 

motions.  
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During the 45 minutes long experiment, 79 ergonomically unsafe motions were 

automatically identified and mapped. Figure 67 shows the analysis of unsafe bends over 

time. Although the observation time was again too short to find statistically significant 

results, the number of unsafe lifts seemed to be consistent during the work shift. The 

subject went once to the rehydration station at 27 minutes into the experiment. This visit 

indicates that the work task was physical demanding and exhausting the subject.  

 

Figure 67  Experiment 2: number of unsafe bending over time. 

Experiment No. 3 

This experiment included two subjects, one installing and one deinstalling floor 

materials while they were sharing the same storage areas. Figure 68 and Figure 69, 

respectively, show the graphic representation of the travel locations of the subjects, and 

their safe unsafe material handling motions.  

During the 1 hour and 30 minutes long experiment, the algorithm identified and 

mapped 284 ergonomically unsafe motions for subject one and 84 for subject two. Figure 

68 and Figure 69 show the trajectory information to subjects to/from work zone areas (A2 

and B2), rest areas, dehydration area, and material storage area (S1, S2 and S3). Green 

and red color marks show the location where the subject squatted safely and unsafely, 

respectively.  
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Figure 68  Experiment 3 – subject 1 (deinstalling matertials): location of safe and 

unsafe material handling motions. 
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Figure 69  Experiment 3 – subject 2 (installing materials): location of safe and 

unsafe material handling motions. 
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and Figure 71, respectively. Both subjects had consistently unsafe bending throughout the 

observation period. A difference though is in the frequency of unsafe bending acts. 

Although the deinstallation work task that Subject 1 performed was very similar to the 

motions of Subject 2 who was simultaneously installing the floor system, Subject 1 had a 

significantly higher number of unsafe bending than Subject 2. Focused education and 

training on subjects (e.g., construction workers) could potentially resolve such behavior. 
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Compared to experiment one and two, both subjects took more frequently breaks (at least 

two) and rehydrated at least three times. These breaks were separated roughly evenly 

over the work task period. 

 

Figure 70  Unsafe lifts over time (Subject 1). 

 

Figure 71  Unsafe lifts over time (Subject 2). 

Additional results to the experiments 

A tabular analysis for all three experiments was conducted to identify the 

“hotspots” which present the largest occurrences of ergonomically unsafe lifts. 
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Comparison is only possible for experiment three which had more than one subject 

involved.  

According to Table 9, most of these unsafe bending occurred in zone A2, B2, S2, 

and S3. These were the locations were concrete flooring material was either to be stored, 

removed, or installed. Any of these work areas could be improved by providing elevated 

work platforms, for example, the storage areas could be elevated in the future to allow a 

subject (worker) to easily grab or place material. 

Table 9  Number of unsafe bending per subject and work area. 

 A1 A2 B1 B2 S1 S2 S3 R1 R2 R3 Total 
Experiment 1:   57 45    0   102 
Experiment 2:  43 29   4 3  0 0  79 

Experiment 3: Subject 1  48  94 19 77 45 1 0  284 
Experiment 3: Subject 2  35  16 5 15 11 1 1 0 84 

Experiment 3: Both Subjects  83  110 24 92 56 2 1 0 348 

 

Secondly, improvements to work environment requires further attention. Area S1, 

in particular, had relatively small numbers of unsafe bending. The reason is that light and 

small plastic pedestals were stored in this area. They may not cause as much damage to 

health over time as would occur when heavy material is placed/lifted. However, even this 

work area could be elevated to decrease the times a subject is required to squat. Instead of 

a wooden palette on the ground a forklift temporarily lifting or a fixed palette at raised 

height might be installed. 

Table 9 summarizes the number of unsafe bending events performed by the 

subjects in each experiment and by specific work area. In experiment 3, a significant 

difference in the number of automatically detected unsafe bending (squatting) motions 

between Subject 1 and Subject 2 can be noticed. Subject one performed a total of 284 

unsafe bending acts while subject two only had 84. As explained previously, proper 

education and training might be provided to Subject 1 to stop unsafe bending. 



- 157 - 

 

7.5.5 Validation of UWB/PSM Data Fusion Approach with Video Camera 
Data 

The detecting of unsafe/unhealthy material handling activities was validated 

through a manual analysis of the video data that were recorded for all three experiments. 

The analysis of work activities using video served as ground truth. The results from the 

video were also divided into two categories: safe and unsafe bending. Results from video 

and UWB/PSM data were compared against each other to conclude on the error rate of 

the developed automatic ergonomics algorithm.  

The comparison of video and UWB/PSM data is shown in Figure 72. The figure 

shows four confusion matrices (one per experiment and subject). These matrices present 

adequate validation of the comparison. The horizontal direction of each confusion matrix 

describes the ground truth observation using manual interpretation of video camera 

footage. The vertical direction of the matrix shows safe/unsafe bending the algorithm 

automatically detected. The diagonal elements of the matrix represent the true positive 

cases (squat performed safely) and the true negative (squat performed unsafely) for both 

video observation and UWB/PSM algorithm. The non-diagonal elements indicate the 

number of false positive and false negative cases (misidentifications). On average the 

data fusion approach of UWB and PSM performed accurate detection of unsafe bending 

with an average success rate of more than 90%. 

False positive cases were due to rapidly changing postures. The utilized PSM 

technology yet has to be adapted to construction environment and may not have always 

reported a subject’s heart rate precisely. A typical example for such an event is when a 

subject performs several unsafe bending acts in a very short sequence of time (basically 

one after the other, also called rework or adjustment work to the same concrete block). 

As the subject does not carry a load during the second time of bending, but the heart rate 

is still elevated (the body has not recovered yet), the developed algorithm interprets the 

PSM signal as another unsafe bend. 

The false negative cases are another type of error, representing situations where 

the algorithm considers an unsafe lift as a safe motion. This error occurs because the 

PSM recordings of a subject are always slightly delayed (up to one second) during 

physically very demanding activities. A typical example is when a subject bends and lifts 
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a heavy load, then very rapidly stands up, and walks away. As the subject's torso angle is 

high at the moment of the lift, the heart rate might still be slow.  

 

Figure 72  Results validation by comparing manual video data analysis to the 

approach of fusing UWB and PSM data. 

These two types of errors can be reduced by calibrating the physiological factors 

such as heart rate for each individual. Usefulness of the developed approach may also 

depend on improvements in technology, for example, existing PSM technology has not 

been configured to suit construction industry applications. Measurement error can also be 

solved by increasing the data collection frequency and adding a physiological response 

function to compensate for signal delays. Since a subject's physiology response 
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mechanism depends very much on the individual, it will be a future research task to 

develop a uniform model that fits most users in the construction industry. Further study is 

necessary on the developed rules, such as the relationship of bending angle and heart rate, 

thresholds, and their interactions to precisely identify ergonomic hazards. 

7.6 Conclusions 

Rapid technological advances such as Ultra Wideband (UWB) and Physiological 

Status Monitoring (PSM) technology have facilitated monitoring the position and 

physiological status of construction personnel. Traditionally, data from these sources 

have been independently used and eventually analyzed to infer about the status of entities 

being observed. However, data collected from various sources can be integrated with the 

goal of achieving a higher level of knowledge. While possible, the capabilities and 

benefit of fusing the data from multiple sensors require further study, which is the aim of 

this investigation. Using a set of experiments conducted in an indoor facility, this paper 

demonstrated that UWB and PSM data can be fused to automatically identify and localize 

the ergonomic related unsafe working behaviors.  

The results show that current technology is satisfactorily reliable in autonomously 

and remotely monitoring subjects during simulated construction activities. Partially 

validated through video analysis, these results suggest that data from these sources can be 

successfully fused to augment real-time knowledge of construction workers’ status. 

Nevertheless, the selected monitoring technologies show limitations that have to be 

addressed to fully validate the proposed algorithm. For example, the bending threshold 

utilized to differentiate the squat from normal posture is ambiguous because of 

constraints in the existing technology. Therefore, the connection between the bending 

threshold and the performance of the PSM in dynamic situation requires further study. In 

summary, the present work showed that potential construction applications of some 

technologies lie in the integration of various technology-specific data sources.  
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CHAPTER VIII 

AUTOMATED TASK-LEVEL ACTIVITY LEVEL ANALYSIS 

Knowledge of workforce productivity and activity is crucial for determining whether a 

construction project can be accomplished on time and within budget. As a result, 

significant work has been done on improving and assessing productivity and activity at 

task, project, or industry levels. Task level productivity and activity analysis are used 

extensively within the construction industry for various purposes, including cost 

estimating, claim evaluation, and day-to-day project management. Nevertheless, 

assessment of task level productivity and activity are mostly performed through visual 

observations and after-the-fact analyses even though studies have been performed to 

automatically translate the construction operations data into productivity information 

and to provide spatial information of construction resources for specific construction 

operations. This chapter presents an original approach to automatically assess labor 

activity. Using data fusion of spatiotemporal and workers’ thoracic posture data, the 

authors have developed a framework for identifying and understanding the worker's 

activity type over time. This information is used to perform automatic work sampling that 

is expected to facilitate real-time productivity assessment. 

8.1 Introduction  

As several researchers reported, productivity in the construction industry has been 

declining over the past decades [191][192][193][194]. These analyses, however, are 

based on assembled measures from multiple governmental agencies (e.g., Census Value 

of Construction Put in Place, BLS work-hour data, and BEA structures deflation index) 

and do not regard the broader concerns regarding the accuracy of such productivity 

measures [195][196][197][198][199][200]. Up to today, the aggregated productivity 

performance is not measured for the most part [201] due to the lack of suitable and 

sustainable approaches to accurately and automatically monitor the actual activity and 

work output. In addition, an aging and decreasing construction workforce magnifies the 
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effects of these issues on the predictability of productivity performance. Before the 

economic recession, the construction industry offered employment to approximately 8% 

of the total civilian employed population in the United States of America [202]. However, 

after losing about 2.5 million jobs during the recession, the construction industry 

workforce only accounts for about 6% of the total domestic employment [203]. In 

addition, recent studies have highlighted that the recession has produced another effect: 

the construction industry workforce is aging because workers are delaying retirement 

[204]. 

As workforce productivity is a major aspect in determining whether a 

construction project can be accomplished on time and within budget [205][206], an 

effective and timely approach to productivity management is crucial to the success of 

construction projects and construction companies. An extensive literature on construction 

productivity has confirmed the importance of these concepts to the success of 

construction projects and companies. Productivity assessment has been found to be 

crucial in (a) supporting prompt and informed decisions to avoid productivity loss or 

enhance the productivity in ongoing operations [207], (b) assessing project performance 

for internal and external benchmarking [208], and (c) creating a basis for future 

improvement [209]. Even the introduction of lean production techniques to the 

construction industry while de-emphasizing the focus on productivity improvement [210] 

has heavily relied on productivity analyses to assess the effectiveness of lean construction 

approaches [211]. 

Due to the characteristics of the construction industry, the productivity of this 

industry can be assessed at three levels: task, project, and industry level [212]. Task level 

focuses on single construction activities, such as structural steel erection or concrete 

placing. Task level productivity is used extensively within the construction industry. 

Different construction tasks are combined at the project level. Obviously, different tasks 

imply different inputs and/or outputs. Thus, it is necessary to use adjustments to combine 

the individual task productivity. At the highest cumulative level, industry-level 

productivity comprises data from all the individual projects. The productivity indices 

calculated by the Bureau of Labor Statistic (BLS) are examples of industry-level 

productivity performance measurements. Such indices exist for industry sectors like 
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manufacturing. For reasons stated by [195][196], the BLS, however, currently does not 

maintain a productivity index for any sector of the U.S. construction industry. 

Productivity assessment at each level can be performed and reported in several 

separated ways. Each serves as an independent metric for understanding the productivity 

performance. For example, the majority of metrics to assess the productivity performance 

at the task level are single factor measures related with labor productivity. However, a 

standard and universally accepted definition or equation of productivity assessment does 

not exist in the construction industry. Traditional approaches for productivity analysis 

includes project-level information systems, direct observation methods and 

survey/interview based methods [92]. The application of these methods has been 

constrained by its limitations, including the high cost of performing manual data 

collection, the risk of interfering with activities under observation, and the tendency to 

produce inaccurate data. Moreover, these methods are mostly manual intensive, so they 

result in delayed information analysis and exchange [214][215]. 

Current practice strongly relies on historical production rates to develop estimates 

for future projects, but the accuracy of these estimates highly depends on the steadiness 

of the assumptions while requiring a comprehensive management of productivity records. 

Whereas on-site productivity analyses provide important information necessary for 

timely jobsite decision-making, changes in workforce composition are expected to 

produce uncertainties in historically-based production estimates. Hence, there is a need 

for data collection and processing approaches that would produce real-time automated 

productivity assessment. 

Gathering relevant data that represent the performance of construction operations 

is crucial to measure productivity [92]. During the past decades, cutting edge 

technologies have been introduced and used to raise the efficiency level of engineering 

and design operations of construction projects. An increasing number of information 

sources is today available for data collection and analysis, including remote sensing 

technology that allows for autonomous and remote data collection of construction 

resources. Data collected from various sources can be integrated with the goal of 

achieving a higher level of knowledge about the entities being observed [146].  
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This paper presents an original approach to automatically assess labor 

productivity. Using data fusion of spatio-temporal and workers’ thoracic posture data, the 

authors have developed a framework for identifying and understanding the worker's 

activity type over time. This information is utilized to perform automatic work sampling 

that is expected to facilitate real-time productivity assessment.  

8.2 Background 

8.2.1 Definition of Productivity 

Previous researchers have identified numerous factors that can affect the success 

of projects. Despite the vast quantity of identified factors, four parameters are usually 

agreed upon as the most important for determining success of a project: cost, quality, 

time, and safety. However, obtaining the expected quality, cost, and time is strongly 

related to the achievement of the expected productivity. Therefore, productivity is widely 

used as a performance indicator to evaluate construction operations throughout the entire 

construction phase.  

A consensus regarding a common productivity definition as well as standard 

productivity measurement techniques has not been reached by the construction industry 

or academia [216][217][218]. A common measurement of productivity describes the ratio 

between the outputs of a production process over its inputs, which is defined as  
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Nevertheless, the selection of how to define input or output is strictly related to 

the scope of the measure itself and, frequently, to the availability of data. In general, it is 

possible to define Single Factor Productivity (SFP) or Multi Factor Productivity (MFP) 

[216][217][218]. SFP, which is also known as partial factor productivity, requires the 

ratio between a measure of output (e.g., gross value added) and a measure of one input 

(e.g., number of man-hours). In computing MFP, which is also known as total factor 

productivity, several parameters (e.g., labor, materials, equipment, energy, and capital) 
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are considered simultaneously as inputs that influence the output. Factor Productivity is 

an example of MFP.  

Since it is relatively difficult to measure total factor productivity on a typical 

construction project (the utilization of equipment and materials often remain relatively 

constant from one project to the next), instead of using MFP, partial factor productivity is 

widely accepted for productivity assessment [155]. According to the Organization for 

Economic Co-operation and Development [219], labor productivity is the most frequently 

used, followed by capital-labor MFP, and capital (K), labor (L), energy (E), materials (M), 

and services (S) MFP (i.e., KLEMS). This paper adopted the labor productivity metric, 

which is defined as the number of work hours necessary to complete the unit of physical 

outputs [220]. As is shown in equation (Eq. 8-2), the labor productivity does not 

explicitly consider the cost of labor.  
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8.2.2 Productivity Assessment Method 

At the end of the 19th century, Frederick W. Taylor started theorizing about 

scientific management (i.e., Taylorism). Since then, several productivity assessment 

methods have been created and adopted within the construction industry. In particular, 

methods can be grouped in two main categories: Productivity Measuring Methods 

(PMMs) and Productivity Improving Methods (PIMs). PMMs’ goal is to measure 

productivity performances for internal and/or external benchmarking. Examples of 

PMMs include the Method Productivity Delay Model (MPDM) [221], the Construction 

Industry Institute (CII) site-level labor productivity assessment [222], the XYZ model 

[223], and the Construction Productivity Metric System (CPMS) [208]. PIMs aim to 

evaluate how effectively equipment and workforce utilization are managed. Many PIMs 

rely on the motion and time study theory, including (a) time studies (also called 

stopwatch studies); (b) questionnaires and interviews (e.g., questionnaires for craftsmen 

or foremen; Foreman Delay Survey, FDS; Craftsman Questionnaire Sampling, CQS); and, 

(c) activity/work sampling.  
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Work sampling technique, which utilizes alternating Poisson process, has been 

widely used to understand the characteristics of a work process in industrial settings. In 

the construction industry, this technique is implemented as an indirect method to measure 

activity level and productivity. Another PIMs example is activity analysis, which is the 

evolution of the practice of work sampling [219]. The activity level is defined as the 

percentage of time that craft workers spend on a particular activity [219]. The 

productivity is therefore represented by the direct work time rate, which is shown in 

equation (3). In fact, measuring work rate is not the same as measuring productivity. A 

strong relationship between these two factors has not been fully established yet. There is 

some evidence from case studies though that suggests a weak to strong 

relationship.  Reasons for this lack of a strong relationship are the influences of rework, 

turnover in the labor pool, and of poor work planning [224]. Compared to the traditional 

work sampling technique, the activity analysis technique includes significantly more 

detailed observations and is able to provide more descriptive assessment of the 

effectiveness of the utilization of craft workers' time, and can continuously identify the 

areas for productivity improvements.  
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8.2.3 Available Sensing Technologies for Productivity Measurement 

Even though several existing productivity measurement methods can generate 

useful information to improve construction activities [207], many of these methods 

present severe limitations [67][214][215][225], including being manually intensive, 

involving human judgment, and being ineffective in providing timely and accurate 

control data. Thus, it is reasonable to assume that automated productivity assessment 

methods can be very beneficial for the construction industry.  

With the development of new information and sensing technologies, it is possible 

to provide a steady and reliable data stream of construction process. Video recording of 

construction activities is now commonly used and its benefits have been extensively 

studied [226][227][228]. However, the process of manually review video-recordings is 

inefficient. To overcome this limitation, a video interpretation model, which formalizes 
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key concepts and procedures from the video within construction domain, was developed 

to automatically translate the construction operations data into productivity information 

[214]. Nevertheless, automated image and video interpretation requires advanced pattern 

recognition and computer vision techniques within the construction context [67]. A four-

dimensional (4D) reality model based on photograph logs is implemented for automated 

construction progress monitoring [229]. Automated vision tracking techniques have also 

been studied to provide spatial information of construction resources for specific 

construction operations [93][230][231]. 

Despite of the advantages and achievements of using video cameras, it is still a 

challenge to monitor multiple targets in the harsh construction environment in real-time. 

Besides vision technology, sensor-based tracking technologies show potential 

applications on assisting automated work sampling on material installations [60]. 

Selection of one particular tracking technology depends on the application area, signal 

quality, data stream provided, and the calibration requirements [232]. Ultra Wideband 

(UWB), as an active Radio Frequency Identification (RFID) technology, employs a tag-

to-reader approach [76], which allows recording location data of multiple resources 

(worker, equipment, and material) in real-time. Research has demonstrated that a 

commercially-available UWB system is able to provide accurate real-time spatio-

temporal data of construction workers, equipment and materials, while the tracking error 

in a harsh construction environment was less than half a meter [146]. 

8.2.4 Data Fusion Applications for Construction Engineering 

Data fusion is a technique that combines data from multiple sources with the 

purpose of achieving refined identity estimates and inference [183][184].  Data fusion 

applications span a very wide domain [190] including military command and control, 

robotics, image processing, air traffic control, medical diagnostics, pattern recognition 

and environmental monitoring [186][233]. In construction engineering, data fusion has 

been studied for automated tracking of materials [187], for the identification and 

localization of engineered components [60], and for the analysis of site operations [93]. 

Moreover, the implementation of Real-time Location Sensing (RTLS) technologies in 
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combination with Physiological Status Monitors (PSMs) was used for analyzing 

ergonomic performance of construction tasks [232]. 

8.3 Objective and Scope 

By integrating data from real-time location sensors (RTLS) and thoracic 

accelerometers this study attempts to continuously assess task activities of construction 

worker(s). The goal of this research is to automate the process of activity analysis by 

fusing information on body posture and positioning factors of repeated manual material 

handling activities in construction environments. The first objective is to automatically 

identify and characterize the various site geometries related to different activities 

including work zone, material zone, and rest zone. The second objective is to 

automatically measure the direct work time rate by computing the time lapse of both 

productive and non-productive activities including wrench time, material time, traveling 

time and rest time.  

This study is limited to fusing information from two specific sensing technologies 

(UWB and PSM). All tests were performed in a controlled study environment. Working 

activities that were recorded with UWB, PSM, and video camera technology occurred 

indoors and on the same elevation level. This study focuses only on the labor productivity 

measurement. All the working activities associate to the construction personnel, 

especially, those involved in heavy load lifting.  

8.4 Methodology 

To date, research efforts have not explored the potential of fusing real-time data 

on construction location tracking and posture to automate activity analysis of multiple 

targets. This paper proposes a data fusion approach to fill this gap. To test this approach, 

the authors designed several working scenarios of repeated material handling activities 

involving multiple workers. The goal of this paper is achieved by integrating and 

analyzing the location data and thoracic posture information of the workers. The 

automated data analysis methodology is shown in a flowchart in Figure 73. The 

methodology consists of three major components: data preparation and site geometry 

identification, activity identification and sampling, and productivity analysis. Further, 
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two trained raters accomplished a manual activity analysis based on the experiment video 

recordings to verify the automated data analysis accuracy level. A description of manual 

activity analysis protocol is here provided: 

• Work: the participant is performing the assigned construction task within a work 

zone (e.g., assembling the deck). 

• Material: the participant is handling construction material within a material zone 

(e.g., picking up supports/tiles). 

• Travel: the participant is moving between, material, and rest zones. 

• Idle: any activity that is not work, material, or travel (e.g., staying inside 

work/material zone with free hands, re-hydrating, talking, and checking PPE). 

 

 

Figure 73  Flowchart of automated activity analysis and productivity measurement 

by reasoning the workers’ spatio-temporal data and posture status. 
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8.4.1 Data Preparation and Site Geometry Identification 

Data Collection and Filtering 

This approach is tested in an indoor environment that had a simple site layout and 

lacked major obstructions. Therefore, a commercially-available UWB localization system 

is utilized to monitor the real-time spatial and temporal information of the participants in 

the test case. The UWB system consists of a central processing hub, several receiving 

antennas and active RFID tags as signal transmitters. The location of the UWB tag is 

automatically triangulated by computing the Time-Distance-of Arrival (TDoA) of the 

received radio frequency signal from multiple UWB receivers. The UWB tags are placed 

on the helmets of the participants for location tracking purpose, as well as at static 

positions to identify special site geometry, including material, work, and rest zones.  

A commercial PSM system was employed to autonomously and remotely monitor 

the posture of the participants. The selected system is equipped with a wearable 3-axial 

thoracic accelerometer. The three-axial (vertical, lateral and sagittal) accelerometer is 

used to generate the participant’s posture measurement in Vector Magnitude Unit (VMU). 

VMU is measured as a portion of the gravity acceleration (g), which is used to derive the 

participant’s thoracic bending angles from the 3-axis gravity-compensated value 

calculated over the previous 1.008 second epoch. The derived bending angle becomes a 

scalar with positive and negative values, where zero degree represented the vertical right-

up posture. 

The location tracking and thoracic posture data of the participant is collected 

separately, while both data streams carry noises due to various data collection 

mechanisms. The noises of the spatial data collected by the UWB system may result in 

unexpected outliers of travelling speed, which is derived from the first differential of the 

spatiotemporal data. Since the traveling speed determines the moving status of the 

participant which directly link to the result of identification of the participant’s activity 

type, it is necessary to smooth the UWB signals and remove the unexpected outliers. 

Thus, the location tracking data are filtered with a Robust Kalman filter [146]. The UWB 

data error analysis as well as PSM/UWB data synchronization has been explained in 

detail in [232].  
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Identifying Work, Idle, Travel, and Material Handling Zones 

The UWB tracking system is setup based on a known local Cartesian coordinate 

system established at the workface. Several task-related zones represented by polygons 

are initially identified by the user based on the site layout and work plan. The task-related 

zone categories include work, material handling, and rest zones. Since the site layout may 

change as work activities advance, zones need to adapt to match the participant’s 

spatiotemporal pattern accordingly. Filtered spatial data are implemented to dynamically 

update each zone’s geometrical properties (location and shape) by reasoning the workers’ 

moving statuses. Whereas zones were initially defined by the user, each zone’s location 

and shape may change over time, and a new zone may have to be assigned. For example, 

an initially defined material zone may shrink and furthermore disappear when the 

materials inside the corresponding area have been removed; or a new rest zone has to be 

defined if a worker takes frequent stops in the middle of traveling.  

Data Synchronization 

Since the PSM and UWB systems monitor the work activities on two different 

aspects and independent timelines of the same experiment, the attributes of the location 

tracking and posture information have to be fused. Fusing these two data streams requires 

the data to be synchronized. As a network camera was utilized to visually record the 

experiments, the temporal information from both sensors is synchronized to the video 

time. The two data streams are then transformed (down-sampled or up-sampled) into a 

uniformed data log frequency to perform data fusing.  

The synchronized data streams from UWB and PSM sensors are fused through 

probabilistic inference. A fuzzy representation is implemented to define the results of 

spatiotemporal reasoning and activity status reasoning. The spatio-temporal status is 

therefore described as “inside” or “outside of a zone”, and the activity status is 

represented as “bending” and “walking”. The likelihood function using Bayesian 

approach is computed at a specific reasoning status Ai at a given data synchronization 

function, such that 
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newS is new datum from sensor k, k

oldS is old datum from sensor k, and 
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| oldoldi SSAP is the prior estimation in the previous data synchronization model. 

8.4.2 Activity Sampling 

The fused data stream including location and posture attributes is utilized to 

assess the work activities based on defined data query rules. In order to achieve an 

accurate work activity assessment, it is crucial to define a set of proper activity categories, 

which must suit the need and the objective of the study and the feature of the work tasks 

that are being monitored. In addition, the defined categories must be able to involve all 

activities that might be observed. In this paper, the activities are sampled into four work 

categories: direct, material handling, travel, and idle. Then the activity sampling 

characterizes the proportion of time that the participant performed on specific activities. 

This process uses a two-step reasoning mechanism: spatio-temporal reasoning and 

activity reasoning. 

Categorize activities by spatiotemporal reasoning 

The fused data stream is firstly queried on the spatial and temporal aspect. The 

geometrical relationship between the participant’s trajectories and the updated zone 

definition is checked, and the relevant data are extracted such that the location tracking 

data are intersected with zones. Three zone types are assigned by the user including work 

zone, material zone, and rest zone. Trajectories of the participant presenting inside zones 

are classified and characterized with specific zone type. 

Categorize activities by activity status reasoning 

The extracted location tracking data that intersect with various zones are further 

reasoned by the thoracic posture of the participant. Staying in a specific zone will not be 

identified as a corresponding activity unless a motion change of the participant’s thoracic 

posture status is observed. The fused data are then classified and characterized with 

identified activity status including working, traveling, material handling, and idling. The 
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identification of direct work activity requires the behaviors of the participant to meet two 

criteria: the participant has (1) to be present in the work zone; and (2) to have a high 

posture angle. Activities in the work zone with up-right posture will be considered as 

either traveling or idling according to the participant’s moving speed. Similarly, the 

material handling activities are identified through the posture status and movement of the 

participant inside and/or outside the specific zones. For example, the trajectories outside 

zones are regarded as traveling or idling according to the moving speed.  

8.4.3 Productivity Analysis 

As the activity type has been identified, the work cycle information such as the 

start time, end time and the duration that a participant conducts each identified activity 

can be determined. The activity level, which is represented by the rate of direct work time 

versus total time (equation 8-5), can be therefore automatically computed.  

To be noticed, the estimated direct work time rate (equation 8-5) computed by this 

approach might be an over-estimation of the actual activity level due to the accuracy of 

activity identification. Under the approach adopted in this paper, a work activity is 

determined from the participant staying inside the work zone while assuming a possible 

working posture. This approach cannot accurately identify whether a participant is 

actually performing the work activity or mimicking it. For instance, a participant could 

bend down inside the work zone while waiting material to be delivered. Whereas this 

should be recorded as idling, the approach would instead record it as direct work. 

However, inaccuracy of visual observations is expected to be higher due to a combination 

of inconsistent judgment of the work activity across raters and individual rater’s test-

retest subjectivity. Therefore, the activity level measured by the proposed approach can 

be utilized as the upper bound of the actual case, such that 
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8.5 Experiment and Results 

The researchers designed a set of experiments to measure and analyze the 

productivity performance of several crafts when they conduct repeated material handling 

activities. Experimental data were used to test the proposed approach, and results are 

presented in this section. This section also presents the work cycle information that can 

be generated from fusing location tracking and thoracic posture data. 

8.5.1 Experimental Setting 

A total of three experiments were performed to simulate construction tasks. These 

experiments were conducted in a controlled indoor environment without major 

obstructions to avoid risk of interferences in the propagation of the wireless signal. Figure 

74 shows a layout of the experimental testbed. A description of these simulated 

construction tasks is also provided:  

• Experiment No.1 (assembling a raised deck): one participant assembles a deck 

using plastic supports and 16-lb concrete tiles; one installation area and two 

material storage areas. 

• Experiment No.2 (building a wall): one participant builds a wall using 23-lb 

concrete blocks; one installation area and one material storage area.  

• Experiment No.3 (assembling and disassembling a raised deck): one participant 

disassembles a deck and store material, another participant uses this material to 

assemble a raised deck in a different work area. Assembling and disassembling 

are dependent activities; two storage areas used by both participants and two 

installation areas used separately. 

Three simulated construction tasks were performed in the same space using a 

similar experimental layout (see Figure 74). Four video cameras were installed on the 

perimeter of the experimental area. The first two experiments were conducted 

simultaneously, since the two participants worked separately without interfering paths. 

The experimental layout for the first construction task (right on Figure 74) consisted of an 

installation area, a disassembling area, and a material storage bay area. The layout for the 

second task was slightly different from the first, which had two material storage areas 
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containing concrete blocks and plastic footings. The third task had interaction of both 

participants in the entire work area.  

 

 

Figure 74  Experiment settings. 

The participant’s location and thoracic posture status is monitored by a UWB and 

a PSM system. The error of the UWB system was calibrated using three specific spots 

with known coordinates. Three additional UWB tags with multiple frequencies (one 60 

Hz and two 1 Hz) were placed on the same spot as the reference tag was located. All tags 

maintained stationary during the error calibration. The three reference tags collected 

206190, 2495 and 3050 data points, respectively. The average error to each tag was 

0.28m, 0.31m, and 0.27m, respectively. The error associated with standard deviations 

was 0.16m, 0.35m, and 0.12m, respectively. The computed errors demonstrated that the 

UWB infrastructure layout in this experiment setting had capacity to provide reliable 

location tracking data. This technique confirmed previous research that indicated that a 

uniform location estimation error distribution can be observed within the coverage area of 
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UWB receivers [146]. In further experiments, these tags supplied ground truth data to 

moving UWB tags inside the experimental setting.  

In addition to the location data that were gathered by UWB, the participants’ 

variation in posture status was determined by an accelerometer. The accelerometer was 

embedded in a PSM device that was mounted on a chest belt that a worker wore. The 

utilized PSM system had also the capability to transmit live data wirelessly through a 

USB radio receiver, which was connected to a data logging PC. The PSM’s data stream 

included data from several sensors, including a three-axial (vertical, lateral, and sagittal) 

accelerometer, with which the device generates the participant’s default activity data 

measured in Vector Magnitude Unit (VMU, which is measured in portion of the gravity 

acceleration: g). The participant’s instant posture data are derived through the PSM 

system’s built-in module using readings from the accelerometer. The posture data carry a 

scalar with positive and negative values, where 0 degree represents vertical right-up 

posture(s). 

8.6 Results 

This section demonstrates the results of the activity level estimation and the work 

cycle analysis from the three experiments. Experiment No. 1 and No. 2 were conducted 

by a participant whereas two participants were involved in Experiment No. 3. This last 

experiment was designed to assess if the proposed approach was able to analyze the 

productivity performance of multiple participants. Further, this section presents the 

manual activity analysis output and compares it with the automated activity analysis 

estimation. 

Experiment No. 1 

In experiment 1, the speed distribution of the participant was fitted by two 

Gaussians with the mean at 0.19m/s and 0.91m/s and the standard deviation at 0.01m/s 

and 0.11m/s, respectively. The two Gaussians joint at 0.60m/s, which was set to be the 

speed threshold to distinguish the participant’s moving and stationary status. The speed 

threshold was utilized to classify various task-related zones. In Figure 75, two work 

zones (A1 and A2), two storage zones (S1 and S2), and two rest zones (R1 and R2) were 
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clustered from the trajectory data. Four types of activities including direct work, traveling, 

material handling, and idling were classified from the fused data. Their paths and 

locations are plotted in Figure 75.  

 

Figure 75  Experiment 1: results of classified activities of the first participant. 

Table 10 to Table 15 show the results to the first participant in experiment 1. The 

tables include number of trips between zones (e.g., Table 10), total and average duration 

of the trips between zones (e.g., Table 11 and Table 12), total and average traveling 

distance (e.g., Table 13 and Table 14), and average traveling speed (e.g., Table 15). The 

diagonal elements (i, i) in each table represents the corresponding information when the 

participant stayed inside the same zone. The non-diagonal element (i, j) of the matrix 

represents a cycle from zone i to j.  

Table 10 represents the count of traveling cycles among specific zones, which 

exposes the travel pattern of the participant. The travel pattern is determined by the 

layout of the experimental settings as well as the designed work plan. The values in the 

non-diagonal elements in Table 10 represent the frequency that that participant traveled 
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from the origin (row) to the destiny (column), and vice versa. To be noticed, the diagonal 

elements of the table have significantly greater value than the non-diagonal elements. The 

high value in the diagonal element in Table 10 does not mean that the participant entered 

and exited the same zone very often. Instead, the values in the diagonal elements of this 

table represent how many times the participant bends down to perform related work such 

as installation, de-installation, and picking up materials. In this experiment, the 

participant bends down 65 and 66 times to install materials in work zones A1 and A2, 

respectively. This participant stayed a total of three times ({R1, R1}=1 and {R2, R2}=2) 

in the rest zone to take breaks.  

The graphical interpretation of Table 10 in Figure 75 is a bit more difficult. Table 

10 shows that the participant travels from A2 to R2 once, but in Figure 75 the only path 

entering zone R2 is from A1. As a matter of fact, the participant starts traveling from A2, 

passes through A1, and eventually arrives at R2. Since the participant does not stop on 

the route and the algorithm computes a new cycle only when the participant changes 

kinematic status, passing through a zone without stopping will not be identified as an 

entering or exiting activity. Therefore, in this particular instance, the participant traveled 

from A2 to R2 and not from A1 to R2. 

Table 10  Number of stays within one zone and number of travel cycles between 

zones. 

Number of cycles [No.] A1 A2 S1 S2 R1 R2 
A1 65 3 12 43   
A2 3 66 12 35 1 1 
S1 13 13 26    
S2 42 35 1 80   
R1  1   1  
R2      2 

 

Table 11 and Table 12 represent the total and average duration of the trips that the 

participant made between zones. Similarly to Table 10, the diagonal elements have 

significantly greater value than the non-diagonal elements, since they represent the total 

time that the participant spent in each specific zone.  
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Table 11  Total time spent within a zone and traveling between two zones. 

Total Time [MM:SS] A1 A2 S1 S2 R1 R2 
A1 15:25 00:28 01:42 02:40   
A2 00:29 14:26 00:46 04:15 00:12 29 
S1 01:34 00:44 01:33    
S2 02:34 03:57 00:08 03:17   
R1  00:06   00:33  
R2      03:42 

Table 12  Average time spent within a zone and traveling between two zones. 

Avg. Time 
[MM:SS] 

A1 A2 S1 S2 R1 R2 

A1 00:14 00:09 00:08 00:04   
A2 00:09 00:14 00:04 00:07 00:12 00:29 
S1 00:07 00:02 00:04    
S2 00:04 00:07 00:08 00:03   
R1  00:06   00:33  
R2      01:51 

 

Table 13 and Table 14 list the total and average travel distances between zones. 

Non-diagonal elements that represent the movement between work zones and material 

zones such as {A1, S1} and {A1, S2} have relatively high values, which could be 

interpreted as long traveling distances. Since the zones are relatively small, these high 

values stem from small movements (e.g., small side steps back and forth) a worker 

performs inside a zone. Additional distance errors might be added from UWB reading 

accuracy (e.g., UWB tag positions on helmet might move more frequently than if 

installed on the worker’s belt) and tag refresh rate (e.g., 60Hz vs. 1 Hz). Since the 

participant spends most of the time inside a zone in this experiment and UWB location 

data were collected at 15Hz, the cumulative measured travel distance inside a zone over a 

longer period is therefore higher than expected. 
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Table 13  Total traveling distance within a zone and between two zones. 

Total Traveling  
Distance [m] 

A1 A2 S1 S2 R1 R2 

A1 279.25 33.65 105.77 132.82   
A2 32.26 254.14 33.04 259.86 6.65 20.35 
S1 112.60 34.63 37.96    
S2 139.84 255.52 6.59 88.87   
R1  6.74   4.73  
R2      46.01 

 

Table 14  Average traveling distance within a zone and between two zones. 

Average Traveling  
Distance [m] 

A1 A2 S1 S2 R1 R2 

A1 4.30 11.22 8.81 3.09   
A2 10.75 3.85 2.75 7.42 6.65 20.35 
S1 8.66 2.66 1.46    
S2 3.33 7.30 6.59 1.11   
R1  6.74   4.73  
R2      23.00 

 

Table 15  Average traveling speed within a zone and between two zones. 

Average Traveling  
Speed [m/s] 

A1 A2 S1 S2 R1 R2 

A1 0.37 1.19 1.06 0.87   
A2 1.14 0.36 0.74 1.03 0.53 0.69 
S1 1.14 0.79 0.52    
S2 0.91 1.07 0.84 0.51   
R1  0.88   0.15  
R2      0.23 

Table 15 shows the average travel speed of the participants during the experiment. 

The speeds on the diagonal elements of the table are significantly smaller that on the non-

diagonal elements. The low speed is caused by the fact that the participants do not move 

very often inside specific zone when certain tasks such as direct work and material 

handling are conducted.  
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Figure 76  Result of automated work sampling for every 5 minutes (experiment 1, 

Participant 1). 

 

Figure 77  Result of manual work sampling (Experiment 1, Rater 1). 
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Figure 78  Result of manual work sampling (Experiment 1, Rater 2). 

Results of the automated and manual activity analysis for experiment 1 are shown 

in Figure 76 to Figure 78. Table 16 presents the average difference and the standard 

deviation of the differences between the automated and manual activity analysis. The 

activity level of the participant is assessed every 5 minutes, which is represented by the 

ratio of direct work time to the observation time. In this experiment, the productivity 

level maintained at 50% for the most of the experimental period, and it decrease at the 

end of the experiment due finishing up the work and a longer rest.   

Table 16  Average and standard deviation of the difference between automated and 

manual activity analysis (Experiment 1). 

 
Rater 1 Rater 2 

Work Material Travel Idle Work Material Travel Idle 
Average 

difference 
6.4% 1.3% -4.0% -3.7% 0.9% -1.2% -0.1% 0.3% 

Stand. dev. of 
differences 

2.0% 2.3% 3.7% 4.2% 3.4% 2.5% 4.1% 6.3% 

 

Experiment No. 2 

The same analysis method was repeated for the second experiment. The results to 

the second experiment are plotted and listed in Figure 79 to Figure 82 and Table 17 to 
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Table 22. In Figure 79, a user marked the initial work zones (B1, B2, and R2). The 

developed algorithm automatically identified two additional zones (Idle Zones 1 and 2) 

based on the trajectory analysis. Both of these two zones were clusters that corresponded 

to speeds of the participant that were slow. The convex hull to each of these zones is 

represented by a series of ordered nodes, while the consecutive nodes form a polygon. 

Entering the polygon triggered the data recording for the particular zone. In this particular 

case, the slow speed and no direct work activity in these zones indicate either a rest or 

idle zone. Manual analysis of the video recordings confirmed this observation. 

No material handling activity was observed (see Figure 80). Since the work tasks 

of the participant is to de-install the concrete block from one work zone and use the same 

materials to install another concrete slab inside the other work zone, the algorithm 

determines both activities as productive work. 

 

Figure 79  Experiment 2 – work zones and trajectories of travel cycles of the second 

participant. 

-4 -2 0 2 4 6 8 10 12 14 16
-2

0

2

4

6

8

10

12

14

16

18

20

22

24

X [m]

Y
 [

m
]

Zone Edges

Travel Path

Direct Work

Rest and Idle

Work Zone 

B2

Work Zone 

B1

Rest Zone

R2

Idle Zone

I1
Idle Zone

I2



- 183 - 

 

Table 17  Number of stays within one zone and number of travel cycles between 

zones. 

Number of  
cycles [No.] 

B1 B2 R2 I1 I2 

B1 108 98 1 1  
B2 98 118   1 
R2   32   
I1 1   3  
I2 1    3 

 

Table 18  Total time spent within a zone and traveling between two zones. 

Total Time  
[MM:SS] 

B1 B2 R2 I1 I2 

B1 11:03 17:51 00:38 00:10   
B2 18:51 08:31    00:04 
R2   02:23   
I1 00:07   00:53  
I2 00:13    00:21 

 

Table 19  Average time spent within a zone and between two zones. 

Avg. Time 
[MM:SS] 

B1 B2 R2 I1 I2 

B1 00:07 00:11 00:38 00:10  
B2 00:12 00:05   00:04 
R2   00:05   
I1 00:07   00:18  
I2 00:13    00:07 

 

Table 20  Total traveling distance within a zone and between two zones. 

Total Traveling  
Distance [m] 

B1 B2 R2 I1 I2 

B1 218.81 1239.88 39.84 8.10  
B2 1224.03 261.43   3.34 
R2   34.87   
I1 7.37   9.21  
I2 10.78    4.03 
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Table 21  Average traveling distance within a zone and between two zones. 

Avg. Traveling  
Distance [m] 

B1 B2 R2 I1 I2 

B1 2.03 12.65 39.84 8.10  
B2 12.49 2.22   3.34 
R2   1.09   
I1 7.37   3.07  
I2 10.78    1.34 

 

Table 22  Average traveling speed within a zone and between two zones. 

Avg. Traveling  
Speed [m/s] 

B1 B2 R2 I1 I2 

B1 0.52 1.15 1.05 0.86  
B2 1.08 0.62   0.97 
R2   0.38   
I1 1.06   0.19  
I2 0.86    0.28 

 

Figure 80  Result of automated work sampling for every 5 minutes (Experiment 2). 
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Figure 81  Result of manual work sampling (Experiment 2, Rater 1). 

 

Figure 82  Result of manual work sampling (Experiment 2, Rater 2). 
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Table 23  Average difference and standard deviation of the differences between the 

automated and manual activity analysis (Experiment 2). 

 
Rater 1 Rater 2 

Work Material Travel Idle Work Material Travel Idle 
Average 

difference 
-1.4% NA 0.7% 0.7% -10.0% NA 9.7% 0.3% 

Stand. dev. of 
differences 

4.6% NA 4.0% 5.0% 5.4% NA 4.4% 5.2% 

 

Experiment No. 3 

The results of the activities that were automatically detected of the two 

participants in the third experiment are plotted in Figure 83 and Figure 84. Two work 

zones (A2 and B2), three material zones (S1, S3, and S4), and four rest zones (R1 to R4) 

as well as the corresponding activities in and in between them were identified. The two 

participants worked as a team. While the first participant’s duty was to de-install material 

from one work zone and deliver the material to the storage zones, the task of the second 

participant was to use the material available at the storage zones to install a floor system 

in another work zone. 

Table 24 to Table 30 list and compare the statistics of the work cycle from both 

participants. Numbers to each participant are listed in the tables. Both participants were 

conducting activities simultaneously. Data analysis similar to the previous two 

experiments can be conducted. 

Data in Table 24 show how often the participants stayed in a work zone. For 

example, Participant 1 stayed in A2 99 and in B2 115 times. Similar information can be 

generated to any of the zones. 

Table 25 can be analyzed in the following way: Participant 1 spent less time inside a 

work zone, because the task was material removal (which was quick and easy to do). 

The time spent on traveling from one zone to another is therefore significantly 

higher than the ones of Participant 2. In contrast, Participant 2 who had to 

accurately install the floor material and had to be concerned of the quality of the 
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final product significantly spent more time in the work zones. For example, adding 

the values in  

Table 25 for work zone A2 and B2 for Participants 1 and 2 equals to 11 minutes 

and 32 seconds and 32 minutes and 36 seconds, respectively. The travel time of 

Participant 1 to areas S1, S3, S4 equals 26 minutes and 31 seconds, while Participant 2 

spent 10 minutes and 52 seconds traveling to the same areas. Other data in the table can 

be calculated and used for travel cycle analysis. 

Table 26 to Table 29 relate to travel speed and distances within and to each zone. 

As previously explained, some values in these tables can become more useful for 

practitioners than others, e.g. in assessing work productivity, site layout, ergonomics 

analysis. Many more applications exist where such technology could be applied and 

become useful, e.g., how often do workers take (required) breaks. 
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Figure 83  Experiment 3 – Work zones and trajectories of travel cycles of 

Participant 1. 

 

Figure 84  Experiment 3 – Work zones and trajectories of travel cycles of 

Participant 2. 
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Table 24  Number of stays in one zone and number of travel cycles between zones. 

Number of Cycles [No.] A2 B2 S1 S3 S4 R1 R2 R3 R4 

A2 
Participant 1 99  20  74     
Participant 2 233  11 86  1  2  

B2 
Participant 1  115 19 82      
Participant 2 1 254 15  91   4  

S1 
Participant 1 16 17 39 1 2 2 1   
Participant 2 14 20 35       

S3 
Participant 1  83  88   1   
Participant 2 86   90      

S4 
Participant 1 76   1 88     
Participant 2  91   95     

R1 
Participant 1      7 2   
Participant 2   3   4    

R2 
Participant 1 1 1   1  20   
Participant 2          

R3 
Participant 1          
Participant 2   4   2  6  

R4 
Participant 1          
Participant 2   1      1 

 

Table 25  Total time spent within a zone and traveling between two zones. 

Total Time [MM:SS] A2 B2 S1 S3 S4 R1 R2 R3 R4 

A2 
Participant 1 06:38  01:04  11:37     
Participant 2 15:11  00:38 05:07  00:39  00:22  

B2 
Participant 1  04:54 00:56 12:54      
Participant 2 00:03 17:25 00:36  04:31   00:56  

S1 
Participant 1 00:48 00:58 01:18 00:15 00:50 00:15 00:07   
Participant 2 00:47 00:58 01:31       

S3 
Participant 1  12:11  02:00   00:39   
Participant 2 05:23   03:18      

S4 
Participant 1 13:06   00:11 02:27     
Participant 2  05:34   03:40     

R1 
Participant 1      01:20 00:10   
Participant 2   00:23   03:45    

R2 
Participant 1 00:08 00:07   00:03  09:33   
Participant 2          

R3 Participant 1          
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Participant 2   00:27   00:05  02:03  

R4 
Participant 1          
Participant 2   00:11      02:11 

Table 26  Average time spent within a zone and traveling between two zones. 

Avg. Time 
[MM:SS] 

A2 B2 S1 S3 S4 R1 R2 R3 R4 

A2 
Participant 1 00:04  00:04  00:10     
Participant 2 00:04  00:04 00:04  00:39  00:11  

B2 
Participant 1  00:03 00:03 00:10      
Participant 2 00:03 00:04 00:03  00:03   00:14  

S1 
Participant 1 00:03 00:04 00:02 00:15 00:25 00:08 00:07   
Participant 2 00:04 00:03 00:03       

S3 
Participant 1  00:09  00:02   00:39   
Participant 2 00:04   00:03      

S4 
Participant 1 00:11   00:11 00:02     
Participant 2  00:04   00:03     

R1 
Participant 1      00:12 00:05   
Participant 2   00:08   00:57    

R2 
Participant 1 00:08 00:07   00:03  00:29   
Participant 2          

R3 
Participant 1          
Participant 2   00:07   00:03  00:21  

R4 
Participant 1          
Participant 2   00:11      02:11 

 

Table 27  Total traveling distance within a zone and between two zones. 

Total. Traveling 
Distance [m] 

A2 B2 S1 S3 S4 R1 R2 R3 R4 

A2 
Participant 1 269.81  69.12  933.20     
Participant 2 454.93  37.44 311.98  22.65  17.29  

B2 
Participant 1  297.85 60.83 1037.57      
Participant 2 3.16 546.72 40.71  290.63   44.28  

S1 
Participant 1 52.37 68.03 51.68 16.49 60.48 14.62 7.72   
Participant 2 47.25 53.21 51.41       

S3 
Participant 1  999.10  118.08   38.48   
Participant 2 309.18   129.11      

S4 
Participant 1 1057.24   17.12 139.21     
Participant 2  332.32   150.14     

R1 
Participant 1      31.70 10.16   
Participant 2   23.11   47.86    

R2 
Participant 1 9.22 7.49   3.84  200.71   
Participant 2          
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R3 
Participant 1          
Participant 2   28.19   3.83  27.80  

R4 
Participant 1          
Participant 2   11.29      25.85 

Table 28  Average traveling distance within a zone and between two zones. 

Avg. Traveling 
Distance [m] 

A2 B2 S1 S3 S4 R1 R2 R3 R4 

A2 
Participant 1 2.73  3.46  12.61     
Participant 2 1.95  3.40 3.63  22.65  8.65  

B2 
Participant 1  2.59 3.20 12.65      
Participant 2 3.16 2.15 2.71  3.19   11.07  

S1 
Participant 1 3.27 4.00 1.33 16.49 30.24 7.31 7.72   
Participant 2 3.38 2.66 1.47       

S3 
Participant 1  12.04  1.34   38.48   
Participant 2 3.60   1.43      

S4 
Participant 1 13.91   17.12 1.58     
Participant 2  3.65   1.58     

R1 
Participant 1      4.53 5.08   
Participant 2   7.70   11.96    

R2 
Participant 1 9.22 7.49   3.84  10.04   
Participant 2          

R3 
Participant 1          
Participant 2   7.05   1.92  4.63  

R4 
Participant 1          
Participant 2   11.29      25.85 

 

Table 29  Average traveling speed within a zone and between two zones. 

Avg. Traveling Speed 
[m/s] 

A2 B2 S1 S3 S4 R1 R2 R3 R4 

A2 
Participant 1 1.08  1.10  1.35     
Participant 2 0.58  1.01 1.08  0.59  0.81  

B2 
Participant 1  1.19 1.12 1.34      
Participant 2 1.04 0.65 1.20  1.20   0.89  

S1 
Participant 1 1.10 1.18 0.80 1.13 1.20 1.00 1.23   
Participant 2 1.04 0.94 0.62       

S3 
Participant 1  1.37  1.04   1.00   
Participant 2 1.00   0.72      

S4 
Participant 1 1.36   1.68 1.01     
Participant 2  1.11   0.75     

R1 
Participant 1      0.47 1.01   
Participant 2   0.99   0.22    

R2 Participant 1 1.26 1.14   1.28  0.41   
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Participant 2          

R3 
Participant 1          
Participant 2   1.05   0.78  0.25  

R4 
Participant 1          
Participant 2   1.08      0.20 

 

Participant 1 took four breaks during the experiment (see Figure 85). The total 

resting time was over 7 minutes in a work task that took about 90 minutes. More than 70% 

of the time was spent on traveling since the participant’s duty was to deliver materials to 

the storage areas that the second participant used. The direct work time rate was therefore 

significantly smaller than in any of the two previous experiments. Manual study of video 

material and in particular measuring the times the first participant was traveling 

confirmed this observation. 

 

Figure 85  Result of automated work sampling for every 5 minutes (Experiment 3, 

Participant 1). 

Figure 86 shows the direct work rate of Participant 2 in the same experiment. 

Since both participants were conducting the activities at the same time, a correlation of 

the productivity performance can be noticed by the comparing the results with the direct 

work time rate. At the beginning of this experiment, Participant 2 (installing material) 

had to wait more than 40% of the first time segment for his team member (Participant 1) 

to set up the materials. Participant 1 (de-installing material) took two breaks during the 
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20-25 and 76-70 minute time segments since limited materials were available for de-

installation (or in other words, Participant 1 completed the first de-installation task within 

approximately 22 minutes). Based on the information in Figure 85 and Figure 86, 

Participant 2 had significantly more bending tasks to perform and took more frequently 

breaks. The reason is very likely the intense of the installation work that Participant 2 had 

to perform. 

 

Figure 86  Result of automated work sampling for every 5 minutes (Experiment 3, 

participant 2). 

Results of the manual activity analysis for Participant 1 and 2 are shown in Figure 

87 to Figure 90. Table 30 and Table 31 present the average difference and the standard 

deviation of the differences between the automated and manual activity analysis.  
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Figure 87  Result of manual work sampling (Experiment 3, Participant 1, Rater 1). 

 

Figure 88  Result of manual work sampling (Experiment 3, Participant 1, Rater 2). 
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Figure 89  Result of manual work sampling (Experiment 3, Participant 2, Rater 1). 

 

Figure 90  Result of manual work sampling (Experiment 3, Participant 2, Rater 2). 

Table 30  Average and standard deviation of the differences between the automated 

and manual activity analysis (Experiment 3, Participant 1). 

 
Rater 1 Rater 2 

Work Material Travel Idle Work Material Travel Idle 

Average 0.8% 0.0% 4.1% -4.9% -1.5% -2.4% 9.5% -5.6% 
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difference 

Stand. dev. of 
the differences 

4.5% 3.0% 15.3% 18.4% 4.6% 3.4% 15.8% 19.4% 

 

Table 31  Average and standard deviation of the differences between the automated 

and manual activity analysis (Experiment 3, Participant 2). 

 
Rater 1 Rater 2 

Work Material Travel Idle Work Material Travel Idle 
Average 

difference 
1.5% -1.1% -0.8% 0.3% -1.7% -4.3% 8.0% -2.0% 

Stand. dev. of 
the differences 

8.5% 2.6% 7.1% 14.8% 8.6% 2.6% 10.1% 16.3% 

8.7 Conclusions  

Previous research has found that remote and rapid sensing such as Ultra 

Wideband (UWB) and Physiological Status Monitoring (PSM) technology can 

effectively facilitate automatic monitoring of the position, posture, and physiological 

status of construction personnel. However, these technologies have not been used to 

improve productivity and activity assessment. Potentially, data from these sensing 

technologies can be integrated with the goal of achieving a higher level of knowledge of 

work productivity and activity performance. This paper describes results of a study that 

was designed to test the capabilities and benefit of fusing the data from these sensors. 

Using a set of experiments conducted in an indoor facility at the University of 

Washington, this paper demonstrated that UWB and PSM data can be fused to 

automatically identify the dynamic zones associated to the work activities as well as to 

categorize the work activities for the purpose of activity assessment. 

The results show that current technology is satisfactorily reliable in autonomously 

and remotely monitoring participants during simulated construction activities. In addition, 

the authors have found that data from various sensing sources can be successfully fused 

to augment real-time knowledge of construction activity (and potentially productivity) 

assessment, which would reduce, if not avoid, the shortcomings of traditional visual 

observation and estimation of productivity rates. The output of the proposed approach 

could be used by contractors to evaluate the maximum actual production against the 
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planned production as a way to automatize project control functions and perform true 

real-time “productivity and activity assessment”. The real-time productivity and activity 

assessment will enable project managers to accurately determine the progress of 

construction operations and easily share the information with all project parties. 

Nevertheless, at this time, the proposed approach is only able to estimate the 

upper boundary of the actual activity due to technological constraints, such that the fusion 

of the location tracking data and thoracic posture data are not able to provide accurate 

information of activity details. Moreover, the approach is currently more oriented to 

assess the labor activity that is involved in repetitive work tasks such as assembling work 

in prefabrication shops. To ensure accurate and rapid spatio-temporal data collection a 

more sophisticated sensor infrastructure setting is required for large deployment on a 

construction site. In summary, the presented work has shown the potential of 

technologies lies in the integration of various technology-specific data sources. While 

technology manufactures are quickly improving the level of integration and the richness 

of data collected, research as the one described in this paper advances knowledge of data 

fusion for construction applications. 
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CHAPTER IX 

DATA VISUALIZATION FOR CONSTRUCTION SAFETY 

AND ACTIVITY MONITORING APPLICATIONS 

Data on construction resources (personnel, equipment, materials) as they operate in the 

field are vast, but the effort to collect, analyze, and visualize even parts of it is hardly 

taken. Considering how well the quality of decision making can be improved once real-

time data collection, processing, and visualization technology become available, the use 

of any such enabling technology becomes a priority, especially in construction-related 

resource intensive operations. Although recent developments in remote data sensing and 

intelligent data processing have been made to supplement manual data recording and 

analyses practices, few data visualization tools in construction exist that accept data 

from dynamic resources and stream it to a field-realistic real-time virtual reality 

environment. This chapter presents a new framework that focuses on streaming data from 

real-time remote location sensing technology to a real-time data visualization platform. 

Results demonstrate that some important construction information related to both safety 

and activity in field operations can be automatically monitored and visualized in real-

time, thus offering benefits such as increased situational awareness to workers, 

equipment operators, or decision makers anywhere in the field or world. 

9.1 Introduction 

The distributed nature of construction project information and the presence of 

multiple teams performing on site are well known characteristics of a typical construction 

project. Communication of essential information among construction project stakeholders 

is considered a key for successful construction engineering and management. 

Traditionally, an enormous amount of site information has been communicated among 

project team members by means of paper-based documents including two-dimensional 

drawings or verbal communication. A significant deficiency in the traditional information 
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delivery process has been that the project team is not always in the position to make rapid 

and correct decisions because of unavailable or insufficient information [234]. 

For the purpose of making more timely and more accurate decision during 

construction, at multiple timescales, and for multiple entities, a deeper understanding of 

construction activity information is needed in real-time and additionally in a visually 

appealing format. In addition, it is believed that a more effective use of gathered and 

distributed real-time site information would generate new knowledge that can assist 

project stakeholders in making more effective and efficient decisions on-site or even from 

a remote location [146]. 

Important site information such as the location of construction resources 

(personnel, equipment and materials), including their inter-relationships and temporal 

information on specific work tasks, is currently mostly manually monitored and recorded 

[146]. Such observation tasks require typically experienced observers but many 

observations remain error prone as they are very labor intensive and subjective. Moreover, 

manual observations are made through the viewpoint of the observer and the particular 

perspective can often not be shared with a project team in or near real-time. These are 

some limitations of current practices that can become a bottleneck for fast and accurate 

decision making on a busy construction site. Especially, large capital facility projects 

require more oversight, and one of the primary application areas is safety and 

construction site monitoring. 

Effective construction safety and site monitoring start at the front-end of a project. 

Several approaches have been taken in the past to coordinate design and planning of 

construction with site organization and layout. One way of finding potential clashes or 

hazards is using walkthroughs in virtual reality (VR) models. VR is a method of 

visualization, aligning the virtual objects with the real world. Many applications of VR 

technology have been found in building science covering both project design and 

construction operation levels. Immersive VR systems also have wide applications in 

practice and education of architects, engineers, and contractors who deal with design and 

construction of buildings. The main reason of its rising implementation is that immersive 

VR has the unique capability of giving users a sense of presence and scale, as if they 
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were observing a realistic world. By immersing the user in a computer generated 

synthetic environment, VR learning and training offers an active learning experience 

where the user is in control and is required to deliberate proper actions. VR also 

facilitates the understanding of complex construction processes by the interaction within 

the VR environment [235]. 

Tracking and visualizing dynamic resource data in a field-realistic virtual 

environment in real-time has additional benefits to a project team [146]. For instance, 

spatial constraints of a work environment, workers themselves, and their safety behavior 

can be improved once their inter-related risks have been identified and are assessed 

properly. Such risks often have the origin in the motivation to achieve higher levels of 

productivity that pushes workers to work ‘near the edge’ and beyond the zone of control 

or recovery [210]. One alternative is to prevent putting workers in such risky 

environments by educating and training designers or planners at the front-end of projects 

[114]. As they can eliminate most hazards before workers are sent into the field to carry 

out work tasks, it would be useful for them to have information available what impact 

design has on hazards. Monitoring equipment and workers in a design model may give 

further conclusion on how to design or plan construction work more safely. Most 

importantly real-time safety data visualization will benefit safety engineers and managers 

to react in real-time to an accident, and even coordinate search and rescue efforts more 

effectively. Another potential benefit of real-time data gathering and visualization is that 

data can be documented and used afterwards to establish more efficient and effective 

safety best practices, education, and training methods. 

This paper focuses on one of the key research challenges in real-time pro-active 

construction safety and site activity monitoring: Gathering and processing construction 

resource data in real-time and visualizing relevant safety and activity performance 

information to a decision maker in real-time. After a literature review, remote sensing 

and visualization technologies are introduced that monitor, record, and visualize safety-

critical data of construction resources (personnel, equipment, and materials) in real-time 

and within a realistic and rapid virtual immersive visualization environment. The 

developed framework and results to case studies follow before the paper finishes with a 

conclusion and an outlook for future research. 
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9.2 Background in Data Visualization Technology 

Many efforts have implemented virtual environments for the purpose of 

visualizing architectural designs and facilitating building construction and project 

management level. The use of virtual mockups to replace existing physical models by 

developing a virtual reality (VR) environment for a courthouse project was investigated 

by [236]. Another study was conducted to describe the barriers that impact the practical 

implementation of VR, such as management support, degree of business competition, 

coordination of design resources and participation of end users [237]. An immersive large 

scale VR projection system was developed for students in the architectural engineering 

program in order to experience and experiment with three-dimensional (3D), full scale 

virtual models of construction projects [238]. VR applications were also used in an 

architectural design studio to coordinate and critique student work within a collaborative 

virtual environment (CVE) [239][240]. A Virtual Reality Modeling Language (VRML) 

[241] was developed to represent the steel structure and construction equipment with 

online project information access. 

Visualization technology has been a widely applied tool even in construction 

management. Virtual construction allows stakeholders to detect and inspect construction 

problems early in the design phase and enables contractors to manage projects more 

efficiently [242][243][244][245]. 4D graphics for construction planning and site 

utilization were developed to assist planners to deal with daily activities and site 

management [109][246]. Researcher also worked on site layout optimization [109]. It is 

suggested that a 4D VR model increases the comprehensibility of the project schedule 

and allows users to detect potential problems such as scheduling conflicts prior to the 

construction [243]. They have suggested that the planner using 4D simulation is likely to 

allocate resources more effectively. The use of 4D CAD also assists the planner in 

avoiding schedule conflicts, examining constraints, and evaluating alternative 

construction methods. 

As the literature review shows, most of the recent research focused on cost, 

scheduling, and the extent of architectural design. VR technologies have since then been 

implemented successfully in Building Information Models (BIM) and resulted in 
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significant cost savings in particular when applied to complex projects. To date, there is 

little VR research focusing on factors such as real-time pro-active safety and activity 

monitoring, or any analysis that focuses on the construction task level. Few have so far 

addressed adequate real-time data visualization and use of it. As other research literature 

states “a clear agenda for use of real-time construction site data collection visualization is 

missing” [146]. 

Real-time safety hazard recognition, reporting, and visualization prompted 

researchers to investigate these topics at the earliest possible stage in the construction 

process [51]. Traditional safety hazard identification in construction has been using a 

combination of site drawings and project schedules. Up to today, very often decisions are 

being made based on visual site inspection(s). Since field drawings are mostly in 2D, 

safety managers have often difficulty understanding the spatial constraints in the 

environment [247]. The application of VR has so far not been very common at the 

construction task level since most VR models are based on simulated data or prerecorded 

data. Such models or data cannot represent or reproduce the changing nature of a 

construction site. In addition, existing VR tools require expert knowledge to handle and 

customize the intensive graphical and dynamic characteristics of construction task 

modeling [248]. Immersive VR at the operational level also focuses on displaying 

resources (personnel, equipment, materials, terrain, building objects) over time. 

Researchers formalized a descriptive language to facilitate automated communication of 

simulated dynamic construction scenarios that can visualize construction operations in a 

3D virtual environment [249]. They also developed dynamic 3D visualization and 

simulation of articulated construction equipment, such as a crane or excavator, by using 

the principles of forward and inverse kinematics [250]. Their research proposed an 

approach to achieve smooth, continuous motion of virtual construction resources based 

on discrete and simulated information. Recent research investigated the generic and 

scalable techniques to accurately represent 3D motion paths in dynamic animation of 

operations simulated using discrete-event simulation by using the VITASCOPE 

visualization system [251]. Others presented accurate and high-speed animation of 

simulated models [252]. 



- 203 - 

 

Apart from the implementation in the engineering practice, many efforts have 

been invested in the application of information technology especially advanced VR and 

VE technologies in building science education such as school teaching and learning. 

Researcher studied the use of digital imagery and visualization materials to improve 

student understanding and assessment of civil and building engineering by applying 

distributed performance support systems of construction events in the form of a 

visualized electronic course [253]. Others evaluated the impact of multimedia-based 

education on students and found that visualized, self-paced learning offers distinct 

advantages over traditional, instructor-led classroom learning [254]. However, these early 

adoptions of VR in education utilized simulated data in a simulated environment. A 

similar simulated but immersive VR environment was created by for construction 

training and education [255]. This effort shows that a real-time visualization can enhance 

the memory retention and increase the learning gains of the trainees of learners. Other 

researchers developed an attribute-based risk analysis method to help designers and 

preconstruction planner to identify potential struck-by hazards in the building models 

[256]. A preliminary safety rule checker system was developed to automatically visualize 

and identify fall hazards in the existing Building Information Models (BIM) [114]. 

Besides the construction industry and education disciplines, VR and VE have 

already been widely used in other engineering fields. An application of VR tools was 

introduced that integrated near-real-time visualization with publish and subscribe 

mechanisms to achieve remote monitoring and control of dynamic objects in underwater 

construction and maintenance operations [257]. They created a virtual training system as 

an integrated system consisting of a training visualization suite, an interface model, and 

instruction module [258]. Fully immersive training environments for the manufacturing 

industry have received some initial attention. 

In summary, one of the important challenges of (immersive) VR lies in the 

integration of realistic and real-time field data. Along with spatial information of the as-

built scene, such gathered data sets can become, once filtered for errors and processed to 

become information, very valuable input parameters for VR environments. Tracking a 

dynamic object’s 3D position accurately and recognizing orientation is crucial for any 

real-time VR applications [259]. Sensing technologies such as Radio Frequency 
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Identification (RFID) in combination with Global Positioning Systems (GPS) or Ultra 

Wideband (UWB) are able to provide unique spatio-temporal information to construction 

resource locations [60][258]. Each of the tracking technologies comes with unique 

advantages and limitations that have already been recognized [146]. 

9.3 Methodology 

The main research objective was to create technology that increases the 

situational awareness for construction site stakeholders of dynamic construction site 

operations. The application was safety in outdoor and indoor construction site 

environments. The research scope was limited to explore the potential of the developed 

technology and to see what application it can have on workers-on-the-ground who work 

nearby heavy equipment. In order to accomplish this objective, one of the selected 

research methods was to collect live field data of dynamic construction resources, filter it 

for errors and process it, and finally stream in real-time valuable safety information to an 

immersive virtual reality world that represents the accurate construction site. The 

assumption was that any project stakeholder (equipment operator, worker on the ground, 

safety control command) with access rights and who could view live and processed field 

data in an immersive VR could make more informed decisions in shorter times and at 

lower cost. 

To accomplish the research goals, an accurate spatial world of the construction 

environment (e.g. site layout and terrain) was created using commercially-available laser 

scanning and modeling techniques. The immersive VR world then integrated data from 

real-time location tracking sensors (GPS and/or UWB) that collected trajectory data of 

resources present within the construction site. A user was then able to create safety rules 

[5]. And based on the information output, the user can see and observe results, and even 

interact within the immersive world but from a safe distance. 

This research integrated some of the emerging remote sensing technology that is 

capable of collecting live field data from construction resources and a real-time 

visualization technology that produces accurate and timely information for distributed 

decision makers (stakeholders at all project levels, from workers, to equipment operators, 

to engineers on site, management and ownership off-site). The proposed technical 
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solution consisted of four central research phases: (1) data collection, (2) data processing, 

(3) information visualization, and (4) decision making and application in the field, 

education, and training. 

Since different types of information are required by various stakeholders, proper 

selection of data gathering technologies can solve their demands. Based on data from [34], 

the scope of this research was limited to proximity issues between construction workers-

on-the-ground and nearby heavy equipment. 

 

Figure 91  Flowchart of real-time data visualization. 

As shown in Figure 91, raw data were collected using commercially-available 

location tracking sensors. Aspects to accuracy and implementation are further detailed in. 

The gathered spatial and temporal trajectory attributes to each of the resources in the field 

had to be processed before they were delivered in the form of an information package to a 

decision maker. At the same time the data were geospatially referenced to a terrain model 

that was created using commercially-available modeling software. Especially in 

construction applications such as safety and health, real-time feedback is necessary. Since 

the scope was limited to investigate initially only proximity issues of resources, real-time 

data acquisition and processing included a basic rule set that a user had to provide before 
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any information could be visualized. In this case, too close proximity of any two 

resources was defined as being closer than a few meters to the hazard. A hazard was 

defined as a worker being too close to equipment or below a load that was lifted. Further 

alarms or alerts were visualized in the VR should any of the pre-defined proximity events 

take place. Data were recorded and could be replayed at any time, which is especially 

useful in education and training settings. Real-time data visualization was the integral 

part of the research. It has the function of building a rich and realistic VR model that can 

visualize the extracted information. With the help of robust data distribution, stakeholders 

can make their decision in an interactive immersive 3D environment. 

9.3.1 Real-time Location Tracking of Resources 

There is immense interest and potential in systems that provide users the location 

of project critical resources (workforce, equipment, materials). Knowing the location of 

construction resources and identifying and measuring the status of work tasks helps to 

improve the project (safety) performance. Several real-time sensing technologies such as 

GPS, UWB, and vision tracking can be implemented to collected 3D/4D (spatio-temporal) 

data. However, in most construction tasks, data are scattered across several systems, 

many of which are isolated from each other. High deviated choices of sensor technologies 

make the data consolidation and data fusion a challenge. One alternative is to apply a 

protocol that adapts to any data stream. Another alternative is to constrain the input data 

into a uniformed data pattern even if it comes from different sources, including databases. 

The scope of this research was limited to only one real-time data source from a 

specific tracking technology. Although any of the mentioned tracking technologies could 

have been selected to monitor the trajectories of construction resources, a technology that 

is capable of studying the location of workers, equipment, and materials at the same time 

and at high update rates was preferred. Preference was mainly given to a technology that 

is small in size and can be worn by workers, is rugged, and reliable enough to withstand a 

harsh construction environment, and is capable of accurately and precisely recording the 

activities that are associated to the selected work task: material handling. 

In addition, most of the raw data the sensor collected contains noise that must be 

filtered for errors. Furthermore, the performance of the selected technology was impacted 
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by the complex environment of the jobsite. The authors applied techniques they have 

developed in [146]. 

9.3.2 Visualization in Virtual Reality (VR) World  

The VR world applied in this paper uses an efficient data structure called “world 

data model”. It consists of a list of entities and properties designed to represent their real-

world counterparts. The entities are the basic element of the virtual world, which involves 

scene, surfaces, light, objects, cameras, properties, relations and labels. 

The scene in visualization tools is a collect of interfaces and modular components 

that define the elements of a virtual environment. Examples are surface, static and 

dynamic objects, cameras, lights, and indicators. The surface and static objects are 

reproduced based on the application of surveying technologies. Laser scanning was used 

in the survey of the construction site. The collected range point clouds were converted to 

a triangular mesh. The surface is therefore represented by rendered polygons. 

The survey of site surface and static objects was accomplished by a set of scans. 

Each scan will create an individual scan world which contains a large number of point 

clouds. Since every scan world has a unique coordinate system, a registration process is 

implemented which connects a set of scan worlds into a uniformed coordination, called a 

project’s scan world. The integration is derived by a set of constraints, e.g. pairs of 

equivalent tie-points or overlapping point clouds that exist in both scan worlds. The 

registration process computes the optimal overall alignment transformations for each scan 

world. The registration is complete when constraints are matched as closely as possible. 

Even though the point clouds are coordinated, the registered scan world still contains 

several point clouds from scan worlds. Triangular meshes cannot be created across 

different point clouds. Therefore, the point clouds from each scan are unified into one 

single point clouds through a unification process. In addition, some features on the 

surface such as edges and corners have to be preserved when a triangle mesh is created. 

Therefore, several polylines termed “breakline” are implemented to represent a curb on 

the edge between different surfaces (see Figure 92). Breaklines assist in the generation 

and decimation of the mesh in that they will preserve geometric features. Based on 

specified breaklines and unified point clouds, a TIN mesh is generated where there are no 
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overlapping triangles with respect to the vertical direction. In sum, a surface model was 

produced by rendering the TIN mesh that was built from point clouds. 

 

Figure 92  Breakline on point clouds. 

Another feature of most virtual environments is lighting. Light is not always 

constant in the real world, but in simulated environments it is often directional. Spot 

and/or conical lights are widely implemented to represent light in VR tools. 

Objects in VR are commonly created using CAD geometry or basic shapes. 

Examples can be cubes, cylinders, spheres, and cones. Complex objects are represented 

by using level of details (LODs), whose definition consists of several geometry 

descriptions with different levels of detail. Therefore, they are sensitive to proximity of 

the viewing camera (perspective of the VR user). 

The viewing camera module defines various viewing points in the scene that 

responds to several input devices. A virtual camera can be attached to any moving objects 

to provide multiple vantage points. Relations are applied to connect entities in the scene, 

which represent the interdependency between elements existing in the real world. Several 

viewing cameras can be applied in a scene. An example is the distance between two 

objects or a projected distance between an object and a surface. Applied scenarios are 

watching from inside of an equipment cabin, through the eyes of a ground worker or 

virtual perspectives such as fly-through. 

The properties of dynamic objects are updated through a data server which 

receives real-time data from the sensing technology. The data are bond to the various 

properties of objects to be visualized. However, most relevant information is not 

explicitly defined in the original data source. Location-characteristic information of 
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tracking data from construction resources (people, equipment, materials) including 

velocity, orientation, proximity of two or more resources and the frequency that resources 

interact with each other, can be derived from location tracking data. The velocity vector 

(direction, orientation, and speed) of resources is calculated through the comparison of its 

current and previous location or if multiple sensor tags are deployed on a single resource. 

The orientation of object is typically determined via multiple sensor tags placed on the 

resource. 

A label visualizes the result of an algorithm that process data to information. An 

example related to the scope of the research (proximity) is computing the relation of a 

distance between several dynamic objects and simulating the equipment and its 

subcomponents. Compared to raw data, the derived information is more valuable for the 

stakeholders to make effective decision. Specific algorithms can be defined by a user and 

are discussed later. 

A more detailed view of the architecture of the developed real-time tracking and 

visualization system is shown in Figure 93. 
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Figure 93  Architecture of real-time data tracking and visualization.
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9.3.3 Real-time Data Distribution 

In order to satisfy the information requirement of distributed project team, 

relevant information must be delivered not only to a local server but preferably must also 

be visualized on a remotely located 3D viewer. It requires that the data server of the 

proposed visualization system has not only the mechanism of data subscribing and 

publishing but also takes advantage of the currently available internet and intranet 

infrastructure. Figure 94 shows the developed architecture of data collection, distribution, 

processing, and visualization. All local information can be shared with multiple users via 

internet or intranet access. 

 

Figure 94  Architecture of the distribution of data and virtual world model.  

An elaborate world model includes complex static structures and dynamic objects, 

such as buildings, equipment, materials and personnel, which assist and improve the 

perception and understanding of the construction site. When the elements of the virtual 

world are linked with real-time sensor data, updates from sensors must be made available 

using a subscribing mechanism and a local real-time data server. A real-time data server 

is responsible for maintaining an accurate representation of all dynamic and static 

elements that compose the construction site scene. Relevant information for users such as 

resource localization, distance, velocity, acceleration, and/or orientation is retrieved from 

the local server. The server also stores the job-site scene using an efficient data structure, 
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which consists of a list of entities (surfaces, objects, light, camera, and relations) with 

their properties designed to represent the counterpart in the real world. 

The publishing and subscribing mechanism allows other application or data 

collectors to synchronize updates and query information from the virtual world model. 

Users with internet or intranet access can subscribe to any real-time data field being 

published. They also receive updates every time the information changes, allowing them 

to monitor and log events of the construction site into a database at the same time they 

are taking place in reality. 

The information is published to a server and distributed to multiple user at both 

local and remote location in real-time through the data visualization module that 

facilitates fast and corrected decision making. The application allows the operators and 

users to observe and interact with the real world model through the virtual environment 

that increases the awareness of a distributed project team. Moreover, the users are able to 

share and track feedback with the project team. 

The virtual reality system can also be applied as an education, training, and 

teaching tool. Real-time visualization helps the trainees and students in gaining an 

intuitive understanding of construction site complexity including potential hazards that 

exist. Since all the sensing data published to the server is logged, a reconstruction of the 

working activities and operations can be accomplished after it took place in reality and/or 

replayed. 

9.4 Case Studies  

Several experiments have been conducted to test the implementing of real-time 

data collection and visualization technology in live construction operations. The 

experiments concentrate on proximity relations in a simulated scene (first scenario), and 

working in an outdoor and indoor environment (second and third scenario, respectively). 

The first experiment illustrates a common construction site scenario. It was simulated 

since safety violations on construction site may not occur. This scenario was used to 

validate that the developed approach would work during live tests in the field. The first 

scenario also helps to explain the procedure that leads from field data collection to the 
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real-time visualization world. The focus of the first scenario is: a worker is approaching 

heavy equipment and walks underneath a load a crane carries. The second experiment 

shows results to live construction data: a worker faces a hazard of walking underneath an 

elevated load. The third scenario records and visualizes events in a training sequence for 

ironworkers. Data in the three scenarios will be analyzed for proximity issues in 

construction. 

9.4.1 Simulation of Proximity of Worker to Hazards 

The method to create the virtual world is illustrated in Figure 95. The scene 

consists of five major objects: a dozer, a loader, a worker, a crane with load, and a 

building. The scene surface is generated using point cloud data from spatial surveying 

equipment, e.g. a laser scanner. The 3D object models represent construction site 

resources. To each of the resources data are recorded. The real-time data acquisition is 

linked via object relations to the 3D object models. The relations also allow 

representation of safety rules, e.g. too close proximity. 
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Figure 95  Visualization of proximity hazards using simulated data. 

The spatial data are subscribed to the server and the processed information is 

published in a 3D viewer. Two preliminary defined dangerous zones are denoted by 

green circles around the static loader and projected from the crane load onto the ground. 

The distance between each pair of entities is computed automatically from the spatial 

data. In this scenario, the calculated distances are shown in the labels. When virtual 

proximity zones and labels turn red they indicate severe risk to a resource. Both circular 

regions maintain in green when all resources are outside the virtual proximity zone. 

Zones switch to red when other tracked objects are approaching below a pre-defined 
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threshold value that a user has set. The size of dangerous zones can be defined according 

to safety rules or guidelines, e.g. OSHA standards or other best safety practices. Several 

incidents are shown in the lower portion of Figure 96. The images show several cases that 

a worker or piece of equipment or both are within proximity to a hazard. Some of these 

hazards are overhanging load and being too close to (other) equipment. As events are 

flagged, alerts can be issued and data be logged. 

The trajectory of the resources can be extracted from the collected data. The 

headings of resources are determined by their tangential direction along the trajectories 

which change over time. These must be calibrated using at least two spatial points along 

the path. In order to determine the heading of a dynamic object, at least two sensor tags 

must be mounted on a resource with a large enough distance from each other. Location 

data to both tags is then collected simultaneously and therefore the heading information 

becomes available by calculating the tangential angle of the vector formed by the two 

most recent location records. 

Another challenge in this model is to simulate the activity of the tower crane. The 

crane has two degrees of freedom: the heading of the crane arm along the base axis and 

the elevating of the load. Since data from the positioning sensor can only provide 

absolute spatial information (same as the derivative of worker’s heading), multiple 

sensors are necessary. The crane structure is broken into three major subcomponents (see 

Figure 96): crane base, crane boom, and the pulley attached to the boom that connects to 

the hook. 
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Figure 96  Simulation of the tower crane activities. 

The further discussion of this particular scenario assumes that the load does not 

swing when the crane boom is rotating. Three sensor tags are attached on each 

subcomponent to collect absolute location data. Sensor tag 1 is attached on the crane base 

on the ground level which gives reference location of the crane. Sensor tag 2 is attached 

on the crane body. The connecting vector between sensor tags 1 and 2 is perpendicular to 

the ground which forms a reference axis parallel to Z axis. Sensor tag 3 is attached at the 

crane hook to record the location of the load. The local coordinate has an origin on sensor 

tag 1 and the Y axis is randomly defined as the zero heading direction. The heading of the 

crane boom is therefore determined by the following formula: 

r = cosG@(�u\\\\ × �1\\\\ ∙ ��\\\\

‖�1\\\\‖
) 																																																																												(6�. 9 − 1) 
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where OL is the vector of crane load.  

This scenario has shown the method and potential benefits of visualizing unsafe 

proximity event. In sum, proximity of resources can be recorded and visualized in real-

time. Risks can be easily defined using proximity zones. Warnings or alerts can be 

effectively communicated by displaying dangerous situations in color. The relation 

between resources can be quantified and updated automatically in real-time. Real-time in 

this scenario means images in the VR world are updated every second at least once. 

Collection of real-time location tracking data and streaming to the local server, however, 

can be at update rates of up to 60 Hz. A user can also view detailed information of 

ongoing construction site activities by monitoring it form any preferred viewpoint in an 

interactive manner. For instance, the user’s view can be changed from the crane cabinet 

and moved to the one an equipment operator has sitting in the dozer’s cabin. Even the 

view of a worker can displayed spontaneously and simultaneously. In addition, the 

visualization of relevant information can be prioritized by a user and limited so that only 

the most urgent and most necessary information is displayed. This greatly limits 

overwhelming users with too much information. 

9.4.2 Visualization of Live Construction Activities in a Construction Pit 

This scenario presents data that were collected using laser scan and location 

tracking technology. The experiment was conducted in an active construction pit of a 

large capital facility project. The observation area of the experiment was approximately 

1,800 m2. A commercially-available laser scanner collected the as-built-conditions of the 

pit including earthwork material, embankments, ramp for vehicles to enter, egress/exit for 

workers from the pit, protective safety equipment such as guardrails, already built 

formwork and rebar/concrete structures, and temporary laydown yard with obsolete 

materials. The laser scans were performed after a mobile crane took its position within 

the pit to perform several lifting tasks. The point clouds of all scans were registered and 

used to create a virtual scene. A 3D model of the mobile crane was designed and placed 

in the exact same position as the original location. Figure 97 shows a photo, the 

registered point cloud, a mesh of the scene, and the final 3D model before trajectory data 

were added to the virtual world. 
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Figure 97  Sequence to build a 3D virtual world. 

An active Radio Frequency Identification (RFID) technology called Ultra 

Wideband (UWB) was used to track the resources in the pit. The resources that were 

tagged were all workers entering the pit, the mobile crane and its four outrigger positions, 

and any temporary vehicles entering pit. The method that was used to tag the resources 

was the same as in [146]. The accuracy of the trajectories of all resources was measured. 

Since the error rate of the tracking technology was not the focus of this experiment, 

results are presented in [146]. The focus, however, was to take the real-time positioning 

data (with up to 60 Hz update rate) of the tagged resources and visualize it in the virtual 

world. In sum, positioning data of a rebar and carpentry crew and the activities of a 

mobile crane and other vehicles entering/leaving the pit were tracked and monitored 

using UWB technology. 

Each worker from the rebar crew was outfitted with at least one UWB tag. Each 

tag collected spatio-temporal data and subscribed the data to the local server. Task-
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related information such as position, speed, heading to each resource was calculated by 

the server. The processed information was then published to the virtual environment, and 

linked to the corresponding 3D model with unique object ID. 

The activities of the mobile crane were captured by multiple UWB tags. Four tags 

were mounted on the outriggers; one UWB tag was mounted on the structural frame of 

the crane cabin; and another UWB tag was mounted on the crane hook. The heading of 

the crane boom was calculated using the location of UWB tags on the crane (see Figure 

98). 

 

Figure 98  Determination of the heading of the boom of a mobile crane. 

The focus of this experiment was to record and analyze the behavior of 

construction resources in the pit. In particular, results to proximity events of workers 

being close to a crane load are presented next. 

The general view of a construction pit is shown in Figure 102a. All resources in 

the pit are tagged. Their location is known at any given time. The labels indicate the 

distance of the workers to the bottom of the crane load. Turns a label red means the 

resource the label belongs to is at risk (e.g., worker below or within range of the crane 

load). The proximity zone of the crane is yellow when no warning or alert has been 

issued. A virtual partially transparent yellow cylinder visualizes the proximity zone of the 

crane. When a worker invaded the proximity zone of the crane load it turned red. The 

proximity zone of a worker stays green if the worker is not at risk. The proximity zone of 

the crane load was set to 2.5 meters; and respectively, to 1 meter for workers. Several 
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relationships between workers and the crane load were established based. The distance 

between the resources were computed in real-time and labeled in the virtual world. 

The visualization environment allows analysis of operator visibility. Figure 102b 

demonstrates the limited visibility (dark areas) the equipment operator has from a crane 

cabin. In the event that a load has to be placed behind an as-built structure (indicated 

through formwork, rebar, and concrete in Figure 102c), the crane operator can switch in 

the virtual world to camera position that allows to “see” the location from an optimized 

view (Figure 102d). The same camera view may assist a tower crane operator whose 

field-of-view is also obstructed (see Figure 102e). 

In another event (see Figure 102f), a worker triggers an alert (proximity area of 

crane load and worker’s label turn red) being below a crane load. Other calculations, e.g. 

the distance of the foreman to a work gang, can be visualized. The white lines in the 

image indicate the distance measurement. 

 

(a) Construction pit – general view 

Figure 99  Visualization of terrain, 3D model and real-time trajectory data in the 

virtual world. 
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(b) Limited visibility and blind areas of the crane operator (plan view) 

 

(c) Limited field-of-view of crane operator due to the crane boom and as-built structures 

Figure 100  Visualization of terrain, 3D model and real-time trajectory data in the 

virtual world (Continue). 
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(d) Changing the field-of-view in the virtual world allows a crane operator to “see” 

behind obstacles  

  

(e) Limited field-of-view of a tower crane operator 

Figure 101  Visualization of terrain, 3D model and real-time trajectory data in the 

virtual world (Continue). 
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(f) Proximity alert (red label and zone) when intrusion occurs 

Figure 102  Visualization of terrain, 3D model and real-time trajectory data in the 

virtual world (Continue). 

9.4.3 Visualization of Recorded Activities in an Ironworker Training Facility 

The purpose of the next experiment was visualizing both the safety performance 

and working efficiency of ironworkers in a training facility. Skilled crafts arte interested 

in boosting their work performance, however, advanced location tracking and 

visualization technology has yet to be applied in their training environment to facilitate 

potentially more effective and effective learning. Applying such technology in a training 

environment provides several advantages. Examples are: Capacity to replay work 

activities; objective assessment of safety and productivity performance; demonstration of 

situational awareness; group discussions in live and classroom setting; study of trainee 

and trainer performance in complex and dynamic construction processes; interaction of 

trainees in an immersive virtual world; visualization and more engaging feedback for all 

training participants and future generations of trainees. 

An experiment was conducted in the Southeast Regional Ironworker Training 

Facility in Atlanta, Georgia. The objective was to test the applicability of the location 

tracking and visualization system in a compact environment with the goal to provide 
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(real-time) feedback to trainers and trainees. After the environment was modeled (see 

Figure 103), the spatio-temporal information of the trainees, crane, and materials was 

collected. 

Five ironworkers that participated in a training session to connect steel girders and 

a trainer were outfitted with UWB tags. Their locations were tracked. The ironworkers 

(apprentices) were rigging, hoisting, and connecting steel girders on a two story mock-up 

structure that is located within the training facility. The girders were first rigged to the 

crane hook and then hoisted from the material deposit area to their final destination. Two 

connectors (both apprentices) were tasked to connect the girders. Two connectors stayed 

on the steel structure while two riggers and one crane operator walked on the ground level. 

   

Figure 103  The real and virtual world of ironworker a training facility. 

Similar to the previous experiment, data were analyzed. Data were collected for 

the entire time of the training session (total 4 hours). Algorithms identified close-calls by 

measuring the proximity of resources to each other. Only one event was found. It is 

shown in Figure 104 where a worker navigates below a load. This event was visualized 

and presented to the trainer and trainers. Analysis was performed to understand how it 

came to the close-call. Multiple views were generated to understand who was at fault and 

what the best mitigation strategy would be to avoid such an instance in the future. 

According to a replay and the visuals, the rigger stepped into the pre-defined dangerous 

zone from the left, and walked across the dangerous area. Eventually, the rigger left the 

area. The shortest distance between rigger and the center of the hazard zone was 2.04 m 

and the rigger stayed within this dangerous area for a total of 8 seconds. 
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Figure 104  Visualization of a proximity case.  

The developed algorithm also calculated the time an ironworker apprentice 

needed to connect all 14 steel girders in the training session. Although it was not possible 

to track and measure the connecting time of more than one apprentice, the result for one 

connector is shown in Figure 105. The time is shown on the vertical axis while the 

girders are shown on the horizontal axis. Girders had all dimensions and travel and wait 

times were excluded from the analysis. The connecting time indicates a “learning curve” 

of the apprentice. At the beginning of the training session the ironworker needed about 

500 seconds to connect the first girder, towards the end it is about 100 seconds only. 

Participants in the experiment were very interested in technology and results. The 

majority of their opinion-based feedback supported further evaluation of the technology. 
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Figure 105  Time needed to connect steel girders. 

9.5 Conclusions 

Although virtual reality (VR) technology has already been widely used in 

construction, limited research has focused on the application of real-time VR technology 

in combination with emerging sensing. A method of implementing real-time (location) 

data collection and visualization technology in construction safety and monitoring 

applications was presented and tested. 

The developed real-time tracking and visualization system contains real-time data 

collection, data processing, visualization, and application in live and training 

environments in construction. Although the effectiveness of the system was tested, 

further analysis to measure its impact on existing work and training practices are needed. 

Relevant information was derived from the collected data and visualized. The 

information represents the state of construction resources and their inter-relations. Such 

valuable information was transmitted to other distributed decision makers. Stakeholders 

were provided with real-time information in an interactive virtual environment that 

enables them to inspect and make fast decision. 
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Several experiments of data collection and visualization have been conducted to 

test its applicability. The view provided by the 3D display improved situational 

awareness of viewers and allowed views from multiple resource locations in relation to 

other resources. 

Future research or development may also focus on providing visual warning and 

alert mechanisms to workers, operators, or any other decision maker. The use of the 

gathered data may also lead to shutdowns of equipment or other alert functions, e.g. 

(semi-) automated safety data analysis or reporting systems. Long-term studies to 

measure the effectiveness need to be conducted. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS  

This chapter summarizes the results of this research and relates them to the research 

questions addressed. The major findings, some limitations and future potential are 

explained. 

10.1 Conclusion Remarks 

Applications of real-time monitoring and controlling of construction site progress 

is of both managerial and technological interests. From a management perspective, 

accurate and emerging remote sensing technology, with a particular emphasis on real-

time detection and tracking of construction resources (personnel, equipment, and 

material), can provide critical spatio-temporal information. Once gathered data are 

processed, information has the potential to advance the understanding of construction 

processes, for example, the level of safety and productivity performance. From a 

technical perspective, the development and evaluation of various electronic sensors for 

applications in the harsh construction environment, as well as the exploration of their 

potential as a valuable aid in project management, enables tighter control of project 

progress.  

In the first chapter of this dissertation, five research questions are raised. These 

questions are addressed throughout the dissertation, which is summarized as follow:  

1. What hazards exists on construction site? 

Chapter II synthesized the historical fatality data in construction industry in the 

past decades, which indicated that approximately 40% of the fatalities were 

directly and indirectly caused by worker being proximate to various hazardous 

conditions. Especially, one of the distinct safety problems has been identified as 

the proximity of workers-on-foot to heavy construction equipment. Further 

revision on safety management technique indicated that the current operation 

level safety measurements are inconsistent, subjective and error-prone, since they 
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highly rely on manual observation and survey. Therefore, the goal of this research 

is to design, test, and validate new methods that improve construction safety and 

productivity measurement for a more sustainable construction process. A special 

emphasis of this research focuses on measuring the proximity hazards that 

construction personals are exposed to various hazardous conditions, which are 

omnipresent in complex construction environments.   

2. Can technologies be used to reliably collect data from construction resources?  

Rapid technological advances have made it possible to implement Ultra 

Wideband (UWB) real-time localization and tracking systems in construction 

applications.  Chapter aims to evaluate the capabilities and benefits of UWB 

deployment.  It has been demonstrated that, in field trials, a commercially-

available UWB system is able to provide real-time location data of construction 

resources thereby resolving the capability question. Validation occurred through 

performance measurements utilizing a Robotic Total Station (RTS) for ground 

truth measurements.   

3. What type of hazards can be detected using remote sensing technology? 

Advanced topographic survey technologies (laser scanning) have made it possible 

to quickly and accurately document as-built conditions. As such technologies 

become available they lead to novel solutions in identifying and resolving 

potential design and operational issues, including mitigation of risks associated to 

safe site layout and equipment operator visibility. Chapter V demonstrated the 

capability of detecting objects from large as-built spatial data sets collected by a 

commercially-available laser scanner. This Chapter also located and quantified 

the blind spots/areas and spaces based on 3D range data. For a large construction 

setting, multiple scans should be conducted and registered. After removing the 

noise and outliers of the gathered 3D range data, the developed algorithm detected 

the location and size of blind spaces that obstruct the field-of-view (FOV) of a 

tower crane operator. This work has also offered a solution to utilize trajectories 

of workers to identify (unsafe) locations of workers that are (not) in the FOV of 

tower crane operators.  
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4. How to detect and measure the interactions between workers and identified 

hazards? 

Advanced real-time location sensing and topographic survey technologies have 

made it possible to quickly and accurately document spatio-temporal data of the 

construction resource and environment. As such technologies become available 

they lead to novel solutions in identifying and resolving potential safety issues, 

including human-hazards proximity. Chapter VI demonstrated the capability of 

measuring the workers’ safety performances using existing remote sensing 

technologies in combination with date processing technique. This chapter details 

the development of a proximity detection model. Such model measures the 

workers’ performances based on the analysis of the site geometry, spatial, 

temporal, and kinematic characteristics of various construction resources. The 

developed model has been tested in three different environments, and has been 

validated by comparing to the video records. The results demonstrate that the 

model can accurately, consistently and reliably detect and measure the workers’ 

safety performance under proximity hazards.   

5. How to reproduce the detected unsafe behavior share the information among 

project participants? 

Chapter IX demonstrated a method of implementing real-time (location) data 

collection and visualization technology in construction safety and monitoring 

applications. The developed real-time tracking and visualization system contains 

real-time data collection, data processing, visualization, and application in live 

and training environments in construction. Relevant information was derived from 

the collected data and visualized. The information represents the state of 

construction resources and their inter-relations. Such valuable information was 

transmitted to other distributed decision makers. Stakeholders were provided with 

real-time information in an interactive virtual environment that enables them to 

inspect and make fast decision. Several experiments of data collection and 

visualization have been conducted to test its applicability. The view provided by 
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the 3D display improved situational awareness of viewers and allowed views 

from multiple resource locations in relation to other resources. 

 

As a summary, the major scientific contributions of this doctoral research include 

the following: 

• This research creates a model that can automatically analyze spatio-temporal data 

of construction resources (workers, equipment and materials), and automatically 

identify, evaluate, and visualize their safety, health, and productivity performance.  

• This research creates a test-bed to evaluate the performance of various real-time 

tracking technologies when they are implemented in harsh construction 

environment.  

• This research creates a data processing algorithm to automatically detect object 

from the large point cloud dataset collected by Light Detection And Ranging 

(LADAR) technology, and furthermore identify potential hazards, especially the 

blind spaces from the equipment operators’ perspective on construction sites.  

• This research creates a new measurement to continuously and consistently assess 

hazardous situation that workers are proximate to various identified hazards.   

• This research constructs a framework to combine real-time tracking data with a 

virtual environment for construction safety monitoring purpose.   

10.2 Limitations and Future Research 

This current research in this dissertation focuses on post-time data analysis, which 

is not able to provide real-time estimating and warning of the workers’ unsafe and 

unhealthy behaviors. Existing research has discussed and tested a RFID based real-time 

waning technology [149], but such technology has not taken construction site setting and 

movements of construction resources into consideration. Connecting this doctoral 

research to the real-time warning technology is the future direction of developing 

proactive safety monitoring strategy.  
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Besides, several limitations of this doctoral research have been identified on the 

data collection, data processing and information interpretation stages, which are briefly 

listed as follow: 

Ultra Wideband technology, as the selected data collection method, requires the 

installation of infrastructure. Chapter IV has demonstrated that strict layout of the system 

infrastructure is necessary in order to achieve acceptable data logging accuracy. However, 

in most of the construction site, sensor’s setup is always constrained, which may 

eventually result in mistakes of safety and productivity measurements. The developed 

model should be advanced and compactable to other alternative data collection 

techniques.   

Chapter V evaluates the construction site layout and computes the blind spaces of 

a tower crane operator. This session was not fully automated. Especially the point cloud 

noise removal is accomplished based on a manual process, which could be less efficient.  

Range scanning and data processing may significantly be improved by scanning from or 

closer to the tower crane cabin. However, this may add significant complexity in 

handling the gathered data set, especially if scan speed is slow and ranges are short. In 

summary, the utilization of as-built documentation and blind spot analysis can detect 

potentially hazardous work spaces that are related to tower cranes. 

Chapter VI details the development of a proximity detection model. Such model 

measures the workers’ performances based on the analysis of the site geometry, spatial, 

temporal, and kinematic characteristics of various construction resources. This model 

utilizes several external parameters whose accurate definition requires further study of 

construction traffics.  
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