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SUMMARY 
Various forms of management control problems arise in Industrial 

Engineering; for example, production control, inventory control, and 
budget control. A common characteristic of these control problems is 
the control scheme; that Is, the process of making decisions on the 
basis of a priori information so as to improve future performance of a 
system. In this sense, the functional scheme of a control process may 
be conceptualized by a feedback control analogue of physical systems. 
Although the techniques of control theory may be advantageously applied 
to study such management control problems, a preliminary consideration 
is needed before such an application can be made. Since the control 
theory techniques have been mainly developed for use in physical 
systems, one needs to carefully define the boundaries of management 
problems so as to fit the techniques to a given situation. In view of 
the complexities associated with management problems, it is desirable 
to have a procedure which can be used as a basis for modeling such 
management control problems = 

The general objectives which underly this research are two-fold; 
(1) to analyze the common characteristics of those problems which are 
peculiar and Important to the concepts of management control, and the 
procedures involved In management decision processes for planning and 
control; (2) to develop a theoretical frame of reference for use in 
modeling management control systems so that the study of management 
control problems may be consistently carried out with respect to the 
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overall problem situation, and a feedback control scheme to be used for 
determining analytical solutions for such management control systems„ 

The general objectives of this research are pursued by way of 
two specific tasks of investigation. The first task is concerned with 
management control problems in general, and the second is with an 
application of the general concepts to a specific problem of modeling 
for a seasonal goods inventory situation of retail firms. 

According to the existing knowledge in the field, it appears 
that system theory offers the most helpful and logical basis for 
modeling complex situations. By making new interpretations of existing 
concepts in system theory, a concise and unified body of theory Is 
formulated In this thesis which may be particularly useful In modeling 
management control problems * Two categories of modeling problems are 
recognized; namely, the problems of modeling the spatial boundaries 
and the dynamic boundaries of a.situation. 

Given a situation for management control, the first step In the 
modeling procedure is to define the spatial boundaries of a problem so 
that the problem can be structured as a system. Such a system may be 
modeled by considering the topics of hierarchical system structure, 
attributes, and system goals. In particular, the results of analysis 
may be used: (1) to model a heirarchical structure with respect to 
nontransferable attributes so that separable boundaries for the system, 
components, and environment can be Identified; (2) to recognize the 
difference in modeling system equations with respect to energy attri
butes and information attributes; and (3) to formulate a single measure 
of performance for the system when the system is characterized with a 
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multiplicity of goals. Once the spatial boundaries of a system are defined, the subsequent step in the modeling procedure is to define the dynamic boundaries of the system process within the frame of the already defined spatial system boundaries. For this purpose, it is first necessary to identify the controllable and uncontrollable subsystems of a given problem situation so that the system state, control input, environmental input, and system objectives can be recognizedo The multi-stage control process can then be described in terms of a state equation and an objective equation. The individual stage of the multi-stage control process can be further described in terms of the feedback control sequence which consists of measurement, estimation, computation, optimization, decision, and actuation. The general modeling procedure is illustrated with an inventory situation of retail firms„ First, the spatial boundaries of an inventory situation are defined so that the inventory problem can be recognized as a relatively Isolated system within the overall organizational structure. Subsequently, the Inventory system is modeled within the framework of multi-stage control processes. In the formulation of a multi-stage control process, a method is required to estimate the statistical characteristics of a random process which underlies the system stage. In the case of the inventory control processes, this situation often pertains to the problem of obtaining the demand forecasts. The nature of the forecasting techniques used in inventory control may vary depending upon particular circumstances in a given situation, This research has developed a 



statistical method which may be used to estimate the demand probabili

ties for seasonal goods inventory items. 

The most commonly used procedure in the literature is that which 

assumes the probabilities of demand are estimated before the beginning 

of a season. Such a priori estimates of demand probabilities are re
ferred to as initial estimates. The procedure proposed in this thesis 

also accepts such initial estimates; however, a filtering procedure^ is 

applied so that the initial estimation errors can be corrected as more 

data become available after the season begins. The filtering procedure 

is designed to re-estimate the seasonal demand; however, the re-

estimated results can be also used to predict the subperiod demand for 

the season. Within this framework, the filtering problem of estimating 

the seasonal demand coincides with the prediction problem of estimating 

the subperiod demands. The proposed filtering procedure is very sensi

tive to the parameter values used In the modelc 

The general procedure for modeling and forecasting is subse

quently applied to formulate a seasonal goods inventory control model 

of retail situations. The seasonal goods inventory problems have been 

solved in the literature for the case where re-estimates of demand 

probabilities are not allowed in the model0 In practice, however, a 

seasonal period is often divided by a finite number of time points such 

that the estimates of demand as well as the determination of order 

quantities are allowed to take place at each of these time points. 

Shaw, L. G., "Optimum Stochastic Control," in J. Peschon (edc), Disciplines and Techniques of System Control, Blaisdell, 1965. 



xi 

In a recent publication, Murray et al, considered a seasonal 

goods inventory model which allows the re-estimation of demand proba

bilities. However, their model is applicable only when the size of 

demand population is exactly known, since they assumed that the demand 

pattern follows the beta binomial probability function. However, the 

size of demand population is often unknown in the real situation of 

seasonal goods inventory problems... The linear feedback filter proce

dure does not require knowledge of the size of the demand population. 

On the other hand, the linear feedback filter procedure assumes that 

the historical data are available for the purposes of estimation. It 

seems that this assumption is reasonable and logical in view of a case 
3 4 study reported by Cyert et al. and Hertz et al« The formulation of 

the model has resulted to an adaptive optimization problem. 

A specific inventory situation of retail firms is used in this 

study to provide a background for the theoretical analysis and develop

ment. The general outcome of the study may be applied to other situa

tions in management control problems with appropriate modifications to 

meet specific characteristics of individual problems; for example, some 

additional research may be suggested for the following situations: 

2 
Murray, G. R., Jr c, and E. A, Silver, "A Bayesian Analysis of 

the Style-Goods Inventory Problems," Management Seienoe3 1966, ppc 

785-797. 
3 
Cyert, R. M., and J. Go March, A Behavioral Theory of the Firm3 

Prentice-Hall, 1963. 
4 
Hertz, D. B., and K. H. Schaffir, "A Forecasting Method for 

Management of Seasonal Style-Goods Inventories," Operations Research^ 
1960, pp. 45-52. 



(1) when the level of acceptable performance is specified for the 
system; (2) when the time lag between the activities of individual 
stages of a multi-stage control process is significant; (3) when the 
demand generating subsystem can be regarded as a controllable sub
system „ 



1 

CHAPTER I 

INTRODUCTION 

Background 
Various forms of control problems arise In industrial engineering; 

for example, production planning, inventory control, and budget control. 
A common characteristic of these control problems is the control scheme; 
that is, the process of making decisions on the basis of a priori infor
mation so as to improve future performance of the system. In this sense, 
the functional scheme of a control process may be conceptualized by a 
feedback control analogue of physical systems. 

Control theory was originally developed for automatic control of 
electrical and mechanical systems. Since the Second World War, the 
importance of control theory has received much attention, not only with 
respect to physical systems, but also biological and business systems."'" 
Application of control theory to management problems was considered by 

2 
many. Some of the more important contributions were made by Holt et 

3 4 
aZ.j and Forrester. Forrester's method of Industrial Dynamics has been 
widely accepted as an effective tool in the simulation approach to busi-

xWiener (40). 
2 
For a literature review, see Chang (5). 

3Holt, et al. (20). 
4 
Forrester (9). 
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ness problems. Although the simulation approach depends largely upon 

bIbid., pp. 355-356. 
6 
Holt et al. (20) Chapter 6; also see Hadley (14), pp. 448-454, 

and Whittle (39), p. 137. 

7Kalman et al. (22). 
8Bellman (3); Tou (37). 

computer utilization, the importance of control theory as a theoretical 

foundation of Industrial Dynamics was well emphasized by Forrester.^ 

As it is currently known in the literature, the study by Holt 

et al, has made, perhaps, the most use of "classical" control theory 

concepts in the analytical development of production systems. They 

derived the certainty equivalence theorem,6 which was used in connection 

with the quadratic cost function to determine optimum solutions for their 

problem. Although the quadratic performance indexes are commonly used in 
7 

control theory, their use m management problems is limited to restric

tive cases. They are applicable only when the error cost of performance 

is proportional to the square of errors, which implies that both positive 

and negative errors are equally undesirable. 

Although Holt et al* and many others have made use of the "clas

sical" control theory concepts , the recent developments in "modern" 

Q 
control theory have not yet been fully applied to the study of manage

ment control problems. In fact, the state-space approach and the 

optimization techniques of modern control theory are very well suited 

for studying management problems. The reason for this is that their use 

permits the formulation of a wide range of problems. This applies to 



3 
both maximization problems and minimization problems which can be either linear or nonlinear as well as deterministic or stochastic, or even adaptive. Since management systems are typically stochastic or adaptive, any attempt to use a control model involves the problem of obtaining 
a pri-ovi information on the underlying stochastic processes . One of the most commonly known methods in forecasting is Brown's exponential 9 . 10 smoothing. The other is the method of regression analysis. Although these methods are well known in management and economics literature, they are not well suited to use within the frame of control theory. On the other hand, the spectral analysis, which is commonly used for prediction in control theory, is often not applicable to management control problems. In this sense, forecasting is often a critical problem In developing a control model for management problems. Although the techniques of control theory may be advantageously applied to studying management control problems, there are preliminary considerations that must be dealt with before such an application can be made. Since the control theory techniques were mainly developed for use in physical systems, one needs to carefully define the boundaries of management problems so as to fit the techniques to the given situations."̂  The concepts of system theory may prove to be quite helpful 

Brown et al. (4); also see Winter (42) and Cohen (7). For example, see Johnston (21). See Mesoravic et al. (28). 



for use in defining complex situations of management problems of the 

See Hall (16); also Goode et al. (11). 

real world. Although system theory has received much interest in 

various publications, it has not been fully introduced in the area 
12 

of management control problems. 

Study Objectives 

Industrial engineers are often faced with various forms of 

management control problems. The general objectives which underly 

this research are two-fold: 

1. To analyze: (a) the common characteristics of those prob

lems which are peculiar and important to the concepts of management 

control, and (b) the procedures involved in management decision 

processes for planning and control. 

2. To develop: (a) a theoretical frame of reference for use 

in modeling management systems so that the study of management control 

problems may be consistently carried out with respect to the overall 

problem situation, and (b) a feedback control scheme to be used for 

determining analytical solutions for such management systems. 

The general objectives of this research are pursued by way of 

two specific investigations. The first is concerned with management 

control problems in general, and the second with an application of the 

general concept to a specific problem situation in management control. 

The latter investigation is largely devoted to the development of a 

seasonal goods inventory model which gives a realistic representation 
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of the inventory situation in practice. The method of forecasting the 
seasonal goods demand is recognized, as a critical problem in the 
development of such a model. 

Study Procedure 
This research begins with a consideration of system theory for 

modeling management control problems, then proceeds to the development 
of a seasonal goods inventory model. As illustrated in Figure 1, this 
thesis consists of four main chapters which are concerned with the fol
lowing specific problem areas: 

1. Chapter II gives an interpretation of the existing concepts 
in system theory which may be particularly helpful in modeling manage
ment control problems. Since management problems are predominantly 
influenced by factors which arise from socio-economic considerations, 
an attempt is made to analyze the relationship between a purely physical 
system and a management system. A knowledge of such relationship may be 
useful In applying the control theory concepts to modeling management 
control problems. 

2. Chapter III is primarily concerned with the description of a 
dynamic model for management control problems. The system theory of 
Chapter II is applied, first, to define the spatial boundaries of an 
inventory system so that the system can be modeled as a relatively 
isolated subsystem of a larger problem. The department store is used 
to provide a prototype example of the retail situation. After having 
defined the spatial boundaries of a system, Chapter III considers the 
problems involved in defining the dynamic characteristics of a multi-



Management System (Chapter II) 
Forecast (Chapter IV) 

Goal 
Computation & Optimization (Chapter V) 

Measurement (Chapter III) 

Uncontrolled Subsystem (Chapter III) 

Controlled '—>-

Subsystem (Chapter III) 
< The Feedback Control Scheme (Chapter III) 

Figure 1. A Feedback Control Scheme. (The Numbers in the Parentheses Refer to the Appropriate Chapters Where the Indicated Topics are Mainly Discussed.) 
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stage decision process. By applying the system theory of Chapter II as 
well as the existing knowledge in control theory, a procedure for con
structing dynamic models for management control problems is described. 
The description of the general procedure is subsequently applied in 
Chapter V to model the seasonal goods inventory problem. 

3. The statistical considerations needed for forecasting are 
first analyzed in Chapter IV, and subsequently a method of forecasting 
which can be conveniently applied to the seasonal goods inventory 
problem is developed in the chapter. 

"4. The general dynamic model of Chapter III and the forecasting 
method of Chapter IV are applied to the development of a seasonal goods 
inventory model in Chapter V. The model recognizes forecasting as an 
integral part of the multi-stage control process, so that at each time 
point re-estimates of demand are allowed within the control scheme. 
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CHAPTER II 
MODELING MANAGEMENT PROBLEMS FROM A GENERAL SYSTEMS VIEWPOINT General Because of the complexity of real world problems, it is often necessary to carefully consider the problem of modeling for given problem situations. It is commonly recognized that system theory provides a useful basis for modeling complex situations. The objective of this chapter is to review and interpret the known concepts in system theory in order to formulate a framework of system theory which may be particularly useful to define the spatial boundaries for modeling management control problems. This objective is pursued by considering the topics of system structure, attributes, and goals. Management Systems In recent years, the importance of system theory has received much attention in various publications. Since, in such publications, the word "system" Is frequently used to represent many possible systems, it is desirable to make a specific definition of the term "management system" which can be consistently used to discuss management control systems. For the purposes of this study, a system may be considered as belonging to one of two categories: namely, the naturally existing systems and the man-made systems. For example, the solar system is a naturally existing system; and an inventory system may be regarded as a 
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man-made system, A management system shall be regarded as a man-made 
system which exists for the purpose of satisfying certain specific 
needs of man. 

Let S be a system which exists for the purpose of satisfying a 
specific need N . In this situation, it is appropriate to describe the 
system S with reference to the need N . Assume that S is an "open" 
system; that is, it has both input and output. Let e and L, denote the 
input and output of S, respectively, as shown in Figure 2. 

Figure 2, A Schematic Description of System S. 

According to Gosling,̂  it is convenient to think of a system as 
being enclosed within an imaginary boundary which separates the system 
from its surrounding environment. Suppose there are two imaginary 
terminals on the system boundary such that one of them serves as an 
input terminal and the other as an output terminal. The two-terminal 
system of Figure 2 is said to be unilateral in the sense that its input 
and output do not reverse their direction of flow. For a unilateral 

Gosling (12), p. 12. 
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system, the input-output relation may be expressed in the form: 

In the expression above, the input £ represents some valuable resources 

which are expended in the system, and the output £ represents some useful 

product which the system is required to produce as specified by the given 

need N . The problems of properly Identifying the need N , analyzing the 

output XL,, and determining the input E, are the fundamental considerations 

involved in management systems. 

The discussion above concerns a system that is viewed as a single 

entity. However, a system is usually composed of two or more parts 

which are interconnected in such a way that the overall function of the 

system is the interrelated product of those parts within the system. 

Such parts are sometimes referred to as subsystems, components, or 

elements of the system. Sometimes, the structure of a system is such 

that many smaller parts can be recognized within a part of the system0 

Such a system is said to have a hierarchical structure0 

2 

In a study of organization theory, Simon has observed that most 

real organizations have hierarchical structuresc The degree of hier

archy and the efficiency of system Information are often considered In 
3 

connection with the problem of centralization and decentralization. 

Simon (35), p. 41. 

See Zannetos (43). 

r, = S(C, N"':) . (2-1) 
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In a study of adaptive behavior of living organisms, Ashby has observed 
that the behavioral pattern of animate beings can be explained by the 
efficiency of the hierarchical structure of their internal parts. Such 
observations may be extended and applied to model a hierarchical struc
ture for management systems 0 

5 
In systems literature, the structure of a system is sometimes 

described In terms of the universe, environment, system, subsystem, 
components, and elements. A unique definition of these terms, which may 
be conveniently used to model management system problems, will be made 
in the following: 

Given a "problem," let the universe U be the problem itself. 
On this universe, suppose it is possible to define a system S and its 
environment S such that S is the complementary set of S; I-e, 

SLJS = U" . (2-2) 
where LJ denotes the union„ The Internal structure of a system S Is 
then defined by a finite number of k components, k 1, which are 
disjoint to one another. If denotes component I of the system S, 
i = 1, 2,,» V:, k, then it follows that: 

k 
U C = S (2-3) 1=1 

4Ashby (2), pp. 148-153. 
5Hall (16); Hammond et al. (17). 
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k 

This classification was originally made by J . L. Hammond. See 
Hammond et al. (17); also see Gosling (12), pc 11, for a discussion of 
"transfer properties." 

n c , = • , (2-4) 

where H denotes the intersection, and <J> denotes an empty set. A sub
system of S is defined as any subset of the system S. According to the 

order of system hierarchy, subsequently smaller parts may be recognized 

within a component. Such smaller parts can be defined as elements of 

the system S. 

The components of S defined above are Idealized subsystems of S 

which are finite in number and disjoint to one another. Because of the 

interacting forces acting among the parts of a system, such isolated 

components of a system may not practically exist. The definition may 

be justified, however, if the system Is defined with respect to the 

"non-transferable attributes0" This topic will be further discussed In 

the following section. 

System Attributes 

In the previous section, the management system S is characterized 

as having both input and output. The Input and output of a system may 

be referred to as system attributes0 For the purpose of modeling a 

system problem, the system attributes may be categorized into two 
6 

classes: namely, the transferable and nontransferable attributes. The 

transferable attributes are those quantities which can be described, for 
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EXAMPLE, BY MOVEMENT, FLOW, OR FORCE; HENCE, THEY ARE USUALLY EXPRESSED 

IN TERMS OF VECTOR QUANTITIES WHICH HAVE BOTH MAGNITUDE AND DIRECTION E 

ON THE OTHER HAND, THE NONTRANSFERABLE ATTRIBUTES MAY BE REGARDED AS 

THOSE PROPERTIES WHICH CAN BE DESCRIBED OVER A F I X E D TIME INTERVAL; 

HENCE, THEY ARE USUALLY EXPRESSED IN TERMS OF SCALAR QUANTITIES. 

DEPENDING UPON ONE'S POINT OF I N T E R E S T , A SYSTEM EQUATION CAN BE 

MODELED WITH RESPECT TO EITHER THE TRANSFERABLE ATTRIBUTES OR THE NON

TRANSFERABLE ATTRIBUTES. THE SYSTEM EQUATION I S OFTEN FORMULATED IN 

THE FORM OF A DIFFERENTIAL EQUATION WITH RESPECT TO THE TRANSFERABLE 

ATTRIBUTES. IN THIS CASE, THE FOCUS OF ANALYSIS I S USUALLY PLACED UPON 

THE DYNAMIC CHARACTERISTICS OF A SYSTEM ON THE OTHER HAND, THE P E R 

FORMANCE, MEASURE OF A SYSTEM, SUCH AS THE QUADRATIC CRITERION, OR THE 

OBJECTIVE FUNCTION OF LINEAR AND DYNAMIC PROGRAMMING, I S USUALLY 

EXPRESSED IN TERMS OF NONTRANSFERABLE ATTRIBUTES. 

IN THE PRECEDING SECTION OF THIS CHAPTER, A SYSTEM S WAS DEFINED 

AS CONSISTING OF A F I N I T E NUMBER OF DISJOINT COMPONENTS. SUCH D I S J O I N T , 

SEPARABLE COMPONENTS CAN BE DEFINED WHEN THE FOCUS OF ANALYSIS I S PLACED 

UPON THE NONTRANSFERABLE ATTRIBUTES OF A SYSTEM. THERE I S NO LOSS OF 

GENERALITY CAUSED BY THIS RESTRICTION, SINCE MANAGEMENT PROBLEMS IN THE 

FINAL ANALYSIS ARE ALWAYS CONCERNED WITH THE EVALUATION OF SYSTEM P E R 

FORMANCE, AND ALL THE RELEVANT SYSTEM ATTRIBUTES CAN BE CONSIDERED IN 

TERMS OF NONTRANSFERABLE ATTRIBUTES. 

ONCE THE SYSTEM STRUCTURE I S MODELED IN TERMS OF NONTRANSFERABLE 

ATTRIBUTES, THE NEXT STEP I S TO ANALYZE THE SYSTEM BEHAVIOR IN TERMS OF 

TRANSFERABLE ATTRIBUTES. FOR THE PURPOSE OF MODELING SYSTEM EQUATIONS, 

THE TRANSFERABLE ATTRIBUTES OF THE SYSTEM MAY BE C L A S S I F I E D INTO TWO 
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categories: namely, the energy attributes and the information 

7 

attributes. These two attributes can be distinguished by the fact 
that the information attributes contain little or no energy. It 
appears that the consideration of energy attributes is needed when 
the focus of analysis is placed upon the work aspect of a system, 
and the consideration of information attributes is needed when the 
focus of analysis is placed upon the control aspect of a system. 

At this point, it Is appropriate to introduce the four-port 
and two-port representation of a system. According to Koenig et al.s a system can be modeled as having four-port terminals with respect to 
the energy attributes , and as having two-port terminals with respect 
to the information attributes. Figure 3 shows a schematic diagram of 
a four-port terminal model and a two-port terminal model. 

Modeling System Attributes with (a) Four-port Terminals and (b) Two-port Terminals. 

Four terminals are used for modeling the system energy attributes, 
since two terminals are needed to describe the input, and another two 

See Hammond et al. (17). 
Koenig et al. (23); also see Hammond et al. (17). 



15 
terminals are needed to describe the output, Two terminals are needed to describe the input or the output of energy attributes: namely, one terminal for the "level" of the energy and the other terminal for the "flow rate" of the energy. In other words, the energy attributes can be described only jointly by means of the level and the flow rate0 For example, both the voltage (level) and the current (flow rate) are needed to describe the energy attributes of an electric circuit. It is also possible to describe a management system model in terms of energy attributes. For example, suppose the symbols of Figure 3 can be interpreted as follows: ê: the level of total investment of a firm. i : the rate of investment return of the firm. ê: the level of inventory investment of the firm. i : the rate of inventory investment return of the firm, Since the level of the investment and the rate of the investment return are dependent on one another, such attributes of the firm may be represented in terms of energy attributes. The four-port terminal representation, therefore, places In evidence the Interrelations among all four attributes: i„e„, e , î , ê, and î . A system equation for the four-port model may be expressed as: 

f(e±, e2, il9 i0) = 0 (2-5) 
Although the four-port terminal model gives a logical representation of system energy attributes, it is generally used when the internal structure of a system is exactly known. When the internal 
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structure is not exactly known, It Is difficult or impossible to con

struct a system equation of the form of Equation (2-5). In the case of 

some simple physical systems, such as an electric circuit, the inter-

dependency of system energy attributes can be often determined deter-

ministicallyo However, in the case of complex systems, such as a 

management system, It is usually impossible to give a deterministic 

description of system attributes in the form of Equation (2-5). 

Under certain assumptions, the system energy attributes may be 

modeled with a two-port representation. For example, suppose it is 

possible to assume an independency between the attributes e^ and i as 

well as between e^ and i for the system of Figure 3(a). Under this 

assumption, the system attributes may be represented by the two-port 

model of Figure 3(b). A set of system equations for the two-port model 

may be expressed as: 

S2 " fl^ ei' il') 

(2-6) 

i 2 = f 2(e l S i 1) . 

A comparison of Equations (2-5) and (2-6) indicates that Equation (2-6) 

is restricted by the assumption that e^ and 1 are independent; whereas, 

such restriction is not needed in Equation (2-5). 

Since information attributes are free of energy considerations, 

a system equation with respect to information attributes can be always 

modeled with a two-port terminal representation., 
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SYSTEM GOALS 

S E E , FOR EXAMPLE, MARCH et al. ( 2 6 ) AND CYERT et al. ( 8 ) . 

MESAROVIC et al. ( 2 8 ) C 

THE SYSTEM STRUCTURE AND THE SYSTEM ATTRIBUTES WERE DISCUSSED IN 

THE PRECEDING SECTIONS. THIS SECTION I S CONCERNED WITH THE TOPIC OF 

SYSTEM GOALS. IN CONSIDERING MANAGEMENT CONTROL PROBLEMS, ONE OFTEN 

PRESUPPOSES THAT THERE E X I S T S A SINGLE GOAL OR A SINGLE MEASURE OF 

PERFORMANCE WHICH SERVES AS A BASIS FOR EVALUATING THE SYSTEM BEHAVIOR. 

FOR A COMPLEX SYSTEM WITH MANY COMPONENTS OR INDIVIDUAL GROUPS, THERE 

CAN BE MANY POSSIBLE COMPONENT GOALS OR INDIVIDUAL GOALS WITHIN THE 

SYSTEM. WHEN THIS I S THE CASE, I T I S OF INTEREST TO ANALYZE THE RELA

TIONSHIP BETWEEN THE SYSTEM GOAL AND THE COMPONENT GOALS0 

THE PROBLEMS ASSOCIATED WITH M U L T I P L I C I T Y OF GOALS I S A SUBJECT 

9 

OF MUCH INTEREST IN ORGANIZATION THEORY. IN A RECENT PUBLICATION, 

MESAROVIC et al.^ INTRODUCED THE CONCEPT OF A MULTI-LEVEL-MULTI-GOAL 

SYSTEM. THIS WORK MAY BE B R I E F L Y SUMMARIZED AS FOLLOWS. WHEN A SYSTEM 

I S STRUCTURED IN A HIERARCHICAL ORDER, I T I S APPROPRIATE TO RECOGNIZE 

A M U L T I P L I C I T Y OF LEVELS OF GOALS AS WELL AS A M U L T I P L I C I T Y OF GOALS. 

THE level OF GOALS I S DEFINED SO THAT A HIGHER LEVEL GOAL DOMINATES 

I T S LOWER LEVEL GOALS. IN OTHER WORDS, THE LOWER LEVEL CAN BE REGARDED 

AS A SUBSET OF THE HIGHER LEVEL GOAL. IN THE TERMINOLOGY OF MESAROVIC 

et al., FOR EXAMPLE, A S I N G L E - L E V E L - S I N G I E - G O A L SYSTEM CAN BE A SYSTEM 

WITH MANY GOALS, BUT NONE OF THE GOALS DOMINATES ANY OTHER GOAL OF THE 

SYSTEM. THE SIMPLEST SYSTEM OF THIS TYPE I S A SINGLE-GOAL SYSTEM. 
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According to Mesarovic et al.3 a single-goal system can be regarded as consisting of two subsystems: namely, the causal unit and the goal-
seeking unit. A single-goal system with causal unit P and goal-seeking unit G is schematically described In Figure 4. The causal unit Is often called a plant In control theory, from which the symbol P is derived. The control input to P from G Is denoted by E , and the plant input is denoted by E, . The letter Cp denotes the plant output, and n. denotes the plant performance observed by G. The small letter g denotes the system goal. 

Figure 4. A Single-goal System with Causal Unit P and Goal-seeking Unit G. 
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Making use of the notation introduced above, a system goal g may 

be expressed in a functional form: 

£G; N ) , (2-7) 
where g is expressed as a function which depends on the need N , the 
system performance n, and the control input £ . When the system S is 
a "pure" control system, such as a servo-mechanism, then g Is usually 

11 
expressed m the form of a reference input. In this case, the refer
ence input is regarded as a signal, and the task of the goal-seeking 
unit is to properly identify the signal. On the other hand, there are 
many control systems which have no reference Input, For example, It 
may happen that the goal of a management system can not be regarded as 
a reference input, but rather is established by the goal-seeking unit 
G. Once the system goal is established, the subsequent task of goal-
seeking unit G is to determine the control input 4 so as to have the 
plant produce some desired output c;. 

In modeling control problems;, one often presupposes the existence 
of a single measure of performance, or a single-goal for the system. It 
is possible to have a single measure of performance for a purely physical 
system, when there are no interacting goals within the system. In 
modeling management control problems, however, it may be necessary to 
carefully examine the multiplicity of goals of the system before making In organization theory, "reference input" is equivalently referred to as "aspiration level." See March et al. (26). 
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such an assumption. This consideration is of particular importance when human elements are included in a system. Since a single measure of performance is needed in order to analyze an overall system problem, it may be sometimes necessary to reduce the multiplicity of goals of the system to an appropriate single goal. The following procedure may be used when it is necessary to reduce the complexity of a single-level-multi-goal system to a single-goal system. Suppose there are k "component" goals in a single-level-multi-goal system S. Let Gn, G ,, . „ , G.,,.. , G denote the component goals 

1 Z. 1 K 
and Gq denote a system goal which represents a set containing all component goals of the system. As shown in Appendix 1, the system goal GQ can be either an unordered set or an ordered set. An unordered system goal may be described as an unordered set: 
When it is possible to rank the order of preference among component goals, then the system goal may be expressed as an ordered set: 

G 0 (2-8) 

GQ * (G (I)5 G(2)"" ' G(k) 
) 

(2-9) where the parenthesized subscripts refer to the order of ranking among the component goals. When all component goals are Identical to one another, then the system can be regarded as a single-goal system. 
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Summary This chapter has reviewed the known concepts in system theory, and analyzed the problem of modeling management control systems with 

respect to the three main topics: system structure, system attributes, and system goals. The results of study may be used for the following: 1. To define a specific management system so that its hierarchical structure is modeled with respect to nontransferable attributes. 2. To recognize the differences in modeling system equations with respect to energy attributes and information attributes. 3. To formulate a single measure of performance for a system when the system is characterized with a multiplicity of goals. Once the spatial boundaries of a system are identified, the subsequent problem in modeling is to define the dynamic boundaries of the system. This topic is discussed in the following chapter, 
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CHAPTER III 
MODELING FOR AN INVENTORY CONTROL SYSTEM 

General An inventory system may be regarded as a subsystem when it is viewed from an overall organizational standpoint. In order to make a systems approach to modeling an inventory problem, two main considerations must be dealt with. First, it is necessary to define the spatial boundaries of the system in order to place in evidence the effects of organizational constraints which act upon the given inventory situation. Second, it is necessary to define the dynamic boundaries of the system process in order to analyze and evaluate its time dependent behavior„ The general concepts for modeling management systems were discussed in Chapter II. These concepts are applied In this chapter to define the spatial boundaries of an inventory problem of retail firms. Subsequently, an inventory process Is described as a multi-stage control process. Modeling a Retail Inventory Situation Industrial firms may be categorized as being either retail or manufacturing firms. The main business of retail firms is characterized by the activities of buying goods from producers or wholesalers and selling those goods to customers. Although retail firms often manufacture or process some of their goods, such activities are only incidental 
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or subordinate to the main activities of buying-to-sell. In this man

ner, the buying and selling activities are closely integrated in retail 

firms. This contrasts significantly with manufacturing firms where 

production and marketing activities are usually separated within the 

organization. For this reason, the Inventory control situations of 

retail firms and manufacturing firms have somewhat different character

istics. For example, while the objective function of an inventory 

system of retail firms may be expressed in terms of maximizing the net 

revenue, the objective function of an inventory system of manufacturing 

firms may be expressed in terms of minimizing the relevant inventory 

cost. In view of such differences, an inventory system of a typical 

retail firm is considered in this chapterc For this purpose, the 

department store will be regarded as a typical retail firm. 

The essential characteristics of a department store can be 

described as follows0 The market structure of a department store can 

be regarded as an oligopolistic competition if the store is relatively 

small.1 The store sales closely reflect the state of economy in the 

form of disposable personal Income, As a matter of fact, the store 

sales seldom exceed a certain fraction of the disposable personal 
2 

income of a given consumer population, For this reason, expanding 

and maintaining a market share is one of the most important goals of 

a department store. 

XCf. Holdren (19). 
2 
According to Snyder (36), this fraction is approximately 7 

per cent 
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The market share may be regarded as a measure which represents a 

Cf. Regan (33). 

MacFarlane (25), p. 12 

store's utility to the consumer public- The utility may be attributed 
3 

to the three factors: quality, availability, and accessibility of the 

consumer goods which the store offers to the public. The quality may 

depend upon the price, reliability, and the degree of customer satis

faction of the items sold by the store. Availability refers to the 

variety and quantity of commodities, and the range of choices offered 

to consumers. An inventory problem can be regarded as a subproblem 

of the general problem concerned with such availability. Accessibility 

depends on considerations such as: multi-departmental effects, adver

tising, credit policies, store location, parking facilities, etc. These 

three utility factors jointly influence a consumer's concept of the 

store's reputation as well as the store's market share0 

In order to consider the problem of modeling an "inventory 

control system" for the retail situation described above, the terms: 

state, control input, environmental input, controllability, and ob-

servability are needed for the discussion. According to MacFarlane, 

state is defined as: 
A state of a physical object is a quantitative measure of a 
physical condition of the object which remains unchanged with 
lapse of time if the object is suitably isolateds 

MacFarlane's definition of state can be conveniently used to describe 

the physical conditions of a system in terms of its state at a certain 

time. Previously in Chapter II, the system attributes were discussed 
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in terms of input and output. However, in order to place in evidence 
the dynamic characteristics of a system, it Is more convenient to 
represent system attributes by Input, state, and output. For example, 
the physical conditions of a system may be described by many variables., 
Depending upon one's point of interest, a specific variable or a set 
of variables can be selected among many possible system variables to 
define a state or a state vector for the system, Once a system state 
has been defined, it can be used as an intermediate variable to relate 
the effect of the input upon the output, The state is changed by the 
input,and the output is an observation of the state. 

The input which acts upon the system state may be recognized 
either as a control input or as an environmental input, The control 
input is deliberately exerted upon the system in order to transform 
its state into a more desirable one„ On the other hand, the environ
mental input is an exogenous force which affects the system state, but 
is not subject to a control. 

At this time, it is appropriate to consider the concept of con-
5 

trollability and observability. According to Gilbert, a system can 
be partitioned into four possible subsystems: namely, S , S , S , and 

A D C 

which are designated as: 
S : the controllable and observable subsystem. 
Sn: the uncontrollable but observable subsystem. 

D 

S : the controllable but unobservable subsystem0 

Gilbert (10). Originally, Gilbert used these terms to discuss a linear deterministic system. 
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S : the uncontrollable and unobservable subsystem. 

System 

Figure 5. A System Partitioned into Four Subsystems. 
Figure 5 shows a two-part representation of a system partitioned into four such subsystems. In the figure, Q denotes the control input, and R denotes the output. The control Input is shown in connection with the controllable subsystems Ŝ and Ŝ, and the output is shown in connection with the observable subsystems S. and S . 

A ti 

The concepts described above may be used to define the boundaries of the inventory control system of a department store. Given a department store situation, the store activities may be partitioned into four possible classes of activities which can be referred to as subsystems. Among these subsystems, the inventory control system may be defined as the controllable and observable subsystem S of the overall system. For such an inventory system, the system state can be designated as the 
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levels of inventory at a given point in time. The system is controllable by means of inventory replenishment, and the inventory levels are observable. In other words, the system states, i.e., the inventory levels are both controllable and observable0 Once the inventory system has been modeled and shown to be controllable and observable, then all other activities of the store can be categorized into subsystems which are uncontrollable and/or unobservablc For example, the "demand" factor can be regarded as a subsystem Sg which is observable but uncontrollable: hence, demand plays the role of an environmental input for the inventory control system, As another example, the cash level may be controlled partially by restricting the amount of inventory replenishment. When the cash level is not considered as a part of the control system, then it may be regarded as a subsystem Ŝc All other activities of the store which are irrelevant to the inventory control problem may be relegated to the uncontrollable and unobservable subsystem S . Modeling for a Multi-Stage Control Process Having defined the spatial boundaries of a control system, one can proceed to model the control process within the defined spatial boundaries. In modeling a control process, it is necessary to link the present state of the system with the past and future states of the system. A general model of a multi-stage control process, which is subsequently used to develop a seasonal goods Inventory control model in Chapter V, is considered in the following discussion. Suppose a control process is considered over a planning horizon 
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which covers a time interval (t , t ). This time period may be divided 
o n 

Figure 6. A System Representation for Subperiod 1, 

The symbols used In the figure are interpreted as follows. The transi

tion of the system state from one subperiod to the next is indicated 

by double lines with direction arrows. The present state of the system 

is designated as IL. The system inherits the present state from the 

previous (i-l)-th subperiod. The solid single lines with directional 

arrows Indicate the system Input0 The control input is designated as 

Q^, and the environmental input is designated as V\ . The dotted line 

with a directional arrow indicates the system output which is desig

nated as R_̂ . The dotted line is used to denote the fact that the system 

output R^ is a scalar variable which represents the system utility 

for subperiod I. 

into a finite number, say n of subperiods such that the system state at 

each given point in the subperiods can be observed and controlled. For 

subperiod i, i-1, 2,..., n, the system state, input, and output are 

schematically represented in Figure 6. 



29 

IN G E N E R A L , T H E O U T P U T R^ CAN B E E X P R E S S E D AS A S I N G L E - V A L U E D 

F U N C T I O N O F S T A T E A N D I N P U T ; T H A T I S , 

R I : W V V ' ( 3 _ 1 ) 

T H E E X P R E S S I O N A B O V E IS S O M E T I M E S R E F E R R E D T O AS T H E O B J E C T I V E F U N C T I O N 

OF T H E S Y S T E M „ T H E T R A N S I T I O N A L R E L A T I O N B E T W E E N S T A T E S U. A N D U. , 
J 1 I + I 

M A Y B E E X P R E S S E D I N T H E FORM: 

U I + I = T I ( U I ' Q I ' V • ( 3 - 2 ) 

T H E E X P R E S S I O N A B O V E IS C O M M O N L Y R E F E R R E D T O AS T H E S T A T E E Q U A T I O N O F 

T H E S Y S T E M . 

IN C H A P T E R I I T H E T R A N S F E R A B L E A N D N O N T R A N S F E R A B L E A T T R I B U T E S 

O F A S Y S T E M W E R E D I S C U S S E D . T H E I N P U T , S T A T E , A N D O U T P U T A R E S Y S T E M 

A T T R I B U T E S . A M O N G T H O S E A T T R I B U T E S SHOWN IN F I G U R E 6, T H E S T A T E A N D 

I N P U T S M A Y B E R E G A R D E D AS T R A N S F E R A B L E A T T R I B U T E S , S I N C E T H E Y H A V E 

T R A N S F E R A B L E OR T R A N S I T I O N A L E F F E C T S U P O N ONE A N O T H E R . ON T H E O T H E R 

H A N D , T H E O U T P U T M A Y B E R E G A R D E D AS A N O N T R A N S F E R A B L E A T T R I B U T E , 

S I N C E I T HAS N O D I R E C T E F F E C T U P O N T H E O T H E R A T T R I B U T E S O F T H E S Y S T E M . 

W H E N A S Y S T E M I S M O D E L E D ON T H E B A S I S O F N O N T R A N S F E R A B L E A T T R I 

B U T E S , AS WAS D I S C U S S E D I N C H A P T E R I I , T H E N T H E S Y S T E M CAN BE S T R U C T U R E D 

S O AS TO C O N S I S T OF A F I N I T E N U M B E R O F D I S J O I N T C O M P O N E N T S . S U C H AN 

A N A L Y S I S CAN B E A P P L I E D T O S T R U C T U R E T H E S Y S T E M M O D E L FOR A M U L T I - S T A G E 

P R O C E S S . F O R I N S T A N C E , S U P P O S E A C O N T R O L P R O C E S S I S C O N S I D E R E D O V E R A 

P L A N N I N G H O R I Z O N (T , T ) . W H E N T H E P L A N N I N G H O R I Z O N C O N S I S T S O F N 
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subperiods, then it may be possible to model the control process as 

(J R = R (3-3) i=l 

n n r, = o > o-4) 
1=1 

where R denotes the total outcome of the system over the entire planning horizon. In general, R can be expressed as: 

R = R(R,, R2,-. , R., ..., Rn) . (3-5) 
In particular, when R̂ is represented by a nontransferable attribute, then the disjointness or separability condition can be applied, so that R can be expressed by a more convenient form of Equation (3-3). In order to make a dynamic programming formulation of a multistage process, let Ĝ denote the partial sum of the total output which is defined as: 

G. = G.(R., R R ) (3-6) i ii l+l n 
n 

a system S which consists of n components. Suppose the component attribute is described in terms of its nontransferable attribute R. 
1 

then it follows from Equations (2-3) and (2-4) of Chapter II that: 
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When the separability condition is applied to the expression above, it follows that: 

G. = G [R Gi+1(R.+1, Ri+2,..., Rn)] = R£ + G.+1 . (3-7) Now, let ̂(Û) denote the optimum output that can be expected from the system over subperiod j, j-i, 1+1, i_2, . , » , n, provided the optimum control inputs Q_. are used for all j subperiods. Then ̂(ÛO can be written as: 
W = Q.,Q.M"...,Q (Gitti«i.«rVi),..,Rn(On!Qn,Vn)]} (3-8) ii+l' n 

Max {G.[R;.U.,Q.,C.),G ]} . 
V W — Qn' 

If Ĝ is a monotonically nondecreasing function of Ĝ+̂  for every R̂, then:6 

f.(U.) = Max.[R.(U.,Q.,V.), MaX ^G-+1)̂  (3"9) Qi 1 1 1 1 Q.+l?%+2j.£.,Qn

 11 

= MaxCR.CÛQ̂V.), f.+1(U.+1)] 

6 Nemhauser (31), p. 35. 
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- Max[R.(U.,Q.>Vi) + f. + 1(U. + 1>] 

For the n-th and last subperiod of the process: 

f (U ) = Max[R (U ,Q ,V )] . (3-10) n n n n n n 
n 

The solution to the problem above may be obtained subject to the con

straint : 

Qien(Qi), 1=1,2,*..,n . (3-11) 
where Q(Q^) denotes the allowable region of control inputs Q^. 

Feedback Sequences in Control Processes 

The control process pattern which repeats Itself in every sub-

period of the multistage process may be described in terms of a feed

back sequence. For subperiod i, consider a sequence of time points 

designated as i , i. , i , and I, at which the following activities may a b e d 

take place: 

lo Measurement and estimation at time point 1 . 

2. Optimization at time point i . 

30 Decision making at time point i 0 

c 
4. Actuation at time point 1-,. 

^ d 

Making use of the symbols shown in Figure 6, the characteristics of the 

activities are described as follows. 
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LO M E A S U R E M E N T A N D E S T I M A T I O N AT TIME P O I N T I , THE S T A T E U 0 R A 1 

O F T H E S Y S T E M , I N H E R I T E D F R O M S U B P E R I O D ( I - 1 ) , IS O B S E R V E D . T H E S T A T E 

IS R E L A T E D T O T H E P R E V I O U S S T A T E U ^ _ ^ B Y T H E S T A T E E Q U A T I O N : 

U I - T I - I ( U I - R \-v V I - I > ' ( 3 - 1 2 ) 

W H I C H I S D E R I V E D F R O M E Q U A T I O N ( 3 - 2 ) B Y M A K I N G A P P R O P R I A T E A D J U S T M E N T S 

ON T H E S U B S C R I P T S . 

I N O R D E R T O C O N T R O L T H E P R O C E S S F O R T H E I-TH S U B P E R I O D , K N O W L E D G E 

OF T H E C H A R A C T E R I S T I C S O F T H E E N V I R O N M E N T A L I N P U T V\ M U S T B E O B T A I N E D S O 

T H A T AN A P P R O P R I A T E C O N T R O L I N P U T CAN B E D E T E R M I N E D T O O P T I M I Z E T H E I-TH 

S T A G E O F T H E P R O C E S S . I N O R D E R T O O P T I M I Z E T H E C O N T R O L P R O C E S S FOR T H E 

E N T I R E P L A N N I N G H O R I Z O N , H O W E V E R , A K N O W L E D G E O F T H E E S T I M A T E S F O R 

IS N E E D E D S O T H A T A S E T O F O P T I M U M C O N T R O L I N P U T S Q_. CAN B E D E T E R M I N E D , 

FOR J = L , 1 + 1 , O . . , N . 

T H E L E V E L O F C O M P L E X I T Y I N V O L V E D I N M E A S U R E M E N T A N D E S T I M A T I O N 

O F T E N D E P E N D S ON T H E C H A R A C T E R I S T I C S O F T H E E N V I R O N M E N T A L I N P U T V \ , 

C O N S I D E R T H E F O L L O W I N G T H R E E C A S E S : 

A. V . I S D E T E R M I N I S T I C , 1 
BE V_. I S S T O C H A S T I C W I T H K N O W N P R O B A B I L I T Y D E N S I T Y F U N C T I O N S . 

C. V_. I S S T O C H A S T I C W I T H U N K N O W N P R O B A B I L I T Y D E N S I T Y F U N C T I O N S . 

T H E S I M P L E S T OF T H E S E T H R E E I S T H E D E T E R M I N I S T I C C A S E . F O R T H E S E C O N D 

C A S E , A K N O W L E D G E OF T H E P R O B A B I L I T Y D E N S I T Y F U N C T I O N P_. I S A S S U M E D T O 

B E A V A I L A B L E FOR A L L J, W H E R E : 

P. = P ( V . 9 A . ) , J = L , 1 + 1 , . . . , N . ( 3 - 1 3 ) 
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IN THE EXPRESSION OF THE PROBABILITY DENSITY FUNCTION P . SHOWN ABOVE, 

V_. DENOTES THE UNDERLYING RANDOM VARIABLE, AND A., DENOTES THE PARAMETERS 

OF THE DENSITY FUNCTION, A COMMONLY MADE ASSUMPTION IN THIS CASE I S 

THAT P ^ I S INDEPENDENT FOR ALL I , I - L , 2 , , . . , N. WHEN P^ I S NOT INDE

PENDENT, THEN A KNOWLEDGE OF THE JOINT PROBABILITY DENSITY FUNCTION: 

P ( V L 9 V 2 , . . . 9 V N ; A ^ A 2 , . , „ A N ) ( 3 - 1 4 ) 

I S NEEDED FOR ESTIMATION. 

THE MOST COMPLEX SITUATION ARISES WHEN THE ENVIRONMENTAL INPUT 

ORIGINATES FROM A STOCHASTIC PROCESS WITH UNKNOWN STATISTICAL CHARAC

T E R I S T I C S , SUPPOSE THE FORM OF THE PROBABILITY DENSITY FUNCTION P_. I S 

KNOWN BUT THE PARAMETER VALUES ARE UNKNOWN0 IN THIS CASE, PAST OBSER

VATIONS ON THE RANDOM VARIABLE V C CAN BE USED TO GENERATE STATISTICAL 
L 

N 
ESTIMATES FOR THE UNKNOWN PARAMETERS. LET Y , DENOTE A SET OF N 

I - L 

OBSERVATIONS: 

= ( V I - N ' V I - N + 1 ' - - "
 VI-1 • (3-15) 

N . N 
SUPPOSE Y . I S AVAILABLE AT TIME L = ON THE B A S I S OF Y . N , THE 

^ I - L A I - L 

ESTIMATE A^ MAY BE OBTAINED AS: 

A N 
A. = f. 1 .(x- - , ) , J=l, i+1,..., N. (3-16) L I - L , ] I-l 

A S P E C I F I C PROBLEM OF ESTIMATING DEMAND FOR A SEASONAL GOODS INVENTORY 

SITUATION I S CONSIDERED IN CHAPTER IV„ 
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2= Optimization. At time point î , the stage of measurement and estimation is completed. The information obtained from this stage is now used to analyze the effect of each possible control vector CL, j=i, i+1,..., n, on the future state of the process. The criterion of optimality, such as the objective function of Equation (3-9), may be used to determine the optimum control input for the i-th subperiod, 1=1, 2,..., n. 3. Decision. At time point i^, the analysis is completed, and a decision is made to apply the optimum control Input upon the system state. 4. Actuation« At time point î , the decision is implemented, and the control input takes actual effect upon the system state. When the implementation process Is subject to errors, then the actual control input CL may not be Identical with the optimum control input CL . At this point, the control sequence has completed Its cycle for the i-th subperiodc A schematic diagram of the control sequence is shown in Figure 7. The dashed lines denote the Information loop which connects all the stages in the control sequence. Figure 8 gives an illustration of the time spacing between the stages of the control sequence. Figure 8(a) shows that all time points, i , i, , 1 , and I,, are closely located at 

r ' a' b c' d J 

the beginning of subperiod i. In Figure 8(b), they are shown as being widely scattered within the subperiod. In Figure 8(c), the point 1̂  is shown as being located in subperiod (i+1). In this case, the control is • not actuated until after the i-th subperiod„ Such a situation would arise in inventory control when the order replenishment or production 



Estimation 
Environmental Input Source 

Optimization <— — Actuation 

Figure 7= A Schematic Diagram of the Control Sequence. 

CO CD 
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Subperiod i-1 Subperiod I Subperiod i+1 
(a) 

(b) 

(c) 

abed 

a b c d 
J 1 r-
1 ^ 1 XA 
a b c d Figure 8. Time Intervals In Control Sequence. 

lead time is longer than the time unit of the subperiod. This situation 
may be avoided if a subperiod is conveniently chosen to cover a suffi
ciently long time interval so that î  can be located within the sub-
period. For the development of a seasonal goods inventory model In 
Chapter V, it is assumed that the time points, 1̂, 1̂, î , and 1̂, can be 
spotted at the beginning of every subperiod, as shown in Figure 8(a). 

The general discussion presented above of the problem of model
ing a multi-stage control process and the feedback sequence of control 
can be applied to model an inventory control system as follows. For 
the inventory system, the level of inventory observed at time point 1 

a 
is designated as state LL. When and V\ denote the inventory replen
ishment and demand for subperiod i, respectively, then the system state 
equation can be written as: 
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U. = U. + Q= - V. . (3-17) l+l i l l 

At time point i , the estimates on future demand V., j - i , i t l , . . . , n, 
a ] 

may also be obtained. At time point i^, the optimum replenishment 

is determined. In this case, the criterion of optimality may be 

expressed in the form of maximizing the expected return over all j 

subperiods, j=l, 1+1,..., n. At time point I the order is placed. 

At time point i^ the replenishment is received. This completes the 

control cycle for subperiod i. 

Summary 

The system theory concepts of Chapter II are applied to the 

modeling of a retail inventory control problem. It is shown that the 

model may be regarded as a relatively isolated subsystem. Subsequently, 

the known concepts in control theory are applied to analyze a procedure 

for modeling a multi-stage control process =. The results of the study 

may be used for the following: 

1. To define controllable and uncontrollable subsystems for a 

given inventory situation. 

2 o To formulate a multi-stage control system by recognizing 

system state, control Input, environmental input, and system objectives. 

3. To recognize the time dependent feedback sequence for Indi

vidual stages in control processes. 

The generality of the discussion facilitates the formulation of 

dynamic models for similar problems in management control. 
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CHAPTER IV 
DEMAND FORECASTING FOR SEASONAL GOODS ITEMS 

General 
A procedure for modeling a multi-stage control process was 

discussed in Chapter III a In the formulation of such a model, a method 
is needed to estimate the statistical characteristics of a random proc
ess if the system state is under the influence of the random process. 
In the case of an inventory control process, this situation applies to 
the problem of demand forecasting„ The nature of the forecasting 
techniques used in inventory control may vary depending upon particular 
circumstances in a given situation, It may Involve only the use of 
historical data on the system state, or may Involve predicting some 
economic indices and correlating the resulting prediction to a demand 
variable under consideration 

This chapter is concerned with an investigation of the procedure 
used to forecast demand for seasonal goods inventory items. In the 
development of stochastic models for inventory problems, it is usually 
assumed in the literature that the probability of demand is known, 
Such an assumption is also commonly made in the literature with respect 
to the demand probabilities of seasonal goods inventory items. Suppose a seasonal period covers a time interval (t , t ), The assumption men-^ o n r 

tioned above implies that the demand probabilities are determined before 
the time t . The assumption is justified if the seasonal period is a 
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very brief time interval so that the actual demand cannot be observed until the end of the seasona Suppose (n-1) time points t̂, i-1, 2,..,, (n-1), can be identified between the time points t and t , and the situation allows to make 

r o n 
observations on the demand at these time points t̂. Then, it may be possible to use the observed data to make re-estimates of demand probabilities. An application of feedback filter theorŷ  is made in this chapter in order to consider such a re-estimation problem. The Best Linear Estimate Consider two random variables X and Z which are related by some rule, for example, the relation may be expressed in the form of a joint probability density function: 

P(X, Z) . (4-1) 
Suppose it Is possible to directly observe X, but Z cannot be directly observed. In this situation, the values of Z may be estimated on the basis of given observations on X. In order to develop an estimation procedure, a criterion is needed to identify the best among all possible estimates. Let Z denote the best estimate of Z which is defined over the ensemble of all possible combinations of X and Z„ The estimation loss is denoted by a loss function L(Z): 

Shaw (34); Papoulis (47), Chapter II. 
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L(Z) = E(Z - Z) 2 (4-2) where E is an operator denoting the expectation. The estimate which minimizes the loss function L(Z) is commonly referred to as the least mean square estimate. The least mean square estimate has many desirable statistical characteristics—which are discussed later in this chapter--and is frequently considered as the best estimate. Let the small letters x and z be particular values of the random variables X and Z, respectively. When the estimate Z is obtained on the basis of observations on X, it can be expressed as a function of X, or Z(X). If the conditional density function of Z given X, i.e., P I (z|x), is known, the loss function of Equation (4-2) can be expressed 

where z(x) denotes the estimate of Z for a particular observation x of X. The best estimate z(x) in the sense of least mean squares is that which minimizes the loss function of Equation (4-3). This is well known to be E(Z|X) or the mean of the conditional density function 

as: 
00 L(Z) = / [z - g(x)]' p | (z|x) dz , (4-3) 

(z x); i.e., z(x) - E(Z X) 
(4-4) 

When the joint distribution of Z and X is normal, it is also known that: 
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E(Z|X) - E(Z) + -5. p[x - E(X)] , (4-5) X 

2 where E(Z) and E(X) are expected values of Z and X, respectively, a 2 and a are the variances of Z and X; and p is the correlation coeffi-X cient0 In summary, when the conditional density function of the random variables is known, the best estimate in the sense of least mean squares can be obtained as the conditional expectation of Z given the observation of X. The best estimate in the form of conditional mean estimates, however, is often difficult to obtain, since It requires a knowledge of the conditional density function. For a special case with a single observation x, the best estimate may be easily obtained; for instance, as that shown by Equation (4-5). When observations are made from a large number of different sample populations, however, the conditional density of the desired variable Z and the observable variable X may become quite complex. The linear mean square estimate requires less prior information about the random behavior of the desired variable and the observation variable than would be the case for the conditional mean estimates» Furthermore, the linear mean square estimates have many desirable properties which are described as follows. As estimate z(x) of a random variable Z based on an observation vector x is defined as linear if it satisfies the condition: 
z(a1x1 + a2x2) = a1z(x1') + a2z(x2) (4-6) 



43 where â  and â  are any constants. Suppose a finite number of observations x., , ,. . . , x,T are available on the random variable X« Let Is 2' N X = (x̂jX̂,...,̂) be a set of such observations. The estimate z(x) is linear, by definition, if it is a linear combination of N observations; namely, 
N z(x) = I ax , (4-7) 1 = 1 

where â  are constants whose values need to be specified. Suppose It 
is needed to determine the values of a. for all 1 such that the estimate 

I 

z(x) is the best estimate in the sense cf least mean squares. A method 
for determining the best estimate z(x), which is well known in the liter-

2 
ature, is briefly reviewed as follows. Since z and x̂  are the particular values of the random variables Z and X, respectively, Equation (4-7) can be equivalently written as: 

Z = i=l a.X. 
I I 

(4-8) 
When this expression is substituted into Equation (4-2), it results m: N L(Z) = E(Z - I a.X.) . (4-9) i = l 1 1 

2Ibid. 
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The optimum values of a^ in the sense of least mean squares are those 

which minimize the right-hand side of Equation (4-9). This can be 

determined by differentiating L(Z) with respect to a^, setting the 

partial derivatives equal to zero, and solving the resulting N simul

taneous equations. Namely, 

^ ^ - = - E [ 2 ( Z - I a.X.)X.] (4-10) 
ai 1=1 1 1 -1 

j = 1,2,...,N . 

Setting the partial derivatives equal to zero will yield N simultaneous 
3 

equations: 

E(ZX.) - I a.E(X.X.) (4-11) 
1 i=l 1 1 : 

j = 1,2,...,N . 

The second .partial derivative with respect to a_j, is always positive so 

that the values of a^ determined from Equation (4-11) are minimizing 

values. The expression E(ZX_.) is commonly called the cross-correlation 

function between the random variables Z and X_., and the expression 

Sometimes, these equations are referred to as Wiener-Hopf 
equations. See Wiener (41). 



45 E(X.X„) is the auto-correlation function of the random process X with i I 
respect to the random variables X„ and X« at a time interval (i-i). 

r 1 J When a knowledge of the correlation functions E(ZX«) and E(X.X/) is available, the N simultaneous Equations (4-11) may be solved to obtain the best linear mean square estimate Z. It Is to be noted that, in this case, a knowledge of the conditional density function is not needed. At this point, it is appropriate to comment on the orthogonality 4 of linear estimates. The linear mean square estimate Z has the interesting property that it is orthogonal with its residuals. A residual is the error resulting from the use of an estimate, and is denoted by Z, i.e., Z = Z - Z. The orthogonality of the linear mean square estimate with its residual can be shown as follows. By use of Equation (4-8), the cross product moment of an estimate Z and its residual Z is: E[Z(Z - Z)] = E N ( I a.X.)(Z .uii 
i = l 

N 
I a.X.) 

(4-12) 
- L 

i=i 
E(X.Z) - ) a.E(X.X.) i . „ 1 i 1 

= 0 
Two random variables are said to be orthogonal if their cross product moments are zero. 



4 6 

THE LAST STEP IN THE EXPRESSION ABOVE FOLLOWS FROM THE OPTIMUM CONDITION 

OF EQUATION ( 4 - 1 1 ) FOR THE LINEAR MEAN SQUARE ESTIMATES. THIS ORTHO

GONALITY PROPERTY WOULD, IN SOME CASES, PERMIT A SIMPLIFICATION OF THE 

ESTIMATION PROCEDURE. I T I S FOR THIS REASON THAT THIS PROPERTY I S SUB

SEQUENTLY APPLIED IN THIS CHAPTER TO DEVELOP A LINEAR FEEDBACK PREDICTION 

PROCEDURE. 

SINCE THE NORMAL DENSITY FUNCTION PLAYS AN IMPORTANT ROLE IN 

LINEAR ESTIMATION THEORY AS WELL AS IN DESCRIBING THE PROBABILITY LAWS 

OF VARIOUS RANDOM PHENOMENA, I T I S B R I E F L Y REVIEWED HERE TO SERVE AS A 

BASIS FOR A SUBSEQUENT DISCUSSION. A RANDOM PROCESS I S SAID TO BE 

GAUSSIAN I F ALL THE PROBABILITY DENSITY FUNCTIONS ( I . E . , F I R S T , SECOND, 

THIRD, E T C . ) DESCRIBING THE STATISTICAL PROPERTIES OF THE PROCESS ARE 

OF NORMAL FORM. THE GENERAL FORM OF THE N-TH ORDER NORMAL DENSITY 

FUNCTION OF A RANDOM PROCESS X I S EXPRESSED AS: 

P ( X , X , 
1 

exp[- ~ (X-M) V 1(X-u)J , ( 4 - 1 3 ) 

(2TT) 
N / 2 | V | L / 2 

WHERE: 

X 1 

2 
X AN (N X 1 ) VECTOR, 

X 
N 
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X' - (x^, X^, ^ ) 5 

u = E(x) , 
V = E[(X-u)(X-u)], an (n x n) matrix , 
V = determinant of V , 
V 1 = inverse of V . For the special case of zero-mean random variables, i.e., E(X) = 0, the joint normal density function of Equation (4-13) reduces to: 

p(xl9x2,...,xn) = n/2,„,l/2 6XP
 ̂ ^'^h) > (2ir)"/c V (4-14) 

where: 

V = 
ffll G12 a21 °72 
Qnl an2 

In 2n 
nn 

a. . - E(x.x.) . 
It can be noted from Equation (4-14) that the probability density 
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function of the zero-mean normal random variable can be specified by-its auto-correlation functions E(x.xJ. 

i 1 

The conditional density function of a variable X given all of 
the other x's; i.e., x ,x ,.„.,x , of a Gaussian random process with 

Z. O ri 
5 

the joint density function of Equation (4-14) can be expressed as: 

p(X1|x2,x3,. (2TT) M 
iWexp[- ¥XI (4-15) V V_1X )'M_1(X -V V_1X )1 12 22A2; K 1 12 22 2JJ 

where: 
X̂ •-• (x ,x , . . o ,x ) , a [1 x (n-1)] vector, 

V12 = 1̂2' 013'""' aln̂  ' d '-1 X (n_1^ vector, 

22 
a22, c23, Q32' a33* 
Qn2' Qn3' 

2n 
3n 
nn 

, an [(n-1) x (n-1)] matrix, 

M = °11 - V12V22V21 • 3 3Calar-
The conditional mean of X given particular values of observations of 

5Graybill (13), p. 63. 
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X2 is: 
It can be noted from Equation (4-16) that the conditional mean of X̂ given observations of X2 is equal to the linear combination V-]_2̂22̂2 when the random process X is Gaussian. In other words, V

12

V22̂2 g^ves 

the best linear mean square estimate of X for a Gaussian random process X, and may be expressed as: 
V12V22X2 = j2

 aiXi • (4-17) 

This section has considered the problem of obtaining the best linear estimate of a random variable Z given observations of a random variable X. The best estimate of Z can be expressed as the conditional mean of Z given observations of X, if the conditional probability is known. In particular, when the random variables are Gaussian, then the best estimate of Z can be expressed as a linear combination of observations of X, where a knowledge of the conditional probability is not needed for the estimation. Feedback Filter Procedure for Re-estimation Linear mean square estimation will be further considered in this section with respect to the problem of re-estimating parameter values of random variables, where initial estimates of the parameter values are assumed to be known. 

E(X1|x2,x3,„ „,xn) = V

12

V22X2 ° (4-16) 
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Preliminary Considerations 

rn rn rn rp rp 
il' 2',,15iks5i(stl) ' where the time points T are regarded as consisting of their own time intervals (t, _, t, ) as shown in Figure 9. k,0 k ,n T T T. T T, , 1 2 k s (s+1) 

tl,0 tl,n t2,0 T2,n ,̂0 \,n ts,0 ts,n t(Srl),0 t(s+l),n 
Figure 9, The Time Points T and their Intervals 

k Let the time point T. , be defined as occurring in the future a:±d the 
v sti) 

other time points T ,k = l,2,„..,s, in the paste 
K 

Now, consider a stochastic process: 

Zl' Z

2'"" Zk" °' V Z(s+1) 5 

where the random variables Z are defined for the time points T „ For 
K K example, Z may be the sum, or the average of the sum, of the number of k 

random occurrences of certain events which take place in the intervals (t, , t, ). The parameter values of the random variables Z may be k, 0 k , n k time-variant with respect to the time points , k=l,2,0,.,s,(s+1); however, it is assumed that the parameter values of one of the Ẑ are 

Consider a sequence of discrete time points: 
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TIME-INVARIANT OVER THE INTERVAL (T. . , T. ) . FOR EXAMPLE, THE PARAM-
K , 0 K,N 

ETER VALUES OF Z^ AND Z^ MAY BE TIME-VARIANT; HOWEVER, THE PARAMETER 

VALUES OF Z N ARE TIME-INVARIANT OVER THE INTERVAL ( T N , TN ) . 
1 1 , 0 L , N 

SUPPOSE THE OUTCOMES OF Z CAN BE OBSERVED ONLY AT TIMES T , 
K K, N 

AND ONE WISHES TO OBTAIN A PRIORI, ESTIMATES OF THE UNKNOWN CONSTANT 

VALUES OF Z AT TIMES T „ FOR INSTANCE, CONSIDER THE PROBLEM OF 
K K, U 

ESTIMATING THE UNKNOWN CONSTANT VALUE OF Z , „ SUCH AN ESTIMATE MAY 
^ S+IJ 

BE COMPUTED IN TERMS OF CERTAIN PAST VALUES OF Z , K - L , 2 , . . . , S , OR BY 
K 

MEANS OF REGRESSION ANALYSIS WITH RESPECT TO SOME OTHER TIME S E R I E S . 

LET I N BE A COLLECTION OF SOME AVAILABLE DATA WHICH ARE USED TO COMPUTE 

THE ESTIMATE OF Z , , . N , AND Z„ , N , BE DESIGNATED AS THE ESTIMATE OF 
( S + 1 ) L S + 1 ) TO 

^ ( S + 1 ) C O M P U ' T E C : J - O N ^ E T > A S I S ° F IQ« THEN, THE LEAST MEAN SQUARE 

ESTIMATE %(S+2_) CAN BE EXPRESSED AS THE CONDITIONAL MEAN GIVEN I Q ; 

NAMELY, 

z ( S + i ) " E ( z u + i > I V • ( 4 - 1 8 ) 

AT THE SAME TIME THE VARIANCE OF THE ESTIMATION ERROR, WHICH I S D E S I G -

2 

NATED AS MAY BE COMPUTED AS THE CONDITIONAL MEAN: 
( S + 1 ) 

AV2 = E [ ( Z , _ , - Z R ) 2 | L N ] , ( 4 - 1 9 ) i x ( S + 1 ) ( S + 1 ) 0 
( S + 1 ) 

IN ADDITION TO THE DESCRIPTION OF THE SITUATION GIVEN ABOVE, 

SUPPOSE ( N - 1 ) TIME POINTS CAN BE IDENTIFIED OVER THE INTERVALS 

(T , T ) , AS SHOWN IN FIGURE 1 0 . 
K, O K , N 
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- I - T / ^ 

T t k,0 k,l tk,(i-i) tk,i 
* t 

Figure 10. Subinterva__s of the Interval 
(tk,0> 

Although the A POSTERIORI value of Z^ is unobtainable until the time 

t , suppose some observations on Z, can be made at each of t, . for K 5 n k k, l 
i = l,2,...,n. Such observations will be designated as x^ ̂ . 

Similarly, the time points T, , c and the observations x, , 
ls+ij,i \stij,. 

can be described for the period 7, . . Given the initial estimate 
(s+1) 

Z, at the time t, ,* n . the observations x, , . may be used at (s+1) (s+l),0' (s+l),i J 

times t, -, N . to improve the initial estimate. Such a re-estimation (s+l),i 

procedure will be considered in the following subsection. 

The Filtering Problem6'7 

The problem of obtaining the re-estimation of ^ ^ s + ^ was briefly 

described in the preceding discussion. In order to simplify the sub-

It is commonly known that the idea of recursive filtering is 
originally due to Kalman (46). However, to the best of this writer's 
knowledge, this filtering problem is first considered by Shaw (34). 
The procedure used here is almost identical to that given by Shaw except 
the definitions of and in Equation (4-22) and the subsequent 
consequences. Shaw assumed that the values of rrij_ are the same for all 
I and ni is the white noise with a common variance. It is hoped that 
the notation used here is less likely to be misleading than that used 
by Shaw. 

A similar problem is also discussed in Papoulis (47), pp. 4159; 425. 7 
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script notation, the first subscript (s+1) will be eliminated in the following presentation. In particular, the previous symbols of ^^s+j_y 
A, Z/ ,,\» t, lX . and x. . . will be replaced by the simplified forms (s+1)' (s+l),i (s+l),i f J f of Z, Zq, t̂, and x̂, respectively. The simplified symbols will be used to rewrite Equations (4-18) and (4-19) as : 

Z = E(Z I ) . (4-20) o o 

ol = E[(Z - Z )2|l ] . (4-21) Z ° ° o 
The problem is now stated as follows: 
1. The initial estimate Z of an unknown constant Z is made 

o 
available at time t . 

o 
2 

2. The estimated variance a* of the initial estimation error 

is also made available at time t . 
o 

3. At times t̂, i = l,2,...,n, observed data x̂  are made available, where x̂  are related to Z by some rule. 4. It is required to have a procedure to compute the re-estimates of Z at times t.. 
I The relation between the unknown constant Z and the observed data x_̂ is postulated as follows. For the purpose of estimation, the unknown constant Z can be regarded, a priori, as a random variable. The best possible point estimate which can be made at any time on the random variable Z is the expected value of Z, Let u denote the expectation of 

Z, and assume that the true value of is also unknown. Suppose s ome 
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R A N D O M V A R I A B L E S CAN B E D E F I N E D B Y T H E F O L L O W I N G R E L A T I O N : 

X, = M . Z + N . , ( 4 - 2 2 ) 1 1 1 

W H E R E M . ARE K N O W N C O N S T A N T S ; N . ARE T H E G A U S S I A N noise W I T H ZERO M E A N S 
1 L 

2 

A N D K N O W N V A R I A N C E S a , A N D A S S U M E T H A T N. ARE I N D E P E N D E N T A N D O R T H O -
I 

G O N A L T O Z; N A M E L Y : 

E ( N I ) - 0 , ( 4 - 2 3 ) 

E ( N . N . ) = 0 I F I t J ( 4 - 2 4 ) 

2 _ . 
= A I F I = : , 

L 

E ( Z N I ) = 0 . ( 4 - 2 5 ) 

F U R T H E R M O R E , L E T X. B E T H E O B S E R V A T I O N S O B T A I N E D ON T H E R A N D O M ' I 

V A R I A B L E S X. A N D W R I T E : 
L 

X. = M , Y + E . , ( 4 - 2 6 ) 1 1 Z L 

W H E R E E, A R E T H E A M O U N T OF N O I S E IN T H E O B S E R V E D V A L U E S O F X . . T H E L L 

N U M E R I C A L V A L U E S OF X. CAN B E O B S E R V E D AT T I M E S T.; H O W E V E R , T H E V A L U E S 
L I' 

O F Y A N D E. A R E N O T O B S E R V A B L E , B U T CAN B E O N L Y E S T I M A T E D I N T E R M S O F 
Z L 

S T A T I S T I C S . I T CAN B E N O T E D T H A T T H E P R O B L E M O F E S T I M A T I N G T H E U N K N O W N 

C O N S T A N T Z I S E Q U I V A L E N T T O T H E P R O B L E M OF E S T I M A T I N G I T S E X P E C T E D 
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value P̂,. 

X = (x , 9 x ) . n n-1 n 
Let be designated as the best estimates of Z which can be computed at times t̂. Then, Ẑ can be expressed as the conditional means: 

Zi = E[Z Xil • (4-28) 
Also, let x\ _̂ be designated as the best a priori estimates of the 

A 
random variables X. which are computed at times t. , . Then X. . can I r i-l i5i-l be also expressed as the conditional means: 

Let Y. denote sets of data which are used at times t. for the 1 1 purpose of the estimation, where i = 0,1,2,*..,n. Then xq9 X̂9«-«9 Xn are expressed as: 
o 

xl ~~
 ( V

 Xi} 

X0

 = (X̂» x., x ) = (x,9 x ) (4-27) 
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X = ECx.ix..,) 

= ECOiuZ + ni)ixi_1] 
(4-29) 

= miE(zix1_1) + EĈIx̂) 
= m.Z. n 1 i-l 

Let Z. and X. . , be defined as residuals which result from usint l i,i-l ' estimates Z. and X. . , , respectively: that is: l i,i-l' r Ji 

Z i = Z - Z i (4-30) 

X. . _ = X. - X. . 1 . (4-31) i,i-l i i,i-l 
The best estimates of ^ which are computed at times t̂  will be denoted by Z. • • Then 2. -, • can be expressed as the conditional J i-l,i i-l,i r 

means: 
Zi-l,i = ̂ i-l̂  

= E[(Z - Z1_1)|xi] 
E[Z XiJ - E[Z i_ 1 X i ] 

Z. - Z, _ , l i-i 

(4-32) 
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IT C AN B E O B S E R V E D F R O M E Q U A T I O N (4-32) T H A T Ẑ  M A Y B E C O M P U T E D 

Z. = Z. . + Z. _ . . (4-33) 
L I-L I-L,I 

THE V A L U E S O F Z. N ., H O W E V E R , C A N N O T B E D E T E R M I N E D B Y U S E O F E Q U A T I O N 
I-L,I J ^ 

/ \ (4-32) U N L E S S T H E C O N D I T I O N A L P R O B A B I L I T I E S O F Ẑ G I V E N x̂  are
 K N O W N . 

THE E S T I M A T I O N P R O C E D U R E W I L L B E R A D I C A L L Y S I M P L I F I E D I F O N L Y 

L I N E A R O P E R A T I O N S ARE A L L O W E D ON T H E D A T A - - I N S T E A D O F U S I N G T H E N O N L I N E A R 

M E T H O D T H R O U G H C O N D I T I O N A L M E A N S . F O R I N S T A N C E , S U P P O S E T H E R E E X I S T 
C O N S T A N T S A. S U C H T H A T Z. CAN B E E X P R E S S E D AS L I N E A R C O M B I N A T I O N S OF 

L I R 

O B S E R V A T I O N S X^ A N D T H E P R E V I O U S E S T I M A T E S Ẑ  N A M E L Y , 

Z = Z + A . X . 

1 O 1 1 

2 
Z2 = Z 1 + A 2 X 2 = ZQ + A_. X J (4-34) 
Z. = Z. . + A . X . = Z + J 1 I-L I I O . U 

1=1 
A . X . 

S U P P O S E : 

Z = 0 
O (4-35) 

AT T I M E S T . AS SUMS O F T H E P R E V I O U S E S T I M A T E S Z. A N D T H E E S T I M A T E S OF 1 I-L 

T H E I R R E S I D U A L S , I.E.: 
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Then, Equations (4-34) can be simply written as: Z.. - 8.. xn 1 1 1 

Z0 = % + a.x, = > a.x. (4-36) 2 1 11 . -, 1 3 i=l 

i 
Z. = Z. „ + a „ x. = ] a.x. . 

i . , 1 

3 l-l ii • -i j : 
3-1 

Let x. . ,, be defined as the residuals of the observations x. i,i-l l 
and the estimates X. . ; namely 

i,i-l 
x. , = x. - X. . _ a (4-37) i,i-l i i,i-l 

Then, for any a., suitable constants a. can be found so that Equations 3 3 
(4-36) are expressed in the form; 

Zl = Vl,0 
Z2 = Zl + a2X2,l (4-38) 
Z. 
l 

Z . . + a. x. . , l-l I i,i-l 

Shaw (34), p. 155c 
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A comparison of the last terms on the right-hand sides of 

Equations (4—33) and (4-38) suggests that 

Z. . . --a.x. . , . (4-39) i-l,i l i,i-l 

In order that a.x. „ _ be The best estimate of Z. . in the sense of l i,i-l i-l,i 
the least mean squares, the values of a^ can be determined by solving 

the following: 

E[Z, n - a.X. . J 2 = 0 (4-40) 8a. 1-1 i i,i-l l 

Then, 

E[Z. nX. . ] = a.E(X.2. .) , i-l i,i-l l i,i-l 

and 

E[Z X. . ] 
a. = \;T 1 , 1 . (4-41) 

1 E(X2 . .) 
i, i-l 

The numerator on the right-hand side of Equation (4-41) is: 

E[Z„ -X. . T ] = ELZ. _(X, - X. „ „)] (4-42) i-l i,i-lJ i-l l i,i-l 

E[Z. (m.Z. .. + n.)] i-l i i-l l 

m.E(Z 2 ) l i-l 
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The denominator on the right-hand side of Equation (4-41) is: 

E[xA J - E[(m.Z. . t n„)2] i,i-l i i-i l 

= m.2E(Z 2 ) + E(n 6
2) ('I-'-3) l i - l l 

= m 0
2E(Z 2 ) + o 2 . i i-i n* I 

By use of Equations (4-4-2) and (4-43;, ou of Equation (4-41) can be 
9 

written as: 

rruEtZ 2 ) 
i i - l /, • °i = 2V(W 2 2 * ( ^ m. E (Z . . ) + a l L-l n o l 

This value of ou can be used In Equations (4-38) to compute Z^. However, 
~ 2 

the values of E(Z. n) are s t 1 unknown, A recursive relation can be i-i 
, - 2 10 used to compute EvZ_̂  ) as shown below. 

E(Z i
2) = E[(Z - L ) 2 ] 

E{[Z - (Z. . + a.X . _)]2} l-l l i,i-l 

E{[Z0 _ - c.(m Z. + n.)]2} i-i I I i-i I 

9Cf. JMci., p 0 155 
1 0Cf. Ibid., p. 156 



B.1 
E [(1 - a.m. )Z. - a.n. ]2 1 i i-l i i 
(1 - a.m.) E(Z.2.. ) + a.2E(n.)2, i i i-l i i 

When a_̂ of Equation (4-44) is substituted into the expression above, it results in: 2 
a 

E(Z.2) = — § E(Z.2) (4-45) m. [E(Z. .)J + o 1-1 l i-l n. l 
(1 - a.m.. ) E(Z. , ) i i i-l 

A schematic diagram of the linear feedback filter model is shown in Figure 110 The part of the diagram, which is shown within the dotted outline and designated as the source of Information, represents the model of Equation (4-26)„ The other part of the diagram, which is shown within another dotted outline and designated as the iterative scheme, represents the procedure for computing Z.. In summary, the iterative scheme consists of the following main steps. 
2 

1. Given the initial estimate o-i , and the values of m. and 
Zi 1 2 ° a , then compute a, by use of Equations (4-44) and (4-45). n. l l 

2. Use the computed values of â  and the observations x̂  to obtain: Z,, ~ Z. 1 + a.x. . , , (4-46) i i-l l i,i-l 



m. 
1 

o + x. . o 1 a. 
i 

The Source of Information zi-i 
The Iterative Scheme 

Figure 11. The Linear Feedback Filter Model 
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T H I S S C H E M E I S C O M P U T A T I O N A L L Y C O N V E N I E N T , B E C A U S E T H E N E W E S T I M A T E CAN 

0 < ( 1 - A . M . ) < 1 . ( 4 - 4 7 ) 
L L 

B E D E T E R M I N E D AS A SUM O F T H E P R E V I O U S E S T I M A T E A N D T H E C O R R E C T I O N TERM. 

T H E R E D U C T I O N O F E S T I M A T I O N E R R O R S 

THE U S E O F T H E R E - E S T I M A T I O N P R O C E D U R E S H O U L D R E S U L T I N THE 

R E D U C T I O N OF E S T I M A T I O N E R R O R S . I T CAN B E O B S E R V E D F R O M E Q U A T I O N ( 4 - 4 5 ) 

T H A T T H E M E A N S Q U A R E E R R O R S O F T H E N E W E S T I M A T E Z^ ARE P R O P O R T I O N A L T O 

T H E M E A N S Q U A R E E R R O R S O F T H E P R E V I O U S E S T I M A T E S Z^ ^ B Y T H E F A C T O R O F 

( 1 - AJTK ) . I N O R D E R T O D E T E R M I N E T H E L O W E R A N D U P P E R B O U N D S OF 

( 1 - A . M . ) , T H E A S S U M P T I O N S O F T H E M O D E L W I L L B E M O R E P R E C I S E L Y S T A T E D 

2 2 
W I T H R E S P E C T T O T H E V A L U E S O F A" , A , AND M . . 

Z N . I 
2 . ° ? . 1 

1„ A A. I S N O T Z E R O . I F A* IS Z E R O , T H E N Z H A S N O E R R O R O F 
Li /j O 
O O 

E S T I M A T I O N , A N D T H E R E - E S T I M A T I O N W O U L D N O T B E R E Q U I R E D . 

2 2 2 2. OfL H A S A F I N I T E V A L U E ; L ( J E . , < °°. I F A- I S I N F I N I T E L Y ZI /J Li 0 O O 
L A R G E , T H E N I T I M P L I E S T H A T T H E E S T I M A T E Z Q I S U N K N O W N . 

2 2 
3 . A A R E N O T Z E R O F O R A L L 1 , 1 = 1 , 2 , . . „ , N . I F ANY O N E O F A 

N . J N . 
1 L 

IS Z E R O , T H E N T H E C O R R E S P O N D I N G V A L U E O F CAN B E U S E D T O C O M P U T E 

W I T H O U T E R R O R T H E C O N S T A N T V A L U E O F Z . 

2 2 
4 0 A H A V E F I N I T E V A L U E S ; I.E., A < °° F O R A L L I, I = L , 2 , . . . , N , 

N . N „ 
2 1 1 

I F A ARE I N F I N I T E L Y L A R G E , T H E N T H E R A N D O M V A R I A B L E S X. CAN T A K E ANY 
I 

R E A L N U M B E R , A N D I T IS I M P O S S I B L E T O H A V E ANY R E A S O N A B L E M E A N S OF 

E S T I M A T I O N . 
5. 0 < M , < 1 FOR A L L 1 , A N D E NI - 1 , F O R I - L , 2 , , . . , N . 

L ' . I 
L 

U N D E R T H E S E C O N D I T I O N S , T H E F O L L O W I N G I N E Q U A L I T I E S W I L L H O L D : 
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When these inequalities are considered together with Equation (4-45), it is observed that: 

E(Zi+1

2j < E(Zi

2) . (4-48) 
In conclusion, the reductions in the mean square error of estimation can be made in the filtering procedure, and the new estimates Ẑ are, on the average, improved estimates of the previous estimates Z^ ̂ . 

Special Cases of the Filtering Problem When the 
. . . 2 

Initial Estimates are not Available but a are Known 
n. 
l 

As a special case, It is interesting to analyze the consequences 2 2 
of large values of o±, . Suppose a = M, where M is an arbitrary num-

K 

ber, and let M -»- °°. Then, from Equation (4-44): m M 
lim a. = lim — = — , (4-49) 1 y, 2J(r 2 rn M co M ̂  00 mn M + a 1 

i „x 2 . . 2 where a is assumed to be a relatively small number: i.e., a « M, n n 
In this case, lim Z. = — x, , (4-50) 1 m, 1 M •> 00 1 
and the estimate Ẑ of Equation (4-50) becomes identical to that which can be computed by means of the simple average without knowledge of the initial estimate. In fact, when M •->• • °°, then the random number Z can be any real number, and the best initial estimate could be Ẑ = 0. 



6 5 

NOW, CONSIDER THE PROBLEM OF COMPUTING E ( Z ^ ) BY USE OF EQUATION 

( 4 - 4 5 ) ; NAMELY: 

E ( Z 1 ) = ( 1 - C^M^M . ( 4 - 5 1 ) 

HOWEVER, I F M °° , THEN ( 1 - A . I I I J ~> 0 , SINCE AN — . IN THIS CASE, 
1 1 1 M 

THE RIGHT-HAND SIDE OF EQUATION ( 4 - 5 1 ) RESULTS IN AN INDETERMINATE 

FORM. MAKING THE APPROPRIATE SUBSTITUTION FOR OT ,̂ ONE CAN REWRITE 

THE RIGHT-HAND SIDE OF EQUATION ( 4 - 5 1 ) AS: 

M 2 M 

L 
2 2 

M, M + A 
1 N I 

( 4 - 5 2 ) 

A 2 M 
"L 

2 2 ' 
M, M + A 

1 N 

AND I F A << M, THEN: 
N I 

A 
2 N. 

LIM E ( Z I ) = — | 
M -> 0 0 M^ 

( 4 - 5 3 ) 

THIS I S AN INTERESTING RESULT WHICH INDICATES THAT, ALTHOUGH THE ERROR 

OF THE I N I T I A L ESTIMATE CAN BE VERY LARGE, THE MEAN SQUARE ERROR OF THE 

2 
F I R S T ESTIMATE AT TIME T N I S A BOUNDED VALUE, PROVIDED A < 0 0 . 

1 N X 

THIS RESULT I S INTERPRETED AS FOLLOWS: WHEN THE I N I T I A L E S T I -

" 2 2 
MATES Z AND o-% ARE UNKNOWN, BUT A ARE KNOWN FOR ALL I AND 

O Z N. 
2 O I 

0 < A < ° ° , THE F I L T E R I N G METHOD CAN BE APPLIED TO COMPUTE THE 
N I 



E S T I M A T E S Z^ F O R I = L , 2 , . , „ , N B Y U S E OF E Q U A T I O N S ( 4 - 4 4 ) , ( 4 - 4 5 ) , AND 

( 4 - 4 6 ) . 

W H E N T H E I N I T I A L E S T I M A T E S ARE N O T A V A I L A B L E A N D T H E N O I S E S HAVE A 
C O M M O N V A R I A N C E 

2 
AS M T H E P R E C E D I N G C A S E , S U P P O S E A~ = M A N D L E T M > °°. IN 

Z 
O 

A D D I T I O N , L E T 

2 2 2 2 
A = A = . . . = A = A 
N N N ^ N N 
1 2 N 

~ 2 
IN T H I S C A S E , T H E V A L U E S O F OU A N D E ( Z ^ ) CAN B E C O M P U T E D F O R I 

1, 2 , A N D 3 A S SHOWN BELOW: 

A = -
1 M 

M 2 
2 2 2 ' M •+ M 2 

A 
M 3 

3 2 2 2 
M + M 2 + M 3 

A N D , 

2 

E ( Z / ) = 
1 7 2 S 

M I 

M 1 + M 2 

2 
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By a generalization, it can be shown that, for i = l,2,...,n 

m« 
A. = —;—~" , (4-54 
1 I. 2 

2 
E(Z..2) - . (4-55) 

; m. 
3=1 1 

When the values of ou of Equation (4-54; are used for the values of a 

in Equation (4-46), the estimates Z^ can be computed as: 

Z. = Z. , + a. (x. - m.Z. n ) l i-l i i i i-l 

mi A 
Z. , + . — (x. - m.Z. ) . (4-56) i-l l _ i l l-l 

L M • 

This result is interpreted as follows. When the initial esti

mates are not available and the noises have a common variance, then the 

estimates Z^ can be computed by Equation (4-56). It is very interesting 

to observe that, as shown in Equation (4-56), the iterative procedure is 

completely independent of the noise. In other words, the magnitude of 

the noise variance does not affect the estimating iteration (although 

it affects the outcomes in x=). 
l 

Comparison with the Simple Moving Averages 

Let Z\ denote the estimate of Z computed at times t̂ , i=l,2,„..,n, 

by the method of the simple moving averages; that is: 



It can be easily shown that the expression above can be written in the 

following form: 

Z. . + p.(x. - m.Z. . ) i-i 1 1 l i-i Z. N + - A - (X. - M.Z. n) , (4-58) i-l iiru I l i-i 
I 

where 

I lm = I 

It is interesting to compare 3̂  of Equation (4-58) with ou of 

Equation (4-54) 

(a) If ITK < iru for j=l,2,*.„, (i-1), then: 

I. < a. l l 

The inequality above holds true, since.: 

a. = — 
I i 

1 . L ,m. 

2 ' 

and if m. < m. for j =1,2 , . .. , (1-1) , then: 
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1 1 
lm. l l 

1 

^ ^ 2 
m 
m 

j=i r i J 

(b) If nu < m_. for all j=l,2,.0.,n, then 

a3 < 3= . I I 

(c) If m^ = m 2 = ... = = m, then 

a. = 3. = • (4-59) l l lm 

These results are given the following interpretations. When the 

initial estimates are not available, and the noises have a common vari

ance, then the weighting factors of the filtering method and 3̂  of 

the simple moving averages are different if m, t m_. for all j=l,2,...,i 

and i=l,2,...,n, but are identical if iru = m. for all j=l,2,...,i and 

i=l,2,...,n. 

In other words, If: 

(i) the initial estimates are not available, 

(ii) the time points t̂  can be assigned In such a way that 

mn = m^ = ... - m , and 
1 2 n 

(111) the magnitude of the noise variances is bounded and the 

same for all 1, 1=1,2',>..,;. ,n, 
then: 

(i) the simple moving averages give identical estimates of 
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Z^ as can be obtained by the filtering method, and 

(ii) it is not necessary to know the value of the noise 

variance. 

Numerical Examples 

The Data and the Situation 

Suppose a seasonal period (t , t ) is identified with five sub-r o n 

periods; i.e., n=5. In order to generate the data x^, 1=1,2,3,4, and 5, 

two sets of five random normal numbers with zero means and unit vari

ances are selected from a random number table,"'""'" and shown in Table 1. 

Table 1. Two Sets of Five Random Normal Numbers with 
Zero Means and Unit Variances 

i Set A Set B 

1 0,91 -0.51 

2 1.1.8 -0.99 

3 -1.50 0„97 

4 -0.69 0.98 

5 1.37 -1.10 

The random number table contains 56 sets of 5 random normal 

numbers. Among these sets, a set was randomly chosen, and is used as 

Churchman, et al.3 (44), p. 181. 
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the data in Set A of Table 1. On the other hand, the selection of the 
data in Set B of Table 1 was not made on a random basis„ All numbers 
except one in Set B have smaller deviations from the means than those 
in Set A. In fact, the numbers In Set B have the smallest overall 
deviations from the means among the 56 sets contained in the random 
number table. The random numbers in Set A are used to generate the 
experimental data for Examples 1, 2 and 3, and the random numbers in 
Set B for Examples 4 and 5. 

It is assumed in all examples that the unknown constant u is 
equal to 5. For the purpose of illustration, Z is regarded as a random 
variable with EZ: = u = 5 c, The value of u , which is equal to 5, is, of 

Z z 
course, unknown to the estimatora At time t , the initial estimate Z 

o o 2 is given as zero; i.e., Z = 0S Various values of cC are used m the O ZJ o examples to study their effects on the subsequent estimation, Different 2 values of a and m. are considered in the examples to illustrate their n. i 
l 

E F F E C T S O N the E S T I M A T I O N E R R O R S . 

Example 1 
The particular situation for this example Is specified by the 

following: 
(a) m1 =iru - ... = mr - 0.-2 

12 5 
rM 2 2 2 (b) a = a = «., = a =1 nl n2 n5 (c) Use the random numbers In Set A of Table 1 to generate the data x.. I Since the value of y_, is given as 5, it follows that the random 2 variables X. have the means EX. - m.û  =1 and the variances a =1 i l l Z n. l for all 1, 1=1,2,...,5. The simulated data x̂  are shown in Table 2, 
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Table 2. Simulated Data x. I for Example 1 

i X. 
l 

EX. l 
2 a n. l 

1 1.91 1 1 

2 2.18 1 1 

CO -0.50 1 1 

4 0.31 1 1 

5 2.37 1 1 

For the purpose of analysis, six different values of a~ are ZJ o 
considered in this example; namely, 

a;2 = 0, 5, 10, 20, 40, and 200 . Z 
O 

* 2 

The values of ot̂ , E(Z^ ), and Z^ are computed by use of Equations (4-44), 

(4-45), and (4-46), respectively. The computational results are tabu

lated in Table 3, and also shown in the graph of Figure 12. 

The estimates by the simple moving averages are also computed by 

use of Equation (4-57), and tabulated in Table 3 as well as graphed in 

Figure 12. 

The sum of squares of estimation errors, defined by: 



Table 30 Computational Results for Example 1 

m̂^ = m 2 = . . , = m 5 = 0.2 
a - 0, =*.-.- s 8 = 1 

ni

 n2 n5 
2 
o 

•H a. 
I E(Z\2) Z. L £ < V V 2 

L 

1 0 0 0 2 0 0 0 0 3 0 0 0 125.0 o 

4 0 0 0 II 

5 0 0 0 o 
< NI 

+-> 

_, 1 
1 
2 

0.83 0.76 4.15 
3, 51 

1.6 3.0 o 
< NI 

+-> 

_, 1 5 3 0.61 3.07 2.3 33.9 »|| 

4 0.55 2,73 2.2 Me
th

od
 

5 0.50 2.46 3,2 Me
th

od
 

1 1.43 7.20 2.7 Me
th

od
 

2 1.12 5.59 4.6 C 

1 10 3 0.92 4„57 3.3 12 .4 C 

1 4 0.78 3.89 3.1 

1 
Fi

lt
er

; 

5 0.72 3e33 4.3 

1 
Fi

lt
er

; 

1 2»22 11.20 4.3 1 
Fi

lt
er

; 

2 1.55 7.73 6.3 1 
Fi

lt
er

; 

20 3 1.11 6.02 4.4 4.0 ?-* 

RD 

4 0.97 4.80 3.8 n 

• .—1 5 0.78 4.03 5.1 " f i 1 3.08 15,36 5.9 Th
e 

2 1.90 9.52 7.8 Th
e 

40 3 1.38 6,89 4 = 9 9.7 4 1.08 5.40 4.2 5 0.89 4.44 5.6 1 4.45 22.00 8.5 2 2.34 11.65 9.6 200 3 1.59 7 ,95 5.8 35.3 4 1.20 6.04 4.8 5 0.97 4.89 6,1 The 
Simple 
Moving 1 

2 3 
i± 

9.6 10.2 6.0 
LL Q 50.9 

Averages 

5 6.3 
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LEGEND 

2 ~ 
( 1 ) Z . WITH A- = 0 ; Z = 0 

( 2 ) Z . WITH A-
1 Z 

= 5 ; Z 

( 3 ) Z . WITH A | 
1 Zi 

O 

1 0 ; Z = 0 
O 

( 4 ) Z . WITH A- = 2 0 ; Z = 0 
1 Z O 

O 

( 5 ) Z . WITH A- = 4 0 ; Z - 0 
L Z O 

( 6 ) Z . WITH A; 2 0 0 ; Z = 0 
O 

( 7 ) SIMPLE MOVING AVERAGES 

FIGURE 1 2 . GRAPH OF THE DATA, THE ESTIMATES, AND 
THE MOVING AVERAGES FOR EXAMPLE 1 
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I S COMPUTED AS SHOWN IN THE LAST COLUMN OF TABLE 3 . THE SUM OF SQUARES 

OF ESTIMATION ERRORS, WHICH WILL BE SIMPLY DENOTED BY S . S . E . , CAN BE 

USED AS A MEASURE TO EVALUATE THE ACCURACIES OF ESTIMATION IN VARIOUS 

OUTCOMES. 

THE NUMERICAL RESULTS OF THIS EXAMPLE ARE SUMMARIZED AS FOLLOWS. 

1 . THE CASE WHEN ONLY THE I N I T I A L ESTIMATE I S USED. I F THE 

. . . . * 2 
I N I T I A L VALUES ARE GIVEN BY THE P A I R , Z Q = 0 AND A A = 0 , THEN THE SITUA-

O 

TION I M P L I E S THAT THE RE-ESTIMATION I S NOT REQUIRED. IN THIS CASE, THE 

S . S . E . (THE SUM OF SQUARES OF ESTIMATION ERRORS) RESULTS IN A LARGE 

NUMBER; I . E . , 1 2 5 . 

2 . THE CASE WHEN THE I N I T I A L ESTIMATES ARE USED WITH THE DATA 
2 

TO OBTAIN THE R E - E S T I M A T E S . F I V E DIFFERENT VALUES OF OA ARE CONSIDERED 

• ^ 
2 

FOR THIS CASE; I . E . , A* = 5 , 1 0 , 2 0 , 4 0 , AND 2 0 0 . IN THIS CASE, THE Z 
O 

VALUES OF S . S . E . ARE MUCH SMALLER THAN THE CASE WITHOUT THE R E -

ESTIMATION . 

3 . THE CASE WHEN ONLY THE DATA ARE USED. I F THE I N I T I A L E S T I 

MATES ARE UNKNOWN, THEN THE SIMPLE MOVING AVERAGES CAN BE USED IN THIS 
2 

CASE WITH THE ASSUMPTION THAT -> 0 0 . (ALSO NOTE THE COMMON VALUES OF 
2 ° 

M. AS WELL AS OF A IN THIS E X A M P L E . ) THIS PHENOMENON CAN BE READILY 
. . U i 2 

OBSERVED M FIGURE 1 2 ; NAMELY, AS THE VALUES OF A~ INCREASE, THE E S T I -ZJ 
O 

MATED VALUES Z^ APPROACH THE SIMPLE MOVING AVERAGES. 

EXAMPLE 2 

THE PARTICULAR SITUATION FOR THIS EXAMPLE I S S P E C I F I E D BY THE 

FOLLOWING: 

( A ) = M_ = . . . - MR = 0 . 2 
1 2 5 
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9 9 9 

( B ) 0 = A = . = 0 = 4 

N I N 2 N 5 

( C ) U S E T H E R A N D O M N U M B E R S IN S E T A O F T A B L E 1 T O G E N E R A T E 

T H E D A T A X.. 
I 

T H E O N L Y D I F F E R E N C E IN T H E S I T U A T I O N S OF T H I S E X A M P L E A N D T H E P R E C E D I N G 

2 IS T H E V A L U E O F T H E C O M M O N V A R I A N C E , C „ T H E S I M U L A T E D D A T A A R E SHOWN 
N o L 

IN T A B L E 4. 

T A B L E 4 . S I M U L A T E D D A T A F O R E X A M P L E 2 

X. L EX, L 

1 2 . 8 2 1 4 

2 3 . 3 6 1 4 

3 - 2 . 0 0 1 4 

4 - 0 . 3 8 1 4 

5 3 . 7 4 1 4 

T H E C O M P U T A T I O N A L R E S U L T S F O R T H I S E X A M P L E ARE T A B U L A T E D I N 

T A B L E 5, A N D A L S O SHOWN I N T H E G R A P H OF F I G U R E 1 3 . T H E R E S U L T S I N D I C A T E 

T H A T W H E N T H E D E V I A T I O N OF T H E D A T A F R O M T H E I R M E A N ARE L A R G E , T H E N T H E 

S I M P L E M O V I N G A V E R A G E S R E S U L T IN L A R G E E R R O R S O F E S T I M A T I O N . 

E X A M P L E 3 

T H E P A R T I C U L A R S I T U A T I O N F O R T H I S E X A M P L E IS S P E C I F I E D B Y T H E 

F O L L O W I N G : 



Table 5, Computational Results for Example 2 
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Figure 13. Graph of the Data, the Estimates, and the Moving Averages for Example 2 
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(a) m = 0,1, m = m3 = 0.3, m̂ = 0.2, m5 = 0.1 

data x.. l 
The differences in the situations of this example and the two preceding 2 are in the different values used for m. and a „ The simulated data l n. I 
are shown in Table 6. 

Table 6. Simulated Data for Example 3 
x. 
l 

EX, 
1 1.41 2 3.86 3 -1.50 4 0.31 5 1.87 

0.5 1 1.5 4 1,5 4 1.0 1 0.5 1 
The computational results for this example are tabulated in Table 7, and also shown in the graph of Figure 14. An interesting 

2 phenomenon to be observed in the graph is that, as the values of a-
Z o 

increase, the estimated values Ẑ do not approach the simple moving 
2 averages in this case. (Note the different values of m. and of a .) I 

^ 2 2 2 2 2 
(b) a = 1, a = a =4, a = a =1. 

ni n2 n3 \ n5 
(c) Use the random numbers In Set A of Table 1 to generate the 



Table 7„ Computational Results for Example 3 

m = 0.1, m = m = 0.3, m = 0.2, m = 0.1 
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Figure 14o Graph of the Data, the Estimates, and the Moving Averages for Example 3 
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Example 4 

x. EX̂ a 2 i l n. 
l 

1 0.49 1 1 
2 0.01 1 1 3 1.97 1 1 4 1.98 1 1 5 -0.10 1 1 

The particular situation for this example is specified by the following: (a) m = m. = ... = m = 0.2 
12 b 

^ 2 2 2 
(b) a = o =...=o =1 
(c) Use the random numbers in Set B of Table 1 to generate the data x.. l The only difference in this example and Example 1 lies In the different sets of random numbers used to generate the data. The simulated data are shown in Table 8. The computational results for this example are tabulated in Table 9, and also shown in the graph of Figure 15. 

Table 8. Simulated Data for Example 4 



Table 9. Computational Results for Example 4 
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1 3 .08 15 .36 1.5 H •H 
2 1.90 9.52 1.0 40 3 1.38 6.89 3.4 32.3 4 1.08 5.40 4.8 cu 5 0.89 4.44 3.9 •H 1 4.45 22 .00 2.2 OJ 2 2.34 11.65 1.2 E-* 200 3 1.59 7. 95 3.9 24. 5 4 1.20 6,04 5.4 5 0.97 4.89 4,2 The Simple Moving 1 2 3 4 5 

2.5 1.3 4.1 5.6 4.4 21.9 
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1 2 3 4 5 
2.5 1.3 4.1 5.6 4.4 

m.. = m. = • • • = mr = 0.2 
12 b 
a = a ~ • • • :- a =1 



Figure 15. Graph of the Data, the Estimates, and the 
Moving Averages for Example 4 
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The numerical results indicate that, in this particular situation, the simple moving averages give better estimates than the others. It should be recalled, however, that the random numbers in Set B of Table 1 are such that their deviations from the mean are very small. Example 5 The particular situation for this example is specified by the following: (a) m = m2 = ,.. = m5 = 0.2 2 7 2 
(b) a = a =...,. = a = 4 

nl n2 n5 
(c) Use the random numbers in Set B of Table 1 to generate 

the data x.. 
l The only difference in this example and the preceding lies in the values 2 of a . The simulated data are shown in Table 10. n. I 

Table 10. Simulated Data for Example 5 

x. EX. a 2 l I n. 
I 

1 0.02 1 4 2 -0.98 1 4 3 2.94 1 4 4 2.96 1 4 5 -1.20 1 4 
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The computational results for this example are tabulated in Table 11, and also shown in the graph of Figure 16, The results indicate that, when the deviations of data are relatively large from their means, then the simple moving averages result in the large value of S.S.E. Summary of Results in Examples The numerical results obtained in the preceding five examples are summarized as follows: 1. If the re-estimation is not made, then the bias error in the initial estimate cannot be corrected. In this case, a high accuracy in the initial estimate would be required to eliminate the chance of probable bias errors. 2. If only the data x. are used without the Initial estimate, 

J l 
then the estimates are highly sensitive to the large deviations In the data, which results in large errors of estimation. 3. If the filtering method of re-estimation is used, then the bias error in the initial estimate can be eventually corrected; i.e., the magnitude of E(Ẑ) smoothly decreases, and the estimation is not too sensitive to large deviations In the data. In all examples (except Example 4), the filtering methods resulted in the smallest estimation errors. As explained earlier, the situation in Example 4 was the least likely case. Application of the Feedback Filter Procedure to Forecast Demand of Seasonal Goods Inventory Items This section is concerned with the application of the feedback 



Table 11. Computational Results for Example 5 
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Figure 16. Graph of the Data, the Estimates, and the 
Moving Averages for Example 5 



69 

filter procedure to the problem of demand forecasting of seasonal goods 

inventory items. Consider a seasonal period which is defined by the 

time interval (tQ, in)« Let D be designated as the number of the 

seasonal items In demand for the season,. When the constant value of D 

is unknown, it can be regarded a priori as a random variable D. The 

problem of computing a point estimate of the random variable D is 

equivalent to that of estimating the expected value of D. 

Let D Q be designated as the Initial estimate of D which is made 
2 . . . . available at time t ; a- as the variance of the initial estimate error: o D o 

and D. as the estimate of D which is made at time t., where 1=1,2 ,..„,n. 
l I 

Furthermore, the symbol Z , which was used in the preceding sections, Is 

given the following definition: 

Z = D - D . (4-61) o 

In other words, Z is defined as the residual of the Initial estimate 

D . When Z is given such a definition, the symbols Z . and Z . can be o to J 1 1 

expressed as follows: 

Z. - D, - D . (4-62) l i o 

Z i = Z - Z i (4-63) 

D - D. . 
l 



Once the value of Z„ is known, then the value of D. can be determined 
1 i 

by the relation of Equation (4-62). 
The i-th subperiod of the season (t , t ) was defined in the 

o n 
preceding section as the subinterval ("t̂ ^s t^). Let V\ be designated 

as the number of the seasonal items in demand for the i-th subperiod; 

V. . as the estimate of V. which is computed at time t„, where i < I: 

and v̂  as the actual demand for the i-th subperiod which can be observed 

at time t.. 
i 

Similar to the postulate stated by Equation (4-22), suppose the following relation holds for V.: to i 

= itkD t n ,̂ (4-64) 
where itk are known constants whose values satisfy the following condi

tions : 

n 7 m. = 1 and 0 < m. < 1. (4-65) 
i--i 1 

The Gaussian noise n̂  Is the same as defined in Equations (4-22), 

(4-23), and (4-24). Since D Is a constant quantity, D is independent 

of (and orthoginal to) the noise n_̂ . In real situations, there can be 

many factors which contribute to the noise; for example, the customer's 

buying habit and the weather conditions could be such factors which 

explain variations in n̂ ,. 

Suppose the quantities V. . are computed by the following rule 

1 > D ] < i: 



V. „ • m.D,, j < i (4-66' 

Then, the variables X, and their associated quantities X. . , and X. . . 
i ^ i,i-l i,i-l 

can he expressed as follows: 

X, = m,Z * n. (4-67) i i l 

m. (D - D ) * n. 
1 o 1 

(m.D f n ) - m.D i i l o 

V. - V. l l ,o 

X, = m.Z , (<+-68) I,I-1 i i-l 

= m (D. - D ) l i-l o 

= V. . - V, 
1,1-1 i,o 

X. . . = X, - X. „ .. (4-69) i,i-l i i,i-l 

Cv - v. ) - (v. . . - v. ) 
1 i,o 1,1-1 i,o = va - v.. „ 

1 1,1-1 
Furthermore, define by the following: 



92 x r7 - V.- ('+-'/ 0) 1 1 i ,o 
Since the values of v. and V0 are made known at time t. , the value of 

1 i ,o 1 
x̂  can be determined by the definition above. Then, it follows that. 

x. ., , = x. - X. , .. (1-71) i,i-.i i i,i-l 
= (v - V. ) - (V. . . - V ) 
1 1,0 1,1-1 i,o 

= v. - V. . i i,i-l 
As shown in Equation (4-62), the problem of computing D̂, given the initial estimate DQ, is equivalent to that of computing Ẑ„ The estimate z\ can be computed by use of Equation (4-46). The values of ou, which are needed in Equation (4-46), can be determined by use of Equations (4-44) and (4-45). In order TO use Equation (4-45), the value 

2 of the initial estimate is needed. From Equations (4-61) and Z O 
(4-62): 

2 2 = E['Z - Z )*] (4-72) Z o o 
E[(zrj 

= EL(D - D ) 2 ] 

o 2 
= a 

D o 



9c 

2 

Hertz et al, (18). 

The problem of computing the values of D Q and is considered in the 
o 

following section. 

On the Assumptions of the Model 

The Seasonal Period (t , t ) _ _ _ _ _ _ Q _ — N _ 

Suppose a seasonal period of a seasonal goods item is defined 

over the time Inter al (t , t ), which is referred to as a season. The 
o n 

time points t and t are called the opening time and the closing time 

of the season, respectively, In real situations, the opening and 

closing times of a season are subject to random variations, and these 
12 

time points are often determined arbitrarily. In some cases , the 

season is defined as being open at time t when demand to date reaches 

5 per cent of the seasonal total demand, and as being closed at time t 
n 

when demand to date reaches 95 per cent of the seasonal total demand. 

In such cases, the determination of the time points would be based on 

a long run history of past seasons 
2 

The Initial Estimates: D and OL\ 
o D— 

o 

The initial estimates of a seasonal demand may be obtained sub

jectively or objectively. It Is difficult to say, generally, whether 

the subjective or the objective method of estimation Is preferable over 

the other. In the case of department stores, the estimates are often 

made by a person or persons who are responsible for estimating the 

demand, obtaining the budget, buying the stock, and selling the items. 

In such cases, the subjective estimates of demand are often made on the 
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low side. 13 This is due to a psychological reason: if the estimates are made on the higher side and the sales fall short of the estimated 
target, then the sales performance may be judged unfavorably by manage
ment; on the other1 hand, if the estimates are low and the sales exceed 
the estimated target, then the sales performance may be judged favorably 
by management. This is an illustrative case of the multi-level-multi-
goal system. 

When a firm has a long-run history over past seasons, It may be 
possible to make an objective estimate of the seasonal demand. Suppose 
the firm has data over s past seasons. Let season k be one of the s 
seasons, where k = 1,2, ,.. ,sc The seasonal period of season k is 
defined by a time interval (t , t, ). The following symbols are 

k, o k, n 
defined as: D k the random variable representing the seasonal demand for 

season k. 
D k ,o the a priori, estimate of Dv which is computed at time 

t. k ,o ° 2 D the variance of the estimation error. k, o 
d. k the actual demand for season k which can be observed at 

time t, k,ti Suppose the (s + l)-st season lies in the future, and consider 

Cyert et al. (8), Chapter 6 
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Method lo Suppose a collection of data d and estimates D K k,o 

Seasons 
Data: d\ dn ••• d, ••• d 

x 2 k s Estimates: Dn D̂ ••• D. ••• D 
l,o 2,o k,o s,o 2 In this case, D , and a~ may be computed by the following (s+1) ,0 rule: 1 ? D, ... = - ) d. , (4-73) (s+l),o s . L^ k k = l 

3 0 
2 u-i k 

- £=i (4-74) 
(s +1;, o s - 1 

Method 2c Suppose the seasonal demand D, can be explained by k 
some observable variable W ; for example, the following relation may 

k 
be postulated. D, - a - pW + e , (4-75) 

K k k k = 1,2,.,.,s,s+1 

are available over s seasons; i=e,, 
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where a and p are constants; and ar-e 
E(e ) = 0 for all k, (4-76) 
i:( e., E . ) = 0 for k p j , (4-7 7) k ] 

2 
= o for k =• j . Suppose the following data are available at time t, , A •*< FF & (s+l),0 

Seasons 1 2 . k ... s, (s+1) 
Data on D, d, d̂  0 . . d, . . . d 

k 1 2 k s 
Data on W. W. . , „ W, oa, W , W, ~ v k 1 2 k s v. s+1) 

2 In this case, D>- .. > and a* can be computed by the following ' (s+1 ),o D-/ ... J f 

15 (stl)9o 
rule : D, . , - a i 6 W , (4-7 8, (s+1),0 (s+1)' 

where a and 3 are the familiar least squares estimates of a and 3, and: 

14 For the case of autocorrelated disturbances, see Johnston (21) pa 178 and p. 1950 Johnston (21), p. 36. 15 
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S 

W 
K = L 

K 

2 2 S + 1 S 
( 4 - 7 9 ) 

( S + 1 ) ,0 

L 

T H E V A L U E S O F M„ A N D A 
1 : 

2 
•N— 
L 

I T H A S B E E N A S S U M E D I N T H E P R E C E D I N G D I S C U S S I O N S T H A T T H E V A L U E S 

OF M . A N D A A R E K N O W N A N D G I V E N IN T H E P R O B L E M . IN A C A S E S T U D Y OF 
1 1 6 

S E A S O N A L G O O D S I N V E N T O R Y P R O B L E M S , H E R T Z et al. S U G G E S T E D T H A T S U C H 

P A R A M E T E R V A L U E S M A Y B E C O M P U T E D O N T H E B A S I S OF H I S T O R I C A L D A T A , 

S U P P O S E A F I R M H A S D E M A N D H I S T O R I E S F O R I N D I V I D U A L S E A S O N A L ITEMS 

OR G R O U P S O F S I M I L A R S E A S O N A L I T E M S , T H E G R O U P O F I T E M S W H I C H H A V E 

S I M I L A R D E M A N D C H A R A C T E R I S T I C S I S S O M E T I M E S R E F E R R E D TO AS A L I N E OF 

I T E M S . T H E I T E M S MAY B E G R O U P E D IN A L I N E W H I C H A R E S O L D I N A S I N G L E 

D I S T R I B U T I O N C H A N N E L , AT A SAME P R I C E R A N G E , A N D FOR A SAME F U N C T I O N A L 

U S E . F O R E X A M P L E , M E N ' S O V E R C O A T S E L L I N G IN T H E P R I C E R A N G E O F $ 1 0 0 

AND $ 1 5 0 P E R U N I T T H R O U G H T H E CHANNEL O F A M E N ' S W E A R D E P A R T M E N T M A Y 

B E G R O U P E D I N A L I N E . A N O T H E R G R O U P O F M E N ' S O V E R C O A T S S E L L I N G I N T H E 

P R I C E R A N G E O F $ 5 0 A N D $ 7 5 P E R U N I T T H R O U G H T H E C H A N N E L O F A B A S E M E N T 

S T O R E M A Y B E G R O U P E D AS A N O T H E R L I N E . 

IT I S A S S U M E D T H A T S U F F I C I E N T H I S T O R I C A L D A T A A R E A V A I L A B L E O V E R 

S S E A S O N S ON T H E B A S I S O F E I T H E R I N D I V I D U A L I T E M S OR L I N E S . L E T D, D E -
K 

N O T E T H E K - T H S E A S O N D E M A N D , A N D V . D E N O T E T H E I-TH S U B P E R I O D D E M A N D 

2 

H E R T Z et al. ( 1 8 ) . 
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within the k-th season. Assuming that rru is a fixed constant for the 

i-th subperiod over all seasons, the following relation Is postulated. 

v „ = m.d, + e1 ... (4-80) k,i 1 k k,i 

k = 1,2,. ,s, 

where v . and d, are the given data, m. is the constant, and e . is 
K , 1 K 1 K , 1 

the disturbance. At first, it appears that the value of m. may be com

puted by the familiar least squares estimate: 
I 

17 

j. vk,A 
m. - — (4-81) 
i s 

k = l 

However, the values of iru computed by Equation (4-81) may not satisfy 

the condition specified by Equation (4-65); i.e., 

n 
/ m, = 1, o < m. < 1. . L

1 l I 1=1 

A method which does work Is to approximate m. by im 

17Johnston (21), p. 18. 
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s 

2 
If the disturbance e^ ^ is independent, then the value of a ' I 

can be simply estimated by: 

2 

2 _ kfl (;.-83) 
nl s - 1 

If It is suspected that the disturbances are serially correlated, then 

the significance of autocorrelation may be tested by means of the 

Durbin-Watson statistic*^ or by some other methods. The method of 

the Durbin-Watson statistic is briefly outlined as follows. 

Let u, o denote the autocorrelated disturbance, and write: k,i 

Vk,i = V k + Uk,i' ( 4 - 8 4 ) 

where u, . is assumed to follow the first order autocorrelation scheme k,i 

u. . = p .u. . + e. .:, (4-8 5) k,i l k-l,i k,i 

In the expression above, p. is a constant, and e, , is an independen' 

1 K , 1 
18 

Durbin et al. 1.45); also Johnston (21), p„ 192. 
Theil et al. (48). 1 9 

^ Vk I t v -1 ' 
in. = m. = — . (4-82) 

11 s 
I dk k = l k 
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DISTURBANCE „ 

THE DURBIN-WATSON S T A T I S T I C I S COMPUTED AS: 

S 

K _ 2

 ( U K , I - U ; K - I ) , I ) 

D = ^ — . ( 4 - 8 7 ) 

I ( U ' K I ) 2 

I F THE VALUE OF D EXCEEDS THE LIMIT GIVEN IN THE DURBIN-WATSON TABLE, 

THEN IT CAN BE CONCLUDED THAT THE AUTOCORRELATION I S SIGNIFICANT =, I F 

THIS I S THE CASE, THE VALUE OF I S ESTIMATED BY THE FAMILIAR LEAST 

SQUARES ESTIMATE: 

P . = — . ( 4 - 8 8 ) 
1 S o I («: .)2 

K=2 K ' X 

BY USE OF P1. , THE DATA D, AND V „ ARE TRANSFORMED INTO 

1 K K , 1 
D K = D K - P I D ( K - L ) ( 4 " 8 9 ) 

\,I - \,I ~ p i V K , ( I - L ) ( 4 " 9 0 ) 

SUPPOSE IRU OF EQUATION ( 4 - 8 2 ) I S USED TO APPROXIMATE itu . THEN, 

U. , CAN BE APPROXIMATED B Y : 
K , 1 



loi 
The trans formed data d' and v' ., will then be used to compute 

K K , 1 ~ 2 2 new estimates mT and (a' ) of m. and a , respectively, as: i n. i n. l I 

S-? ̂ ,1 
m! = — (4-91) 
1 s v d' k-2 k 

(a' 
n 

k = 2 
( 

k,i - mid' 

l k (4-92) 
Summary This chapter has Investigated the statistical procedures which can be used to forecast demand for seasonal goods inventory Items. The procedure which is most frequently considered in the literature is that whuch assumes the probabilities of demand are estimated once for all before the beginning of a season. Such a priori estimates of the demand probabilities are referred to as the initial estimates. The procedure proposed in this chapter also accepts the initial estimates; however, the focus of analysis is placed upon the problem of correcting the initial estimation errors as more data becomes available after the season begins, The methods of least mean square estimation and filtering theory are used as the theoretical basis for the development of the statistical procedure. The best estimate of a random variable in terms of the least mean squares can be given by the conditional mean based on obser-
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vations. For the case of a Gaussian random variable, the conditional 

mean can be expressed as a linear combination of observations. When 

the estimation errors are regarded as the Gaussian random variables, 

the linear filter theory may be applied to consider the problem of 

estimating the initial estimation errors-

The basic models for the proposed procedure are given by equa

tions (4-22) and (4-61). The formulas which can be used to compute the 

Initial estimation errors are given by Equations (-4-44) through (4-46j. 

The development of these formulas is largely based on Shaw's linear 
20 

filter model. Once the initial estimation errors are estimated, then 

Equation (4-62) can be used recursively to re-estimate the seasonal 

demand. As the seasonal demand is re-estimated, the re-estimated result 

can be used to predict the subperiod demand. Within this framework, 

the filtering problem of estimating the seasonal demand will czINSIDE 

with the predicting problem of estimating the subperiod demand, 

if the estimated variance of the initial estimation error Is very 

small, then the filtering method is very insensitive to correct the bias 

in the initial estimation. On the other hand, if the estimated variance 

of the initial estimation error is very large, then the filtering method 

becomes quite sensitive to the fluctuations in the data. In other words, 

it is important to have a reliable means of estimating the variance of 

the Initial estimation error. 

The accuracy of the filtering estimation depends also on the 

accuracy of the estimated parameter values of ITU and the noise vari-

Shaw (34). 
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A N C E S . A S AN E X T R E M E C A S E , I F T H E V A L U E S O F M„ A R E T H E SAME FOR A L L 
1 

S U B P E R L O D S A N D THE N O I S E V A R I A N C E S A R E A L S O T H E SAME F O R A L L S U B P E R I O D S , 

T H E N T H E R E - E S T I M A T E S C O M P U T E D B Y T H E F I L T E R I N G M E T H O D W I L L A P P R O A C H 

T H E S I M P L E M O V I N G A V E R A G E S AS T H E V A R I A N C E O F T H E I N I T I A L E S T I M A T I O N 

E R R O R A P P R O A C H E S AN I N F I N I T E L Y L A R G E N U M B E R . 

T H E M E T H O D S FOR D E T E R M I N I N G T H E V A L U E S O F T H E I N I T I A L E S T I M A T E S 

AS W E L L AS T H E P A R A M E T E R V A L U E S O F T H E M O D E L ARE A L S O O U T L I N E D I N T H E 

L A T E R P A R T O F T H E C H A P T E R <= 



CHAPTER V 

Murray et al. (30). 

INVENTORY CONTROL FOR SEASONAL GOJDS ITEMS 

General 

The procedures used in practice to control inventories of 

seasonal goods items are often such that the Inventory control situa

tion may be modeled as a multi-stage control process• The problems 

associated with defining the spatial boundaries of an inventory control 

system In retail situations, as well as defining the dynamic boundaries 

of such a control process, were discussed in some detail In Chapter 

III. When modeled as a mu_fi-stage control process, the problem of 

forecasting demand becomes an integral part of the control process in 

such a way that, at each control point in time, the system is allowed 

tc estimate demand as well as to determine control input. 

An approach to modeling the seasonal goods Inventory problem as 

a multi-stage control process was considered by Murray et at. in a 

recent publication."^ The Bayesian approach to forecasting demand was 

made in their model on the assumption that the demand pattern follows 

the beta binomial probability function, Under such an assumption, 

their model is applicable only when the size of a demand population Is 

exactly known,, However, the size of demand population is often unknown 

in real situations of seasonal goods inventory control problems. 
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The linear feedback filtering procedure presented m Chapter IV does not require knowledge of the size of the demand population« On the other hand, the procedure assumes that Equations (4-22) and (4-64) can be defined for the inventory situation. It seems that this assumption Is reasonable and logical in view of the case studies reported by Cyert 2 3 et al. and Hertz et al. The general characteristics of the seasonal goods inventory problems are first considered In this chapter, and the filtering procedure is applied to formulate a seasonal goods inventory control model in the form of a multi-stage control process. The analysis is Illustrated by numerical exampies.. 

The Seasonal Goods Inventory Problem Inventory stock items may be classified according to whether they are seasonal or nonseasonal. For a retail department store, for example, the majority of hardware items may be regarded as nonseasonal and the majority of clothing items as seasonal. The essential characteristics 
of seasonal goods inventories as opposed to nonseasonal inventories can 

4 
be listed as follows: 1. Seasonal goods inventory Items have a finite demand period with well-marked opening and closing times for the season. 2. The demand rate of the items usually varies within the Cyert et al. (8), Hertz et al, (18 j. Murray et al- (30). 
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seasonal period. 

3. There are only a limited number of opportunities to purchase 

or produce the Items at varying costs which depend on the rime at which 

decisions are made to obtain them0 

4, The price of the item can be changed within the season,. At 

the close of the season, unsold units result to high cost of obsoles

cence . 

An examination of these characteristics will suggest that the 

seasonal goods inventory problem is a class of the newsboy problem 

or the slow-moving Item Inventory problem. An extensive study of the 
5 

latter problem has been reported by Hadley. The present problem, 

however, differs from Hadley's model In two aspects- First, Instead of 

a single procurement opportunity as in Hadley's model, more than one 

opportunity is allowed for procurement in the present problem. Second, 

instead of a single estimate of the seasonal demand, a limited number 

of opportunities are allowed to re-estimate demand in the present prob

lem. In the case of retail situations, the present model is a more 

realistic representation than Hadley's single period model; particularly 

for the case of department store operations. 
6 

Cyert et al. has reported a case study of inventory control 

practices in department stores. According to their study, the firm 

divides replenishment orders into two categories of orders; namely, 

advance orders and reorders,, Advance orders are placed early enough to 
5 

Hadley (15), Chapter 6. 

6Cyert et al. (8). 
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allow the firm and its suppliers to avoid uncertainties by providing contractual commitments; hence, advance orders may be obtained at a lower cost than reorders. Reorders are placed after the season begins, and are used for the purpose of controlling the uncertainty in demand as well as other uncertainties in purchase costs and selling prices = In a case study reported by Cyert et al. , the amount of advance orders constitute approximately 50 per cent to 75 per cent of total seasonal orders; in a particular season, the amount of advance orders placed for Easter-season was 50 per cent, for Summer-season was 60 per cent, for Fall-season was 75 per cent, and for holiday-season was 65 per cent, Since advance orders seldom meet the total seasonal demand, the remainder of demand is filled by reorders. A schematic diagram of the Inventory ordering process is shown in Figure 17. As shown in the diagram, there are three factors which influence the amount of reorders; namely, the current inventory level, the amount of advance orders already placed, and the sales re-estimate which is made after the season begins. According to Cyert et al. J the re-estimate of demand may be determined by the following simple rule: 

s -S~JIzlls ,5-n 
b(T-t) S' t • Cb l> 

t 
where Ibid., p. 136. 
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Figure 17. Advance Orders and Reorders in Inventories 



1 0 9 

- actual sales bp to time x from the beginning of 
( T - T ) a season, 

- estimate of sales for the remainder of the season. = the amount of last year's Ŝ_. S/rn . - the amount of last year's S s ( T - T ) j ( T - T ) If Ŝ  denotes the total sales of a season and S _ denotes the amount of last year's S_, then the rule given by Cyert et al. in Equation (5-1) may be applied to obtain: 
S S =4ST • (5-2) bT 

s; When the symbols of S , —L- , and S„ are replaced by V̂, mc, and 1 ST

 1 1 

D, respectively, then the deterministic relation of Equation (5-2) can 
be used as a basis to model the stochastic relation in the form of 
Equation (4-64): V. = m.D + n. , 

I i I 

where n. denotes the random disturbance. Once it is possible to model I C the relation expressed above, then the filtering procedure of Chapter IV may be used to obtain the re-estimates of demand probabilities. 
The Seasonal Goods Inventory Model Consider a seasonal goods inventory process for which the planning horizon is defined as the seasonal period (tQ, ln)* As discussed In the preceding chapters, (n-1) time points t., I r 1,2,..,,(n-1), may 



110 
be defined between t and T so that the seasonal period is divided into 

on r 

n subperiods. Let the time Interval (t, . , t̂) be the i-th subperiod of the season= The state, input, and output variables for the inventory control process are defined as follows. For the i-th subperiod, I - l,2,...,n: ŷ  : the observable state variable which represents the inventory level at the beginning of the i-th subperiod. The Inventory level is measured at time t̂_̂  before the replenishment q_̂ has arrived. q̂  : the control input which represents the replenishment. The replenishment Is instantaneously made at time .̂ v̂  : the environmental input which represents the subperiod total demand, A demand may occur at any time during the subperiod; however, the subperiod total demand Is observable only at the end of the subperiod. : the output which represents the return in revenue for the subperiod. The state equation of the process can be expressed in the familiar form: y. . , - y. * q - T-> - (5-3) î + l J i ̂ i l The assumption which underlies the relation shown above is that the feedback sequence of control can take place at the beginning of the subperiods In other words, as shown in Figure 8(a), the activities of measurement, computation, decision, and actuation can take place at the beginning of the subperiods. 
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Figure 18 is a schematic diagram showing the inventory control 

process over the planning horizon consisting of n subperiods. The 

Initial state of the inventory process is denoted by y^ and the post

season inventory is denoted by y n . The horizontal flows Indicated 
•̂ n+l 

by solid lines represent the flow of material units. The vertical 

dotted lines represent the flow of information concerning the subperiod 

return R„ The letter G» denotes the goal-seeking unit for the 1-th 1 i 

subperiod, which seeks to optimize the subperiod return. The letter G 

denotes the overall system goal which seeks to optimize the total 

seasonal return R0 

Suppose G_̂  is an operator which assigns values or costs to 

resources utilized by the inventory process. The resources are material 

units which are expressed in terms of sales v^, Inventory level y^, and 

replenishment q̂ . Suppose G^ assigns values to these variables to give 

a relation with which can be expressed as: 

R = G (v , q„, y ). (5-4) i 1 1 1 1 

The system goal G Is also considered as an operator which relates the 

subperiod revenues R^ to the total revenue R; namely, 

R = G(R1,R2,...,Rn,Rn + j_). (5-5) 

where R denotes the post season salvage return with respect to y 
n+I 7n+l 

For the inventory problem, suppose R^ can be expressed as con

sisting of three separable components: 
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Figure 18. The n-subperiods Inventory Processes over a Season 



113 R. = G . - G , - G ., (5-6) 1 v,i q,i y,i 
where, G . - the value is units sold, v,i G . = the cost of units replenished, Ĝ _̂ - the cost of Inventory holding. Each of these components is modeled as follows. Suppose the demand can be described in terms of a random variable V\ with the probability function p(vi)« 

1. The expected value of units sold: y.+q.-l 
J I ̂ i 

Gv,i = ri! „Lvip(V\, J (yrVp'V 
V.=0 V==y.+q. 
l i Jl ̂ i 

(5-7) 
where r̂  denotes the unit selling price minus selling expenses per unit 2c The cost of replenishment: Suppose that the unit replenishment cost, denoted by ŝ(q̂), is a deterministic function which depends on the volume of replenishment; for instance, this includes the situation where the volume-discount is considered. Then, G „ may be 

q,i 
expressed as: \,i = C»i<W (5"8) 

3. The expected cost of holding inventory for unsold units at the end of the i-th subperiod: 
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y.tq.-1 (5-9) 
where CL denotes the unit inventory holding costo 

The expected return for the i-th subperiod can be expressed 
by use of Equations (5-7) through (5-9) as: 

R. = r. 
I 

y.+q.-l 
I I V 

L 

V.=0 
1 

v1p(v.) + I (yi-qi)p(vi) 

V.=y.+q. 
i J l Hi 

- [si(q±)]qi (5-10) 

y.+q.-l 
t i 

- C. T (y.+q.-V. )p(V. '). i „ L„ i i i i v.=o 
1 

Let ĝ(y,V) denote the sum of expected revenues for the time 
interval (!_=., t̂ ), provided the optimum replenishment policies are 
employed at times l̂ +̂» ti+2' * * ' ' "*-n' i.e., 

n + 1 
gi(y,V) = Max. I R.. (5-11) qi+l'q'l+2'"-"q

n

 j = 1 

Also let f̂(y,V) denote the maximum revenue expected from subperiod 1 
to the remainder of the season provided the optimum replenishment 
policies are employed at. all the time points: t_̂, t̂ +̂ , t̂ +2,0.., t̂ ; 
i.e. , 

f1(y,V) B max. (gi(y,V)}. (5-12) 

I . = C. T (y. + q. - V. )p(V.), y,i 1
 v =0 1 1 

1 
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The expressions g^CyjV) and f\(y,V) are shown as functions of two vari

ables: The inventory level y which is to be controlled, and the random 

demand V which is to be estimated„ 

Combining Equations (5-10), (5-11), and (5-12), the following 

Q 
dynamic programming formulation can be obtained: 

(5-13) 

00 + V [r.(y.+q.) * f„„ (0,V)]p(V.) 

iii ltl l \ 

[s.(q.)]q. 

subject to: 

i+1 y. + q. 

l î 
V., and q» I 0 for all i. 

I J î For the post season at i •= n+1, it Is assumed that V n+1 = 0 and 

q R + 1 = 0; hence, 

:
n+i<y>°> = r

n+i yn+r (5-14) 

Cf. Murray ET AL. (30). 
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Equation (5-13) can be rearranged to give a computationally more convenient form: 
f.(y,V) s Max, {r.y. t O.-s.(q,)]q„ (5-15) i. i l t i l l 

y,+q.-1 , LQ t(ri.C.)(yi+qrV.) - fm(yi+«li-Vi,V)3P(Vi) i 
+ I fi+1(o,v)P(v.)} V.=y,+q. 
1 17 1 ̂1 The optimum replenishment policy q̂  can be determined in a straightforward manner by solving Equations (5-13) or (5-15), provided the estimates of demand are available. Obviously, the simplest approach to this problem can be found when the probability function p(V\) of the i-th subperiod demand is known for all subperiods, 9 

Hadley considered a case where p.(V.̂  J Is the Poisson density 
function with mean X s: 

l V. -A, 
(A )

 1 e 1 

f• (V.|X.) = ^ . (5-16) 
1' 

V„ x- 0,1,2,. 
I = 1,2, 

9Hadley (15), p. 310 
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If the random behavior of demand can be described by the Poisson density function for each subperiod I, then It may be possible to obtain the estimates of the mean X̂,, and subsequently compute the optimum solutions for ordering quantities. The key to this problem is, however, the procedure used for estimating the unknown means for future subperiods, Hadley assumed that the means are either exactly known or determinable from a functional relationship. He did not consider the situation where the re-estimates of the seasonal demand are obtained on the basis of sales observations made within the season. 
the re-estimates of future demand ate obtained from the sales performance In the earlier part of the season. They made a Bayesian approach to forecast demand probabilities by assuming that the random behavior of demand can be described by the beta binomial probability density function. Let N be the number of total potential customers, V be the number of actual customers, and p be the fraction of N that generates the actual demand. They assumed that the fraction p is distributed as the beta normalized density function:̂  

In a recent publication, Murray et al. 10 reported a study where 

ffi(p|V>N) = 1 V-l (1-p) N-V-l (5-17) B(V,N-v) P 3 0 < p < 1 5 N > V > 0 
Murray et al. (30 ). 
Raiffa et al. (32), p, 218. 
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where B(V,N-V) Is the complete beta function: 

B(V,N-V) = (V-l); (X-V-I): 
(N-i): 

(5-18) 
Now suppose the seasonal period can be divided into subperiods, and let N̂ be the number of potential customers for subperiod i„ Suppose N_̂ is known exactly for all subperiods, but the fraction of N̂ who will purchase the seasonal item is unknown. Let be the number of actual customers who will purchase the item during subperiod i, v̂  be the cumulative number of customers who nave purchased the item prior to subperiod i, and N\ be the cumulative number of potential customers prior to subperiod i for the season. Under these assumptions, the probability that the N̂ potential customers in subperiod i will generate demand for V. units given observations on v and N. can be expressed as 1 i i r 

12 
the beta probability function: 1 f (V,|v.,N.,N.) = f fw(V, |p.,N.)f (p. Iv.,N.)dp. 3b i' i' l i * b i 3 i i i i 

3 (5-19) 
where f, (V„ |p.,N,) is the binomial function: 

N8 ! N0-V0 i P, (1 - Pi) 1 2 (5-20) V, !(N.-V . ) l ii 3 
0 1 

Raiffa (32), p. „ 
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and f„(p.|v.,N.) is the beta normalized density function of Equation 3 1 1 1 l 

(5-17). The beta binomial probability function of Equation (5-19) can 

be expressed m the computational form: 

(V.+v.-l).(N.+N.-V.-v -1)!N.'(N.-l)! 
f (V. |v,N.9N.) = — 1 1 1 1 (5-21) 

P 1 1 (v.-l).(N.-V„)!(N,-v.-l)!(N.+N.-l)!V. I 
i 1 1 1 1 i i l 

If demand follows the beta binomial probability law, then one can 

use the Bayesian approach to compute the future demand estimates, pro

vided the number of potential customers is known with certainty. In the 

case of seasonal goods Inventory situations, it Is often unrealistic to 

make such an assumption that the number of potential customers is known; 

except, perhaps, for some special cases.^d When the size of the demand 

population is not exactly known, then the Bayesian approach using the 

beta binomial probability function to estimate the future demand is not 

applicable. 

The feedback filtering procedure presented in Chapter IV does not 

require the A PRIORI knowledge of the size of the customer population. 

On the other hand, the application of the filtering procedure requires 

that the assumptions underlying Equation (4-64) are satisfied in the 

given situation. In reference to the case studies reported by Hertz 

ET AT. and Cyert ET AL.3 this requirement seems to be a reasonable one. 

Some numerical examples will illustrate the application of the filtering 

procedure to solve the inventory problem. 

13 
Murray ET AL. (30) mentioned that the mail order situation is 

one of such special cases. 
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Numerical Examples 

To consider the simplest possible situation for Illustration, 

suppose a seasonal period can be divided into two subperiods; i.e., 

n = 2. For this situation, the dynamic programming formulation of 

Equations (5-14) and (5-15) can be expressed as follows: 

f3(y,0) = n 3y 3 , (5-22) 

f2(y,V) = Max. (g2(y,V)} (5-23) 
q2 

= Max. ( 2̂y2 + [r2-s2(q2)]q2 

q2 

y2+q2-i 

- I « V V < W V - r 3y 3 ]p( V 2)) 
2 

= Max. (r 2y 2 + [r2-s2(q2)jq2 

q2 
y 2+q 2-i 

( W V v ^ o < y 2 + v V p ( v2 ) } , 

^(y^V) = Max. (g1(y,V)} (5-24) 

Max. {r^y^ + [r -s^q ) 
ql 

y-L+%-1 

- I [ ( ri + ci ) ( yi T' qi~ vi ) ~ V y ' v ) ] p ( V 
vi"° 
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I f (0,V)p(V )} 

For the purpose of illustration, the following hypothetical data 
14 will be used in this example: 

r± = 12, f = 12, r 3 = 3, 

s 1(q 1) = 5, s
2

( q 2 ' > = 8 ' 

cx = c2 = 0, 

y x = o. In other words, the price remains constant at 12 per unit within the 

season, but its post season salvage price is only 3 per unit. The 

purchase costs are independent of the volume, but depend on the time of 

purchase; namely, 5 per unit at time t̂  and 8 per unit at time t̂ . The 

Inventory holding cost is assumed to be negligible. The Initial Inven

tory level y^ is assumed to be zero, When these numerical values are 

substituted into Equations (5-22), 1,5-23), and (5-24), then: 

f3(y,0) 3y3 , (5-25) 

y 2tq 2-i 
f (y,V) ~- Max, {I2y t 4q - 9 £ (y~*q9-V )p(V )} , (5-26) 

q 2 V^O 1 

14 These are the same data used in Murray et al. (30) 



1 2 2 

F \ ( 0 , V ) - MAX, { 7 Q - | L L 2 ( Q -V ) - F ( Y , V ) ] P ( V ) ( 5 - 2 7 ) 
1 Q V 1 = O 

00 
Y F _ ( 0 , V ) P ( V . ) } . L 

WITH RESPECT TO THE DEMAND P R O B A B I L I T I E S , MURRAY ET AL. ASSUMED 

THAT THE NUMBER OF POTENTIAL CUSTOMERS I S EXACTLY KNOWN TO BE 3 FOR 

THE F I R S T SUBPERIOD AND 5 FOR THE SECOND SUBPERIOD. THE A PRIORI 

ESTIMATE OF THE FRACTION OF CUSTOMERS WHO WILL GENERATE THE DEMAND I S 

ASSUMED TO BE 0 5 , IN SUMMARY, THE FORECASTING PROCEDURE OF MURRAY 

ET AL. I S BASED ON THE FOLLOWING MAIN ASSUMPTIONS: 

BINOMIAL PROBABILITY FUNCTION. 

2 . THE S I Z E OF THE DEMAND POPULATION I S EXACTLY KNOWN; E , G . , 

N = 3 AND N 2 = 5 . 

3O THE A PRIORI ESTIMATE OF THE PROBABILITY THAT ANY MEMBER 

OF THE DEMAND POPULATION WILL GENERATE A DEMAND I S AVAILABLE BEFORE 

THE SEASON B E G I N S ; E . G . , P ^ = 0 = 5 . 

UNDER THESE ASSUMPTIONS, THE P R O B A B I L I T I E S OF DEMAND FOR SUB-

PERIODS 1 AND 2 CAN BE EXPRESSED AS: 

1 . THE PROBABILITY OF DEMAND CAN BE DESCRIBED BY THE BETA 

p(V s W v W ' 0 ( 5 - 2 8 ) 

( 5 - 2 9 ) 
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= W ^ ' W W V' ° - V2 - 5' (5_29) 

The values of p(V-̂) an<3 pCV̂) can be used to s°lve equation (5-27) for the optimum ordering quantities. The method for using the feedback filtering procedure of Chapter IV is illustrated as follows. Suppose it is possible to relate the sub-period demand V̂ to the seasonal total demand D by a linear relation of equation (4-64); i.e., 

V. - m.D + n. , 
i I I 

where m0 is a fractional number, 0 < m0 < 1, and n. is a zero mean l ' - i i 
2 normal random variable with variance a n. l 

The following values are assumed for the illustration: o 
n± = (3/8), m2 - (5/8); 
"2 -2 
a =1.5, o =2,5. 
ni n2 

On the basis of the given data, the following quantities can be computed at time t .... By use of Equation (4-66): 

Vn = m.D = (3/8)(4) = 1.5. (5-30) 1, o 1 o 

By use of Equation (4-44): 
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."2. 

When the new data v̂  becomes available at time t̂, the following quantities can be computed* By use of Equations (4-62), (4-46), (4-71) and (5-30): 
D = D + <* (v. - V_ ) (5-32) 1 o 11 l,o 

4 + (0.7&')(v - 1.5) 
= 2.90 + 0.73(v1) Once the values of is calculated, then it can be used to compute the 

a priori estimate V as well as the a posteriori estimate V • I.e.., 
-- 5 ~L 1 j J-

by use of Equation (4-66): 
V2 1 = m2Dl = (5/8) °1 ' (5-33) 
vi,i= Vi= (3/8) \ • (5-34) 

The values of V and V are used at time t to be the expected 
£- ̂  .X 1̂1 J-. 

values of the random variables and V̂, respectively. When the noise n. in Equation (4-64) is a Gaussian random vari-l able, then V\ Is also Gaussian. For example, p(V ) is the normal 

miE(Zo) _ (3/8)(4) . qn a, = 5 ^ —̂ = 5 = 0.73 (b-3l) 1 (m,) E(ZZ; + a (3/8)̂(4) + 1.5 1 o n̂  
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density function whose mean and variance are estimated at time t to be J o ~2 the values of V, and a , respectively. The parameter values of p(V,) l,o n J 1 
are then re-estimated at time tn to be the values of VI n and a , 

1 1,1 n 
2 

respectively, provided the magnitude of o is not affected by the nl 15 estimated values of V,. In some cases, the magnitude of V. affects 1 1 2 . 2 the magnitude of a , and it is necessary to re-estimate a n. n „ 1 1 
For the purposes of computational conveniences, the Poisson 

approximation to the normal distribution will be made in this example. 
Although this assumption is a very restrictive one, it facilitates the 
amount of computations required for the example under consideration. 
The Poisson density function with mean is shown in Equation (5-16). 
Under the assumption stated above, the means X̂  and X̂  are estimated at time t to be the values of V, and V̂  , respectively: and subsequently o l,o 2,o'^ J ' 
re-estimated at time t to be the values of V and V , respectively. 

l l, 1 ^ jJ-
Such computed values are shown in Table 12. Table 12. The Values of $2,1 a n d Vl,l Computed at Time tj_ Given the Values of Data v̂  

v 0 1 2 3 4 5 6 7 
V 1„8 2.3 2,7 3.2 3.6 4.1 4.5 5.0 2,1 
V 1.1 1.4 1.6 1.9 2.2 2.5 2.7 3.0 1,1 

5Johnston (21), pp. 207-211, 
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The range of vn in Table 12 is shown as 0 < v, < 7, since f (VJA, ) = 0 to 1 1 p 1 1 for V >7. The probability functions p(V̂) and p(V2) can be described at time t̂  as follows: 

p(V ) = f (V /X = V. .; vn ) (5-35) 1 p 1 1 1,1 1 

p(V2) = f

p(V2/X2 - V2>1; Vl). (5-36) 
The probability values of p(V̂) and p(V2) can be obtained from a 

16 
Poisson probability table corresponding to each of the estimated means shown in Table 12. The probability values are subsequently used to solve Equations (5-26) and (5-27) for the optimum ordering quantities q̂  and q2. The computational scheme for the dynamic programming problem is relatively straightforward for the present example however, the computational requirements would have been very great if the example was not made as simple as the present one. The computational results are summarized in Table 13. The optimum solutions can be found from Table 13 to be: q = 4, and f (0,V) = 19.77. 
The solution for the second period depends upon the actual outcome v̂  as shown in the tabulation on page 128. 

1 f> 
Molina (29). 



Table 13. Computational Results for Example: When the Filtering Procedure Is Used for Estimation 

SECOND SUBPERIOD 

V L 0 1 2 3 4 5 6 7 

V 2 , I LC 8 2 . 3 2,7 3.2 3.6 4.1 4,5 5.0 

y2 q2 F 2 ( Y . V ) q2 F 2 ( Y , V ) q2 F 2 ( Y » V ) q2 F 2 ( Y , V ) q2 F 2 ( Y . V ) q2 F 2.(Y,V) q2 F 2 ( Y , V ) q2 F 2 ( Y , V ) 

0 1 2 51 2 4 12 2 5 16 2 6 08 2 6 63 3 9 08 3 9. 81 4 12.09 
1 0 10 51 1 12 12 1 13 16 1 14( 08 1 14. 63 2 17 08 2 17 81 3 20.09 
2 0 18 34 0 20 12 0 21 16 0 22 08 0 22 63 1 25 08 1 25 81 2 28. 09 
3 0. 23 81 0 26 77 0 28 73 0 30 66 0 31 91 0 33 08 0 33 81 1 36.09 
4 0 27 73 0 31 57 0 34 28 0 37 25 0 39 27 0 41 35 0 42 70 0 4 4 s 09 
5 0 31 07 0 . 35 31 0 38 54 0 42 22 0 44 90 0 47 87 0 49 91 0 52 . 08 
6 0 34 20 0 38 57 0 42 05 0 46 .21 0 49 28 0 52 91 0 55 59 0 58. 57 
7 0 37 20 0 41 70 0 45 23 0 49 58 0 52 99 0 57 03 0 50 13 0 63. 67 

FIRST SUBPERIOD 

ql 0 1 2 3 4 5 5 7 

g 1C0 sV) 6.57 12. 24 16. HS 18, 8 c; 19.77 19 .01 17 .25 14, 62 



128 

vl 0 1 2 CO 
1 

4 LO 6 7 

q2 0 0 0 1 2 3 3 4 

For purposes of comparison, consider a situation where the param

eters of the demand variable are estimated only once at the beginning 

of the season, and no re-estimates are allowed after the season begins. 

Making use of the data given in the example, suppose p(V^) and p(V ) 

can be represented by the Poisson density functions: 

p(V. ) = f (vn /X.. = 1.5) , (5-37) 1 p 1 1 

p(v2) - f
p(v. 2A 2

 = 2 , 5 ) > ( 5 _ 3 8 ) 

where the means are es initiated on the basis of the initial estimate 

D ; namely: 
o J 

X. = m nD = (3/8)(4) = 1,5, 1 1 o 

X2 = m2 Do = (5/'8'^4) = 2 ' 5 

The seasonal goods inventory problem with this type of demand 

probabilities is well known m the literature."^ When Equations (5-26) 

and (5-27) are solved with p(V^) and p(V ) shown in Equations (5-37) 

and (5-38), the results can be obtained as tabulated in Table 14. 

For example, see Hadley (15), Chapter 6. 



Table 14. Computational Results for Example: 
The Case Without Re-estimation 

SECOND SUBPERIOD FIRST SUBPERIOD 

f2(y,v) qi g1(o,v) 

0 2 4.66 0 4.66 1 1 12.66 1 10.77 2 0 20.66 2 15.54 CO 

0 27.77 3 19.10 4 0 32.98 4 21.45 5 0 36.93 5 22o46 6 0 40.31 6 22 .27 7 0 43,44 7 21.23 
The optimum solution can be found from Table 14 to be: 

q" -5, and f (0,V) = 22.46 
The solution for the second subperiod depends upon the actual outcome 

v. as shown in the tabulation below: 

vl 0 1 2 3 4 5 6 7 4 0 0 0 0 1 2 2 2 
A comparison of this solution (when the re-estimation of demand 

Is not allowed in the model) with the preceding (when the re-estimation 

of demand is made by means of the filtering procedure) indicates that 
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the advance order quantities are not the same; namely, the advance order 

is smaller when the re-estimation is allowed in the model. The reorder 

quantities are also not the same in two cases; namely, for > 3, the 

reorder is greater when the re-estimation is allowed in the model. It 

is further noted that the optimum expected return is higher when the 

demand is not re-estimated; i.e., f (0,V) = 22c46, and is lower when 

the demand is re-estimated; i.e., f (0,V) ~ 19.77, 

These results are interpreted as follows: The re-estimation 

scheme allows a reduction in the initial investment (i.e., the advance 

order quantities); however, it allows a greater flexibility in the 

second investment (i.e., the reorders). The difference in the values 

of f (0,V) is interpreted as follows: If the re-estimation is not 

allowed, it is equivalent to assuming that the variance of the initial 

estimation error is very small. On the other hand, if the re-estimation 

is allowed, it Is equivalent to assuming that the variance of the ini

tial estimation error is not small. In other words, the re-estimation 

would be required if the uncertainty In the initial estimates is 

greater. It then follows that the expected return would be smaller 

when the uncertainties in the future events are greater. 

Summary 

The general model of the multi-stage control process, which was 

discussed in Chapter III, is used in this chapter as a basis for formu

lating a seasonal goods inventory model0 A seasonal period is divided 

by a finite number of time points so that the estimation of demand as 

well as the determination of order quantities are allowed to take place 
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at. each of t h e s e time p o i n t s c 

This p r o b l e m w a s r e c e n t l y c o n s i d e r e d by Murray et al. 
18 

The 

m a i n d i f f e r e n c e b e t w e e n their m o d e l and the p r e s e n t m o d e l lies in the 

p r o c e d u r e u s e d for e s t i m a t i n g d e m a n d . The f o r e c a s t i n g p r o c e d u r e of 

Murray et al. is based on the f o l l o w i n g m a i n a s s u m p t i o n s 

lo The p r o b a b i l i t y of demand can be d e s c r i b e d by the beta 

b i n o m i a l p r o b a b i l i t y f u n c t i o n , 

2, The size of demand p o p u l a t i o n is exactly k n o w n ; e.g., N = 3 

and N - 5. 

3 6 The a priori e s t i m a t e o f the p r o b a b i l i t y that any m e m b e r of 

the d e m a n d p o p u l a t i o n w i l l generate a d e m a n d is a v a i l a b l e b e f o r e the 

season b e g i n s ; e.g., p ^ - 0.5. 

The f o r e c a s t i n g p r o c e d u r e of the p r e s e n t m o d e l Is b a s e d on the 

f o l l o w i n g m a i n a s s u m p t i o n s . 

1. The linear f e e d b a c k filter p r o c e d u r e can be u s e d to e s t i m a t e 

the trend In demand p r o b a b i l i t i e s . 

2 0 The m o d e l o f E q u a t i o n (4-22) and E q u a t i o n ( 4 - 6 4 ) can be d e 

fined for t h e i n v e n t o r y s i t u a t i o n . 

3. The a priori e s t i m a t e s of the s e a s o n a l d e m a n d are a v a i l a b l e 

at the b e g i n n i n g of the season. 

H e r t z et al.3 it seems rhat the a s s u m p t i o n s of the p r e s e n t m o d e l are 

In r e f e r e n c e to the case studies r e p o r t e d by Cyert et al. 
19 

and 

20 

18 
M u r r a y et al. ( 3 0 ) . 

19 
C y e r t et al. ( 8 ) . 

20 
H e r t z et al. ( 1 8 ) . 
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a more reasonable and logical representation of the inventory practice 

than the assumptions given by Murray et al. 

The use of the proposed model is illustrated by numerical 

examples. The results of the examples Indicate that, when the re-

estimation is made, the amount of advance orders is smaller than the 

case without re-estimation. 
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C H A P T E R VI 

C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 

C O N C L U S I O N S 

T H E C O M P L E X I T I E S A S S O C I A T E D W I T H M A N A G E M E N T C O N T R O L P R O B L E M S 

O F T E N M A K E I T N E C E S S A R Y T O C A R E F U L L Y E X A M I N E T H E P R O C E D U R E U S E D FOR 

M O D E L I N G T H E R E A L W O R L D S I T U A T I O N . T H I S R E S E A R C H I S D I R E C T E D T O W A R D 

T W O M A I N O B J E C T I V E S : ( 1 ) T O D E V E L O P A T H E O R E T I C A L FRAME O F R E F E R E N C E 

W H I C H CAN B E C O N V E N I E N T L Y U S E D T O M O D E L M A N A G E M E N T C O N T R O L P R O B L E M S IN 

G E N E R A L ; A N D ( 2 ) T O D E V E L O P A S E A S O N A L G O O D S I N V E N T O R Y M O D E L W H I C H 

G I V E S A R E A L I S T I C R E P R E S E N T A T I O N OF T H E I N V E N T O R Y S I T U A T I O N IN P R A C T I C E . 

T H E R E S U L T S A N D C O N C L U S I O N S E V O L V E D F R O M T H I S R E S E A R C H ARE S U M M A R I Z E D 

AS F O L L O W S : 

L N A C C O R D I N G T O T H E E X I S T I N G K N O W L E D G E I N T H E F I E L D , I T A P P E A R S 

THAT S Y S T E M T H E O R Y O F F E R S THE M O S T H E L P F U L AND L O G I C A L B A S I S F O R M O D E L 

ING C O M P L E X S I T U A T I O N S . B Y M A K I N G N E W I N T E R P R E T A T I O N S O F E X I S T I N G C O N 

C E P T S I N S Y S T E M T H E O R Y , A C O N C I S E A N D U N I F I E D B O D Y O F T H E O R Y IS 

F O R M U L A T E D A N D D I S C U S S E D I N C H A P T E R I I W H I C H M A Y B E P A R T I C U L A R L Y U S E F U L 

IN M O D E L I N G M A N A G E M E N T C O N T R O L P R O B L E M S . G I V E N A S I T U A T I O N F O R M A N A G E 

M E N T C O N T R O L , THE F I R S T S T E P IN .HE M O D E L I N G P R O C E D U R E I S R E C O G N I Z E D 

AS T H E D E F I N I T I O N O F T H E S P A T I A L B O U N D A R I E S 1 A P R O B L E M S O T H A T T H E 

P R O B L E M CAN B E S T R U C T U R E D AS A S Y S T E M . S U _ H A S Y S T E M M A Y B E M O D E L E D 

B Y C O N S I D E R I N G T H E T O P I C S O F H I E R A R C H I C A L S Y S T E M S T R U C T U R E , S Y S T E M 

A T T R I B U T E S , A N D S Y S T E M G O A I S » IN P A R T I C U L A R , A M A N A G E M E N T S Y S T E M M A Y B E 
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structured with respect to the nontransferable attributes; the system behavior may be analyzed with respect to the information attributes; and the system goal may be identified with a single-level-single-goal systenu 2. Once the spatial boundaries of a system problem is defined, the subsequent step in the modeling procedure is to define the dynamic boundaries of the system process. For this purpose, the topics of the multi-stage control processes and the feedback control sequences are considered in Chapter III. The general procedure is illustrated with an inventory situation of retail firms. First, the spatial boundaries of the inventory situation are defined so that the Inventory problem can be recognized as a relatively Isolated system within the overall organizational structure, Subsequently, the Inventory system is modeled within the framework of the multi-stage control processes, 3c In the formulation of a multi-stage control process» a method is required to estimate the statistical characteristics of a random process which underlies the system state. In the case of the inventory control process, this situation applies to the problem of demand forecasting,, A method which can be used to forecast demand for seasonal goods Inventory items Is developed in Chapter IV. The procedure which is most frequently considered in the literature is that which assumes the probabilities of demand are estimated once for ail before the beginning of a season. The proposed procedure also accepts such initial estimates; however, a filtering procedure"̂  is 

Shaw (34). 
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applied so that the Initial estimation errors can be corrected as more 

data become available after the season begins. The filtering procedure 

Is primarily used to re-estimate the seasonal demand; however3 the re-

estimated results can be also used to predict the subperiod demand for 

the season. Within this framework, the filtering problem of estimating 

the seasonal demand coincides with the prediction problem of estimating 

the subperiod demands. 

The proposed filtering procedure is very sensitive to the param

eter values used in the model. If the estimated variance of the initial 

estimation error is very small, then the procedure is very slow in the 

correction of the large bias errors In the initial estimation. On the 

other hand, if the estimated variance of the Initial estimation error 

is very large, then the filtering procedure becomes very sensitive to 

the fluctuations in the data. If the variance of the initial estima

tion error approaches an infinitely large number, then the re-estimated 

values computed by the filtering method will approach the simple 

averages in a special case considered In the study. 

4-c The general procedure for modeling and forecasting Is sub

sequently applied to model a seasonal goods inventory control situation 

of retail firms. The seasonal goods Inventory problems have been solved 

in the literature for the case where re-estimates of demand probabili

ties are not allowed In the model. In practice, however, a seasonal 

period is often divided by a finite number of time points such that the 

estimation of demand as well as the determination of order quantities 

are allowed to take place at each of these time pointsc 
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In a recent publication, Murray et al. considered a seasonal 

goods inventory model which allows re-estimates of demand probabilities. 

However, their model is applicable only when a priori knowledge of the 

size of the demand population is available. Such a knowledge is not 

needed in the present model which makes use of the linear feedback 

filtering procedure. In reference to the case studies reported by 
3 4 Cyert et al. and Hertz et al.y the present model appears to be a 

logical representation of the seasonal goods Inventory situation in 

practice. 

Recommendations 

A specific inventory situation of a retail firm is used in this 

study to provide a background for the theoretical analysis and develop

ment. The general outcome of the study may be applied to other situa

tions in management control problems with appropriate modifications to 

meet specific characteristics of individual problems. Some possible 

topics for additional research may be suggested as follows. 

1. The objective function is expressed in the form of a maximi

zation problem in the present study. This is based on the assumption 

that the goal of the system is to maximize the net return in revenue as 

specified by the objective function. According to the Simon-March 

hypothesis,^ the system goals are often concerned with the discovery 

2 
Murray et al. (30). 
3 

Cyert et al. (8). 

4Hertz et al. (18). 

5March (26). 
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and selection of acceptable alternatives rather than optimal alterna

tives. If the system goal is to meet an acceptable level of performance, 

then the objective function may be expressed in the form of minimizing 

a quadratic cost function. 

If the acceptable level of performance is known to the system, 

then a straight-forward application of control theory of physical 

systems can be made to study the situation. On the other hand, if the 

acceptable level of performance is not exactly known, then the problem 
7 

becomes relatively difficult and complicated. 

2 C The Individual stage of a multi-stage control process can be 

described in terms of a feedback control sequence which consists of 

measurement, estimation, computation, optimization, decision, and actu

ation. The present study assumed that the time lag between these 

activities in sequence is not significant enough to affect the outcome 

of a solution. In many cases, however, the time lags cause serious 

problems; for example, the replenishment lead time. For such a situa

tion, the actuation aspect of sequence may be analyzed in detail. 

3S In this study, the seasonal goods Inventory problem is 

formulated with only one decision variable representing the order 

quantities. In the retail situations, the level of promotional efforts 

may be regarded as another decision variable. In such a case, the de

mand generating subsystem is no longer uncontrollable, but can be 

regarded as a controllable subsystem. In order to analyze this situa-

6 

This was the case in the study of Holt et at. (20). See Aseltine (1); Charnes (6). 7 
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tion, a system equation is needed which describes a relationship 

between the levels of consumer response and promotional efforts; for 

example, the level of consumer response may be defined as another state 

variable. When such a knowledge is available, then the multi-stage 

control processes can be modeled with two state variables and two 

decision variables. 
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APPENDIX 1 

Mesarovic et at. Marschak (27) (28). 

GOALS OF A SINGLE-LEVEL-MULTI-GOAL SYSTEM 
The concept of multi-goal-multi-level systems was introduced by Mesarovic et at. in a recent publication."'" A single-level-multi-goal system is a special case of such multi-Ievel-multi-goal systems. In an earlier paper, the problem of ranking multiple goals was considered by 
2 . . . . . . 

Marschak. These concepts are jointly applied m this Appendix m order to develop a procedure for recognizing the unordered system goals as well as the ordered system goals. Suppose a system S consists of k components: C . ,0,̂  , . . . ,C . , . . . s C . It is assumed that each component may have its own goal, and let 
K Ĝ denote the goal of component C\ . Furthermore, let Ĝ denote the system goal. For purposes of the present discussion, suppose there are three alternatives; say x, y, and z, over which the goals of system components can establish their own preferences. Making use of the notation introduced by Marschak, let xĜy be interpreted as: from the viewpoint of G_p the alternative x Is as good as the alternative y. In other words, for Ĝ, the alternative x is preferable or equivalent to y„ Suppose the goals are rational In the sense that the following conditions are satisfied: 



1 4 1 

1 . Transitive condition: I.e., xG^y and yG^z Implies xG^z, 

The system goal Ĝ  can be regarded as being ovdeved if: XGQY holds, 

even when xG^y may not hold for some 1 , I = l,2,.,.,k. In this case, 

the ordered system goal can be expressed by an ordered set: 

In the expression above, the parenthesized subscripts refer to the order 

of preference of component goals. Finally, the system goal Ĝ  can be 

regarded as a single-goal, if all component goals are identical to the 

system goal. 

G Q = {Gl,G2,...,G.,. „,G]<} . (Al-1) 

( 1 ) ' ( 2 ) 
(Al-2) 

2 . Irreflexive condition: i.e., xG.y or yG.x can hold true, 

but both cannot hold true at the same time unless x and y are Identical. 

When the component goals are rational, it may be possible to 

consider a system goal. On the other hand, when component goals are 

not rational, then it would be meaningless to consider a system goal. 

When the component goals are rational, the system goal, or the group 

goal, G , can be regarded as being unovdeved if: when xG_̂ y does not 

hold for i = 1 , 2 , . . . , k , then xGQy does not hold; stated equivalently, 

xG^y holds only if xG^y holds for all i, I = 1 , 2 , ...,k. The unordered 

system goal may be represented by an unordered set: 
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For an illustration, consider an Industrial firm as a system S 

which consists of two components. Let component be the management 

of the firm, and component be the labor. Also let G^, G , and Ĝ  

denote the goals of S, C^, and C , respectively. Suppose x, y, and z 

be the three alternatives over which the goals of system components can 

establish their own preferences. In the event that a labor dispute 

takes place, the system goal can be described by an unordered set with 

two component goals„ When it is possible to have a negotiation over 

the labor dispute, then, during the time of negotiation, the system 

goal can be described by an ordered set of two component goals. 

Finally, when an agreement is made between labor and management, then 

the system goal can be regarded as a single-goal. 

This problem was originally given by Marschak (27), 
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