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SUMMARY

Various forms of management control problems arise In Industrial
Engineering; for example, preoduction control, ilnventory control, and
budget contrel. A common characteristic of these contrel problems is
the control scheme; that is, the process of making decisions on the
basis of @ priori information so as to improve future performance of a
system. In this sense, the functicnal scheme of a contrcl process nmay
be conceptualized by a feedback control analogue of physical systems.
Although the techniques of contreol theory may be advantagecusly applied
to study such management control problems, a preliminary consideration
is needed before such an application can be made. Since the contrel
theory techniques have been mainly developed for use in physizal
systems, one needs to carefully define the boundaries of management
problems so as to fit the techniques to a given situation. In view of
the complexities asscclated with management problems, 1t is desirable
te have a procedure which can be used as a basis for medeling such
management contrel preblems.

The general objectives which underly this research are two-fold;
(1) to analyze the commen characteristics of those problems which are
peculiar and important to the concepts of management centrel, and the
rrocedures involved in management decision processes for planning and
centrol; (2) to develop a theoretical frame of reference for use in
modeling management control systems so that the study c¢f management

control problems may be consistently carried out with respect to the
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overall problem situation, and a feedback control scheme to be used for
determining analytical solutions for such management control systems.

The general cbjectives of this research are pursued by way of
two specific tasks of investigation. The first task is concerned with
management control problems In gensral, and the second is with an
application of the general concepts to a specific problem of modeling
for a seasonal goods inventory situation of retail firms.

According to the existing knowledge in the field, 1t appears
that system theory offers the most helpful and logical basis for
modeling complex situations. By making new interpretations of existing
concepts in system theory, a concise and unified body of theory is
formulated in this thesis which may be particularly useful in modeling
management control problems. Two categories of modeling problems are
recognized; namely, the preblems of modeling the spatial boundaries
and the dynamic boundaries of a situation.

Given a situation for management ccntrol, the first step in the
modeling procedure is to define the spatial boundaries of a problem so
that the problem can be structured as a system. Such a system may be
modeled hy considering the toples of hierarchical system structurs,
attributes, and system goals. In partlcular, the results of analysis
may be used: (1) to model a heirarchical stru-~ture with respect to
nontransferable attributes sc that separable boundaries for the system,
components, and environment can be identified; (2) to recognize the
difference in modeling system eg-ations with respect to energy attri-
butes and information attributes; and (3) to formulate a single measure

of performance for the system when the system is characterized with a



multiplicity of goals.

Cnce the spatial boundaries of a system are defined, the sub-
sequent step in the modeling procedure is 9 define the dynamie bound-
aries of the system process within the frame of the already defined
spatial system boundaries. For this purpose, it 1s first necessary to
identify the controllable and uncontrol’®able subsystems of a given
problem situation so that the system state, contrel input, environ-
mental input, and system objectlives can be recognized. The malti-stage
control process can then be described in terms of a state equation and
an objective equation. The individual stage of the multi-stage control
process can be further described in terms of the feedback control
sequence which consists of measurement, estimation, computation,
optimization, decision, and actuation.

The general modeling procedure is illustrated with an inveatary
situation of retail fi-ms. First, the spatial bo ndaries of an in.en-
tory situation are defined so that the inventory problem can be
recognized as a relatively isolated system within the overall organi-
zational structure. Subsequently, the inventory system is modeled
within the framework of multi-stage control processes.

In the formulatien of a multi-stage control process, a method
is required to esiimate the statistical chavacteristics of a random
process which underlies the system stage. In the case of the inventory
control processes, this situatlion often pertains to the problem of
obtalning the demand forecasts. The natrre of the forecasting tech-
niques used In inventory control may vary depending upon particular

circumstances in a given situation. This research has developed a



statistical method which may be used to estimate the demand probabili-
ties for seasonal goods inventory iltems.

The most commonly used procedure in the literature is that which
assumes the probabilities of demand are estimated before the beginning
of a season. Such a priori estimates of demand probabilities are re-
ferred to as Iinitial estimates. The procedure proposed in this thesis
also accepts surh initial estimates; however, a filitering procedurel is
applied so that the initial estimaticn ervors can be corrected as more
data khecome available after the season begins. The filtering procedure
is designed to re-estimate the seasonal demand; however, the re-
estimated results can be also used to predict the subperiod demand for
the season. Within this framework, the filtering problem of estimating
the seasonal demand coincides with the prediction problem of estimating
the subperiod demands. The proposed filtering procedure is very sensi-
tive to the parameter va.ues used in the model.

The general procedure for modeling and forecasting is subse-
quently applied to formulate & seasonal goods inventory control model
of retail situations. The seascnal goods inventory problems have been
solved in the literature for the case where re-estimates of demand
probabilities are not allowed in the modei. In practice, however, a
seascnal period is often divided by a finite number of time points such
that the estimates of demand as well as the determination of order

quantities are allowed to take place at each of these time points.

lShaw, L. G., "Optimum Stochastic Centrol," in J. Peschon (ed.),
Diseiplines and Techniques of System Control, Blaisdell, 1865.
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In a recent publication, Murray et al,z cocnsidered a seasonal
goods inventory model which allows the re-estimation of demand proba-
bilities. However, their model 1s applicable only when the size of
demand population 1s exactly known, since they assumed that the demand
pattern follows the beta binomlal prcbability function. However, the
size of demand population is often unknown in the real situation of
seasonal goods Inventory problems.. The linear feedback filter proce-
dure does not require knowledge of the size of the demand population.
On the other hand, the linear feedback filter procedure assumes that
the historical data are avallable for the purposes of estimation. Tt
seems that this assumption is reascnable and logical in view of a case
study reported by Cyert et a2.3 and Hertz et alau The formulation of
the model has resulted to an adaptive optimization problem.

A specific inventory situation of retail firms is used in this
study tec provide a background for the thecoreti.al analysis and develop-
ment. The general ocutcome of the study may be applied to other situa-
tions in management control problems with appropriate modifications to
meet specific characteristics of individual problems; for example, some

additional research may be suggested for the followlng situations:

2Murray, G. R., Jr., and L. A. Silver, "A Bayesian Analyslis of
the Style-Goods Inventory Problems," Management Science, 1966, pp.
785-797.

3Cyert, R. M., and J. G. March, 4 Behavioral Theory of the Firm,
Prentice-Hall, 1963.

qurtz, D. B., and K. H. Schaffir, "A Forecasting Methoed for
Management of Seasonal Style-Goods Inventories," Operations Research,
1960, pp. #45-52,
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(1) when the level of acceptable performance is specified for the
system; (2) when the time lag between the activities of individual
(3) when the

stages of a multi-stage control process is significant;

demand generating subsystem can be regarded as a controllable sub-

system.



CHAPTER T
INTRODUCTION

Background

Various forms of control problems arise in industrial engineering;
for example, producticn planning, inventory control, and budget control.
A common characteristic of these control problems is the contrcl scheme;
that is, the process of making decisions on the basis of g priori infor-
mation so as to improve future performance of the system. In this sense,
the functional scheme of a contrel process may be conceptualized by a
feedback ceontrol analogue of physical systems.

Control thecry was originally developed for autcematic control of
electrical and mechanical systems. Since the Seceond World War, the
importance of contrcl theory has received much attention, not only with
respect to physical systems, but also biological and business systems.
Application of control theory to management problems was considered by
many.2 Some of the more Important contributions were made by Holt et

3

al.,” and Forr‘ester‘.l+ Forrester's method of Industrial Dynamics has been

widely accepted as an effective tool in the simulation appreach to busi-

lWiener' (40).

2 . .

For a literature review, see Chang (5).
3

Holt, et al. (20).

mn
Forrester (9).



ness problems. Although the simulation approach depends largely upon
computer utilization, the importance of control theory as a thecoretical
foundation of Tndustrial Dynamics was well emphasized by Forrester.

As it is currently known in the literature, the study hby Holt
et al. has made, perhaps, the most use of "classical” control theory
concepts in the analytical development of production systems. They
derived the certainty equivalence theorem,6 which was used in connection
with the guadratic cost function to determine optimum solutions for their
problem., Although the quadratic perfourmance indexes are commonly used in
control theory,7 their use in management problems is limited to restric-
tive cases. They are applicable only when the error cost of performance
is proporticnal to the square of errors, which implies that both positive
and negative errors are egually undesirable.

Although Holt et al. and many others have made use of the "clas-
sical control theory concepts, the recent developments in "modern'
control theory8 have not yet been fully applied to the study of manage-
ment control problems. In fact, the state-space approach and the
optimization techniques of modern control theory are very well sulted

Tor studying management problems., The reason for this is that their use

permits the formulation of a wide range of problems. This applies to

Ibid., pp. 355-356.

6
Holt et al. (20) Chapter 6; also see Hadley {(14), pp. U48-454,
and Whittle (39), p. 137.

7Kalman gt al. (22).

8Bellman (3); Tou {37).



both maximization problems and minimization problems which can be eilther
linear or nonlinear as well as deterministic or stochastic, or even
adaptive.

Since management systems are typically stochastic or adaptive,
any attempt to use a control model involves the problem cf obtaining
a priori information on the underlying stochastlic processes. One of
the most commonly known methods in forecasting is Brown's exponential
smoothing.g The other isg the method of regression analysis.lo Although
these methods are well known in management and econcmics literature,
they are not well suited tc use within the frame of control theory. On
the cther hand, the spectral analysis, which is commonly used for pre-
diction in contrcl theory, is often not applicable to¢ management control
problems. In this sense, forecasting is often a critical problem in
developing a control model for management problems,

Although the techniques of control theory may be advantageously
applied to studying management control problems, there are preliminary
considerations that must be dealt with before such an applicatien can
be made. Since the control theory techniques were mainly developed for
use in physical systems, one needs to carefully define the boundaries
of management problems so as to fit the techniques to the given situa-

tions.ll The concepts of system theory may prove to be quite helpful

9Brown et al. (4); also see Winter (42) and Cchen (7).

lOFor example, see Johnsten (21).

llSee Mesoravic et al. (28).



for use In defining complex situations of management problems of the
real world. Although system theory has received much Interest in
various publicaticns, it has not been fully introduced in the area

of management control problems.12

Study Cbjectives

Industrizl engineers are often faced with wvarious forms of
management control problems. The general objectives which underly
this research are two-fold:

1. To analyze: (a) the common characteristics of those prob-
lems which are peculiar and important to the concepts of management
control, and (b) the procedures involved in management decision
processes for planning and control.

2. To develop: {(2) a theoretical frame of reference for use
in modeling management systems so that the study of management control
problems may be censistently carried out with respect to the overall
probiem situaticn, and {(b) a feedback control scheme to be used for
determining analytical solutions for such management systems.

The general objectives of this research are pursued by way of
two specifi¢ investigations., The first is concerned with management
control problems in general, and the second with an appliecation of the
general concept to a specific problem situation in management control.
The latter invegtigation is largely devoted to the development of a

seasonal goods inventory model which gives a realistic representation

12See Hall (16); also Goode et al. (11).



of the inventory situation in practice. The method of forecasting the
seasonal goods demand 1s recognized as a critical problem in the

development of such a model.

Study Procedure

This research begins with a consideration of system theory for
modeling management control problems, then proceeds to the development
of a seasonal goods inventory model., As illustrated in Tigure 1, this
thesis consists of four main chapters which are concerned with the fol-
lowing specific problem areas:

1. Chapter II gives an interpretation of the existing concepts
in system theory which may be particularly helpful in modeling manage-
ment control problems. Since management problems are predominantly
influenced by factors which arise from socio-economic considerations,
an attempt is made to analyze the relationship between a purely physical
system and a management system. A knowledge of such relatlicnship may be
useful in applying the control theory concepts to modeling management
control problems.

2. Chapter III is primarily concerned with the description of a
dynamic model for management control problems. The system theory of
Chapter II is applied, first, to define the spatial boundaries of an
inventory system so that the system can be modeled as a relatively
isolated subsystem of a larger problem. The department store is used
to provide a prototype example of the retail situation. After having
defined the spatial boundaries cof a system, Chapter 1II1 considers the

problems involved in defining the dynamic characteristics of a multi-



Management System (Chapter II)

Forecast
(Chapter 1IV)

Uncontrolled
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(Chapter III)

The Feedback Control Scheme
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Figure 1. A Feedback Control Scheme. (The Numbers in the
Parentheses Refer to the Appropriate Chapters
Where the Indicated Topics are Mainly Discussed.)



stage decision process. By applying the system theory of Chapter II as
well as the existing knowledge in control theory, a procedure for con-
structing dynamic models for management control preblems is described.
The description of the general procedure is subsequently applied in
Chapter V to model the seasonal goods inventory problem.

3. The statistical considerations needed for forecasting are
first analyzed in Chapter IV, and subsequently a method cf forecasting
which can be conveniently applied to the seasonal goods inventory
problem is developed in the chapter.

4. The general dynamic medel of Chapter III and the forecasting
method of Chapter IV are applied to the development of a seasonal goods
inventory model in Chapter V. The model reccgnizes forecasting as an
integral part of the multi-stage control process, so that at each time

point re-estimates of demand are allowed within the control scheme.



CHAPTER 1T

MODELING MANAGEMENT PROBLEMS FTROM

A GENERAL SYSTEMS VIEWPOINT

General

Because of the complexity of real world problems, it is often
necessary to carefully consider the problem ¢f modeling for given prob-
lem situations. It is commonly recognized that system thecry provides
a useful basis for modeling complex situations. The cbjective of this
chapter 1s to review and interpret the known concepts in system theory
in order to formulate a framework of system thecry which may be par-
ticularly useful to define the spatial boundaries for modeling manage-
ment control problems. This objective is pursued by considering the

toplecs of system structure, attributes, and goals.

Management Systems

In recent years, the importance of system theory has received
much attention in various publications. Since, in such publications,
the word "system" is frequently used to represent many possible systems,
it is desirable to make a specific definition of the term "management
system" which can be consistently used to discuss management control
systems. For the purposes of this study, a system may be considered as
belonging to cone of two categories: namely, the naturally existing
systems and the man-made systems. For example, the solar system is a

naturally existing system; and an inventory system may be regarded as a



man-made system. A management system shall be regarded as a man-made
system which exists for the purpose of satisfying certain specific
needs of man.

Let S be a system which exists for the purpose of satisfying a
specific need N*. In thisz situation, it is appropriate to describe the
system S with reference to the need N*, Assume that S is an "open”

system; that is, it has both input and ocutput. Let & and ¢ denote the

input and output of 5, respectively, as shown in Figure 2.

Figure 2, A Schematic Description of System S.

According to Gosling,l it is convenient to think of a system as
being enclosed within an imaginary boundary which separates the system
from its surrcunding environment. Suppose there are two imaginary
terminals on the system boundary such that cne of them serves as an
input terminal and the other as an output terminal. The two-terminal
system of Figure 2 is said to be unilateral in the sense that its input

and output do not reverse thelr directich of flow. TFor a unilateral

lGosling (12), p. 12.
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system, the Input-output relation may be expressed in the form:
z - S{E, N ) . (2-1)

In the expression above, the input £ represents some valuable resources
which are expended in the system, and the output ¢ represents some useful
product which the system is required to produce as specified by the given
need N*. The problems of properly Identifying the need N*, analyzing the
output ¢, and determining the input £ are the fundamental considerations
involved in management systems.

The discussion above concerns a system that is viewed as a single
entity. However, a system is usually composed of two or mcre parts
which are intercennected in such a way that the overall function of the
system is the interrelated product of those parts within the system,
Such parts are sometimes referred to as subsystems, compconents, or
elements of the system. Sometimes, the structure of a system iIs such
that many smaller parts can be recognized within a part of the system.
Such a system is said to have a hierarchical structure.

In a study of organization theory, Simon2 has observed that most
real organizations have hierarchical structures. The degree of hievr-
archy and the efficiency of system information are often considered in

. . : . . : 3
connection with the problem of centralization and decentralizaticn.

2Simon (35), p- 41.

3See Zannetos (43).
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In a study of adaptive behavior of living organisms, Ashby.LF has observed
that the behavioral pattern of animate beings can be explained by the
efficiency of the hierarchical structure of thelr internal parts. Such
observations may be extended and applied to model a hierarchical stru:s-
ture fcr management systems.

In systems literature,5 the strecture of a system is sometimes
described in terms of the universe, envircnment, system, subsystem,
components, and elements A unique definition of these terms, which may
be convenlently used to model management system problems, will be made
in the following:

Given a "problem," let *the witversge U* be the problem itself.

On thls universe, suppcse it 1Is possible to define a system 5 and 1ts

environment S such that 5 1s the conmplementary set of S; 1 e,

(¥p3]

slJs =u . (2-2)
where |_) denotes the union. The internal structure of a system $ is
then defined by a finlte number of k compeonents, k 1, which are
disjoint to one ancther. If Cl denotes component 1 of the system S5,
i=1, 2,..., k, then it fcllows that:

U c =3 (2-3)

J+Ashby (2), pp. 148-153.

5Hall (16); Hammond et al. (17).
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ﬂcl < h o, (2-)
a1
where f\denotes the In-ersec-ion, and ¢ denotes an empty set. A sub-
system of 3 is defined as any subset of the system 5. According to the
order of system hierarchy, subsequently smaller parts may be recognized
within a component. Such smaller parts can be defined as elements of
the system 5.

The components of 5 defined above are idealized subsystems of §
which are finite In number and disjoint to one another. Because of the
interacting forces acting among the parrts of a system, such isolated
compenents of a system may ncot practically exist. The definition may
be justified, however, 1f the system i1s defined with respect toc the
"non-transferable attributes.” This topic will be further discussed in

the following section,

System Attributes

In the previous section, the management system S is characterized
as having both input and output. The inpur and cutput of a system may
be referred to as system attributes. For the purpose of moedeling a
system problem, the system attributes may be categorized into two
classes: namely, the transferable and nontransferable attributes.6 The

transferable attributes are those quantitie:s which can be described, for

6This classification was originally made by J. L. Hammond. See
Hammond et al. (17); alsc see Gosling (12), p. 11, for a discussion of
"transfer properties.”
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example, by movement, flow, cor force; hence, they are usually expressed
in termg of vector gquantities which have both magnitude and direction,
On the other hand, the nontransferable attributes may be regarded as
those properties which can be described cver a fimed time interval,
hence, they are usually expressed in terms of scalar quantities.

Depending upon one's poeint of interest, a system equation can be
modeled with respect to either the transferable attributes or the non-
transferable attributes. The system equation is often formulated In
the form of a differential equation with respect to the transferable
attributes, In this case, the focus of analysis 1s usually placed upon
the dynamic characteristics of a system. On the other hand, the per-
formance measure of a system, such as the quadratic criterion, or the
objective funciion of linear and dynamic programming, 1s usually
expressed in terms of nontransferable attributes.

In the preceding section of this chapter, a system S was defined
as conslsting of a finite number of disjeint components. Such disjeint,
separable components can be defined when the focus of analysis is placed
upon the nontransferable attributes of a system. There is no loss of
generality caused by this restriction, sin e management problems Iin the
tinal analysis are always concerned with the evaluation of system per-
formance, and all the relevant system attributes can be considered in
terms of nontransferable attributes.

Once the system structure 1s modeled in terms of nontransferable
attributes, the next step is to analyze the system behavior in terms of

transferable attributes. TFor the purpose of modeling system equations,

the transferable attributes of the system may be classified into two
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categories: namely, the energy attributes and the information
attributes.7 These two attributes can be distinguished by the fact
that the information attributes contain little or no energy. It
appears that the consideration of energy attributes 1s needed when
the focus of analysis is placed upon the work aspect of a system,
and the consideration of information attributes 1s needed when the
focus of analysis is placed upon the control aspect of a system.

At this point, it is appropriate to introduce the four-port
and two-port representation of a system. According to Koenig et aZ.,8
a system can be modeled as having four-port terminals with respect to
the energy attributes, and as having two-port terminals with respect
to the information attributes. Figure 3 shows a schematic diagram of

a four-port terminal model and a two-port terminal model.

il i2 il iQ
o————*————% L———+——ﬂ X ——r— L———+*—ﬂ
“1 4 + ©o |
O—«——{ — o——— 'l———zr—o
1y L ©1 ©o

{a) (b)
Figure 3, Modeling Sysrem Attributes with:

(a) Four-port Terminals and
(b) Two-port Terminals.

Four terminals are used for modeling the system energy attributes,

since two terminals are needed to describe the input, and another two

7See Hammond et ali. (17).

8Koenig et al. (23); also see Hammond et al. (17),
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terminals are needed to describe the output. Twe terminals are needed
to describe the Input or the output of energy arttributes: namely, one
terminal for the "level” of the energy and the other terminal for the
"flow rate" of the energy. In other words, the energy attribures can

be described only jointly by means of the level and the flow rate, For
example, both the veoltage (level) and the cur ent (flow rate) are needed
to describe the energy attributes of an electric circuit. It is also
possible to describe a management system model in terms of energy
attributes. TFor example, suppose the symbols of Figure 3 can be inter-

preted as follows:

e the level of total investment of a firm.

il: the rate of investment return of the firm.

e, the level of inventory invesrment of the firm.

i2: the rate of inventory investment return of the firm.

Since the level of the investment and the rate of the investment reTarn
are dependent on one another, such attributes of the firm may be repre-
sented in terms of energy attributes. The four-port terminal represen-
tation, therefore, places in evidence the interrelations among all

four attributes: 1.e., ey il’ €y and iQ. A gystem equation for the

four-port model may be expressed as:

i =0 (2-5)

* 2

f(el, ey iy

Although the four-port terminal model gives a loglcal represen-

tation of zystem energy attributes, it 1s generally used when the

internal structure of a system is exactly known. When the intermal
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structure is not exactly known, it is difficult or impossible to con-
struct a system equation of the form of Equation (2-5). In the case of
some simple physical systems, such as an elecrric clircult, the inter-
dependency of system energy attributes can be often determined deter-
ministically. However, in the case of complex systems, such as a
management system, it is usually impossible to give a deterministic
description of system attributes in the form of Equatien (2-5).

Under certain assumptions, the system enerpgy attributes may be
medeled with a two-port representation. For example, suppose it is
possibie to assume an independency between the attributes e, and i, as

1 1

well as between e, and i2 for the system of Pigure 3(a). Under this
assumption, the system attributes may be represented by the two-port

nodel of Figure 3(b). A set of system equations for the two-port model

may be expressed as:

€, = fl(el’ il)
(2-6)
i2 - fQ(el’ il) .
A compariscn of Equations (2-5) and (2-6) indicates that Equation (2-6&)
is restricted by the assumption that e, and i2 are independent; whereas,
such restriction is not needed in Equation (2-5).
Since information attributes are free of energy considerations,

a system equation with resp.:t to Information attributes can be always

modeled with a two-port terminal representatiomn.
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Sysiem Goals

The system structure and the system attributes were discussed 1in
the preceding sections. This sectlon is concerned with the toplc of
system goals. In considering management control problems, cne often
presupposes that there exists a single goal or a single measure of
performance which serves as a basis for evaluating the system behavior.
For a complex system with many components or Individual groups, there
can be many possible component goals or individual geals within the
system. When this 1s the case, 1t 1s of iarerest to analyze the rela-
ticonship between the system goal and the component goals.

The prchblems assoclated with multiplicity of goals 1s a subiject
of much Interest in organizaticn theory,g In a recent publicati-a,
Mesarovic et aZ.lO introduced the concept of a multi-level-multi-goal
system. This work may be briefly summarized as follows. When a system
is structured in a hierarchical crder, 1+ 1s appropriate to recognize
a multiplicity of levels of goals as well as a multiplicity of goals.
The level of goals is defined sc¢ that a higher level goal dominates
its lower level goals. In other words, the lower level can be regarded
as a subset of the higher level goal. In the terminology of Mesarcvic
et al., for example, a single-level-single-goal system can be a system
with many goals, but none of the goals dominates any other goal of the

system. The simplest system of this type is a single-goal system,

9 \
See, for example, March et al. (26) and Cyert et al. (8).

lOMesarovic et al. (28).
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According to Mesarovic et al., a single-goal system can be regarded as
consisting of two subsystems: mnamely, the causal unit and the goal-
seeking unit., A single-goal system with causal unit P and goal-seeking
unit G is schematically described in Figure 4., The causal unit is often
called a plant in contreol theory, from which the symbol P 1s derived.
The contrel input to P from G is denoted by €G, and the plant input is
denoted by EP. The letter EP denotes the plant output, and n denctes
the plant performance observed by G. The small letter g denctes the

system goal.

Figure 4. A Single-goal System with Causal
Unit P and Goal-seeking Unit G.



19

Making use of the notation introduced above, a system goal g may
be expressed in a functicnal form:

e

g = g, &3 M), (2-7)
where g is expressed as a function which depends on the need N*, the
system performance n, and the control input &G. When the system S is
a "pure" control system, such as a servo-mechanism, then g is usually
expressed in the feorm of a reference inpat,ll In this case, the refer-
ence input 1s regarded as a signal, and the task of the goal-seeking
unit is te properly identify the signal. On the other hand, there are
many control systems which have no reference input. For example, it
may happen that the goal of a management system c¢dan not be regarded as
a reference input, but rather is established by the goal-seeking unit
G. Once the system goal is established, the subsequent task of goal-

seeking unit G is to determins the contr >l input sc as to have the

&
G
plant produce some desired cutput Ly

In modeling control problems, one often presupposes the existence
of a single measure of performance, or a single-gcal for the system. It
is possible to have a single measure of performance for a purely physical
system, when there are 1no IiInteracting goals within the system. In

modeling management centrol problems, however, it may be necessary to

carefully examine the multiplicity of goals of the system before making

1 . . . . .
In organization thecry, "reference input" is equivalently
referred to as "aspiration level." See March et al. (26).
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such an assumption. This consideration is of particular importance
when human elements are included in a system. Since a single measure
of performance is needed in order to analyze an overall system problem,
it may be sometimes necessary to reduce the multiplicity of geoals of
the system to an appropriate single goal. The following procedure may
be used when it is necessary to reduce the complexity of a single-
level-multi-goal system to a single-goal system.

Suppose there are k "component” goals in a single-level-multi-
goal system S. Let Gl’ G2,..., Gi,nc., Gk denote the component goals
and GO denote a system goal which represents a set containing all
component goals of the system. As shown in Appendix 1, the system

goal GO can be either an unordered set or an ordered set. An uncrdered

system goal may be described as an unordered set:

G 1. {(7-8)

When it is possible to rank the order of preference among component

goals, then the system geoal may be expressed as an ordered set:

G, = (

O ] G ) L] (2_9)

Gy Beoyee (k)

where the parenthesized subscripts refer to the order of ranking among
the component goals. When all component geoals are ldentical te one

another, then the system can be regarded as a single-goal system.
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Summary

This chapter has reviewed the known concepts in system theory,
and analyzed the problem of modeling management control systems with
respect to the three main topics: system structure, system attributes,
and system goals. The results of study may be used for the following:

1. To define a specific management system so that its hier-
archical structure is modeled with respect to nontransferable attributes.

2. To recognize the differences in modeling system equations
with respect to energy attributes and information attributes.

3. To formulate a single measure of performance for a system
when the system is characterized with a multiplicity of goals.

Once the spatial boundaries of a system are identified, the
subsequent problem in modeling is to define the dynamic boundaries

of the system. This topic is discussed in the following chapter.
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CHAPTER III

MCDELING FOR AN INVENTORY CONTEGCL SYSTEM

Genesral

An inventory system may be regarded as a subsystem when 1t is
viewed from an overall organizational standpoint. In order tc make a
systems approach to modeling an inventory problem, two main considera-
tions must be dealt with. First, it is necessary to define the spatial
boundaries of the system in order ty place in evidence the effects of
organizational constraints which act upon the given inventery situation.
Second, it is necessary to define the dynamic boundaries of the system
process in order to analyze and evaluate i -s time dependent behavior,
The general concepts for modeling management systems were discussed in
Chapter II. These concepts are applied in this chapter to define the
spatial boundarles of an inventory problem of retail firms. Subse-
quently, an inventory process is described as a mulri-stage control

process.

Modeling a Retail Inventory Situation

Industrial firms may be categorized as being elther retzil or
manufacturing firms. The main business of retail firms is characterized
by the activities of buying goods from producers or wholesalers and
selling those goods te customers. Although retall filrms often manufac-

ture or process some of their goods, such activities are only inclidental
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or subordinate tc the main activities of buying-to-sell. In this man-
ner, the buying and selling activities are closely integrated in retail
firms. This contrasts significantly with manufacturing firms where
production and marketing activities are usually separated within the
organization. For this reascn, the inventory control situations of
retall firms and manufacturing flrms. have somewhat different character-
istics. For example, while the objective function of an inventory
system of retall firms may be expressed in terms of maximizing the net
revenue, the objective function of an inventory system of manufacturing
firms may be expressed In terms of minimizing the relevant inventory
cost, In view of such differences, an inventory system of a typical
retail firm i1s considered in this chapter. For this purpose, the
department store will be regarded as a typical retail firm,

The essentizl characteristics of a department store can be
described as follows. The market structure of a department store can
be regarded as an oligopolistic competition 1f the store 1s relatively
small.l The store sales closely reflect the state of economy in the
form of disposable personal income. As a matter of fact, the store
sales seldom e..ceed a certaln fraction of the disposable personal
income of a given consumer population.—2 For this reason, expanding
and maintaining a market share is one of the most lmportant goals of

a department store.

le. Heldren (19).

2According to Snyder (36), this fraction is approximately 7
per cent.
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The market share may be regarded as a measure which represents a
store's utility to the consumer public. The utility may be attributed
to the three factors:3 quality, avaiiability, and accessibility of the
consumer goods which the store cffers to the public. The quality may
depend upon the price, reliability, and the degree of customer satis-
faction of the items scld by the store. Avallability refers to the
variety and quantity of commodities, and the range of choices offered
to consumers, An inventory problem can be regarded as a subproblem
of the general problem concerned with surh availability. Accessibility
depends on consideraticns such as: muiti-departmental effects, adver-
tising, credit policies, store locairion, parking facilities, etc. These
three utility factors jeintly Influen e a consumer's concept of the
store's reputation as well as rhe store's market share.

In corder to consider the problem of modeling an "“inventory
control system'" for the retalil situation deseribed above, the terms:
state, control input, envirenmental input, controllability, and ob-
servability are needed for the discussion. According to Mac?arlane,q
state iz defined as:

A state of a physical object is a quantitative measure of a
physical condition of the object which remalins unchanged with
lapse of time if the object is sultably lsolated.
MacParlane's definition of state can be conveniently used to describe
the physical condliticons of a system in terms of its state at a certain

time. Previously In Chapter II, the system attributes were discussed

3Cf° Regan (33).

“MacFarlane (25), p. 12.
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in terms of iInput and output. However, in order teo place in evidence
the dynamic characteristics of a system, it Is more convenient to
represent system attributes by input, state, and cutput. For example,
the physical conditions of a system may be described by many variables.
Depending upon one's point of interest, a specific variable or a set
of variables can be selected among many peossible system variables to
define a state or a state vector for the system. Once a system state
has been defined, 1t can be used as an intermediate variable to relate
the effect of the input upon the curput. The state is changed by the
input, and the output is an observation of the starte,

The input which acts upon the system state may be recognized
either as a control input or as an environmental iwput. The control
input is deliberately exerted upcn the system In order to transform
its state into a more desirable cne. On the other hand, the environ-
mental input is an excgencus force which affects the system state, but
is not subject to a control.

At this time, 1t is appropriate to consider the concept of con-
trollability and observability. According to Gilbert,5 a system can

Q

be partitioned intc four possible subsystems: namely, SA’ SB, Ses and

SD which are designated as:
SA: the controllable and cobservable subsysten.
SB: the uncontrellable but observable subsystem.
SC: the controllable but unobservable subsystem.

5. . . .
Gilbert (10}. Originally, Gilbert used these terms to discuss
z linear deterministic system.
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SD: the uncontrollable and uncbservable subsystem.
System

Figure 5. A System Partitioned inte Four
Subsystems.

Figure 5 shows a two-part representation of a system partiticned into
four such subsystems. In the figure, Q denotes the control inpur, and
R denotes the output. The control input is shown in connection with
the controllable subsystems SA and SC, and the output is shown in con-
nection with the observable subsystems SA and SB.
The concepts described above may be used to define the boundaries
of the inventory control system of a department store. Given a depart-
ment store situaticn, the stere activities may be partiticned inteo four
possible classes of activities which can be referred to as subsystems.
Amcng these subsystems, the inventory control system may be defined as

the controllable and observable subsystem SA of the overall system.

For such an inventory system, the system state can be designated as the



27

levels of inventory at a given point in time. The system is control-
lable by means of inventory replenishment, and the inventory levels

are observable. In other words, the system states, i1.e., the inventory
levels are both controllable and observable. Once the inventory systenm
has been modeled and shown to be controllable and observable, then all
other activities of the store can be categorized into subsystems which
gre uncontrellable and/or unobservable., For example, the "demand"
fzetor can be regarded as a subsystem SB which is observable but un-
contrcllable: hence, demand plays the role of an environmental input
for the inventory contrel system. As ancther example, the cash level
may be controlled partially by restricting the amount of inventory
replenishment. When the cash level is not considered as a part of the
control system, then it may be regarded as a subsystem SCC All other
activities of the store which are irrelevant to the inventory -ontrol
problem may be relegated tc the uncontrolliable and uncbservable sub-

system SD'

Modeling for a Multi-Stage Contrcl Process

Having defined the spatvial boundaries of a control system, one
can proceed to model the control process within the defined spatial
boundaries. In medeling a control process, 1t is necessary to link
the present state of the system with the past and future states of the
system., A general model of a multi-stage control pracess, which is
subsequently used to develop a seasonal goods inventory control model
in Chapter V, is considered in the following discussicn.

Suppose a control process is considered over a planning horizon
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which covers a time interval (to, tn). Thils time period may be divided
into a finite number, say n of subpericds such that the system state at
each given point in the subperioeds can be bserved and contrelled. For
subperiod i, i=1, 2,..., n, the syszem state, input, and output are

schematically represented in Figure 6.

-

Figure 6., A System Representation for Subperied i.

The symhols used in the figure are interpreted as follows. The transi-
tion of the system state from one subpericd to the next 1s indicated

by double lines with direction arrcws. The present state of the system
is designated as Ui‘ The system inherits the present state from the
previous (i-1)-th subperiod. The solid single lines with directional
arrows indicate the system input. The control input is designated as

Q

I and the envircnmental input ig designated as Viu The dotted line
with a directional arrow indicates the system output which 1s desig-
nated as Ri' The dotted line 1s used to denote the fact that the system

output Ri ig a scalar variable which vepresents the system utility

for subperiod 1.
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In general, the cutput Ri can be expressed as a single-valued
function of state and input; thart is,

R. = R (U, Q, V.) . (3-1)

i i
The expression above is sometimes referred to as the objective function
of the system. The transiticnal relation between states Ui and Ui+l

may be expressed in the form:

Uyl = 1000, Qs 7)) (3-2)
The expression above 1s commonly referred to as the state equation of
the system,

In Chepter II the transferable and nontransferable attribuies
of a system were discussed. The input, state, and output are system
attributes. Among those attributes shown in Figure 6, the state and
inputs may be regarded as transferable attributes, since they have
transferable or transitional effects upon one another. On the other
hand, the ocutput Ri may be regarded as a nontransferable attribute,
since 1t has no direct effect upon the other attributes of the system.

When a system is modeled on the basis of nontransterable attri-
butes, as was discussed in Chapter II, then the system can be structured
so as to consist of a finite number of disjelnt components. Such an
analysis can be applied to structure the system model for a multi-stage

process. For instance, suppose a coatrol process 1s considered over a

planning horizon (to, tn). When the planning horizon consists of n
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subperiods, then it may be possible to model the control process as
a system S which consists of n components. Suppose the compenent
attribute is described in terms of its nontransferable attribute Ri’

then it follows from Equations (2-3) and (2-4) of Chapter II that:

Il

LJ Ri = R (3-3)
i=1

n

N R, =19, (3-4)
i=1

where R denotes the total outcome of the system over the entire planning

horizon. In general, R can be expressed as:

R

R = R(Rys Rysevns Ry

G Rn) 5 (3-5)
In particular, when Ri is represented by a nontransferable attribute,
then the disjointness or separability condition can be applied, so that
R can be expressed by a more convenient form of Equatiocn (3-3).

In order to make a dynamic programming formulation of a multi-
stage process, let Gi denote the partial sum of the total output which

is defined as:

g % Bt gy iven Byl (55
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When the separability condition is applied to the expression above,

it follows that:

i+1° Ri+2"'°’ Rn)] =Ry Gi+l ‘ (3=7)

li
=

(R

Gi H Gi[Ri’ Gi+l

Now, let fi(Ui) denote the optimum output that can be expected from the
system over subperiod j, j-1i, i+l, i 2,44+, n, provided the optimum

control inputs Q; are used for all j subperiods. Then fi(Ui) can be

written as:

_ Max - :
fi(ui) - Q.QQ._ ,ouo,Q {GiERi(Ui’Qi’Vi)’."’Rn(Un’Qn’Vn)]} (3_8)
S i n
= e {G.[R.U.,Q.,C.),C, .1}
Q..0 0 A T N A I '
e TV

If G, is a monotonically nondecreasing function of G,,, for every R,

then:6

Max

fi(Ui) Max-£Ri(Ui5Qi5Vi)’ (G )] (3_9)

Q. Qi+l,Qi+2,-c-,Q

i+l
n

gax[Ri(Ui,Qi,Vi), £, 10U )]

1

6Nemhauser ¢31), B. 35.
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= gaX[Rl(Ui’Ql’Vi) + fi+ (U )] e

L

171+l

For the n-th and last subperiod of the process:

fn(Un) = gax[Rn(Un,Qn,Vn)] . (3-10)

n

The solution to the problem above may be obtained subject to the con-

straint:
QiEQ(Qi), 1=21,2, 0e. 0t & (3-11)

where Q(Qi) denotes the allcwable region of control inputs Qi'

Feedback Sequences in Control Processes

The controcl process pattern which repeats itself in every sub-
period of the multistage process may be described in terms of a feed-
back sequence. TFor subperiod 1, consider a sequence of time points

ic, and 1., at which the following activities may

desi i i
signated as i q

b!
take place:

1. Measurement and estimation at time point ia

2. Optimizatlion at time point ib.

3. Decision making at time point ica

L, Actuation at time point id.

Making use of the symbols shown in Figure 6, the characteristics of these

activities are described as follows.
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1. Measuvement and Estimation. At ftime polnt ia, the state Ui
of the system, inherited from subpericd (i-1), is cobserved. The state

Ui is related to the previous state Ui—l by the state equation:

Uy TiaWUigs Qe Via)s (3-12)
which is derived from Equation (3-2) by making appropriate adjustments
on the subscripts.

In order to control the process for the i-th subperiod, knowledge
of the characteristics of the environmental input Vi must be obtained so
that an appropriate control input can be determined to cptimize the i-th
stage of the process. In order o optinlze the contrel process for the
entire planning horizon, however, a knowledge of the estimates for Vi
is needed so that a gset of optimum control inputs Q; can be determined,
for =1, i+l,..., n.

The level of complexity iInvolved in measurement and estimation
often depends on the characteristics of the environmental input Vjo
Censider the following three cases:

a. Vj is deterministic.

b. Vj ig stochastic with known probability density functions.

C. Vj is stochastic with unknown probability density functions.
The simplest of these three is the deterministic case. For the second

case, a knowledge of the probability density function pj is assumed to

be available for all j, where:

Pj = p(vjs aj)) j:l, i+lg--o, . (3—13)
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In the expression of the probabiliry density function Py shown above,

Vj denotes the underlying random variable, and aj denotes the parameters
of the density function., A commonly made assumption in this case is
that Py is independent for all 1, i-1, +,..., nn. HWhen 1 is not inde-

pendent, then & knowledge of the jcocint probability density function:

, 4 ) (3-14)

p(V., Voo V.3 a I .

1> 2 n 1°
is needed for estimation.

The most complex situation arises when the environmental input
originates from a stochastic precess with unknown statistical charac-
teristics. Suppose the form of the probability density function pj is
known but the parameter values are inknown. In this case, past obser-
vations on The random variable Vi can be used to generate statlistical

. N
estimates for the unknown parameters. Let X5 _q denote a set of XN

observations:
N C AR cea V) (3-15)
i-1 I-N? Ti-N+1? T i-l
N . . s . . N

Suppose Xs_q s avallable at time i+ On the basis of X5 1o the
estimate éi may be obtained as:

" - N )y, = )

a; fi—l,j(xi—l s> JLly 1+l,..., 1. (3-16

A specific problem of estimating demand for a seasonal goods inventory

situation is considered in Chapter IV.
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2, Optimization, At time point 1 the stage of measurement

b:

and estimation is completed. The information obtained from this stage
is now used to analyze the effect of each possible control vector Qj’
j=1i, i+l,..., n, on the future stvate of the process. The criterion of
optimality, such as the objective function of Equation (3-9), may be
used to determine the optimum control input Q? for the i-th subperiod,
i=1, 2,..., n.

3. Decision. At time point ic, the anaiysis is completed, and

T

a decision is made to apply the optimum control input Q; upon the system
state.

4, Actuation. At time point id, the decision 1s implemented,

ot oty
.

and the control input Q;‘ takes actual effect upon the system state.

When the Implementaticn process is subject to errors, then the actual

oaote
M

control input Qi may not be identical with the optimum control loput

Q

;. At this peint, the control sequence has completed its cycle for
the i-th subpericd.

A schematic diagram of the control seqguence is shown In Figure 7.
The dashed lines denote the Information lcop which ceonnects all the
stages in the control seguence. Figure & gives an illustration of the
time spacing between the stages of the control sequence. Figure 8(a)

shows that all time points, la’ I ic’ and 1 are closely located at

b’ d’

the beginning of subpericd i. In Figure 8(b), they are shown as heing

widely scattered within the subperiod. In Figure 8(c), the point id is

shown as being located in subperiod (i+*l). In this case, the control is-
not actuated until after the 1-th subperiod. Such a situation wou.d

arise in inventory contrcl when the order replenishment cr production
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Subperiod i-1 Subperiod 1 Subperiod i+l

(a)

(b) . , . .,
i e 4

(c) : — . —
ta ib ic 4

Figure 8. Time Intervals in Control Sequence.

lead time is leonger than the time unit of the subperiod., This situation
may be avoided if a subperiocd is convenlen:ily chosen to cover a suffi-
ciently long time interval so that id can be located within the sub-
period. Tor the development of a seasonal goods Inventory model in

can be

Chapter V, it is assumed that the time points, ia, ic, and 1

ib’ q4?
spotted at the beginning of every subperiod, as shown in Figure 8(a).
The general discussion presented above of the problem of model-
ing a multi-stage controcl process and the feedback sequence of control
can be applied to model an inventory control system as follows. For
the inventory system, the level of inventory observed at time point ia
is designated as state Ui' When Qi and Vi denote the inventory replen-

ishment and demand for subperiod i, respectively, then the system stare

equation can be written as:
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. = U, +0Q, - V. . 3-17
1+l i’ Ql 1 ¢ )
At time point ia’ the estimates on future demand Vj, 3=1i, 1iti,. ., n,

may alsoc be obtained. At time poinrt the optimum replenishment QE

ib’
is determined. In this case, the criterion of optimality may be

expressed in the form cof maximizing the expected return over all j
subpericds, j=1, itl,. ., n. At time point ic the order is placed.

At time point 1. the replenishment is recelved., This completss the

d

control cycle for subperiad i,

Sunmary

The system theory concepts of Chapter II are applied to the
modeling of a retail inventory control prcblem. It is shown that the
model may be regarded as a relatively isolated subsystem. Subsequently,
the known concepts in control theory are applied to analyze a procedure
for modeling & multi-stage control process. The results of the study
may be used for the following:

1. To define controllable and uncontrollable subsystems for a
given inventory situation.

2. To formulate a milti-stage control system by recognizing
System state, control input, environmental input, and system cbjectives.

3. To recognize the time dependent feedback sequence for indi-
vidual stages in control processes.

The generality of the discuss on facilitates the formulation of

dynamic models for similar problems in management control.
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CHAPTER IV
DEMAND FORECASTING FOR SEASONAL GOODS ITEMS

General

A procedure for modeling a multi-stage centrol progess was
discussed in Chapter III. In the formulation of such a model, a method
is needed to estimate the statistliecal characteristics of a random proc-
ess 1f the system state is under the influence of the random process.
In the case of an inventory control process, this situation applies to
the problem of demand forecasting. The nature of the forecasting
techniques used in inventory control may vary depending upen particular
circumstances iIn a given situaticn. It may involve enly the use of
historical data on the system state, or may involve predicting some
economic indices and correlating the resulting prediction to a demand
variable under consideration.

This chapter is concerned with an investigation of the pro:edure
used to forecast demand for seasonal goods inventory items. In the
development of stochastic models for inventory problems, 1t is usually
assumed in the literature that the probability of demand is known.

Such an assumption is also commonly made in the literature with respect
to the demand probabilities of seasonal goods inventory items. Suppcse
a seasonal pericd covers a time Iinterval (to, tn)' The assumption men-
ticned above implies that the demand probabilities are determined before

the time T, The assumption is Jjustifled if the seascnal period is a
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very brief time interval so that the actual demand cannct be ohserved
until the end of the season.

Suppose (n-1) time points ts izl, 2,..., (n=-1), can be identi-
fied between the time points B and tn’ and the szituation alleows to make
observations on the demand at these time points ty- Then, it may be
possible to use the observed data to make re-estimates of demand proba-
bilities. An application of feedback filter theoryl is made in this

chapter in order to consider such a re-estimation problem.

The Best Linear Estimate

Consider two random variables X and Z which are related by some
rule; for example, the relation may be expressed in the form of a joint

probability density funection:
P(x, 2} . {4-1)

Suppose 1t Is possible to directly cbhserve X, but Z cannot be directly
chserved. In this situation, the values of Z may De estimated on the
basis of given observations on X. In orcer to develeop an estimation
procedure, a criterion is needed to identify the best among all possible
estimates.

Let é denote the best estimate of 7 which is defined over the

ensemble of all possible combinations of X and Z. The estimation loss

is denoted by a leoss function L(Z):

lShaw (34); Papoulis (i47), Chapter II.
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L(Z) = B(z - 27, (4-2)

where E 1s an operator denoting the expectation. The estimate which
minimizes the loss function L(%) is commonly referred to as the least
mean square estimate. The least mean square estimate has many desirable
statistical characteristics--which are discussed later in this chapter—-
and is frequently considered as the bes? estimate.

Let the small letters x and z be particular values of the random
variables ¥ and Z, respectively. When the estimate 7 is cbtained on the
basis of observaticns on ¥, it can be expressed as a function of X, or
2(X). If the conditicnal density function of Z given X, 1i.e.,

(z|x), is known, the loss function of Equation (4-2) can be e pressed

lex

as:

[es]

Lz) = [ [z - 2()7°

i
-0

Py |y (Zl%) 4z, (4-3)
where E(x) denotes the estimate of Z for a particular observation x of
X. The best estimate %(x) in the sense of least mean squares 1s that
which minimizes the loss functicn of Equation (4-3). This is well
known to be E(Z\X) or the mean of the condirional density function
(z|x); i.e.,

Pzlx

2(x) = E(Z|¥) . (4-11)

When the joint distribution of Z and X is normal, it is alsc known that:
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o}
E(A[%) - B(7) + == olx - EQO] (4-5)
X

2

where E(Z) and E(X) are expected values of Z and X, vespectively, ay

and UXQ are The variances of Z and X; and p is the correlaticn coeffi-
cient. In summary, when the conditional density function of the random
variables is known, the best estimate in the sense of least mean squares
can be obtained as the conditional expectation of Z given the observa-
tion of X.

The best estimate in the form of conditional mean estimates,
however, 1s often difficult to obtain, since it requires a knowledge
of the conditicnal density function., For a special case with a single
observaticon x, the best estimate may be easily obtained; for instance,
as that shown by Equation (4-5). When cbservations are made from a
large number of different sample populations, however, the conditional
density of the desired variable Z and the cbservable variable X muy
become quite complex. The linear mean sguare estimate requires less
prior information about the random behavior of the desired wvarlable
and the observatlon variable than would be the case for the conditional
mean estimates. Furthermore, the linear mean square estimates have many
desirable properties which are described as follows.

As estimate z(x) of a random variable % based on an observation

vector x 1s defined as linear if 1t satisfles the condition:

A .\ .
z(alx Foa x2) a

1 5 2(xl) +oa (%), (4-6)

1 2 2
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where a; and a, are any constants., Suppese a finite number of observa-
tions Ky Kooy Ky are available on the random variable X. Let
X = (Xl’x"""XN) be a set of such observations. The estimate %(X) is

linear, by definition, 1f it iIs a linear combination of N cbhservations;

namely,

. N
z(y) = 2 A, R, (4-7)

where a, are constants whose values nesd to be specified. Suppose 1t
is needed to determine the wvalues of &y for all i such that the estimate
;(x) is the best estimate In the sense of least mesan squares, A method
for determining the best estimate E(x), which is well known iIn the liter-
ature,2 is briefly reviewed as follows.

Since z and %, are the particular values of the random variables

Z and X, respectively, Equatlion (4-7) can be equivalently written as:
N N
2 = z a¥; . (4-8)

When this expression is substituted into Equaticn (4-2), 1t results

in:

L(%) = BE(7 - a.x.)2 . (4-9)
1 1

It P~

i=1

2 Ibid.
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The optimum values of a. in the sense of least mean squares are those
which minimize the right-hand side of Equation (4-9). This can be
determined by differentiating L(é) with respect to s setting the
partial derivatives equal to zerc, and solving the resulting N simul-

taneous equations. Namely,

a. X, )x.] {(4-10)
i1 7]

Setting the partial derlivatives equal to zero will yield N simultaneous

equations:

aiE(Xin) {ii-11)

The second partial derivative with respect to 3y is always positive so
that the values of a; determined from Equation (4-11) are minimizing
values. The expression E(ZX.) ls commonly called the cross-correlation

function between the random variables 7 and Xj, and the expression

3 . . .
Sometimes, these equations are referred to as Wiener-Hopf
equations. See Wiener (41).
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E(Xixi) is the auto-correlation function of the random process X with
respect to the random variables Xi and Xj at a time interval (Jj-1i).

When a knowledge of the correlation functions E(ZXj) and E(Xin)
is available, the N simultanecus Equations (4-11) may be solved to
cbtain the best linear mean square estimate %. It iIs to be noted that,
in this case, a knowledge of the conditional density function is not
needed.

At this point, it is appropriate to comment on the orthogonality
of linear es’cirmau:es.ur The linear mean square estimate i has the
interesting property that it is orthogonal with 1ts residuals. A resid-
nal is the error resulting from the use of an estimate, and is denoted
by é, i.e., 7= 7 - 7. The orthogonality of the linear mean sguare

estimate with its residual can be shown as follows. By use of Equation

(4-8), the cross product moment of an estimate 2 and its residuzl Z is:

A A | N
EZ(Z - 2)] = E|( ) a,X. Mz - | a.x.ﬂ (4-12)
I . 11 J

K
M=
a1
3
—
=
[N
p—_
1
Lr t~1=
'_.J
u
i
—~
>
=
|~

b . . . .
Two random variables are said to be orthogcnal if their cross
product moments are zero.
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The last step in the expression above follows from the optimum condition
of Bgquation (4-11) for the linear mean sguare estimates. Thils ortho-
genality property would, in some cases, permit a simplification of the
estimation procedure. Tt is for this reason that this property is sub-
sequently epplied In this chaprer to develop a linear feedback predictiocn
procedure,

Since the normal density function plays an important role in
linear estimation theory as well as in describing the probability laws
of various random phenomena, it is briefly reviewed here to serve as a
basls for a subsequent discussion. A random process is said to be
Gaussian 1f all the probability density fﬁnctions (i.e., first, second,
third, etc.) describing the statistical properties of the process are
of normal form. The general form of the n-th order normal density

function of a random process ¥ 1s expressed as:

1 1 -1 ‘
p(X-. X e aX ) = P eXP.[" - {X_ﬁl) v (X~U)} y (4_13)
1 Z n (Qﬂ)n/2lv‘l/2 -
where:
*1
%5
X , an (n x 1) vector,
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qy o= (xl, Kps vees xn) 5
= E(X) ,
v = E[(X-u)(X*uj], an (n x n) matrix ,

determinant of V ,

=t
i

inverse of V

<<
1

For the special case of zero-mean random variables, i.e., E(X) = 0, the

joint normal density function of Equation (4-13) reduces to:

1 1 -1
Bl Ko amaeaR,. ) = exp (- = X'V "X) , (4-18%)
1772 n (Zﬂ)n/2|V\l/2 2
where:
| s
%1 %2 "7 9
o o LRI a
¢ s 21 %22 2n
onl cn? T Unn
— o 3
Oij = E(xixj)

It can be noted from Equation (4-1li) that the probability density
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function of the zero-mean normal random variable can be specified by

its auto-correlation functions E(xixj).

The conditional density function of a variable X. given all of

1

the other x's; i.e., Ko%K caX s of a Gaussian random process with

32°

the joint density function of Equation (4-14) can be expressed as:5

(4-15)
i} 1 T T bl o el
P |3y sngseeex) = 172 exPl- F(X) = Vy Voo X )M (X, -V, )V, 0K, ]
(2m)~" ™M
where:
Xé = (XQ,XS,E.«G,XH) i [l pid (_‘n-l)] vector,
Via # (0129 Oiga=es Gln) » @ [1 x (n-1)] vector,
Ogps  Opzs °°° ° Oy
939> T33° * ' ' Ogy
Voo = » an [(n-1) x (n-1)] matrix,
OUQ’ 0113. UnnJ
M=g . -V, Viy a scalar
| 122921 ? '

The conditicnal mean of Xl given particular values of observations of

SGraybill (18)5 s 68
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(X [%y5%g5n ax ) =V VOX, (4-16)

It can be noted from Bquatien (4-16) that the conditional mean of X,

is equal to the linear combination V V—lX

given observaticns of X 1579255

2
when the random process X is Caussian. In other words, V12V£§X2 gives
the best linear mean square estimate of Xl for a Gaussian random

process X, and may be expressed as:

1 n
-1, . ¢ _
V12V22X2 i a,x. - (4-17)

This section has considered the problem of cbhbtaining the best
linear estimate of a randeom variable Z given cbservations cof a random
variable ¥. The best estimate of Z :su be expressed as the conditional
mean of 72 given observations of X, if the conditional probability is
known. In particular, when the vandom variables are Gaussian, then the
best estimate of Z can be expressed as a linear combination of observa-
tions of X, where a knowledge of the conditional probability is not

needed for the estimation.

Feedback Filter Procedure for Re-estimation

Linear mean square estimation will be further considered in this
section with respect to the problem cf re-estimating parameter values of
random variables, where initial estimates of the parameter values are

assumed to be known.



Freliminary Considerations

Cengider a sequence of discrete time points:

T Ty T s T T

where the Time points T. are regarded as consisting of thelr own time

k

intervals (t t n) as shown in Figure 9.

k,0° “k,

1 2 k 8 T(S+l)

tl,O tl,n t:,O t?,n tk,O tk,n t?,U ts,n t(Srl),O t{s 1),n

Figure 9. The Time Points Tk and their Intervals

Let the time point T be defined as occurring in the future a=d the

(s-1)

other time points Tk,k 2 1,2,...,8, in the past.

Now, consider a stochastic process:

7., Z s Zyse oa B

17 %2’ s> P(st1)

where the random variables Z are defined for the time poilnts T For

k k”

example, Z, may be the sum, or the average of the sum, of the number of

X

random cccurrvences of cerrtain events wh-.ch take place in the intervals

(

T Y. The parameter values of the random variables 2

tk 0 Y n may be

k

time-variant with respect to the 1ime polnts Tk’ k=1,2,::.,8,(s+1);

however, it is agsumed that the parameter values of one of the Zk are



time-invariant over the interval (t }. For example, the param-

t
2,07 Tk,n

eter values of Z, and Z, may be time-variant; however, the parameter

1 2
values of 7. are time-invariant over the interval (t , t ).
1 1,0 i,n

Suppose the cutcomes of 7. can be observed conly ar times t

J's k,n’

and one wishes to obtaln a priori estimates of the unknown constant

values of Zk at times tk o For instance, consider the problem of
4

estimating the unknown constant value of Z( Such an estimate may

s+1)

be computed in terms of certain past values of Z k=1,2,...,8, cor by

k,
means of regression analysis with respect to some other time series.

Let IO be a collection of some avallable dara which are used to compute

the estimate of % be designated as the estimate of

y? and Z( +1)

(s+1
Z(s+l) computed cn the basis of IO, Then, the least mean square

estimate Z( can be expressed as the conditional mean glven IO,

5+1)

namely,

b

(s+#1) (s+1)|I ) - (4-18)

At the same time the variance of the estimation error, which is desig-

nated as 022 may be computed as the conditicnal mean:
(s+1)

2 N S
a9 = EL(Z -7

)2
(5+1) (s+1) (s+1)"

IO] . (u-19)

In addition te the description of the situation glven above,
suppose (n-1) time polnts can be Identified over the intervals

(£ t ), as shown in Figure 10,

%,07 k,n
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b

1 -1/ + + o —— —t —> t

Y-y ki kL (n-1) Tk,n

—J
=
[}
+
=
=

Figure 10. Subinterva’'s of the Interval

(e or Yen)

Although the a posteriori value of Z  is unobtainable until the time

k
t , suppose scme observations on 7, can be made at each of t, ., for
k.n k k,i
i=1,2,...,0. Such observations will be designated as xoge
?
Similarl the time points ¢ . and the observations x .
¥ P (s+1),1 (s+1),1

can be described for the perilod T Given the initlial estimate

(s+1)°

~

Z(s+l)

times t(s+l} : to improve the Initial estimate., Such a re-estimation
3

at the time t the observations x

(s+1),0° (s+1),1 may be used at

procedure will be censidered in the following subsection.

The Filtering Problemﬁ’7

The problem of obtaining the re-estimation of Z was briefly

(s+1)

described in the preceding discussion. TIn order to simplify the sub-

6It is commonly known that the idea of recursive filtering is

originally due to Kalman (u46). However, to the best of this writer's
knowledge, this filtering preblem is first considered by Shaw (34).

The procedure used here i1s almost Identical to that given by Shaw except
the definitions of m, and n; In Bquation (4-22) and the subsequent
consequences, Shaw assumed that the values of m; are the same for all

i and ni Is the white noise with a common variance. It is heoped that
the notation used here is less 1ilkely to be misleading than that used

by Shaw.

7A similar problem is also discussed in Papoulis (47}, pp. 419; 425,
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script notation, the first subscript (s+l} will be eliminated in the

following presentation. In particular, the previous symbeols of Z(S+1),

~

Z(s+l)’ t(s+l) i will be replaced by the simplified forms

and X(S+l),i
of 7, 20, ti’ and Xia respectively. The simplified symbols will be

used to rewrite Equations (4-18) and (4-19) as

Z, = E(ZIIO) . (4-20)
2 52
oL = EBI(Z -z )71 1. (4-21)

The problem is now stated as follows:
1. The initial estimate ZO of an unknown constant Z is made
available at time to.

; . ? e . }
2. The estimated variance g. of the initial estimation error

%o

is also made available at time tye

3. At times ti’ 1= 1,2,...,n, cbserved data ®, are made avail-
akble, where x, are related tc Z by some rule.

4., It is required to have a procedure to compute the re--cstimates
of Z at times ti.

The relatiun between the unknown constant Z and the observed data
X is postulated as follows. For the purpose of estimation, the unknown
constant Z can be regarded, a priori, as a random variable. The best
possible point estimate which can be made at any time on the random
variable 7 is the expected value of Z. Let o denote the expectation of

Z, and assume that the true value of U, is alsoc unkncwn. Suppose some
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random variables Xi can be defined by the following relation:

Xi = miZ t oo, (4-22)

where m, are known constants; n, are the Gaussian noise with zero means
. 2 .
and known variances O, s and assume that n, are independent and ortho-

i
gonal to Zj; namely:

E(ni) =0, (4-23)
E(ninj) =0 if 1 # 3 (4-24)
2 .
= Gn. 3 &= g
i
E(Z ni) =0 . (L-25)

Furthermore, let Xy be the observations obtained on the random

variables'Xi and write:

X, = m, + e, 4-26
i oy g ( )
where e, are the amount of noise in the observed values of Xy The

numerical values of x, can be observed at times ti; however, the values

of u_, and e, are not observable, but can be only estimated in terms of

Z

statistics. It can be noted that the problem of estimating the unknown

constant Z 1s equivalent to the problem of estimating its expected
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value MZ'
Let X denote sets of data which are used at times ti for the

purpose of the estimation, where i = 0,1,2,...,n. Then Xgs Xpyaeees X

are expressed as:

>
=
I
—
>
X
~—

XQ = (XO’ Xla XQ) = (Xl) XQ) (Ll"'zr?)

><
i

(Xn—l’ Xn)

Let %i be designated as the best estimates of Z which can be
computed at times t;. Then, Zi can be expressed as the conditional

means:
Z, = E[z|xi] . (4-28)

Also, let ﬁi 1 be designated as the best a priori estimates of the

3

A
Then X. . can
2

random variables Xi which are computed at times ts i1
. i

1

be also expressed as the conditional means:



Let ﬁ. and %.
i i

,i-1

estimates Z. and X. .
i Loy =]

The best estimates of Zi
denoted by 7. . .. Th

enote v Zl~l,l en

means:

.

l_
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1

Exg 1% ;)

1

E[(m,Z + ny) %)

(4-29)

1

mE(Z|x;_ 1) + Elnglx;_ ;)

be defined as residuals which result from using

respectively; that is:

Zi = Z - Zi (4-30)
Xi,i—i = Xi = Xi,i-l (4-31)
-1 which are computed at times ti will be

éi 1.5 can be expressed as the conditional
T
1,1 = B2 Ixg ]

EL(Z - 2,_)|x;]
(4-32)

BLz[x,] - B[Z, Ix,]
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It can be observed from Equation (4-32) that éi may be computed

~

at times ti as sums of the previous estimates Zi 1 and the estimates of

theiy residuals, l.e.:
Ty = Z,  + Z .. (4-33)

The values of ii- , however, cannot be determined by use of Equation

Ly
~
(4-32) unless the conditional probabilities of Zi—l given X; are known.
The estimation procedure will be radically simplified if only
linear operations are allowed on the data--instead of using the nonlinear

method through conditional means. For instance, suppose there exist

constants a; such that Zi can be expressed as linear combinations of

observations Xy and the previous estimates 2i_ln Namely,
Zl = ZO tax,
Zy =2y +ayk, =Z + | as%s (4-34)
J=1
A~ ~ ~ l
4., = 4 tagH, 22+ Z a.X. .
1 T~1 11 o o= 1]
7=1
Suppose:
Z =0 . (4-35)
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Then, Equations (4-34) can be simply written as:

4y = A%y

R . g

Z = + a. = o 4 4-36
5 = By a %, L al:lx:| ( )

i=1

~ -~ l

Z. =2,  +ta.x = ) a.x

| 1-1 a1 521 5 |

Let ;i i1 be defined as the residuals of the observations X
3
and the estimates X. . ; namely,
X 1=l

e o =%, ~ Xy s d (4-37)

Then, for any aj, suitable constants aj can be found so that Equations

(4-36) are expressed in the form:8

7. = 7. + a.x (4-38)

N>
"
N>

. " T Q. R, .
1 i-1 17i,1-1

8Shaw (3u), p. 155.
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A comparison of the last terms on the right-hand sides of

Equations (4#-33) and (4-38) suggests that

&, . g =

o I 5 Y-
Femell o 3. alxl,l—l (429

In order that o.x. . be the best estimate of Z, . In the sense of
1 151-~1 i-1,1

the least mean squares, the values of ¢, can be determined by solving

the following:

0 s _
EEE-E[Zi—l - aixi’i_l] =0 (4-40)
Then,
E[Z. .X 1 = a.BE(%.2. )
1-171,1i-1 ] L e
and
E[Z, .X. . .]
o, = lj; LP e (4-11)
E(XS . )
Ligd=l

The numerator on the right-hand side of Equation (4-41) is:

~ ~

BLE Mrand = 58y 508y = Xy p 4 =)

E[Zi—l(mizi-l + ni)]

miE(Zi— ).
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The denominator on the right-hand side of Equation (4-41) is:

. i ~ 2
BlXy gpd = BLEEG o + 0"
= g, SELE. 0§ # Blw.o] (4-43)
i i-1 i
2.2, 2
= mi E(Zi_l) + Unb v

1

By use of Equations (4-42) and (4-43), o, of Equation (4-41) can be

. g
written as:

miE(éiflj
o, = o (‘+—'+L+)

1 Dipiosy 2 2
mi E(Zi—l) + On

i

~

This value of o, can be used in Equations (4-38) to compute Zi' However,

“ D . g 4
the values of E(Zi—l) are still unknown. A recursive relation can be

= 7 10
used to compute E(Ziz) as shown below.

LBy .
E(2,%) = EL(Z - 2,)°)
= E{[Z - (2, . + a.X 1125
il N T
= > 2 2
= E{lz; | - o (m2Z, , +n,)]"}

%f. 1bid., p. 155.

Oct. 1pid., p. 156.
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" x 2
B L6l iliply g = difi

2
-1

; 2 - 2 2
(1 - aimi) E(Zi ) + a. E(ni)_

When a, of Equation (4-44) is substituted into the expression above,

it results in:

2
UI’]
£(z.2) = 2 £(7.%.) (4-15)
1 - 2[B(2 2 Y & & i-1

i i-1 n.

A

e {1 - w3 BOEZ. Y

= o LT e

A schematic diagram of the linear feedback filter model is shown
in Figure 11. The part of the diagram, which is shown within the dotted
outline and designated as the source of informaticn, represents the
model of Equation (4-26). The other part of the diagram, which is shown
within another dotted outline and designated as the iterative scheme,
represents the procedure for computing iir

In summary, the iterative scheme consists of the following main
steps.

l. Given the initial estimate 0%2 , and the values of m, and
(@]

an ,» Tthen compute oy by use of Equations (4-u44) and (h-45).
2. Use the computed values of ay and the observations X, to

obtain:

(4-16)

N>
1"
N>

. = T K. . .
1 i-1 1 1,1-1
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The Source of Information

Figure 11,

Unit

°
|
|

m time ]

Zi—l Delay

The Iterative Scheme

The Linear Feedback Filter Model

¢9
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This scheme 1g computationally convenient, because tThe new estimate can
be determined as a sum of the previcus estimate and the correction term,

The Reduction of Estimation Errcrs

The use of the re-estimation procedure should result in the
reduction of estimaticn errcrs. It can be chserved from Equation {(4-45)
that the mean square errors of the new estimate éi are proporticnal to
the mean squafe errors of the previcus estimates ﬁi—l by the factor of
(1L - aimi). Tu order to determine the lower and upper bounds of

(1 - uimi}, the assumptions of the model! will be more precisely stated

. L2 2
with respect to the values of U% > O and m, -
5 o , i )
1, a5 is not zero. If 02’ is zero, then Zo has no error of
o 0
estimation, and the re-estimation would no~ be required.
2 .- 2 i 2 . e
2. 95 has a finite value; 1.e., SERERNE 1f op 1s infinitely
o o o}
large, then it Implies ~hat the estimate Zo is unknown.
2 S ?
3. o© are not zero for alti i, 1:1,2,...,n. If any cne of o
n. ne

is zero, then the corresponding value of X, can be used to compute

without error the constant value of Z.

2 .. . A
i, Un have finite values; l.e., c < w for all 1, 1=1,2,...,0.
) i By
1t o, are infinlitely large, then the random variables Xi can take any

i
real number, and it Is impossible to have any reascnable means of

estimation.
5. C m, < 1 for all 1, and £ m, = 1, for 1 - 1,2,,..,n0.

i
Under these conditieons, the following Inequalities will hold:

0 < (1 - a,m,) < 1. (L-u7)
i
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When these inequalities are considered together with Equation (4-45),
it is observed that:
-2

?) < E(Zi Y. (4-ug)

E(Zi+l

In conclusion, the reductions in the mean square error of estimation can
3 N - » a Al
be made in the filtering procedure, and the new sstimates Zi are, on the

I
average, improved estimates of the previous estimates Zi 1

Special Cases of the Piltering Problem When the

Initial Estimates are not Available but Un% are Known
i
As a speclal case, it is interesting to analyze the consequences
of large values of 022. Suppose 022 = M, where M is an arbitrary num-
ber, and let M > <, ?hen, from Equgtion (4-44):

lin o = lin —————s =, (4-u9)
M -+ <o M ><m M+ ¢ 1
1 n
i
2. . . 2
where On 1s assumed to be a relatively small number; 1l.e., Gn < M,
1 1

In this case,

lim Z, = 4£—x (4-50)
m

bl
Moo 1T

and the estimate %l of Equaticn (4-50} becomes Ildentical to that which
can be computed by means of the simple average without knowledge of the
initial estimate. In fact, when M - o, then the random number 7 can be

~

any real number, and the best initial estimate could be ZO = 0.
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Now, consider the problem of computing E(ilQ) by use of Equation

(4—1-}5 ); namely:
E(Z ) = (_I a.m )” ( 51)
€L - [ )

However, if M - o, then (1 - a,m,) - 0, since a JL-. In this case,
11 il i ml
the right-hand side of Equation (4-51) results in an Indeterminate

form. Making the appropriate substitution for @, , one can rewrite

the right-hand side of Equation (4-51) as:

— 2
~ 5 | my M
E(Z,7) = |1 - M (4-52)
1 2 2
ml M + Un
1]
cn2M
_ 1
leM + Un
1
; 2
and if Gn << M, then:
i 2
GD
lim E(Z.Q) m it | (4~ 53)
1 2
M =+ o ml

This is an interesting result which indicates that, although the error

of the initial estimate can be very large, the mean square error of the

: . . 2
is a bounced value, provided H, &9 .

1
This result is interpreted as follows: when the initial esti-

first estimate at time tl

2 2 2 ;
mates ZO and U% are unknown, but Un are known for all i and
. D . i .
0 < 0., =% the filtering method can be applied to compute the
i



estimates Zi for 1=1,2,...,n by use of Equations (4-44), (4-45), and
(4-u46).

When the Initial Estimates are not Available and the Noises Have a
Commen Variance

As in the preceding case, suppose 022 = M and let M » «, 1In
o

addition, let

In this case, the values of a, and E(iiQ) can be computed for i =

1, 2, and 3 as shown below:

o E 1
R o B
i) ml
o, = m2 —_
2“m2*m2’
1 2
o, = "3
3 2 2 92 2
ml -l-m2 +m3
and,
" 2
= n
E(Zl ) = ;r?; 5
i
O’2
= P n
E(Zz)—"n"]—'zﬁ’ 35
j ¥ By
o 2
< g n
E(Zs)“ 2 7 2
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"y
C!i - —i . (4—54)
E 2
mn
i1
Z
-2 Gn
E(Zi ) = - - (4-55)
v 2
L My
j=1 -

When the values of & of Equation (4-54%) are used for the values of oy

in Fquation (4-46), the estimates ﬁi can be computed as:

Zl ) Zi~l * Oli(xi s
A mi A
= 7. o (X, - m.Z, _) . (4-56)
i-1 i ” i 171-1
E m.‘{
351

This result is interpreted as follows. When the Initial esti-
mates are not available and the neoises have a common variance, then the
3 A a a - @
estimates Zi can be computed by Eguation (4-56), It is very Interesting
to observe that, as shown in Equation (4-56), the iterative procedure is
completely independent of the neise, In other words, the magnitude of
the nolse variance does not affect the estimating Iteration (although

it affects the cutcomes 1in xi).

Comparison with the Simple Moving Averages

Let 21 denote the estimate of 7 computed at times ti’ 1=21,2,...,1,

by the methed of the simple moving averages; that 1is:
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[RNES)
1
=

I ~—1p

A
m—.x. . (4-57)

jljj

It can be easily shown that the expression above can be written in the

following form:

P & A~ - 1 &
Z1 h 2'i-jl_ ¥ 8l(xi - lei_l) - Zi-l # imi (xl N mlzl—l) 2, (4-58)
where
_ el
By 5 Im. -
bk

It is interesting to compare Bi of Equation (4-58) with o, of
Equation (4-54),

(a) If mj < me for j=1,2,..., (i-1), then:

The inequality above holds true, since:

Qo

_ i
i i a2
my m

j=1 4]

and if HH < me for j=1,2,..., (i-1), then:
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e
g
3
1 O~
\‘Jsl
= FEe
N

l_l
NE
e

(b) If m, < mj for all j=1,2,...,n, then:

a, < B.
i i
(c) If mo=m, = ... =mo=m, then
8, = B, = . (4-59)
i i im

These results are given the following interpretations. When the
initial estimates are not available, and the noises have a common vari-
ance, then the welighting factors o, of the filtering method and Bi of
the simple moving averages are different if m, E mj for all j=1,2,...,1
and i=1,2,...,n, but are identical if m. = mj for all j=1,2,...,1 and
121,244 45 51

In other words, if:

(i) the initial estimates are not available,
(ii) the time points t; can be assigned in such a way that
M =My = oee. =W, and
(iii) +the magnitude of the noise variances 1s bounded and the
same for all 1, 1=1,2,...,0,
then:

(i) the simple moving averages give ldentical estimates of
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Zi as can be obtained by the filtering method, and
{ii) it is not necessary to know the value of the neise

varlance.

Numerical Examples

The Data and the Situation

Suppose a seasonal period (to, tn) is identified with five sub-
periods; l1.e., n=5. In order to generate the data R 1=1,2,3,4, and 5,
two sets of five random normal numbers with zero means and unit vari-

11 .
ances are selected from a randem number table, and shown in Table 1.

Table 1. Two Sets of Five Random Normal Numbers with
Zero Means and Unit Variances

i Set A Set B
1 0.91 ~0.51
2 1.18 -0.99
3 -1.50 0.97
4 -0.69 0.98
5 1.37 -1.10

The random number table contains 56 sets of § random normal

numbers. Among these sets, a set was randomly chosen, and is used as

%lChurchman, et al., (44), p. 181.



the data in Set A of Table 1, On the other hand, the selection of the
data in Set B of Table 1 was not made on a random basls. All numbers
except one In Set B have smaller deviaticns from the means than those
in Set A, In fact, the numbers in Set B have the smallest overall
deviations from the means among the 56 sets contained in the random
number table. The random numbers in Set A are used to generate the
experimental data for Examples 1, 2 and 3, and the random numbers in
Set B for Examples 4 and 5.

It 1s assumed in all examples that the unknown constant Mo is
equal to 5, TFor the purpose of illustration, 7 1Is regarded as a random
variable with EZ - W, = 5. The value of o which is equal to 5, is, of
course, unknown to the estimator. At time to’ the Initial estimate io

. . \ - . 2 .
is given as zero; i.e., ZO = 0. Varicus values of oi are used in the
o

examples to study their effects on the subsequent estimation. Different
2 . . . X

values of Un and mi are considered 1In the examples to illustrate their
1

affects on the estimatlion errors.

Example 1

The particular situation for this example is specified by the

fellowing:
(a) U P 0.2
(b) Gn2 - cnz = ... = an =1
1 2 5

(¢} Use the random numbers in Set A of Table 1 to generate the
data x,.
1

Since the value of gzis given as 5, it follows that the random

- 1 and the variances 0n2 = 1
i

for all 1, 1=1,2,...,5. The simulated data x. are shown 1In Table 2.

variables X. have the means EX, = m.u
1 1 177
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Table 2. Simulated Data 3 for Example 1

2 b4 EX o .
1 Tis

-k
1 1.91 1 1
2 2l 8 1 1
3 -0.50 1 1
4 Daal i 1
5 P Tah 1 1

For the purpose of analysis, six different values of 022 are
o

considered in this example; namely,
=0, 5, 10, 20, 40, and 200

The values of a., E(iiz), and 21 are computed by use of Equations (4-44),
(4-45), and (4-46), respectively. The computational results are tabu-
lated in Table 3, and also shown in the graph of Figure 12,

The estimates by the simple moving averages are also computed by
use of Equation (4-57), and tabulated in Table 3 as well as graphed in
Figure 12.

The sum of squares of estimation errors, defined by:

n A 9 g .
D (-2 = ] (5-%20°, (4-60)



Table 3. Computational Results for Example 1

ml - m2 T ... = m5 = 0.2
Gn = Gn = . = On = 1
1 2 5
20 . “2“ IV A2
op i o, E(zi )’ 7, 4(“2'21)
(e 1
|
|
1 0 0 | 0
2 0 0 [ 0
0 3 0 J 0 125.0
o L ' 0 0 0
I 5 0 0 0
e 1 | 0.83 4.15 t 1.6
- 2 1 0.76 3,51 | 3.0
+ 5 31 0.61 3.07 | 2.3 33,9
= 4 1 0.55 2,73 | 2.2
9 15 | 0.50 4 2.45 | 3.2
= [ 1] 1.43 | 7.20 | 2.7
o 2 | 1.1? 5.53 | 4.8
W | 10 3 | 0.92 4.57 | 3.3 12,0
ks L o| 0.78 3.89 | 3.1
3 5 | 0.72 3.33 | 4.3
- 1| 2.22 [ 11.20 | 4.3
o 2 | 1.55 7.73 | 6.3
. 20 3| 1.11 £.02 | 4.4 T
g b 0.97 4,80 3.8
£ 5 | 0.78 L,03 | 5.1
N 1| 3.08 | 15.36 | 5.9
2 2 1 1.90 9,52 | 7.8
() uo 3 1 1.38 £5.89 | 1.9 3,7
4! 1,08 | 5.40 | 4.2
| 5  0.89 b.44 | 5.6
j 1| 4.u5 | 22,00 | 8.5
2 | 2.34 | 11.65 | 9.5
200 3 | 1.59 795 | 5.8 35.3
u ol 1,20 .04 | 4.8
| 5 | 0.97 .89 | 6.1
1 9.8
The
Simple 2 0.2
, 3 5.0 50.9
Moving
Averages ¢ 49
5 | 6.3
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iz computed as shown in the last column of Table 2. The sum of squares
of estimation errors, which will be simply denoted by S.5.L., can be
used as a measure to evaluate the accuracies of estimation in various
cutcomes.

The numerical resulis of th s example are summarized as follows.

1. The case when only the initial estimate is used. If the

i s . ; . 2 .

initial values are given by the pair, Zo = 0 and 9p = 0, then the situa-
O

tion implies that the re-estimation is not reguired. 1In this case, the

S.5.E. (the sum of squares of estimation errors) results in a large

nupmber; i.e., 125,

2. The case when the Initial estimates are used with the data

. . : . 2 .
to obtaln the re-estimates. TFive different values of o% are considered

Q
for this case; i.e., 022 = 5, 10, 20, 40, and 200. In this case, the
o)

values of S.5.E. are much smaller than the case without the re-

estimation.

3. The case when only the data are used. If the initial esti-

mates are unknown, then the simple moving averages can be used in this

case with the assumption that 0%2 + o ., (Alsc note the common values of
5 o}
m, as well as of o in this example.} This phenomenon can be readlly
> .
observed in Flgure 12; namely, as the values of af Increase, the esti-
Q

mated values ii approach the simple moving averages.
Example 2

The particular situation for this example is specified by the

following:



(¢) Use the random numbers in Set A of Table 1 to generate

the data Xi'

The only difference in the situations of this example and the preceding
: i 2 ;
is the value of the common variance, Gn . The simulated data are shown

i
in Table 4.

Table 4. Simulated Data for Example 2

1 X B, o 2
i 1 iz

1
1 2.82 i L
2 2.86 1 y
3 -2.00 1 L
L -0.38 1 4
5 3.74 1 L

The computational results for this example are tabulated in
Table 5, and also shown in the graph of Figure 13. The results indicate
that when the deviation of the data from their mean are large, then the
simple moving averages result in large errors of estimation.
Example 3

The particular situation for this example is specified by the

following:



Table 5. Computational Results for Example 2
ml:m2 '--:m5=052
g = Qg = s = g e
nl n n5
| el @ 5
U% i oy E(Zig) Zs | Z (uy-2
o | i
(@] | - _i[
. 1 0 0 i 0 ‘
. 2 0 0 0
& 0 3 0 0 0 125.0
H 4 0 o | o *
” 5 0 0 0 |
3 1 0.91] 16.36 | 2.6 |
= 2 0.70] 14.07 | 4.5
2 | 20 3 0,61 12,35 | 2.8 ~ 19.7
b0 4 | 0.55| 10.99 | 2.3 |
A 5 0.50| 9.90 | 3.9 |
i 1 1.43] 28.56 | 4.0 |
5 2 1.11| 22.22 | 6.9 |
= uo 8 0.91| 18,18 { 8.8 | 16.2
& | 4 0.77| 15.38 | 2.9 |
z | 5 0.67| 18.32 | 5.0 |
B 1 3.33| 66.00 | 9.4
=) B 1.99] 39,73 |12.3
2 200 3 1.42| 28.45 | 6.0 78.4
& 1 1.05| 22.48 | 4.3
5 0.92| 18.34 | 7.0
1 14.1
rg?l‘enple 2 135
: 3 [ 7.0 199.0
Moving " | .8
Averages - | 7.6

T
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(a) m, = @l 5 m, = my = 043 m, = @2y m = 0.1
(b) o 2. 1, OHQ = Un2 =L, 0n2 = Un2 =1
o 2 3 y 5

(¢) Use the random numbers 1in Set A of Table 1 to generate the

data x..
I

The differences in the situations of this example and the two preceding

are in the different values used for m, and an . The simulated data
i

are shown in Table 6.

Table 6. Simulated Data for Example 3

i X EX. o) 2
1 a n,

1
1 1.41 0 b 1
2 3.86 1:5 u
3 -1.50 1.5 bt
4 031 1.0 i |
5 1:87 Q.5 1

The computational results for this example are tabulated in
Table 7, and also shown in the graph of Figure 1l4. An interesting

g B 2
phenomenon to be observed in the graph is that, as the values of 02
o

increase, the estimated values Zi do not approach the simple moving

averages in this case. (Note the different values of m. and of anz )

i



Table 7. Computational Results for IExample 3

m, = 0.1, m, =m, = 0.3, m

1 2 3 4 5
g =1, On =0 F 2, o o = 1
%1 2 3 4 5
2 (ﬁ ~ 2.[ . ¢ n2
gz 1 o, E(Zl ) Zi | 4 (uZ—Zi)
o) | [ i
© |
11 1
o 1 0 0 % 0 |
¢ | 2 0 0 0
5 0 3 0 0 0 . 125.0
e L 0 0 [ o
5 0 0 0
o |
20 1 | 1.67 | 16.66 { 2.4
5 2 1 0,91 | 12.11 | 5.4
= |20 3 0.71 9,44 | 3.6 14.3
20 U | 1.37 6.85 3.0
! 5 | 0.64 6.41 ' 3.9 |
e 1 | 2.86 | 28.56 ﬁ T }_
o 2 | 1.30 | 17.42 | 8.0
4o 3| 0.9% | 12.51 [ 5.1 11.5 |
& 4y 1.67 8,33 3.8 [
m o * L3
g 5 1 0.77 | 7.89 | a7 | |
o 1] 6.67 | 66.60 9. | [
© 2 2.00 26 .64 13.4
S 1200 3 1 1.25 | 16.65 8.2 100.9
4, 2.01 | 10.00 5.5
5 | 0.92 | 9.09 ] 5.2
1 fo14.1
g@e N 2 | 1308
Tmpe 3 7.3 172.0
Moving y 5 g
Averages 5 | 8’4
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Example 4

The particular situation for this example is specified by the

following:
(a) ml = My = wew =M = 02
(b) 0n2 = 0n2 C—— 0n2 = 1
1 2 5

(c) Use the random numbers in Set B of Table 1 to generate the

data x..
=2 13

The only difference in this example and Example 1 lies in the different
sets of random numbers used to generate the data. The simulated data
are shown in Table 8. The computational results for this example are

tabulated in Table 9, and also shown in the graph of Figure 15.

Table 8. Simulated Data for Example 4

a1 X EX o 2
R N

i

i 0.49 1 1
2 0.01 1 1
3 1.97 1 1
L 1.98 1 1

3 -0.10 d 1




Table 9. Computational Results for Example U

mo=my = cec =mg = 0.2
a = 0 = Fad = = 1
'I'll Tl2 n5
N o "
022 il oo E(ZiQ) z, |1 (uZ—Zi)2
o 0] 1
I
- i 0 0 0
i 3 0 0 0
R 0 3 0 0 0 125.0
5 4 0 0 0
oy 5 0 0 0
2 1 .22 11:20 Tl
o 2 1,55 7.7 0.8
= | 2p 3 1.2 B.82 2.8 B8
o 4 0.97| 4.80 4.2
s 5 0.78| 4.03 3.5
i % 3.08[ 15.36 1.5
. 2 1.90| 9.52 | 1.0
By 3 1.38| 6.89 3.4 8%.8
o mn 1.08| 5.40 4.8 |
& 5 0.89| 4.u4 3.9
3 E L.45| 22.00 2.2
" o 2.34| 11.65 1.2
& |200 3 1.59| 7.95 3.9 24,5
4 1.20| 6.04 5.4
5 0.97| u4.89 4,2 |
The 2 e
SATRp 3 .1 21.9
Moving " 5.5
Averages 5 oy
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The numerical results indicate that, in this particular situa-
tion, the simple moving averages give better estimates than the others.
It should be recalled, however, that the random numbers in Set B of
Table 1 are such that their deviations from the mean are very small.
Example 5

The particular situation for this example is specified by the

following:
(a) m, =m, = « =MW = 0.2
(b) a ? = cn2 £ = 2 I
B 2 By

(c) Use the random numbers in Set B of Table 1 to generate

the data xi.

The only difference in this example and the preceding lies in the values
of Gn2 . The simulated data are shown in Table 10.
i

Table 10. Simulated Data for Example 5

1 X EX. o] 2
1 i .

1
L 0.02 i 4
2 -0.98 1 4
3 2.94 1 4
L 2.96 1 L
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The ccmputaticnal results for this example are tabulated in
Table 11, and also shown in the graph of Figure 16. The vesults indi-
cate that, when the deviations e¢f data are relatively large from their
means, then the simple moving averages result in the large value of
S.S.E.

Summary of Results in Examples

The numerical results obtainad in the preceding five examples
are summarized as follows:

1. If the re-estimation is not made, then the bias error in
the Initial estimate cannot be corrected. TIn this case, a high accuracy
in the initial estimate would be required to eliminate the chance of
probable bhias errors.

2. If only the data x, are used without the initial estimate,
then the estimates are highly sensitive to the large deviaticns in the
data, which results in large errocrs of estimatvion.

3. If the filtering methed of re-estimation is used, Then the
bias error in the initial estimate can be eventually corrected; i.e.,

"2
the magnitude of E(Zi) smoothly decreases, and the estimatlion 1s not
too sensitive to large deviations in the data. In zll examples (except
Example 4}, the filtering methods resulted in the smallest estimation

errors. As explained earlier, the situation in Example 4 was the least

likely case.

Application of the Feedback Filter Procedure to Foracast

Demand of Seasonal Goods Inventory Items

This section is concerned with the application of the feedbhack



Table 11. Computaticnal Results for Example 5

ml = m2 = tes = m5 = 0,2
cn = Un = ees on = 2
1 2 5
| 2 .o ! v PN
| as 1 o (7 }) Z _J SIPAY
] O 1
“O 1 0 0 {_ 0 }
g 2 0 0 9!
= 0| 3 0 o | o9 125.0
a i 0 o | o
5 s | 0 0 ’ 0
ks T ] 0.91 | 16.36 | ©
% 2 | o.70 | iy.0v §ﬁo"7
= 20 | 3 | 0.8l | 12.35 | 1.2 87.4
o0 4 | 0.55 | 10.99 | 2.7
| ] 5 1 0.50 9.90 | 1.8 |
j i 1 P1.u3 | 28,56 G {
3 | 2 1 1.11 | 22,22 {-1.0
e 40 | 3 ! 0.91 | 18.18 | 1.9 79.3
2 4 1 0.77 | 1%.38 | 3.8
o 5 [ 0.67 | 13,32 | 2.5
15 1| 3.33 | 66.00 | 0.1
. 2 | 1.99 | 39 73 |-1.9
| 200 | 3 L2 | 2845 | 2.8 78.1
4 1 1.05 | 22.u8 | 5.3
5 | n.92 | 18.3% 3.4 |
The 1 | 0.1 |
. 2 —o.h
simple 3 3.3 81,8
Moving .
i 6.2
Averages 5 | 37 B
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filter procedure to the problem of demand forecasting of seasonal goods
inventory items. Consider a seasoral pericd which is defined by the
Time 1nterval (to, tn), Let D be designated as the number of the
seasonal items In demand for the season. When the constant value of D
is unknown, it can be regarded a priori as a randem variable D. The
problem of computing & point estimate of the randem variable D is
equivalent to that of estimating the expected value of D.

Let ﬁo be designated as the Initial estimate of D which is made
available at time T 052 as the variance of the initial estimate error;
and ﬁi as the estimate o? D which 13 made at time ti’ where 1-1,2,...,n.

Furthermore, the symbol Z, which was used in the preceding sections, is

given the following definition:
Z=D-D_ . {4-61)

In other words, Z 1s defined as the residual of the initial estimate

“

DO. When Z iz given such a definition, the symbols ﬁi and ii can be

expressed as follows:

zl = D; - DO . (4-62)
Z, = Z - Z; (4-63)
D-D
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Once the value of %i Is kn:wn, then the value of bi can be determined
by the relatinn of Equation (4-£2).
The i-th subperiod of the season (to, cn) was defined in the

preceding section as the subintervai (t,

i_10 ti}. Let Vi be designated

as the number of the seascnal items In demand for the i1-th subperiocd;

A

V., . as the estimate of Vi which 1s computed at time tj, where 7 © 1
b
and v, as the actual demand for the i-th subperiod which can be observed
at time *..
i

Similar co the postulate stated by Eguation (4-22), suppese the

following relation holds for Vi:
V., = m.D + n,, (4-614)

where m. are known constants whose values satisfy the following condi-

tions:
n
} my=1 and 0 :om < 1. (4-85)

The Gaussian noise ny is the same as defined in Equations (4-22),
(4-23), and {(4-24). Since D is a constant quantity, D is Independent
of (and orthog.nal to) the nclse n, . In real situations, there can be
many factors which contribute to the noise; for example, the customer's
buying habit and the weather conditions could he such factors which
explain variations in n

Suppose the quantities ﬁi 5 are computed by the following rule
3



Then, the wvariables Xi and their associated quantities Xi i 1
o

can be expressed as follows:

X = M2 ¥+ T,
T 1

m.(D - D) + n.
i o i

i

(m.D + n.) - m.D
T 1 10

=V, -V,
il i,o
Xl,l—l - miéi—l
= m (Diwl - DO)
- O 5 V:r.,or
Xl,l—l =X - Xl,l—l
. . = ) . s
( Vl,O) (Vl,l—l Vl,O)
=V, -V, .
i i,i-1

Furthermore, define X by the following:

91

(4-686)

and Xi,i-l

(k-67)

(4-68)

(4-69)
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Since the wvalues of Vi and V. are made known at time ti’ the value of
3

X, can be determined by the definition above. Then, it follows that:

®i,i-1 T %1 T %y i Sy
= (v, -V, ) - (V, -V, )
+ 0 i,1-1 1,0
:V.-—A :
i, 1,1-1

As shown in Equation (4-62), the problem of computing ﬁi’ given
the initial estimate ﬁo, is equivalent to that of computing éi’ The
estimate ﬁi can be computed by use of Equation (4-46). The values of
s, which are needed in Equation (4-46), can be determined by use of
Equations (4-44) and (4-45). In order to use Equation (4-u45), the value

2
of the initial estimate a5 is needed. From Equations (4-61) and
o

(4-62):

i

E[(Z - 20)2] (4-72)

N o

E[(2)°]

L1

1

E[(D - D )?]
(@]
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The problem of computing the values of Dﬁ and o8 is considered In the
- o

following section.

On the Assumptizns of rhe Model

The Seasonal Period (t_, T )

Ty

Suppcse a seasonal perlod of a seascnal goods item is defined
over the time Inter.al (t , tn), which 13 referred to as a seaso-n. The
o
time polints to and tn are called the opening time and the closing time
of the season, respectively. In real situations, the opening and
closing times of a season are subject to random variations, and these
time points are cften determined arbitrarily. In some cases™ , the
season 1s defined as being open at time t_ when demand to date reaihes
ot
L per cent of the seasconal total demand, and as being closed at time T,
when demand to date reaches 95 per cent of the seasonal total demand.
In such cases, the determination of the time points would he based on
a long run history of past seasons
R 2
The Initial Estimates: D _ and I
It o
The initial estimates of a seasonal demand may be obtalned sib-

Jectively or objectively. It is difficult to say, generalily, wherher
the subjective or the objective msthod of estimation is prererable over
the other. In the case of depariment stores, the estimates are cften
made by a person or persons who are responsible for estimating the
demand, obtaining the budget, buying the stock, and selling the items.

In such cases, the subjective eztima es of demand are often made on the

LQHertZ et al. (18).
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low &1de.13 Thiz is due to a psychelogical reason: if the esTimates
are made on the higher side and the sales fall short of tThe estimated
target, then the sales performarnce may be judged unfavorably by manage-
ment; on the othes hand, if the estrmares are low and the sales exceed
the esrimated target, then the sales performance may be judged favorabiy
by management. This 1s an illustrative case of the multi-level-multi-
goal system.

When a firm has a long-run history over past seasons, 1t may be
pessible to make an objective estimate of the seasonal demand. Suppose

the firm has data over s past seas-ns. Let season Kk be one of the s

seasons, where k - 1,2,...,8. The seasona. period of season k is
defined by & time interval (tk by n). The foliowing symbels are
v 7 >
defined as:
Dk :  the random variable represent.ag the seasonal demand for
cs=ason k.
k.o the a priori est:mate of Dk which is computed ar time
5
T N
k,o
2 .
Oﬁ : the variance :zf the =25 .mation error.
k,o
dk : the actnal demand for season k which can be observed at
Lime t

kum
Suppose the (3 4+ 1)-st season lies 1n the future, and consider

. A 2 ‘
the problem of obtaining D(S 3.0 and 95 . Two methods will be
T 3 .

L=+1l),0

1llustrated.

13Cyert et al. (8}, Chap:er 6.



Method 1. Suppose a collection of data d, and estimates Dk

k

2

are available over s sSedasons; l.e.,

Seasons: 1 2 see k ves s
Data: dl d2 s dk ves dS
Estimates: Dl,o D2,o s Dk,o X Ds,o
I : D g it b ited b £
n this case, D(s+l),o and op may be computed by the following
(s+1),0
rule:
s
~ l T
D % = d. 4-73
(s+l),0 S kgl k ( )

2 . 2
(&, - D )
o kgl k k,O
(s+1),0 g ~ 1

Method 2. Suppose the seasonal demand Dk can be explained by
some observable variable Wk; for example, the following relation may

be postulated.

jw
il

o + pW, + ¢ (4-75)

k)

~
1

Li2anie « 585845
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o 5
where o and p are constants; and g, are

E(ak) = P for all k, (4-76)
E(Elkflj) = 0 for k #£ J» (4-77)
2
= g for k = 7.

m

Suppose the following data are available at time t

(s+1),0°

Seasons 1 2 _r k o s, (s+1)

Data on Dk dl d2 i dk i dS

Data on W, W W, e W e s Wegil)e

b 2
In this case, D(S+1) g and o2 can be computed by the following
T (s+l),0

15

rule:
D(s+l),o =0 + B W(S+l), (4-78)

where o and é are the familiar least squares estimates of a and B, and:

luFor the case of autocorrelated disturbances, see Johnston
(21) p. 178 and p. 195.

15Johnston (21)s Ps 36s
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(4-79)

2
an = g
D(s+;),o

The Values of m, and 02
1 ﬂ;._‘"
It has been assumed in the preceding discussions that the values

of m and oi are known and given in the problem. In a case study of

1
seasonal goods insentory problems, Hertz ¢ aZ.la suggested that such

parameter values may be computed on the basis of historical data.

Suppose a firm has demand histories for individual seasonal items
or groups of similar seascnal items. The group of items which have
similar demand characteristics is sometimes referrved to as a line of
items. The items may be grouped In a line which are sold in a slagle
distribution channel, at a same price range, and for a same funct.onal
use. For example, men's overcoat selling in the prize range of $100
and 5150 per unit through the channel of a men's wear department may
be grouped in a line. Another group -f men's overcoats selling In the
price range of S50 and $75 per unit through the channel of a basement
store may be grouped as another line.

It is assumed That sufficient histecrical data are avallable over
s seasons cn the basis of either individual items or lines. Let dk de-

note the k-th season demand, and Vie. s denote the i-th subperlod demand

P

Porartz et al. (18).
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within the k-th season. Assuming that m. 1s a fixed constant for the
i-th subperiod over all seasons, the following relation is postulated.

(4-80)

where v, , and d_ are the given data, m. 1s the constant, and e . is
kg1 k 1 k,1
the disturbance. At first, it appears that the value of M, may be com-

puted by the familiar least squares estimate:

v
. ol A%
m = -: (4-81)
T 42
L
k=1 ©

However, the values of my computed by Equation (#4-81) may not satisfy

the condition specified by Equation (4-65); i.e.,

5
E m, =1, o <m, < 1,
e i

A method which does work 1s to approximate &i by mi:

l7Jol'1nston (21), p. 18.
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%
v,
.. kil k,1
m, = m, = (4-82)
i i 8
, d
k=1 E
If the disturbance S is independent, then the value of Oi
£ °
1
can be simply estimated by:
5 t
T _ P
" kfl (Vk,i midk)
&= = = (4-83)
T
% 8 =1

If it is suspected that the disturbances are serially correlated, then
the significance of autocorrelation may be tested by means of the

" s .4 18 19
Durbin-Watson statistic or by some other methods. The method of

the Durbin-Watson statistic is briefly outlined as follows.

Let o denote the autocorrelated disturbance, and write:
3
V. . = 1, 1 . L-84
k,1 1dk * Lk,l’ Ul
where . i is assumed to follow the first order autocorrelation scheme:
¥
B g + e . (u-85)

k.1 Pi'k-1,1 k,i

In the expression above, Py is a constant; and e is an independent

K,i

18Durbin et al. \45); also Johnston (21), p. 192.

lgTheil et al. (u8).



100

disturbance.

'
Suppose m. of Equation (4-82) is used to approximate m . Then,

u can be approximated by:

k,i

W L= v L - mid . (4-86)

e . (4-87)

If the value of d exceeds the limit given in the Durbin-Watson table,
then it can be concluded that the autocorrelation is significant. If

this is the case, the value of 0; is estimated by the familiar least

squares estimate:

' = . (4-88)

By use of ¢'., the data d, and v, . are transformed into:
y 1 k ksl

(4-89)

(4-90)



The transformed data dﬁ and vi 5 will then be used to «ompute
]

L - 2 2 .
new estimates m: and (oé )7 of m, and On , respectively, as:
. i i

s
) 1
V
ey Kol
mi 2 {(4-91)
Y '
a
2
Koy K
=}
N Z
L ;T midi)
- 2 k=2 ? .
vl )T o= (4-92)
ni s - 2
Summary

This chapter has lnvestigated +he statistical procedure: which
can be used to forecast demand for seasonal goods Inventory items. The
procedure which 1s most frequently considered in the literaturs 1s thar
whi.n assumes the probabilities of demand are estimated once for al.
before the beginning of a season. Such a priori estimates of the
demand probabilities are referred to as the initial estimates. The
procedure proposed 1n this chapter also accepts the Initial estimates;
however, the focus of analysis is placed upon the pr-blem of <nrracting
the initial estimation errors as more data becomes available after the
season begins.

The methods of lsasT mean square estimation and filtering thecry
are used as the theoretical basis for rthe development of the star.stical
procedure, The bhest estaimate of a random variable in terms of the

least mean squares can be given by the conditional mean based on obser-
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vations. For the case of a Gaussian random variable, the conditional
mean can be expressed as a linear combination of chservations. When
the estimation errors are regarded as the Gaussian random variables,
the linear fi.ter theory may be applled to consider the problem of
estimating the initial estimation errors.

The basic models for the proposed procedure are given by equa-
tions {4-22) and (4-61). The formulas which can be used to compute the
initial estimation errors are given by Equarions {+-44) through (4-u6!.
The development of these formulas is largely based on Shaw's linear
filter model.20 Once the initial estvimation errors are estimated, then
Equation (U4-67) can be used recursively to re-estimate the seasonal
demand. As ths seasonal demand 1s re-estimated, the re-estimated result
can be used toc predict the subperiod demand. Within this framework,
the filtering problem of estimating the seasonal demand will coinlide
with the predicting preblem of estimating the subpericd demand

If the eztima~e=d rsariance of the initial estimation error is very
small, then the filtering method is very insensitive to correct the hias
in the initial estimation. On the other hand, if the estimated variance
of the 1nitial estimation error is very large, then the filtering method
becomes quite sensitive to the fluctuations In the data. In scher words,
it 1s important to have a reliable means of estimating the variance of
the initial estimation error.

The accuracy of the filtering estimation depends also on the

accuracy of the estimated parameter values of m. and the ncise vari-

2OShaw .34,



ances. As an extreme case, 1f the values of m are the same for all
subperiods and the noise variances are also the same for all subperiods,
then the re-estimates computed by the filtering method will approach
the simple moving averages as the variance of the initial estimation
error apprecaches an infinitely large number.

The methods for determining the values of the initial estimates
as well as the parameter values of the model are also outlined in the

later part of the chapter.



“HAPTER ¥
INVENTORY CONTROL IOR SEASCHNAL GGODS ITEMS

General

The procedures used 1n practice to control inventories of
geasonal goods items are often such that the inventory control situa-
tion may be modeled as a multi-stage control process. The probiems
as=aciated with defining the sparial boundaries of an inventory control
system in retzil sitiations, as we.l as defining the dynamic boundaries
of such a contr: 1 process, were discussed in some detaill in Chapter
IT1I. When modeled as a mu.Ti-stage control process, the problem of
forecasting demand becomes an 1n-zgral part of the contrsl process in
suzh a way that, at each contrel peint in time, the system 15 allowed
+r estimate demand as well as to determine control input.

An approach to modeling the seasconal gouds lnventnry problem as
a multi-stage control process was considered by Murvay €t af. in a
recent publication.1 The Bayseslan approach to forecasting demand was
made in thelr model :za the assumption that the demand pattern follows
the beta binom-al probabilizy function. Under such an assumption,
their model is appiicable only when *he size of a demand popuiation is
exactly known. However, the size of demand population is often unkncwn

in real situations of seasonal goods inventory control problems.

lMurray et al. (30).
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The .inear feedback filtering procedure presented in Chapter 1V
does no* require knowiedge of the size of the demand populatizon. On the
other hand, the procedure assumes that Equations (#-27) and (4-64) :an
be defined for the invenrvory situation. It seems that this assumption
is reascnable and logical in view =f the cases studies reporrted by Cyert
et al.? and Herrz et al.”

The general characteristics of the seasonal goods inventory
problems are first considered in this chaprer, and the fiitering proce-
dure is applied to formulate a seasonal goods inventory control model

in the form of a multi-stage control process. The analysis 13 I1llus-

trated by numer:. al examples.

The Seascnal Goods Inventory Problem

Inventwry stock items may be classified according to wheth:r they
are seasonal >r nenseasonal. For a retail department store, for example,
the majority o»f hardware i1tems may be regarded as nconseasonal and the
majority of clothlng items as seasonal. The essential characteristizs
of seascnal goods inventories as opposed t¢ nonseasonal inventories can
be listed as follows:

1. Seasonal goods invenwory items have a finite demand periocd
with well-marked opening and clasing times for the season.

2. The demand rate of rhe item: usually varles within the

2Cyer‘t et al. (8).
SHertz et al. (18).

HMurr\ay et al. (307).



seasonal period.

3. There are only a limited number -f opportunities to purchase
or produce the ltems at varying costs which depend on the time at which
decisions are made to obtain them.

5, The price of the irem can be changed within the seasc.. AT
the :lose of -—he season, unsold units result to high cost of obsoles-
cence,

An examination of these characteristics will suggest that the
seasonal goods inventory problem is a <lass of the newsboy problem
or the slow-moving item inventcry problem. An extensive swudy of the
la . ter prcblem has been reported by Hadleyn5 The present problem,
however, differs from Hadley's model in two aspects. First, instead of
& single procurement copportunlty as in Hadley's model, move than one
opportunity is allowed for procurement in the present problem  S=c:&nd,
instead of a single estimate of the seazonal demand, a ..mited number
of opporrunities are allowed to re-estimate demand in the present prob-
lem. In the case of retail situations, the present medel 1s a mere
realistic representaticn than Hadley's single period medel; particularly
for ‘he -ase of department store osperations.

Cyert et al.6 has repcrted a ase study of inventory contvol
practlcesz 1in department stores. According to their study, the fiem
davides replenishment orders into two categories of orders; namely,

advance crders and reorders. Advance orders are placed early enough to

5
Hadley (15}, Chapter b.

6Cyert et al. (8).
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allow the Tirm and its suppliers to avoid uncertainties by providing
contractual commitments; hence, advance orders may be obtained at a
wower cost than reorders. Reorders are placed after the season begins,
and are used for the purpose of controlling the uncertainty in demand
as well as other uncertainties in purchase costs and selling pri-es.

In a case study reporied by Cyert et al. , the amount of advance
orders constitute approximately 50 per cent to 75 per cent of total
seasonal orders; In a particular season, the amount of advance orders
piaced for Easter-season was 50 per cent, for Summer-season was 60 per
cent, for Fall-season was 75 per cent, and for heliday-season was ©65
per cent. Since advance orders seldom meet the total seasonal demand,
the remainder =f demand 15 filled by recrders.

A =zchematic diagram of the inventory crdering process is shown
in Figure 17. As shown in the diagram, there are three factors which
infi? -m-e the amount of reocrders; namely, the current inventory level,
the amcunt of ad-ance orders already placed, and the sales re-estimate
whi'h is made after the season begins.

According to Cyert et aZ.,7 the re-estimate of demand may be

determined by the following simple rule:

ST
_ (T-1) ]
Sirory ° s 5. - (5-1)

where

"Ibid., p. 135.
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5 : actual sales up to time 1 from the beginning of

d 5€ds0n.

S(T—r) = estimate of sales for the remainder of the season.
T
SI = the amount of last year's Sr'
t
S =t ) Tl ar's S, .
(T-1) he amount of last year's (T-1)
r
If ST denotes the total sales of a season and S T denotes the amcunt of

last year's Sp» then the rule given by Cyert et al. in Equation (5-1)

may be applied to obtain:

5.
S[ = -5—15'—[' . {5—2)
T
8
When the symbols of § , — , and S, are replaced by V., m,, and
ST

D, respectively, then the deterministic relaticn of Fguation (5-2) can
be used as a basis to model the stochastic relation in the form of

Eacation (4-645):

V, ' m.D + 0. ,
i L 1

where n. denotes the random disturbance. Once 1t is possible to model
the relation expressed above, then the filtering procedure of Chapter

IV may be used t2 obtain the re-estimates of demand probabilities.

The Seasonal Goods Inventory Model

Consider a seasonal goods Inventory process for which the plan-
ning horizon 1s defined as the seasonal pericd (to, tn), As discussed

in the preceding chapters, (n-1} time points t., 1  1,2,...,(n-1), may
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be defined between T, and T, 50 that the seasonal period is divided into

n subperiods., TLet the time in-erval (Tl o, tl) be the i-th subperiod

of The season.
The state, input, and output variables for the inveniory control
process are def .ned as follows. Yor the 1-th subperiod, 1 = 1,2,...,n:
y; ¢ the observable state variable which represents the inven-
t~y level at the beginning of the i-th subpericd. The
inventory level is measured at time te ) before the

replenishment Ay has arrived.

q; ¢ the contrel input which represents the replenishment, The
replenishment is instantaneously made at time Ty 4o

v, o The environmenzal input which represents the subperiod
total demand. A demand may occur at any time during the
subpericd; however, the subperiod total demand 1Is opservable
only at the end of the subpericd.

Ri : rthe ourput which represents the return in revenue for the

subperiod.

The state equation of the process can be expressed in the familiar form:

Y. = Y.

1+l 74 T Yy (5-3)

i
The assumption which underlies the relation shown above is ~hat the
Teedback sequence of conrtrol can take place at the beginning of the
subperiods In other words, as shown in Figure 8(az), the activities
of measurement, computaticn, decision, and actuarion can take place at

the beginning of the grnbpericds,
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Figure 18 1s & schematic diagram showing the inventory control
process over the planning horizon consisting of n subperiods. The
initial state of the inventory process i1s denoted by Yy and the post-
geason inventory is denoted by Yie1 The horizontal flows indicated
by solid lines represent the flow of material units. The vertical
dotted lines represent the flow of information concerning the subperiod
return Ric The letter Gi denctes the goal-seeking unit for the i-th
subperiod, which seeks to optimize the subperiod return. The letter G
denotes the overall sysiem goal which seeks to optimize the total
seasonal return R.

Suppose Gi is an operator which assigns values or costs to
resour<es utilized by the inventory process. The resources are material
units which are expressed in terms of sales Vi inventory level Yo and
replenlshment q; - Suppose Gi assigns values to these variables -, glve

a relation with Ri whith can be expressed as:

R, - Gi(vl, a s yi). (5-u)

1.

The system goal G is also considered as an operator which reliates the

subperiocd revenues Ri o the totsl revenue Ry namely,

R = GIR LR, 4R LR__). (5-5)

where Rn+l denotes the post geason salvage return with respect to Vo

1
F'or the inventory problem, suppose Ri can be expressed as con-

sisting of three separable components:
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R. =G .-G , -G ., {5-6)

where,
G . = the value is units sold,
v,1
Gq ;7 the cost of units replenished,
3
Gy ;= the cost of iInventory holding.
k]

Each of these components is modeled as follows. Suppose the demand can
be described in terms of a random varlable Vi with the probability func-
tien p(Vi).

1. The expected value of units sold:

. ]
REAS R = |
= | § v P 7
Cop Ty b VR e e 3000 (5-7)
e VitV ]

where r. denotes the unit selling price minus selling expenses per unit.

2. The cost of replenishment: Suppose that the unit replenish-
ment cost, der-ted by si(qi), is a deterministic function which depends
on the volume of replenishment; for instance, this includes the situa-
ticn where the volume-discount 1s considered Then, Gq . may be

b

expressed as:

Gq,i : [Si(qi)qu' (5-8)

3. The expected cost of holding inventory for unsold units at

the end of the i-th subperiod:
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yiTqi—l
6, + =C; 1 (y; *+q; -V,p(V,), (5-9)

where Ci denotes the unit inventory holding cost.
The expected return Ri for the i-th subperiod can be expressed

by use of Equations (5-7) through (5-9) as:

yi+qi_l 0 ]
R, = 1, g V.p(V,) + ) (y;+q;)p(V;)| - [s;(q;)]q; (5-10)
V=0 V,=y.+q. —j
1 1 1 1
yi+3i—l
- C, Y (¥t -V )p(vL ).
3 V.=0 1 1 1 1

1

Let gi(y,V) denote the sum of expected revenues for the time

interval (ti, tn}, provided the optimum replenishment policies are

employed at times ti+l’ ti+2"'“’ tn; Loy
Tt
g (y,V) = Max. ) R, (5-11)
QippsQogypoeread, J52

Also let fi(y,V) denote the maximum revenue expected from subperiod i
to the remainder of the season provided the optimum replenishment

policies are employed at all the time points tl, t1+l’ t1+2’ s tn’

1@y

fi(y,V) = max. {gi(y,V)}. (5-12)
q.

il
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The expressions gi(y,V) and fi(y,V) are shown as functions of two vari-
ables: The inventory level y which is to be controlled, and the random
demand V which 1s to be estimated.

Combining Equations (5-10), (5-11), and (5-12), the following

dynamic programming formulation can be obtained:

; (5=13)
yi+qi—l
— v _ S ~
fi(y,V) = Max. f [rivi Ci(yi qs Vi) + fifl(yi+qi Vi,V)Jp(Vi)

qi Vi—O
v

+ P [ri(yi+qi) + fifl(O,V)]p(Vi)

¥y=wargy

subject to:

yi+1:yi+qi-vi, and qiiofor‘ all 1.

For the post season at i = n+l, it is assumed that Vn+l = 0 and

qn+l = 03 hence,

Fagy Ts0) = B ¥y (5-14)

8Cfo Murray et al. (30).



Equation (5-13) can be rearranged to give a computationally more con-

venient form:

£.(y,V) = Max. {r;y, + [r;-s,(q;)]q, [5-15)

q.

1

yi+qi—l
Llri+Ci )y +a -V, ) - £4 4y (y549;-V4.V) Ip(V;)

|
It~

v

.=0
1

¥ ; _Z ) £.,1(0.V)p(V,)}
iY77

The optimum replenishment policy qi can be determined in a
straightforward manner by solving Equations (5-13) or (5-15), provided
the estimates of demand are available. Obviously, the simplest approach
to this problem can be found when the probability function p(Vi) of the
i-th subperiod demand is known for all subperiocds.

Hadley9 considered a case where p(Vi) is the Poisson density

function with mean Ai:

Voo -hg
(Ai) =
£V, [N = = (5-16)
P il
Ve = 0,1,2,...
1= 1,2, sl

Hadley (15), p. 310.
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Tf the random behavior Lf demand can be described by the Poisson
density function for each subperisd i, then it may be possible to
obtain the estimates of the mean Ai’ and subsequently compute the
optimum solurions for ordering quantities. The key to this problem
is, however, the procedure used Tor estimating the unknown means for
future subperiods. Hadley assumed that the means are either exactly
known or determinable from a funciional relationship. He did not con-
sider the situation where the re-estimates of the seasconal demand are
obtained on the bhasis of zales observations made within the season.

In a recent publication, Murray et al.lo reported a study where
the re-estimates of futare demand are obtained from the sales perform-
ance in the earlier part of the seascn. They made a Bayesian approach
to forecast demand probabilities by assuming that the random behavior
of demand can be deszribed by the beta binomial probability densz: iy
function. Let N be the number of tcral potential customers, V he the
number of actual customers, and p be the fraction of N that generates
the actual demand. They assumed that the fraction p is distributed as

. ; L
the beta normalized density f .nction:

1

L eyt (5-17)

Fe(P Vsl = sty wmey P

N>V >0,

loMurray et al. (30).

Hpaiefa et al. (32), p. 216,
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where B(V,N-V) is the complete beta function:

(Vv-1). (N-V-1):

=13, {5-18)

B(V,N-V) =

Now suppose the seasonal pericd can be divided into subperiods,
and let Ni be the number of potential custecmers for subperiod 1. Sup-
pose Ni is known exactly for all subpericds, but the fraction of Ni who
will purchase the seasonal item is unknown. Let Vi be the number of
actual customers who will purchase the item during subperiod 1, ;i be
the cumulative number cf customers why have purchased the item prior to
subpericd 1, and Ni be the cumulative number of potential customers
prior to subpericd i for the season. Under these assumptions, the
probability that the Ni potential customers in subpericd 1 will generarte
demand for Vi units given observations on ;i and ﬁi can be expressed as
the beta probability fm]c*ci'on:'12

1

fBb(Vl|vi,N.,NiJ =

: fb(viipi,Ni)fB(pi[vi,Ni)dpi R (5-19)

¢
0
wherpe fb(Vi|pi,Ni) 1s the bilnomial functlon:

Nif V N,=-V
LV es ) = ey 2L
1 2 1

T2Ratffa (32), p. 257,
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and fB(pilgi’Ni) is the beta normalized density function of Equation
{5-17). The beta binomial prcobability function of Eguation (5-19) can

be expressed in the computatisnal form:

o Vorv =1 T AN -V my 21N (R -1
TN, G N, ) = — - - (5-21)
oo (v.=1) (N, -V )" (N,=v, 1) 1(N, 4N, 1)1V, 1
1 1 1 1 1 1 1 1

o, Vs

If demand follows the beta binemizal probabllity law, then one can
use the Bayesilan approach to compute the future demand estimates, pro-
vided the number of potential customers is known with certainty. In the
case of seasonal goods inventory sltuations, it Is often unrealistic to
make such an assumpticn that the number of pofentlal customers is known,
except, perhaps, for some special cases.l‘3 When the size of the demand
population is not exactly known, then the Bayesian approach using the
beta binomial probability function to estimate the future demand is not
applicable.

The feedback filtering procedure presented in Chapter IV does not
require the a prior: knowledge of the size of the customer population.
On the other hand, the applicatiozn of the filtering procedure reguires
that the assumprtions underlying Equation (u~bB4%) are satisfied In the
given eituation. In reference to the case studies reported by Hertz
et al. and Cyert et al., this reguirement seems to be a reasonable one.

Some numerical examples will illustvrate the application of the filtering

procedure to solve the inventory problem.

3Murray et al. (30) mentioned that rhe mail crder situation is
one of such special cases.
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Numerical Examples

To consider the simplest possible situation for illustration,
suppose a seasonal period can be divided into two subperiods; i.e.,
n = 2. For this situation, the dynamic programming formulation of

Equations (5-14) and (5-15) can be expressed as follows:

fa(y,O) = Y4 s (5-22)
£,(y,V) = Max. {gQ(y,V)} (5-23)
9

- M:x. {r,y, + [r,-s,(q,)]q,
2

Y2+q2‘l
- [(r2+02)(y2+q2-V2) - rayslp(VQ)}

VQ:O

Max. {r,y, + [r,-s,(q,)]q,

k.
y2+q?—l
- (r2+02-r3) E (y2+q2—V2)p(V2)} 5
V,.=0
2
fl(y,V) = Max. {gl(y,V)} (5-24)
9
= Max {rlyl + [rl—sl(ql)]ql
9
yitq,-1
- L e My tey-V,) - £,(7V)1p(V;)

o=
1 0
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4 ) £,00,V)p(v )}
V. =y.+g
17¥179

For the purpose of illustration, the following hypothetical data

will be used in this example:lLF

In other words, the price remains constant at 12 per unit within the
season, but its post season salvage price is only 3 per unit. The
purchase costs are independent of the volume, but depend on the time of
The

purchase; namely, 5 per unit at time t. and 8 per unit at time t

Bl 2°

inventory holding cost is assumed to be negligible. The initial inven-

tory level vy is assumed to be zero. When these numerical values are

substituted into Equations (5-22), (5-23), and (5-24), then:

£.(y,0) = 3y, » (5-25)
y2+32~l
£,(y,V) = Max. {12y, + tq, - 9 ! (y,ta,-Y,)p(V,)} 5 (5-26)
45 v,=0

quhese are the same data used in Murray et al. (30).



£.(0,V) = Max {7q, - é [lziq,-v,) - £,(y,V)1plv ) (5-27)
. 3 :
I SCROEICIPEEE

With respect to the demand probablilities, Murray et ql. assumed
that the number of potential customers is exactly known to bhe 3 for
the first subperiod and 5 for the second subpericd. The a priori
estimate of the fraction of (ustomers who will gensrate the demand is
assumed to be 0.5 In summary, the forecasting procedure of Murray
et al. is based on the following main assamptiszns:

1. The probabiiity of demand <an De described by the beta
binomial probabllity funciion.

?. The size of the demand population is exactly known; e.g.,
N. - 3 and N2 = 5.

3. The a priori estimate of the probability that any member
of the demand pcpulation will generat: & demand 1g available before
the season begins; e.g., Py - 0.5.

Under these assumptions, the probab:lities of demand for sub-

periods 1 and ? can be expressed as:
= f (V, ]v ,N v 5-2
P(.Vl) Bb( l[vi’Nl)Nl}’ o 23, ( 8)

piv,.) s fBb(Vg[vz,Nz,Nz) (5-29)

2



= fBb(v2|61+vl, N_+N_, N,)y 02V, 25, (5-29)
The values of p(Vl) and p(VQ) can be used to solve equation (5-27) for
the optimum ordering quantities.

The method for using the feedback filtering procedure of Chapter
IV is illustrated as follows. Suppose it is possible to relate the sub-
period demand Vi to the seasonal total demand D by a linear relation of

equation (4-64); i.e.,
Vo = mieD + e o
i i i

where m. is a fractional number, 0 < m. < 1, and n. 18 a zero mean
3 i : 2
normal random variable with variance Gn
i
The following values are assumed for the illustration:

b, =8 g ds = Wi
@]
m, = (3/8), m, = (5/8);
Gn = 1.5, ai = 2.5
1 2

On the basis of the given data, the following quantities can be com-

puted at time toe By use of Equation (4-66):
U, =mD_ = (3/8)(4) = L.5. (5-30)

By use of Equation (4-44):
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-
m. E(Z7) .
o, = g2 = LS/B)E) = 0.73 (5-31)

(ml)2 E(éi) + oi (3/8)2(4) + 1.5

1

When the new data v. becomes available at time t the following

1 1’
quantities can be computed. By use of Equations (4-62), (4-48), (4-71)

and (5-30):

(5-32)

>
I
e
+
p
)_l
~~
<
|
<
-

= 4 + (O.?S)(Vl - 1.5)
= 2,30 # O°73(Vl)

Once the values of ﬁl is calculated, then it can be used to compute the

a priori estimate V, , as well as the a posteriori estimate Vigs logey
3 3

by use of Equation (4-66):

V2,i - mQDl = (5/8) Dl 5 (5-33)
Vl,l = mD, = (3/8) D1 . (5-34)
The values of V2 1 and Gl ; are used at time tl to be the expected

values of the random variables V2 and Vl, respectively.
When the noise n, in Equation (4-64) is a Gaussian random vari-

able, then Vi is also Gaussian. For example, p(Vl) is the normal
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density function whese mean and variance are estimated at time t, to be

the values of Gl o and 8§ » respectively. The parameter values of p(Vl)
2
1

are then re-estimated at Time ty o be the values of Gl i and ¢ )
3

respectively, provided the magnitude of oi is not affected by the
1
. 1 .
estimated values of Vl' In some cases, the magnitude cof Vi affects
the magnitude of oi , and it is necessary to re-estimate oi
i i
For the purposes of computational conveniences, the Poisson

approximation to the normal distribution will be made in this example,
Although this assumption is a very restrictive one, it facilitates the
amount of computations required for the example under consideration.

The Polsson density function with mean Ai is shown in Equation {(5-16).

Under the assumption stated above, the means A, and AQ are estimated at

1
time t, to be the values of Gl o and 92 0 respectively; and subsequently
k] 3
re-estimated at time t. to be the val es of ¥ and V » Tespectively.
1 1,1 2,1

Such computed values are shown in Table 12,

Table 12. The Values of ﬁ?,l and ﬁl,l Computed at

Time ty) Given the Values of Data vy

v, 0 i 2 3 4 5 B 7
Y 1.8 2.3 2,7 3.2 3.6 4.1l L.5 5.0
2,1
7. 1,1 1.n 1.6 1.9 2.2 2.5 2.7 3.0
1,1

lBJohnston (21}, pp. 207-211.
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The range of vy in Table 12 is shown as 0 < v, 7, since fp(Vl/Al) = 0

£ 7.
or Vl

The probability functions p(Vl) and p(Vz) can be described at

time tl as follows:

p(Vl) fp(vl/?\l = v s v, ) (5-35)

1,17 71

L

p(V,) fp(VQ/A2 = 02,15 v, ). (5-36)
The probability values of p(Vl) and p(Vz) can be obtained from a
Foisson probability tablel6 corresponding to each of the estimated
means shown In Table 12. The probability values are subsequently

used to solve Equations (5-28) and (5-27) for the optimum ordering
quantities qi and q:. The computaticnal scheme for the dynamic pro-
gramming problem is relatively straightforward for the present examples
however, the computaticnal requirements wculd have been very great If
the example was not made as simple as the present one. The computa-

tional results are summarized in Table 13.

The optimum solutions can be found from Table 13 to be:
g 4, and £ (0,V) = 18.77.

The sclution for the second period depends upon the actual cutcome vy

as shown in the tabulatlon on page 128.

Byolina (29).



Table 13.

Computational Rezults for Exampie:

When the tiltering Procedure 1s Used for Estimation
SECOND SUBPLRICD
Y1 0 - 2 3 4 5 6 7
V2,1 | 1.8 2.3 | 2.7 3.2 3.6 4.1 4.5 5.0
B3 b2 e T B B
£ : / v v v v v
v, q, £,0y,¥)1a, fz(y,V)Eq? £ (Y0 a, Ty, £.0y, Vg, fo0y,V) e, fz(y,V>,q2 Foly,Y)
H
! \ T
0 1 2.5112 b.i2|2 5,162 6.08|2 5.63]3 9.08]3 9.81]u 12.09
! | |
1 |0 10,5111 12.12)1 13,161 14,0811 14,632 17.08)2 17.8113 20.09
2 !o 18.34 0 20,12}0 2i.16|0 QQ.OBiO 22.8311 25.08]1 25.81!2 28.09
3 0. 23.81[0 26.77|0 28.73,0 30,6610 31.31|0 33,080 33.81)1 36.09
Y s 27,7310 31.57 0 au. 28l 37,25io 39.27 0 41.35]0 42.70:0 44,09
| i i i
5 10 31 o”[o 35.310 38.5u\o 42.2210 44 8040 47.87‘0 45,9110 52.08
6 &U 34.“0‘0 38.57(0 42.05(0 u6.21JO g zglo 52.9110 55.59'0 52.57
7 0 37 QOiO 417040 45.2300 49.58,0 52.99lp 57.03 0 60.1370 £3.67
| I L !
FIRST SUBPERIOD
ay | i 2 3 4 5 6 7
|
g, (0,V) | .57 12024 16 18.9¢ 19,77 14,01 17.75  14.67
|
|
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For purposes of comparison, consider a situation where the param-
eters of the demand variable are estimated only once at the beginning
of the seasen, and no re-estimates are allowed after the season begins.
Making use of the data given in the example, suppose p(Vl) and p(VQ)

can be represented by the Polsson density functions:
p(Vl) - fp(vl/)\l L.5) , (5-37)
i = = 2.5 -
p(Vg) fp(v2/?\2 2.5}, {5-38)

where the means are es timated on the basls of the Initlal estimate

ﬁ H ly:
o} name ly

1]
[
®
]

-

AL = m 60 = (3/8)(4)

W
(]
N

i

Ao - om D, - (5/8)(4)

The seascnal goods inventory problem with this type of demand
probabilities Is well known in the literature.LY When Equatlions (5-26)
and (5-27) are solved with p(Vl) and p(Vz} gshown in Equations (5-37)

and (5-38), the results can be obtained as tabulated in Table 1li.

17For example, see Hadley (15}, Chapter 5.
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Table 14, Computational Results for Example:
The Case Without Re-estimation

SECOND SUBPERIOD FIRST SUBPERIOD
Y, 4, £,(y,V)| a, g, (0,V)
|

0 2 I, 66 0 4,66
1 1 12588 i 1077
2 0 20.66 2 15. 50
3 0 s W i 3 19.10
4 0 32.98 4 21.u5
B 0 36.93 5 22.46
6 0 40.31 6] 2087
7 0 43,44 7 21.23

The optimum solution can be found from Table 14 to be:

q; = 5 and fl(O,V) = 22.L6

The solution for the second subpericd depends upon the actual outcome

v, as shown in the tabulation below:

=

w,

A comparison of this sclution (when the re-estimation of demand
is net allowed in the model) with the preceding (when the re-estimation

of demand is made by means of the filtering procedure) indicates that



130

the advance order quantities are not the same; namely, the advance order
is smaller when the re-estimation is allowed in the model. The re~rder
quantities are also not the same in two cases; namely, for Vl > 3, the
recrder is greater when the re-estimation is allowed in the model. It
ig further noted that the optimum experted return is higher when the
demand 1s not re-estimated; i.e., fl(O,V) = 22,46, and is lower when

the demand is re-estimated; i.e., fl(O,V) = 19.77.

These results are interpreted as follows: The re-estimation
scheme allows a reduction in the initial investment (i.e., the advance
order quantities); however, it allows a greater Tlexibility in the
second investment (i.e., the reorders). The difference in the values
of fl(O,V) ig interpreted as fellows: If the re-estimaticn is not
allowed, it is equivalent to assuming that the varilance of the initial
estimation error ig very small. On the other hand, 1f the re-estimarion
is allowed, it is equivalent to assuming that the varlance of the ini-
tial estimation errcr is not small. In other words, the re-estimacicn
would be required if the uncertainty in the initial estimates is
greater, It then follows that the expected veturn would be smaller

when the uncertainties in the future events are greater.

Summarl

The general model of the multi-stage control process, which was
discussed in Chapter T1T, is used in this chapter as a baslis for formu-
lating a seascnal goods Inventory model. A seascnal period is divided
by a finite number of time points so that the estimation of demand as

well as the determination of order quantities are allowed to take place
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at each of these time peints.
: i 18

This problem was recently considered by Murray et al. The
main difference between their mcdel and the present mcdel liles in the
procedure used for estimating demand. The forecasting procedure of
Murray et a¢l. 1s based on thes followling main assumptions.

1. The praobakility of demand can be described by the beta
binomial probability function.

2. The size of demand population 1s exactly known; e.g., Nl -3

Il
w1

and N2

3. The a priori estimate of ths probability rhat any member of
the demand popuiatlon wil. generate a demand is available before the
season begins, e.g., Py - 0 5.

The forecasting procedure of the present model Is based on the
following main assumptions.

l. The linear feedback filrer procedure can be .sed To estimate
the trend in demand probabilities,

2. The model of Equation (4-22) and Equaticn (#-64) can be de-
fined for the inventory situation.

3. The a pricori estimates of the seasconal demand are azvallable
at the beginning of the season.

In reference o the case studies reported by Cyert et aZ,lg and

20, .
Hertz et al., it geems that the assamptions of the present model are

lSMurray et al. (30).

J‘g(lye:c"t et al. (8).

2OHertz et alb. (18),



a more reasonable and logical representation of the inventory practice
than the assumptions given by Murray et al.

The use of the proposed model is illustrated by numerical
examples. The results of the examples indicate that, when the re-
estimation is made, the amount of advance orders is smaller than the

case without re-estimation.
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CHAFTER VI

CONCLUSIONS AND RECCMMENDATTIONS

Conclusions

The complexities assoclated with management control problems
often make it necessary to carefully e«amine the procedure used for
modeling the real world situation. This research is directed towara
two main objectives: (1) to dewslop a theoretical Irame of reference
whizh can be conveniently used 1o model management control problems in
general; and (2) to develcp a seasonal goods inventory model whizh
gives a reallstic representation of the inventory situation in practice.
The results and conclusions evolved from this research are summaprizead
as follaws:

L. Actording to the existing kncw.edge in the field, 1t appears
that system theory offers the most he.pful and logical basis for model-
ing complex situations. By making new interpretations of existing con-
cepts in system Theory, a concise and unified body of theo.y is
formutated and discussed In Chapter Il whach may be particularly useful
in modeling management control problems. Givsn a situarion for manage-
ment contrcl, the first step in . he modeling proced.re 1s veccgnized
as the definition of the sparial boundaries of a2 problsm so that the
problem can be structured as a system. 52 h a system may be modeled
by considering ths toples of hierarchical system structure, system

attributes, and system goals. In particular, a management system may be
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structured with respect 7o the nontransferable attributes; the system
behavior may be analyzed with respect to the informarion attributes;
and the system goal may be identified with a single-level-singie-goal
system.

2. Once the spatial boundaries of a system problem 1s defined,
the subsequent step in the medeling procedure Is to define the dynamic
boundaries of rhe system process. For this purpose, the toplcs of rthe
multi-stage control processes and the feedback control sequences are
considered in Chapter III. The general procedure is illustrated with
an inventory situation of retail firms. First, the spatial boundaries
of the inventory situation are defined s~ that the inventory problem
zan be recognized as a relatively isolated system within the overall
organizational structure. Subsequently, the inventory system 1s
modeled within the framework of the multi-stage control prosesse-

3. In the form.lation of a multi-stage control process, a
method is required to estimate the srtatistiical characteristics of a
random process which underlies the system stare. In the case of the
inventory control process, this situation applies to the problem of
demand fcorecasting. A method which can be used to forecast demand
for seasonal goods inventory items is develcped in Chapter IV. The
procedure which is mest frequently considered in the literature is
that which assumes the prasbabilities of demand are estimared once for
all before the beginning of a =season. The proposed procedure also

e . . . 1,
ac-epts such initial estimac.es; however, a flltering procedure” 1isg

LShaw (3u).



135

applied so that the initial estimation errcrs can be corrected as more

data become available after the seascn begins. The filtering procedure
is primarily used to re-estimate the seasonal demand; however, the re-

esrimated results c¢an be also used to predict the subperiod demand for

the season. Within this framework, vhe filtering problem of estimating
the seasonal demand coincides with the prediction probliem of es®imating
the subpericd demands.

The propesed filtering procedure is very sensitive tc the param-
eter values used In the model. If the estimsted variance of the initial
estimation error is very small, then the procedure is very slow in the
correction of the large bias errors in the initial estimation. On the
other hand, if the estimated variance of the initial estimation error
ig very large, then the filtering procedure becomes very sensitive to
the filuctuations in the data. If the varian-e of the initial estima-
tion error approaches an infinitely large number, then the re-estimated
values computed by the filrering method will approach the simple
averages in a speclal case considered in the study.

4. The general procedure for modeling and forecasting is sub-
sequently applied to model a seasonal goods inventory control situation
of retvail firms. The seasonal geods 1nventory problems have been solved
in the lirterature for the case where re-estimares of demand probabili-
ties are not alleowed In the model. In practice, however, a seasonal
perind is often divided by a finite number of time peints such that the
estimation of demand as well as the determination of order guantities

are allowed to take place at each of these time points.
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In a recent publication, Murray et aZ.Q considered a seasonal
goods inventory model which allows re-estimates of demand probabllities.
However, thelr model 1s applicable only when a priori knowledge of the
size of the demand population is availlable. Such a knowledge is not
needed in the preszent model which makes use of the linear feedback
filtering procedure. In reference to the case studies reported by
Cyert et aZ.3 and Hertz et al.,4 the present model appears to be a
logical representation of the seasonal goocds Inventory situation in

practice.

Recommendations

A specifie inventory situation of a retall firm is used iIn this
study te provide a background for the theoretical analysis and develop-
ment. The generai outcome of the study may be applied teo other situa-
Tions in management control problems with appropriate modifications to
meet specific characteristics of individual problems. Some possible
topies for additicnal research may be suggested as follows.

1. The ubjective function is expressed in the form of 2 maximi-
zation preblem in the present study. This 1s based on the assumption

that the gecal of the system is 1o maximize the net rerurn in revenue as
gspecified by the objective function. According to the Simon-March

hypothe515,5 the system goals are often concerned with the discovery

2Murray et al. (30).
3Cyer't et al. (8).
"Hertz et al. (18).

5March (28).
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and selection of acceptable alternatives rather than optimal alterna-
tives. If the system goal is to meet an acceptable level of performance,
then the objective function may be expressed in the form of minimizing

a quadratic cost function.

1f the acceptable level of performance is known to the system,
then a straight-forward application of control theory of physical
systems can be made to study the situation.a Cn the other hand, 1f the
ac.eptable level of performance is not exactly known, then the problem
becomes relatively difficult and complicated.7

2. The individual stage of a multi-stage control proccess can be
described in terms of a feedback control sequence which consists of
medsurement, esitlmation, computation, optimization, decision, and actu-
ation. The present study assumed that the time lag between these
activities in sequence 1s not significant enough to affect the ocutcome
of a sclution. In many cases, however, the time lags cause serilous
problems; for example, the replenishment lead time. For such a situa-
tion, the actuation aspect of sequence may be analyzed in detail.

3. In this study, the seascnal goods inventory problem is
formulated with only one decision variable representing the order
guantities. In the vetail situations, the level of promoticnal efforts
may be regarded as another decision variable. In such a case, the de-
mand generating subsystem is no longer uncontrellable, but can be

regarded as a centrollable subsystem. In order to analyze this situa-

E)This was the case in the study of Holt et al. (20).

7See Aseltine {1); Charnes (8).
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tion, a system equation is needed which describes a relationship
between the levels of consumer response and promotional efforts; for
example, the level of consumer response may be defined as another state
variable. When such a knowledge 1s available, then the multi-stage
control processes can be modeled with two state variables and two

decision variables.
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APPENDIX 1
GCALS OF A SINGLE-LEVEL-MULTI-GOAL SYSTEM

The concept of multi-goal-multi-level systems was introduced by
Mesarovic et al. in a recent publication.l A single-level-multi-goal
system 1s a special case of such mulii-level-multi-goal systems. In an
earlier paper, the problem of ranking multiple poals was considered by
Marschak.2 These concepts are Jjointly applied in this Appendix in
order to develop a procedure for recognizing the unordered system goals
as well as the ordered system goals,

.C

Suppose a system S censists of k components: C C?,. R SRR

13

Ck' It is assumed that each component may have its own goal, and let

Gi denote the goal of component Ci' Furthermore, let GO dencte the

system goal. For purposes of the present discussion, suppose there are
three alternatives; say %, y, and z, over which the goals of system
components can establish their own preferences. Making use of the nota-
ticn introduced by Marschak, let xGiy be interpreted as: from the
viewpoint of Gi’ the aiternative x 1s as gocd as the alternative y. In
other words, for Gi’ the alternative x 1s pro-ferable or equivalent to
yv. Suppose the gozls are rafional in the sense that the following con-

ditions are satisfiled:

lMesarovic et al. (28).

2Marschak (27
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1. Transitive cundition: i.e., xGiy and yGiz implies XGLZ'

2. Irreflemive condition: 1i.e., xGiy or yGix can hold true,
but both cannot held true at the same time unless x and y are Identical.

When the component geoals are rational, it may be possible to
consider a system éoal. On the other hand, when compeonent goals are
not rational, then it would be meaningless to consider a system goal.
When the component goals are rational, the system goeal, or the group
goal, GO’ can be regarded as beling wunordered if: when xG.y does not
held for 1 = 1,2,...,k, then xGOy does not hold; stated equivalantly,
XGOy holds only if xGiy holds for all 1, 1 - 1,2,...,k. The unordered

system goal may be represented by an unordered set:

LG (Al1-1)

The system goal G. can be regarded as being ordered if: xGOy holds,

0
even when xGly may not hold for some 1, 1 = 1,2,....k. In this case,
the ordered system goal can be expressed by an ordered =set:

G o= ( ). (A1-2)

G G v
o "yt
In the axpressiocn above, the parenthesized subscripts refer to the order
cf preference of compeonent geals. Finally, the system goal GO can be
regarded as a single-goal, if all component goals are identical to the

system goal.
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For an 1llustration, consider an industrial firm as a system S
which consists of two components. Let component Cl be the management

of the firm, and component C2 be the labor. Also let G., G., and G

0 1. 2

denote the goals of S, C,, and C,, respectively. Suppose X, y, and z

i, 2

be the three alternatives over which the goals of system components can
establish their own preferences. In the event that a labor dispute
takes place, the system goal can be described by an unordered set with
two component goals. When it 1s possible to have a negotiation over
the labor dispute, then, during the time of negotiation, the system
goal can be described by an ordered set of two component goals.
Finally, when an agreement is made between labor and management, then

the system goal can be regarded as a single-goal.

3his problem was originally given by Marschak (27).
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